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ADAPTIVE IIR FILTERS

10.1 INTRODUCTION

Adaptive infinite impulse response (IIR) filters are those in which the zeros and poles of the filter can
be adapted. For that benefit the adaptive IIR filters usually1 have adaptive coefficients on the transfer
function numerator and denominator. Adaptive IIR filters present some advantages as compared
with the adaptive FIR filters, including reduced computational complexity. If both have the same
number of coefficients, the frequency response of the IIR filter can approximate much better a desired
characteristic. Therefore, an IIR filter in most cases requires fewer coefficients, mainly when the
desired model has poles and zeros, or sharp resonances [2]-[1]. There are applications requiring
hundreds and sometimes thousands of taps in an FIR filter where the use of an adaptive IIR filter
is highly desirable. Among these applications are satellite-channel and mobile-radio equalizers,
acoustic echo cancellation, etc.

The advantages of the adaptive IIR filters come with a number of difficulties, some of them not
encountered in the adaptive FIR counterparts. The main drawbacks are: possible instability of the
adaptive filter, slow convergence, and error surface with local minima or biased global minimum
depending on the objective function [3].

In this chapter, several strategies to implement adaptive IIR filters will be discussed. First, adaptive IIR
filters having as objective function the minimization of the mean-square output error are introduced.
Several alternative structures are presented and some properties of the error surface are addressed. In
addition, some algorithms based on the minimization of alternative objective functions are discussed.
The algorithms are devised to avoid the multimodality inherent to the methods based on the output
error.

1There are adaptive filtering algorithms with fixed poles.
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10.2 OUTPUT-ERROR IIR FILTERS

In the present section, we examine strategies to reduce a function of the output error given by

ξ(k) = F [e(k)] (10.1)

using an adaptive filter with IIR structure. The output error is defined by

e(k) = d(k)− y(k) (10.2)

as illustrated in Fig. 10.1.a. As usual, an adaptation algorithm determines how the coefficients of the
adaptive IIR filter should change in order to get the objective function reduced.

Let us consider that the adaptive IIR filter is realized using the direct-form structure of Fig. 10.1.b.
The signal information vector in this case is defined by

φ(k) = [y(k − 1) y(k − 2) . . . y(k −N) x(k) x(k − 1) . . . x(k −M)]T (10.3)

where N and M are the adaptive filter denominator and numerator orders, respectively.

The direct-form adaptive filter can be characterized in time domain by the following difference
equation

y(k) =
M∑
j=0

bj(k)x(k − j)−
N∑
j=1

aj(k)y(k − j) (10.4)

In the system identification field [8], the above difference equation is in general described through
polynomial operator as follows:

y(k) =
B(k, q−1)
A(k, q−1)

x(k) (10.5)

where

B(k, q−1) = b0(k) + b1(k)q−1 + · · ·+ bM (k)q−M

A(k, q−1) = 1 + a1(k)q−1 + · · ·+ aN (k)q−N

and q−j denotes a delay operation in a time domain signal of j samples, i.e., q−jx(k) = x(k − j).
The difference equation (10.4) can also be rewritten in a vector form, which is more convenient for
the algorithm description and implementation, as described below

y(k) = θT (k)φ(k) (10.6)

where θ(k) is the adaptive-filter coefficient vector given by

θ(k) = [−a1(k) − a2(k) . . .− aN (k) b0(k) b1(k) . . . bM (k)]T (10.7)

In a given iteration k, the adaptive-filter transfer function can be expressed as follows:

Hk(z) = zN−M b0(k)zM + b1(k)zM−1 + · · ·+ bM−1(k)z + bM (k)
zN + a1(k)zN−1 + · · ·+ aN−1(k)z + aN (k)

= zN−M Nk(z)
Dk(z)

(10.8)
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Figure 10.1 Adaptive IIR Filtering: (a) General configuration, (b) Adaptive IIR direct-form realization.
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Given the objective function F [e(k)], the gradient vector required to be employed in the adaptive
algorithm is given by

g(k) =
∂F [e(k)]
∂e(k)

∂e(k)
∂θ(k)

(10.9)

where e(k) is the output error. The first derivative in the above gradient equation is a scalar dependent
on the objective function, while the second derivative is a vector whose elements are obtained by

∂e(k)
∂ai(k)

=
∂[d(k)− y(k)]

∂ai(k)
= − ∂y(k)

∂ai(k)

for i = 1, 2, . . . , N , and

∂e(k)
∂bj(k)

=
∂[d(k)− y(k)]

∂bj(k)
= − ∂y(k)

∂bj(k)
(10.10)

for j = 0, 1, . . . ,M , where we used the fact that the desired signal d(k) is not dependent on the
adaptive-filter coefficients.

The derivatives of y(k) with respect to the filter coefficients can be calculated from the difference
equation (10.4) as follows:

∂y(k)
∂ai(k)

= −y(k − i)−
N∑
j=1

aj(k)
∂y(k − j)
∂ai(k)

for i = 1, 2, . . . , N , and

∂y(k)
∂bj(k)

= x(k − j)−
N∑
i=1

ai(k)
∂y(k − i)
∂bj(k)

(10.11)

for j = 0, 1, . . . ,M . The partial derivatives of y(k − i) with respect to the coefficients, for i =
1, 2, . . . , N , are different from zero because the adaptive filter is recursive. As a result, the present
coefficients ai(k) and bj(k) are dependent on the past output samples y(k−i). The precise evaluation
of these partial derivatives is a very difficult task, and does not have a simple implementation.
However, as first pointed out in [5] and [6], if small step sizes are used in the coefficient updating,
the following approximations are valid

ai(k) ≈ ai(k − j) for i, j = 1, 2, . . . , N

and

bj(k) ≈ bj(k − i) for j = 0, 1, . . . ,M and i = 1, 2, . . . , N (10.12)

As a consequence, equations (10.11) can be rewritten as

− ∂y(k)
∂ai(k)

≈ +y(k − i)−
N∑
j=1

aj(k)
[−∂y(k − j)
∂ai(k − j)

]
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for i = 1, 2, . . . , N , and

∂y(k)
∂bj(k)

≈ x(k − j)−
N∑
i=1

ai(k)
∂y(k − i)
∂bj(k − i) (10.13)

for j = 0, 1, . . . ,M . Note that these equations are standard difference equations.

The above equations can be implemented by all-pole filters having as input signals −y(k − i) and
x(k− j) for the first and second set of equations, respectively. The implementation of the derivative
signals of equations (10.13) is depicted in Fig. 10.2. The all-pole sections realization can be performed
through IIR direct-form structure, with transfer function given by

Sai(z) = Z
[
∂y(k)
∂ai(k)

]
=
−zN−i

Dk(z)
Y (z)

for i = 1, 2, . . . , N , and

Sbj (z) = Z
[
∂y(k)
∂bi(k)

]
=

zN−j

Dk(z)
X(z) (10.14)

for j = 0, 1, . . . ,M , respectively, where Z[·] denotes the Z-transform of [·].
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Figure 10.2 Derivative implementation.

The amount of computation spent to obtain the derivatives is relatively high, as compared with the
adaptive-filter computation itself. A considerable reduction in the amount of computation can be
achieved, if it is considered that the coefficients of the adaptive-filter denominator polynomial are
slowly varying, such that

Dk(z) ≈ Dk−i(z) for i = 1, 2, . . . ,max(N,M) (10.15)
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where max(a, b) denotes maximum between a and b. The interpretation is that the denominator
polynomial is kept almost constant for a number of iterations. With this approximation, it is possible
to eliminate the duplicating all-pole filters of Fig. 10.2, and replace them by a single all-pole in front
of the two sets of delays as depicted in Fig. 10.3.a. In addition, if the recursive part of the adaptive
filter is implemented before the numerator part, one more all-pole section can be saved as illustrated
in Fig. 10.3.b [7].

Note that in the time domain, the approximations of equation (10.15) imply the following relations

∂y(k)
∂ai(k)

≈ q−i+1 ∂y(k)
∂a1(k)

for i = 1, 2, . . . , N , and

∂y(k)
∂bj(k)

≈ q−j ∂y(k)
∂b0(k)

(10.16)

for j = 0, 1, . . . ,M , where ∂y(k)
∂a1(k)

represents the partial derivative of y(k) with respect to the first

non unit coefficient of the denominator polynomial, whereas ∂y(k)
∂b0(k)

is the partial derivative of y(k)
with respect to the first coefficient of the numerator polynomial.

10.3 GENERAL DERIVATIVE IMPLEMENTATION

The derivatives of the output signal as related to the adaptive-filter coefficients are always required
to generate the gradient vector that is used in most adaptive algorithms. These derivatives can
be obtained in a systematic form by employing a sensitivity property of digital filters with fixed
coefficients [2]-[1], if the adaptive-filter coefficients are slowly varying as assumed in equation
(10.12).

Refer to Fig. 10.4.a, where the multiplier with coefficient c is an internal multiplier of a digital filter
with fixed coefficients. A good measure of how the digital filter characteristics change when the
value of c changes is the sensitivity function, defined as the partial derivative of the digital filter
transfer function H(z) as related to the coefficient c. It is well known from classical digital filtering
theory [2]-[1] that the partial derivative of the digital filter transfer function, with respect to a given
multiplier coefficient c, is given by the product of the transfer function H13(z) from the filter input
to the multiplier input and the transfer functionH42(z) from the multiplier output to the filter output,
that is

Sc(z) = H13(z) ·H42(z) (10.17)

Fig. 10.4.b illustrates the derivative implementation. It can be noted that the implementation of the
derivatives for the direct-form structure shown in Fig. 10.2 can be obtained by employing equation
(10.17). In the time domain, the filtering operation performed in the implementation of Fig. 10.4.b
is given by

∂y(k)
∂c

= h13(k) ∗ h42(k) ∗ x(k) (10.18)
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Figure 10.3 Simplified derivative implementation: (a) Simplification I, (b) Simplification II.
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where ∗ denotes convolution and hij(k) is the impulse response related to Hij(z). When the digital
filter coefficients are slowly varying, the desired derivatives can be derived as in Fig. 10.4 for each
adaptive coefficient. In this case, only an approximated derivative is obtained

∂y(k)
∂c(k)

≈ h13k(k) ∗ h42k(k) ∗ x(k) (10.19)

10.4 ADAPTIVE ALGORITHMS

In this section, the adaptation algorithms used in IIR adaptive filtering are described. In particular,
we present the RLS, the Gauss-Newton, and the gradient-based algorithms.

