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PREFACE

The field of Digital Signal Processing has developed so fast in the last three decades that it can be
found in the graduate and undergraduate programs of most universities. This development is
related to the increasingly available technologies for implementing digital signal processing
algorithms. The tremendous growth of development in the digital signal processing area has
turned some of its specialized areas into fields themselves. If accurate information of the signals to
be processed is available, the designer call easily choose the most appropriate algorithm to process
the signal. When dealing with signals whose statistical properties are unknown, fixed algorithms
do not process these signals efficiently. The solution is to use an adaptive filter that automatically
changes its characteristics by optimizing the internal parameters. The adaptive filtering algorithms
are essential in many statistical signal processing applications.

Although the field of adaptive signal processing has been subject of research for over four
decades, it was in the eighties that a major growth occurred in research and applications. Two
main reasons can be credited to this growth, the availability of implementation tools and the
appearance of early textbooks exposing the subject in an organized manner. Still today it is
possible to observe many research developments in the area of adaptive filtering, particularly
addressing specific applications. In fact, the theory of linear adaptive filtering has reached a
maturity that justifies a text treating the various methods in a unified way, emphasizing the
algorithms suitable for practical implementation. This text concentrates on studying on-line
algorithms, those whose adaptation occurs whenever a new sample of each environment signal is
available. The so-called block algorithms, those whose adaptation occurs when a new block of
data is available, are also included using the subband filtering framework. Usually, block
algorithms require different implementation resources than the on-line algorithms. This edition
also includes basic introductions to nonlinear adaptive filtering and blind signal processing as
natural extensions of the algorithms treated in the earlier chapters. The understanding of the
introductory material presented is fundamental for further studies in these fields which are
described in more detail in some specialized texts.

The idea of writing this book started while teaching the adaptive signal processing course at the
graduate school of the Federal University of Rio de Janeiro (UFRJ). The request of the students to
cover as many algorithms as possible made me think how to organize this subject such that not
much time is lost in adapting notations and derivations related to different algorithms. Another
common question was which algorithms really work in a finite-precision implementation. These
issues led me to conclude that a new text on this subject could be written with these objectives in
mind. Also, considering that most graduate and undergraduate programs include a single adaptive
filtering course, this book should not be lengthy. Another objective to seek is to provide an easy
access to the working algorithms for the practitioner.
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It was not until I spent a sabbatical year and a half at University of Victoria, Canada, that this
project actually started. In the leisure hours, I slowly started this project. Parts of the early
chapters of this book were used in short courses on adaptive signal processing taught at different
institutions, namely: Helsinki University of Technology, Espoo, Finland; University Menendez
Pelayo in Seville, Spain; and at the Victoria Micronet Center, University of Victoria, Canada. The
remaining parts of the book were written based on notes of the graduate course in adaptive signal
processing taught at COPPE (the graduate engineering school of UFRJ).

The philosophy of the presentation is to expose the material with a solid theoretical foundation,
while avoiding straightforward derivations and repetition. The idea is to keep the text with a
manageable size, without sacrificing clarity and without omitting important subjects. Another
objective is to bring the reader up to the point where implementation can be tried and research can
begin. A number of references are included at the end of the chapters in order to aid the reader to
proceed on learning the subject.

It is assumed the reader has previous background on the basic principles of digital signal
processing and stochastic processes, including: discrete-time Fourier- and Z-transforms, finite
impulse response (FIR) and infinite impulse response (IIR) digital filter realizations, multirate
systems, random variables and processes, first- and second-order statistics, moments, and filtering
of random signals. Assuming that the reader has this background, I believe the book is self
contained.

Chapter 1 introduces the basic concepts of adaptive filtering and sets a general framework that all
the methods presented in the following chapters fall under. A brief introduction to the typical
applications of adaptive filtering are also presented.

In Chapter 2, the basic concepts of discrete-time stochastic processes are reviewed with special
emphasis to the results that are useful to analyze the behavior of adaptive filtering algorithms. In
addition, the Wiener filter is presented, establishing the optimum linear filter that can be sought in
stationary environments. Appendix A briefly describes the concepts of complex differentiation
mainly applied to the Wiener solution. The case of linearly constrained Wiener filter is also
discussed, motivated by its wide use in antenna array processing. The transformation of the
constrained minimization problem into an unconstrained one is also presented. The concept of
mean-square error surface is then introduced, another useful tool to analyze adaptive filters. The
classical Newton and steepest-descent algorithms are briefly introduced. Since the use of these
algorithms would require a complete knowledge of the stochastic environment, the adaptive
filtering algorithms introduced in the following chapters come into play. Practical applications of
the adaptive filtering algorithms are revisited in more detail at the end of Chapter 2 where some
examples with closed form solutions are included in order to allow the correct interpretation of
what is expected from each application.

Chapter 3 presents and analyses of the least-mean-square (LMS) algorithm in some depth. Several
aspects are discussed, such as convergence behavior in stationary and nonstationary environments.
This chapter also includes a number of theoretical as well as simulation examples to illustrate how
the LMS algorithm performs in different setups. Appendix B addresses the quantization effects on
the LMS algorithm when implemented in fixed- and floating-point arithmetics.
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Chapter 4 deals with some algorithms that are in a sense related to the LMS algorithm. In
particular, the algorithms introduced are the quantized-error algorithms, the LMS-Newton
algorithm, the normalized LMS algorithm, the transform-domain LMS algorithm, and the affine
projection algorithm. Some properties of these algorithms are also discussed in Chapter 4, with
special emphasis to the analysis of the fine projection algorithm.

