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PREFACE
 

The field of Digital Signal Processing has developed so fast in the last three decades that it can be 
found in the graduate and undergraduate programs of most universities. This development is 
related to the increasingly available technologies for implementing digital signal processing 
algorithms. The tremendous growth of development in the digital signal processing area has 
turned some of its specialized areas into fields themselves. If accurate information of the signals to 
be processed is available, the designer call easily choose the most appropriate algorithm to process 
the signal. When dealing with signals whose statistical properties are unknown, fixed algorithms 
do not process these signals efficiently. The solution is to use an adaptive filter that automatically 
changes its characteristics by optimizing the internal parameters. The adaptive filtering algorithms 
are essential in many statistical signal processing applications.  
 
Although the field of adaptive signal processing has been subject of research for over four 
decades, it was in the eighties that a major growth occurred in research and applications. Two 
main reasons can be credited to this growth, the availability of implementation tools and the 
appearance of early textbooks exposing the subject in an organized manner. Still today it is 
possible to observe many research developments in the area of adaptive filtering, particularly 
addressing specific applications. In fact, the theory of linear adaptive filtering has reached a 
maturity that justifies a text treating the various methods in a unified way, emphasizing the 
algorithms suitable for practical implementation. This text concentrates on studying on-line 
algorithms, those whose adaptation occurs whenever a new sample of each environment signal is 
available. The so-called block algorithms, those whose adaptation occurs when a new block of 
data is available, are also included using the subband filtering framework. Usually, block 
algorithms require different implementation resources than the on-line algorithms. This edition 
also includes basic introductions to nonlinear adaptive filtering and blind signal processing as 
natural extensions of the algorithms treated in the earlier chapters. The understanding of the 
introductory material presented is fundamental for further studies in these fields which are 
described in more detail in some specialized texts.  
 
The idea of writing this book started while teaching the adaptive signal processing course at the 
graduate school of the Federal University of Rio de Janeiro (UFRJ). The request of the students to 
cover as many algorithms as possible made me think how to organize this subject such that not 
much time is lost in adapting notations and derivations related to different algorithms. Another 
common question was which algorithms really work in a finite-precision implementation. These 
issues led me to conclude that a new text on this subject could be written with these objectives in 
mind. Also, considering that most graduate and undergraduate programs include a single adaptive 
filtering course, this book should not be lengthy. Another objective to seek is to provide an easy 
access to the working algorithms for the practitioner.  
 



x

It was not until I spent a sabbatical year and a half at University of Victoria, Canada, that this 
project actually started. In the leisure hours, I slowly started this project. Parts of the early 
chapters of this book were used in short courses on adaptive signal processing taught at different 
institutions, namely: Helsinki University of Technology, Espoo, Finland; University Menendez 
Pelayo in Seville, Spain; and at the Victoria Micronet Center, University of Victoria, Canada. The 
remaining parts of the book were written based on notes of the graduate course in adaptive signal 
processing taught at COPPE (the graduate engineering school of UFRJ).  
 
The philosophy of the presentation is to expose the material with a solid theoretical foundation, 
while avoiding straightforward derivations and repetition. The idea is to keep the text with a 
manageable size, without sacrificing clarity and without omitting important subjects. Another 
objective is to bring the reader up to the point where implementation can be tried and research can 
begin. A number of references are included at the end of the chapters in order to aid the reader to 
proceed on learning the subject.  
 
It is assumed the reader has previous background on the basic principles of digital signal 
processing and stochastic processes, including: discrete-time Fourier- and -transforms, finite 
impulse response (FIR) and infinite impulse response (IIR) digital filter realizations, multirate 
systems, random variables and processes, first- and second-order statistics, moments, and filtering 
of random signals. Assuming that the reader has this background, I believe the book is self 
contained.  
 
Chapter 1 introduces the basic concepts of adaptive filtering and sets a general framework that all 
the methods presented in the following chapters fall under. A brief introduction to the typical 
applications of adaptive filtering are also presented.  
 
In Chapter 2, the basic concepts of discrete-time stochastic processes are reviewed with special 
emphasis to the results that are useful to analyze the behavior of adaptive filtering algorithms. In 
addition, the Wiener filter is presented, establishing the optimum linear filter that can be sought in 
stationary environments. Appendix A briefly describes the concepts of complex differentiation 
mainly applied to the Wiener solution. The case of linearly constrained Wiener filter is also 
discussed, motivated by its wide use in antenna array processing. The transformation of the 
constrained minimization problem into an unconstrained one is also presented. The concept of 
mean-square error surface is then introduced, another useful tool to analyze adaptive filters. The 
classical Newton and steepest-descent algorithms are briefly introduced. Since the use of these 
algorithms would require a complete knowledge of the stochastic environment, the adaptive 
filtering algorithms introduced in the following chapters come into play. Practical applications of 
the adaptive filtering algorithms are revisited in more detail at the end of Chapter 2 where some 
examples with closed form solutions are included in order to allow the correct interpretation of 
what is expected from each application.  
 
Chapter 3 presents and analyses of the least-mean-square (LMS) algorithm in some depth. Several 
aspects are discussed, such as convergence behavior in stationary and nonstationary environments. 
This chapter also includes a number of theoretical as well as simulation examples to illustrate how 
the LMS algorithm performs in different setups. Appendix B addresses the quantization effects on 
the LMS algorithm when implemented in fixed- and floating-point arithmetics.  
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Chapter 4 deals with some algorithms that are in a sense related to the LMS algorithm. In 
particular, the algorithms introduced are the quantized-error algorithms, the LMS-Newton 
algorithm, the normalized LMS algorithm, the transform-domain LMS algorithm, and the affine 
projection algorithm. Some properties of these algorithms are also discussed in Chapter 4, with 
special emphasis to the analysis of the fine projection algorithm.  
 
Chapter 5 introduces the conventional recursive least-squares (RLS) algorithm. This algorithm 
minimizes a deterministic objective function, differing in this sense from most LMS-based 
algorithms. Following the same pattern of presentation of Chapter 3, several aspects of the 
conventional RLS algorithm are discussed, such as convergence behavior in stationary and 
nonstationary environments, along with a number of simulation results. Appendix C, deals with 
stability issues and quantization effects related to the RLS algorithm when implemented in fixed- 
and floating-point arithmetics. The results presented, except for the quantization effects, are also 
valid for the RLS algorithms presented in Chapters 7, 8, and 9. As as complement to Chapter 5, 
Appendix D presents the discrete-time Kalman filter formulation which despite being considered 
an extension of the Wiener filter has some relation with the RLS algorithm.  
 
Chapter 6 discusses some techniques to reduce the overall computational complexity of adaptive 
filtering algorithms. The chapter first introduces the so called set-membership algorithms that 
update only when the output estimation error is higher than the prescribed upper bound. However, 
since set-membership algorithms require frequent updates during the early iterations in stationary 
environments, we introduce the concept of partial update to reduce the computational complexity 
in order to deal with situations where the available computational resources are not sufficient. This 
chapter presents several forms of set-membership algorithms related to the affine projection 
algorithms and their special cases. Chapter 6 also includes some simulation examples addressing 
standard as well as application oriented problems, where the algorithms of this and previous 
chapters are compared in some detail.  
 
In Chapter 7, a family of fast RLS algorithms based on the FIR lattice realization is introduced. 
These algorithms represent interesting alternatives to the computationally complex conventional 
RLS algorithm. In particular, the unnormalized, the normalized and the error-feedback algorithms 
are presented.  
 
Chapter 8 deals with the fast transversal RLS algorithms, which are very attractive due to their 
low computational complexity. However, these algorithms are known to face stability problems in 
practical implementation. As a consequence, special attention is given to the stabilized fast 
transversal RLS algorithm.  
 
Chapter 9 is devoted to a family of RLS algorithms based on the QR decomposition. The 
conventional and a fast version of the QR-based algorithms are presented in this chapter.  
 
Chapter 10 addresses the subject of adaptive filters using IIR digital filter realizations. The chapter 
includes a discussion on how to compute the gradient and how to derive the adaptive algorithms. 
The cascade, the parallel, and the lattice realizations are presented as interesting alternatives to the 
direct-form realization for the IIR adaptive filter. The characteristics of the mean-square error 
surface are also discussed in this chapter, for the IIR adaptive filtering case. Algorithms based on 
alternative error formulations, such as the equation error and Steiglitz-McBride methods are also 
introduced.  
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Chapter 11 deals with nonlinear adaptive filtering which consists of utilizing a nonlinear structure 
for the adaptive filter. The motivation is to use nonlinear adaptive filtering structures to better 
model some nonlinear phenomena commonly found in communications applications, such as 
nonlinear characteristics of power amplifier at transmitters. In particular, we introduce the 
Volterra series LMS and RLS algorithms, and the adaptive algorithms based on bilinear filters. 
Also, a brief introduction is given to some nonlinear adaptive filtering algorithms based on the 
concepts of neural networks, namely, the multilayer perceptron and the radial basis function 
algorithms. Some examples of DFE equalization are included in this chapter.  
 
Chapter 12 deals with adaptive filtering in subbands mainly to address the applications where the 
required adaptive filter order is high, as for example in acoustic echo cancellation where the 
unknown system (echo) model has long impulse response. In subband adaptive filtering, some 
signals are split in frequency subbands via an analysis filter bank. Chapter 12 provides a brief 
review of multirate systems, and presents the basic structures for adaptive filtering in subbands. 
The concept of delayless subband adaptive filtering is also addressed, where the adaptive filter 
coefficients are updated in subbands and mapped to an equivalent fullband filter. The chapter also 
includes a discussion on the relation between subband and block adaptive filtering (also known as 
frequency-domain adaptive filters) algorithms.  
 
Chapter 13 describes some adaptive filtering algorithms suitable for situations where no reference 
signal is available which are known as blind adaptive filtering algorithms. In particular, this 
chapter introduces some blind algorithms utilizing high-order statistics implicitly for the single-
input single-output (SISO) equalization applications. In order to address some drawbacks of the 
SISO equalization systems, we discuss some algorithms using second-order statistics for the 
single-input multi-output (SIMO) equalization. The SIMO algorithms are naturally applicable in 
cases of oversampled received signal and multiple receive antennas. This chapter also discusses 
some issues related to blind signal processing not directly detailed here.  
 
I decided to use some standard examples to present a number of simulation results, in order to test 
and compare different algorithms. This way, frequent repetition was avoided while allowing the 
reader to easily compare the performance of the algorithms. Most of the end of chapters problems 
are simulation oriented, however, some theoretical ones are included to complement the text.  
 
The second edition differed from the first one mainly by the inclusion of chapters on nonlinear 
and subband adaptive filtering. Many other smaller changes were performed throughout the 
remaining chapters. In this edition, we introduced a number of derivations and explanations 
requested by students and suggested by colleagues. In addition, two new chapters on data-
selective algorithms and blind adaptive filtering are included along with a large number of new 
examples and problems. Major changes take place in the first five chapters in order to make the 
technical details more accessible and to improve the ability of the reader in deciding where and 
how to use the concepts. The analysis of the fine projection algorithm is now presented in detail 
due to its growing practical importance. Several practical and theoretical examples are included 
aiming at comparing the families of algorithms introduced in the book.  
 
In a trimester course, I usually cover Chapters 1 to 6 sometimes skipping parts of Chapter 2 and 
the analyses of quantization effects in Appendices B and C. In the remaining time, I try to cover as 
much as possible of the remaining chapters, usually consulting the audience to what they would 
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prefer to study. This book can also be used for self-study where the reader can examine Chapters 1 
to 6, and those not involved with specialized implementations can skip the Appendices B and C, 
without loss of continuity. The remaining chapters can be followed separately, except for  
Chapter 8 that requires reading Chapter 7. Chapters 7, 8, and 9 deal with alternative and fast 
implementations of RLS algorithms and the following chapters do not use their results.  
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1
INTRODUCTION TO ADAPTIVE FILTERING

1.1 INTRODUCTION

In this section, we define the kind of signal processing systems that will be treated in this text.

In the last thirty years significant contributions have been made in the signal processing field. The
advances in digital circuit design have been the key technological development that sparked a growing
interest in the field of digital signal processing. The resulting digital signal processing systems are
attractive due to their low cost, reliability, accuracy, small physical sizes, and flexibility.

One example of a digital signal processing system is called filter. Filtering is a signal processing
operation whose objective is to process a signal in order to manipulate the information contained
in the signal. In other words, a filter is a device that maps its input signal to another output signal
facilitating the extraction of the desired information contained in the input signal. A digital filter is
the one that processes discrete-time signals represented in digital format. For time-invariant filters
the internal parameters and the structure of the filter are fixed, and if the filter is linear the output
signal is a linear function of the input signal. Once prescribed specifications are given, the design of
time-invariant linear filters entails three basic steps, namely: the approximation of the specifications
by a rational transfer function, the choice of an appropriate structure defining the algorithm, and the
choice of the form of implementation for the algorithm.

An adaptive filter is required when either the fixed specifications are unknown or the specifications
cannot be satisfied by time-invariant filters. Strictly speaking an adaptive filter is a nonlinear filter
since its characteristics are dependent on the input signal and consequently the homogeneity and
additivity conditions are not satisfied. However, if we freeze the filter parameters at a given instant
of time, most adaptive filters considered in this text are linear in the sense that their output signals are
linear functions of their input signals. The exceptions are the adaptive filters discussed in Chapter 11.

The adaptive filters are time-varying since their parameters are continually changing in order to
meet a performance requirement. In this sense, we can interpret an adaptive filter as a filter that
performs the approximation step on-line. Usually, the definition of the performance criterion requires
the existence of a reference signal that is usually hidden in the approximation step of fixed-filter
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design. This discussion brings the feeling that in the design of fixed (nonadaptive) filters a complete
characterization of the input and reference signals is required in order to design the most appropriate
filter that meets a prescribed performance. Unfortunately, this is not the usual situation encountered
in practice, where the environment is not well defined. The signals that compose the environment
are the input and the reference signals, and in cases where any of them is not well defined, the
design procedure is to model the signals and subsequently design the filter. This procedure could be
costly and difficult to implement on-line. The solution to this problem is to employ an adaptive filter
that performs on-line updating of its parameters through a rather simple algorithm, using only the
information available in the environment. In other words, the adaptive filter performs a data-driven
approximation step.

The subject of this book is adaptive filtering, which concerns the choice of structures and algorithms
for a filter that has its parameters (or coefficients) adapted, in order to improve a prescribed perfor-
mance criterion. The coefficient updating is performed using the information available at a given
time.

The development of digital very large scale integration (VLSI) technology allowed the widespread
use of adaptive signal processing techniques in a large number of applications. This is the reason
why in this book only discrete-time implementations of adaptive filters are considered. Obviously,
we assume that continuous-time signals taken from the real world are properly sampled, i.e., they are
represented by discrete-time signals with sampling rate higher than twice their highest frequency.
Basically, it is assumed that when generating a discrete-time signal by sampling a continuous-time
signal, the Nyquist or sampling theorem is satisfied [1]-[9].

1.2 ADAPTIVE SIGNAL PROCESSING

As previously discussed, the design of digital filters with fixed coefficients requires well defined
prescribed specifications. However, there are situations where the specifications are not available, or
are time varying. The solution in these cases is to employ a digital filter with adaptive coefficients,
known as adaptive filters [10]-[17].

Since no specifications are available, the adaptive algorithm that determines the updating of the filter
coefficients, requires extra information that is usually given in the form of a signal. This signal is in
general called a desired or reference signal, whose choice is normally a tricky task that depends on
the application.

Adaptive filters are considered nonlinear systems, therefore their behavior analysis is more compli-
cated than for fixed filters. On the other hand, because the adaptive filters are self designing filters,
from the practitioner’s point of view their design can be considered less involved than in the case of
digital filters with fixed coefficients.

The general set up of an adaptive-filtering environment is illustrated in Fig. 1.1, where k is the
iteration number, x(k) denotes the input signal, y(k) is the adaptive-filter output signal, and d(k)
defines the desired signal. The error signal e(k) is calculated as d(k) − y(k). The error signal is
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then used to form a performance (or objective) function that is required by the adaptation algorithm
in order to determine the appropriate updating of the filter coefficients. The minimization of the
objective function implies that the adaptive-filter output signal is matching the desired signal in some
sense.

Adaptive
filter

Adaptive
algorithm

x(k) y(k)

d(k)

e(k)

-
+

Figure 1.1 General adaptive-filter configuration.

The complete specification of an adaptive system, as shown in Fig. 1.1, consists of three items:

1) Application: The type of application is defined by the choice of the signals acquired from the
environment to be the input and desired-output signals. The number of different applications in
which adaptive techniques are being successfully used has increased enormously during the last
two decades. Some examples are echo cancellation, equalization of dispersive channels, system
identification, signal enhancement, adaptive beamforming, noise cancelling, and control [14]-[20].
The study of different applications is not the main scope of this book. However, some applications
are considered in some detail.

2) Adaptive-Filter Structure: The adaptive filter can be implemented in a number of different
structures or realizations. The choice of the structure can influence the computational complexity
(amount of arithmetic operations per iteration) of the process and also the necessary number of
iterations to achieve a desired performance level. Basically, there are two major classes of adaptive
digital filter realizations, distinguished by the form of the impulse response, namely the finite-duration
impulse response (FIR) filter and the infinite-duration impulse response (IIR) filters. FIR filters are
usually implemented with nonrecursive structures, whereas IIR filters utilize recursive realizations.

Adaptive FIR filter realizations: The most widely used adaptive FIR filter structure is the
transversal filter, also called tapped delay line, that implements an all-zero transfer function
with a canonic direct form realization without feedback. For this realization, the output signal
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y(k) is a linear combination of the filter coefficients, that yields a quadratic mean-square error
(MSE = E[|e(k)|2]) function with a unique optimal solution. Other alternative adaptive FIR
realizations are also used in order to obtain improvements as compared to the transversal filter
structure, in terms of computational complexity, speed of convergence, and finite wordlength
properties as will be seen later in the book.

Adaptive IIR filter realizations: The most widely used realization of adaptive IIR filters is the
canonic direct form realization [5], due to its simple implementation and analysis. However,
there are some inherent problems related to recursive adaptive filters which are structure depen-
dent, such as pole-stability monitoring requirement and slow speed of convergence. To address
these problems, different realizations were proposed attempting to overcome the limitations
of the direct form structure. Among these alternative structures, the cascade, the lattice, and
the parallel realizations are considered because of their unique features as will be discussed in
Chapter 10.

3) Algorithm: The algorithm is the procedure used to adjust the adaptive filter coefficients in order
to minimize a prescribed criterion. The algorithm is determined by defining the search method
(or minimization algorithm), the objective function, and the error signal nature. The choice of the
algorithm determines several crucial aspects of the overall adaptive process, such as existence of
sub-optimal solutions, biased optimal solution, and computational complexity.

1.3 INTRODUCTION TO ADAPTIVE ALGORITHMS

The basic objective of the adaptive filter is to set its parameters, θ(k), in such a way that its output tries
to minimize a meaningful objective function involving the reference signal. Usually, the objective
function F is a function of the input, the reference, and adaptive-filter output signals, i.e., F =
F [x(k), d(k), y(k)]. A consistent definition of the objective function must satisfy the following
properties:

Non-negativity: F [x(k), d(k), y(k)] ≥ 0,∀y(k), x(k), and d(k);

Optimality: F [x(k), d(k), d(k)] = 0.

One should understand that in an adaptive process, the adaptive algorithm attempts to minimize the
function F , in such a way that y(k) approximates d(k), and as a consequence, θ(k) converges to θo,
where θo is the optimum set of coefficients that leads to the minimization of the objective function.

Another way to interpret the objective function is to consider it a direct function of a generic error
signal e(k), which in turn is a function of the signals x(k), y(k), and d(k), i.e., F = F [e(k)] =
F [e(x(k), y(k), d(k))]. Using this framework, we can consider that an adaptive algorithm is com-
posed of three basic items: definition of the minimization algorithm, definition of the objective
function form, and definition of the error signal.
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1) Definition of the minimization algorithm for the function F : This item is the main subject of
Optimization Theory [22]-[23], and it essentially affects the speed of convergence and computational
complexity of the adaptive process.

In practice any continuous function having high-order model of the parameters can be approximated
around a given point θ(k) by a truncated Taylor series as follows

F [θ(k) + Δθ(k)] ≈ F [θ(k)] + gT
θ{F [θ(k)]}Δθ(k) +

1
2
ΔθT (k)Hθ{F [θ(k)]}Δθ(k) (1.1)

where Hθ{F [θ(k)]} is the Hessian matrix of the objective function, and gθ{F [θ(k)]} is the gradient
vector, further details about the Hessian matrix and gradient vector are presented along the text. The
aim is to minimize the objective function with respect to the set of parameters by iterating

θ(k + 1) = θ(k) + Δθ(k) (1.2)

where the step or correction term Δθ(k) is meant to minimize the quadratic approximation of
the objective function F [θ(k)]. The so-called Newton method requires the first and second-order
derivatives of F [θ(k)] to be available at any point, as well as the function value. These informations
are required in order to evaluate equation (1.1). If Hθ(θ(k)) is a positive definite matrix, then the
quadratic approximation has a unique and well defined minimum point. Such a solution can be found
by setting the gradient of the quadratic function with respect to the parameters correction terms, at
instant k + 1, to zero which leads to

gθ{F [θ(k)]} = −Hθ{F [θ(k)]}Δθ(k) (1.3)

The most commonly used optimization methods in the adaptive signal processing field are:

Newton’s method: This method seeks the minimum of a second-order approximation of the
objective function using an iterative updating formula for the parameter vector given by

θ(k + 1) = θ(k)− μH−1
θ
{F [e(k)]}gθ{F [e(k)]} (1.4)

where μ is a factor that controls the step size of the algorithm, i.e., it determines how fast the
parameter vector will be changed. The reader should note that the direction of the correction
term Δθ(k) is chosen according to equation (1.3). The matrix of second derivatives of F [e(k)],
Hθ{F [e(k)]} is the Hessian matrix of the objective function, and gθ{F [e(k)]} is the gradient of
the objective function with respect to the adaptive filter coefficients. It should be noted that the
error e(k) depends on the parameters θ(k). If the function F [e(k)] is originally quadratic, there
is no approximation in the model of equation (1.1) and the global minimum of the objective
function would be reached in one step if μ = 1. For nonquadratic functions the value of μ
should be reduced.

Quasi-Newton methods: This class of algorithms is a simplified version of the method above de-
scribed, as it attempts to minimize the objective function using a recursively calculated estimate
of the inverse of the Hessian matrix, i.e.,

θ(k + 1) = θ(k)− μS(k)gθ{F [e(k)]} (1.5)
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where S(k) is an estimate of H−1
θ
{F [e(k)]}, such that

lim
k→∞

S(k) = H−1
θ
{F [e(k)]}

A usual way to calculate the inverse of the Hessian estimate is through the matrix inversion
lemma (see, for example [21] and some chapters to come). Also, the gradient vector is usually
replaced by a computationally efficient estimate.

Steepest-descent method: This type of algorithm searches the objective function minimum
point following the opposite direction of the gradient vector of this function. Consequently, the
updating equation assumes the form

θ(k + 1) = θ(k)− μgθ{F [e(k)]} (1.6)

Here and in the open literature, the steepest-descent method is often also referred to as gradient
method.

In general, gradient methods are easier to implement, but on the other hand, the Newton method
usually requires a smaller number of iterations to reach a neighborhood of the minimum point. In
many cases, Quasi-Newton methods can be considered a good compromise between the computa-
tional efficiency of the gradient methods and the fast convergence of the Newton method. However,
the Quasi-Newton algorithms are susceptible to instability problems due to the recursive form used
to generate the estimate of the inverse Hessian matrix. A detailed study of the most widely used
minimization algorithms can be found in [22]-[23].

