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SUBBAND ADAPTIVE FILTERS

12.1 INTRODUCTION

There are many applications where the required adaptive-filter order is high, as for example, in
acoustic echo cancellation where the unknown system (echo) model has a long impulse response, on
the order of a few thousand samples [1]-[5]. In such applications, the adaptive-filtering algorithm
entails a large number of computations. In addition, the high order of the adaptive filter affects the
convergence speed.

A solution to problems where long-impulse-response filters are needed is to employ adaptive filtering
in subbands. In subband adaptive filtering, both the input signal and the desired signal are split
into frequency subbands via an analysis filter bank. Assuming that the signal decomposition in
subchannels is effective, we can decimate (subsample) these subband signals and apply adaptive
filtering to the resulting signals. Each subband adaptive filter usually has shorter impulse response
than its fullband counterpart. If a gradient type algorithm is used to update the adaptive filters, we
can adjust the step size in the adaptation algorithm individually for each subband, which leads to
higher convergence speed than in the case of fullband adaptive filter.

Decimation allows the reduction in computational complexity. Mainly if critical subsampling (i.e.,
decimation by a factor equal to the number of subbands) is employed, aliasing effects may impair the
obtained filter estimates. This issue will be discussed during this chapter. Therefore, by judicious
use of adaptive filtering in subbands we can reduce the computational complexity, as well as increase
the algorithm convergence speed [1]-[7].

This chapter starts with a brief introduction to multirate systems, where the concepts of decimation,
interpolation, and filter banks are presented. Then, the basic structures for adaptive filtering in sub-
bands are presented along with a discussion regarding their main features. The concept of delayless
subband adaptive filtering is also addressed, where the adaptive-filter coefficients are updated in
subbands and mapped to an equivalent fullband filter. Finally, we point out the relation between
subband and block adaptive-filtering (also known as frequency-domain adaptive filters) algorithms.

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_12,  
© Springer Science+Business Media, LLC 2008  
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12.2 MULTIRATE SYSTEMS

In this section, we briefly review the fundamentals of multirate systems which are essential to
implement adaptive filters in subbands. For further details related to multirate systems and filter
banks the reader can refer to the review article [8] or the comprehensive textbook [9].

12.2.1 Decimation and Interpolation

Decimation (also known as down-sampling or compression) of a digital signal x(k) by a factor of
L means reducing its sampling rate L times. Decimation is achieved by retaining only every Lth
sample of the signal. The decimator symbol is depicted in Fig. 12.1.a.

Lx k( ) x mD ( )

(a)

Lx m( ) x kI ( )

(b)

Figure 12.1 (a) Decimation by a factor L, (b) Interpolation by a factor L.

The decimated signal is then xD(m) = x(mL). In the frequency domain, if the spectrum of x(k) is
X(ejω), the spectrum of the sub-sampled signal, XD(ejω) is given by [9]

XD(ejω) =
1
L

L−1∑
k=0

X(ej
ω−2πk

L ) (12.1)

The above equation indicates that the spectrum of xD(m) is composed of copies of the spectrum
of x(k) expanded by L and repeated with period 2π. Figs. 12.2.a and 12.2.b depict the effect of
sub-sampling on the spectrum of x(k), for L = 2. This implies that, in order to avoid aliasing after
sub-sampling, the bandwidth of the signal x(k) must be limited to the interval [− π

L ,
π
L ]. In fact, the

sub-sampling operation is generally preceded by a lowpass filter that approximates the following
frequency response

HD(ejω) =
{

1, ω ∈ [− π
L ,

π
L ]

0, otherwise
(12.2)

It should be noted that the decimation operation is shift varying, i.e., if the input signal x(k) is shifted,
the output signal will not in general be a shifted version of the previous output. More precisely, the
decimation is a periodically shift-invariant operation.

The interpolation (or up-sampling) of a digital signal x(m) by a factor of L entails including L− 1
zeros in between samples. The interpolator symbol is depicted in Fig. 12.1.b.
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(a) Original spectrum

(b) Spectrum of a down-sampled signal

(c) Spectrum of an up-sampled signal

Figure 12.2 Spectra of up- and down-sampled signals.

The interpolated signal is then

xI(k) =
{
x( kL ), k = mL,m ∈ Z
0, otherwise

(12.3)

If the spectrum of x(m) isX(ejω), it is straightforward to show that the spectrum of the up-sampled
signal, XI(ejω), is given by

XI(ejω) = X(ejωL) (12.4)

Since the spectrum of the input signal is periodic with period 2π, the spectrum of the interpolated
signal will have period 2π

L . Fig. 12.2.c illustrates how the signal spectrum is modified after the



488 Chapter 12 Subband Adaptive Filters

up-sampling operation. If we wish to obtain a smooth interpolated version of x(m), the spectrum
of the interpolated signal must have the same shape of the spectrum of x(m). This can be obtained
by filtering out the repetitions of the spectra beyond [− π

L ,
π
L ]. Thus, the up-sampling operation is

generally followed by a lowpass filter which approximates the following frequency response

HI(ejω) =
{
L, ω ∈ [− π

L ,
π
L ]

0, otherwise
(12.5)

The decimator and interpolator blocks are fundamental to represent (or implement) serial-to-parallel
and parallel-to-serial converters. That is, given a signal x(k) whose samples appear serially, we
can transform this sequence into blocks of length L by using delay operators and decimators whose
representation is depicted in Fig. 12.3.a. The signal block at the output retainsL consecutive samples
of the input signal as follows

x(m) = [x(mL) x(mL− 1) . . . x(mL− L+ 1)]T (12.6)

This notation is slightly different from the one to be used in the remaining chapters, since m here
denotes the block number and not the index of the most recent element of x(m). In this chapter we will
use the block notation because it leads to simpler description of the algorithms. The implementation of
the serial-to-parallel converter in terms of decimators and delays is further illustrated in Fig. 12.3.b.

On the other hand, given a block signal x(m), we can transform the parallel data of lengthL back into
a delayed serial data as shown in Fig. 12.4.a. The implementation of the parallel-to-serial converter
in terms of interpolators and delays is illustrated in Fig. 12.4.b.

12.3 FILTER BANKS

In subband adaptive filtering as well as in a number of other applications, it is advantageous to split
a sequence x(k) into several frequency bands. This is illustrated on the left-hand side of Fig. 12.5.

The analysis filters, represented by the transfer functions Fi(z) for i = 0, 1, . . . ,M − 1, comprise of
a lowpass filter F0(z), bandpass filters Fi(z) for i = 1, 2, . . . ,M−2, and a highpass filter FM−1(z).
Ideally these filters have nonoverlapping passbands, while they together cover the entire spectrum
of the input signal. Since each of the analysis filter outputs xi(k), i = 0, 1, . . . ,M − 1 has the same
number of samples as the original signal x(k), after the M -band decomposition, all signals xi(k)
together haveM times more samples than the original one. This expansion on the number of samples
is undesirable because of the resulting computational burden.

In most cases, the input signal is uniformly split into subbands, where each of the frequency bands
has the same bandwidth. Since the bandwidth of each analysis filter output band is M times smaller
than in the original signal, we can decimate each xi(k) by a factor ofL smaller or equal toM without
destroying the original information. ForL = M , the amount of data after the decimators in Fig. 12.5
is maintained when compared to the number of samples of the input signal. This case is called
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Figure 12.3 Serial-to-parallel converter (a) Symbol, (b) Implementation.

maximally (or critically) decimated analysis filter bank. If L > M , there is a loss of information due
to aliasing which does not allow the recovery of the original signal. ForL ≤M , it is possible to retain
all information contained in the input signal by properly designing the analysis filters in conjunction
with the synthesis filters Gi(z), for i = 0, 1, . . . ,M − 1. If no signal processing task is performed
in the subbands (see Fig. 12.5), the filter bank output y(k) can be made to be a delayed version of
the input signal x(k), where the delay is due to the causality of the subband filters. In this case, we
have a perfect reconstruction filter bank. In fact, there are several methods for designing the analysis
filters Fi(z) and the synthesis filters Gi(z) such that perfect reconstruction is achieved or arbitrarily
approximated. These filters can be finite-length (FIR) filters with overlapping frequency responses,
which are designed to cancel out the aliasing effects and results in the perfect reconstruction.
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Figure 12.4 Parallel-to-serial converter (a) Symbol, (b) Implementation.

In the case where L < M , the filter bank is called oversampled (or noncritically sampled) since we
are retaining more samples in the subbands than the input signal. Oversampled filter banks appear
frequently in subband adaptive-filtering applications, however their design is beyond the scope of
this book.

We will now discuss the polyphase representation of a transfer function which is quite useful in
describing filter banks. Defining Eij(z) =

∑Np−1
l=0 fi(Ll + j)z−l as the polyphase components of

the analysis filter Fi(z), andNp as the length of the polyphase components of the analysis filters, we
can express the transfer function of the filter Fi(z) as follows
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Figure 12.5 Signal processing in subbands.