10.4.1 Recursive Least-Squares Algorithm

A possible objective function for adaptive IIR filtering based on output error is the least-squares
function2

ξd(k) =
k∑
i=0

λk−ie2(i) =
k∑
i=0

λk−i[d(i)− θT (k)φ(i)]2 (10.20)

The forgetting factor λ is usually chosen in the range 0 � λ < 1, with the objective of turning the
distant past information increasingly negligible. By differentiating ξd(k) with respect to θ(k), it
follows that

2gD(k) =
∂ξd(k)
∂θ(k)

= 2
k∑
i=0

λk−iϕ(i)[d(i)− θT (k)φ(i)]

= 2ϕ(k)e(k) + λ
∂ξd(k − 1)
∂θ(k)

(10.21)

where the vector ϕ(k) is the derivative of e(i) with respect to θ(k), i.e.,

ϕ(k) =
∂e(k)
∂θ(k)

= −∂y(k)
∂θ(k)

(10.22)

and without loss of generality we considered that ξd(k− 1) is a function of θ(k) and not of θ(k− 1)
as in the FIR case. The second-derivative matrix 2RD(k) of ξd(k)3 with respect to θ(k) is then given
by

∂2ξd(k)
∂θ2(k)

= 2RD(k) = 2λRD(k − 1) + 2ϕ(k)ϕT (k)− 2
∂2y(k)
∂θ2(k)

e(k) (10.23)

2The reader should note that this definition of the deterministic weighted least squares utilizes the a priori error with
respect to the latest data pair d(k) and x(k), unlike the FIR RLS case.

3By differentiating 2gD(k) in equation (10.21) with respect to θ(k).
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Figure 10.4 General derivative implementation: (a) General structure, (b) Derivative implementation.
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Now, several assumptions are made to generate a recursive algorithm. The adaptive-filter parameters
are considered to be updated by

θ(k + 1) = θ(k)− R−1
D (k)gD(k) (10.24)

As can be noted from equations (10.21) and (10.23), the calculations of the last terms in both RD(k)
and gD(k) require a knowledge of the signal information vector since the beginning of the algorithm
operation, namely ϕ(i) for i < k. However, if the algorithm step sizes, i.e., the elements of
|θ(k + 1)− θ(k)|, are considered small, then

∂ξd(k − 1)
∂θ(k)

≈ 0 (10.25)

assuming that the vector θ(k) is the optimal estimate for the parameters at the instant k − 1. This
conclusion can be drawn by approximating ξd(k − 1) by a Taylor series around θ(k − 1) and
considering only the first-order term [8]. Also, close to the minimum solution, the output error e(k)
can be considered approximately a white noise (if the measurement noise is also a white noise) and

independent of ∂2y(k)
∂θ2

(k)
. This assumption allows us to consider the expected value of the last term in

equation (10.23) negligible as compared to the remaining terms.

Applying the above approximations, an RLS algorithm for adaptive IIR filtering is derived in which
the basic steps are:

e(k) = d(k)− θT (k)φ(k) (10.26)

ϕ(k) = −∂y(k)
∂θ(k)

(10.27)

SD(k) =
1
λ

[
SD(k − 1)− SD(k − 1)ϕ(k)ϕT (k)SD(k − 1)

λ+ϕT (k)SD(k − 1)ϕ(k)

]
(10.28)

θ(k + 1) = θ(k)− SD(k)ϕ(k)e(k) (10.29)

The description of the RLS adaptive IIR filter is given in Algorithm 10.1.

Note that the primary difference between the RLS algorithm for FIR and IIR adaptive filtering relies
on the signal information vector, ϕ(k), that in the IIR case is obtained through a filtering operation
while in the FIR case it corresponds to the input signal vector x(k).

10.4.2 The Gauss-Newton Algorithm

Consider as objective function the mean-square error (MSE) defined as

ξ = E[e2(k)] (10.30)

In the Gauss-Newton algorithm, the minimization of the objective function is obtained by performing
searches in the Newton direction, using estimates of the inverse Hessian matrix and the gradient vector.
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Algorithm 10.1

Output Error Algorithm, RLS Version

Initialization
ai(k) = bi(k) = e(k) = 0
y(k) = x(k) = 0 , k < 0
SD(0) = δ−1I

Definition
ϕT (k) = [−y′(k − 1) . . .− y′(k −N) − x′(k) − x′(k − 1) . . .− x′(k −M)]
For each x(k), d(k), k ≥ 0, do
y(k) = φT (k)θ(k)
y′(k) = −y(k)−∑N

i=1 ai(k)y
′(k − i)

x′(k) = x(k)−∑N
i=1 ai(k)x

′(k − i)
e(k) = d(k)− y(k)
SD(k) = 1

λ

[
SD(k − 1)− SD(k−1)ϕ(k)ϕT (k)SD(k−1)

λ+ϕT (k)SD(k−1)ϕ(k)

]
θ(k + 1) = θ(k)− SD(k)ϕ(k)e(k)
Stability test

The gradient vector is calculated as follows:

∂ξ

∂θ(k)
= E[2e(k)ϕ(k)] (10.31)

where ϕ(k) = ∂e(k)
∂θ(k)

as defined in equation (10.22).

The Hessian matrix is then given by

∂2ξ

∂θ2(k)
= 2E

[
ϕ(k)ϕT (k) +

∂2e(k)
∂θ2(k)

e(k)
]

(10.32)

where the expected value of the second term in the above equation is approximately zero, since close
to a solution the output error e(k) is “almost” a white noise independent of the following term

∂2e(k)
∂θ2(k)

= −∂
2y(k)
∂θ2(k)

The determination of the gradient vector and the Hessian matrix requires statistical expectation
calculations. In order to derive a recursive algorithm, estimates of the gradient vector and Hessian
matrix have to be used. For the gradient vector, the most commonly used estimation is the stochastic
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gradient given by
∂ξ̂

∂θ(k)
= 2e(k)ϕ(k) (10.33)

where ξ̂ is an estimate of ξ. Such approximation was also used in the derivation of the LMS algorithm.
The name stochastic gradient originates from the fact that the estimates point to random directions
around the true gradient direction.

The Hessian estimate can be generated by employing a weighted summation as follows:

R̂(k + 1) = αϕ(k)ϕT (k) + α

k−1∑
i=0

(1− α)k−iϕ(i)ϕT (i)

= αϕ(k)ϕT (k) + (1− α)R̂(k) (10.34)

where α is a small factor chosen in the range 0 < α < 0.1. By taking the expected value on both
sides of the above equation and assuming that k →∞, it follows that

E[R̂(k + 1)] = α
k∑
i=0

(1− α)k−iE[ϕ(i)ϕT (i)]

≈ E[ϕ(k)ϕT (k)] (10.35)

Applying the approximation discussed and the matrix inversion lemma to calculate the inverse of
R̂(k+1), i.e., Ŝ(k+1), the Gauss-Newton algorithm for IIR adaptive filtering is derived, consisting
of the following basic steps

e(k) = d(k)− θT (k)φ(k) (10.36)

ϕ(k) =
∂e(k)
∂θ(k)

(10.37)

Ŝ(k + 1) =
1

1− α

[
Ŝ(k)− Ŝ(k)ϕ(k)ϕT (k)Ŝ(k)

1−α
α +ϕT (k)Ŝ(k)ϕ(k)

]
(10.38)

θ(k + 1) = θ(k)− μŜ(k + 1)ϕ(k)e(k) (10.39)

where μ is the convergence factor. In most cases, μ is chosen approximately equal to α.

In the updating of the R̂(k) matrix, the factor (1 − α) plays the role of a forgetting factor that
determines the effective memory of the algorithm when computing the present estimate. The closer
α is to zero the more important is the past information, in other words, the longer is the memory of
the algorithm.
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10.4.3 Gradient-Based Algorithm

If in the Gauss-Newton algorithm, the estimate of the Hessian matrix is replaced by the identity
matrix, the resulting basic algorithm is given by

e(k) = d(k)− θT (k)φ(k) (10.40)

ϕ(k) =
∂e(k)
∂θ(k)

(10.41)

θ(k + 1) = θ(k)− μϕ(k)e(k) (10.42)

These are the steps of a gradient-based algorithm for IIR filtering. The computational complexity
is much lower in gradient-based algorithm than in the Gauss-Newton algorithm. With the latter,
however, faster convergence is in general achieved.

10.5 ALTERNATIVE ADAPTIVE FILTER STRUCTURES

The direct-form structure is historically the most widely used realization for the IIR adaptive filter.
The main advantages of the direct form are the minimum number of multiplier coefficients required to
realize a desired transfer function and the computationally efficient implementation for the gradient
(which is possible under the assumption that the denominator coefficients are slowly varying, as
illustrated in Fig. 10.3). On the other hand, the stability monitoring of the direct form is difficult
because it requires either the factorization of a high-order denominator polynomial in each algorithm
step or the use of a sophisticated stability test. In addition, the coefficient sensitivities and output
quantization noise are known to be high in the direct form [2].