It should be pointed out that with any minimization method, the convergence factor μ controls
the stability, speed of convergence, and some characteristics of residual error of the overall adaptive
process. Usually, an appropriate choice of this parameter requires a reasonable amount of knowledge
of the specific adaptive problem of interest. Consequently, there is no general solution to accomplish
this task. In practice, computational simulations play an important role and are, in fact, the most
used tool to address the problem.

2) Definition of the objective function F [e(k)]: There are many ways to define an objective function
that satisfies the optimality and non-negativity properties formerly described. This definition affects
the complexity of the gradient vector and the Hessian matrix calculation. Using the algorithm’s
computational complexity as a criterion, we can list the following forms for the objective function
as the most commonly used in the derivation of an adaptive algorithm:

Mean-Square Error (MSE): F [e(k)] = E[|e(k)|2];
Least Squares (LS): F [e(k)] = 1

k+1

∑k
i=0 |e(k − i)|2;

Weighted Least Squares (WLS): F [e(k)] =
∑k

i=0 λi|e(k− i)|2, λ is a constant smaller than 1;

Instantaneous Squared Value (ISV): F [e(k)] = |e(k)|2.
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The MSE, in a strict sense, is only of theoretical value, since it requires an infinite amount of
information to be measured. In practice, this ideal objective function can be approximated by the
other three listed. The LS, WLS, and ISV functions differ in the implementation complexity and
in the convergence behavior characteristics; in general, the ISV is easier to implement but presents
noisy convergence properties, since it represents a greatly simplified objective function. The LS is
convenient to be used in stationary environment, whereas the WLS is useful in applications where
the environment is slowly varying.

3) Definition of the error signal e(k): The choice of the error signal is crucial for the algorithm
definition, since it can affect several characteristics of the overall algorithm including computational
complexity, speed of convergence, robustness, and most importantly for the IIR adaptive filtering
case, the occurrence of biased and multiple solutions.

The minimization algorithm, the objective function, and the error signal as presented give us a
structured and simple way to interpret, analyze, and study an adaptive algorithm. In fact, almost all
known adaptive algorithms can be visualized in this form, or in a slight variation of this organization.
In the remaining parts of this book, using this framework, we present the principles of adaptive
algorithms. It may be observed that the minimization algorithm and the objective function affect
the convergence speed of the adaptive process. An important step in the definition of an adaptive
algorithm is the choice of the error signal, since this task exercises direct influence in many aspects
of the overall convergence process.

1.4 APPLICATIONS

In this section, we discuss some possible choices for the input and desired signals and how these
choices are related to the applications. Some of the classical applications of adaptive filtering are
system identification, channel equalization, signal enhancement, and prediction.

In the system identification application, the desired signal is the output of the unknown system when
excited by a broadband signal, in most cases a white-noise signal. The broadband signal is also used
as input for the adaptive filter as illustrated in Fig. 1.2. When the output MSE is minimized, the
adaptive filter represents a model for the unknown system.

The channel equalization scheme consists of applying the originally transmitted signal distorted by
the channel plus environment noise as the input signal to an adaptive filter, whereas the desired signal
is a delayed version of the original signal as depicted in Fig. 1.3. This delayed version of the input
signal is in general available at the receiver in a form of standard training signal. In a noiseless case,
the minimization of the MSE indicates that the adaptive filter represents an inverse model (equalizer)
of the channel.

In the signal enhancement case, a signal x(k) is corrupted by noise n1(k), and a signal n2(k)
correlated to the noise is available (measurable). If n2(k) is used as an input to the adaptive filter
with the signal corrupted by noise playing the role of the desired signal, after convergence the output
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Figure 1.2 System identification.

e(k)
y(k)

n(k)

x(k)

d(k)

+-+ Adaptive
filterChannel

z-L

Figure 1.3 Channel equalization.

Adaptive
filter

e(k)n2(k)

x(k) + n1(k)

+-

Figure 1.4 Signal enhancement (n1(k) and n2(k) are noise signals correlated to each other).

error will be an enhanced version of the signal. Fig. 1.4 illustrates a typical signal enhancement
setup.

Finally, in the prediction case the desired signal is a forward (or eventually a backward) version of
the adaptive-filter input signal as shown in Fig. 1.5. After convergence, the adaptive filter represents
a model for the input signal, and can be used as a predictor model for the input signal.

Further details regarding the applications discussed here will be given in the following chapters.
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Figure 1.5 Signal prediction.

Example 1.1

Before concluding this chapter, we present a simple example in order to illustrate how an adaptive
filter can be useful in solving problems that lie in the general framework represented by Fig. 1.1. We
chose the signal enhancement application illustrated in Fig. 1.4.

In this example, the reference (or desired) signal consists of a discrete-time triangular waveform
corrupted by a colored noise. Fig. 1.6 shows the desired signal. The adaptive-filter input signal is
a white noise correlated with the noise signal that corrupted the triangular waveform, as shown in
Fig. 1.7.

The coefficients of the adaptive filter are adjusted in order to keep the squared value of the output
error as small as possible. As can be noticed in Fig. 1.8, as the number of iterations increase the error
signal resembles the discrete-time triangular waveform shown in the same figure (dashed curve).
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2
FUNDAMENTALS OF ADAPTIVE

FILTERING

2.1 INTRODUCTION

This chapter includes a brief review of deterministic and random signal representations. Due to the
extent of those subjects, our review is limited to the concepts that are directly relevant to adaptive
filtering. The properties of the correlation matrix of the input signal vector are investigated in some
detail, since they play a key role in the statistical analysis of the adaptive-filtering algorithms.

The Wiener solution that represents the minimum mean-square error (MSE) solution of discrete-
time filters realized through a linear combiner is also introduced. This solution depends on the
input signal correlation matrix as well as on the the cross-correlation between the elements of the
input signal vector and the reference signal. The values of these correlations form the parameters
of the MSE surface, which is a quadratic function of the adaptive-filter coefficients. The linearly
constrained Wiener filter is also presented, a technique commonly used in antenna array processing
applications. The transformation of the constrained minimization problem into an unconstrained one
is also discussed. Motivated by the importance of the properties of the MSE surface, we analyze
them using some results related to the input signal correlation matrix.

In practice the parameters that determine the MSE surface shape are not available. What is left is
to directly or indirectly estimate these parameters using the available data and to develop adaptive
algorithms that use these estimates to search the MSE surface, such that the adaptive-filter coefficients
converge to the Wiener solution in some sense. The starting point to obtain an estimation procedure
is to investigate the convenience of using the classical searching methods of optimization theory
[1]-[3] to adaptive filtering. The Newton and steepest-descent algorithms are investigated as possible
searching methods for adaptive filtering. Although both methods are not directly applicable to
practical adaptive filtering, smart reflections inspired on them led to practical algorithms such as the
least-mean-square (LMS) [4]-[5] and Newton-based algorithms. The Newton and steepest-descent
algorithms are introduced in this chapter, whereas the LMS algorithm is treated in the next chapter.

Also, in the present chapter, the main applications of adaptive filters are revisited and discussed in
greater detail.

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_2,  
© Springer Science+Business Media, LLC 2008  
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2.2 SIGNAL REPRESENTATION

In this section, we briefly review some concepts related to deterministic and random discrete-time
signals. Only specific results essential to the understanding of adaptive filtering are reviewed. For
further details on signals and digital signal processing we refer to [6]-[13].

2.2.1 Deterministic Signals

A deterministic discrete-time signal is characterized by a defined mathematical function of the time
index k1, with k = 0,±1,±2,±3, . . .. An example of a deterministic signal (or sequence) is

x(k) = e−α k cos(ωk) + u(k) (2.1)

where u(k) is the unit step sequence.

The response of a linear time-invariant filter to an input x(k) is given by the convolution summation,
as follows [7]:

y(k) = x(k) ∗ h(k) =
∞∑

n=−∞
x(n)h(k − n)

=
∞∑

n=−∞
h(n)x(k − n) = h(k) ∗ x(k) (2.2)

where h(k) is the impulse response of the filter2.

The Z-transform of a given sequence x(k) is defined as

Z{x(k)} = X(z) =
∞∑

k=−∞
x(k)z−k (2.3)

for regions in the Z-plane such that this summation converges. If the Z-transform is defined for
a given region of the Z-plane, in other words the above summation converges in that region, the
convolution operation can be replaced by a product of the Z-transforms as follows [7]:

Y (z) = H(z) X(z) (2.4)

where Y (z), X(z), and H(z) are theZ-transforms of y(k), x(k), and h(k), respectively. Considering
only waveforms that start at an instant k ≥ 0 and have finite power, their Z-transforms will always
be defined outside the unit circle.

1The index k can also denote space in some applications.
2An alternative and more accurate notation for the convolution summation would be (x ∗ h)(k) instead of x(k) ∗ h(k),

since in the latter the index k appears twice whereas the resulting convolution is simply a function of k. We will keep the
former notation since it is more widely used.
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For finite-energy waveforms, it is convenient to use the discrete-time Fourier transform defined as

F{x(k)} = X(ejω) =
∞∑

k=−∞
x(k)e−jωk (2.5)

Although the discrete-time Fourier transform does not exist for a signal with infinite energy, if the
signal has finite-power, a generalized discrete-time Fourier transform exists and is largely used for
deterministic signals [16].

2.2.2 Random Signals

A random variable X is a function that assigns a number to every outcome, denoted by �, of a given
experiment. A stochastic process is a rule to describe the time evolution of the random variable
depending on �, therefore it is a function of two variables X(k, �). The set of all experimental
outcomes, i.e., the ensemble, is the domain of �. We denote x(k) as a sample of the given process
with � fixed, where in this case if k is also fixed, x(k) is a number. When any statistical operator is
applied to x(k) it is implied that x(k) is a random variable, k is fixed, and � is variable. In this book,
x(k) represents a random signal.

Random signals do not have a precise description of their waveforms. What is possible is to charac-
terize them via measured statistics or through a probabilistic model. For random signals, the first- and
second-order statistics are most of the time sufficient for characterization of the stochastic process.
The first- and second-order statistics are also convenient for measurements. In addition, the effect
on these statistics caused by linear filtering can be easily accounted for as shown below.

Let’s consider for the time being that the random signals are real. We start to introduce some tools
to deal with random signals by defining the distribution function of a random variable as

Px(k)(y)
�
= probability of x(k) being smaller or equal to y

or

Px(k)(y) =
∫ y

−∞
px(k)(z)dz (2.6)

The derivative of the distribution function is the probability density function (pdf)

px(k)(y) =
dPx(k)(y)

dy
(2.7)

The expected value, or mean value, of the process is defined by

mx(k) = E[x(k)] (2.8)

The definition of the expected value is expressed as

E[x(k)] =
∫ ∞

−∞
y px(k)(y)dy (2.9)
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where px(k)(y) is the pdf of x(k) at the point y.

The autocorrelation function of the process x(k) is defined by

rx(k, l) = E[x(k)x(l)] =
∫ ∞

−∞

∫ ∞

−∞
yzpx(k),x(l)(y, z)dydz (2.10)

where px(k),x(l)(y, z) is the joint probability density of the random variables x(k) and x(l) defined
as

px(k),x(l)(y, z) =
∂2Px(k),x(l)(y, z)

∂y∂z
(2.11)

where
Px(k),x(l)(y, z)

�
= probability of {x(k) ≤ y and x(l) ≤ z}

The autocovariance function is defined as

σ2
x(k, l) = E{[x(k)−mx(k)][x(l)−mx(l)]} = rx(k, l)−mx(k)mx(l) (2.12)

where the second equality follows from the definitions of mean value and autocorrelation. For k = l,
σ2

x(k, l) = σ2
x(k) which is the variance of x(k).

The most important specific example of probability density function is the Gaussian density function,
also known as normal density function [14]-[15]. The Gaussian pdf is defined by

px(k)(y) =
1√

2πσ2
x(k)

e
− (y−mx(k))2

2σ2
x(k) (2.13)

where mx(k) and σ2
x(k) are the mean and variance of x(k), respectively.

One justification for the importance of the Gaussian distribution is the central limit theorem. Given
a random variable x composed by the sum of n independent random variables xi as follows:

x =
n∑

i=1

xi (2.14)

the central limit theorem states that under certain general conditions, the probability density function
of x approaches a Gaussian density function for large n. The mean and variance of x are given,
respectively, by

mx =
n∑

i=1

mxi (2.15)

σ2
x =

n∑
i=1

σ2
xi

(2.16)

Considering that the values of the mean and variance of x can grow, define

x
′
=

x−mx

σx
(2.17)
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In this case, for n →∞ it follows that

px′ (y) =
1√
2π

e−
y2

2 (2.18)

In a number of situations we require the calculation of conditional distributions, where the probability
of a certain event to occur is calculated assuming that another event B has occurred. In this case, we
define

Px(k)(y|B) =
P ({x(k) ≤ y} ∩B)

P (B)
(2.19)

�
= probability of x(k) ≤ y assuming B has occurred

This joint event consists of all outcomes � ∈ B such that x(k) = x(k, �) ≤ y3. The definition of the
conditional mean is given by

mx|B(k) = E[x(k)|B] =
∫ ∞

−∞
ypx(k)(y|B)dy (2.20)

where px(k)(y|B) is the pdf of x(k) conditioned on B.

The conditional variance is defined as

σ2
x|B(k) = E{[x(k)−mx|B(k)]2|B} =

∫ ∞

−∞
[y −mx|B(k)]2px(k)(y|B)dy (2.21)

There are processes for which the mean and autocorrelation functions are shift (or time) invariant,
i.e.,

mx(k − i) = mx(k) = E[x(k)] = mx (2.22)

rx(k, i) = E[x(k − j)x(i− j)] = rx(k − i) = rx(l) (2.23)

and as a consequence
σ2

x(l) = rx(l)−m2
x (2.24)

These processes are said to be wide-sense stationary (WSS). If the nth-order statistics of a process
is shift invariant, the process is said to be nth-order stationary. Also if the process is nth-order
stationary for any value of n the process is stationary in strict sense.

Two processes are considered jointly WSS if and only if any linear combination of them is also WSS.
This is equivalent to state that

y(k) = k1 x1(k) + k2 x2(k) (2.25)

must be WSS, for any constants k1 and k2, if x1(k) and x2(k) are jointly WSS. This property
implies that both x1(k) and x2(k) have shift-invariant means and autocorrelations, and that their
cross-correlation is also shift invariant.

3Or equivalently, such that X(�) ≤ y.
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For complex signals where x(k) = xr(k) + jxi(k), y = yr + jyi, and z = zr + jzi, we have the
following definition of the expected value

E[x(k)] =
∫ ∞

−∞

∫ ∞

−∞
ypxr(k),xi(k)(yr, yi)dyrdyi (2.26)

where pxr(k),xi(k)(yr, yi) is the joint probability density function (pdf) of xr(k) and xi(k).

The autocorrelation function of the complex random signal x(k) is defined by

rx(k, l) = E[x(k)x∗(l)]

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
yz∗pxr(k),xi(k),xr(l),xi(l)(yr, yi, zr, zi)dyrdyidzrdzi

(2.27)

where ∗ denotes complex conjugate, since we assume for now that we are dealing with complex
signals, and pxr(k),xi(k),xr(l),xi(l)(yr, yi, zr, zi) is the joint probability density function of the random
variables x(k) and x(l).

For complex signals the autocovariance function is defined as

σ2
x(k, l) = E{[x(k)−mx(k)][x(l)−mx(l)]∗} = rx(k, l)−mx(k)m∗

x(l) (2.28)

2.2.2.1 Autoregressive Moving Average Process

The process resulting from the output of a system described by a general linear difference equation
given by

y(k) =
M∑

j=0

bjx(k − j) +
N∑

i=1

aiy(k − i) (2.29)

where x(k) is a white noise, is called autoregressive moving average (ARMA) process. The coeffi-
cients ai and bj are the parameters of the ARMA process. The output signal y(k) is also said to be a
colored noise since the autocorrelation function of y(k) is nonzero for a lag different from zero, i.e.,
r(l) �= 0 for some l �= 0.

For the special case where bj = 0 for j = 1, 2, . . . , M , the resulting process is called autoregressive
(AR) process. The terminology means that the process depends on the present value of the input
signal and on a linear combination of past samples of the process. This indicates the presence of a
feedback of the output signal.

For the special case where ai = 0 for i = 1, 2, . . . , N , the process is identified as a moving average
(MA) process. This terminology indicates that the process depends on a linear combination of the
present and past samples of the input signal. In summary, an ARMA process can be generated by
applying a white noise to the input of a digital filter with poles and zeros, whereas for the AR and
MA cases the digital filters are all-pole and all-zero filters, respectively.
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2.2.2.2 Markov Process

A stochastic process is called a Markov process if its past has no influence in the future when the
present is specified [14], [16]. In other words, the present behavior of the process depends only on
the most recent past, i.e., all behavior previous to the most recent past is not required. A first-order
AR process is a first-order Markov process, whereas an N th-order AR process is considered an
N th-order Markov process. Take as an example the sequence

y(k) = ay(k − 1) + n(k) (2.30)

where n(k) is a white noise process. The process represented by y(k) is determined by y(k − 1)
and n(k), and no information before the instant k− 1 is required. We conclude that y(k) represents
a Markov process. In the previous example, if a = 1 and y(−1) = 0 the signal y(k), for k ≥ 0, is a
sum of white noise samples, usually called random walk sequence.

Formally, an mth-order Markov process satisfies the following condition: for all k ≥ 0, and for a
fixed m, it follows that

Px(k) (y|x(k − 1), x(k − 2), . . . , x(0)) = Px(k) (y|x(k − 1), x(k − 2), . . . , x(k −m)) (2.31)

2.2.2.3 Wold Decomposition

Another important result related to any wide-sense stationary process x(k) is theWold decomposition,
which states that x(k) can be decomposed as

x(k) = xr(k) + xp(k) (2.32)

where xr(k) is a regular process that is equivalent to the response of a stable, linear, time-invariant,
and causal filter to a white noise [16], and xp(k) is a perfectly predictable (deterministic or singular)
process. Also, xp(k) and xr(k) are orthogonal processes, i.e., E[xr(k)xp(k)] = 0. The key factor
here is that the regular process can be modeled through a stable autoregressive model [24] with a
stable and causal inverse. The importance of Wold decomposition lies on the observation that a
WSS process can in part be represented by an AR process of adequate order, with the remaining part
consisting of a perfectly predictable process. Obviously, the perfectly predictable process part of
x(k) also admits an AR model with zero excitation.

2.2.2.4 Power Spectral Density

Stochastic signals that are wide-sense stationary are persistent and therefore are not finite-energy
signals. On the other hand, they have finite-power such that the generalized discrete-time Fourier
transform can be applied to them. When the generalized discrete-time Fourier transform is applied
to a WSS process it leads to a random function of the frequency [16]. On the other hand, the
autocorrelation functions of most practical stationary processes have discrete-time Fourier transform.
Therefore, the discrete-time Fourier transform of the autocorrelation function of a stationary random
process can be very useful in many situations. This transform, called power spectral density, is
defined as

Rx(ejω) =
∞∑

l=−∞
rx(l)e−jωl = F [rx(l)] (2.33)
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where rx(l) is the autocorrelation of the process represented by x(k). The inverse discrete-time
Fourier transform allows us to recover rx(l) from Rx(ejω), through the relation

rx(l) =
1
2π

∫ π

−π

Rx(ejω)ejωldω = F−1[Rx(ejω)] (2.34)

It should be mentioned that Rx(ejω) is a deterministic function of ω, and can be interpreted as the
power density of the random process at a given frequency in the ensemble4, i.e., considering the
average outcome of all possible realizations of the process. In particular, the mean squared value of
the process represented by x(k) is given by

rx(0) =
1
2π

∫ π

−π

Rx(ejω)dω (2.35)

If the random signal representing any single realization of a stationary process is applied as input to
a linear and time-invariant filter, with impulse response h(k), the following equalities are valid and
can be easily verified:

y(k) =
∞∑

n=−∞
x(n)h(k − n) = x(k) ∗ h(k) (2.36)

ry(l) = rx(l) ∗ rh(l) (2.37)

Ry(ejω) = Rx(ejω)|H(ejω)|2 (2.38)

ryx(l) = rx(l) ∗ h(l) = E[x∗(l)y(l)] (2.39)

Ryx(ejω) = Rx(ejω)H(ejω) (2.40)

where rh(l) = h(l) ∗h(−l), Ry(ejω) is the power spectral density of the output signal, ryx(k) is the
cross-correlation of x(k) and y(k), and Ryx(ejω) is the corresponding cross-power spectral density.

The main feature of the spectral density function is to allow a simple analysis of the correlation
behavior of WSS random signals processed with linear time-invariant systems. As an illustration,
suppose a white noise is applied as input to a lowpass filter with impulse response h(k) and sharp
cutoff at a given frequency ωl. The autocorrelation function of the output signal y(k) will not be
a single impulse, it will be h(k) ∗ h(−k). Therefore, the signal y(k) will look like a band-limited
random signal, in this case, a slow-varying noise. Some properties of the function Rx(ejω) of a
discrete-time and stationary stochastic process are worth mentioning. The power spectrum density
is a periodic function of ω, with period 2π, as can be verified from its definition. Also, since for
a stationary and complex random process we have rx(−l) = r∗x(l), Rx(ejω) is real. Despite the
usefulness of the power spectrum density function in dealing with WSS processes, it will not be
widely used in this book since usually the filters considered here are time varying. However, it
should be noted its important role in areas such as spectrum estimation [25]-[26].

4The average signal power at a given sufficiently small frequency range, Δω, around a center frequency ω0 is approximately
given by Δω

2π
Rx(ejω0 ).
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If the Z-transforms of the autocorrelation and cross-correlation functions exist, we can generalize
the definition of power spectral density. In particular, the definition of equation (2.33) corresponds
to the following relation

Z[rx(k)] = Rx(z) =
∞∑

k=−∞
rx(k)z−k (2.41)

If the random signal representing any single realization of a stationary process is applied as input to
a linear and time-invariant filter with impulse response h(k), the following equalities are valid:

Ry(z) = Rx(z)H(z)H(z−1) (2.42)

and
Ryx(z) = Rx(z)H(z) (2.43)

where H(z) = Z[h(l)]. If we wish to calculate the cross-correlation of y(k) and x(k), namely
ryx(0), we can use the inverse Z-transform formula as follows:

E[y(k)x∗(k)] =
1

2πj

∮
Ryx(z)

dz

z

=
1

2πj

∮
H(z)Rx(z)

dz

z
(2.44)

where the integration path is a counterclockwise closed contour in the region of convergence of
Ryx(z). The contour integral above equation is usually solved through the Cauchy’s residue theo-
rem [8].

2.2.3 Ergodicity

In the probabilistic approach, the statistical parameters of the real data are obtained through ensemble
averages (or expected values). The estimation of any parameter of the stochastic process can be
obtained by averaging a large number of realizations of the given process, at each instant of time.
However, in many applications only a few or even a single sample of the process is available. In these
situations, we need to find out in which cases the statistical parameters of the process can be estimated
by using time average of a single sample (or ensemble member) of the process. This is obviously
not possible if the desired parameter is time varying. The equivalence between the ensemble average
and time average is called ergodicity [14], [16].