Fi(z) =
NpL−2L+1∑

k=0

fi(k)z−k

=
Np−1∑
l=0

fi(Ll)z−Ll + z−1
Np−1∑
l=0

fi(Ll + 1)z−Ll + · · ·+ z−L+1
Np−1∑
l=0

fi(Ll + L− 1)z−Ll

=
L−1∑
j=0

z−jEij(zL) (12.7)

In the polyphase decomposition we decompose each analysis filter Fi(z) into L filters, the first one
has an impulse response consisting of every sample of fi(k) whose indexes are multiples of L, the
second one has every sample of fi(k) whose indexes are one plus a multiple of L, and so on. The
resulting representation for an analysis subfilter, along with decimation, is depicted in Fig. 12.6. By
means of a noble identity [9], the cascade connection ofEij(zL) and the decimators can be replaced
by decimators followed by the polynomials Eij(z).

For the synthesis filter bank we can employ an alternative polyphase decomposition which matches
the interpolation operation. That is, each synthesis filter can be described in the following polyphase
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Figure 12.6 Polyphase representation.

form

Gi(z) =
M−1∑
j=0

z−(L−1−j)Rji(zL) (12.8)

Again by means of a noble identity [9], the polynomials Rji(zL) preceded by interpolators can be
replaced by interpolators preceded by the polynomials Rji(z).

By replacing each of the filters Fi(z) and Gi(z) by their polyphase components, the M -band filter
bank of Fig. 12.5 can be transformed in the structure of Fig. 12.7. The matrices E(z) and R(z) are
formed from the polyphase components of Fi(z) andGi(z). Eij(z) is the jth polyphase component
of Fi(z) and Rji(z) is the jth polyphase component of Gi(z). From Fig. 12.7 we conclude that if
R(z)E(z) = z−ΔI, where Δ is an arbitrary delay and I is the identity matrix, theM -band filter bank
holds the perfect reconstruction property.
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Figure 12.7 M -band filter bank with polyphase representation.

12.3.1 Two-Band Perfect Reconstruction Filter Banks

For a two-band perfect reconstruction filter bank with FIR analysis and synthesis filters, the following
conditions must be satisfied

F0(−z)F1(z)− F0(z)F1(−z) = 2cz−2l−1 (12.9)

G0(z) = −z
2(l−Δ)

c
F1(−z) (12.10)

G1(z) =
z2(l−Δ)

c
F0(−z) (12.11)

where equation (12.9) guarantees that the synthesis filters are FIR, while equations (12.10) and
(12.11) guarantee perfect reconstruction. The delay Δ is included in equations (12.10) and (12.11)
in order to guarantee that the subfilters in the filter bank are causal.

Equations (12.9) to (12.11) lead to the following design procedure for the two-band perfect recon-
struction filter bank [10]: (1) Find a polynomial P (z) such that P (−z) − P (z) = 2z−2l−1; (2)
Factorize P (z) into two factors, F0(z) and F1(−z), such that F0(z) and F1(−z) are lowpass filters;
(3) Design G0(z) and G1(z) using equations (12.10) and (12.11). In step (1) P (z) is an approxi-
mation to a half-band filter1, whose amplitude response should be positive everywhere. In case this

1The amplitude response of a half-band filter is symmetric with respect to π
2 , withωp +ωs = π, whereωp is the passband

edge and ωs is the stopband edge.
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condition is not initially satisfied in the design, we should add δz−2l−1 to P (z) such that δ is the
modulus of the smallest (negative) value of the designed P (z). We add that the factorization step (2)
becomes ill-conditioned when designing high-order filters. In this case, alternative design methods
can be employed [9].

In some applications, it is desired that the filter bank be made up of linear-phase filters. In this case,
one has to find a linear-phase product filter P (z), and perform linear-phase factorizations of it.

12.3.2 Analysis of Two-Band Filter Banks

From Fig. 12.5 we see that the signals after the analysis filters in a two-band filter bank are described
by

Xi(z) = Fi(z)X(z) for i = 0, 1 (12.12)

In the frequency domain, the decimated signals are

Ui(z) =
1
2
[Xi(z

1
2 ) +Xi(−z 1

2 )] for i = 0, 1 (12.13)

Thus after interpolation of the Ui(z), we get

Ui(z2) =
1
2
[Xi(z) +Xi(−z)]

=
1
2
[Fi(z)X(z) + Fi(−z)X(−z)] (12.14)

The reconstructed signal is then expressed as

Y (z) = G0(z)U0(z2) +G1(z)U1(z2)

=
1
2
[F0(z)G0(z) + F1(z)G1(z)]X(z) +

1
2
[F0(−z)G0(z) + F1(−z)G1(z)]X(−z)

=
1
2
[
X(z) X(−z) ] [ F0(z) F1(z)

F0(−z) F1(−z)
] [

G0(z)
G1(z)

]
(12.15)

The last equality is called modulation-matrix representation of a two-band filter bank. In this case,
the aliasing effect caused by the decimation operation is represented by the terms containingX(−z).

Note that it is possible to avoid aliasing at the output by properly choosing the synthesis filter, as for
example in the perfect reconstruction case.

12.3.3 Analysis of M -Band Filter Banks

The expression for two-band case can be easily generalized to M bands by noting that, after deci-
mation by L, the signals will have L− 1 aliased components. That is

Xd(z) =
1
L

L−1∑
k=0

X(z
1
L e− j2πk

L ) (12.16)
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The kth aliased component of X(z) is X(z
1
L e− j2πk

L ).

Therefore, the modulation matrix for the M -band filter bank is given by

Y (z) =
1
2
[
X(z) X(zW ) . . . X(zWL−1)

]
⎡
⎢⎢⎢⎣

F0(z) F1(z) . . . FM−1(z)
F0(zW ) F1(zW ) . . . FM−1(zW )

...
...

. . .
...

F0(zWL−1) F1(zWL−1) . . . FM−1(zWL−1)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

G0(z)
G1(z)

...
GM−1(z)

⎤
⎥⎥⎥⎦ (12.17)

where W = e− j2π
L .

12.3.4 Hierarchical M -Band Filter Banks

By connecting two-band filter banks in series, we can produce many different kinds of maximally
decimated decompositions. For example, we can design a 2n-band uniform decomposition filter
bank as illustrated in Fig. 12.8 for n = 3. It is also possible to implement nonuniform filter banks
by using two-band filter banks in series, but using a different type of hierarchical decomposition [9].
A commonly used one is the octave-band decomposition.

12.3.5 Cosine-Modulated Filter Banks

Cosine-modulated filter banks are a class of filters efficient for the design and implementation of
filter banks with large number of subbands. A cosine-modulated filter bank is easy to design because
it is based on a single lowpass prototype filter whose impulse response satisfies some constraints
required to achieve perfect reconstruction. It also leads to low computational complexity because the
analysis and synthesis filter banks make use of the so-called discrete-time cosine transform (DCT),
for which there are many fast implementations available for its computation.

The design of the maximally decimated cosine-modulated filter bank starts with a linear-phase pro-
totype lowpass filter F (z) whose passband edge is π

2L − δ and the stop-band edge is π
2L + δ, where

2δ is the transition band. The length of the prototype filter is usually chosen to be an even multiple
of the number of subbands: Npr = 2KL, for K, an integer. Then, we generate cosine modulated
versions of the prototype filter in order to obtain the analysis and synthesis filter banks. The impulse
responses of the subfilters are given by

fl(n) = 2f(n) cos
[
(2l + 1)

π

2L

(
n− Npr − 1

2

)
+ (−1)l

π

4

]
(12.18)

gl(n) = 2f(n) cos
[
(2l + 1)

π

2L

(
n− Npr − 1

2

)
− (−1)l

π

4

]
(12.19)

for 1 ≤ n ≤ Npr and 0 ≤ l ≤ L − 1, where f(n), for n = 1, 2, . . . , Npr, denotes the elements of
the prototype impulse response. The constraints required to achieve perfect reconstruction are given
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Figure 12.8 Hierarchical uniform filter bank.

by

Ej(z−1)Ej(z) + Ej+L(z−1)Ej+L(z) =
1

2L
(12.20)

whereEj(z) for any j = 0, 1, . . . , L−1 is the jth polyphase component of the prototype filter F (z).

There are computationally efficient implementations for the cosine-modulated filter bank which make
use of the polyphase decomposition of the prototype filter. For further details refer to [9], [8]. Also,
it is possible to design oversampled cosine-modulated filter banks with perfect reconstruction [11],
which can be used in nonmaximally decimated subband adaptive filtering.
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12.3.6 Block Representation

By using the polyphase concept we can show that any scalar linear time-invariant transfer function
H(z) can be implemented through a pseudocirculant matrix H(z), where the particular case of a
3× 3 matrix H(z) is given by

H(z) =

⎡
⎣ H0(z) H1(z) H2(z)
z−1H2(z) H0(z) H1(z)
z−1H1(z) z−1H2(z) H0(z)

⎤
⎦ (12.21)

where the Hi(z), i = 0, 1, 2, are the polyphase components of H(z).