Chapter 5 introduces the conventional recursive least-squares (RLS) algorithm. This algorithm
minimizes a deterministic objective function, differing in this sense from most LMS-based
algorithms. Following the same pattern of presentation of Chapter 3, several aspects of the
conventional RLS algorithm are discussed, such as convergence behavior in stationary and
nonstationary environments, along with a number of simulation results. Appendix C, deals with
stability issues and quantization effects related to the RLS algorithm when implemented in fixed-
and floating-point arithmetics. The results presented, except for the quantization effects, are also
valid for the RLS algorithms presented in Chapters 7, 8, and 9. As as complement to Chapter 5,
Appendix D presents the discrete-time Kalman filter formulation which despite being considered
an extension of the Wiener filter has some relation with the RLS algorithm.

Chapter 6 discusses some techniques to reduce the overall computational complexity of adaptive
filtering algorithms. The chapter first introduces the so called set-membership algorithms that
update only when the output estimation error is higher than the prescribed upper bound. However,
since set-membership algorithms require frequent updates during the early iterations in stationary
environments, we introduce the concept of partial update to reduce the computational complexity
in order to deal with situations where the available computational resources are not sufficient. This
chapter presents several forms of set-membership algorithms related to the affine projection
algorithms and their special cases. Chapter 6 also includes some simulation examples addressing
standard as well as application oriented problems, where the algorithms of this and previous
chapters are compared in some detail.

In Chapter 7, a family of fast RLS algorithms based on the FIR lattice realization is introduced.
These algorithms represent interesting alternatives to the computationally complex conventional
RLS algorithm. In particular, the unnormalized, the normalized and the error-feedback algorithms
are presented.

Chapter 8 deals with the fast transversal RLS algorithms, which are very attractive due to their
low computational complexity. However, these algorithms are known to face stability problems in
practical implementation. As a consequence, special attention is given to the stabilized fast
transversal RLS algorithm.

Chapter 9 is devoted to a family of RLS algorithms based on the QR decomposition. The
conventional and a fast version of the QR-based algorithms are presented in this chapter.

Chapter 10 addresses the subject of adaptive filters using IIR digital filter realizations. The chapter
includes a discussion on how to compute the gradient and how to derive the adaptive algorithms.
The cascade, the parallel, and the lattice realizations are presented as interesting alternatives to the
direct-form realization for the IIR adaptive filter. The characteristics of the mean-square error
surface are also discussed in this chapter, for the IIR adaptive filtering case. Algorithms based on
alternative error formulations, such as the equation error and Steiglitz-McBride methods are also
introduced.
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Chapter 11 deals with nonlinear adaptive filtering which consists of utilizing a nonlinear structure
for the adaptive filter. The motivation is to use nonlinear adaptive filtering structures to better
model some nonlinear phenomena commonly found in communications applications, such as
nonlinear characteristics of power amplifier at transmitters. In particular, we introduce the
Volterra series LMS and RLS algorithms, and the adaptive algorithms based on bilinear filters.
Also, a brief introduction is given to some nonlinear adaptive filtering algorithms based on the
concepts of neural networks, namely, the multilayer perceptron and the radial basis function
algorithms. Some examples of DFE equalization are included in this chapter.

Chapter 12 deals with adaptive filtering in subbands mainly to address the applications where the
required adaptive filter order is high, as for example in acoustic echo cancellation where the
unknown system (echo) model has long impulse response. In subband adaptive filtering, some
signals are split in frequency subbands via an analysis filter bank. Chapter 12 provides a brief
review of multirate systems, and presents the basic structures for adaptive filtering in subbands.
The concept of delayless subband adaptive filtering is also addressed, where the adaptive filter
coefficients are updated in subbands and mapped to an equivalent fullband filter. The chapter also
includes a discussion on the relation between subband and block adaptive filtering (also known as
frequency-domain adaptive filters) algorithms.

Chapter 13 describes some adaptive filtering algorithms suitable for situations where no reference
signal is available which are known as blind adaptive filtering algorithms. In particular, this
chapter introduces some blind algorithms utilizing high-order statistics implicitly for the single-
input single-output (SISO) equalization applications. In order to address some drawbacks of the
SISO equalization systems, we discuss some algorithms using second-order statistics for the
single-input multi-output (SIMO) equalization. The SIMO algorithms are naturally applicable in
cases of oversampled received signal and multiple receive antennas. This chapter also discusses
some issues related to blind signal processing not directly detailed here.

I decided to use some standard examples to present a number of simulation results, in order to test
and compare different algorithms. This way, frequent repetition was avoided while allowing the
reader to easily compare the performance of the algorithms. Most of the end of chapters problems
are simulation oriented, however, some theoretical ones are included to complement the text.

The second edition differed from the first one mainly by the inclusion of chapters on nonlinear
and subband adaptive filtering. Many other smaller changes were performed throughout the
remaining chapters. In this edition, we introduced a number of derivations and explanations
requested by students and suggested by colleagues. In addition, two new chapters on data-
selective algorithms and blind adaptive filtering are included along with a large number of new
examples and problems. Major changes take place in the first five chapters in order to make the
technical details more accessible and to improve the ability of the reader in deciding where and
how to use the concepts. The analysis of the fine projection algorithm is now presented in detail
due to its growing practical importance. Several practical and theoretical examples are included
aiming at comparing the families of algorithms introduced in the book.