The time average of a given stationary process represented by x(k) is calculated by

m̂xN
=

1
2N + 1

N∑
k=−N

x(k) (2.45)

If
σ2

m̂xN
= lim

N→∞
E{|m̂xN

−mx|2} = 0
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the process is said to be mean-ergodic in the mean-square sense. Therefore, the mean-ergodic process
has time average that approximates the ensemble average as N →∞. Obviously, m̂xN

is an unbiased
estimate of mx since

E[m̂xN
] =

1
2N + 1

N∑
k=−N

E[x(k)] = mx (2.46)

Therefore, the process will be considered ergodic if the variance of m̂xN
tends to zero (σ2

m̂xN
→ 0)

when N →∞. The variance σ2
m̂xN

can be expressed after some manipulations as

σ2
m̂xN

=
1

2N + 1

2N∑
l=−2N

σ2
x(k + l, k)

(
1− |l|

2N + 1

)
(2.47)

where σ2
x(k + l, k) is the autocovariance of the stochastic process x(k). The variance of m̂xN

tends
to zero if and only if

lim
N→∞

1
N

N∑
l=0

σ2
x(k + l, k) → 0

The above condition is necessary and sufficient to guarantee that the process is mean-ergodic.

The ergodicity concept can be extended to higher order statistics. In particular, for second-order
statistics we can define the process

xl(k) = x(k + l)x∗(k) (2.48)

where the mean of this process corresponds to the autocorrelation of x(k), i.e., rx(l). Mean-ergodicity
of xl(k) implies mean-square ergodicity of the autocorrelation of x(k).

The time average of xl(k) is given by

m̂xl,N
=

1
2N + 1

N∑
k=−N

xl(k) (2.49)

that is an unbiased estimate of rx(l). If the variance of m̂xl,N
tends to zero as N tends to infinity,

the process x(k) is said to be mean-square ergodic of the autocorrelation, i.e.,

lim
N→∞

E{|m̂xl,N
− rx(l)|2} = 0 (2.50)

The above condition is satisfied if and only if

lim
N→∞

1
N

N∑
i=0

E{x(k + l)x∗(k)x(k + l + i)x∗(k + i)} − r2
x(l) = 0 (2.51)

where it is assumed that x(n) has stationary fourth-order moments. The concept of ergodicity can
be extended to nonstationary processes [16], however, that is beyond the scope of this book.
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2.3 THE CORRELATION MATRIX

Usually, adaptive filters utilize the available input signals at instant k in their updating equations.
These inputs are the elements of the input signal vector denoted by

x(k) = [x0(k) x1(k) . . . xN (k)]T

The correlation matrix is defined as R = E[x(k)xH(k)], where xH(k) is the Hermitian transposition
of x(k), that means transposition followed by complex conjugation or vice versa. As will be noted,
the characteristics of the correlation matrix play a key role in the understanding of properties of
most adaptive-filtering algorithms. As a consequence, it is important to examine the main properties
of the matrix R. Some properties of the correlation matrix come from the statistical nature of the
adaptive-filtering problem, whereas other properties derive from the linear algebra theory.

For a given input vector, the correlation matrix is given by

R =

⎡
⎢⎢⎢⎣

E[|x0(k)|2] E[x0(k)x∗1(k)] · · · E[x0(k)x∗N (k)]
E[x1(k)x∗0(k)] E[|x1(k)|2] · · · E[x1(k)x∗N (k)]

...
...

. . .
...

E[xN (k)x∗0(k)] E[xN (k)x∗1(k)] · · · E[|xN (k)|2]

⎤
⎥⎥⎥⎦

= E[x(k)xH(k)] (2.52)

The main properties of the R matrix are listed below:

1. The matrix R is positive semidefinite.

Proof:

Given an arbitrary complex weight vector w, we can form a signal given by

y(k) = wHx(k)

The magnitude squared of y(k) is

y(k)y∗(k) = |y(k)|2 = wHx(k)xH(k)w ≥ 0

The mean-square (MS) value of y(k) is then given by

MS[y(k)] = E[|y(k)|2] = wHE[x(k)xH(k)]w = wHRw ≥ 0

Therefore, the matrix R is positive semidefinite.

�

Usually, the matrix R is positive definite, unless the signals that compose the input vector are
linearly dependent. Linear dependent signals are rarely found in practice.
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2. The matrix R is Hermitian, i.e.,
R = RH (2.53)

Proof:

RH = E{[x(k)xH(k)]H} = E[x(k)xH(k)] = R

�

3. A matrix is Toeplitz if the elements of the main diagonal and of any secondary diagonal are
equal. When the input signal vector is composed of delayed versions of the same signal (that
is, xi(k) = x0(k − i), for i = 1, 2, . . . , N ) taken from a WSS process, matrix R is Toeplitz.

Proof:

For the delayed signal input vector, with x(k) WSS, matrix R has the following form

R =

⎡
⎢⎢⎢⎣

rx(0) rx(1) · · · rx(N)
rx(−1) rx(0) · · · rx(N − 1)

...
...

. . .
...

rx(−N) rx(−N + 1) · · · rx(0)

⎤
⎥⎥⎥⎦ (2.54)

By examining the right-hand side of the above equation, we can easily conclude that R is
Toeplitz.

�

Note that r∗x(i) = rx(−i), what also follows from the fact that the matrix R is Hermitian.

If matrix R given by equation (2.54) is nonsingular for a given N , the input signal is said to be
persistently exciting of order N + 1. This means that the power spectral density Rx(ejω) is different
from zero at least at N + 1 points in the interval 0 < ω ≤ 2π. It also means that a nontrivial
N th-order FIR filter (with at least one nonzero coefficient) cannot filter x(k) to zero. Note that a
nontrivial filter, with x(k) as input, would require at least N + 1 zeros in order to generate an output
with all samples equal to zero. The absence of persistence of excitation implies the misbehavior of
some adaptive algorithms [17], [18]. The definition of persistence of excitation is not unique, and it
is algorithm dependent (see the book by Johnson [17] for further details).

From now on in this section, we discuss some properties of the correlation matrix related to its
eigenvalues and eigenvectors. A number λ is an eigenvalue of the matrix R, with a corresponding
eigenvector q, if and only if

Rq = λq (2.55)

or equivalently
det(R− λI) = 0 (2.56)

where I is the (N + 1) by (N + 1) identity matrix. Equation (2.56) is called characteristic equation
of R, and has (N + 1) solutions for λ. We denote the (N + 1) eigenvalues of R by λ0, λ1, . . . , λN .
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Note also that for every value of λ, the vector q = 0 satisfies equation (2.55), however we consider
only those particular values of λ that are linked to a nonzero eigenvector q.

Some important properties related to the eigenvalues and eigenvectors of R, that will be useful in the
following chapters, are listed below.

1. The eigenvalues of Rm are λm
i , for i = 0, 1, 2, . . . , N .

Proof:

By premultiplying equation (2.55) by Rm−1, we obtain

Rm−1Rqi = Rm−1λiqi = λiR
m−2Rqi

= λiR
m−2λiqi = λ2

i Rm−3Rqi

= · · · = λm
i qi (2.57)

�

2. Suppose R has N + 1 linearly independent eigenvectors qi; then if we form a matrix Q with
columns consisting of the qi’s, it follows that

Q−1RQ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ0 0 · · · 0

0 λ1
...

... 0 · · · ...

...
... 0

0 0 · · · λN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= Λ (2.58)

Proof:

RQ = R[q0 q1 · · ·qN ] = [λ0q0 λ1q1 · · ·λN qN ]

= Q

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ0 0 · · · 0

0 λ1
...

... 0 · · · ...

...
... 0

0 0 · · · λN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= QΛ

Therefore, since Q is invertible because the qi’s are linearly independent, we can show that

Q−1RQ = Λ

�
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3. The nonzero eigenvectors q0, q1, . . . qN that correspond to different eigenvalues are linearly
independent.

Proof:

If we form a linear combination of the eigenvectors such that

a0q0 + a1q1 + · · ·+ aN qN = 0 (2.59)

By multiplying the above equation by R we have

a0Rq0 + a1Rq1 + · · ·+ aN RqN = a0λ0q0 + a1λ1q1 + · · ·+ aNλN qN = 0 (2.60)

Now by multiplying equation (2.59) by λN and subtracting the result from equation (2.60), we
obtain

a0(λ0 − λN )q0 + a1(λ1 − λN )q1 + · · ·+ aN−1(λN−1 − λN )qN−1 = 0

By repeating the above steps, i.e., multiplying the above equation by R in one instance and by
λN−1 on the other instance, and subtracting the results, it yields

a0(λ0 − λN )(λ0 − λN−1)q0 + a1(λ1 − λN )(λ1 − λN−1)q1

+ · · ·+ aN−2(λN−2 − λN−1)qN−2 = 0

By repeating the same above steps several times, we end up with

a0(λ0 − λN )(λ0 − λN−1) · · · (λ0 − λ1)q0 = 0

Since we assumed λ0 �= λ1, λ0 �= λ2, . . . λ0 �= λN , and q0 was assumed nonzero, then a0 = 0.

The same line of thought can be used to show that a0 = a1 = a2 = · · · = aN = 0 is the only
solution for equation (2.59). Therefore, the eigenvectors corresponding to different eigenvalues
are linearly independent.

�

Not all matrices are diagonalizable. A matrix of order (N + 1) is diagonalizable if it possesses
(N + 1) linearly independent eigenvectors. A matrix with repeated eigenvalues can be diago-
nalized or not, depending on the linear dependency of the eigenvectors. A nondiagonalizable
matrix is called defective [19].

4. Since the correlation matrix R is Hermitian, i.e., RH = R, its eigenvalues are real. These
eigenvalues are equal to or greater than zero given that R is positive semidefinite.

Proof:

First note that given an arbitrary complex vector w,

(wHRw)H = wHRH(wH)H = wHRw

Therefore, wHRw is a real number. Assume now that λi is an eigenvalue of R corresponding
to the eigenvector qi, i.e., Rqi = λiqi. By premultiplying this equation by qH

i , it follows that

qH
i Rqi = λiqH

i qi = λi‖qi‖2

where the operation ‖a‖2 =|a0|2+ |a1|2+ · · ·+ |aN |2 is the Euclidean norm squared of the vector
a, that is always real. Since the term on the left hand is also real, ‖qi‖2 �= 0, and R is positive
semidefinite, we can conclude that λi is real and nonnegative.

�
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Note that Q is not unique since each qi can be multiplied by an arbitrary nonzero constant, and
the resulting vector continues to be an eigenvector5. For practical reasons, we consider only
normalized eigenvectors having length one, that is

qH
i qi = 1 for i = 0, 1, . . . , N (2.61)

5. If R is a Hermitian matrix with different eigenvalues, the eigenvectors are orthogonal to each
other. As a consequence, there is a diagonalizing matrix Q that is unitary, i.e., QHQ = I.

Proof:

Given two eigenvalues λi and λj , it follows that

Rqi = λiqi

and
Rqj = λjqj (2.62)

Using the fact that R is Hermitian and that λi and λj are real, then

qH
i R = λiqH

i

and by multiplying this equation on the right by qj , we get

qH
i Rqj = λiqH

i qj

Now by premultiplying equation (2.62) by qH
i , it follows that

qH
i Rqj = λjqH

i qj

Therefore,
λiqH

i qj = λjqH
i qj

Since λi �= λj , it can be concluded that

qH
i qj = 0 for i �= j

If we form matrix Q with normalized eigenvectors, matrix Q is a unitary matrix.

�

5We can also change the order in which the qi’s compose matrix Q, but this fact is not relevant for the present discussion.
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An important result is that any Hermitian matrix R can be diagonalized by a suitable unitary
matrix Q, even if the eigenvalues of R are not distinct. The proof is omitted here and can be
found in [19]. Therefore, for Hermitian matrices with repeated eigenvalues it is always possible
to find a complete set of orthonormal eigenvectors.

A useful form to decompose a Hermitian matrix that results from the last property is

R = QΛQH =
N∑

i=0

λiqiq
H
i (2.63)

that is known as spectral decomposition. From this decomposition, one can easily derive the
following relation

wHRw =
N∑

i=0

λiwHqiq
H
i w =

N∑
i=0

λi|wHqi|2 (2.64)

In addition, since qi = λiR
−1qi, the eigenvectors of a matrix and of its inverse coincide,

whereas the eigenvalues are reciprocals of each other. As a consequence,

R−1 =
N∑

i=0

1
λi

qiq
H
i (2.65)

Another consequence of the unitary property of Q for Hermitian matrices is that any Hermitian
matrix can be written in the form

R =
[√

λ0q0

√
λ1q1...

√
λN qN

]
⎡
⎢⎢⎢⎣
√

λ0qH
0√

λ1qH
1

...√
λN qH

N

⎤
⎥⎥⎥⎦

= LLH (2.66)

6. The sum of the eigenvalues of R is equal to the trace of R, and the product of the eigenvalues
of R is equal to the determinant of R6.

Proof:

tr[Q−1RQ] = tr[Λ]

where, tr[A] =
∑N

i=0 aii. Since tr[A′A] = tr[AA′], we have

tr[Q−1RQ] = tr[RQQ−1] = tr[RI] = tr[R] =
N∑

i=0

λi

Also det[Q−1 R Q] = det[R] det[Q] det[Q−1] = det[R] = det[Λ] =
∏N

i=0 λi

�

6This property is valid for any square matrix, but for more general matrices the proof differs from the one presented here.
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7. The Rayleigh’s quotient defined as

R =
wHRw
wHw

(2.67)

of a Hermitian matrix is bounded by the minimum and maximum eigenvalues, i.e.,

λmin ≤ R ≤ λmax (2.68)

where the minimum and maximum values are reached when the vector w is chosen to be the
eigenvector corresponding to the minimum and maximum eigenvalues, respectively.

Proof:

Suppose w = Qw′, where Q is the matrix that diagonalizes R, then

R =
w′HQHRQw′

w′HQHQw′

=
w′HΛw′

w′Hw′

=
∑N

i=0 λiw
′
i
2∑N

i=0 w′i
2 (2.69)

It is then possible to show, see problem 14, that the minimum value for the above equation
occurs when wi = 0 for i �= j and λj is the smallest eigenvalue. Identically, the maximum
value forR occurs when wi = 0 for i �= l, where λl is the largest eigenvalue.

�

There are several ways to define the norm of a matrix. In this book the norm of a matrix R,
denoted by ‖R‖, is defined by

‖R‖2 = max
w �=0

‖Rw‖2
‖w‖2

= max
w �=0

wHRHRw
wHw

(2.70)

Note that the norm of R is a measure of how a vector w grows in magnitude, when it is multiplied
by R.

When the matrix R is Hermitian, the norm of R is easily obtained by using the results of equations
(2.57) and (2.68). The result is

‖R‖ = λmax (2.71)

where λmax is the maximum eigenvalue of R.

A common problem that we encounter in adaptive filtering is the solution of a system of linear
equations such as

Rw = p (2.72)
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In case there is an error in the vector p, originated by quantization or estimation, how does it
affect the solution of the system of linear equations? For a positive definite Hermitian matrix R,
it can be shown [19] that the relative error in the solution of the above linear system of equations
is bounded by

‖Δw‖
‖w‖ ≤ λmax

λmin

‖Δp‖
‖p‖ (2.73)

where λmax and λmin are the maximum and minimum values of the eigenvalues of R, respec-
tively. The ratio λmax/λmin is called condition number of a matrix, that is

C =
λmax

λmin
= ‖R‖‖R−1‖ (2.74)

The value of C influences the convergence behavior of a number of adaptive-filtering algorithms,
as will be seen in the following chapters. Large value of C indicates that the matrix R is ill-
conditioned, and that errors introduced by the manipulation of R may be largely amplified.
When C = 1, the matrix is perfectly conditioned. In case R represents the correlation matrix of
the input signal of an adaptive filter, with the input vector composed by uncorrelated elements
of a delay line (see Fig. 2.1.b, and the discussions around it), then C = 1.

Example 2.1

Suppose the input signal vector is composed by a delay line with a single input signal, i.e.,

x(k) = [x(k) x(k − 1) . . . x(k −N)]T

Given the following input signals:

(a)
x(k) = n(k)

(b)
x(k) = a cos ω0k + n(k)

(c)

x(k) =
M∑
i=0

bin(k − i)

(d)
x(k) = −a1x(k − 1) + n(k)

(e)
x(k) = aej(ω0k+n(k))

where n(k) is a white noise with zero mean and variance σ2
n; in case (e) n(k) is uniformly distributed

in the range −π to π.
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Calculate the autocorrelation matrix R for N = 3.

Solution:

(a) In this case, we have that E[x(k)x(k − l)] = σ2
nδ(l), where δ(l) denotes an impulse sequence.

Therefore,

R = E[x(k)xT (k)] = σ2
n

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎥⎦ (2.75)

(b) In this example, n(k) is zero mean and uncorrelated with the deterministic cosine. The autocor-
relation function can then be expressed as

r(k, k − l) = E[a2 cos(ω0k) cos(ω0k − ω0l) + n(k)n(k − l)]
= a2E[cos(ω0k) cos(ω0k − ω0l)] + σ2

nδ(l)

=
a2

2
[cos(ω0l) + cos(2ω0k − ω0l)] + σ2

nδ(l) (2.76)

where δ(l) again denotes an impulse sequence. Since part of the input signal is deterministic and
nonstationary, the autocorrelation is time dependent.

For the 3× 3 case the input signal correlation matrix R(k) becomes

a2

2

⎡
⎣ 1 + cos 2ω0k + 2

a2 σ2
n cos ω0 + cos ω0(2k − 1) cos 2ω0 + cos 2ω0(k − 1)

cos ω0 + cos ω0(2k − 1) 1 + cos 2ω0(k − 1) + 2
a2 σ2

n cos ω0 + cos ω0(2(k − 1)− 1)
cos 2ω0 + cos 2ω0(k − 1) cos ω0 + cos ω0(2(k − 1)− 1) 1 + cos 2ω0(k − 2) + 2

a2 σ2
n

⎤
⎦

(c) By exploring the fact that n(k) is a white noise, we can perform the following simplifications:

r(l) = E[x(k)x(k − l)] = E

⎡
⎣M−l∑

j=0

M∑
i=0

bibjn(k − i)n(k − l − j)

⎤
⎦

=
M−l∑
j=0

bjbl+jE[n2(k − l − j)] = σ2
n

M∑
j=0

bjbl+j

0 ≤ l + j ≤M (2.77)

where from the third to the fourth relation we used the fact that E[n(k − i)n(k − l − j)] = 0 for
i �= l + j. For M = 3, the correlation matrix has the following form

R = σ2
n

⎡
⎢⎢⎣

∑3
i=0 b2

i

∑2
i=0 bibi+1

∑1
i=0 bibi+2 b0b3∑2

i=0 bibi+1
∑3

i=0 b2
i

∑2
i=0 bibi+1

∑1
i=0 bibi+2∑1

i=0 bibi+2
∑2

i=0 bibi+1
∑3

i=0 b2
i

∑2
i=0 bibi+1

b0b3
∑1

i=0 bibi+2
∑2

i=0 bibi+1
∑3

i=0 b2
i

⎤
⎥⎥⎦ (2.78)
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(d) By solving the difference equation, we can obtain the correlation between x(k) and x(k− l), that
is

x(k) = (−a1)lx(k − l) +
l−1∑
j=0

(−a1)jn(k − j) (2.79)

Multiplying x(k− l) on both sides of the above equation and taking the expected value of the result,
we obtain

E[x(k)x(k − l)] = (−a1)lE[x2(k − l)] (2.80)

since x(k − l) is independent of n(k − j) for j ≤ l − 1.

For l = 0, just calculate x2(k) and apply the expectation operation to the result. The partial result is

E[x2(k)] = a2
1E[x2(k − 1)] + E[n2(k)] (2.81)

therefore,

E[x2(k)] =
σ2

n

1− a2
1

(2.82)

assuming x(k) is WSS.

The elements of R are then given by

r(l) =
(−a1)|l|

1− a2
1

σ2
n (2.83)

and the 3× 3 autocorrelation matrix becomes

R =
σ2

n

1− a2
1

⎡
⎣ 1 −a1 a2

1
−a1 1 −a1
a2
1 −a1 1

⎤
⎦

(e) In this case, we are interested in calculating the autocorrelation of a complex sequence, that is

r(l) = E[x(k)x∗(k − l)]
= a2E[e−j(−ω0l−n(k)+n(k−l))] (2.84)
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By recalling the definition of expected value in equation (2.9), for l �= 0,

r(l) = a2ejω0l

∫ ∞

−∞

∫ ∞

−∞
e−j(−n0+n1)pn(k),n(k−l)(n0, n1)dn0dn1

= a2ejω0l

∫ π

−π

∫ π

−π

e−j(−n0+n1)pn(k)(n0)pn(k−l)(n1)dn0dn1

= a2ejω0l

∫ π

−π

∫ π

−π

e−j(−n0+n1) 1
2π

1
2π

dn0dn1

= a2ejω0l 1
4π2

∫ π

−π

∫ π

−π

e−j(−n0+n1)dn0dn1

= a2ejω0l 1
4π2

[∫ π

−π

ejn0dn0

] [∫ π

−π

e−jn1dn1

]

= a2ejω0l 1
4π2

[
ejπ − e−jπ

j

] [−e−jπ + ejπ

j

]
= −a2ejω0l 1

π2 (sin π)(sinπ) = 0 (2.85)

where in the fifth equality it is used the fact that n(k) and n(k − l), for l �= 0, are independent.

For l = 0

r(0) = E[x(k)x∗(k)] = a2ej(ω00) = a2

Therefore,

r(l) = E[x(k)x∗(k − l)] = a2ej(ω0l)δ(l)

where in the 3× 3 case

R =

⎡
⎣ a2 0 0

0 a2 0
0 0 a2

⎤
⎦

At the end it was verified the fact that when we have two exponential functions (l �= 0) with uniformly
distributed white noise in the range of−kπ to kπ as exponents, these exponentials are nonorthogonal
only if l = 0, where k is a positive integer.

�

In the remaining part of this chapter and in the following chapters, we will treat the algorithms for
real and complex signals separately. The derivations of the adaptive-filtering algorithms for complex
signals are usually straightforward extensions of the real signal cases, and some of them are left as
exercises.
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2.4 WIENER FILTER

One of the most widely used objective function in adaptive filtering is the mean-square error (MSE)
defined as

F [e(k)] = ξ(k) = E[e2(k)] = E[d2(k)− 2d(k)y(k) + y2(k)] (2.86)

where d(k) is the reference signal as illustrated in Fig. 1.1.

Suppose the adaptive filter consists of a linear combiner, i.e., the output signal is composed by a
linear combination of signals coming from an array as depicted in Fig. 2.1.a. In this case,

y(k) =
N∑

i=0

wi(k)xi(k) = wT (k)x(k) (2.87)

where x(k) = [x0(k)x1(k) . . . xN (k)]T and w(k) = [w0(k)w1(k) . . . wN (k)]T are the input signal
and the adaptive-filter coefficient vectors, respectively.

In many applications, each element of the input signal vector consists of a delayed version of the
same signal, that is: x0(k) = x(k), x1(k) = x(k − 1), . . . , xN (k) = x(k − N). Note that in this
case the signal y(k) is the result of applying an FIR filter to the input signal x(k).

Since most of the analyses and algorithms presented in this book apply equally to the linear combiner
and the FIR filter cases, we will mostly consider the latter case throughout the rest of the book. The
main reason for this decision is that the fast algorithms for the recursive least-squares solution, to
be discussed in the forthcoming chapters, explore the fact that the input signal vector consists of the
output of a delay line with a single input signal, and, as a consequence, are not applicable to the
linear combiner case.

The most straightforward realization for the adaptive filter is through the direct-form FIR structure
as illustrated in Fig. 2.1.b, with the output given by

y(k) =
N∑

i=0

wi(k)x(k − i) = wT (k)x(k) (2.88)

where x(k) = [x(k) x(k − 1) . . . x(k − N)]T is the input vector representing a tapped-delay line,
and w(k) = [w0(k) w1(k) . . . wN (k)]T is the tap-weight vector.