The overall realization ofH(z) is equivalent to a cascade connection of the serial-to-parallel converter
of Fig. 12.3.b, the transfer matrix H(z), and the parallel-to-serial converter of Fig. 12.4.b, except
for a delay of z−L+1 since the converter of Fig. 12.4.b is causal (i.e., it utilizes negative powers of
z). See the implementation of Fig. 12.7 with H(z) replacing the cascade of E(z) and R(z). This
realization is known as blocked implementation of a scalar transfer function [32].

We note that the cascade of the unblock/block mechanisms of Figs. 12.4.b (noncausal case) and
12.4.a result in an identity matrix (see section 12.5). The reader is encouraged to verify this result.

12.4 SUBBAND ADAPTIVE FILTERS

A number of adaptive-filtering structures based on multirate techniques have been proposed in the
literature [1]-[7], [14]-[28]. In most of these structures, the input signal is decomposed into subbands
via an analysis filter bank, and the resulting signals are downsampled and filtered by adaptive filters.
Each of these adaptive filters has order smaller than the equivalent full-band adaptive filter (by a factor
approximately equal to the decimation rate). The subsampling operations create aliased versions of
the decimated signal which will affect the performance of the adaptive filter. The aliasing effect
is more severe when critically sampled filter banks are employed. An obvious solution is to allow
frequency gaps between adjacent subbands, which for sure degrades the original signal quality. Some
other structures apply subband decomposition only to the error signal in order to improve tracking
ability in nonstationary environments [29]-[30].

Several adaptive subband structures have been suggested. One early approach uses pseudo-QMF2

banks with overlapping subfilters and critical subsampling [1], i.e., with L = M . This results in
undesirable aliased components at the output, which causes severe degradation. A second approach
uses QMF banks with critical subsampling [2]. In order to avoid aliasing problems, it is shown
that additional adaptive cross terms among the subbands are necessary. These cross terms, however,
increase the computational complexity and reduce the convergence rate of the adaptive algorithm.

An alternative solution is to employ oversampling, that is, to use a decimation factor in the filtered
signals smaller than the critical subsampling factor (or number of bands), i.e., with L < M . In the

2Quadrature-mirror filter.
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oversampling case, the computational complexity is higher than needed because after decimation the
number of samples retained in the subbands is larger than that of the filter bank input. Despite this
problem, oversampled adaptive filters are often used in practice [3]-[7], [15]-[16]. In this chapter,
we focus on the critically decimated case, although some analysis is also carried out for the general
oversampled case.

In all subband structures above described, the convergence rate can be improved for colored input
signals by using a normalized gradient algorithm in the update of the coefficients of each subband
filter. This improvement is justified in Fig. 12.9, where considering that the filter bank consists of
ideal subfilters, the spectrum of each signal in the subbands after critical decimation will be closer to
that of white noise than that of the original fullband signal. If the spectral separation is perfect, the
subband structure allows the transformation of the fullband adaptive-filtering problem into several
independent narrowband adaptive-filtering subproblems. In general, the subband separation will
be effective when the order of each subband adaptive filter is much smaller than the order of the
fullband filter. The justification is that the speed of convergence becomes faster for all subbands, and
the overall computational complexity is further reduced due to decimation.

|F z |0 ( )
1

|F z |1 ( ) |F z |2 ( ) |F z |3 ( )

�/4 �/2 3�/4 �

Normalized Frequency

R ex (
j�




Figure 12.9 Spectrum split in subbands.

In the conventional subband adaptive filters, error signals are locally evaluated in each subband
and an objective function taking into account all these local errors is minimized during adaptation.
Fig. 12.10 illustrates the open-loop structure, where we can see that both input and reference signals
are first split into subbands by an analysis filter bank. Then, the subband signals are filtered by an
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adaptive-filter matrix in order to generate the output signals to be compared with the desired signals
in the subbands. In the open-loop scheme, we aim to minimize the subband error energy.
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Figure 12.10 Open-loop subband structure.

For the open-loop structure, the objective function can be a linear combination of the magnitude
square of the local errors as follows

ξ =
M−1∑
i=0

E[|ei(m)|2] (12.22)

If we assume that the adaptive-filter matrix is diagonal, and that the subband signals are complex, the
updating equation for the subband adaptive filters based on the normalized LMS algorithm is given
by

ei(m) = d̃i(m)− wTi (m)ui(m) (12.23)

wi(m+ 1) = wi(m) +
2μ

γ +Nsσ2
i (m)

ei(m)u∗
i (m) (12.24)

where Ns is the length of the adaptive filter in the ith subband (which we consider the same for all
subbands in order to simplify the notation). In addition, σ2

i (m) = (1− α)σ2
i (m− 1) +α |ui(m)|2,

with α being a small factor chosen in the range 0 < α ≤ 0.1, and γ is a small constant to prevent
the updating factor from getting too large. The signal ei(m) is the subband error signal at the ith
subband, and ui(m) is the input signal vector to the ith adaptive filter.

Based on our knowledge of the normalized LMS algorithms, we can conjecture that the range of
values for the convergence factor is typically3

0 < μ < 1 (12.25)

3The upper bound can be tighter depending on the input signal statistics.
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Algorithm 12.1

Open-Loop Subband Adaptive-Filtering Algorithm

Initialization
x(0) = wl(0) = [0 0 . . . 0]T

γ = small constant
0 < α ≤ 0.1

Do for each x(iL) and d(iL) given, for i ≥ 0

u(m) =

⎡
⎢⎣ u0(m)

...
uM−1(m)

⎤
⎥⎦ =

[
E0 · · · ENp

] ⎡⎢⎣ x(i)
...

x(i−Np)

⎤
⎥⎦

d̃(m) =
[

E0 · · · ENp

] ⎡⎢⎣ d(i)
...

d(i−Np)

⎤
⎥⎦

y(m) =

⎡
⎢⎣ y0(m)

...
yM−1(m)

⎤
⎥⎦ =

[
W0 · · · WNs

] ⎡⎢⎣ u(m)
...

u(m−Ns)

⎤
⎥⎦

e(m) = d̃(m)− y(m)
Do for each for 0 ≤ l ≤M − 1
σ2
l (m) = (1− α)σ2

l (m− 1) + α |ul(m)|2
wl(m+ 1) = wl(m) + 2μ

γ+Nsσ2
l (m)el(m)u∗

l (m)

The steps of the open-loop algorithm are described in Algorithm 12.1, where x(iL− l) and d(iL− l)
represent a block of the input and desired signals respectively, El, for l = 0, 1, . . . , Np, are the
matrices containing the coefficients of the polyphase representation of the analysis filter bank, that
is,

E(z) =
Np∑
l=0

Elz−l

The coefficient matrices Wl, for l = 0, 1, . . . , Ns, are the entries of the adaptive filter matrices.

Since the frequency responses of the subfilters that compose the filter bank are not ideal, the mini-
mization of an objective function based on local errors will not necessarily reduce the fullband error
energy to a minimum MSE. In this case, the unknown system might not be identified accurately.
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12.4.1 Subband Identification

Define the Z-transforms of the blocked versions of input and desired signals x(k) and d(k) as

X(z) =
∑
m

x(m)z−m

D(z) =
∑
m

d(m)z−m (12.26)

where x(m) is given in equation (12.6), and

d(m) = [d(mL) d(mL− 1) . . . d(mL− L+ 1)]T (12.27)

If we describe the analysis filter transfer functions Fi(z), for i = 0, 1, . . . , L − 1, in terms of their
polyphase components, the subband input and desired signals, described in the Z-domain for the
critically decimated case (i.e. L = M ), can be written in vector form as

YYY(z) = W(z)E(z)X(z)
DDD(z) = E(z)D(z) (12.28)

where DDD(z) is the desired signal split into subbands, and YYY(z) is the adaptive system output (refer
to Figs. 12.7 and 12.10).