In a trimester course, I usually cover Chapters 1 to 6 sometimes skipping parts of Chapter 2 and
the analyses of quantization effects in Appendices B and C. In the remaining time, I try to cover as
much as possible of the remaining chapters, usually consulting the audience to what they would
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prefer to study. This book can also be used for self-study where the reader can examine Chapters 1
to 6, and those not involved with specialized implementations can skip the Appendices B and C,
without loss of continuity. The remaining chapters can be followed separately, except for
Chapter 8 that requires reading Chapter 7. Chapters 7, 8, and 9 deal with alternative and fast
implementations of RLS algorithms and the following chapters do not use their results.
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INTRODUCTION TO ADAPTIVE FILTERING

1.1 INTRODUCTION
In this section, we define the kind of signal processing systems that will be treated in this text.

In the last thirty years significant contributions have been made in the signal processing field. The
advances in digital circuit design have been the key technological development that sparked a growing
interest in the field of digital signal processing. The resulting digital signal processing systems are
attractive due to their low cost, reliability, accuracy, small physical sizes, and flexibility.

One example of a digital signal processing system is called filter. Filtering is a signal processing
operation whose objective is to process a signal in order to manipulate the information contained
in the signal. In other words, a filter is a device that maps its input signal to another output signal
facilitating the extraction of the desired information contained in the input signal. A digital filter is
the one that processes discrete-time signals represented in digital format. For time-invariant filters
the internal parameters and the structure of the filter are fixed, and if the filter is linear the output
signal is a linear function of the input signal. Once prescribed specifications are given, the design of
time-invariant linear filters entails three basic steps, namely: the approximation of the specifications
by a rational transfer function, the choice of an appropriate structure defining the algorithm, and the
choice of the form of implementation for the algorithm.

An adaptive filter is required when either the fixed specifications are unknown or the specifications
cannot be satisfied by time-invariant filters. Strictly speaking an adaptive filter is a nonlinear filter
since its characteristics are dependent on the input signal and consequently the homogeneity and
additivity conditions are not satisfied. However, if we freeze the filter parameters at a given instant
of time, most adaptive filters considered in this text are linear in the sense that their output signals are
linear functions of their input signals. The exceptions are the adaptive filters discussed in Chapter 11.

The adaptive filters are time-varying since their parameters are continually changing in order to
meet a performance requirement. In this sense, we can interpret an adaptive filter as a filter that
performs the approximation step on-line. Usually, the definition of the performance criterion requires
the existence of a reference signal that is usually hidden in the approximation step of fixed-filter

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_1,
© Springer Science+Business Media, LLC 2008



2 Chapter 1 Introduction to Adaptive Filtering

design. This discussion brings the feeling that in the design of fixed (nonadaptive) filters a complete
characterization of the input and reference signals is required in order to design the most appropriate
filter that meets a prescribed performance. Unfortunately, this is not the usual situation encountered
in practice, where the environment is not well defined. The signals that compose the environment
are the input and the reference signals, and in cases where any of them is not well defined, the
design procedure is to model the signals and subsequently design the filter. This procedure could be
costly and difficult to implement on-line. The solution to this problem is to employ an adaptive filter
that performs on-line updating of its parameters through a rather simple algorithm, using only the
information available in the environment. In other words, the adaptive filter performs a data-driven
approximation step.

The subject of this book is adaptive filtering, which concerns the choice of structures and algorithms
for a filter that has its parameters (or coefficients) adapted, in order to improve a prescribed perfor-
mance criterion. The coefficient updating is performed using the information available at a given
time.

The development of digital very large scale integration (VLSI) technology allowed the widespread
use of adaptive signal processing techniques in a large number of applications. This is the reason
why in this book only discrete-time implementations of adaptive filters are considered. Obviously,
we assume that continuous-time signals taken from the real world are properly sampled, i.e., they are
represented by discrete-time signals with sampling rate higher than twice their highest frequency.
Basically, it is assumed that when generating a discrete-time signal by sampling a continuous-time
signal, the Nyquist or sampling theorem is satisfied [1]-[9].

1.2 ADAPTIVE SIGNAL PROCESSING

As previously discussed, the design of digital filters with fixed coefficients requires well defined
prescribed specifications. However, there are situations where the specifications are not available, or
are time varying. The solution in these cases is to employ a digital filter with adaptive coefficients,
known as adaptive filters [10]-[17].

Since no specifications are available, the adaptive algorithm that determines the updating of the filter
coefficients, requires extra information that is usually given in the form of a signal. This signal is in
general called a desired or reference signal, whose choice is normally a tricky task that depends on
the application.

Adaptive filters are considered nonlinear systems, therefore their behavior analysis is more compli-
cated than for fixed filters. On the other hand, because the adaptive filters are self designing filters,
from the practitioner’s point of view their design can be considered less involved than in the case of
digital filters with fixed coefficients.

The general set up of an adaptive-filtering environment is illustrated in Fig. 1.1, where k is the
iteration number, x(k) denotes the input signal, y(k) is the adaptive-filter output signal, and d(k)
defines the desired signal. The error signal e(k) is calculated as d(k) — y(k). The error signal is
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then used to form a performance (or objective) function that is required by the adaptation algorithm
in order to determine the appropriate updating of the filter coefficients. The minimization of the
objective function implies that the adaptive-filter output signal is matching the desired signal in some
sense.

d(k)
: y(k)
x(k) Adaptive
filter
e(k)
Adaptive
algorithm

Figure 1.1 General adaptive-filter configuration.