In both the linear combiner and FIR filter cases, the objective function can be rewritten as

E[e2(k)] = ξ(k)
= E

[
d2(k)− 2d(k)wT (k)x(k) + wT (k)x(k)xT (k)w(k)

]
= E[d2(k)]− 2E[d(k)wT (k)x(k)] + E[wT (k)x(k)xT (k)w(k)] (2.89)

For a filter with fixed coefficients, the MSE function in a stationary environment is given by

ξ = E[d2(k)]− 2wT E[d(k)x(k)] + wT E[x(k)xT (k)]w
= E[d2(k)]− 2wT p + wT Rw (2.90)
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Figure 2.1 (a) Linear combiner; (b) Adaptive FIR filter.
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where p = E[d(k)x(k)] is the cross-correlation vector between the desired and input signals, and
R = E[x(k)xT (k)] is the input signal correlation matrix. As can be noted, the objective function ξ
is a quadratic function of the tap-weight coefficients which would allow a straightforward solution
for w that minimizes ξ, if vector p and matrix R are known. Note that matrix R corresponds to the
Hessian matrix of the objective function defined in the previous chapter.

If the adaptive filter is implemented through an IIR filter, the objective function is a nonquadratic
function of the filter parameters, turning the minimization problem into a much more difficult one.
Local minima are likely to exist, rendering some solutions obtained by gradient-based algorithms
unacceptable. Despite its disadvantages, adaptive IIR filters are needed in a number of applications
where the order of a suitable FIR filter is too high. Typical applications include data equalization in
communication channels and cancellation of acoustic echo, see Chapter 10.

The gradient vector of the MSE function related to the filter tap-weight coefficients is given by7

gw =
∂ξ

∂w
=
[

∂ξ

∂w0

∂ξ

∂w1
. . .

∂ξ

∂wN

]T

= −2p + 2Rw (2.91)

By equating the gradient vector to zero and assuming R is nonsingular, the optimal values for the
tap-weight coefficients that minimize the objective function can be evaluated as follows:

wo = R−1p (2.92)

This solution is called the Wiener solution. Unfortunately, in practice, precise estimations of R and p
are not available. When the input and the desired signals are ergodic, one is able to use time averages
to estimate R and p, what is implicitly performed by most adaptive algorithms.

If we replace the optimal solution for w in the MSE expression, we can calculate the minimum MSE
provided by the Wiener solution:

ξmin = E[d2(k)]− 2wT
o p + wT

o RR−1p

= E[d2(k)]− wT
o p (2.93)

The above equation indicates that the optimal set of parameters removes part of the power of the
desired signal through the cross-correlation between x(k) and d(k), assuming both signals stationary.
If the reference signal and the input signal are orthogonal, the optimal coefficients are equal to zero
and the minimum MSE is E[d2(k)]. This result is expected since nothing can be done with the
parameters in order to minimize the MSE if the input signal carries no information about the desired
signal. In this case, if any of the taps is nonzero, it would only increase the MSE.

An important property of the Wiener filter can be deduced if we analyze the gradient of the error
surface at the optimal solution. The gradient vector can be expressed as follows:

gw =
∂E[e2(k)]

∂w
= E[2e(k)

∂e(k)
∂w

] = −E[2e(k)x(k)] (2.94)

7Some books define gw as
[

∂ξ
∂w

]T
, here we follow the notation more widely used in the subject matter.
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With the coefficients set at their optimal values, i.e., at the Wiener solution, the gradient vector is
equal to zero, implying that

E[e(k)x(k)] = 0 (2.95)

or
E[e(k)x(k − i)] = 0 (2.96)

for i = 0, 1, . . . , N . This means that the error signal is orthogonal to the elements of the input signal
vector. In case either the error or the input signal has zero mean, the orthogonality property implies
that e(k) and x(k) are uncorrelated.

The orthogonality principle also applies to the correlation between the output signal y(k) and the
error e(k), when the tap weights are given by w = wo. By premultiplying the equation (2.95) by
wT

o , the desired result follows:

E[e(k)wT
o x(k)] = E[e(k)y(k)] = 0 (2.97)

The gradient with respect to a complex parameter has not been defined. For our purposes the complex
gradient vector can be defined as [25]

gw(k){F (e(k))} =
1
2

{
∂F [e(k)]
∂re[w(k)]

− j
∂F [e(k)]
∂im[w(k)]

}

where re[·] and im[·] indicate real and imaginary parts of [·], respectively. Note that the partial
derivatives are calculated for each element of w(k).

For the complex case the error signal and the MSE are, respectively, described by, see Appendix A
for details,

e(k) = d(k)− wH(k)x(k) (2.98)

and

ξ = E[|e(k)|2]
= E[|d(k)|2]− 2re{wHE[d∗(k)x(k)]}+ wHE[x(k)xH(k)]w
= E[|d(k)|2]− 2re[wHp] + wHRw (2.99)

where p = E[d∗(k)x(k)] is the cross-correlation vector between the desired and input signals, and
R = E[x(k)xH(k)] is the input signal correlation matrix. The Wiener solution in this case is also
given by equation (2.92).

Example 2.2

The input signal of a first-order adaptive filter is described by

x(k) = α1x1(k) + α2x2(k)
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where x1(k) and x2(k) are first-order AR processes and mutually uncorrelated having both unit
variance. These signals are generated by applying distinct white noises to first-order filters whose
poles are placed at −s1 and −s2, respectively.

(a) Calculate the autocorrelation matrix of the input signal.

(b) If the desired signal consists of x2(k), calculate the Wiener solution.

Solution:

(a)

The models for the signals involved are described by

xi(k) = −sixi(k − 1) + κini(k)

for i = 1, 2. According to equation (2.83) the autocorrelation of either xi(k) is given by

E[xi(k)xi(k − l)] = κ2
i

(−si)|l|

1− s2
i

σ2
n,i (2.100)

where σ2
n,i is the variance of ni(k). Since each signal xi(k) has unit variance, then by applying l = 0

to the above equation

κ2
i =

1− s2
i

σ2
n,i

(2.101)

Now by utilizing the fact that x1(k) and x2(k) are uncorrelated, the autocorrelation of the input
signal is

R =
[

α2
1 + α2

2 −α2
1s1 − α2

2s2
−α2

1s1 − α2
2s2 α2

1 + α2
2

]

p =
[

α2
−α2s2

]

(b)

The Wiener solution can then be expressed as

wo = R−1p

=
1

(α2
1 + α2

2)2 − (α2
1s1 + α2

2s2)2

[
α2

1 + α2
2 α2

1s1 + α2
2s2

α2
1s1 + α2

2s2 α2
1 + α2

2

] [
α2

−α2s2

]

=
1

(1 + α2
2

α2
1
)2 − (s1 + α2

2
α2

1
s2)2

⎡
⎣ 1 + α2

2
α2

1
s1 + α2

2
α2

1
s2

s1 + α2
2

α2
1
s2 1 + α2

2
α2

1

⎤
⎦[ α2

α2
1−α2

α2
1
s2

]

= α2

[
1

α2
1+α2

2−s1α2
1−s2α2

2
0

0 1
α2

1+α2
2+s1α2

1+s2α2
2

] [ 1−s2
2

− 1+s2
2

]
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Let’s assume that in this example our task was to detect the presence of x2(k) in the input signal. For
a fixed input-signal power, from this solution it is possible to observe that lower signal to interference

at the input, that is lower α2
2

α2
1

, leads to a Wiener solution vector with lower norm. This result reflects
the fact that the Wiener solution tries to detect the desired signal at the same time it avoids enhancing
the undesired signal, i.e., the interference x1(k).

�

2.5 LINEARLY CONSTRAINED WIENER FILTER

In a number of applications, it is required to impose some linear constraints on the filter coefficients
such that the optimal solution is the one that achieves the minimum MSE, provided the constraints
are met. Typical constraints are: unity norm of the parameter vector; linear phase of the adaptive
filter; prescribed gains at given frequencies.

In the particular case of an array of antennas the measured signals can be linearly combined to
form a directional beam, where the signal impinging on the array in the desired direction will have
higher gain. This application is called beamforming, where we specify gains at certain directions of
arrival. It is clear that the array is introducing another dimension to the received data, namely spatial
information. The weights in the antennas can be made adaptive leading to the so-called adaptive
antenna arrays. This is the principle behind the concept of smart antennas, where a set of adaptive
array processors filter the signals coming from the array, and direct the beam to several different
directions where a potential communication is required. For example, in a wireless communication
system we are able to form a beam for each subscriber according to its position, ultimately leading
to minimization of noise from the environment and interference from other subscribers.

In order to develop the theory of linearly constrained optimal filters, let us consider the particular
application of a narrowband beamformer required to pass without distortion all signals arriving at
90◦ with respect to the array of antennas. All other sources of signals shall be treated as interferers
and must be attenuated as much as possible. Fig. 2.2 illustrates the application. Note that in case the
signal of interest does not impinge the array at 90◦ with respect to the array, a steering operation in
the constraint vector c (to be defined) has to be performed [22].

The optimal filter that satisfies the linear constraints is called the linearly-constrained minimum-
variance (LCMV) filter.

If the desired signal source is sufficiently far from the array of antennas, then we may assume that
the wavefronts are planar at the array. Therefore, the wavefront from the desired source will reach
all antennas at the same instant, whereas the wavefront from the interferer will reach each antenna at
different time instants. Taking the antenna with input signal x0 as a time reference t0, the wavefront
will reach the ith antenna at [22]

ti = t0 + i
d cos θ

c
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Figure 2.2 Narrowband beamformer.

where θ is the angle between the antenna array and the interferer direction of arrival, d is the distance
between neighboring antennas, and c is the speed of propagation of the wave (3× 108 m/s).

For this particular case, the LCMV filter is the one that minimizes the array output signal energy

ξ = E[y2(k)] = E[wT x(k)xT (k)w]

subject to :
N∑

j=0

cjwj = f (2.102)

where

w = [w0 w1 . . . wN ]T

x(k) = [x0(k) x1(k) . . . xN (k)]T
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and

c = [1 1 . . . 1]T

is the constraint vector, since θ = 90◦. The desired gain is usually f = 1.

In the case the desired signal impinges the array at an angle θ with respect to the array, the incoming
signal reaches the ith antenna delayed by id cos θ

c with respect to the 0th antenna [23]. Let’s consider
the case of a narrowband array such that all antennas detect the impinging signal with the same
amplitude when measured taking into consideration their relative delays, which are multiples of
d cos θ

c . In such a case the optimal receiver coefficients would be

wi =
ejωτi

N + 1
(2.103)

for i = 0, 1, . . . , N , in order to add coherently the delays of the desired incoming signal at a given
direction θ. The impinging signal appear at the ith antenna multiplied by e−jωτi , considering the
particular case of array configuration of Fig. 2.2. In this uniform linear array, the antenna locations
are

pi = id

for i = 0, 1, . . . , N . Using the 0th antenna as reference, the signal will reach the array according to
the following pattern

c̃ = ejωt
[
1 e−jω d cos θ

c e−jω 2d cos θ
c . . . e−jω Nd cos θ

c

]T
= ejωt

[
1 e−j 2π

λ d cos θ e−j 2π
λ 2d cos θ . . . e−j 2π

λ Nd cos θ
]T

(2.104)

where the equality ω
c = 2π

λ was employed, with λ being the wavelength corresponding to the
frequency ω.

By defining the variable ψ(ω, θ) = 2π
λ d cos θ, we can describe the output signal of the beamformer

as

y = ejωt
N∑

i=0

wie−jψ(ω,θ)i

= ejωtH(ω, θ) (2.105)

where H(ω, θ) modifies the amplitude and phase of transmitted signal at a given frequency ω. Note
that the shaping function H(ω, θ) depends on the impinging angle.

For the sake of illustration, if the antenna separation is d = λ
2 , θ = 60◦, and N is odd, then the

constraint vector would be

c =
[
1 e−j π

2 e−jπ . . . e−j Nπ
2

]T
=
[
1 − j − 1 . . . e−j Nπ

2

]T
(2.106)



42 Chapter 2 Fundamentals of Adaptive Filtering

Using the method of Lagrange multipliers, we can rewrite the constrained minimization problem
described in equation (2.102) as

ξc = E[wT x(k)xT (k)w] + λ(cT w− f) (2.107)

The gradient of ξc with respect to w is equal to

gw = 2Rw + λc (2.108)

where R = E[x(k)xT (k)]. For a positive definite matrix R, the value of w that satisfies gw = 0 is
unique and minimizes ξc. Denoting wo as the optimal solution, we have

2Rwo + λc = 0

2cT wo + λcT R−1c = 0

2f + λcT R−1c = 0

where in order to obtain the second equality, we premultiply the first equation by cT R−1. Therefore,

λ = −2(cT R−1c)−1f

and the LCMV filter is

wo = R−1c(cT R−1c)−1f (2.109)

If more constraints need to be satisfied by the filter, these can be easily incorporated in a constraint
matrix and in a gain vector, such that

CT w = f (2.110)

In this case, the LCMV filter is given by

wo = R−1C(CT R−1C)−1f (2.111)

If there is a desired signal, the natural objective is the minimization of the MSE, not the output energy
as in the narrowband beamformer. In this case, it is straightforward to modify equation (2.107) and
obtain the optimal solution

wo = R−1p + R−1C(CT R−1C)−1(f− CT R−1p) (2.112)

where p = E[d(k) x(k)] see problem 20.

In the case of complex input signals and constraints the optimal solution is given by

wo = R−1p + R−1C(CHR−1C)−1(f− CHR−1p) (2.113)

where CHw = f.
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Figure 2.3 The generalized sidelobe canceller.

2.5.1 The Generalized Sidelobe Canceller

An alternative implementation to the direct-form constrained adaptive filter showed above is called
the generalized sidelobe canceller (GSC) (see Fig. 2.3) [20].

For this structure the input signal vector is transformed by a matrix

T = [C B] (2.114)

where C is the constraint matrix and B is a blocking matrix that spans the null space of C, i.e., matrix
B satisfies

BT C = 0 (2.115)

The output signal y(k) shown in Fig. 2.3 is formed as

y(k) = wT
u CT x(k) + wT

l BT x(k)
= (Cwu + Bwl)T x(k)
= (Tw)T x(k)
= w̄T x(k) (2.116)

where w = [wT
u wT

l ]T and w̄ = Tw.

The linear constraints are satisfied if CT w̄ = f. But as CT B = 0, then the condition to be satisfied
becomes

CT w̄ = CT Cwu = f (2.117)

Therefore, for the GSC structure shown in Fig. 2.3 there is a necessary condition that the upper part
of the coefficient vector, wu, should be initialized as

wu = (CT C)−1f (2.118)

Minimization of the output energy is achieved with a proper choice of wl. In fact, we transformed
a constrained optimization problem into an unconstrained one, which in turn can be solved with the

C

B

x(k)

xu(k) yu(k)

y(k)
+

wu

wl
xl (k) yl (k)
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classical linear Wiener filter, i.e.,

min
wl

E[y2(k)] = min
wl

E{[yu(k) + wT
l xl(k)]2}

= wl,o

= −R−1
l pl (2.119)

where

Rl = E[xl(k)xT
l (k)]

= E[BT x(k)xT (k)B]
= BT [x(k)xT (k)]B
= BT RB (2.120)

and

pl = E[yu(k) xl(k)] = E[xl(k) yu(k)]
= E[BT x(k) wT

u CT x(k)]
= E[BT x(k) xT (k)Cwu]
= BT E[x(k) xT (k)]Cwu

= BT RCwu

= BT RC(CT C)−1f (2.121)

where in the above derivations we utilized the results and definitions from equations (2.116) and
(2.118).

Using the equations (2.120), (2.121), and (2.118), it is possible to show that

wl,o = −(BT RB)−1BT RC(CT C)−1f (2.122)

Given that wl,o is the solution to an unconstrained minimization problem of transformed quantities,
any unconstrained adaptive filter can be used to estimate recursively this optimal solution. The
drawback in the implementation of the GSC structure comes from the transformation of the input
signal vector via a constraint matrix and a blocking matrix. Although in theory any matrix with linearly
independent columns that spans the null space of C can be employed, in many cases the computational
complexity resulting from the multiplication of B by x(k) can be prohibitive. Furthermore, if the
transformation matrix T is not orthogonal, finite-precision effects may yield an overall unstable
system. A simple solution that guarantees orthogonality in the transformation and low computational
complexity can be obtained with a Householder transformation [21].

2.6 MEAN-SQUARE ERROR SURFACE

The mean-square error is a quadratic function of the parameters w. Assuming a given fixed w, the
MSE is not a function of time and can be expressed as

ξ = σ2
d − 2wT p + wT Rw (2.123)
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where σ2
d is the variance of d(k) assuming it has zero-mean. The MSE is a quadratic function of the tap

weights forming a hyperparaboloid surface. The MSE surface is convex and has only positive values.
For two weights, the surface is a paraboloid. Fig. 2.4 illustrates the MSE surface for a numerical
example where w has two coefficients. If the MSE surface is intersected by a plane parallel to the
w plane, placed at a level superior to ξmin, the intersection consists of an ellipse representing equal
MSE contours as depicted in Fig. 2.5. Note that in this figure we showed three distinct ellipses,
corresponding to different levels of MSE. The ellipses of constant MSE are all concentric.
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Figure 2.4 Mean-square error surface.

In order to understand the properties of the MSE surface, it is convenient to define a translated
coefficient vector as follows:

Δw = w− wo (2.124)

The MSE can be expressed as a function of Δw as follows:

ξ = σ2
d − wT

o p + wT
o p− 2wT p + wT Rw

= ξmin −ΔwT p− wT Rwo + wT Rw

= ξmin −ΔwT p + wT RΔw

= ξmin − wT
o RΔw + wT RΔw

= ξmin + ΔwT RΔw (2.125)

where we used the results of equations (2.92) and (2.93). The corresponding error surface contours
are depicted in Fig. 2.6.
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Figure 2.5 Contours of the MSE surface.
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Figure 2.6 Translated contours of the MSE surface.



472.7 Bias and Consistency

By employing the diagonalized form of R, the last equation can be rewritten as follows:

ξ = ξmin + ΔwT QΛQT Δw

= ξmin + vT Λv

= ξmin +
N∑

i=0

λiv
2
i (2.126)

where v = QT Δw are the rotated parameters.

The above form for representing the MSE surface is an uncoupled form, in the sense that each
component of the gradient vector of the MSE with respect to the rotated parameters is a function of
a single parameter, that is

gv[ξ] = [2λ0v0 2λ1v1 . . . 2λNvN ]T

This property means that if all vi’s are zero except one, the gradient direction coincides with the
nonzero parameter axis. In other words, the rotated parameters represent the principal axes of the
hyperellipse of constant MSE, as illustrated in Fig. 2.7. Note that since the rotated parameters are
the result of the projection of the original parameter vector Δw on the eigenvectors qi direction, it
is straightforward to conclude that the eigenvectors represent the principal axes of the constant MSE
hyperellipses.

The matrix of second derivatives of ξ as related to the rotated parameters is Λ. We can note that
the gradient will be steeper in the principal axes corresponding to larger eigenvalues. This is the
direction, in the two axes case, where the ellipse is narrow.

2.7 BIAS AND CONSISTENCY

The correct interpretation of the results obtained by the adaptive-filtering algorithm requires the
definitions of bias and consistency. An estimate is considered unbiased if the following condition is
satisfied

E[w(k)] = wo (2.127)

The difference E[w(k)]− wo is called the bias in the parameter estimate.

An estimate is considered consistent if

w(k) → wo as k →∞ (2.128)

Note that since w(k) is a random variable, it is necessary to define in which sense the limit is
taken. Usually, the limit with probability one is employed. In the case of identification, a system is
considered identifiable if the given parameter estimates are consistent. For a more formal treatment
on this subject refer to [18].
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Figure 2.7 Rotated contours of the MSE surface.

2.8 NEWTON ALGORITHM

In the context of the MSE minimization discussed in the previous section, see equation (2.123), the
coefficient-vector updating using the Newton method is performed as follows:

w(k + 1) = w(k)− μR−1gw(k) (2.129)

where its derivation originates from equation (1.4). Assuming the true gradient and the matrix R are
available, the coefficient-vector updating can be expressed as

w(k + 1) = w(k)− μR−1[−2p + 2Rw(k)] = (I− 2μI)w(k) + 2μwo (2.130)

where if μ = 1/2, the Wiener solution is reached in one step.

The Wiener solution can be approached using a Newton-like search algorithm, by updating the
adaptive-filter coefficients as follows:

w(k + 1) = w(k)− μR̂
−1

(k)ĝw(k) (2.131)

where R̂
−1

(k) is an estimate of R−1 and ĝw(k) is an estimate of gw, both at instant k. The parameter
μ is the convergence factor that regulates the convergence rate. Newton-based algorithms present,
in general, fast convergence. However, the estimate of R−1 is computationally intensive and can
become numerically unstable if special care is not taken. These factors made the steepest-descent-
based algorithms more popular in adaptive-filtering applications.
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2.9 STEEPEST-DESCENT ALGORITHM

In order to get a practical feeling of a problem that is being solved using the steepest-descent algorithm,
we assume that the optimal coefficient vector, i.e., the Wiener solution, is wo, and that the reference
signal is not corrupted by measurement noise8.

The main objective of the present section is to study the rate of convergence, the stability, and the
steady-state behavior of an adaptive filter whose coefficients are updated through the steepest-descent
algorithm. It is worth mentioning that the steepest-descent method can be considered an efficient
gradient-type algorithm, in the sense that it works with the true gradient vector, and not with an
estimate of it. Therefore, the performance of other gradient-type algorithms can at most be close
to the performance of the steepest-descent algorithm. When the objective function is the MSE, the
difficult task of obtaining the matrix R and the vector p impairs the steepest-descent algorithm from
being useful in adaptive-filtering applications. Its performance, however, serves as a benchmark for
gradient-based algorithms.

The steepest-descent algorithm updates the coefficients in the following general form

w(k + 1) = w(k)− μgw(k) (2.132)

where the above expression is equivalent to equation (1.6). It is worth noting that several alternative
gradient-based algorithms available replace gw(k) by an estimate ĝw(k), and they differ in the way
the gradient vector is estimated. The true gradient expression is given in equation (2.91) and, as can
be noted, it depends on the vector p and the matrix R, that are usually not available.

Substituting equation (2.91) in equation (2.132), we get

w(k + 1) = w(k)− 2μRw(k) + 2μp (2.133)

Now, some of the main properties related to the convergence behavior of the steepest-descent algo-
rithm in stationary environment are described. First, an analysis is required to determine the influence
of the convergence factor μ in the convergence behavior of the steepest-descent algorithm.

The error in the adaptive-filter coefficients when compared to the Wiener solution is defined as

Δw(k) = w(k)− wo (2.134)

The steepest-descent algorithm can then be described in an alternative way, that is:

Δw(k + 1) = Δw(k)− 2μ[Rw(k)− Rwo]
= Δw(k)− 2μRΔw(k)
= (I− 2μR) Δw(k) (2.135)

where the relation p = Rwo (see equation (2.92)) was employed. It can be shown from the above
equation that

Δw(k + 1) = (I− 2μR)k+1Δw(0) (2.136)

8Noise added to the reference signal originated from environment and/or thermal noise.
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or
w(k + 1) = wo + (I− 2μR)k+1[w(0)− wo] (2.137)

The equation (2.135) premultiplied by QT , where Q is the unitary matrix that diagonalizes R through
a similarity transformation, yields

QT Δw(k + 1) = (I− 2μQT RQ)QT Δw(k)
= v(k + 1)
= (I− 2μΛ)v(k)

=

⎡
⎢⎢⎢⎢⎣

1− 2μλ0 0 · · · 0

0 1− 2μλ1
...

...
...

. . .
...

0 0 1− 2μλN

⎤
⎥⎥⎥⎥⎦ v(k) (2.138)

In the above equation, v(k + 1) = QT Δw(k + 1) is the rotated coefficient-vector error. Using
induction, equation (2.138) can be rewritten as

v(k + 1) = (I− 2μΛ)k+1v(0)

=

⎡
⎢⎢⎢⎢⎣

(1− 2μλ0)k+1 0 · · · 0

0 (1− 2μλ1)k+1
...