By describing the unknown system model in the block form, as explained in subsection 12.3.6, the
blocked desired signal is given by

D(z) = H(z)X(z) (12.29)

By substituting the above expression into equation (12.28), we obtain

DDD(z) = E(z)H(z)X(z) (12.30)

By defining the channel error vector as EEE(z) = DDD(z)−YYY(z) and setting it to zero, for X(z) �= 0, we
generate the optimal solution for the adaptive-filter coefficient matrix

E(z)H(z) = Wo(z)E(z) (12.31)

whose expression is given by

Wo(z) = E(z)H(z)E−1(z) (12.32)

Note that since Wo(z) is nondiagonal, it requires cross filters among channels in order to model the
unknown system perfectly.
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12.4.2 Two-Band Identification

The two-band case is easier to analyze in closed form, leading to interesting insights into the problem
of cross filters. Using the relations described in equations (12.12) and (12.13), and considering the
error signals equal to zero in Fig. 12.10, we can show that for the identification of an unknown
transfer function H(z), the optimal coefficients for the two-band adaptive filter are given by

Wo(z) =
[
F0(z

1
2 ) F0(−z 1

2 )
F1(z

1
2 ) F1(−z 1

2 )

] [
H(z

1
2 ) 0

0 H(−z 1
2 )

]
1

Ξ(z)

[
F1(−z 1

2 ) −F0(−z 1
2 )

−F1(z
1
2 ) F0(z

1
2 )

]

=
1

Ξ(z)

[
A(z) −F0(z

1
2 )F0(−z

1
2 )[H(z

1
2 ) − H(−z

1
2 )]

F1(z
1
2 )F1(−z

1
2 )[H(z

1
2 ) − H(−z

1
2 )] B(z)

]
(12.33)

where

Ξ(z) = F0(z
1
2 )F1(−z 1

2 )− F0(−z 1
2 )F1(z

1
2 )

A(z) = F0(z
1
2 )F0(−z 1

2 )H(z
1
2 )− F0(−z 1

2 )F1(z
1
2 )H(−z 1

2 )

B(z) = −F0(−z 1
2 )F1(z

1
2 )H(z

1
2 ) + F0(z

1
2 )F1(−z 1

2 )H(−z 1
2 )

The right-hand side of equation (12.33) shows that nonzero off-diagonal elements are required in
order to model the unknown system. Note that the products ofF0(z

1
2 )F0(−z 1

2 ) andF1(z
1
2 )F1(−z 1

2 )
would be null if the analysis filter bank were ideal. In the case of a nonideal filter bank, ill-conditioned
signals appear in the adaptive part of the cross filters (which model the term [H(z

1
2 ) −H(−z 1

2 )]),
leading to slow convergence of the adaptive cross filters.

12.4.3 Closed-Loop Structure

An alternative subband adaptive-filtering realization is the closed-loop structure depicted in Fig. 12.11.
In the closed-loop structure, the fullband output signal of the adaptive filter is reconstructed through
a synthesis filter bank, and the overall error signal is computed and utilized in the objective function.
The overall error is split into subbands, which are then used in the adaptation algorithm. In the
closed-loop scheme we aim to minimize the fullband error energy. In this case, the NLMS updating
equation is given by

wi(m+ 1) = wi(m) +
2μ

γ +Nsσ2
i (m)

u∗
i (m−Δ)e′

i(m) (12.34)

where the fullband error is evaluated as e(k) = d(k −ΔL) − y(k), and e′
i(m) corresponds to the

ith component of the fullband error signal split into subbands. The delay Δ is key to compensate
for the extra delay the input signal faces, due to the analysis and synthesis filter bank, with respect
to the desired signal. The delay value is given by

Δ = �2KM − 1
L

� (12.35)

where �(·)� denotes the integer part of (·), 2KM is the length of the subfilters of the analysis and
synthesis filter banks, and K is a positive integer number. The closed-loop scheme allows for the
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Algorithm 12.2

Closed-Loop Subband Adaptive-Filtering Algorithm

Initialization
x(0) = wl(0) = [0 0 . . . 0]T

γ = small constant
0 < α ≤ 0.1

Do for each x(iL) and d(iL) given, for i ≥ 0

u(m) =
[

E0 · · · ENp

] ⎡⎢⎣ x(i)
...

x(i−Np)

⎤
⎥⎦

y(m) =
[

W0 · · · WNs

] ⎡⎢⎣ u(m)
...

u(m−Ns)

⎤
⎥⎦

y(k) =
[

1 · · · 1
] [

R0 · · · RNp

] ⎡⎢⎣ y(m)
...

y(m−Np)

⎤
⎥⎦

e(k) = d(k −ΔL)− y(k)

e′(m) =
[

E0 · · · ENp

] ⎡⎢⎣ e(i)
...

e(i−Np)

⎤
⎥⎦

Do for each for 0 ≤ l ≤M − 1
σ2
l (m) = (1− α)σ2

l (m− 1) + α |ul(m)|2
wl(m+ 1) = wl(m) + 2μ

γ+Nsσ2
l (m)u∗

l (m−Δ)e′
l(m)

minimization of a cost function based on the fullband error signal, and guarantees that the algorithm
converges to a minimum MSE.

The closed-loop algorithm is described in detail in Algorithm 12.2. Note that the matrix coefficient
Rl, for l = 0, 1, . . . , Np, represents the element of order l of the synthesis filter polyphase matrix, and
y(m− l) is the subband adaptive-filter output vector at time instant (m− l). A comparison between
the two schemes shows that the open-loop scheme generates an excess MSE because it actually
minimizes the subband error energy, whereas the closed-loop scheme minimizes the fullband error.
On the other hand, since in the closed-loop scheme a delay is introduced by the synthesis filter bank,
and by the analysis filter bank applied to the error signal e(k), the adaptation algorithm uses past
information about the error signal, which can be shown to slow down the convergence. In fact, this
delay reduces the upper bound of μ that can be employed in the closed-loop algorithm. The recursive
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equations governing the convergence of the adaptive-filter coefficients of the closed-loop algorithm
have the following general characteristics polynomial (see problem 8)

p(Δ) = zΔ+1 − zΔ + 2μλi = 0 (12.36)

where Δ is the delay introduced by the filter banks and λi is related to the maximum eigenvalue of
the autocorrelation matrix of the input signal in the ith subband. Considering the critical case of
maximum eigenvalue λmax, the critical value of μ such that the zeros of equation (12.36) meet at the
real axis is

μcrit =
(Δ− 1)Δ−1

2λmaxΔΔ (12.37)

For higher values of μ the zeros move away from the real axis and eventually reach the unit circle
at μ ≈ 4.5μcrit, see [17] and [16] for further details. Higher delays lead to lower values of μ. As a
consequence, the closed-loop structures are more susceptible to convergence problems and less used
in practice.

Figure 12.11 Closed-loop subband structure.

For the closed-loop structure, the excess MSE due to gradient noise (which tends to zero as μ→ 0)
is not related to the additional error resulting from the use of non-ideal filter banks. By making
some simplifying assumptions, we can easily estimate the excess MSE in the closed-loop structure
(the open-loop scheme follows similar analysis). The final result will closely follow the one for the
standard LMS algorithm. If we consider that the input signal in each subband and the adaptive-filter
coefficients are uncorrelated, and that the subfilters in the filter bank are frequency selective, we
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can calculate the excess MSE individually in each subband, and combine them to derive the overall
excess MSE. The result is given by

ξexc ≈
M−1∑
i=0

μiσ
2
ni

tr[Ui]
1− μitr[Ui] (12.38)

where Ui = E[ui(k)uHi (k)], σ2
ni
≈ σ2

n/M , and μi = μ
γ+Nsσ2

i
. This equation provides a good

estimate to the excess MSE when the assumptions are closely met. A more accurate estimate is not
straightforward to obtain.

Example 12.1

Identify an unknown system with the following transfer function

H(z) =
0.1z

(z + 0.9)
+

0.08z
(z2 + 0.92)

+
0.1z

(z − 0.9)

The input signal is a uniformly distributed white noise with variance σ2
x = 1, and the measurement

noise is Gaussian white noise uncorrelated with the input with variance σ2
n = 10−3. The filter bank

is a cosine-modulated type of length 32.

(a) Start with a fullband filter using the normalized LMS algorithm.

(b) Compare the results obtained with those using an open-loop subband adaptive filter with three
bands. Plot the MSE for an average of five independent runs, including the local errors and the
overall error.

Solution:

Fig. 12.12 shows the MSE for the fullband normalized LMS algorithm.

The impulse response of the unknown system has infinite length. However, since the samples after
90 are rather small, we use three subband filters of length 30 each. No cross filters are employed.
The convergence factor in all subbands is μ = 0.1, and the parameters of the normalized updating
equation are given by: α = 0.1 and γ = 0.001. The prototype filter coefficients of the cosine-
modulated filter bank are given in Table 12.1. Figs. 12.13 and 12.14 depict the MSE measured in
the subbands and the global error computed after reconstruction of the adaptive-filter output through
the synthesis filter bank. As can be observed, the convergence speed of global and local errors are not
reduced due to the aliasing effects caused by the analysis filter banks. The aliasing errors appear at
the global error and cannot be cancelled by the synthesis filter bank. As we can observe in Fig. 12.12,
the fullband normalized LMS algorithm achieves a larger reduction in the excess of MSE since in
this case there are no aliasing effects. In both examples, some excess MSE is expected since the
unknown system has infinite length.