Alternate solutions are the cascade and parallel realizations using first- or second-order sections as
building blocks [9]-[10]. Also, the lattice structures are popular in the implementation of adaptive
filters [13]-[19]. All these structures allow easy stability monitoring while the parallel form appears
to be most efficient in the gradient computation. The standard parallel realization, however, may
converge slowly if two poles approach each other, as will be discussed later and, when a Newton-based
algorithm is employed, the estimated Hessian matrix becomes ill-conditioned bringing convergence
problems. This problem can be alleviated by applying a preprocessing to the input signal [10]-[11].

10.5.1 Cascade Form

AnyN th-order transfer function can be realized by connecting several first- or second-order sections
in series, generating the so-called cascade form. Here we consider that all subfilters are second-order
sections without loss of generality, and if an odd-order adaptive filter is required we add a single
first-order section. Also, only filters with real multiplier coefficients are discussed. The cascade
realization transfer function is given by

Hk(z) =
m∏
i=1

b0iz
2 + b1i(k)z + b2i(k)

z2 + a1i(k)z + a2i(k)
=

m∏
i=1

Hki(z) (10.43)
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where m denotes the number of sections.

The parameter vector in the cascade form is

θ(k) = [−a11(k) − a21(k) b01(k) b11(k) b21(k) . . .− a1m(k) − a2m(k) b0m(k) b1m(k) b2m(k)]T

The transfer function derivatives as related to the multiplier coefficients can be generated by employ-
ing the general result of Fig. 10.4. Fig. 10.5 depicts the cascade realization along with the generation
of the derivative signals of interest, where the sections were realized through the direct form of
Fig. 10.1.

Figure 10.5 Cascade form.

Any alternative second-order section can be used in the cascade form and the appropriate choice
depends on a trade-off between quantization effects, hardware resources, computation time, and other
factors. The main drawbacks of the cascade form are the amount of extra computations required to
generate the gradients, and the manifolds (see sections 10.6 and 10.7) generated on the error surface
which may result in slow convergence of the gradient-based algorithms.
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10.5.2 Lattice Structure

In this subsection we discuss the lattice algorithm starting from its realization. Although this might
appear to be a recipe approach, the development presented here allows us to access the nice properties
of the lattice realization. The book by Regalia [12] provides a detailed presentation of the various
forms of lattice realization.
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Figure 10.6 Lattice structure including a sample of gradient computation.

The two-multiplier lattice structure [13]-[18] for IIR filters is depicted in Fig. 10.6 with a sample
of gradient computation. The coefficients κi(k) in the recursive part of the structure are called
reflection coefficients. The internal signals f̂i(k) and b̂i(k) are the forward and backward residuals,
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respectively. These internal signals are calculated as follows:

f̂N+1(k) = x(k)

f̂N−i(k) = f̂N−i+1(k)− κN−i(k)b̂N−i(k)

b̂N−i+1(k + 1) = κN−i(k)f̂N−i(k) + b̂N−i(k)

for i = 0, 1, . . . , N , and
b̂0(k + 1) = f̂0(k) (10.44)

The zero placement is implemented by a weighted sum of the backward residuals b̂i(k), generating
the filter output according to

y(k) =
N+1∑
i=0

b̂i(k + 1)vi(k) (10.45)

where vi(k), for i = 0, 1, . . . , N + 1, are the output coefficients.

The derivatives of the filter output y(k) with respect to the output tap coefficients vi(k) are given
by the backward residuals b̂i(k + 1). On the other hand, the derivatives of y(k) as related to the
reflection multiplier coefficients κi(k) require one additional lattice structure for each κi(k). In
Fig. 10.6, the extra lattice required to calculate ∂y(k)

∂κN−1(k)
is shown for illustration. The overall

structure for the calculation of the referred partial derivative can be obtained by utilizing the general
derivative implementation of Fig. 10.4.b. First note that the transfer functions from the filter input
to the inputs of the multipliers ±κN−1(k) were realized by the original adaptive lattice filter. Next,
the overall partial derivative is obtained by taking the input signals of ±κN−1(k) in the first lattice
structure to their corresponding output nodes in a second lattice structure whose external input is
zero. For each derivative ∂y(k)

∂κj(k)
, the following algorithm must be used

f̂ ′
N+1(k) = 0

If i �= N − j
f̂ ′
N−i(k) = f̂ ′

N−i+1(k)− κN−i(k)b̂′N−i(k)

b̂′N−i+1(k + 1) = κN−i(k)f̂ ′
N−i(k) + b̂′N−i(k)

for i = 0, 1, . . . , N − j − 1, N − j + 1, . . . , N
If i = N − j

f̂ ′
j(k) = f̂ ′

j+1(k)− κj(k)b̂′j(k)− b̂j(k)
b̂′j+1(k + 1) = κj(k)f̂ ′

j(k) + b̂′j(k) + f̂j(k)

b̂′o(k + 1) = f̂o(k)
Then

∂y(k)
∂κj(k)

=
N+1∑
i=0

b̂′i(k + 1)vi(k) (10.46)

The main desirable feature brought about by the lattice IIR realization is the simple stability test.
The stability requires only that reflection coefficients κi(k) be maintained with modulus less than



41110.5 Alternative Adaptive Filter Structures

one [17]. However, the gradient computations are extremely complex, and of order N2 in terms
of multiplication count. An approach for the gradient computations with order N multiplications
and divisions was proposed [16], which is still more complex than for the direct-form realization. It
should be noticed that in the direct form, all the signals at the multiplier’s input are delayed versions
of each other, and the transfer function from the multiplier’s output to the filter output are the same.
These properties make the gradient computational complexity in the direct form low. The lattice IIR
realization does not have these features.

When the two-multiplier lattice structure is realizing a transfer function with poles close to the unit
circle, the internal signals may present a large dynamic range, resulting in poor performance due
to quantization effects. In this case, the normalized lattice [19] is a better choice despite its higher
computational complexity. There are alternative lattice structures, such as the two-multiplier with
distinct reflection coefficients and the one-multiplier structures [15], that can also be employed in
adaptive filtering. For all these options the stability test is trivial, retaining the main feature of the
two-multiplier lattice structure.

An application where adaptive IIR filtering is the natural choice is sinusoid detection using notch
filters. A notch transfer function using direct-form structure is given by

HN(z) =
1− 2 cosω0z

−1 + z−2

1− 2r cosω0z−1 + r2z−2 (10.47)

where ω0 is the notch frequency and r is the pole radius [20]. The closer the pole radius is to the unit
circle the narrower is the notch transfer function, leading to better estimate of the sinusoid frequency
in a noisy environment. However, in the direct form the noise gain, caused by the notch transfer
function, varies with the sinusoid frequency, causing a bias in the frequency estimate [12].

An alternative is to construct a notch filter by using a lattice structure. A second-order notch filter
can be generated by

HN(z) =
1
2

[1 +HAP(z)] (10.48)

where HAP(z) is an all-pass transfer function which can be realized by a lattice structure by setting
v2 = 1 and v1 = v0 = 0 in Fig. 10.6. In this case,

HAP(z) =
κ1 + κ0(1 + κ1)z−1 + z−2

1 + κ0(1 + κ1)z−1 + κ1z−2 (10.49)

The notch frequency ω0 and the relation between −3 dB attenuation bandwidth Δω3dB and κ1 are
given by

ω0 = cos−1(−κ0) (10.50)

and

κ1 =
1− tan Δω3dB

2

1 + tan Δω3dB
2

(10.51)
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respectively. The main feature of the notch filter based on the lattice structure is the independent
control of the notch frequency and the −3 dB attenuation bandwidth.

It is worth mentioning that an enhanced version of the sinusoid signal can be obtained by applying
the noisy input signal to the bandpass filter whose transfer function is given by

HBP(z) =
1
2

[1−HAP(z)] (10.52)

For identification of multiple sinusoids the most widely used structure is the cascade of second-order
sections, where each section identifies one of the sinusoids removing the corresponding sinusoid
from the input to the following sections.

Sinusoid detection in noise utilizing adaptive notch filter has rather simple implementation as com-
pared with other methods, and finds application in synchronization, tone detection and tracking for
music signals among others.

Example 10.1

Apply an IIR notch adaptive filter using the second-order lattice structure to detect a sinusoid buried
in noise.

The input signal noise is a Gaussian white noise with variance σ2
x = 1, whereas the sampling fre-

quency is 10000Hz and the sinusoid to be detected is at 1000Hz. Use a gradient-based algorithm.
(a) Choose the appropriate value of μ.
(b) Run the algorithm using for signal to noise ratios of 0 and −5dB, respectively.
(c) Show the learning curves for the detected frequency, the input and the bandpass filtered output
signal.

Solution:

A rather small convergence factor μ = 0.000001 is used in this example. Higher values can be
used for lower ratio between the sampling frequency and the sinusoid frequency. The starting search
frequency is 1100Hz. A quality factor of 10 is used, where this factor measures ratio between the
notch frequency and the frequencies with −3dB of attenuation with respect to the gain in the pass
band of filter. The stopband width is then 100 Hz. Figs. 10.7.a and 10.7.b depict the input signals
for the cases where the signal to noise ratios are 0 and−5 dB’s, respectively. Figs. 10.8.a and 10.8.b
show the learning curves for the sinusoid frequencies where in both cases the correct frequencies
are detected in less than one second which is equivalent to 1000 iterations. As can be observed,
the noisier input leads to noisier output. Figs. 10.9.a and 10.9.b depict the bandpass output signal
where the sinusoidal components are clearly seen, and again the higher signal to noise ratio results
in cleaner sinusoids. In these plots we froze the value of κ0 at a given iteration after convergence in
order to generate the band-passed signals.