...
...

. . .
...

0 0 (1− 2μλN )k+1

⎤
⎥⎥⎥⎥⎦ v(0) (2.139)

This equation shows that in order to guarantee the convergence of the coefficients, each element
1 − 2μλi must have an absolute value less than one. As a consequence, the convergence factor of
the steepest-descent algorithm must be chosen in the range

0 < μ <
1

λmax
(2.140)

where λmax is the largest eigenvalue of R. In this case, all the elements of the diagonal matrix in
equation (2.139) tend to zero as k →∞, resulting in v(k + 1)→ 0 for large k.

The μ value in the above range guarantees that the coefficient vector approaches the optimum coeffi-
cient vector wo. It should be mentioned that if matrix R has large eigenvalue spread, the convergence
speed of the coefficients will be primarily dependent on the value of the smallest eigenvalue. Note
that the slowest decaying element in equation (2.139) is given by (1− 2μλmin)k+1.

The MSE presents a transient behavior during the adaptation process, that can be analyzed in a
straightforward way if we employ the diagonalized version of R. Recalling from equation (2.125)
that

ξ(k) = ξmin + ΔwT (k)RΔw(k) (2.141)
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the MSE can then be simplified as follows:

ξ(k) = ξmin + ΔwT (k)QΛ QT Δw(k)
= ξmin + vT (k)Λ v(k)

= ξmin +
N∑

i=0

λiv
2
i (k) (2.142)

If we apply the result of equation (2.139) in equation (2.142), it can be shown that the following
relation results

ξ(k) = ξmin + vT (k − 1)(I− 2μΛ)Λ (I− 2μΛ)v(k − 1)

= ξmin +
N∑

i=0

λi(1− 2μλi)2kv2
i (0) (2.143)

The analyses presented in this section show that before the steepest-descent algorithm reaches the
steady-state behavior, there is a transient period where the error is usually high and the coefficients
are far from the Wiener solution. As can be seen from equation (2.139), in the case of the adaptive-
filter coefficients, the convergence will follow (N + 1) geometric decaying curves with ratios rwi =
(1−2μλi). Each of these curves can be approximated by an exponential envelope with time constant
τwi as follows [5]:

rwi = e
−1
τwi = 1− 1

τwi
+

1
2!τ2

wi

+ · · · (2.144)

In general, rwi is slightly smaller than one, specially in the cases of slowly decreasing modes that
correspond to small values λi and μ. Therefore,

rwi = (1− 2μλi) ≈ 1− 1
τwi

(2.145)

then

τwi ≈ 1
2μλi

for i = 0, 1, . . . , N .

For the convergence of the MSE, the range of values of μ is the same to guarantee the convergence
of the coefficients. In this case, due to the exponent 2k in equation (2.143), the geometric decaying
curves have ratios given by rei = (1 − 4μλi), that can be approximated by exponential envelopes
with time constants given by

τei ≈ 1
4μλi

(2.146)

for i = 0, 1, . . . , N , where it was considered that 4μ2λ2
i � 1. In the convergence of both the error

and the coefficients, the time required for the convergence depends on the ratio of the eigenvalues of
the input signal. Further discussions on convergence properties that apply to gradient-type algorithms
can be found in Chapter 3.
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Example 2.3

The matrix R and the vector p are known for a given experimental environment:

R =
[

1 0.4045
0.4045 1

]

p = [0 0.2939]T

E[d2(k)] = 0.5

(a) Deduce the equation for the MSE.

(b) Choose a small value for μ, and starting the parameters at [−1 − 2]T

plot the convergence path of the steepest-descent algorithm in the MSE surface.

(c) Repeat the previous item for the Newton algorithm starting at [0 − 2]T .

Solution:

(a) The MSE function is given by

ξ = E[d2(k)]− 2wT p + wT Rw

= σ2
d − 2[w1 w2]

[
0

0.2939

]
+ [w1 w2]

[
1 0.4045

0.4045 1

] [
w1
w2

]

After performing the algebraic calculations, we obtain the following result

ξ = 0.5 + w2
1 + w2

2 + 0.8090w1w2 − 0.5878w2

(b) The steepest-descent algorithm was applied to minimize the MSE using a convergence factor
μ = 0.1/λmax, where λmax = 1.4045. The convergence path of the algorithm in the MSE surface is
depicted in Fig. 2.8. As can be noted, the path followed by the algorithm first approaches the main
axis (eigenvector) corresponding to the smaller eigenvalue, and then follows toward the minimum in
a direction increasingly aligned with this main axis.

(c) The Newton algorithm was also applied to minimize the MSE using a convergence factor μ =
0.1/λmax. The convergence path of the Newton algorithm in the MSE surface is depicted in Fig.
2.9. The Newton algorithm follows a straight path to the minimum.

�
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Figure 2.8 Convergence path of the steepest-descent algorithm.
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Figure 2.9 Convergence path of the Newton algorithm.
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2.10 APPLICATIONS REVISITED

In this section, we give a brief introduction to the typical applications where the adaptive-filtering
algorithms are required, including a discussion of where in the real world these applications are
found. The main objective of this section is to illustrate how the adaptive-filtering algorithms, in
general, and the ones presented in the book, in particular, are applied to solve practical problems.
It should be noted that the detailed analysis of any particular application is beyond the scope of
this book. Nevertheless, a number of specific references are given for the interested reader. The
distinctive feature of each application is the way the adaptive filter input signal and the desired
signal are chosen. Once these signals are determined, any known properties of them can be used
to understand the expected behavior of the adaptive filter when attempting to minimize the chosen
objective function (for example, the MSE, ξ).

2.10.1 System Identification

The typical set up of the system identification application is depicted in Fig. 2.10. A common input
signal is applied to the unknown system and to the adaptive filter. Usually, the input signal is a
wideband signal, in order to allow the adaptive filter to converge to a good model of the unknown
system.

Adaptive
filter

Unknown
system

x(k) e(k)

y(k)

d(k)

+
-

Figure 2.10 System identification.

Assume the unknown system has impulse response given by h(k), for k = 0, 1, 2, 3, . . . ,∞, and
zero for k < 0. The error signal is then given by

e(k) = d(k)− y(k)

=
∞∑

l=0

h(l)x(k − l)−
N∑

i=0

wi(k)x(k − i) (2.147)

where wi(k) are the coefficients of the adaptive filter.
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Assuming that x(k) is a white noise, the MSE for a fixed w is given by

ξ = E{[hT x∞(k)− wT xN+1(k)]2}
= E

[
hT x∞(k)xT

∞(k)h− 2hT x∞(k)xT
N+1(k)w + wT xN+1(k)xT

N+1(k)w
]

= σ2
x

∞∑
i=0

h2(i)− 2σ2
xhT

[
IN+1

0∞×(N+1)

]
w + wT RN+1w (2.148)

where x∞(k) and xN+1(k) are the input signal vector with infinite and finite lengths, respectively.

By calculating the derivative of ξ with respect to the coefficients of the adaptive filter, it follows that

wo = hN+1 (2.149)

where

hT
N+1 = hT

[
IN+1

0∞×(N+1)

]
(2.150)

If the input signal is a white noise, the best model for the unknown system is a system whose impulse
response coincides with the N + 1 first samples of the unknown system impulse response. In the
cases where the impulse response of the unknown system is of finite length and the adaptive filter
is of sufficient order (i.e., it has enough number of parameters), the MSE becomes zero if there
is no measurement noise (or channel noise). In practical applications the measurement noise is
unavoidable, and if it is uncorrelated with the input signal, the expected value of the adaptive-filter
coefficients will coincide with the unknown-system impulse response samples. The output error
will of course be the measurement noise. We can observe that the measurement noise introduces a
variance in the estimates of the unknown system parameters.

Some real world applications of the system identification scheme include modeling of multipath
communication channels [36], control systems [28], seismic exploration [37], and cancellation of
echo caused by hybrids in some communication systems [38]-[42], just to mention a few.

2.10.2 Signal Enhancement

In the signal enhancement application, the reference signal consists of a desired signal x(k) that is
corrupted by an additive noise n1(k). The input signal of the adaptive filter is a noise signal n2(k)
that is correlated with the interference signal n1(k), but uncorrelated with x(k). Fig. 2.11 illustrates
the configuration of the signal enhancement application. In practice, this configuration is found
in acoustic echo cancellation for auditoriums [45], hearing aids, noise cancellation in hydrophones
[44], cancelling of power line interference in electrocardiography [28], and in other applications.
The cancelling of echo caused by the hybrid in some communication systems can also be considered
a signal enhancement problem [28].

In this application, the error signal is given by

e(k) = x(k) + n1(k)−
N∑

l=0

wln2(k − l) = x(k) + n1(k)− y(k) (2.151)
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Adaptive
filter

e(k)n2(k)

x(k) + n1(k)

+-

Figure 2.11 Signal enhancement (n1(k) and n2(k) are noise signals correlated to each other).

The resulting MSE is then given by

E[e2(k)] = E[x2(k)] + E{[n1(k)− y(k)]2} (2.152)

where it was assumed that x(k) is uncorrelated with n1(k) and n2(k). The above equation shows
that if the adaptive filter, having n2(k) as the input signal, is able to perfectly predict the signal n1(k),
the minimum MSE is given by

ξmin = E[x2(k)] (2.153)

where the error signal, in this situation, is the desired signal x(k).

The effectiveness of the signal enhancement scheme depends on the high correlation between n1(k)
and n2(k). In some applications, it is useful to include a delay of L samples in the reference signal
or in the input signal, such that their relative delay yields a maximum cross-correlation between y(k)
and n1(k), reducing the MSE. This delay provides a kind of synchronization between the signals
involved. An example exploring this issue will be presented in the following chapters.

2.10.3 Signal Prediction

In the signal prediction application, the adaptive-filter input consists of a delayed version of the
desired signal as illustrated in Fig. 2.12. The MSE is given by

ξ = E{[x(k)− wT x(k − L)]2} (2.154)

Adaptive
filterx(k) e(k)

y(k)
+

-
z-L

Figure 2.12 Signal prediction.
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The minimization of the MSE leads to an FIR filter, whose coefficients are the elements of w. This
filter is able to predict the present sample of the input signal using as information old samples such
as x(k − L), x(k − L− 1), . . . , x(k − L−N). The resulting FIR filter can then be considered a
model for the signal x(k) when the MSE is small. The minimum MSE is given by

ξmin = r(0)− wT
o

⎡
⎢⎢⎢⎢⎢⎢⎣

r(L)
r(L + 1)

.

.

.
r(L + N)

⎤
⎥⎥⎥⎥⎥⎥⎦ (2.155)

where wo is the optimum predictor coefficient vector and r(l) = E[x(k)x(k − l)] for a stationary
process.

A typical predictor’s application is in linear prediction coding of speech signals [43], where the predic-
tor’s task is to estimate the speech parameters. These parameters w are part of the coding information
that is transmitted or stored along with other information inherent to the speech characteristics, such
as pitch period, among others.

The adaptive signal predictor is also used for adaptive line enhancement (ALE), where the input signal
is a narrowband signal (predictable) added to a wideband signal. After convergence, the predictor
output will be an enhanced version of the narrowband signal.

Yet another application of the signal predictor is the suppression of narrowband interference in a
wideband signal. The input signal, in this case, has the same general characteristics of the ALE.
However, we are now interested in removing the narrowband interferer. For such an application, the
output signal of interest is the error signal [45].

2.10.4 Channel Equalization

As can be seen from Fig. 2.13, channel equalization or inverse filtering consists of estimating a
transfer function to compensate for the linear distortion caused by the channel. From another point
of view, the objective is to force a prescribed dynamic behavior for the cascade of the channel
(unknown system) and the adaptive filter, determined by the input signal. The first interpretation
is more appropriate in communications, where the information is transmitted through dispersive
channels [35], [41]. The second interpretation is appropriate for control applications, where the
inverse filtering scheme generates control signals to be used in the unknown system [28].

In the ideal situation, where n(k) = 0 and the equalizer has sufficient order, the error signal is zero
if

W (z)H(z) = z−L (2.156)
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e(k)
y(k)

n(k)

x(k)

d(k)

+-+ Adaptive
filterChannel

z-L

Figure 2.13 Channel equalization.

where W (z) and H(z) are the equalizer and unknown system transfer functions, respectively. There-
fore, the ideal equalizer has the following transfer function

W (z) =
z−L

H(z)
(2.157)

From the above equation, we can conclude that if H(z) is an IIR transfer function with nontrivial
numerator and denominator polynomials, W (z) will also be IIR. If H(z) is an all-pole model, W (z)
is FIR. If H(z) is an all-zero model, W (z) is an all-pole transfer function.

By applying the inverseZ-transform to equation (2.156), we can conclude that the optimal equalizer
impulse response convolved with the channel impulse response produces as a result an impulse. This
means that for zero additional error in the channel, the output signal y(k) restores x(k − L) and,
therefore, one can conclude that a deconvolution process took place.

The delay in the reference signal plays an important role in the equalization process. Without the
delay, the desired signal is x(k), whereas the signal y(k) will be mainly influenced by old samples
of the input signal, since the unknown system is usually causal. As a consequence, the equalizer
should also perform the task of predicting x(k) simultaneously with the main task of equalizing the
channel. The introduction of a delay alleviates the prediction task, leaving the equalizer free to invert
the channel response. A rule of thumb for choosing the delay was proposed and analyzed in [28],
where it was conjectured that the best delay should be close to half the time span of the equalizer. In
practice, the reader should try different delays.

In the case the unknown system is not of minimum phase, i.e., its transfer function has zeros outside
the unit circle of the Z plane, the optimum equalizer is either stable and noncausal, or unstable and
causal. Both solutions are unacceptable. The noncausal stable solution could be better approximated
by a causal FIR filter when the delay is included in the desired signal. The delay forces a time shift
in the ideal impulse response of the equalizer, allowing the time span, where most of the energy is
concentrated, to be in the causal region.

If channel noise signal is present and is uncorrelated with the channel’s input signal, the error signal
and y(k) will be accordingly noisier. However, it should be noticed that the adaptive equalizer, in the
process of reducing the MSE, disturbs the optimal solution by trying to reduce the effects of n(k).
Therefore, in a noisy environment the equalizer transfer function is not exactly the inverse of H(z).
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In practice, the noblest use of the adaptive equalizer is to compensate for the distortion caused by the
transmission channel in a communication system. The main distortions caused by the channels are
high attenuation and intersymbol interference (ISI). The ISI is generated when different frequency
components of the transmitted signals arrive at different times at the receiver, a phenomenon caused
by the nonlinear group delay of the channel [35]. For example, in a digital communication system,
the time-dispersive channel extends a transmitted symbol beyond the time interval allotted to it,
interfering in the past and future symbols. Under severe ISI, when short symbol space is used, the
number of symbols causing ISI is large.

The channel impulse response is a time spread sequence described by h(k) with the received signal
being given by

re(k + J) = x(k)h(J) +
k+J∑

l=−∞, l �=k

x(l)h(k + J − l) + n(k + J) (2.158)

where J denotes the channel time delay (including the sampler phase). The first term of the above
equation corresponds to the desired information, the second term is the interference of the symbols
sent before and after x(k). The third term accounts for channel noise. Obviously only the neighboring
symbols have significant influence in the second term of the above equation. The elements of the
second term involving x(l), for l > k, are called pre-cursor ISI since they are caused by components
of the data signal that reach the receiver before their cursor. On the other hand, the elements involving
x(l), for l < k, are called post-cursor ISI.

In many situations, the ISI is reduced by employing an equalizer consisting of an adaptive FIR filter
of appropriate length. The adaptive equalizer attempts to cancel the ISI in the presence of noise. In
digital communication, a decision device is placed after the equalizer in order to identify the symbol
at a given instant. The equalizer coefficients are updated in two distinct circumstances by employing
different reference signals. During the equalizer training period, a previously chosen training signal
is transmitted through the channel and a properly delayed version of this signal, that is prestored in
the receiver end, is used as reference signal. The training signal is usually a pseudo-noise sequence
long enough to allow the equalizer to compensate for the channel distortions. After convergence,
the error between the adaptive-filter output and the decision device output is utilized to update the
coefficients. The resulting scheme is the decision-directed adaptive equalizer. It should be mentioned
that in some applications no training period is available. Usually, in this case, the decision-directed
error is used all the time.

A more general equalizer scheme is the decision-feedback equalizer (DFE) illustrated in Fig. 2.14.
The DFE is widely used in situations where the channel distortion is severe [35], [46]. The basic
idea is to feed back, via a second FIR filter, the decisions made by the decision device that is applied
to the equalized signal. The second FIR filter is preceded by a delay, otherwise there is a delay-free
loop around the decision device. Assuming the decisions were correct, we are actually feeding back
the symbols x(l), for l < k, of equation (2.158). The DFE is able to cancel the post-cursor ISI for a
number of past symbols (depending on the order of the FIR feedback filter), leaving more freedom
for the feedforward section to take care of the remaining terms of the ISI. Some known characteristics
of the DFE are [35]:
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The signals that are fed back are symbols, being noise free and allowing computational savings.

The noise enhancement is reduced, if compared with the feedforward-only equalizer.

Short time recovery when incorrect decisions are made.

Reduced sensitivity to sampling phase.

Figure 2.14 Decision-feedback equalizer.

The DFE operation starts with a training period where a known sequence is transmitted through the
channel, and the same sequence is used at the receiver as the desired signal. The delay introduced
in the training signal is meant to compensate for the delay the transmitted signal faces when passing
through the channel. During the training period the error signal, which consists of the difference
between the delayed training signal and signal y(k), is minimized by adapting the coefficients of the
forward and feedback filters. After this period, there is no training signal and the desired signal will
consist of the decision device output signal. Assuming the decisions are correct, this blind way of
performing the adaptation is the best solution to keep track of small changes in the channel behavior.

Example 2.4

In this example we will verify the effectiveness of the Wiener solution in environments related to the
applications of noise cancellation, prediction, equalization, and identification.

(a) In a noise cancellation environment a sinusoid is corrupted by noise as follows

d(k) = cos ω0k + n1(k)
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with

n1(k) = −an1(k − 1) + n(k)

|a| < 1 and n(k) is a zero-mean white noise with variance σ2
n = 1. The input signal of the Wiener

filter is described by

n2(k) = −bn2(k − 1) + n(k)

where |b| < 1.

(b) In a prediction case the input signal is modeled as

x(k) = −ax(k − 1) + n(k)

with n(k) being a white noise with unit variance and |a| < 1.

(c) In an equalization problem a zero-mean white noise signal s(k) with variance c is transmitted
through a channel with an AR model described by

x̂(k) = −ax̂(k − 1) + s(k)

with |a| < 1 and the received signal given by

x(k) = x̂(k) + n(k)

whereas n(k) is a zero-mean white noise with variance d and uncorrelated with s(k).

(d) In a system identification problem a zero-mean white noise signal x(k) with variance c is employed
as the input signal to identify an AR system whose model is described by

v(k) = −av(k − 1) + x(k)

where |a| < 1 and the desired signal is given by

d(k) = v(k) + n(k)

Repeat the problem if the system to be identified is an MA whose model is described by

v(k) = −ax(k − 1) + x(k)

For all these cases describe the Wiener solution with two coefficients and comment on the results.

Solution:

Some results used in the examples are briefly reviewed. A 2× 2 matrix inversion is performed as

R−1 =
1

r11r22 − r12r21

[
r22 −r12
−r21 r11

]
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where rij is the element of row i and column j of the matrix R. For two first-order AR modeled
signals x(k) and v(k), whose poles are respectively placed at −a and −b with the same white noise
input with unit variance, their cross-correlations are given by9

E[x(k)v(k − l)] =
(−a)l

1− ab

for l > 0, and

E[x(k)v(k − l)] =
(−b)−l

1− ab

for l < 0, are frequently required in the following solutions.

(a)

The input signal in this case is given by n2(k), whereas the desired signal is given by d(k). The
elements of the correlation matrix are computed as

E[n2(k)n2(k − l)] =
(−b)|l|

1− b2

The expression for the cross-correlation vector is given by

p =
[

E[(cos ω0k + n1(k))n2(k)]
E[(cos ω0k + n1(k))n2(k − 1)]

]

=
[

E[n1(k)n2(k)]
E[n1(k)n2(k − 1)]

]

=
[ 1

1−abσ
2
n

− a
1−abσ

2
n

]
=
[ 1

1−ab

− a
1−ab

]
where in the last expression we substituted σ2

n = 1.

The coefficients corresponding to the Wiener solution are given by

wo = R−1p =
[

1 b
b 1

] [ 1
1−ab

− a
1−ab

]
=
[

1
b−a
1−ab

]

The special case where a = 0 provides a quite illustrative solution. In this case

wo =
[

1
b

]
such that the error signal is given by

e(k) = d(k)− y(k) = cos ω0k + n(k)− wT
o

[
n2(k)

n2(k − 1)

]
= cos ω0k + n(k)− n2(k)− bn2(k − 1)
= cos ω0k + n(k) + bn2(k − 1)− n(k)− bn2(k − 1) = cos ω0k

9Assuming x(k) and v(k) are jointly WSS.
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As can be observed the cosine signal is fully recovered since the Wiener filter was able to restore
n(k) and remove it from the desired signal.

(b)

In the prediction case the input signal is x(k) and the desired signal is x(k + L). Since

E[x(k)x(k − L)] =
(−a)|L|

1− a2

the input signal correlation matrix is

R =
[

E[x2(k)] E[x(k)x(k − 1)]
E[x(k)x(k − 1)] E[x2(k − 1)]

]

=
[ 1

1−a2 − a
1−a2

− a
1−a2

1
1−a2

]

Vector p is described by

p =
[

E[x(k + L)x(k)]
E[x(k + L)x(k − 1)]

]
=

[
(−a)|L|

1−a2

(−a)|L+1|

1−a2

]

The expression for the optimal coefficient vector is easily derived.

wo = R−1p

= (1− a2)
[ 1

1−a2
a

1−a2
a

1−a2
1

1−a2

][ (−a)L

1−a2

(−a)L+1

1−a2

]

=
[

(−a)L

0

]

where in the above equation the value of L is considered positive. The predictor result tells us that
an estimate x̂(k + L) of x(k + L) can be obtained as

x̂(k + L) = (−a)Lx(k)

According to our model for the signal x(k), the actual value of x(k + L) is

x(k + L) = (−a)Lx(k) +
L−1∑
i=0

(−a)in(k − i)

The results show that if x(k) is an observed data at a given instant of time, the best estimate of
x(k + L) in terms of x(k) is to average out the noise as follows

x̂(k + L) = (−a)Lx(k) + E[
L−1∑
i=0

(−a)in(k − i)] = (−a)Lx(k)
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since E[n(k − i)] = 0.

(c)

In this equalization problem, matrix R is given by

R =
[

E[x2(k)] E[x(k)x(k − 1)]
E[x(k)x(k − 1)] E[x2(k − 1)]

]
=
[ 1

1−a2 c + d − a
1−a2 c

− a
1−a2 c 1

1−a2 c + d

]
By utilizing as desired signal s(k−L) and recalling that it is a white noise and uncorrelated with the
other signals involved in the experiment, the cross-correlation vector between the input and desired
signals has the following expression

p =
[

E[x(k)s(k − L)]
E[x(k − 1)s(k − L)]

]
=
[

(−1)LaLc
(−1)L−1aL−1c

]

The coefficients of the underlying Wiener solution are given by

wo = R−1p =
1

c2

1−a2 + 2 dc
1−a2 + d2

[ 1
1−a2 c + d a

1−a2 c
a

1−a2 c 1
1−a2 c + d

] [
(−1)LaLc

(−1)L−1aL−1c

]

=
(−1)LaLc

c2

1−a2 + 2 cd
1−a2 + d2

[
c

1−a2 + d− c
1−a2

ac
1−a2 − a−1d− a−1c

1−a2

]

=
(−1)LaLc

c2

1−a2 + 2 cd
1−a2 + d2

[
d

−a−1d− a−1c

]

If there is no additional noise, i.e. d = 0, the above result becomes

wo =
[

0
(−1)L−1aL−1(1− a2)

]
That is, the Wiener solution is just correcting the gain of the previously received component of the
input signal, namely x(k−1), while not using its most recent component x(k). This happens because
the desired signal s(k−L) at instant k has a defined correlation with any previously received symbol.
On the other hand, if the signal s(k) is a colored noise the Wiener filter would have a nonzero first
coefficient in a noiseless environment. In case there is environmental noise, the solution tries to find
a perfect balance between the desired signal modeling and the noise amplification.