�
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Table 12.1 Coefficients of the prototype filter of the cosine modulated filter bank

n f(n) n f(n) n f(n) n f(n)

0 0.000689 8 -0.023394 16 0.188567 24 -0.015614

1 -0.000316 9 -0.023179 17 0.163319 25 -0.005030

2 0.001608 10 -0.008268 18 0.119646 26 0.001726

3 0.003180 11 0.023394 19 0.069041 27 0.004631

4 0.004631 12 0.069041 20 0.023394 28 0.003180

5 0.001726 13 0.119646 21 -0.008268 29 0.001608

6 -0.005030 14 0.163319 22 -0.023179 30 -0.000316

7 -0.015614 15 0.188567 23 -0.023394 31 0.000689
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Figure 12.12 MSE in the fullband normalized LMS algorithm.



50712.4 Subband Adaptive Filters

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 100 200 300 400 500 600 700 800

E
st

im
at

ed
 M

SE
  (

10
 lo

g(
M

SE
))

Number of iterations, k

1
2
3

Figure 12.13 Subband errors in the open-loop structure.
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12.5 CROSS-FILTERS ELIMINATION

The design of sophisticated filter banks is beyond the scope of this book. Highly selective subfilters
are key to reduce the importance of the cross filters, and eventually eliminate them. However, for
moderately selective subfilters their elimination will always lead to an excess MSE at the adaptive-
filter output. In this section, we discuss the design of a special type of maximally decimated (M = L)
analysis filter bank for cross-filter elimination [23]. It will be verified that the generation of these
filter banks requires the design of fractional delays, which will also be briefly discussed. The price
paid for the elimination of the cross filters is the design of accurate fractional delays. Unlike the
adaptive cross filters, the fractional delays are fixed filters.

A solution to avoid the cross filters in a maximally decimated structure can be engineered if we
explore the special structure of the blocked matrix representation of the unknown system. This
implementation is given in Fig. 12.7 with H(z) replacing the cascade of E(z) and R(z). In a
subband adaptive-filtering configuration, this blocked matrix H(z) is followed by a parallel-to-serial
converter, belonging to the unknown system, which in turn is in cascade with a serial-to-parallel
converter, belonging to the analysis filter bank represented in the polyphase form. The cascade of
these converters is an identity matrix multiplied by a delay as depicted in Fig. 12.15. Without loss of
generality we can disregard the delay4. Since the polyphase matrix of the analysis filter bank E(z)
follows the pseudocirculant matrix H(z), if we choose an E(z) as a similarity transformation matrix
which transforms H(z) into its Jordan form, we can avoid most of (usually all) the off-diagonal
elements of the adaptive-filter matrix W(z). As mentioned in [18], the Jordan form is the extreme
effort in diagonalizing a matrix. The full diagonalization is impossible only for defective matrices.

In the following discussions, we assume that H(z) is not defective and therefore diagonalizable, that
is, there is a T(z) such that

T(z)H(z)T−1(z) =

⎡
⎢⎢⎢⎣
Wo,0(z) 0 · · · 0

0 Wo,1(z) · · · 0
...

...
. . .

...
0 0 · · · Wo,L−1(z)

⎤
⎥⎥⎥⎦ (12.39)

The matrix T−1(z), whose columns are the eigenvectors of any L × L pseudocirculant matrix, is
given by5

T−1(z) = Γ(z)F (12.40)

4This delay would not appear if we had employed a noncausal representation for the parallel-to-serial converter.
5In fact, any pseudocirculant matrix H(z) can be written as Γ(z)Hc(z)Γ−1(z) where Hc(z) is a circulant matrix. Since

any circulant matrix is diagonalized as F∗Hc(z)F , with F∗ being the inverse of F (in this case just the complex conjugate),
the result of equation (12.40) follows.
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Figure 12.15 (a) Cascade connection of block converters, (b) Equivalent circuit.

where F is the L×L DFT matrix whose element (i, j), for i, j = 0, 1, . . . , L− 1, is given by W ij√
L

,

where W = e
−j2π

L , and

Γ(z) =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 z− 1

L · · · 0
...

...
. . .

...
0 0 · · · z− L−1

L

⎤
⎥⎥⎥⎦ (12.41)

Now if we examine equations (12.32) and (12.39) more closely, we conclude that by choosing the
polyphase matrix as E(z) = T(z)z− L−1

L , where the delay was included in order to guarantee causality
of the analysis filter bank, the cross filters are eliminated.
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The optimal adaptive subfilters are given by the eigenvalues of H(z) (refer to equation (12.39)),
whose expressions are

Wo,i(z) =
1√
L

L−1∑
l=0

Hl(z)z− l
LW li (12.42)

for i = 0, 1, . . . ,M − 1, where Hl(z) is the lth polyphase component of H(z).

In conclusion, the polyphase-component matrix of the analysis filter bank is given by

E(z) = F∗Γ−1(z)z− L−1
L

= F∗

⎡
⎢⎢⎢⎣
z− L−1

L 0 · · · 0
0 z− L−2

L · · · 0
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎥⎦ (12.43)

The structure of the analysis filter bank based on fractional delays is depicted in Fig. 12.16. Similarly,
we can derive the structure for the synthesis filter bank utilizing fractional delays illustrated in
Fig. 12.17. It is worth mentioning that selectivity of the subfilters in this type of bank is highly
dependent on the quality of the fractional delays design. The filter banks based on fractional delays
are particularly useful in the delayless subband structures of section 12.6.

12.5.1 Fractional Delays

The review article about fractional delays [31] proposes several techniques for the approximation of
a fractional delay. One of them consists of designing a symmetric Lth band filter (also known as a
Nyquist filter), and keeping its lth polyphase component to represent the fractional delay Δ̃ + l/L.
The delay Δ̃ is the integer part of the group delay inherent to the FIR filter approximating a fractional
delay. The Lth band filter has an impulse response that satisfies

h(kL) =
{
K, k = 0
0, otherwise

(12.44)

where K is a constant value. In the Z-domain, the representation of h(k) is

H(z) = K + z−1E1(zL) + · · ·+ z−(L−1)EL−1(zL) (12.45)

If H(z) satisfies the above condition, it can be shown that [9]

L−1∑
l=0

H(zW l) = LK (12.46)



51112.5 Cross-Filters Elimination

z
-1

z
-1

z
L-2

z
L-1

z
0

L

L

L

x k( )

L

L

F *-

- u m0 ( )

u m1 ( )

u mL-1 ( )

Figure 12.16 Analysis filter bank based on fractional delays.

where W = e− j2π
L . The proof for the above relation is straightforward, if we just replace z by zW l

in equation (12.45), and compute the summation in equation (12.46).

Therefore, a natural proposition to eliminate adaptive cross filters is to design a DFT filter bank with
a lowpass prototype filter given by an Lth band filter whose polyphase components approximate
the fractional delays. The Lth band filter can be easily designed by using the so called eigenfilter
approach for FIR filter approximation [9]. This approach allows the incorporation of the constraints
inherent in the Nyquist filters. The Lth band filter is usually designed as a lowpass filter whose
passband (ωp) and stopband (ωs) edges are symmetric with respect to the normalized frequency π

L ,
that is ωp + ωs = 2 πL . Although the fractional delays designed using Lth band filters are not very
accurate, they can be considered acceptable for the delayless structures discussed in section 12.6.

Another simple FIR filter design to approximate the fractional delay is through the classical Lagrange
interpolation formula. The interested reader should refer to [31].

Example 12.2

Repeat example 12.1 with a filter bank using fractional delays.
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Figure 12.17 Synthesis filter bank based on fractional delays.

Solution:

For this example we design the fractional delays via a three-band filter. The length of the polyphase
components is 9, with values given in Table 12.5.1. The length of the adaptive filters in the subbands
is N = 30, the convergence factor in all subbands is μ = 0.1, and parameters of the normalized
updating equation are given by α = 0.1 and γ = 0.001.

As can be observed in Figs. 12.18 and 12.19, the errors measured in the subbands and the global
error are rather high due to the aliasing effects. Due to these effects, we can see in Fig. 12.20 that the
magnitude response obtained after convergence resembles the unknown system response although
the approximation is not very close.

�
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Table 12.2 Coefficients of the fractional delays of the analysis filter bank

n E0 E1 E2

0 0.0000 0.0000 0.0000

1 -0.0072 -0.0117 0.0000

2 0.0320 0.0497 0.0000

3 -0.1090 -0.1592 0.0000

4 0.3880 0.8140 1.0000

5 0.8140 0.3880 0.0000

6 -0.1592 -0.1090 0.0000

7 0.0497 0.0320 0.0000

8 -0.0117 -0.0072 0.0000
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Figure 12.18 Subband errors in the open-loop structure.
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Figure 12.19 Global error in the open-loop structure.
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12.6 DELAYLESS SUBBAND ADAPTIVE FILTERING

In the subband adaptive-filtering schemes presented so far, a delay is always introduced in the signal
path due to the filter bank analysis and synthesis. In applications such as acoustic echo cancellation
and active noise control, the delay is highly undesirable. In acoustic echo cancellation, the echo is
not fully canceled and can be perceptually unacceptable. In active noise control the delay reduces
the cancellation bandwidth [21].