The complete specification of an adaptive system, as shown in Fig. 1.1, consists of three items:

1) Application: The type of application is defined by the choice of the signals acquired from the
environment to be the input and desired-output signals. The number of different applications in
which adaptive techniques are being successfully used has increased enormously during the last
two decades. Some examples are echo cancellation, equalization of dispersive channels, system
identification, signal enhancement, adaptive beamforming, noise cancelling, and control [14]-[20].
The study of different applications is not the main scope of this book. However, some applications
are considered in some detail.

2) Adaptive-Filter Structure: The adaptive filter can be implemented in a number of different
structures or realizations. The choice of the structure can influence the computational complexity
(amount of arithmetic operations per iteration) of the process and also the necessary number of
iterations to achieve a desired performance level. Basically, there are two major classes of adaptive
digital filter realizations, distinguished by the form of the impulse response, namely the finite-duration
impulse response (FIR) filter and the infinite-duration impulse response (IIR) filters. FIR filters are
usually implemented with nonrecursive structures, whereas IIR filters utilize recursive realizations.

m  Adaptive FIR filter realizations: The most widely used adaptive FIR filter structure is the
transversal filter, also called tapped delay line, that implements an all-zero transfer function
with a canonic direct form realization without feedback. For this realization, the output signal
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y(k) is a linear combination of the filter coefficients, that yields a quadratic mean-square error
(MSE = E[|e(k)|?]) function with a unique optimal solution. Other alternative adaptive FIR
realizations are also used in order to obtain improvements as compared to the transversal filter
structure, in terms of computational complexity, speed of convergence, and finite wordlength
properties as will be seen later in the book.

m  Adaptive IIR filter realizations: The most widely used realization of adaptive IIR filters is the
canonic direct form realization [5], due to its simple implementation and analysis. However,
there are some inherent problems related to recursive adaptive filters which are structure depen-
dent, such as pole-stability monitoring requirement and slow speed of convergence. To address
these problems, different realizations were proposed attempting to overcome the limitations
of the direct form structure. Among these alternative structures, the cascade, the lattice, and
the parallel realizations are considered because of their unique features as will be discussed in
Chapter 10.

3) Algorithm: The algorithm is the procedure used to adjust the adaptive filter coefficients in order
to minimize a prescribed criterion. The algorithm is determined by defining the search method
(or minimization algorithm), the objective function, and the error signal nature. The choice of the
algorithm determines several crucial aspects of the overall adaptive process, such as existence of
sub-optimal solutions, biased optimal solution, and computational complexity.

1.3 INTRODUCTION TO ADAPTIVE ALGORITHMS

The basic objective of the adaptive filter is to set its parameters, @ (k), in such a way that its output tries
to minimize a meaningful objective function involving the reference signal. Usually, the objective
function F' is a function of the input, the reference, and adaptive-filter output signals, i.e., F' =
Flz(k),d(k),y(k)]. A consistent definition of the objective function must satisfy the following
properties:

m  Non-negativity: Flx(k),d(k), y(k)] > 0,Vy(k),z(k), and d(k);
= Optimality: Flz(k),d(k),d(k)] = 0.

One should understand that in an adaptive process, the adaptive algorithm attempts to minimize the
function F', in such a way that y(k) approximates d(k), and as a consequence, 8(k) converges to 8,
where 6, is the optimum set of coefficients that leads to the minimization of the objective function.

Another way to interpret the objective function is to consider it a direct function of a generic error
signal e(k), which in turn is a function of the signals z(k), y(k), and d(k), i.e., F = Fle(k)] =
Fle(z(k),y(k),d(k))]. Using this framework, we can consider that an adaptive algorithm is com-
posed of three basic items: definition of the minimization algorithm, definition of the objective
function form, and definition of the error signal.
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1) Definition of the minimization algorithm for the function F': This item is the main subject of
Optimization Theory [22]-[23], and it essentially affects the speed of convergence and computational
complexity of the adaptive process.

In practice any continuous function having high-order model of the parameters can be approximated
around a given point 6(k) by a truncated Taylor series as follows

F[B(k) + AB(K)] ~ F[O(k)] + gh{FIO(k)]}A0(k) + %ABT(k)Hg{F[G(k)]}AH(k) (1.1)

where Hg { F'[0(k)]} is the Hessian matrix of the objective function, and gg{ F[@(k)]} is the gradient
vector, further details about the Hessian matrix and gradient vector are presented along the text. The
aim is to minimize the objective function with respect to the set of parameters by iterating

Ok +1) = (k) + AO(k) (1.2)

where the step or correction term A@(k) is meant to minimize the quadratic approximation of
the objective function F'[@(k)]. The so-called Newton method requires the first and second-order
derivatives of F'[0(k)] to be available at any point, as well as the function value. These informations
are required in order to evaluate equation (1.1). If Hg(@(k)) is a positive definite matrix, then the
quadratic approximation has a unique and well defined minimum point. Such a solution can be found
by setting the gradient of the quadratic function with respect to the parameters correction terms, at
instant k + 1, to zero which leads to

gg{Fl0(k)]} = —Hg{F[0(K)]}A6(k) (1.3)
The most commonly used optimization methods in the adaptive signal processing field are:

= Newton’s method: This method seeks the minimum of a second-order approximation of the
objective function using an iterative updating formula for the parameter vector given by

O(k+1) = 0(k) — uHp ' {Fle(k)] g { Fle(k)]} (14)

where i is a factor that controls the step size of the algorithm, i.e., it determines how fast the
parameter vector will be changed. The reader should note that the direction of the correction
term AB(k) is chosen according to equation (1.3). The matrix of second derivatives of F'[e(k)],
Hg{F[e(k)]} is the Hessian matrix of the objective function, and gg{ F'[e(k)]} is the gradient of
the objective function with respect to the adaptive filter coefficients. It should be noted that the
error e(k) depends on the parameters (k). If the function F[e(k)] is originally quadratic, there
is no approximation in the model of equation (1.1) and the global minimum of the objective
function would be reached in one step if ;+ = 1. For nonquadratic functions the value of p
should be reduced.

®  Quasi-Newton methods: This class of algorithms is a simplified version of the method above de-
scribed, as it attempts to minimize the objective function using a recursively calculated estimate
of the inverse of the Hessian matrix, i.e.,

O(k+1) = 0(k) — uS(k)gg{Fle(k)]} (1.5)
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where S(k) is an estimate of Hél{F[e(k:)}}, such that

lim S(k) = Hg'{Fle(k)]}
k—o0

A usual way to calculate the inverse of the Hessian estimate is through the matrix inversion

lemma (see, for example [21] and some chapters to come). Also, the gradient vector is usually

replaced by a computationally efficient estimate.

m  Steepest-descent method: This type of algorithm searches the objective function minimum
point following the opposite direction of the gradient vector of this function. Consequently, the
updating equation assumes the form

O(k+1) = (k) — pgg {Fle(h)]} (16)

Here and in the open literature, the steepest-descent method is often also referred to as gradient
method.

In general, gradient methods are easier to implement, but on the other hand, the Newton method
usually requires a smaller number of iterations to reach a neighborhood of the minimum point. In
many cases, Quasi-Newton methods can be considered a good compromise between the computa-
tional efficiency of the gradient methods and the fast convergence of the Newton method. However,
the Quasi-Newton algorithms are susceptible to instability problems due to the recursive form used
to generate the estimate of the inverse Hessian matrix. A detailed study of the most widely used
minimization algorithms can be found in [22]-[23].

It should be pointed out that with any minimization method, the convergence factor p controls
the stability, speed of convergence, and some characteristics of residual error of the overall adaptive
process. Usually, an appropriate choice of this parameter requires a reasonable amount of knowledge
of the specific adaptive problem of interest. Consequently, there is no general solution to accomplish
this task. In practice, computational simulations play an important role and are, in fact, the most
used tool to address the problem.

2) Definition of the objective function F'[e(k)]: There are many ways to define an objective function
that satisfies the optimality and non-negativity properties formerly described. This definition affects
the complexity of the gradient vector and the Hessian matrix calculation. Using the algorithm’s
computational complexity as a criterion, we can list the following forms for the objective function
as the most commonly used in the derivation of an adaptive algorithm:

m  Mean-Square Error (MSE): Fle(k)] = E[|e(k)|?];

2.

m  Least Squares (LS): Fle(k)] = k%_l Zf:o le(k — 1)
m  Weighted Least Squares (WLS): Fle(k)] = Zf:o Aile(k — )|, \is a constant smaller than 1;

m  Instantaneous Squared Value (ISV): Fle(k)] = |e(k)|*.
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The MSE, in a strict sense, is only of theoretical value, since it requires an infinite amount of
information to be measured. In practice, this ideal objective function can be approximated by the
other three listed. The LS, WLS, and ISV functions differ in the implementation complexity and
in the convergence behavior characteristics; in general, the ISV is easier to implement but presents
noisy convergence properties, since it represents a greatly simplified objective function. The LS is
convenient to be used in stationary environment, whereas the WLS is useful in applications where
the environment is slowly varying.

3) Definition of the error signal e(k): The choice of the error signal is crucial for the algorithm
definition, since it can affect several characteristics of the overall algorithm including computational
complexity, speed of convergence, robustness, and most importantly for the IIR adaptive filtering
case, the occurrence of biased and multiple solutions.

The minimization algorithm, the objective function, and the error signal as presented give us a
structured and simple way to interpret, analyze, and study an adaptive algorithm. In fact, almost all
known adaptive algorithms can be visualized in this form, or in a slight variation of this organization.
In the remaining parts of this book, using this framework, we present the principles of adaptive
algorithms. It may be observed that the minimization algorithm and the objective function affect
the convergence speed of the adaptive process. An important step in the definition of an adaptive
algorithm is the choice of the error signal, since this task exercises direct influence in many aspects
of the overall convergence process.

1.4 APPLICATIONS

In this section, we discuss some possible choices for the input and desired signals and how these
choices are related to the applications. Some of the classical applications of adaptive filtering are
system identification, channel equalization, signal enhancement, and prediction.

In the system identification application, the desired signal is the output of the unknown system when
excited by a broadband signal, in most cases a white-noise signal. The broadband signal is also used
as input for the adaptive filter as illustrated in Fig. 1.2. When the output MSE is minimized, the
adaptive filter represents a model for the unknown system.