(d)

In the system identification example the input signal correlation matrix is given by

R =
[

c 0
0 c

]
With the desired signal d(k), the cross-correlation vector is described as

p =
[

E[x(k)d(k)]
E[x(k − 1)d(k)]

]
=
[

c
−ca

]
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The coefficients of the underlying Wiener solution are given by

wo = R−1p =
[ 1

c 0
0 1

c

] [
c
−ca

]
=
[

1
−a

]
Note that this solution represents the best way a first-order FIR model can approximate an IIR model,
since

Wo(z) = 1− az−1

and

1
1 + az−1 = 1− az−1 + a2z−2 + . . .

On the other hand, if the unknown model is the described FIR model such as v(k) = −ax(k− 1) +
x(k), the Wiener solution remains the same and corresponds exactly to the unknown system model.

In all these examples, the environmental signals are considered wide-sense stationary and their
statistics assumed known. In a practical situation, not only the statistics might be unknown but the
environments are usually nonstationary as well. In these situations, the adaptive filters come into
play since their coefficients vary with time according to measured signals from the environment.

�

2.10.5 Digital Communication System

For illustration, a general digital communication scheme over a channel consisting of a subscriber
line (telephone line, for example) is shown in Fig. 2.15. In either end, the input signal is first coded
and conditioned by a transmit filter. The filter shapes the pulse and limits in band the signal that
is actually transmitted. The signal then crosses the hybrid to travel through a dual duplex channel.
The hybrid is an impedance bridge used to transfer the transmit signal into the channel with minimal
leakage to the near-end receiver. The imperfections of the hybrid cause echo that should be properly
canceled.

In the channel, the signal is corrupted by white noise and crosstalk (leakage of signals being trans-
mitted by other subscribers). After crossing the channel and the far-end hybrid, the signal is filtered
by the receive filter that attenuates high-frequency noise and also acts as an antialiasing filter. Subse-
quently, we have a joint DFE and echo canceller, where the forward filter and echo canceller outputs
are subtracted. The result after subtracting the decision feedback output is applied to the decision
device. After passing through the decision device, the symbol is decoded.

Other schemes for data transmission in subscriber line exist [41]. The one shown here is for illustra-
tion purposes, having as special feature the joint equalizer and echo canceller strategy. The digital
subscriber line (DSL) structure shown here has been used in integrated services digital network
(ISDN) basic access, that allows a data rate of 144 Kbits/s [41]. Also, a similar scheme is employed
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Figure 2.15 General digital communication transceiver.
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in the high bit rate digital subscriber line (HDSL) [40], [47] that operates over short and conditioned
loops [48], [49]. The latter system belongs to a broad class of digital subscriber line collectively
known as XDSL.

2.11 CONCLUDING REMARKS

In this chapter, we described some of the concepts underlying the adaptive filtering theory. The mate-
rial presented here forms the basis to understand the behavior of most adaptive-filtering algorithms in
a practical implementation. The basic concept of the MSE surface searching algorithms was briefly
reviewed, serving as a starting point for the development of a number of practical adaptive-filtering
algorithms to be presented in the following chapters. We illustrated through several examples the
expected Wiener solutions in a number of distinct situations. In addition, we presented the basic
concepts of linearly-constrained Wiener filter required in array signal processing. The theory and
practice of adaptive signal processing is also the main subject of some excellent books such as
[27]-[34].
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2.13 PROBLEMS

1. Suppose the input signal vector is composed by a delay line with a single input signal, compute
the correlation matrix for the following input signals:
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(a)
x(k) = sin(

π

6
k) + cos(

π

4
k) + n(k)

(b)
x(k) = an1(k) cos(ω0k) + n2(k)

(c)
x(k) = an1(k) sin(ω0k + n2(k))

(d)
x(k) = −a1x(k − 1)− a2x(k − 2) + n(k)

(e)

x(k) =
4∑

i=0

0.25n(k − i)

(f)
x(k) = an(k)ejω0k

In all cases, n(k), n1(k), and n2(k) are white noise processes, with zero mean and with variances
σ2

n, σ2
n1

, and σ2
n2

, respectively. These random signals are considered independent.

2. Consider two complex random processes represented by x(k) and y(k).
(a) Derive σ2

xy(k, l) = E[(x(k)−mx(k))(y(l)−my(l))] as a function of rxy(k, l), mx(k) and
my(l).
(b) Repeat (a) if x(k) and y(k) are jointly WSS.
(c) Being x(k) and y(k) orthogonal, in which conditions are they not correlated?

3. For the correlation matrices given below, calculate their eigenvalues, eigenvectors, and condi-
tioning numbers.

(a)

R =
1
4

⎡
⎢⎢⎣

4 3 2 1
3 4 3 2
2 3 4 3
1 2 3 4

⎤
⎥⎥⎦

(b)

R =

⎡
⎢⎢⎣

1 0.95 0.9025 0.857375
0.95 1 0.95 0.9025

0.9025 0.95 1 0.95
0.857375 0.9025 0.95 1

⎤
⎥⎥⎦

(c)

R = 50σ2
n

⎡
⎢⎢⎣

1 0.9899 0.98 0.970
0.9899 1 0.9899 0.98
0.98 0.9899 1 0.9899
0.970 0.98 0.9899 1

⎤
⎥⎥⎦
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(d)

R =

⎡
⎢⎢⎣

1 0.5 0.25 0.125
0.5 1 0.5 0.25
0.25 0.5 1 0.5
0.125 0.25 0.5 1

⎤
⎥⎥⎦

4. For the correlation matrix given below, calculate its eigenvalues and eigenvectors, and form the
matrix Q.

R =
1
4

[
a1 a2
a2 a1

]

5. The input signal of a second-order adaptive filter is described by

x(k) = α1x1(k) + α2x2(k)

where x1(k) and x2(k) are first-orderAR processes and uncorrelated between themselves having
both unit variance. These signals are generated by applying distinct white noises to first-order
filters whose poles are placed at a and −b, respectively.

(a) Calculate the autocorrelation matrix of the input signal.

(b) If the desired signal consists of γx2(k), calculate the Wiener solution.

6. The input signal of a first-order adaptive filter is described by

x(k) =
√

2x1(k) + x2(k) + 2x3(k)

where x1(k) and x2(k) are first-orderAR processes and uncorrelated between themselves having
both unit variance. These signals are generated by applying distinct white noises to first-order
filters whose poles are placed at −0.5 and

√
2

2 , respectively. The signal x3(k) is a white noise
with unit variance and uncorrelated with x1(k) and x2(k).

(a) Calculate the autocorrelation matrix of the input signal.

(b) If the desired signal consists of 1
2x3(k), calculate the Wiener solution.

7. Repeat the previous problem if the signal x3(k) is exactly the white noise that generated x2(k).

8. In a prediction case a sinusoid is corrupted by noise as follows

x(k) = cos ω0k + n1(k)

with

n1(k) = −an1(k − 1) + n(k)

where |a| < 1. For this case describe the Wiener solution with two coefficients and comment
on the results.
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9. Generate theARMA processes x(k) described below. Calculate the variance of the output signal
and the autocorrelation for lags 1 and 2. In all cases, n(k) is zero-mean Gaussian white noise
with variance 0.1.

(a)

x(k) = 1.9368x(k − 1)− 0.9519x(k − 2) + n(k)− 1.8894n(k − 1) + n(k − 2)

(b)

x(k) = −1.9368x(k − 1)− 0.9519x(k − 2) + n(k) + 1.8894n(k − 1) + n(k − 2)

Hint: For white noise generation consult for example [14], [15].

10. Generate the AR processes x(k) described below. Calculate the variance of the output signal
and the autocorrelation for lags 1 and 2. In all cases, n(k) is zero-mean Gaussian white noise
with variance 0.05.

(a)
x(k) = −0.8987x(k − 1)− 0.9018x(k − 2) + n(k)

(b)
x(k) = 0.057x(k − 1) + 0.889x(k − 2) + n(k)

11. Generate the MA processes x(k) described below. Calculate the variance of the output signal
and the autocovariance matrix. In all cases, n(k) is zero-mean Gaussian white noise with
variance 1.

(a)

x(k) = 0.0935n(k) + 0.3027n(k − 1) + 0.4n(k − 2) + 0.3027n(k − 4) + 0.0935n(k − 5)

(b)
x(k) = n(k)− n(k − 1) + n(k − 2)− n(k − 4) + n(k − 5)

(c)
x(k) = n(k) + 2n(k − 1) + 3n(k − 2) + 2n(k − 4) + n(k − 5)

12. Show that a process generated by adding two AR processes is in general an ARMA process.

13. Determine if the following processes are mean ergodic:

(a)
x(k) = an1(k) cos(ω0k) + n2(k)

(b)
x(k) = an1(k) sin(ω0k + n2(k))

(c)
x(k) = an(k)e2jω0k

In all cases, n(k), n1(k), and n2(k) are white noise processes, with zero mean and with variances
σ2

n, σ2
n1

, and σ2
n2

, respectively. These random signals are considered independent.
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14. Show that the minimum (maximum) value of equation (2.69) occurs when wi = 0 for i �= j
and λj is the smallest (largest) eigenvalue, respectively.

15. Suppose the matrix R and the vector p are known for a given experimental environment. Com-
pute the Wiener solution for the following cases:

(a)

R =
1
4

⎡
⎢⎢⎣

4 3 2 1
3 4 3 2
2 3 4 3
1 2 3 4

⎤
⎥⎥⎦

p =
[
1
2

3
8

2
8

1
8

]T

(b)

R =

⎡
⎢⎢⎣

1 0.8 0.64 0.512
0.8 1 0.8 0.64
0.64 0.8 1 0.8
0.512 0.64 0.8 1

⎤
⎥⎥⎦

p =
1
4

[0.4096 0.512 0.64 0.8]T

(c)

R =
1
3

⎡
⎣ 3 −2 1
−2 3 −2
1 −2 3

⎤
⎦

p =
[
−2 1 − 1

2

]T

16. For the environments described in the previous problem, derive the updating formula for the
steepest-descent method. Considering that the adaptive-filter coefficients are initially zero,
calculate their values for the first ten iterations.

17. Repeat the previous problem using the Newton method.

18. Calculate the spectral decomposition for the matrices R of problem 15.

19. Calculate the minimum MSE for the examples of problem 15 considering that the variance of
the reference signal is given by σ2

d.
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20. Derive equation (2.112).

21. Derive the constraint matrix C and the gain vector f that impose the condition of linear phase
onto the linearly constrained Wiener filter.

22. Show that the optimal solutions of the LCMV filter and the GSC filter with minimum norm
are equivalent and related according to wLCMV = TwGSC, where T = [C B] is a full-rank
transformation matrix with CT B = 0 and

wLCMV = R−1C(CT R−1C)−1f

and

wGSC =
[

(CT C)−1f
−(BT RB)−1BT RC(CT C)−1f

]

23. Calculate the time constants of the MSE and of the coefficients for the examples of problem 15
considering that the steepest-descent algorithm was employed.

24. For the examples of problem 15, describe the equations for the MSE surface.

25. Using the spectral decomposition of a Hermitian matrix show that

R
1
N = QΛ

1
N QH =

N∑
i=0

λ
1
N
i qiq

H
i

26. Derive the complex steepest-descent algorithm.

27. Derive the Newton algorithm for complex signals.

28. In a signal enhancement application, assume that n1(k) = n2(k) ∗h(k), where h(k) represents
the impulse response of an unknown system. Also, assume that some small leakage of the signal
x(k), given by h′(k) ∗ x(k), is added to the adaptive-filter input. Analyze the consequences of
this phenomenon.

29. In the equalizer application, calculate the optimal equalizer transfer function when the channel
noise is present.
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THE LEAST-MEAN-SQUARE (LMS)

ALGORITHM

3.1 INTRODUCTION

The least-mean-square (LMS) is a search algorithm in which a simplification of the gradient vector
computation is made possible by appropriately modifying the objective function [1]-[2]. The LMS
algorithm, as well as others related to it, is widely used in various applications of adaptive filtering
due to its computational simplicity [3]-[7]. The convergence characteristics of the LMS algorithm
are examined in order to establish a range for the convergence factor that will guarantee stability.
The convergence speed of the LMS is shown to be dependent on the eigenvalue spread of the
input signal correlation matrix [2]-[6]. In this chapter, several properties of the LMS algorithm
are discussed including the misadjustment in stationary and nonstationary environments [2]-[9] and
tracking performance [10]-[12]. The analysis results are verified by a large number of simulation
examples. Appendix B, section B.1, complements this chapter by analyzing the finite-wordlength
effects in LMS algorithms.

The LMS algorithm is by far the most widely used algorithm in adaptive filtering for several reasons.
The main features that attracted the use of the LMS algorithm are low computational complexity,
proof of convergence in stationary environment, unbiased convergence in the mean to the Wiener
solution, and stable behavior when implemented with finite-precision arithmetic. The convergence
analysis of the LMS presented here utilizes the independence assumption.

3.2 THE LMS ALGORITHM

In Chapter 2 we derived the optimal solution for the parameters of the adaptive filter implemented
through a linear combiner, which corresponds to the case of multiple input signals. This solution leads
to the minimum mean-square error in estimating the reference signal d(k). The optimal (Wiener)
solution is given by

wo = R−1p (3.1)

where R = E[x(k)xT (k)] and p = E[d(k)x(k)], assuming that d(k) and x(k) are jointly wide-sense
stationary.

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_3,  
© Springer Science+Business Media, LLC 2008  
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If good estimates of matrix R, denoted by R̂(k), and of vector p, denoted by p̂(k), are available,
a steepest-descent-based algorithm can be used to search the Wiener solution of equation (3.1) as
follows:

w(k + 1) = w(k)− μĝw(k)
= w(k) + 2μ(p̂(k)− R̂(k)w(k)) (3.2)

for k = 0, 1, 2, . . ., where ĝw(k) represents an estimate of the gradient vector of the objective
function with respect to the filter coefficients.

One possible solution is to estimate the gradient vector by employing instantaneous estimates for R
and p as follows:

R̂(k) = x(k)xT (k)
p̂(k) = d(k)x(k) (3.3)

The resulting gradient estimate is given by

ĝw(k) = −2d(k)x(k) + 2x(k)xT (k)w(k)
= 2x(k)(−d(k) + xT (k)w(k))
= −2e(k)x(k) (3.4)

Note that if the objective function is replaced by the instantaneous square error e2(k), instead of the
MSE, the above gradient estimate represents the true gradient vector since

∂e2(k)
∂w

=
[
2e(k)

∂e(k)
∂w0(k)

2e(k)
∂e(k)

∂w1(k)
. . . 2e(k)

∂e(k)
∂wN (k)

]T

= −2e(k)x(k)
= ĝw(k) (3.5)

The resulting gradient-based algorithm is known1 as the least-mean-square (LMS) algorithm, whose
updating equation is

w(k + 1) = w(k) + 2μe(k)x(k) (3.6)

where the convergence factor μ should be chosen in a range to guarantee convergence.

Fig. 3.1 depicts the realization of the LMS algorithm for a delay line input x(k). Typically, one
iteration of the LMS requires N + 2 multiplications for the filter coefficient updating and N + 1
multiplications for the error generation. The detailed description of the LMS algorithm is shown in
the table denoted as Algorithm 3.1.

It should be noted that the initialization is not necessarily performed as described in Algorithm 3.1,
where the coefficients of the adaptive filter were initialized with zeros. For example, if a rough
idea of the optimal coefficient value is known, these values could be used to form w(0) leading to a
reduction in the number of iterations required to reach the neighborhood of wo.

1Because it minimizes the mean of the squared error.
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Figure 3.1 LMS adaptive FIR filter.

3.3 SOME PROPERTIES OF THE LMS ALGORITHM

In this section, the main properties related to the convergence behavior of the LMS algorithm in a
stationary environment are described. The information contained here is essential to understand the
influence of the convergence factor μ in various convergence aspects of the LMS algorithm.

3.3.1 Gradient Behavior

As shown in Chapter 2, see equation (2.91), the ideal gradient direction required to perform a search
on the MSE surface for the optimum coefficient vector solution is

gw(k) = 2{E [x(k)xT (k)
]

w(k)− E [d(k)x(k)]}
= 2[Rw(k)− p] (3.7)
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Algorithm 3.1

LMS Algorithm

Initialization

x(0) = w(0) = [0 0 . . . 0]T

Do for k ≥ 0

e(k) = d(k)− xT (k)w(k)

w(k + 1) = w(k) + 2μe(k)x(k)

In the LMS algorithm, instantaneous estimates of R and p are used to determine the search direction,
i.e.,

ĝw(k) = 2
[
x(k)xT (k)w(k)− d(k)x(k)

]
(3.8)

As can be expected, the direction determined by equation (3.8) is quite different from that of equa-
tion (3.7). Therefore, by using the more computationally attractive gradient direction of the LMS
algorithm, the convergence behavior is not the same as that of the steepest-descent algorithm.

On average, it can be said that the LMS gradient direction has the tendency to approach the ideal
gradient direction since for a fixed coefficient vector w

E[ĝw(k)] = 2{E [x(k)xT (k)
]

w− E [d(k)x(k)]}
= gw (3.9)

hence, vector ĝw(k) can be interpreted as an unbiased instantaneous estimate of gw. In an ergodic
environment, if, for a fixed w vector, ĝw(k) is calculated for a large number of inputs and reference
signals, the average direction tends to gw, i.e.,

lim
M→∞

1
M

M∑
i=1

ĝw(k + i) → gw (3.10)

3.3.2 Convergence Behavior of the Coefficient Vector

Assume that an unknown FIR filter with coefficient vector given by wo is being identified by an
adaptive FIR filter of the same order, employing the LMS algorithm. Measurement white noise n(k)
with zero mean and variance σ2

n is added to the output of the unknown system.
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The error in the adaptive-filter coefficients as related to the ideal coefficient vector wo, in each
iteration, is described by the N + 1-length vector

Δw(k) = w(k)− wo (3.11)

With this definition, the LMS algorithm can alternatively be described by

Δw(k + 1) = Δw(k) + 2μe(k)x(k)
= Δw(k) + 2μx(k)

[
xT (k)wo + n(k)− xT (k)w(k)

]
= Δw(k) + 2μx(k)

[
eo(k)− xT (k)Δw(k)

]
=
[
I− 2μx(k)xT (k)

]
Δw(k) + 2μeo(k)x(k) (3.12)

where eo(k) is the optimum output error given by

eo(k) = d(k)− wT
o x(k)

= wT
o x(k) + n(k)− wT

o x(k)
= n(k) (3.13)

The expected error in the coefficient vector is then given by

E[Δw(k + 1)] = E{[I− 2μx(k)xT (k)]Δw(k)}+ 2μE[eo(k)x(k)] (3.14)

If it is assumed that the elements of x(k) are statistically independent of the elements of Δw(k) and
eo(k), equation (3.14) can be simplified as follows:

E[Δw(k + 1)] = {I− 2μE[x(k)xT (k)]}E[Δw(k)]
= (I− 2μR)E[Δw(k)] (3.15)

The first assumption is justified if we assume that the deviation in the parameters is dependent on
previous input signal vectors only, whereas in the second assumption we also considered that the
error signal at the optimal solution is orthogonal to the elements of the input signal vector. The above
expression leads to

E[Δw(k + 1)] = (I− 2μR)k+1E[Δw(0)] (3.16)

Equation (3.15) premultiplied by QT , where Q is the unitary matrix that diagonalizes R through a
similarity transformation, yields

E
[
QT Δw(k + 1)

]
= (I− 2μQT RQ)E

[
QT Δw(k)

]
= E [Δw′(k + 1)]
= (I− 2μΛ)E [Δw′(k)]

=

⎡
⎢⎢⎢⎢⎣

1− 2μλ0 0 · · · 0

0 1− 2μλ1
...

...
...

. . .
...

0 0 1− 2μλN

⎤
⎥⎥⎥⎥⎦E [Δw′(k)]

(3.17)
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where Δw′(k + 1) = QT Δw(k + 1) is the rotated-coefficient error vector. The applied rotation
yielded an equation where the driving matrix is diagonal, making it easier to analyze the equation’s
dynamic behavior. Alternatively, the above relation can be expressed as

E [Δw′(k + 1)] = (I− 2μΛ)k+1E [Δw′(0)]

=

⎡
⎢⎢⎢⎢⎣

(1− 2μλ0)k+1 0 · · · 0

0 (1− 2μλ1)k+1
...

...
...

. . .
...

0 0 (1− 2μλN )k+1

⎤
⎥⎥⎥⎥⎦E [Δw′(0)]

(3.18)

This equation shows that in order to guarantee convergence of the coefficients in the mean, the
convergence factor of the LMS algorithm must be chosen in the range

0 < μ <
1

λmax
(3.19)

where λmax is the largest eigenvalue of R. Values of μ in this range guarantees that all elements of
the diagonal matrix in equation (3.18) tend to zero as k → ∞, since −1 < (1 − 2μλi) < 1, for
i = 0, 1, . . . , N . As a result E[Δw′(k + 1)] tends to zero for large k.

The choice of μ as above explained ensures that the mean value of the coefficient vector approaches
the optimum coefficient vector wo. It should be mentioned that if the matrix R has a large eigenvalue
spread, it is advisable to choose a value for μ much smaller than the upper bound. As a result,
the convergence speed of the coefficients will be primarily dependent on the value of the smallest
eigenvalue, responsible for the slowest mode in equation (3.18).

The key assumption for the above analysis is the so-called independence theory [4], which considers
all vectors x(i), for i = 0, 1, . . . , k, statistically independent. This assumption allowed us to con-
sider Δw(k) independent of x(k)xT (k) in equation (3.14). Such an assumption, despite not being
rigorously valid especially when x(k) consists of the elements of a delay line, leads to theoretical
results that are in good agreement with the experimental results.