�
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Figure 10.7 Sinusoid buried in noise for signal to noise ratio (a) 0dB, (b) −5dB.
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Figure 10.8 Learning curves of the sinusoid frequency (a) 0dB, (b) −5dB.
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Figure 10.9 Band-passed output signals (a) 0dB, (b) −5dB.
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10.5.3 Parallel Form

In the parallel realization, the transfer function is realized by a parallel connection of sections as
shown in Fig. 10.10. The sections are in most of the cases of first- or second-order, making the
stability test trivial. The transfer function when second-order sections are employed is given by

Hk(z) =
m−1∑
i=0

b0i(k)z2 + b1i(k)z + b2i(k)
z2 + a1i(k)z + a2i(k)

(10.53)

The parameter vector for the parallel form is

θ(k) = [−a10(k) − a20(k) b00(k) b10(k) b20(k)

. . .− a1m−1(k) − a2m−1(k) b0m−1(k) b1m−1(k) b2m−1(k)]
T

(10.54)

Section 1

Section 2

Section m

x(k)

y(k)+

Figure 10.10 Parallel form.

The transfer function derivatives as related to the multiplier coefficients in the parallel form are simple
to calculate, because they depend on the derivative of the individual section transfer function with
respect to the multiplier coefficients belonging to that section. Basically, the technique of Fig. 10.4
can be applied to each section individually.
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Since the interchange of sections in the parallel form does not alter the transfer function, there arem!
global minimum points each located in separate subregions of the MSE surface. These subregions
are separated by boundaries that are reduced-order manifolds as will be discussed in section 10.7.
These boundaries contain saddle points and if the filter parameters are initialized on a boundary, the
convergence rate is most probably slow. Consider that the internal signals cross-correlation matrix
is approximately estimated by

R̂(k + 1) = α
k∑
i=0

(1− α)k−iϕ(i)ϕT (i) (10.55)

when k is large. In this case, if the sections coefficients are identical the information vector consists of
a set of identical subvectorsϕ(i), which in turn makes R̂(k+1) ill-conditioned. The above discussion
suggests that the sections in the parallel realization should be initialized differently, although there
is no guarantee that this will avoid the ill-conditioning problems.

10.5.4 Frequency-Domain Parallel Structure

A possible alternative parallel realization first proposed in [10] incorporates a preprocessing of the
input signal using a discrete-time Fourier transform, generating m signals that are individually
applied as input to first-order complex-coefficients sections. With this strategy, the matrix R̂(k) is
more unlikely to become ill-conditioned. Also, it is more difficult for a gradient-based algorithm
to get stuck on a reduced-order manifold, resulting in faster convergence. The parallel realization
can also be implemented using a real-coefficient transform for the preprocessing and second-order
sections.

The frequency-domain parallel structure is illustrated in Fig. 10.11, where d(k) is the reference
signal, x(k) is the input signal, n(k) is an additive noise source, and y(k) is the output. The ith
parallel section is represented by the transfer function

Hi(z) =
b0i(k)z2 + b1i(k)z + b2i(k)
z2 + a1i(k)z + a2i(k)

k = 0, 1, . . . ,m− 1 (10.56)

where a1i(k), a2i(k), b0i(k), b1i(k), and b2i(k) are adjustable real coefficients. The inputs of the
filter sections are preprocessed as shown in Fig. 10.11.

The purpose of preprocessing in Fig. 10.11 is to generate a set of uncorrelated signals x1(k), x2(k),
. . . , xm(k) in order to reduce the probability that two or more sections converge to the same solution,
to simplify the adaptation algorithm, and to improve the rate of convergence.

On employing the discrete-time cosine transform (DCT), the input signals to the subfilters in Fig. 10.11
are given by

x0(k) =
√

2
m

m−1∑
l=0

x(k − l)



418 Chapter 10 Adaptive IIR Filters

C
O
S
I
N
E

T
R
A
N
S
F
O
R
M

Adaptive
  algorithm

x0(k) y0 (k)

x1(k) y1 (k)

xm-1(k) ym-1 (k)

H0 (z)

H1 (z)

Hm-1 (z)

y(k)

d(k)

n(k)

x(k)

e(k)

z -1

z -1

z -1

z -1

+

++
-

T

d’(k)

Figure 10.11 Real coefficient frequency-domain adaptive filter.

and

xi(k) =

√
2
m

m−1∑
l=0

x(k − l) cos[πi(2l + 1)/(2m)] (10.57)

The transfer function from the input to the outputs of the DCT preprocessing filter (or prefilter) can
be described through the recursive frequency-domain description given by

Ti(z) =
k0

m
cos τi

[zm − (−1)i](z − 1)
zm−1[z2 − (2 cos 2τi)z + 1]

(10.58)
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where

k0 =

⎧⎨
⎩
√

2 if i = 0

√
2m if i = 1, 2, . . . ,m− 1

and τi = πi/(2m). The DCT can be efficiently implemented through some fast algorithms, or by
employing equation (10.58). In the latter case, special consideration must be given to the poles on
the unit circle.

Alternatively, the transfer functions of the prefilter can be expressed as

Ti(z) =
1
m

m−1∑
j=0

tijz
−j =

1
m

m−2∏
r=0

(z − τir)
z

=
1

zm−1

(z − 1)[zm − (−1)i]
[z2 − (2 cos πim )z + 1]

(10.59)

where the tij are the coefficients of the transform matrix T, and the τir are the zeros of Ti(z). The
gain constants k0 and cos τ were dropped in equation (10.59) and will not be considered from now
on, since they can be absorbed by the numerator coefficients b0i(k), b1i(k), and b2i(k) of Hi(z).

The overall transfer function of the frequency-domain adaptive filter of Fig. 10.11 is given by

H(z) =
m−1∑
i=0

Ti(z)Hi(z)

=
1
m

(
1

zm−1 )

[
m−1∑
i=0

(
b0iz

2 + b1iz + b2i
z2 + a1iz + a2i

)m−2∏
r=0

(z − τir)
]

=
1
m

1
z3m+1

⎡
⎢⎢⎢⎢⎢⎣
m−1∑
i=0

(b0iz2 + b1iz + b2i)

m−1∏
j=0, �=i

(z2 + a1jz + a2j)
m−2∏
r=0

(z − τir)

m−1∏
l=0

(z2 + a1lz + a2l)

⎤
⎥⎥⎥⎥⎥⎦
(10.60)

Now assume that the realization discussed is used to identify a system of order 2Np described by

HD(z) = Kz2Np−P

P−1∏
r=0

(z − γr)
Np−1∏
i=0

(z2 + α1iz + α2i)

(10.61)

whereK is a gain constant, p0i and p1i are the poles of section i, and γr are the zeros ofHD(z) such
that

γr �= p0i, p1i for r = 0, . . . , P − 1 and for i = 0, . . . , Np − 1

It can be shown that if the conditions outlined below are satisfied, the filter of Fig. 10.11 can identify
exactly systems with Np ≤ m and P ≤ 3m+ 1. The sufficient conditions are:
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i) The transformation matrix T of the prefilter is square and has linearly independent rows.

ii) a1i �= a1j , and a2i �= a2j for i �= j; a1i and a2i are not simultaneously zero for all i.

iii) The zeros of the prefilter do not coincide with the system’s poles, i.e., τij �= p0l, τij �= p1l, for
all i, j, and l.

Adaptation Algorithm

The adaptation algorithm entails the manipulation of a number of vectors, namely, the coefficient
vector

θ(k) =
[
θT0 (k) . . .θTm−1(k)

]T
where

θi(k) = [−a1i(k) − a2i(k) b0i(k) b1i(k) b2i(k)]T

the internal data vector

φ(k) =
[
φT0 (k) . . .φTm−1(k)

]T
where

φi(k) = [yi(k − 1) yi(k − 2) xi(k) xi(k − 1) xi(k − 2)]T

the gradient vector
ϕ̃(k) = [ϕT0 (k) . . .ϕTm−1(k)]

T

where
ϕi(k) = [−y′

i(k − 1) − y′
i(k − 2) − x′

i(k) − x′
i(k − 1) − x′

i(k − 2)]T

and the matrix Ŝ(k) which is an estimate of the inverse Hessian R̂
−1

(k).

The elements of the gradient vector can be calculated by using the relations

x′
i(k) = xi(k)− a1i(k)x′

i(k − 1)− a2i(k)x′
i(k − 2)

and
y′
i(k) = −yi(k)− a1i(k)y′

i(k − 1)− a2i(k)y′
i(k − 2)

An adaptation algorithm for updating the filter coefficients based on the Gauss-Newton algorithm
is summarized in Algorithm 10.2. The algorithm includes the updating of matrix Ŝ(k), which is
obtained through the matrix inversion lemma.