The channel equalization scheme consists of applying the originally transmitted signal distorted by
the channel plus environment noise as the input signal to an adaptive filter, whereas the desired signal
is a delayed version of the original signal as depicted in Fig. 1.3. This delayed version of the input
signal is in general available at the receiver in a form of standard training signal. In a noiseless case,
the minimization of the MSE indicates that the adaptive filter represents an inverse model (equalizer)
of the channel.

In the signal enhancement case, a signal z(k) is corrupted by noise n1(k), and a signal ns (k)
correlated to the noise is available (measurable). If no(k) is used as an input to the adaptive filter
with the signal corrupted by noise playing the role of the desired signal, after convergence the output
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Unknown
system
d(k)
x(k) o—p— e(k)
y(k)
Adaptive
filter
Figure 1.2 System identification.
L
<
oot y(k)
x(k) e Channel fﬁet;ve L—» e(k)
Figure 1.3 Channel equalization.
x(k) + n (k)
n,(k) e—s—{ Adaptive e(k)

Figure 1.4 Signal enhancement (n1 (k) and n2 (k) are noise signals correlated to each other).

error will be an enhanced version of the signal. Fig. 1.4 illustrates a typical signal enhancement
setup.

Finally, in the prediction case the desired signal is a forward (or eventually a backward) version of
the adaptive-filter input signal as shown in Fig. 1.5. After convergence, the adaptive filter represents

a model for the input signal, and can be used as a predictor model for the input signal.

Further details regarding the applications discussed here will be given in the following chapters.
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x(tk) o z*

Adapti @
fiter 4’(:)—' e(k)

Figure 1.5 Signal prediction.

Example 1.1

Before concluding this chapter, we present a simple example in order to illustrate how an adaptive
filter can be useful in solving problems that lie in the general framework represented by Fig. 1.1. We
chose the signal enhancement application illustrated in Fig. 1.4.

In this example, the reference (or desired) signal consists of a discrete-time triangular waveform
corrupted by a colored noise. Fig. 1.6 shows the desired signal. The adaptive-filter input signal is

a white noise correlated with the noise signal that corrupted the triangular waveform, as shown in
Fig. 1.7.

The coefficients of the adaptive filter are adjusted in order to keep the squared value of the output
error as small as possible. As can be noticed in Fig. 1.8, as the number of iterations increase the error
signal resembles the discrete-time triangular waveform shown in the same figure (dashed curve).

6

5 F i

Desired signal

I

ST it b
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40

60 80
Iterations, k

Figure 1.6 Desired signal.
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Input signal

Error signal and triangular waveform

2.5

-1.5 H R

) i
2.5 R

_3 Il Il Il Il Il Il

0 20 40 60 80 100 120
Iterations, k
Figure 1.7 Input signal.
3

_4 Il Il Il Il Il Il
0 20 40 60 80 100 120
Iterations, k

Figure 1.8 Error signal (continuous line) and triangular waveform (dashed line).
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FUNDAMENTALS OF ADAPTIVE
FILTERING

2.1 INTRODUCTION

This chapter includes a brief review of deterministic and random signal representations. Due to the
extent of those subjects, our review is limited to the concepts that are directly relevant to adaptive
filtering. The properties of the correlation matrix of the input signal vector are investigated in some
detail, since they play a key role in the statistical analysis of the adaptive-filtering algorithms.

The Wiener solution that represents the minimum mean-square error (MSE) solution of discrete-
time filters realized through a linear combiner is also introduced. This solution depends on the
input signal correlation matrix as well as on the the cross-correlation between the elements of the
input signal vector and the reference signal. The values of these correlations form the parameters
of the MSE surface, which is a quadratic function of the adaptive-filter coefficients. The linearly
constrained Wiener filter is also presented, a technique commonly used in antenna array processing
applications. The transformation of the constrained minimization problem into an unconstrained one
is also discussed. Motivated by the importance of the properties of the MSE surface, we analyze
them using some results related to the input signal correlation matrix.

In practice the parameters that determine the MSE surface shape are not available. What is left is
to directly or indirectly estimate these parameters using the available data and to develop adaptive
algorithms that use these estimates to search the MSE surface, such that the adaptive-filter coefficients
converge to the Wiener solution in some sense. The starting point to obtain an estimation procedure
is to investigate the convenience of using the classical searching methods of optimization theory
[1]-[3] to adaptive filtering. The Newton and steepest-descent algorithms are investigated as possible
searching methods for adaptive filtering. Although both methods are not directly applicable to
practical adaptive filtering, smart reflections inspired on them led to practical algorithms such as the
least-mean-square (LMS) [4]-[5] and Newton-based algorithms. The Newton and steepest-descent
algorithms are introduced in this chapter, whereas the LMS algorithm is treated in the next chapter.

Also, in the present chapter, the main applications of adaptive filters are revisited and discussed in
greater detail.

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_2,
© Springer Science+Business Media, LLC 2008
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2.2  SIGNAL REPRESENTATION

In this section, we briefly review some concepts related to deterministic and random discrete-time
signals. Only specific results essential to the understanding of adaptive filtering are reviewed. For
further details on signals and digital signal processing we refer to [6]-[13].

2.2.1 Deterministic Signals

A deterministic discrete-time signal is characterized by a defined mathematical function of the time
index k', with k = 0,41, +2, 43, .. .. An example of a deterministic signal (or sequence) is

z(k) = e *F cos(wk) + u(k) 2.1)
where u(k) is the unit step sequence.