3.3.3 Coefficient-Error-Vector Covariance Matrix

In this subsection, we derive the expressions for the second-order statistics of the errors in the
adaptive-filter coefficients. Since for large k the mean value of Δw(k) is zero, the covariance of the
coefficient-error vector is defined as

cov[Δw(k)] = E[Δw(k)ΔwT (k)] = E{[w(k)− wo][w(k)− wo]T } (3.20)
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By replacing equation (3.12) in (3.20) it follows that

cov[Δw(k + 1)] = E{[I− 2μx(k)xT (k)
]
Δw(k)ΔwT (k)

[
I− 2μx(k)xT (k)

]T
+[I− 2μx(k)xT (k)]Δw(k)2μeo(k)xT (k)
+2μeo(k)x(k)ΔwT (k)[I− 2μx(k)xT (k)]T

+4μ2e2
o(k)x(k)xT (k)} (3.21)

By considering eo(k) independent of Δw(k) and orthogonal to x(k), the second and third terms on
the right-hand side of the above equation can be eliminated. The details of this simplification can be
carried out by describing each element of the eliminated matrices explicitly. In this case,

cov[Δw(k + 1)] = cov[Δw(k)] + E[−2μx(k)xT (k)Δw(k)ΔwT (k)
−2μΔw(k)ΔwT (k)x(k)xT (k)
+4μ2x(k)xT (k)Δw(k)ΔwT (k)x(k)xT (k)
+4μ2e2

o(k)x(k)xT (k)] (3.22)

In addition, assuming that Δw(k) and x(k) are independent, equation (3.22) can be rewritten as

cov[Δw(k + 1)] = cov[Δw(k)]− 2μE[x(k)xT (k)]E[Δw(k)ΔwT (k)]
−2μE[Δw(k)ΔwT (k)]E[x(k)xT (k)]
+4μ2E

{
x(k)xT (k)E[Δw(k)ΔwT (k)]x(k)xT (k)

}
+4μ2E[e2

o(k)]E[x(k)xT (k)]
= cov[Δw(k)]− 2μR cov[Δw(k)]
−2μ cov[Δw(k)]R + 4μ2A + 4μ2σ2

nR (3.23)

The calculation of A = E
{

x(k)xT (k)E[Δw(k)ΔwT (k)]x(k)xT (k)
}

involves fourth-order mo-
ments and the result can be obtained by expanding the matrix inside the operation E[·] as described
in [4] and [13] for jointly Gaussian input signal samples. The result is

A = 2R cov[Δw(k)] R + R tr{R cov[Δw(k)]} (3.24)

where tr[·] denotes trace of [·]. Equation (3.23) is needed to calculate the excess mean-square error
caused by the noisy estimate of the gradient employed by the LMS algorithm. As can be noted,
cov[Δw(k + 1)] does not tend to 0 as k → ∞, due to the last term in equation (3.23) that provides
an excitation in the dynamic matrix equation.

A more useful form for equation (3.23) can be obtained by premultiplying and postmultiplying it by
QT and Q respectively, yielding

QT cov[Δw(k + 1)]Q = QT cov[Δw(k)] Q

−2μQT RQQT cov[Δw(k)]Q
−2μQT cov[Δw(k)]QQT RQ

+8μ2QT RQQT cov[Δw(k)]QQT RQ

+4μ2QT RQQT tr{RQQT cov[Δw(k)]}Q
+4μ2σ2

nQT RQ (3.25)
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where we used the equality QT Q = QQT = I. Using the fact that QT tr[B]Q = tr[QT BQ]I for
any B,

cov[Δw′(k + 1)] = cov[Δw′(k)]− 2μΛ cov[Δw′(k)]− 2μ cov[Δw′(k)]Λ
+8μ2Λ cov[Δw′(k)]Λ + 4μ2Λ tr{Λ cov[Δw′(k)]}+ 4μ2σ2

nΛ

(3.26)

where cov[Δw′(k)] = E[QT Δw(k)ΔwT (k)Q].

As will be shown in subsection 3.3.6, only the diagonal elements of cov[Δw′(k)] contribute to the
excess MSE in the LMS algorithm. By defining v′(k) as a vector with elements consisting of the
diagonal elements of cov[Δw′(k)], and λ as a vector consisting of the eigenvalues of R, the following
relation can be derived from the above equations

v′(k + 1) = (I− 4μΛ + 8μ2Λ2 + 4μ2λλT )v′(k) + 4μ2σ2
nλ

= Bv′(k) + 4μ2σ2
nλ (3.27)

where the elements of B are given by

bij =

⎧⎨
⎩

1− 4μλi + 8μ2λ2
i + 4μ2λ2

i for i = j

4μ2λiλj for i �= j
(3.28)

The value of the convergence factor μ must be chosen in a range that guarantees the convergence
of v′(k). Since matrix B is symmetric, it has only real-valued eigenvalues. Also since all entries of
B are also non-negative, the maximum among the sum of elements in any row of B represents an
upper bound to the maximum eigenvalue of B and to the absolute value of any other eigenvalue, see
pages 53 and 63 of [14] or the Gershgorin theorem in [15]. As a consequence, a sufficient condition
to guarantee convergence is to force the sum of the elements in any row of B to be kept in the range
0 <

∑N
j=0 bij < 1. Since

N∑
j=0

bij = 1− 4μλi + 8μ2λ2
i + 4μ2λi

N∑
j=0

λj (3.29)

the critical values of μ are those for which the above equation approaches 1, as for any μ the expression
is always positive. This will occur only if the last three terms of equation (3.29) approach zero, that is

−4μλi + 8μ2λ2
i + 4μ2λi

N∑
j=0

λj ≈ 0

After simple manipulation the stability condition obtained is

0 < μ <
1

2λmax +
∑N

j=0 λj

<
1∑N

j=0 λj

=
1

tr[R]
(3.30)

where the last and simpler expression is more widely used in practice because tr[R] is quite simple
to estimate since it is related with the Euclidean norm squared of the input signal vector, whereas an
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estimate λmax is much more difficult to obtain. It will be shown in equation (3.45) that μ controls
the speed of convergence of the MSE.

The upper bound obtained for the value of μ is important from the practical point of view, because it
gives us an indication of the maximum value of μ that could be used in order to achieve convergence
of the coefficients. However, the reader should be advised that the given upper bound is somewhat
optimistic due to the approximations and assumptions made. In most cases, the value of μ should
not be chosen close to the upper bound.

3.3.4 Behavior of the Error Signal

In this subsection, the mean value of the output error in the adaptive filter is calculated, considering
that the unknown system model has infinite impulse response and there is measurement noise. The
error signal, when an additional measurement noise is accounted for, is given by

e(k) = d′(k)− wT (k)x(k) + n(k) (3.31)

where d′(k) is the desired signal without measurement noise. For a given known input vector x(k),
the expected value of the error signal is

E[e(k)] = E[d′(k)]− E[wT (k)x(k)] + E[n(k)]
= E[d′(k)]− wT

o x(k) + E[n(k)] (3.32)

where wo is the optimal solution, i.e., the Wiener solution for the coefficient vector. Note that
the input signal vector was assumed known in the above equation, in order to expose what can be
expected if the adaptive filter converges to the optimal solution. If d′(k) was generated through an
infinite impulse response system, a residue error remains in the subtraction of the first two terms due
to undermodeling (adaptive FIR filter with insufficient number of coefficients), i.e.,

E[e(k)] = E

[ ∞∑
i=N+1

h(i)x(k − i)

]
+ E[n(k)] (3.33)

where h(i), for i = N +1, . . . ,∞, are the coefficients of the process that generated the part of d′(k)
not identified by the adaptive filter. If the input signal and n(k) have zero mean, then E[e(k)] = 0.

3.3.5 Minimum Mean-Square Error

In this subsection, the minimum MSE is calculated for undermodeling situations and in the presence
of additional noise. Let’s assume again the undermodeling case where the adaptive filter has less
coefficients than the unknown system in a system identification setup. In this case we can write

d(k) = hT x∞(k) + n(k)

= [wT
o h

T
]
[

x(k)
x∞(k)

]
+ n(k) (3.34)
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where wo is a vector containing the first N +1 coefficients of the unknown system impulse response,
h contains the remaining elements of h. The output signal of an adaptive filter with N +1 coefficients
is given by

y(k) = wT (k)x(k)

In this setup the MSE has the following expression

ξ = E{d2(k)− 2wT
o x(k)wT (k)x(k)− 2h

T
x∞(k)wT (k)x(k)

−2[wT (k)x(k)]n(k) + [wT (k)x(k)]2}
= E

{
d2(k)− 2[wT (k) 0T

∞]
[

x(k)
x∞(k)

]
[wT

o h
T
]
[

x(k)
x∞(k)

]
−2[wT (k)x(k)]n(k) + [wT (k)x(k)]2

}
= E[d2(k)]− 2[wT (k) 0T

∞]R∞

[
wo

h

]
+ wT (k)Rw(k) (3.35)

where

R∞ = E

{[
x(k)

x∞(k)

]
[xT (k) xT

∞(k)]
}

and 0∞ is an infinite length vector whose elements are zeros. By calculating the derivative of ξ
with respect to the coefficients of the adaptive filter, it follows that (see derivations around equations
(2.91) and (2.148))

ŵo = R−1trunc {p∞}N+1 = R−1trunc
{

R∞

[
wo

h

]}
N+1

= R−1trunc{R∞h}N+1 (3.36)

where trunc{a}N+1 represents a vector generated by retaining the first N + 1 elements of a. It
should be noticed that the results of equations (3.35) and (3.36) are algorithm independent.

The minimum mean-square error can be obtained from equation (3.35), when assuming the input
signal is a white noise uncorrelated with the additional noise signal, that is

ξmin = E[e2(k)]min =
∞∑

i=N+1

h2(i)E[x2(k − i)] + E[n2(k)]

=
∞∑

i=N+1

h2(i)σ2
x + σ2

n (3.37)

This minimum error is achieved when it is assumed that the adaptive-filter multiplier coefficients are
frozen at their optimum values, refer to equation (2.148) for similar discussion. In case the adaptive
filter has sufficient order to model the process that generated d(k), the minimum MSE that can be
achieved is equal to the variance of the additional noise, given by σ2

n. The reader should note that the
effect of undermodeling discussed in this subsection generates an excess MSE with respect to σ2

n.
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3.3.6 Excess Mean-Square Error and Misadjustment

The result of the previous subsection assumes that the adaptive-filter coefficients converge to their
optimal values, but in practice this is not so. Although the coefficient vector on average converges
to wo, the instantaneous deviation Δw(k) = w(k) − wo, caused by the noisy gradient estimates,
generates an excess MSE. The excess MSE can be quantified as described in the present subsection.
The output error at instant k is given by

e(k) = d(k)− wT
o x(k)−ΔwT (k)x(k)

= eo(k)−ΔwT (k)x(k) (3.38)

then
e2(k) = e2

o(k)− 2eo(k)ΔwT (k)x(k) + ΔwT (k)x(k)xT (k)Δw(k) (3.39)

The so-called independence theory assumes that the vectors x(k), for all k, are statistically indepen-
dent, allowing a simple mathematical treatment for the LMS algorithm. As mentioned before, this
assumption is in general not true, especially in the case where x(k) consists of the elements of a delay
line. However, even in this case the use of the independence assumption is justified by the agreement
between the analytical and the experimental results. With the independence assumption, Δw(k) can
be considered independent of x(k), since only previous input vectors are involved in determining
Δw(k). By using the assumption and applying the expected value operator to equation (3.39), we
have

ξ(k) = E[e2(k)]
= ξmin − 2E[ΔwT (k)]E[eo(k)x(k)] + E[ΔwT (k)x(k)xT (k)Δw(k)]
= ξmin − 2E[ΔwT (k)]E[eo(k)x(k)] + E{tr[ΔwT (k)x(k)xT (k)Δw(k)]}
= ξmin − 2E[ΔwT (k)]E[eo(k)x(k)] + E{tr[x(k)xT (k)Δw(k)ΔwT (k)]} (3.40)

where in the fourth equality we used the property tr[A · B] = tr[B ·A]. The last term of the above
equation can be rewritten as

tr
{
E[x(k)xT (k)]E[Δw(k)ΔwT (k)]

}
Since R = E[x(k)xT (k)] and by the orthogonality principle E[eo(k)x(k)] = 0, the above equation
can be simplified as follows:

ξ(k) = ξmin + E[ΔwT (k)RΔw(k)] (3.41)

The excess in the MSE is given by

Δξ(k)
�
= ξ(k)− ξmin = E[ΔwT (k)RΔw(k)]
= E{tr[RΔw(k)ΔwT (k)]}
= tr{E[RΔw(k)ΔwT (k)]} (3.42)

By using the fact that QQT = I, the following relation results

Δξ(k) = tr
{
E[QQT RQQT Δw(k)ΔwT (k)QQT ]

}
= tr{QΛ cov[Δw′(k)]QT } (3.43)
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Therefore,
Δξ(k) = tr{Λ cov[Δw′(k)]} (3.44)

From equation (3.27), it is possible to show that

Δξ(k) =
N∑

i=0

λiv
′
i(k) = λT v′(k) (3.45)

Since

v′i(k + 1) = (1− 4μλi + 8μ2λ2
i )v

′
i(k) + 4μ2λi

N∑
j=0

λjv
′
j(k) + 4μ2σ2

nλi (3.46)

and v′i(k + 1) ≈ v′i(k) for large k, we can apply a summation operation to the above equation in
order to obtain

N∑
j=0

λjv
′
j(k) =

μσ2
n

∑N
i=0 λi + 2μ

∑N
i=0 λ2

i v
′
i(k)

1− μ
∑N

i=0 λi

≈ μσ2
n

∑N
i=0 λi

1− μ
∑N

i=0 λi

=
μσ2

ntr[R]
1− μtr[R]

(3.47)

where the term 2μ
∑N

i=0 λ2
i v
′
i(k) was considered very small as compared to the remaining terms of

the numerator. This assumption is not easily justifiable, but is valid for small values of μ.

The excess mean-square error can then be expressed as

ξexc = lim
k→∞

Δξ(k) ≈ μσ2
ntr[R]

1− μtr[R]
(3.48)

This equation, for very small μ, can be approximated by

ξexc ≈ μσ2
ntr[R] = μ(N + 1)σ2

nσ2
x (3.49)

where σ2
x is the input signal variance and σ2

n is the additional-noise variance.

The misadjustment M , defined as the ratio between the ξexc and the minimum MSE, is a common
parameter used to compare different adaptive signal processing algorithms. For the LMS algorithm,
the misadjustment is given by

M
�
=

ξexc

ξmin
≈ μtr[R]

1− μtr[R]
(3.50)
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3.3.7 Transient Behavior

Before the LMS algorithm reaches the steady-state behavior, a number of iterations are spent in the
transient part. During this time, the adaptive-filter coefficients and the output error change from their
initial values to values close to that of the corresponding optimal solution.

In the case of the adaptive-filter coefficients, the convergence in the mean will follow (N + 1)
geometric decaying curves with ratios rwi = (1− 2μλi). Each of these curves can be approximated
by an exponential envelope with time constant τwi as follows (see equation (3.18)) [2]:

rwi = e
−1
τwi = 1− 1

τwi
+

1
2!τ2

wi

+ · · · (3.51)

where for each iteration, the decay in the exponential envelope is equal to the decay in the original
geometric curve. In general, rwi is slightly smaller than one, especially for the slowly decreasing
modes corresponding to small λi and μ. Therefore,

rwi = (1− 2μλi) ≈ 1− 1
τwi

(3.52)

then

τwi =
1

2μλi

for i = 0, 1, . . . , N . Note that in order to guarantee convergence of the tap coefficients in the mean,
μ must be chosen in the range 0 < μ < 1/λmax (see equation (3.19)).

According to equation (3.30), for the convergence of the MSE the range of values for μ is 0 < μ <
1/tr[R], and the corresponding time constant can be calculated from matrix B in equation (3.27), by
considering the terms in μ2 small as compared to the remaining terms in matrix B. In this case, the
geometric decaying curves have ratios given by rei = (1 − 4μλi) that can be fitted to exponential
envelopes with time constants given by

τei =
1

4μλi
(3.53)

for i = 0, 1, . . . , N . In the convergence of both the error and the coefficients, the time required for
the convergence depends on the ratio of eigenvalues of the input signal correlation matrix.

Returning to the tap coefficients case, if μ is chosen to be approximately 1/λmax the corresponding
time constant for the coefficients is given by

τwi ≈ λmax

2λi
≤ λmax

2λmin
(3.54)

Since the mode with the highest time constant takes longer to reach convergence, the rate of conver-
gence is determined by the slowest mode given by τwmax = λmax/(2λmin). Suppose the convergence
is considered achieved when the slowest mode provides an attenuation of 100, i.e.,

e
−k

τwmax = 0.01
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this requires the following number of iterations in order to reach convergence:

k ≈ 4.6
λmax

2λmin

The above situation is quite optimistic because μ was chosen to be high. As mentioned before, in
practice we should choose the value of μ much smaller than the upper bound. For an eigenvalue spread
approximating one, according to equation (3.30) let’s choose μ smaller than 1/[(N + 3)λmax].2 In
this case, the LMS algorithm will require at least

k ≈ 4.6
(N + 3)λmax

2λmin
≈ 2.3(N + 3)

iterations to achieve convergence in the coefficients.

The analytical results presented in this section are valid for stationary environments. The LMS
algorithm can also operate in the case of nonstationary environments, as shown in the following
section.

3.4 LMS ALGORITHM BEHAVIOR IN NONSTATIONARY

ENVIRONMENTS

In practical situations, the environment in which the adaptive filter is embedded may be nonstationary.
In these cases, the input signal autocorrelation matrix and/or the cross-correlation vector, denoted
respectively by R(k) and p(k), are/is varying with time. Therefore, the optimal solution for the
coefficient vector is also a time-varying vector given by wo(k).

Since the optimal coefficient vector is not fixed, it is important to analyze if the LMS algorithm
will be able to track changes in wo(k). It is also of interest to learn how the tracking error in the
coefficients given by E[w(k)] − wo(k) will affect the output MSE. It will be shown later that the
excess MSE caused by lag in the tracking of wo(k) can be separated from the excess MSE caused
by the measurement noise, and therefore, without loss of generality, in the following analysis the
additional noise will be considered zero.

The coefficient-vector updating in the LMS algorithm can be written in the following form

w(k + 1) = w(k) + 2μx(k)e(k)
= w(k) + 2μx(k)[d(k)− xT (k)w(k)] (3.55)

Since
d(k) = xT (k)wo(k) (3.56)

the coefficient updating can be expressed as follows:

w(k + 1) = w(k) + 2μx(k)[xT (k)wo(k)− xT (k)w(k)] (3.57)

2This choice also guarantees the convergence of the MSE.
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Now assume that an ensemble of a nonstationary adaptive identification process has been built, where
the input signal in each experiment is taken from the same stochastic process. The input signal is
considered stationary. This assumption results in a fixed R matrix, and the nonstationarity is caused by
the desired signal that is generated by applying the input signal to a time-varying system. With these
assumptions, by using the expected value operation to the ensemble, with the coefficient updating
in each experiment given by equation (3.57), and additionally assuming that w(k) is independent of
x(k) yields

E[w(k + 1)] = E[w(k)] + 2μE[x(k)xT (k)]wo(k)− 2μE[x(k)xT (k)]E[w(k)]
= E[w(k)] + 2μR{wo(k)− E[w(k)]} (3.58)

If the lag in the coefficient vector is defined by

lw(k) = E[w(k)]− wo(k) (3.59)

equation (3.58) can be rewritten as

lw(k + 1) = (I− 2μR)lw(k)− wo(k + 1) + wo(k) (3.60)

In order to simplify our analysis, we can premultiply the above equation by QT , resulting in a
decoupled set of equations given by

l′w(k + 1) = (I− 2μΛ)l′w(k)− w′o(k + 1) + w′o(k) (3.61)

where the vectors with superscript are the original vectors projected onto the transformed space. As
can be noted, each element of the lag-error vector is determined by the following relation

l′i(k + 1) = (1− 2μλi)l′i(k)− w′oi(k + 1) + w′oi(k) (3.62)

where l′i(k) is the ith element of l′w(k). By properly interpreting the above equation, we can say that
the lag is generated by applying the transformed instantaneous optimal coefficient to a first-order
discrete-time lag filter denoted as L

′′
i (z), i.e.,

L′i(z) = − z − 1
z − 1 + 2μλi

W ′
oi(z) = L

′′
i (z)W ′

oi(z) (3.63)

The discrete-time filter transient response converges with a time constant of the exponential envelope
given by

τi =
1

2μλi
(3.64)

which is of course different for each individual tap. Therefore, the tracking ability of the coefficients
in the LMS algorithm is dependent on the eigenvalues of the input signal correlation matrix.

The lag in the adaptive-filter coefficients leads to an excess mean-square error. In order to calculate
the excess MSE, suppose that each element of the optimal coefficient vector is modeled as a first-order
Markov process. This nonstationary situation can be considered somewhat simplified as compared
with some real practical situations. However, it allows a manageable mathematical analysis while
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retaining the essence of handling the more complicated cases. The first-order Markov process is
described by

wo(k) = λwwo(k − 1) + nw(k) (3.65)

where nw(k) is a vector whose elements are zero-mean white noise processes with variance σ2
w, and

λw < 1. Note that (1− 2μλi) < λw < 1, for i = 0, 1, . . . , N , since the optimal coefficients values
must vary slower than the adaptive-filter tracking speed, i.e., 1

2μλi
< 1

1−λw . This model may not

represent an actual system when λw → 1, since the E[wo(k)wT
o (k)] will have unbounded elements

if, for example, nw(k) is not exactly zero mean. A more realistic model would include a factor
(1 − λw)

p
2 , for p ≥ 1, multiplying nw(k) in order to guarantee that E[wo(k)wT

o (k)] is bounded.
In the following discussions, this case will not be considered since the corresponding results can be
easily derived (see problem 14).

From equations (3.62) and (3.63), we can infer that the lag-error vector elements are generated
by applying a first-order discrete-time system to the elements of the unknown system coefficient
vector, both in the transformed space. On the other hand, the coefficients of the unknown system
are generated by applying each element of the noise vector nw(k) to a first-order all-pole filter,
with the pole placed at λw. For the unknown coefficient vector with the above model, the lag-
error vector elements can be generated by applying each element of the transformed noise vector
n′w(k) = QT nw(k) to a discrete-time filter with transfer function

Hi(z) =
−(z − 1)z

(z − 1 + 2μλi)(z − λw)
(3.66)

This transfer function consists of a cascade of the lag filter L
′′
i (z) with the all-pole filter representing

the first-order Markov process as illustrated in Fig. 3.2. Using the inverse Z-transform, the variance
of the elements of the vector l′w(k) can then be calculated by

E[l
′2
i (k)] =

1
2πj

∮
Hi(z)Hi(z−1)σ2

wz−1 dz

=
[

1
(1− λw − 2μλi)(1− λw + 2μλiλw)

] [ −μλi

1− μλi
+

1− λw
1 + λw

]
σ2

w

(3.67)

If λw is considered very close to 1, it is possible to simplify the above equation as

E[l
′2
i (k)] ≈ σ2

w
4μλi(1− μλi)

(3.68)

Figure 3.2 Lag model in nonstationary environment.
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Any error in the coefficient vector of the adaptive filter as compared to the optimal coefficient filter
generates an excess MSE (see equation (3.41)). Since the lag is one source of error in the adaptive-
filter coefficients, then the excess MSE due to lag is given by

ξlag = E[lTw(k)Rlw(k)]
= E{tr[Rlw(k)lTw(k)]}
= tr{RE[lw(k)lTw(k)]}
= tr{ΛE[l′w(k)l′Tw (k)]}

=
N∑

i=0

λiE[l
′2
i (k)]

≈ σ2
w

4μ

N∑
i=0

1
1− μλi

(3.69)

If μ is very small, the MSE due to lag tends to infinity indicating that the LMS algorithm, in this
case, cannot track any change in the environment. On the other hand, for μ appropriately chosen
the algorithm can track variations in the environment leading to an excess MSE. This excess MSE
depends on the variance of the optimal coefficient disturbance and on the values of the input signal
autocorrelation matrix eigenvalues, as indicated in equation (3.69). On the other hand, if μ is very
small and λw is not very close to 1, the approximation for equation (3.67) becomes

E[l
′2
i (k)] ≈ σ2

w
1− λ2

w
(3.70)

As a result the MSE due to lag is given by

ξlag ≈ (N + 1)σ2
w

1− λ2
w

(3.71)

It should be noticed that λw closer to 1 than the modes of the adaptive filter is the common operation
region, therefore the result of equation (3.71) is not discussed further.