The stability monitoring consists of verifying whether each set of coefficients a1i(k) and a2i(k)
defines a point outside the stability triangle [2], i.e., by testing whether

1− a1i(k) + a2i(k) < 0 or 1 + a1i(k) + a2i(k) < 0 or |a2i(k)| ≥ 1 (10.62)

If instability is detected in a particular section, the poles must be projected back inside the unit circle.
A possible strategy is to project each pole by keeping its angle and inverting its modulus. In this
case, a2i and a1i should be replaced by 1/a2i(k) and −a1i(k)/a2i(k), respectively.
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Algorithm 10.2

Frequency-Domain Parallel Algorithm, RLS Version

Initialization

Ŝ(0) = δI(δ > 0)

θi(k), 0 ≤ i ≤ m− 1

For each x(k) and d(k) given for k ≥ 0, compute:

XDCT(k) = DCT[x(k) . . . x(k −m+ 1)]

Do for i = 0, 1, . . . ,m− 1 :

x′
i(k) = xi(k)− a1i(k)x′

i(k − 1)− a2i(k)x′
i(k − 2)

yi(k) = θTi (k)φi(k)

y′
i(k) = −yi(k)− a1i(k)y′

i(k − 1)− a2i(k)y′
i(k − 2)

End

e(k) = d(k)−∑m−1
i=0 yi(k)

h(k) = Ŝ(k)ϕ̃(k)

Ŝ(k + 1) =
[

Ŝ(k)− h(k)hT
(k)

( 1
α −1)+hT

(k)ϕ̃(k)

]
( 1
1−α )

θ(k + 1) = θ(k)− μŜ(k + 1)ϕ̃(k)e(k)

Carry out stability test.
End

If the outputs of the DCT prefilter xi(k) are sufficiently uncorrelated, the Hessian matrix is approx-
imately block-diagonal consisting of 5× 5 submatrices R̂i(k). In this case, instead of computing a
5m× 5m inverse Hessian estimate Ŝ(k), several 5× 5 submatrices are computed and applied in the
above algorithm as follows:
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For i = 0, 1, . . . ,m− 1

hi(k) = Ŝi(k)ϕi(k)

Ŝi(k + 1) =

[
Ŝi(k)− hi(k)hTi (k)

( 1
α − 1) + hTi (k)ϕi(k)

]
(

1
1− α )

θi(k + 1) = θi(k)− μŜi(k + 1)ϕi(k)e(k)

�

The choice of the adaptive-filter realization has implications on the computational complexity as
well as on the convergence speed. Some studies exploring this aspect related to the frequency-
domain realization can be found in [21]. The exploration of realization related properties of the IIR
adaptive MSE surface led to a fast parallel realization where no transform preprocessing is required
[22]. In this approach, the reduced-order manifolds are avoided by properly configuring the parallel
sections which are implemented with general purpose second-order sections [23]. An analysis of the
asymptotic convergence speed of some adaptive IIR filtering algorithms from the realization point of
view can be found in [24]. Another approach proposes a cascade/parallel orthogonal realization, with
simplified gradient computation, by utilizing some of the ideas behind the derivation of improved
parallel realizations [25].

Example 10.2

An IIR adaptive filter of sufficient order is used to identify a system with the transfer function given
below.

H(z) =
0.8(z2 − 1.804z + 1)2

(z2 − 1.512z + 0.827)(z2 − 1.567z + 0.736)

The input signal is a uniformly distributed white noise with variance σ2
x = 1, and the measurement

noise is Gaussian white noise uncorrelated with the input with variance σ2
n = 10−1.5. Use a gradient-

based algorithm.
(a) Choose the appropriate values of μ.
(b) Run the algorithm using the direct-form structure, the lattice structure, the parallel realization
with preprocessing, and the cascade realization with direct-form sections. Compare their convergence
speed.
(c) Measure the MSE.
(d) Plot the obtained IIR filter frequency response at any iteration after convergence is achieved and
compare with the unknown system. Consider for this item only the direct-form realization.

Solution:

A convergence factor μ = 0.004 is used in all examples, except for the lattice realization where
μ = 0.0002 is employed for the internal coefficients and a larger μ = 0.002 is employed for the
updating of the feedforward coefficients, for stability reasons. Although the chosen value of μ is
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not an optimal value in any sense, it led to the convergence of all algorithms. Fig. 10.12 depicts the
magnitude response of the adaptive filter using the direct form at a given iteration after convergence.
For comparison the magnitude response of the system being modeled is also plotted. As can be
seen, the responses are close outside the frequency range where the unknown system has a notch.
Fig. 10.13 shows the learning curves of the algorithms obtained by averaging the results of 200
independent runs. As can be seen the faster algorithms led to higher MSE. The cascade realization
presented faster convergence, followed by the parallel and lattice realizations. The measured MSEs
are given in Table 10.1.

There are very few results published in the literature addressing the finite-precision implementation of
IIR adaptive filters. For this particular example, all algorithms are also implemented with fixed point
arithmetic, with 12 and 16 bits. No sign of divergence is detected during the early 2000 iterations.
However, the reader should not take this result as conclusive.

�
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Figure 10.13 Learning curves for IIR adaptive filters with (a) Direct form, (b) Parallel form with prepro-
cessing, (c) Lattice, and (d) Cascade realizations.
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Table 10.1 Evaluation of the IIR Algorithms

Realization MSE

Direct Form 0.0391

Lattice 0.1514

Transf. Dom. Parallel 0.1478

Cascade 0.1592

10.6 MEAN-SQUARE ERROR SURFACE

The error surface properties in the case of adaptive IIR filtering are key in understanding the difficulties
in applying gradient-based algorithms to search for the optimal filter coefficient vector. In this section,
the main emphasis is given to the system identification application where the unknown system is
modeled by

d(k) =
G(q−1)
C(q−1)

x(k) + n(k) (10.63)

where

G(q−1) = g0 + g1q
−1 + · · ·+ gMd

q−Md

C(q−1) = 1 + c1q
−1 + · · ·+ cNd

q−Nd

and n(k) is the measurement noise that is considered uncorrelated with the input signal x(k).

The unknown transfer function is

Ho(z) = zNd−Md
g0z

Md + g1z
Md−1 + · · ·+ gMd−1z + gMd

zNd + c1zNd−1 + · · ·+ cNd−1z + cNd

= zNd−Md
No(z)
Do(z)

(10.64)

The desired feature of the identification problem is that the adaptive-filter transfer function Hk(z)
approximates Ho(z) as much as possible in each iteration. If the performance criterion is the mean-
square error (MSE), the objective function is expressed in terms of the input signal and the desired
signals as follows:

ξ = E[e2(k)] = E{[d(k)− y(k)]2}
= E[d2(k)− 2d(k)y(k) + y2(k)]

= E

{[(
G(q−1)
C(q−1)

x(k) + n(k)
)
− B(k, q−1)
A(k, q−1)

x(k)
]2}

(10.65)
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Since n(k) is not correlated to x(k) and E[n(k)] = 0, equation (10.65) can be rewritten as

ξ = E

{[(
G(q−1)
C(q−1)

− B(k, q−1)
A(k, q−1)

)
x(k)

]2}
+ E[n2(k)] (10.66)

The interest here is to study the relation between the objective function ξ and the model filter
coefficients, independently if these coefficients are adaptive or not. The polynomials operators
B(k, q−1) and A(k, q−1) will be considered fixed, denoted respectively by B(q−1) and A(q−1).

The power spectra of the signals involved in the identification process are given by

Rxx(z) = Z[rxx(l)]
Rnn(z) = Z[rnn(l)]
Rdd(z) = Ho(z) Ho(z−1) Rxx(z) +Rnn(z)
Ryy(z) = Hk(z) Hk(z−1) Rxx(z)
Rdy(z) = Ho(z) Hk(z−1) Rxx(z) (10.67)

By noting that for any processes x1(k) and x2(k)

E[x1(k)x2(k)] =
1

2πj

∮
Rx1x2(z)

dz

z
(10.68)

where the integration path is the counterclockwise unit circle, the objective function, as in equation
(10.65), can be rewritten as

ξ =
1

2πj

∮ [|Ho(z)−Hk(z)|2Rxx(z) +Rnn(z)
] dz
z

=
1

2πj

[∮
Ho(z)Ho(z−1)Rxx(z)

dz

z
− 2

∮
Ho(z)Hk(z−1)Rxx(z)

dz

z

+
∮
Hk(z)Hk(z−1)Rxx(z)

dz

z
+
∮
Rnn(z)

dz

z

]
(10.69)

For the case the input and additional noise signals are white with variances respectively given by σ2
x

and σ2
n, the equation (10.69) can be simplified to

ξ =
σ2
x

2πj

∮ [
Ho(z)Ho(z−1)− 2Ho(z)Hk(z−1) +Hk(z)Hk(z−1)

] dz
z

+ σ2
n (10.70)

This expression provides the relation between the MSE surface represented by ξ and the coefficients
of the adaptive filter. The following example illustrates the use of the above equation.

Example 10.3
An all-pole adaptive filter of second-order is used to identify a system with transfer function

Ho(z) =
1

z2 + 0.9z + 0.81
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The input signal and the measurement (additional) noise are white with σ2
x = 1 and σ2

n = 0.1,
respectively. Compute the MSE as a function of the adaptive-filter multiplier coefficients.

Solution
The adaptive-filter transfer function is given by

Hk(z) =
b2

z2 + a1z + a2

Equation (10.70) can be solved by employing the residue theorem [1] which results in

ξ =
b22(1 + a2)

(1− a2)(1 + a2 − a1)(1 + a2 + a1)

− 2b2(1− 0.81a2)
1− 0.9a1 − 0.81a2 − 0.729a1a2 + 0.81a2

1 + 0.6561a2
2

+3.86907339 + 0.1 (10.71)

If the adaptive-filter coefficients are set to their optimal values, i.e., b2 = 1, a1 = 0.9 and a2 = 0.81,
indicating a perfect identification of the unknown system, the resulting MSE is

ξ = 3.86907339− 7.73814678 + 3.86907339 + 0.1
= 0.1

Note that the minimum MSE is equal to the measurement noise variance.

�

Equations (10.69) and (10.70), and more specifically equation (10.71), indicate clearly that the
MSE surface is a nonquadratic function of the multiplier coefficients of the adaptive filter. This is
particularly true for the multiplier coefficients pertaining to the denominator of the adaptive filter.
As a consequence, the MSE surface may have several local minima, some of those corresponding
to the desired global minimum. The multiplicity of minimum points depends upon the order of the
adaptive IIR filter as compared to the unknown system that shapes the desired signal, and also upon
the input signal properties when it is a colored noise.

Note that when the adaptive filter is FIR there is only a minimum point because the MSE surface is
quadratic, independently of the unknown system and input signal characteristics. If the input or the
desired signal are not stationary, the minimum point of the MSE surface moves in time but it is still
unique.