The response of a linear time-invariant filter to an input x(k) is given by the convolution summation,
as follows [7]:

oo

y(k) = (k) « h(k) = > x(n)h(k —n)
= Y h(m)a(k—n) = h(k) * (k) (2.2)

n=—oo

where h(k) is the impulse response of the filter?.

The Z-transform of a given sequence z(k) is defined as

oo

Z{z(k)} =X(2)= Y a(k)z" (2.3)

k=—oc0

for regions in the Z-plane such that this summation converges. If the Z-transform is defined for
a given region of the Z-plane, in other words the above summation converges in that region, the
convolution operation can be replaced by a product of the Z-transforms as follows [7]:

Y(z) = H(z) X(2) (2.4)

where Y (2), X (z), and H(z) are the Z-transforms of y(k), z(k), and h(k), respectively. Considering
only waveforms that start at an instant £ > 0 and have finite power, their Z-transforms will always
be defined outside the unit circle.

IThe index k can also denote space in some applications.

2An alternative and more accurate notation for the convolution summation would be (z * h)(k) instead of z(k) * h(k),
since in the latter the index k appears twice whereas the resulting convolution is simply a function of k. We will keep the
former notation since it is more widely used.
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For finite-energy waveforms, it is convenient to use the discrete-time Fourier transform defined as

o0

Flak)} = X(e*) = > a(k)e ™" (2.5)

k=—o00

Although the discrete-time Fourier transform does not exist for a signal with infinite energy, if the
signal has finite-power, a generalized discrete-time Fourier transform exists and is largely used for
deterministic signals [16].

2.2.2 Random Signals

A random variable X is a function that assigns a number to every outcome, denoted by p, of a given
experiment. A stochastic process is a rule to describe the time evolution of the random variable
depending on g, therefore it is a function of two variables X(k, ¢). The set of all experimental
outcomes, i.e., the ensemble, is the domain of p. We denote x(k) as a sample of the given process
with o fixed, where in this case if & is also fixed, (k) is a number. When any statistical operator is
applied to (k) it is implied that z:(k) is a random variable, k is fixed, and g is variable. In this book,
x(k) represents a random signal.

Random signals do not have a precise description of their waveforms. What is possible is to charac-
terize them via measured statistics or through a probabilistic model. For random signals, the first- and
second-order statistics are most of the time sufficient for characterization of the stochastic process.
The first- and second-order statistics are also convenient for measurements. In addition, the effect
on these statistics caused by linear filtering can be easily accounted for as shown below.

Let’s consider for the time being that the random signals are real. We start to introduce some tools
to deal with random signals by defining the distribution function of a random variable as

Py (y) 2 probability of x(k) being smaller or equal toy

or
Y
P = [ puge(2)ds 6)
The derivative of the distribution function is the probability density function (pdf)
Pei)\¥) = ————— 2.7
) () dy

The expected value, or mean value, of the process is defined by
m, (k) = Elx(k)] (2.8)

The definition of the expected value is expressed as

Eh%ﬂ=/mymmwwy 2.9)
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where p (1) (y) is the pdf of z(k) at the point y.

The autocorrelation function of the process x(k) is defined by

o (k1) = / / YzDa(k) () (Y, 2)dydz (2.10)
where p, ).y (¥, 2) is the joint probability density of the random variables 2 (k) and x(l) defined
as

82Pz(k) z(l) (ya Z)
= —F— 2.11
Pz(k),z(l) (yv Z) 81/82’ ( )
where

Pory,ey (¥, 2) 2 probability of {x(k) <yandz(l) < z}

The autocovariance function is defined as
o2 (k1) = E{lz(k) = me(B)][z(1) — ma (D]} = ra(k, 1) — mau(k)ma(1) (2.12)

where the second equality follows from the definitions of mean value and autocorrelation. For k = [,
o2(k,1) = o2(k) which is the variance of x(k).

The most important specific example of probability density function is the Gaussian density function,
also known as normal density function [14]-[15]. The Gaussian pdf is defined by

1 _y=mg(k)?

_ o EAw 2.13
Px(k) (y) 27‘('0'926(16) ( )

where m,, (k) and o2 (k) are the mean and variance of z(k), respectively.

One justification for the importance of the Gaussian distribution is the central limit theorem. Given
a random variable x composed by the sum of n independent random variables x; as follows:

=Y (2.14)
1=1

the central limit theorem states that under certain general conditions, the probability density function
of x approaches a Gaussian density function for large n. The mean and variance of x are given,

respectively, by
- Z M, (2.15)
i=1
=) o2 (2.16)
i=1
Considering that the values of the mean and variance of x can grow, define
g =" @.17)

Oz
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In this case, for n — oo it follows that
1 2
2

Py (y) = \/T?e_ (2.18)

In a number of situations we require the calculation of conditional distributions, where the probability
of a certain event to occur is calculated assuming that another event B has occurred. In this case, we
define

P{z(k) <y} N B)

Py (y|B) = PB) (2.19)

2 probability of x(k) < y assuming B has occurred

This joint event consists of all outcomes o € B such that (k) = x(k, 0) < y>. The definition of the
conditional mean is given by

magn(k) = Ela®IB] = | ypv1B)dy .20)
where p, (1) (y| B) is the pdf of x(k) conditioned on B.
The conditional variance is defined as
o;15(k) = B{[x(k) — mq5(k)]*| B} = /_ Z [y = 72015 (0))* P (v| B) dy (2.21)

There are processes for which the mean and autocorrelation functions are shift (or time) invariant,
i.e.,

my(k — 1) = my(k) = Elz(k)] = my (2.22)
rz(k,i) = Elz(k — §)x(i — j)] = ro(k — 1) = r2(1) (2.23)

and as a consequence
o2(l) = ry(l) —m? (2.24)

These processes are said to be wide-sense stationary (WSS). If the nth-order statistics of a process
is shift invariant, the process is said to be nth-order stationary. Also if the process is nth-order
stationary for any value of n the process is stationary in strict sense.