In order to avoid the effect of signal path delay in these applications, we can avoid the synthesis filter
bank and map the subband adaptive filters into a wideband filter, leading to the so called delayless
subband adaptive filters. Several techniques to perform this mapping have been proposed [22]-
[27], where the distinctive feature among them is the construction of each analysis filter bank and
its corresponding subband to fullband mapping. In this section, we describe the delayless subband
adaptive filter proposed in [23] which utilizes DFT-based filter banks with fractional delays discussed
in this chapter. Fig. 12.21 depicts the general configuration of a delayless adaptive filter in subbands,
employing a maximally decimated filter bank.

Equation (12.42) gives the coefficients of the optimal subband adaptive filters in each subband,
for the open-loop scheme. The transfer functions of these subfilters represent the eigenvalues of a
pseudocirculant matrix. Therefore, if we apply the inverse DFT to a vector whose elements are the
transfer functions of the adaptive subfilters, we can recover the polyphase components estimates of
the unknown system multiplied by fractional delays as described in the equation below

1√
L

⎡
⎢⎢⎢⎢⎣

Ĥ0(z)
Ĥ1(z)z− 1

L

...

ĤL−1(z)z− (L−1)
L

⎤
⎥⎥⎥⎥⎦ = F∗

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
W0(z)
W1(z)

...
WL−1(z)

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ (12.47)

It should be noticed that in most cases the length of the adaptive subfilters is chosen as N
L , where N

is the unknown system length. However, from the above equation some extra coefficient should be
allotted to the subband adaptive filters in order to account for the fractional delays.

Since in our case any subfilter of the bank Fi(z) has an inherent fractional delay, it is reasonable to
conjecture that the product Fi(z)z− i

L represents a filter with one more sample than Fi(z). Through
a number of simulations, we concluded that a single coefficient is enough to perform this task in
closed-loop schemes. As a consequence, the adaptive subfilters have length Ns = N

L + 1.

By denoting each element of the time-domain representation ofWi(z) as wi,l, we can compute the
previous equation in parts as follows⎡

⎢⎢⎢⎣
w′

0,l
w′

1,l
...

w′
L−1,l

⎤
⎥⎥⎥⎦ = F∗

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

w0,l
w1,l

...
wL−1,l

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ (12.48)
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Figure 12.21 Delayless closed-loop subband structure.

for l = 0, 1, . . . , Ns − 1. The polyphase component of the corresponding fullband adaptive filter is
then given by 1√

L
Ĥi(z)z− i

L = W ′
i (z), where W ′

i (z) represents the Z-transform of w′
i,l, and Ĥi(z)

represents an estimate of the ith polyphase component of the unknown system. We can obtain the
polyphase components Ĥi(z) from W ′

i (z), if we note that

Ĥi(z)z− i
L z− L−i

L = Ĥi(z)z−1 (12.49)

for i = 0, 1, . . . , L−1. The above discussion indicates that the cascade ofW ′
i (z) with the fractional

delayEi−1(z), i = 1, . . . , L−1, leads to the polyphase component Ĥi(z) delayed by Δ̃+1 samples
and scaled by 1√

L
. Recall that Δ̃ is the integer part of the group delay introduced by the design of

the fractional delays.
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Note that the impulse response of Ĥ0(z) is represented by w′
0,l. Similarly, we can infer that

W ′
0(z) ≈

1√
L
Ĥ0(z)

W ′
i(z)Ei−1(z) ≈ 1√

L
Ĥi(z)z−(Δ̃+1) (12.50)

for i = 1, . . . ,M − 1. In conclusion, to obtain the first polyphase filter Ĥ0(z) we simply discard
the last sample of w′

0,l. For Ĥi(z), with i = 1, . . . ,M − 1, we discard the first Δ̃ + 1 samples and
retain the nextNs− 1 samples (here the reader should recall that we used an extra coefficient for the
adaptive subfilters to compensate for the fractional delay in the subfilter of the analysis bank). The
fullband filter is then formed by

Ĥ(z) =
L−1∑
i=0

Ĥi(zL)z−i (12.51)

The delayless closed-loop algorithm is described in detail inAlgorithm 12.3, where e(mL) represents
a length L block of the error signal at instantmL. The detailed structure is shown in Fig. 12.22. It is
worth mentioning that the delayless closed-loop structure does not suffer as much from the stability
problems inherent in the standard closed-loop subband structure. This is because we do not have to
reconstruct the adaptive-filter output through a synthesis filter bank in order to generate the global
error. This reconstruction originates part of the convergence problems of the standard closed-loop
structure.

Example 12.3

Repeat example 12.1 using the closed-loop delayless structure whose filter banks employ fractional
delays.

Solution:

For this example, we use the same parameters as Example 12.2. As can be observed in Figs. 12.23
and 12.24, the errors measured in the subbands and the global error are reduced despite the fact that
the subfilters of the filter bank are not very selective. In this case, the delayless closed-loop structure
is able to compensate for the limitations of the filter bank. Fig. 12.25 shows that the magnitude
response obtained after convergence is very close to the unknown system response.

�

12.6.1 Computational Complexity

An interesting issue to illustrate the results of this chapter is to assess the overall computational
complexity of the subband structure. The computational complexity is counted in multiplications
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per input sample, and considering that the product of complex values is implemented through four
real multiplications. In the delayless subband structure, the overall computation consists of the
components described below.

The subband decomposition: It consists of one convolution of an Npr-length prototype fil-
ters, which is the total number of coefficients required to realize all the fractional delays, and
one L-point FFT for each block of L input samples. Assuming that the number of complex

Figure 12.22 Detailed delayless closed-loop subband structure.
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Algorithm 12.3

Delayless Closed-Loop Subband Adaptive-Filtering Algorithm

Initialization
x(0) = wl(0) = [0 0 . . . 0]T

γ = small constant
0 < α ≤ 0.1

Do for each x(iL) and d(iL) given, for i ≥ 0
u(m) = F∗ [ E0 · · · ENp

] [
x(i) · · · x(i−Np)

]T
where El, for l = 0, 1, . . . , Np are diagonal matrices whose
elements are the lth element of the impulse response of the filter
implementing the fractional delays, and Np is the order of
fractional delays implementation.⎡
⎢⎢⎢⎣

w′
0,l

w′
1,l
...

w′
L−1,l

⎤
⎥⎥⎥⎦ = F∗

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

w0,l
w1,l

...
wL−1,l

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

Get 1√
L
Ĥ0(z) by discarding the last sample of w′

0,l.

For 1√
L
Ĥi(z), with i = 1, . . . , L− 1, we discard the first Δ̃ + 1

samples of the impulse response corresponding to equation (12.50)
and retain the following Ns − 1 samples.

ĥ(k) is the impulse response of Ĥ(z) =
∑L−1
i=0 Ĥi(zL)z−i.

e(k) = d(k)− ĥ
H

(k)x(k)
e′(m) = F∗ [ E0 · · · ENp

] [
e(i) · · · e(i−Np)

]T
Do for each for 0 ≤ l ≤ L− 1
σ2
l (m) = (1− α)σ2

l (m− 1) + α |ul(m)|2
wl(m+ 1) = wl(m) + 2μ

γ+Nsσ2
l (m)u∗

l (m)e′
l(m)

multiplications required to compute a L-point FFT is L
2 log2 L, see [33], we obtain

2Npr
L

+ 2 log2 L (12.52)

real multiplications per input sample for the two analysis filter banks. The symmetry of the
IDFT for real signals allows us to process only half of theL channel complex signals. Therefore,
we have to update L

2 adaptive filters.
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Figure 12.23 Subband errors in the closed-loop structure.

The subband NLMS algorithm: Considering that we have to update L
2 adaptive filters of length

Ns = N
L + 1 for every L input samples, the computational complexity entails

2
N + L

L
(12.53)

real multiplications per input sample.

For the open-loop scheme an additional of 2N+L
L is required to evaluate the adaptive-filters

outputs y(m).

The wideband filter convolution: There are some approaches to reduce the computational com-
plexity of the wideband convolution as discussed in [22]. Here we consider only the direct
implementation which entails N multiplications per output sample.

The transformation from the subband adaptive filters to the wideband adaptive filter: It consists
ofNs IFFTs and L− 1 convolutions with the polyphase filters as indicated in equation (12.50).
However, there is no need to perform the transformation for every L input samples, since in
most applications the fullband adaptive-filter output cannot vary much faster then the length of
filter impulse response. The computational cost is then given by

1
r

[
(
N

L
+ 1) log2 L+

NNpr(L− 1)
L3

]
(12.54)

real multiplications per input sample, where rL represents how often the transformation is
performed in terms of the number of input samples.
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Figure 12.24 Global error in the closed-loop structure.