The main problem brought about by the multimodality of the MSE surface is that gradient and Newton
direction search algorithms will converge to a local minimum. Therefore, the adaptive filter may
converge to a very bad point where the MSE assumes a large and unacceptable value. For example,
in the system identification application, the generated transfer function may differ significantly from
the unknown system transfer function.
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Example 10.4
An unknown system with transfer function

Ho(z) =
z − 0.85
z + 0.99

is supposed to be identified by a first-order adaptive filter described by

Hk(z) =
bz

z − a
Plot the error surface, considering the input signal variance σ2

x = 1.

Solution
The expression for the MSE is given by

ξ = 171.13064− (2− 1.7a)b
1 + 0.99a

+
b2

1− a2

The MSE surface is depicted in Fig. 10.14, where the MSE is clipped at 1 for a better view.

�

Several results regarding the uniqueness of the minimum point in the MSE surface are available in
the literature [26]-[31]. Here, some of these results are summarized without proof, in order to give
the designer some tools to support the appropriate choice of the adaptive IIR filter order.

First consider the case of inverse filtering or equalization, where the adaptive filter is placed in
cascade with an unknown system and the desired signal is a delayed version of the overall cascade
input signal. This case had been originally explored by Ȧström and Söderström [26], and they proved
that if the adaptive filter is of sufficient order to find the inverse filter of the unknown system all the
local minima will correspond to global minima if the input signal is a white noise. The sufficient
order means that

N ≥ Md

and

M ≥ Nd (10.72)

where N and M are the numerator and denominator orders of the adaptive filter as indicated in
equation (10.5), Nd and Md are the corresponding orders for the unknown system as indicated in
equation (10.64).

When N > Md and M > Nd, there are infinitely many solutions given by

N(z) = L(z)Do(z)

and

D(z) = L(z)No(z) (10.73)
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Figure 10.14 (a) MSE error surface, (b) MSE contours.
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where L(z) = z−Nl(zNl + l1z
Nl−1 + · · · + lNl

), Nl = min(N − Md,M − Nd), and li, for
i = 1, 2, . . . , Nl, are arbitrary.

The input signal can be colored noise generated for example by applying an IIR filter to a white noise.
In this case, the adaptive filter must have order sufficient to generate the inverse of the unknown system
and the input signal must be persistently exciting of order max(N +Md,M +Nd), see for example
[26]-[27], in order to guarantee that all local minima correspond to global minima.

For insufficient-order equalization, several local minima that do not correspond to a global minimum
may occur. In this case, the MSE may not attain its minimum value after the algorithm convergence.

The situation is not the same in system identification application, as thought in the early investigations
[28]. For this application, the sufficient order means

N ≥ Nd

and

M ≥ Md (10.74)

since the desired feature is to reproduce the unknown system frequency response, and not its inverse
as in the equalization case. For N > Nd and M > Md, the local minima corresponding to global
minima must satisfy the following conditions

N(z) = L(z)No(z)

and

D(z) = L(z)Do(z) (10.75)

where L(z) = z−Nl(zNl + liz
Nl−1 + · · · + lNl

), Nl = min(N − Md,M − Nd), and li, for
i = 1, 2, . . . , Nl, are arbitrary.

The strongest result derived so far regarding the error surface property in system identification was
derived by Söderström and Stoica [29]. The result states: For white noise input, all the stationary
points correspond to global minima if

M ≥ Nd − 1

and

min(N −Nd,M −Md) ≥ 0 (10.76)

Suppose that the input signal is an ARMA process generated by filtering a white noise with an
IIR filter of orders Mn by Nn, and that there are no common zeros between the unknown system
denominator and the input coloring IIR filter. In this case, all stationary points correspond to global
minima if

M −Nd + 1 ≥ Nn
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and

min(N −Nd,M −Md) ≥ Mn (10.77)

The conditions summarized by equations (10.76) and (10.77) are sufficient but not necessary to
guarantee that all stationary solutions correspond to the minimum MSE.

For N = Nd = 1, M ≥ Md ≥ 0 and the input signal persistently exciting of order Md there is a
unique solution given by [29]

D(z) = Do(z)

and

N(z) = No(z) (10.78)

Also, when the adaptive filter and unknown system are all-pole second-order sections the unique
solution is given by equation (10.78) [30].

Another particular result of some interest presented in [31], states that if

N −Nd = M −Md = 0

and

M ≥ Nd − 2 (10.79)

the MSE surface has a unique stationary point corresponding to a global minimum.

For the case of insufficient-order identification [32], i.e., min(N−Nd,M−Md) < 0, or of sufficient
order not satisfying the condition related to equations (10.77)-(10.79), the MSE surface may have
local minima not attaining the minimum MSE, i.e., that are not global minima.

To satisfy any of the conditions of equations (10.77)-(10.79) a knowledge of the unknown system
numerator and denominator orders is required. This information is not in general available or easy
to obtain. This is one of the reasons adaptive IIR filters are not as popular as their FIR counterparts.
However, there are situations where either a local minimum is acceptable or some information about
the unknown system is available.

It should be noted that a vast literature is available for system identification [8],[33]-[34]. Here,
the objective was to summarize some properties of the MSE surface, when the unknown system is
modeled as an IIR filter with additive, white, and uncorrelated measurement noise. The assumptions
regarding the measurement noise are quite reasonable for most applications of adaptive filtering.
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10.7 INFLUENCE OF THE FILTER STRUCTURE ON THE MSE

SURFACE

Some characteristics of the MSE surface differ when alternative structures are used in the realization
of the adaptive filter. Each realization has a different relation between the filter transfer function and
the multiplier coefficients, originating modifications in the MSE surface [35].

The MSE surfaces related to two alternative realizations for the adaptive filter can be described as
functions of the filter multiplier coefficients by F1(θ1) and F2(θ2), respectively. Note that no index
was used to indicate the varying characteristics of the adaptive-filter parameters, since this simplifies
the notation while keeping the relevant MSE surface properties. It is assumed that the desired signal
and the input signal are the same in the alternative experiments. Also, it is considered that for any
set of parameters θ1 leading to a stable filter, there is a continuous mapping given by f3(θ1) = θ2,
where θ2 also leads to a stable filter. Both θ1 and θ2 are N ′ by 1 vectors.

The two alternative structures are equivalent if the objective functions are equal, i.e.,

F1(θ1) = F2(θ2) = F2[f3(θ1)] (10.80)

First consider the case where f3 is differentiable, and then from the above equation it follows that

∂F1(θ1)
∂θ1

=
∂F2[f3(θ1)]

∂θ1
=
∂F2[f3(θ1)]
∂f3(θ1)

∂f3(θ1)
∂θ1

(10.81)

where the first partial derivative on the rightmost side of the above equation is an 1 by N ′ vector
while the second partial derivative is a matrix with dimensions N ′ by N ′, where N ′ is the number
of parameters in θ1. Suppose that θ′

2 is a stationary point of F2(θ2), it then follows that

∂F2(θ2)
∂θ2

|θ2=θ
′
2

= 0 =
∂F1(θ1)
∂θ1

|θ1=θ
′
1

(10.82)

where θ′
2 = f3(θ

′
1). Note that the type of the stationary points of F1(θ1) and F2(θ2) are the same,

since their second derivatives have the same properties at these stationary points (see problem 1).

Now consider the case where
∂F2[f3(θ1)]
∂f3(θ1)

|θ1=θ
′′
1

= 0 (10.83)

but
∂F1(θ1)
∂θ1

|θ1=θ
′′
1
�= 0 (10.84)

that can happen only when f3(θ1) is not differentiable at θ1 = θ′′
1 . In this case, the chain rule of

equation (10.81) does not apply. The new generated stationary points in F2(θ2) can be shown to be
saddle points (see problem 2).
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Example 10.5
An unknown second-order system described by

Ho(z) =
2z + c1

z2 + c1z + c2

is to be identified by using two different structures for the adaptive filter, namely the direct form and
the parallel form described respectively by

Hd(z) =
2z + a1

z2 + a1z + a2

and

Hp(z) =
1

z + p1
+

1
z + p2

=
2z + p1 + p2

z2 + (p1 + p2)z + p1p2

verify the existence of new saddle points in the parallel realization.

Solution
The function relating the parameters of the two realizations can be given by

θ2 =

⎡
⎣ a1+

√
a2
1−4a2

2
a1−
√
a2
1−4a2

2

⎤
⎦ = f3(θ1)

where function f3(θ1) is not differentiable when a2 = a2
1
4 .

The inverse of the matrix ∂f 3(θ1)
∂θ1

is given by

[
∂f3(θ1)
∂θ1

]−1

=
[

1 1
p2 p1

]

and, if p1 = p2, the above matrix is singular, which makes it possible that ∂F1(θ1)
∂θ1

�= 0 when

∂F2(θ2)
∂θ2

= 0, as previously mentioned in equations (10.81) and (10.82).

Note that, as expected, p1 = p2 only when a2 = a2
1
4 . On this parabola, the objective function F1(θ1)

has a minimum that corresponds to a saddle point of the function F2(θ2). Also, this is the situation
where the parallel realization is of reduced order, i.e., first order.

�

Basically, the manifold generated by the parallel realization is due to the fact that a given section can
identify any pole of the unknown system, leaving the other poles to the remaining sections in parallel.
This means that in a sufficient-order identification problem, if for the direct-form realization there
is a unique global minimum point, in the case of parallel realization with first-order sections there
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will be N ! global minima, where N is the number of poles in the unknown system. When using a
parallel realization it is assumed that no multiple poles exist in the unknown system.

In the initialization of the algorithm, the adaptive-filter parameters should not be in a reduced-order
manifold, because by employing a gradient-based algorithm the parameters may be kept in the
manifold and eventually reach a saddle point. The measurement noise, that is in general present
in the adaptive-filtering process, will help the parameters to skip the manifolds, but despite that
the convergence will be slowed. A similar phenomenon occurs with the cascade realization of the
adaptive filter.