Two processes are considered jointly WSS if and only if any linear combination of them is also WSS.
This is equivalent to state that

must be WSS, for any constants k; and ks, if 21(k) and zo(k) are jointly WSS. This property
implies that both x; (k) and z2(k) have shift-invariant means and autocorrelations, and that their
cross-correlation is also shift invariant.

30r equivalently, such that X () < y.
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For complex signals where x(k) = x,(k) + jz;(k), y = yr + yi, and z = 2z, + jz;, we have the
following definition of the expected value

Elx (k)] :/ / YD, (k) (k) (Y Yi)dYrdy; (2.26)

where Py, (&), (k) (Ur, ¥i) is the joint probability density function (pdf) of x,.(k) and z;(k).

The autocorrelation function of the complex random signal z (k) is defined by

re(k,1) =

Elx(k)z™(1)]
= / / / / Y2 Do, (k)i (k) s (1) (1) (Y Yis 2y 20) Ay dyidzedz;

(2.27)

where * denotes complex conjugate, since we assume for now that we are dealing with complex
signals, and p,. (x),«, (k),2. (1), (1) (Yrs Yis Zr, 2;) is the joint probability density function of the random
variables z(k) and z(1).

For complex signals the autocovariance function is defined as

o2(k, 1) = E{[a(k) — mo(k)][e(l) = mo (D]} = ra(k,0) — ma ()mi(l)  (2.28)

2.2.2.1 Autoregressive Moving Average Process

The process resulting from the output of a system described by a general linear difference equation

given by
N

M
y(k) =D _bje(k = j) + 3 aiy(k = 1) (2.29)

j=0

where x(k) is a white noise, is called autoregressive moving average (ARMA) process. The coeffi-
cients a; and b; are the parameters of the ARMA process. The output signal y(k) is also said to be a
colored noise since the autocorrelation function of y(k) is nonzero for a lag different from zero, i.e.,
(1) # 0 for some [ # 0.

For the special case where b; = 0 for j = 1,2,..., M, the resulting process is called autoregressive
(AR) process. The terminology means that the process depends on the present value of the input
signal and on a linear combination of past samples of the process. This indicates the presence of a
feedback of the output signal.

For the special case where a; = 0 forz = 1,2, ..., N, the process is identified as a moving average
(MA) process. This terminology indicates that the process depends on a linear combination of the
present and past samples of the input signal. In summary, an ARMA process can be generated by
applying a white noise to the input of a digital filter with poles and zeros, whereas for the AR and
MA cases the digital filters are all-pole and all-zero filters, respectively.
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2.2.2.2 Markov Process

A stochastic process is called a Markov process if its past has no influence in the future when the
present is specified [14], [16]. In other words, the present behavior of the process depends only on
the most recent past, i.e., all behavior previous to the most recent past is not required. A first-order
AR process is a first-order Markov process, whereas an Nth-order AR process is considered an
Nth-order Markov process. Take as an example the sequence

y(k) = ay(k — 1) + n(k) (2.30)

where n(k) is a white noise process. The process represented by y(k) is determined by y(k — 1)
and n(k), and no information before the instant k — 1 is required. We conclude that y(k) represents
a Markov process. In the previous example, if « = 1 and y(—1) = 0 the signal y(k), for k > 0,is a
sum of white noise samples, usually called random walk sequence.

Formally, an mth-order Markov process satisfies the following condition: for all £ > 0, and for a
fixed m, it follows that

Pyey (ylz(k = 1), 2(k = 2),...,2(0)) = Py (ylo(k = 1), 2(k = 2),...,2(k —m)) (2.31)

2.2.2.3 Wold Decomposition

Another important result related to any wide-sense stationary process (k) is the Wold decomposition,
which states that (k) can be decomposed as

z(k) =z, (k) + zp (k) (2.32)

where z,.(k) is a regular process that is equivalent to the response of a stable, linear, time-invariant,
and causal filter to a white noise [16], and z, (k) is a perfectly predictable (deterministic or singular)
process. Also, z,(k) and (k) are orthogonal processes, i.e., E[x,(k)x,(k)] = 0. The key factor
here is that the regular process can be modeled through a stable autoregressive model [24] with a
stable and causal inverse. The importance of Wold decomposition lies on the observation that a
WSS process can in part be represented by an AR process of adequate order, with the remaining part
consisting of a perfectly predictable process. Obviously, the perfectly predictable process part of
x(k) also admits an AR model with zero excitation.

2.2.2.4 Power Spectral Density

Stochastic signals that are wide-sense stationary are persistent and therefore are not finite-energy
signals. On the other hand, they have finite-power such that the generalized discrete-time Fourier
transform can be applied to them. When the generalized discrete-time Fourier transform is applied
to a WSS process it leads to a random function of the frequency [16]. On the other hand, the
autocorrelation functions of most practical stationary processes have discrete-time Fourier transform.
Therefore, the discrete-time Fourier transform of the autocorrelation function of a stationary random
process can be very use