The overall computational complexity for the closed-loop scheme is

Pc =
2Npr
L

+ 2 log2 L+
2(N + L)

L
+

1
r

[
(
N

L
+ 1) log2 L+

NNpr(L− 1)
L3

]
+N (12.55)

while for the open-loop scheme we have

Po =
2Npr
L

+ 2 log2 L+
4(N + L)

L
+

1
r

[
(
N

L
+ 1) log2 L+

NNpr(L− 1)
L3

]
+N (12.56)

12.7 FREQUENCY-DOMAIN ADAPTIVE FILTERING

Frequency-domain adaptive algorithms, which employ block processing in order to reduce the com-
putational complexity associated with high-order adaptive filters, have been suggested in [34]. Such
algorithms utilize FFTs to implement convolutions (for filtering) and correlations (for coefficient
updating). More general block algorithms, in which the block size can be smaller than the order of
the adaptive filter, have also been investigated [35]. Such approach, called multidelay adaptive filter
(MDF) [37]-[40], utilizes adaptive filters in the bins (equivalent to the subbands), unlike the original
frequency-domain adaptive-filtering algorithms that use a single adaptive coefficient in each bin.
Like the subband adaptive filters discussed so far, frequency-domain adaptive filters can increase the
convergence speed by decreasing the eigenvalue spread of the autocorrelation matrices of the signals
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Figure 12.25 Magnitude responses of the unknown system and the obtained model at a given iteration.

at the inputs of the adaptive filters. In fact, the subband and the frequency-domain adaptive filters
are closely related as will become clear in the sequel.

Let us consider the case where both the input and desired signals are presented in their corresponding
blocked versions as described in subsection 12.3.6. The adaptive filter transfer function is represented
by a blocked matrix denoted by Ĥ(z). In this case, the adaptive-filter output is also represented in
block form y(m), which in turn is compared with the desired signal block d(m). These vectors are
defined as

y(m) = [y(mL) y(mL− 1) . . . y(mL− L+ 1)]T

x(m) = [x(mL) x(mL− 1) . . . x(mL− L+ 1)]T

d(m) = [d(mL) d(mL− 1) . . . d(mL− L+ 1)]T (12.57)

In the particular case where the matrix Ĥ(z) is 3× 3, we have

Ĥ(z) =

⎡
⎣ Ĥ0(z) Ĥ1(z) Ĥ2(z)
z−1Ĥ2(z) Ĥ0(z) Ĥ1(z)
z−1Ĥ1(z) z−1Ĥ2(z) Ĥ0(z)

⎤
⎦

= Ĥ0(z)Ĥ1(z) (12.58)
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where Ĥi(z), i = 0, 1, 2, are the polyphase components of W (z), and

Ĥ0(z) =

⎡
⎣ Ĥ0(z) Ĥ1(z) Ĥ2(z) 0 0 0

0 Ĥ0(z) Ĥ1(z) Ĥ2(z) 0 0
0 0 Ĥ0(z) Ĥ1(z) Ĥ2(z) 0

⎤
⎦

Ĥ1(z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
z−1 0 0
0 z−1 0
0 0 z−1

⎤
⎥⎥⎥⎥⎥⎥⎦ (12.59)

The last column of Ĥ0(z) and the last row of Ĥ1(z) were artificially added to generate a square
circulant matrix in the sequel whose dimension can be designed to be a power of two, allowing the
use of FFTs. The overall factorization of Ĥ(z) as above described is crucial to derive the frequency-
domain algorithm and the MDF in the sequel. It is worth noting that our presentation follows the
embedding approach which was generalized in [41], and was indirectly employed in [42]. The
embedding approach leads to a simpler derivation than those presented in early references [35]-[40].

The embedding approach starts by defining a circulant matrix Ĥ2(z) as follows

Ĥ2(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ĥ0(z) Ĥ1(z) Ĥ2(z) 0 0 0
0 Ĥ0(z) Ĥ1(z) Ĥ2(z) 0 0
0 0 Ĥ0(z) Ĥ1(z) Ĥ2(z) 0
0 0 0 Ĥ0(z) Ĥ1(z) Ĥ2(z)

Ĥ2(z) 0 0 0 Ĥ0(z) Ĥ1(z)
Ĥ1(z) Ĥ2(z) 0 0 0 Ĥ0(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12.60)

The matrix Ĥ0(z) is embedded into Ĥ2(z), that is:

Ĥ0(z) =
[

IL 0
]

Ĥ2(z) (12.61)

where in the above equation we treat the general case, i.e., for block length equal to L instead of 3.
Since the matrix Ĥ2(z) is circulant, it can be diagonalized by a DFT matrix as follows

Ĥ2(z) = F∗W(z)F (12.62)

where W(z) is a diagonal matrix. If these diagonal elements are given by single complex coefficients,
the resulting algorithm is the so-called frequency-domain algorithm, whereas for higher order filters
the resulting algorithm is called MDF.

From equations (12.58), (12.61) and (12.62), we can relate the blocked matrix of the overall adaptive
filter to the adaptive filter in the bins as follows

Ĥ(z) =
[

IL 0
]F∗W(z)FĤ1(z) (12.63)
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In the frequency domain, the block output is given by

Z[y(m)] = Ĥ(z)Z[x(m)] (12.64)

whereas the error signal vector is given by

Z[e(m)] = Z[d(m)]−Z[y(m)] (12.65)

We use as an objective function the squared values of the error vector elements, that is

ξ =
L−1∑
i=0

|ei(m)|2 (12.66)

In problem 16, the resulting gradient estimate for the set of coefficients placed at each bin is shown
to be given by

ĝw,i(m) = −2u∗
i (m)

(
F
[

IL
0

]
e(m)

)
i

= −2u∗
i (m) (ẽ(m))i

= −2u∗
i (m)ẽi(m) (12.67)

where u∗
i (m) represents the complex conjugate of the data vector stored in ith bin, at instant m, and

(ẽ(m))i denotes the ith element of vector ẽ(m) with

ẽ(m) = F
[

IL
0

]
e(m)

It is worth mentioning that the data vectors are calculated as follows

Z

⎡
⎢⎣ uT0 (m)

...
uT2L−1(m)

⎤
⎥⎦ = FĤ1(z)Z [x(m) · · · x(m−Ns + 1)] (12.68)

In this case, the NLMS updating equation is given by

wi(m+ 1) = wi(m) +
2μ

γ + σ2
i (m)

u∗
i (m)ẽi(m) (12.69)

for i = 0, 1, . . . , Ns, whereNs is the length of the adaptive filter at the output of bin i, and σ2
i (m) =

(1− α)σ2
i (m− 1) + α |ui(m)|2, with 0 < α ≤ 0.1 and γ is a small constant as established before.
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If we examine the first row of the matrices in equation (12.62) and use the fact that F is a symmetric
matrix, it is straightforward to infer that⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĥ0(z)
Ĥ1(z)

...
ĤL−1(z)

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1√
2L
F

⎡
⎢⎢⎢⎣

W0(z)
W1(z)

...
W2L−1(z)

⎤
⎥⎥⎥⎦ (12.70)

whereWi(z), for i = 0, 1, . . . , 2L−1, are the transfer functions of the subfilters of W(z). The above
equation shows that the adaptive filters in the bins must be constrained such that Ĥ2(z) contains the
estimates of the polyphase components of the unknown system. Note that, in the update equation
(12.69), it is not guaranteed that this constraint is satisfied.

As a solution, we can enforce the constraint in the adaptive-filter updating with the help of equation
(12.70), as follows. First define the matrices that include all the coefficients and data of all subfilters:

WWW(m) =

⎡
⎢⎢⎢⎣

wT0 (m)
wT1 (m)

...
wT2L−1(m)

⎤
⎥⎥⎥⎦

UUU(m) =

⎡
⎢⎢⎢⎣

uH0 (m)
uH1 (m)

...
uH2L−1(m)

⎤
⎥⎥⎥⎦ (12.71)

and a diagonal matrix EEE(m) whose nonzero elements are the entries of vector ẽ(m).

In matrix form the updating equation (12.69) can be rewritten as

WWW(m+ 1) =WWW(m) + 2μΣ−2(m)EEE(m)UUU(m) (12.72)

where Σ−2(m) is a diagonal matrix whose elements are 1
γ+σ2

i (m) , with σ2
i (m) = (1 − α)σ2

i (m −
1) + α |ui(m)|2.

A constrained version of the above equation can be derived by observing equation (12.70). The
resulting algorithm consists of enforcing the constraint in the update equation as follows (see problem
17)

WWWc(m+ 1) = F∗
[

IL
0

] [
IL 0

]FWWW(m+ 1) (12.73)

The above algorithm is widely known as the constrained frequency-domain algorithm. The original
constrained algorithm was derived for a single coefficient per bin, not for the more general MDF.
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Also, the particular version of the algorithm presented here corresponds to the overlap-save version,
in which the constraints are included in order to guarantee that the internal DFTs perform linear
convolutions on the signals involved. By examining equation (12.63), the reader should note that
the transform applied to the input signal after it is filtered by Ĥ1(z) has length 2L, whereas in the
calculation of the adaptive-filter output block, L signals are discarded due to the product by [IL 0].
This reflects the overlap-save characteristic of the algorithm. The block diagram related to this
algorithm is depicted in Fig. 12.26.