10.8 ALTERNATIVE ERROR FORMULATIONS

The error signal (in some cases the regressor) can be chosen in alternative ways in order to avoid some
of the drawbacks related to the output error formulation, as for example the multiple local minima.
Several formulations have been investigated in the literature [36]-[37], [39], [40]-[42], [45]-[46], [51]-
[52], where each of them has its own advantages and disadvantages. The choice of the best error
formulation depends on the application and on the information available about the adaptive-filtering
environment. In this section, we present two alternative error formulations, namely the equation
error and Steiglitz-McBride methods, and discuss some of their known properties. Throughout the
section other error formulations are briefly mentioned.

10.8.1 Equation Error Formulation

In the equation error (EE) formulation, the information vector instead of having past samples of the
adaptive-filter output, uses delayed samples of the desired signal as follows:

φe(k) = [d(k − 1) d(k − 2) . . . d(k −N) x(k) x(k − 1) . . . x(k −M)]T (10.85)

The equation error is defined by

ee(k) = d(k)− θT (k)φe(k) (10.86)

as illustrated in Fig. 10.15. The parameter vector θ(k) is given by

θ(k) = [−a1(k) − a2(k) . . .− aN (k) b0(k) . . . bM (k)]T (10.87)

The equation error can be described in a polynomial form as follows:

ee(k) = A(k, q−1)d(k)−B(k, q−1)x(k) (10.88)

where, once again

B(k, q−1) = b0(k) + b1(k)q−1 + · · ·+ bM (k)q−M

A(k, q−1) = 1 + a1(k)q−1 + · · ·+ aN (k)q−N
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Figure 10.15 Equation error configuration.

The output signal related to the EE formulation is obtained through the following linear difference
equation

ye(k) =
M∑
j=0

bj(k)x(k − j)−
N∑
j=1

aj(k)d(k − j)

= θT (k)φe(k) (10.89)

As can be noted, the adaptive filter does not have feedback and ye(k) is a linear function of the
parameters.

In the EE formulation, the adaptation algorithm determines how the coefficients of the adaptive IIR
filter should change in order to minimize an objective function which involves ee(k) defined as

ξe = F [ee(k)] (10.90)

Usually, the objective function to be minimized is the mean-squared value of the EE (MSEE), i.e.,

ξe(k) = E[e2e(k)] (10.91)

Since the input and desired signals are not functions of the adaptive-filter parameters, it can be
expected that the sole approximation in the gradient computation is due to the estimate of the expected
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value required in practical implementations. The key point is to note that since the MSEE is a
quadratic function of the parameters, only a global minimum exists provided the signals involved are
persistently exciting. When the estimate of the MSEE is the instantaneous squared equation error, the
gradient vector is proportional to minus the information vector. In this case, the resulting algorithm
is called LMSEE algorithm whose coefficient updating equation is given by

θ(k + 1) = θ(k) + 2μφe(k)ee(k) (10.92)

A number of approaches with different points of view are available to analyze the convergence
properties of this method. A particularly interesting result is that if the convergence factor is chosen
in the range

0 < μ <
1

λmax
(10.93)

the convergence in the mean of the LMSEE algorithm can be guaranteed [37], where λmax is the
maximum eigenvalue ofE[φe(k)φ

T
e (k)]. This result can be easily proved by exploring the similarity

between the LMSEE algorithm and the standard FIR LMS algorithm. Some stability results of the
LMSEE algorithm can be found in [38].

An alternative objective function for adaptive IIR filtering based on equation error is the least-squares
function

ξe(k) =
k∑
i=0

λk−ie2e(i) =
k∑
i=0

λk−i[d(i)− θT (k)φe(i)]
2 (10.94)

The forgetting factor λ, as usual is chosen in the range 0 << λ < 1, allowing the distant past
information to be increasingly negligible. In this case, the corresponding RLS algorithm consists of
the following basic steps

e(k) = d(k)− θT (k)φe(k) (10.95)

SDe(k + 1) =
1
λ

[
SDe(k)− SDe(k)φe(k)φ

T
e (k)SDe(k)

λ+ φTe (k)SDe(k)φe(k)

]
(10.96)

θ(k + 1) = θ(k) + SDe(k + 1)φe(k)ee(k) (10.97)

In a given iteration k, the adaptive IIR filter transfer function related to the EE formulation can be
expressed as follows:

Hk(z) = zN−M b0(k)zM + b1(k)zM−1 + · · ·+ bM−1(k)z + bM (k)
zN + a1(k)zN−1 + · · ·+ aN−1(k)z + aN (k)

(10.98)

In Fig. 10.16 an alternative structure for the EE approach where the IIR adaptive filter appears
explicitly is depicted. Note that the structure shows clearly that the polynomial A(k, q−1) is meant
to model the denominator polynomial of the unknown system, in system identification applications.
During the adaptation process, it is necessary to monitor the stability of the poles, as described for the
output error method. The full description of the RLS equation error algorithm is given in Algorithm
10.3.

The basic problem related to this method is the parameter bias induced by the measurement noise
[37]-[38], even for sufficient-order case. The bias is caused by the fact that the additional noise n(k)
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Figure 10.16 Basic configuration for system identification using equation error.

Algorithm 10.3

EE Algorithm, RLS Version

Initialization
ai(k) = bi(k) = e(k) = 0
y(k) = x(k) = 0 , k < 0
SDe(0) = δ−1I

For each x(k), d(k), k ≥ 0, do
ee(k) = d(k)− φTe (k)θ(k)

SDe(k + 1) = 1
λ

[
SDe(k)− SDe(k)φe(k)φT

e (k)SDe(k)

λ+φT

e (k)SDe(k)φe(k)

]
θ(k + 1) = θ(k) + SDe(k + 1)φe(k)ee(k)
Stability test

is filtered by the FIR filter represented by the polynomial A(k, q−1). Since the coefficients of this
polynomial are updated with the objective of minimizing the EE signal, they also attempt to minimize
the contribution of n(k) to the EE power. The bias is induced by the fact that the additional noise
does not belong to the unknown system model. An increase in the power of n(k) leads to higher bias
in the parameter estimate.

The Instrumental Variable methods [39] were proposed to solve the bias problem. In these methods
the stability cannot be guaranteed under the same general conditions as for the LMSEE method.
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Another approach was proposed in [40], and extended in [41] and [42], where a family of asymp-
totically stable algorithms was introduced. The resulting algorithms are based on a modification of
the basic LMSEE updating equations, that within sufficiently general conditions lead to consistent
parameter estimates. These algorithms employ a type of output error feedback to the information
vector. There are also algorithms that combine different algorithms to define the objective function
[43]-[44].

10.8.2 The Steiglitz-McBride Method

The Steiglitz-McBride (SM) error formulation [45], by employing some extra all-pole filtering, leads
to algorithms whose behavior resembles the EE approach in the initial iterations and the output error
approach after convergence. The main motivation of the SM method is the global convergence be-
havior for some cases of insufficient-order system identification. Such interest sparked investigations
which resulted in a number of on-line algorithms based on the SM method that are suitable for adap-
tive IIR filtering [46]. The main problem associated with the SM method is the inconsistent behavior
when the measurement noise is colored [47]. Since the on-line method converges asymptotically to
the off-line solution, the bias error also affects the on-line algorithms proposed in [46].

In order to introduce the SM method, consider the identification of a system whose model is described
by

d(k) =
G(q−1)
C(q−1)

x(k) + n(k) = yd(k) + n(k) (10.99)

where d(k) is the reference signal, x(k) is the input signal, n(k) is the measurement noise, and
yd(k) is the output signal of the plant, with C(q−1) = 1−∑Nd

i=1 ciq
−i and G(q−1) =

∑Md

i=0 giq
−i

coprime. The polynomial C(q−1) has zeros inside the unit circle, and the input signal x(k) and the
measurement noise n(k) are assumed independent. The estimation of the parameters associated with
the polynomials C(q−1) and G(q−1) through the SM method is based on the minimization of the
following criterion [45]

ξs(θ(k + 1)) = E

{[
A(k + 1, q−1)

d(k)
A(k, q−1)

−B(k + 1, q−1)
x(k)

A(k, q−1)

]2}
(10.100)

where A(k, q−1) = 1 +
∑N
i=1 ai(k)q

−i and B(k, q−1) =
∑M
i=0 bi(k)q

−i are the denominator and
numerator estimator polynomials, respectively, and

θ(k) = [−a1(k) − a2(k) . . .− aN (k) b0(k) . . . bM (k)]T (10.101)

is the adaptive-filter parameter vector.

The estimate θ(k + 1) is obtained by minimizing equation (10.100) assuming θ(k) known. The
solution of this MSE minimization problem at iteration (k + 1) is

θ(k + 1) =
[
E
{
φs(k)φ

T
s (k)

}]−1
E

[
φs(k)

d(k)
A(k, q−1)

]
=
[
E
{
φs(k)φ

T
s (k)

}]−1
E [φs(k)df (k)] (10.102)
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where

φs(k) =
[
d(k − 1)
A(k, q−1)

...
d(k −N)
A(k, q−1)

x(k)
A(k, q−1)

...
x(k −M)
A(k, q−1)

]T
= [df (k − 1) ... df (k −N) xf (k) ... xf (k −M)]T (10.103)

is the regressor related to the SM method.

If the input signal is persistently exciting of sufficient order and the adaptive filter has strictly sufficient
order, some properties of the estimate resulting from equation (10.102) are known [47]: a) The
estimate that minimizes equation (10.100) is unique; b) If the measurement noise is not white, the
estimate resulting from equation (10.102) is biased.

In real-time signal processing applications, it is important to consider an on-line version of the SM
method. In this case, some approximations are necessary. First note that the error criterion whose
variance is to be minimized in equation (10.102) is

es(k) =
d(k)

A(k, q−1)
− θT (k + 1)φs(k) (10.104)

The SM error is computed as illustrated in Fig. 10.17. Assuming a sufficiently slow parameter
variation, we can consider that θ(k + 1) ≈ θ(k). Therefore, equation (10.104) can be rewritten as
follows:

es(k) ≈ d(k)
A(k, q−1)

− θT (k)φs(k) (10.105)

The exact implementation of the regressorφs(k) requires an independent filtering of each component
by an all-pole filter with denominator polynomial A(k, q−1). A useful approximation that reduces
considerably the computational complexity is possible by assuming slow parameter variation [46] in
such a way that

θ(k − 1) ≈ θ(k − 2)... ≈ θ(k −N) (10.106)

With these simplifications only one all-pole filtering is required. Note that a hypothesis similar to
equation (10.106) was utilized in the output error method in order to simplify the implementation.
However, in the case of the output error method, the measurement noise does not affect the regressor,
since the regressor vector is composed of delayed samples of the adaptive-filter input and output.
For the SM method, except for white measurement noise, the simplification in equation (10.106) is
not easily justified.

The updating equation of the on-line SM algorithm for system identification employing a stochastic
gradient search is given by

θ(k + 1) = θ(k) + 2μφs(k)
[

d(k)
A(k, q−1)

− φTs (k)θ(k)
]

= θ(k) + 2μφs(k)es(k) (10.107)

The description of a gradient SM algorithm is given in the Algorithm 10.4.
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Figure 10.17 Steiglitz-McBride configuration.

The SM method can be implemented using different realizations such as cascade [48], lattice [49],
and the series-parallel realization [50]. These realizations allow easy stability monitoring, and their
choice affects the convergence speed [50].

It should be mentioned that a family of algorithms based on the SM method that solves the problem
of inconsistency of the parameter estimates was proposed in [51]-[52]. These algorithms are very
attractive for adaptive IIR filtering due to their behavior in terms of consistency (i.e., definition of
stationary points) and convergence properties. In [55], simulation results as well as an alternative
implementation for the consistent SM method was presented.

The interested reader can also find some interesting results about the convergence behavior of the SM-
based algorithms in [53]-[54] and in the references therein. Also, applications of the SM algorithm
to equalization can be found in [56].
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Algorithm 10.4

SM Based Algorithm, Gradient Version

Initialization
ai(k) = bi(k) = 0
df (k) = xf (k) = 0 , k < 0

For each x(k), d(k), k ≥ 0 do
xf (k) = x(k)−∑N

i=1 ai(k) xf (k − i)
df (k) = d(k)−∑N

i=1 ai(k) df (k − i)
es(k) = df (k)− φTs (k)θ(k)
θ(k + 1) = θ(k) + 2μφs(k)es(k)
Stability test

10.9 CONCLUSION

It is recognized that the adaptive IIR filter can be potentially used in a number of applications due to its
superior system modeling owing to poles. These advantages come with drawbacks such as possible
local minima in the performance surface and the possible instability during the adaptation process.
Also, the nonlinear relation between the adaptive-filter parameters and the internal signals in some
formulations makes the gradient computation and convergence analysis much more complicated as
compared to the FIR case. In this chapter, the theory of adaptive IIR filters was presented exposing
several solutions to the above mentioned drawbacks, such that the designer can decide which is the
best configuration for a given application.

In this chapter, an example of application of adaptive IIR filters in system identification was presented.
In this example, some of the realizations presented here were tested and compared. Another example
exploited the use of notch filters for sinusoid detection in noise.
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26. K. J. Ȧström and T. Söderström, “Uniqueness of the maximum likelihood estimates of the
parameters of an ARMA model,” IEEE Trans. on Automatic Control, vol. AC-19, pp. 769-773,
Dec. 1974.
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10.11 PROBLEMS

1. Show that the stationary points related to two equivalent adaptive realizations of the type in
equation (10.82) have the same nature, i.e., are minimum, maximum or saddle point.

2. Show that the new stationary points generated by the discontinuity in f3(θ1) as discussed after
equation (10.84) are saddle points.

3. Describe how the manifolds are formed in the MSE surface when a cascade realization is used
for the adaptive-filter implementation. Give a generic example.

4. Derive a general expression for the transfer function of the two-multiplier lattice structure.

5. Derive an adaptive-filtering algorithm which employs the canonic direct-form structure shown
in Fig. 10.18. Consider that the adaptive-filter parameters are slowly varying in order to derive
an efficient implementation for the gradient vector.
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6. A second-order all-pole adaptive filter is used to find the inverse model of the signal x(k) =
1.7n(k−1)+0.81n(k−2)+n(k), wheren(k) is Gaussian white noise with variance 0.1. Using
the gradient algorithm, calculate the error and the filter coefficients for the first 10 iterations.
Start with a1(0) = 0, a2(0) = 0.

7. Repeat the problem 6 using the Gauss-Newton algorithm.

8. Use an IIR adaptive filter of sufficient order to identify a system with the transfer function
given below. The input signal is a uniformly distributed white noise with variance σ2

x = 1,
and the measurement noise is Gaussian white noise uncorrelated with the input with variance
σ2
n = 10−2. Use a Gauss-Newton based algorithm and the direct-form structure.

H(z) =
0.000058(z2 − 2z + 1)3

(z2 + 1.645z + 0.701)(z2 + 1.575z + 0.781)(z2 + 1.547z + 0.917)

(a) Run the algorithm for three values of μ. Comment on the convergence behavior in each case.
(b) Measure the MSE in each example.
(c) Plot the obtained IIR filter frequency response at any iteration after convergence is achieved
and compare with the unknown system.

9. Repeat the previous problem using a second-order adaptive filter and interpret the results.

10. A sinusoid of normalized frequency equal to π
4 with unit amplitude is buried in noise. The signal

to noise ratio is 0 dB. Detect the sinusoid with notch filters using the lattice and the direct-form
structures.

(a) After convergence compute an estimate of the frequency by averaging the result of ten
samples for each structure and comment on the result.

(b) Depict the input signal and the output signal for the bandpass filter based on the lattice
structure.

x(k) y(k)

b1

b0

b2

bM-aN

-a1

-a2

z -1

z -1

z -1

++

Figure 10.18 Direct form of Problem 5.
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11. Replace the direct-form structure in problem 8 by the parallel realization with preprocessing.

12. Replace the direct-form structure in problem 8 by the cascade realization.

13. Repeat problem 8 in case the input signal is a uniformly distributed white noise with variance
σ2
nx

= 0.1, filtered by all-pole filter given by

H(z) =
z

z − 0.95

14. In problem 8 consider that the additional noise has the following variances (a) σ2
n = 0, (b)

σ2
n = 1. Comment on the results obtained in each case.

15. Perform the equalization of a channel with the following transfer function

H(z) =
z2 − 1.359z + 0.81
z2 − 1.919z + 0.923

using a known training signal that consists of a binary (-1,1) random signal. An additional
Gaussian white noise with variance 10−2 is present at the channel output.
(a) Apply a Newton-based algorithm with direct-form structure.
(b) Plot the magnitude response of the cascade of the channel and the adaptive-filter transfer
functions. Comment on the result.

16. In a system identification problem the input signal is generated by an autoregressive process
given by

x(k) = −1.2x(k − 1)− 0.81x(k − 2) + nx(k)

where nx(k) is zero-mean Gaussian white noise with variance such that σ2
x = 1. The unknown

system is described by

H(z) =
80z3(z2 + 0.81)(z − 0.9)

(z2 − 0.71z + 0.25)(z2 + 0.75z + 0.56)(z2 − 0.2z + 0.81)

The adaptive filter is also a sixth-order IIR filter.
Choose an appropriate λ, run an ensemble of 20 experiments, and plot the average learning
curve. Use the RLS algorithm for IIR filters.

17. A second-order IIR adaptive-filtering algorithm is applied to identify a 3rd-order time-varying
unknown system whose coefficients are first-order Markov processes with λw = 0.999 and
σ2

w = 0.001. The initial time-varying system multiplier coefficients are

wTo = [0.03490 − 0.011 − 0.06864 0.22391]

The input signal is Gaussian white noise with variance σ2
x = 0.7, and the measurement noise is

also Gaussian white noise independent of the input signal and of the elements of nw(k), with
variance σ2

n = 0.01.
Simulate the experiment described and plot the learning curve, by using the direct-form structure
with a gradient-type algorithm.
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18. Suppose a second-order IIR digital filter, with multiplier coefficients given below, is identified
by an adaptive IIR filter of the same order using the gradient algorithm. Considering that fixed-
point arithmetic is used, measure the values ofE[||Δθ(k)Q||2] and ξ(k)Q for the case described
below. Plot the learning curves for the finite- and infinite-precision implementations. Also plot
an estimate of the expected value of ||Δθ(k)||2 versus k in both cases.

Additional noise: white noise with variance σ2
n = 0.0015

Coefficient wordlength: bc = 16 bits
Signal wordlength: bd = 16 bits
Input signal: Gaussian white noise with variance σ2

x = 0.7

H(z) =
z2 − 1.804z + 1

z2 − 1.793z + 0.896

19. Repeat the above problem for the following cases
(a) σ2

n = 0.01, bc = 9 bits, bd = 9 bits, σ2
x = 0.7.

(b) σ2
n = 0.1, bc = 10 bits, bd = 10 bits, σ2

x = 0.8.
(c) σ2

n = 0.05, bc = 8 bits, bd = 16 bits, σ2
x = 0.8.

20. Replace the direct-form structure in problem 18 by the lattice structure, and comment on the
results.

21. Repeat problem 8 using the LMSEE algorithm.

22. Show the inequality in equation (10.93).

23. Repeat problem 15 using the LMSEE algorithm.

24. Repeat problem 8 using a gradient-type algorithm based on the SM method.

25. Repeat problem 15 using a gradient-type algorithm based on the SM method.

26. Derive the RLS-type algorithm based on the SM method.