Figure 12.26 Frequency-domain adaptive-filtering structure.

The description of the constrained frequency-domain algorithm is detailed in Algorithm 12.4. Like-
wise, an overlap-add version of the constrained frequency domain algorithm also exists, and interested
readers should refer to [36], [41] (see problem 18).

It is worth mentioning that a delayless version of the constrained frequency-domain algorithm fol-
lows directly from equation (12.70) which implements the mapping from the subband filter to the
polyphase components of the fullband estimate. It is also important to note that although the em-
bedding approach presented here was based on the DFT, it can also be employed using other class
of transforms such as DCT, DST and Hartley transform. Though these alternative transforms re-
quire more cumbersome embedding formulations, they do not require complex arithmetic when
environment signals are not represented by complex numbers [41].

Example 12.4

Repeat example 12.1 using the multidelay structure withL = 64 and the frequency-domain structure.
Choose the appropriate order for the subfilters in the multidelay case.
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Algorithm 12.4

Constrained Frequency-Domain Algorithm

Initialization
γ = small constant
0 < α ≤ 0.1

Do for each x(iL) and d(iL) given, for i ≥ 0⎡
⎢⎣ uT0 (m)

...
uT2L−1(m)

⎤
⎥⎦ = FĤ1(z) [x(m) · · · x(m−Ns + 1)]

the dimension of F is 2L.

e(m) = d(m)− [ IL 0
]F∗

⎡
⎢⎢⎢⎣

wTc,0(m)u∗
0(m)

wTc,1(m)u∗
1(m)

...
wTc,2L−1(m)u∗

2L−1(m)

⎤
⎥⎥⎥⎦

where wc,l are the constrained adaptive-filter coefficients of the
(l − 1)th subband, that is the (l − 1)th row ofWWWc(m).

ẽ(m) = F
[

IL
0

]
e(m)

σ2
i (m) = (1− α)σ2

i (m− 1) + α |ui(m)|2
WWW(m+ 1) =WWW(m) + 2μΣ−2(m)EEE(m)UUU(m)

WWWc(m+ 1) = F∗
[

IL
0

] [
IL 0

]FWWW(m+ 1)

Solution:

For the frequency-domain algorithm we use a block size of 90 and the following parameters: α = 0.5,
γ = 0.001, and μ = 0.2. The average MSE obtained from five runs is −29.2 dB.

Fig. 12.27 depicts the global MSE where the algorithm converges rather fast to the minimum MSE.
Fig. 12.28 shows that the magnitude response obtained after convergence approaches the unknown
system response.

For the multidelay filter, we use a block size of 18 with five coefficients in each bin and the following
parameters: α = 0.1, γ = 0.001, and μ = 0.4. The average MSE obtained from five runs is −29.0
dB. Fig. 12.29 depicts the global MSE where we observe that the MDF algorithm also converges
fast to the minimum MSE. Fig. 12.30 shows that the magnitude response obtained after convergence
does not approach so closely the unknown system response.



528 Chapter 12 Subband Adaptive Filters

-40

-35

-30

-25

-20

-15

-10

-5

0

0 500 1000 1500 2000 2500 3000 3500

E
st

im
at

ed
 M

SE
  (

10
 lo

g(
M

SE
))

Number of iterations, k

Figure 12.27 Global error of the frequency-domain structure.
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Figure 12.28 Magnitude responses of the unknown system and the obtained model at a given iteration.
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Figure 12.29 Global error of the MDF structure.
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Figure 12.30 Magnitude responses of the unknown system and the obtained model at a given iteration,
MDF case.
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12.8 CONCLUSION

Subband adaptive filters are viable solutions to reduce the high-computational complexity inherent
in applications where long-impulse-response models are required. In addition, the effective split of
the internal signals into subbands leads to fast convergence.

This chapter presented several subband structures. After a brief introduction to multirate systems,
we discussed the design of two-band and M -band perfect reconstruction filter banks. The subband
adaptive filters using local subband errors, leading to the open-loop structure, were described. The
closed-loop subband filters, which make use of the global error, were also introduced. We presented a
special type of filter bank which aims to eliminate cross adaptive filters and utilizes fractional delays.

Another type of subband adaptive filter is based on a delayless structure. In this structure, the
adaptive-filter coefficient updating is performed in subbands and a subband to fullband mapping
allows the input signal to be filtered in fullband. This strategy avoids the signal path delay introduced
by the filter bank. Also, we presented expressions to estimate the computational complexity of the
subband adaptive filters.

Finally, we presented the frequency-domain and multidelay structures, which employ block pro-
cessing and are closely related to subband adaptive filters. These structures further lead to reduced
computational complexity.
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12.10 PROBLEMS

1. Show the validity of equation (12.1).

2. Design a linear-phase two-band filter bank of order 42 using the approach described in subsection
12.3.1.
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3. Design a uniform linear-phase 8-band filter bank having at least 40dB of stopband attenuation,
using a hierarchical filter bank.

4. Design a uniform 8-band filter bank having at least 40dB of stopband attenuation, using the
cosine-modulated method.

5. Design a fractional delay via a Nyquist filter having at least 60dB of stopband attenuation.

6. Use an open-loop subband adaptive filter with four bands to identify a system with the transfer
function given below. The input signal is a uniformly distributed white noise with variance
σ2
x = 1, and the measurement noise is Gaussian white noise uncorrelated with the input with

variance σ2
n = 10−3. The filter bank is a cosine-modulated type of length 64.

H(z) =
0.1z

(z + 0.9)
+

0.1z
(z − 0.9)

Choose the order of the equivalent FIR filter as the one for which the envelop of the unknown
system impulse response falls below 1

1000 of its leading term. Plot the MSE for an average of
five independent runs, including the local errors and the overall error.

7. Repeat the previous problem using a closed-loop algorithm and interpret the results.

8. Show that the recursive equation governing the convergence of the adaptive coefficients in the
closed-loop structure has the characteristic polynomial of equation (12.36).

9. For a prototype filter of length256, and32 subbands, calculate and plot the ratio between the com-
putational complexities of the subband and fullband implementations, forN = 256, 512, 1024, 2048,
and 4096. Consider the maximally decimated case as well as the cases where L = M − 1,
L = 3M

4 , and L = M
2 . Assume we are using a simple DFT filter bank (which is similar to the

filter bank using fractional delays where these delays are replaced by a transfer function equal
to one) and consider the cases of open-loop and closed-loop structures.

10. Replace the structure in problem 6 by the closed-loop and open-loop delayless structures with
the fractional delays designed via a Nyquist filter of order 64.

11. In a system identification problem, the input signal is a uniformly distributed white noise with
variance σ2

nx
= 0.1, filtered by an all-pole filter given by

Hnx(z) =
z

z − 0.95

The unknown system is a 300th-order FIR filter whose impulse response is identical to the first
301 impulse response samples of the transfer function described by

H(z) =
0.00756z2

(z2 − 1.960636z + 0.9849357)

Choose the appropriate parameters, run an ensemble of 5 experiments, and plot the average
learning curve. Use the delayless subband filter using fractional delays in the open-loop scheme,
with 8-bands.

12. Repeat problem 11 using the closed-loop structure.
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13. Prove that the expressions for the computational complexity of the subband adaptive filters in
equations (12.52) to (12.56) are valid.

14. Solve problem 6 using the frequency-domain structure with L = 64.

15. Solve problem 6 using the multidelay structure with L = 16. Choose the appropriate order for
the subfilters.

16. Prove the validity of equations (12.67), (12.68), and (12.70). Hint: Create a block-diagonal
matrix of subband input signals consisting of

diag{uT0 (m) uT1 (m) · · · uT2L−1(m)}

and a vector containing all the elements of the subband adaptive filters⎡
⎢⎢⎢⎣

w0(m)
w1(m)

...
w2L−1(m)

⎤
⎥⎥⎥⎦

17. Demonstrate how the relation below enforces the constraint of equation (12.70).

F∗
[

IL
0

] [
IL 0

]F
18. Derive an overlap-add version of the frequency-domain algorithm using the embedding strategy

in which a 3× 3 matrix Ĥ(z) can be written as

Ĥ(z) = Ĥ3(z)Ĥ4(z)

where

Ĥ3(z) =

⎡
⎣ 0 0 1 0 0
z−1 0 0 1 0
0 z−1 0 0 1

⎤
⎦

Ĥ4(z) =

⎡
⎢⎢⎢⎢⎢⎣
Ĥ2(z) 0 0
Ĥ1(z) Ĥ2(z) 0
Ĥ0(z) Ĥ1(z) Ĥ2(z)

0 Ĥ0(z) Ĥ1(z)
0 0 Ĥ0(z)

⎤
⎥⎥⎥⎥⎥⎦