Now we analyze how the error due to lag interacts with the error generated by the noisy calculation
of the gradient in the LMS algorithm. The overall error in the taps is given by

Δw(k) = w(k)− wo(k) = {w(k)− E[w(k)]}+ {E[w(k)]− wo(k)} (3.72)

where the first error in the above equation is due to the additional noise and the second is the error
due to lag. The overall excess MSE can then be expressed as

ξtotal = E{[w(k)− wo(k)]T R[w(k)− wo(k)]}
≈ E{(w(k)− E[w(k)])T R(w(k)− E[w(k)])}

+E{(E[w(k)]− wo(k))T R(E[w(k)]− wo(k))} (3.73)

since 2E{(w(k)−E[w(k)])T R(E[w(k)]−wo(k))} ≈ 0, if we consider the fact that wo(k) is kept
fixed in each experiment of the ensemble. As a consequence, an estimate for the overall excess MSE
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can be obtained by adding the results of equations (3.48) and (3.69), i.e.,

ξtotal ≈ μσ2
ntr[R]

1− μtr[R]
+

σ2
w

4μ

N∑
i=0

1
1− μλi

(3.74)

If small μ is employed, the above equation can be simplified as follows:

ξtotal ≈ μσ2
ntr[R] +

σ2
w

4μ
(N + 1) (3.75)

Differentiating the above equation with respect to μ and setting the result to zero yields an optimum
value for μ given by

μopt =

√
(N + 1)σ2

w
4σ2

ntr[R]
(3.76)

The μopt is supposed to lead to the minimum excess MSE. However, the user should bear in mind that
the μopt can only be used if it satisfies stability conditions, and if its value can be considered small
enough to validate equation (3.75). Also this value is optimum only when quantization effects are
not taken into consideration, where for short-wordlength implementation the best μ should be chosen
following the guidelines given in the Appendix B. It should also be mentioned that the study of the
misadjustment due to nonstationarity of the environment is considerably more complicated when
the input signal and the desired signal are simultaneously nonstationary [8], [10]-[17]. Therefore,
the analysis presented here is only valid if the assumptions made are valid. However, the simplified
analysis provides a good sample of the LMS algorithm behavior in a nonstationary environment and
gives a general indication of what can be expected in more complicated situations.

The results of the analysis of the previous sections are obtained assuming that the algorithm is im-
plemented with infinite precision3. However, the widespread use of adaptive-filtering algorithms in
real-time requires their implementation with short wordlength, in order to meet the speed require-
ments. When implemented with short-wordlength precision the LMS algorithm behavior can be very
different from what is expected in infinite precision. In particular, when the convergence factor μ
tends to zero it is expected that the minimum mean-square error is reached in steady state; however,
due to quantization effects the MSE tends to increase significantly if μ is reduced below a certain
value. In fact, the algorithm can stop updating some filter coefficients if μ is not chosen appropriately.
Appendix B, section B.1, presents detailed analysis of the quantization effects in the LMS algorithm.

3.5 COMPLEX LMS ALGORITHM

The LMS algorithm for complex signals, which often appear in communications applications, is
derived in Appendix A. References [18]-[19] provide details related to complex differentiation
required to generate algorithms working in environments with complex signals.

3This is an abuse of language, by infinite precision we mean very long wordlength.
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By recalling that the LMS algorithm utilizes instantaneous estimates of matrix R, denoted by R̂(k),
and of vector p, denoted by p̂(k), given by

R̂(k) = x(k)xH(k)
p̂(k) = d∗(k)x(k) (3.77)

The actual objective function being minimized is the instantaneous square error |e(k)|2. According
to the derivations in section A.3, the expression of the gradient estimate is

ĝw∗{e(k)e∗(k)} = −e∗(k)x(k) (3.78)

By utilizing the output error definition for the complex environment case and the instantaneous
gradient expression, the updating equations for the complex LMS algorithm are described by{

e(k) = d(k)− wH(k)x(k)

w(k + 1) = w(k) + μce
∗(k)x(k)

(3.79)

If the convergence factor μc = 2μ, the expressions for the coefficient updating equation of the
complex and real cases have the same form and the analysis results for the real case equally applies
to the complex case4.

An iteration of the complex LMS requires N + 2 complex multiplications for the filter coefficient
updating and N + 1 complex multiplications for the error generation. In a non-optimized form each
complex multiplication requires four real multiplications. The detailed description of the complex
LMS algorithm is shown in the table denoted asAlgorithm 3.2. As for any adaptive-filtering algorithm,
the initialization is not necessarily performed as described in Algorithm 3.2, where the coefficients
of the adaptive filter are started with zeros.

3.6 EXAMPLES

In this section, a number of examples are presented in order to illustrate the use of the LMS algorithm
as well as to verify theoretical results presented in the previous sections.

3.6.1 Analytical Examples

Some analytical tools presented so far are employed to characterize two interesting types of adaptive-
filtering problems. The problems are also solved with the LMS algorithm.

Example 3.1

A Gaussian white noise with unit variance colored by a filter with transfer function

4The missing factor 2 here originates from the term 1
2 in definition of the gradient that we opted to use in order to be

coherent with most literature, in actual implementation the factor 2 of the real case is usually incorporated to the μ.
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Algorithm 3.2

Complex LMS Algorithm

Initialization

x(0) = w(0) = [0 0 . . . 0]T

Do for k ≥ 0

e(k) = d(k)− wH(k)x(k)

w(k + 1) = w(k) + μce
∗(k)x(k)

Hin(z) =
1

z − 0.5
is transmitted through a communication channel with model given by

Hc(z) =
1

z + 0.8

and with the channel noise being Gaussian white noise with variance σ2
n = 0.1.

Fig. 3.3 illustrates the experimental environment. Note that x′(k) is generated by first applying
Gaussian white noise with variance σ2

in = 1 to a filter with transfer function Hin(z). The result is
applied to a communication channel with transfer function Hc(z), and then Gaussian channel noise
with variance σ2

n = 0.1 is added. On the other hand, d(k) is generated by applying the same Gaussian
noise with variance σ2

in = 1 to the filter with transfer function Hin(z), with the result delayed by L
samples.

(a) Determine the best value for the delay L.

(b) Compute the Wiener solution.

(c) Choose an appropriate value for μ and plot the convergence path for the LMS algorithm on the
MSE surface.

(d) Plot the learning curves of the MSE and the filter coefficients in a single run as well as for the
average of 25 runs.
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Solution:

(a) In order to determine L, we will examine the behavior of the cross-correlation between the
adaptive-filter input signal denoted by x′(k) and the reference signal d(k).

e(k)
y(k)

n(k)

x(k)

d(k)

+-+ Adaptive
filter

HcinH

x (k)
,

(z) (z)

z -L

Figure 3.3 Channel equalization of Example 3.1.

The cross-correlation between d(k) and x′(k) is given by

p(i) = E[d(k)x′(k − i)]

=
1

2πj

∮
Hin(z)z−LziHin(z−1)Hc(z−1)σ2

in

dz

z

=
1

2πj

∮
1

z − 0.5
z−Lzi z

1− 0.5z

z

1 + 0.8z
σ2

in

dz

z

where the integration path is a counterclockwise closed contour corresponding to the unit circle.

The contour integral of the above equation can be solved through the Cauchy’s residue theorem. For
L = 0 and L = 1, the general solution is

p(0) = E[d(k)x′(k)] = σ2
in[0.5−L+1 1

0.75
1

1.4
]

where in order to obtain p(0), we computed the residue at the pole located at 0.5. The values of the
cross-correlation for L = 0 and L = 1 are respectively

p(0) = 0.47619
p(0) = 0.95238

For L = 2, we have that

p(0) = σ2
in[0.5−L+1 1

0.75
1

1.4
− 2] = −0.09522

where in this case we computed the residues at the poles located at 0.5 and at 0, respectively. For
L = 3, we have

p(0) = σ2
in[

0.5−L+1

1.05
− 3.4] = 0.4095
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From the above analysis, we see that the strongest correlation between x′(k) and d(k) occurs for
L = 1. For this delay, the equalization is more effective. As a result, from the above calculations,
we can obtain the elements of vector p as follows:

p =
[

p(0)
p(1)

]
=
[

0.9524
0.4762

]
Note that p(1) for L = 1 is equal to p(0) for L = 0.

The elements of the correlation matrix of the adaptive-filter input signal are calculated as follows:

r(i) = E[x′(k)x′(k − i)]

=
1

2πj

∮
Hin(z)Hc(z)ziHin(z−1)Hc(z−1)σ2

in

dz

z
+ σ2

nδ(i)

=
1

2πj

∮
1

z − 0.5
1

z + 0.8
zi z

1− 0.5z

z

1 + 0.8z
σ2

in

dz

z
+ σ2

nδ(i)

where again the integration path is a counterclockwise closed contour corresponding to the unit circle,
and δ(i) is the unitary impulse. Solving the contour integral equation, we obtain

r(0) = E[x′2(k)]

= σ2
in[

1
1.3

0.5
0.75

1
1.4

+
−1
1.3
−0.8
1.4

1
0.36

] + σ2
n = 1.6873

where the in order to obtain r(0), we computed the residues at the poles located at 0.5 and −0.8,
respectively. Similarly, we have that

r(1) = E[x′(k)x′(k − 1)]

= σ2
in[

1
1.3

1
0.75

1
1.4

+
−1
1.3

1
1.4

1
0.36

] = −0.7937

where again we computed the residues at the poles located at 0.5 and −0.8, respectively.

The correlation matrix of the adaptive-filter input signal is given by

R =
[

1.6873 −0.7937
−0.7937 1.6873

]

(b) The coefficients corresponding to the Wiener solution are given by

wo = R−1p

= 0.45106
[

1.6873 0.7937
0.7937 1.6873

] [
0.9524
0.4762

]

=
[

0.8953
0.7034

]

(c) The LMS algorithm is applied to minimize the MSE using a convergence factor μ = 1/40tr[R],
where tr[R] = 3.3746. The value of μ is 0.0074. This small value of the convergence factor allows a
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smooth convergence path. The convergence path of the algorithm on the MSE surface is depicted in
Fig. 3.4. As can be noted, the path followed by the LMS algorithm looks like a noisy steepest-descent
path. It first approaches the main axis (eigenvector) corresponding to the smaller eigenvalue, and
then follows toward the minimum in a direction increasingly aligned with this main axis.

(d) The learning curves of the MSE and the filter coefficients, in a single run are depicted in Fig. 3.5.
The learning curves of the MSE and the filter coefficients, obtained by averaging the results of 25
runs, are depicted in Fig. 3.6. As can be noted, these curves are less noisy than in the single run case.
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Figure 3.4 Convergence path on the MSE surface.

The adaptive-filtering problems discussed so far assumed that the signals taken from the environment
were stochastic signals. Also, by assuming these signals were ergodic, we have shown that the
adaptive filter is able to approach the Wiener solution by replacing the ensemble average by time
averages. In conclusion, we can assume that the solution reached by the adaptive filter is based on
time averages of the cross-correlations of the environment signals.

For example, if the environment signals are periodic deterministic signals, the optimal solution
depends on the time average of the related cross-correlations computed over one period of the
signals.
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Figure 3.5 (a) Learning curve of the instantaneous squared error (b) Learning curves of the coefficients,
a - first coefficient, b - second coefficient, c - optimal value for the first coefficient, d - optimal value of the
second coefficient.
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Note that in this case, the solution obtained using an ensemble average would be time varying since
we are dealing with a nonstationary problem. The following examples illustrate this issue.

Example 3.2

Suppose in an adaptive-filtering environment, the input signal consists of

x(k) = cos(ω0k)

The desired signal is given by
d(k) = sin(ω0k)

where ω0 = 2π
M . In this case M = 7.

Compute the optimal solution for a first-order adaptive filter.

Solution:

In this example, the signals involved are deterministic and periodic. If the adaptive-filter coefficients
are fixed, the error is a periodic signal with period M . In this case, the objective function that will
be minimized by the adaptive filter is the average value of the squared error defined by

Ē[e2(k)] =
1
M

M−1∑
m=0

[
e2(k −m)

]
= Ē[d2(k)]− 2wT p̄ + wT R̄w (3.80)

where

R̄ =
[

Ē[cos2(ω0k)] Ē[cos(ω0k) cos(ω0(k − 1))]
Ē[cos(ω0k) cos(ω0(k − 1))] Ē[cos2(ω0k)]

]

and

p̄ =
[
Ē[sin(ω0k) cos(ω0k)] Ē[sin(ω0k) cos(ω0k − 1)]

]T
The expression for the optimal coefficient vector can be easily derived.

wo = R̄−1p̄

Now the above results are applied to the problem described. The elements of the vector p̄ are
calculated as follows:
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p̄ =
1
M

M−1∑
m=0

[
d(k −m)x(k −m)

d(k −m)x(k −m− 1)

]

=
1
M

M−1∑
m=0

[
sin(ω0(k −m)) cos(ω0(k −m))

sin(ω0(k −m)) cos(ω0(k −m− 1))

]

=
1
2

[
0

sin(ω0)

]

=
[

0
0.3909

]

The elements of the correlation matrix of the adaptive-filter input signal are calculated as follows:

r̄(i) = Ē[x(k)x(k − i)]

=
1
M

M−1∑
m=0

[cos(ω0(k −m)) cos(ω0(k −m− i))]

where

r̄(0) = Ē[cos2(ω0(k))] = 0.5
r̄(1) = Ē[cos(ω0(k)) cos(ω0(k − 1))] = 0.3117

The correlation matrix of the adaptive-filter input signal is given by

R̄ =
[

0.5 0.3117
0.3117 0.5

]

The coefficients corresponding to the optimal solution are given by

w̄o = R̄−1p̄ =
[ −0.7972

1.2788

]

�

Example 3.3

(a) Assume the input and desired signals are deterministic and periodic with period M . Study the
LMS algorithm behavior.

(b) Choose an appropriate value for μ in the previous example and plot the convergence path for the
LMS algorithm on the average error surface.
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Solution:

(a) It is convenient at this point to recall the coefficient updating of the LMS algorithm

w(k + 1) = w(k) + 2μx(k)e(k) = w(k) + 2μx(k)
[
d(k)− xT (k)w(k)

]
This equation can be rewritten as

w(k + 1) =
[
I− 2μx(k)xT (k)

]
w(k) + 2μd(k)x(k) (3.81)

The solution of equation (3.81), as a function of the initial values of the adaptive-filter coefficients,
is given by

w(k + 1) =
k∏

i=0

[
I− 2μx(i)xT (i)

]
w(0) +

k∑
i=0

⎧⎨
⎩

k∏
j=i+1

[
I− 2μx(j)xT (j)

]
2μd(i)x(i)

⎫⎬
⎭
(3.82)

where we define that
∏k

j=k+1[·] = 1 for the second product.

Assuming the value of the convergence factor μ is small enough to guarantee that the LMS algorithm
will converge, the first term on the right-hand side of the above equation will vanish as k →∞. The
resulting expression for the coefficient vector is given by

w(k + 1) =
k∑

i=0

⎧⎨
⎩

k∏
j=i+1

[
I− 2μx(j)xT (j)

]
2μd(i)x(i)

⎫⎬
⎭

The analysis of the above solution is not straightforward. Following an alternative path based on
averaging the results in a period M , we can reach conclusive results.

Let us define the average value of the adaptive-filter parameters as follows:

w(k + 1) =
1
M

M−1∑
m=0

w(k + 1−m)

Similar definition can be applied to the remaining parameters of the algorithm.

Considering that the signals are deterministic and periodic, we can apply the average operation to
equation (3.81). The resulting equation is

w(k + 1) =
1
M

M−1∑
m=0

[
I− 2μx(k −m)xT (k −m)

]
w(k −m) +

1
M

M−1∑
m=0

2μd(k −m)x(k −m)

= [I− 2μx(k)xT (k)] w(k) + 2μd(k)x(k) (3.83)

For large k and small μ, it is expected that the parameters converge to the neighborhood of the optimal
solution. In this case, we can consider that w(k + 1) ≈ w(k) and that the following approximation
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is valid

x(k)xT (k)w(k) ≈ x(k)xT (k) w(k)

since the parameters after convergence wander around the optimal solution. Using these approxima-
tions in (3.83), the average values of the parameters in the LMS algorithm for periodic signals are
given by

w(k) ≈ x(k)xT (k)
−1

d(k)x(k) = R̄−1p̄

(b) The LMS algorithm is applied to minimize the squared error of the problem described in Example
3.2 using a convergence factor μ = 1/100tr[R̄], where tr[R̄] = 1. The value of μ is 0.01. The
convergence path of the algorithm on the MSE surface is depicted in Fig. 3.7. As can be verified, the
parameters generated by the LMS algorithm approach the optimal solution.
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Figure 3.7 Convergence path on the MSE surface.

Example 3.4

The leaky LMS algorithm has the following updating equation

w(k + 1) = (1− 2μγ)w(k) + 2μe(k)x(k) (3.84)

where 0 < γ << 1.
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(a) Compute the range of values of μ such that the coefficients converge in average.

(b) What is the objective function this algorithm actually minimizes?

(c) What happens to the filter coefficients if the error and/or input signals become zero?

Solution:

(a) By utilizing the error expression we generate the coefficient updating equation given by

w(k + 1) = {I− 2μ[x(k)xT (k) + γI]}w(k) + 2μd(k)x(k)

By applying the expectation operation it follows that

E[w(k + 1)] = {I− 2μ[R + γI]}E[w(k)] + 2μp

The inclusion of γ is equivalent to add a white noise to the input signal x(n), such that a value of γ
is added to the eigenvalues of the input signal autocorrelation matrix. As a result, the condition for
the stability in the mean for the coefficients is expressed as

0 < μ <
1

λmax + γ

The coefficients converge to a biased solution with respect to the Wiener solution and are given by

E[w(k)] = [R + γI]−1p

for k →∞.

(b) Equation (3.84) can be rewritten in a form that helps us to recognize the gradient expression.

w(k + 1) = w(k) + 2μ(−γw(k) + e(k)x(k))
= w(k)− 2μ(γw(k)− d(k)x(k) + x(k)xT (k)w(k)) (3.85)

By inspection we observe that in this case the gradient is described by

gw(k) = 2γw(k)− 2e(k)x(k) = 2γw(k)− 2d(k)x(k) + 2x(k)xT (k)w(k)

The corresponding objective function that is indeed minimized is given by

ξ(k) = {γ||w(k)||2 + e2(k)}

(c) For zero input or zero error signal after some initial iterations, the dynamic updating equation
(3.84) has zero excitation. Since the eigenvalues of the transition matrix {I− 2μ[x(k)xT (k) + γI]}
are smaller than one, then the adaptive-filter coefficients will tend to zero for large k.

�
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3.6.2 System Identification Simulations

In this subsection, a system identification problem is described and solved by using the LMS algo-
rithm. In the following chapters the same problem will be solved using other algorithms presented
in the book. For the FIR adaptive filters the following identification problem is posed:

Example 3.5

An adaptive-filtering algorithm is used to identify a system with impulse response given below.

h = [0.1 0.3 0.0 − 0.2 − 0.4 − 0.7 − 0.4 − 0.2]T

Consider three cases for the input signal: colored noises with variance σ2
x = 1 and eigenvalue spread

of their correlation matrix equal to 1.0, 20, and 80, respectively. The measurement noise is Gaussian
white noise uncorrelated with the input and with variance σ2

n = 10−4. The adaptive filter has 8
coefficients.

(a) Run the algorithm and comment on the convergence behavior in each case.

(b) Measure the misadjustment in each example and compare with the theoretical results where ap-
propriate.

(c) Considering that fixed-point arithmetic is used, run the algorithm for a set of experiments and
calculate the expected values for ||Δw(k)Q||2 and ξ(k)Q for the following case:

Additional noise: white noise with variance σ2
n = 0.0015

Coefficient wordlength: bc = 16 bits
Signal wordlength: bd = 16 bits
Input signal: Gaussian white noise with variance σ2

x = 1.0

(d) Repeat the previous experiment for the following cases
bc = 12 bits, bd = 12 bits.
bc = 10 bits, bd = 10 bits.

(e) Suppose the unknown system is a time-varying system whose coefficients are first-order Markov
processes with λw = 0.99 and σ2

w = 0.0015. The initial time-varying-system multiplier coefficients
are the ones above described. The input signal is Gaussian white noise with variance σ2

x = 1.0, and
the measurement noise is also Gaussian white noise independent of the input signal and of the
elements of nw(k), with variance σ2

n = 0.01. Simulate the experiment described, measure the total
excess MSE, and compare to the calculated results.
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Solution:

(a) The colored input signal is generated by applying Gaussian white noise, with variance σ2
v , to a

first-order filter with transfer function

H(z) =
z

z − a

As can be shown from the equation (2.83), the input signal correlation matrix in this case is given by

R =
σ2

v

1− a2

⎡
⎢⎢⎢⎣

1 a · · · a7

a 1 · · · a6

...
...

. . .
...

a7 a6 · · · 1

⎤
⎥⎥⎥⎦

The proper choice of the value of a, in order to obtain the desired eigenvalue spread, is not a
straightforward task. Some guidelines are now discussed. For example, if the adaptive filter is of
first order, the matrix R is two by two with eigenvalues

λmax =
σ2

v

1− a2 (1 + a)

and

λmin =
σ2

v

1− a2 (1− a)

respectively. In this case, the choice of a is straightforward.

In general, it can be shown that

λmax

λmin
≤ |Hmax(ejω)|2
|Hmin(ejω)|2

For a very large order adaptive filter, the eigenvalue spread approaches

λmax

λmin
≈ |Hmax(ejω)|2
|Hmin(ejω)|2 =

{
1 + a

1− a

}2

where the details to reach this result can be found in page 124 of [20].

Using the above relations as guidelines, we reached the correct values of a. These values are
a = 0.6894 and a = 0.8702 for eigenvalue spreads of 20 and 80, respectively.

Since the variance of the input signal should be unity, the variance of the Gaussian white noise that
produces x(k) should be given by

σ2
v = 1− a2
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For the LMS algorithm, we first calculate the upper bound for μ (μmax) to guarantee the algorithm
stability, and run the algorithm for μmax, μmax/5, and μmax/10.

In this example, the LMS algorithm does not converge for μ = μmax ≈ 0.1. The convergence
behavior for μmax/5 and μmax/10 are illustrated through the learning curves depicted in Fig. 3.8,
where in this case the eigenvalue spread is 1. Each curve is obtained by averaging the results of 200
independent runs. As can be noticed, the reduction of the convergence factor leads to a reduction
in the convergence speed. Also note that for μ = 0.02 the estimated MSE is plotted only for the
first 400 iterations, enough to display the convergence behavior. In all examples the tap coefficients
are initialized with zero. Fig. 3.9 illustrates the learning curves for the various eigenvalue spreads,
where in each case the convergence factor is μmax/5. As expected the convergence rate is reduced
for a high eigenvalue spread.
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Figure 3.8 Learning curves for the LMS algorithm with convergence factors μmax/5 and μmax/10.

(b) The misadjustment is measured and compared with the results obtained from the following relation

M =
μ(N + 1)σ2

x

1− μ(N + 1)σ2
x

Also, for the present problem we calculated the time constants τwi and τei, and the expected number
of iterations to achieve convergence using the relations

τwi ≈ 1
2μλi
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Figure 3.9 Learning curves for the LMS algorithm for eigenvalue spreads: 1, 20, and 80.

τei ≈ 1
4μλi

k ≈ τemax ln(100)

Table 3.1 illustrates the obtained results. As can be noted the analytical results agree with the
experimental results, especially those related to the misadjustment. The analytical results related to
the convergence time are optimistic as compared with the measured results. These discrepancies are
mainly due to the approximations in the analysis.

(c), (d) The LMS algorithm is implemented employing fixed-point arithmetic using 16, 12, and
10 bits for data and coefficient wordlengths. The chosen value of μ is 0.01. The learning curves
for the MSE are depicted in Fig. 3.10. Fig. 3.11 depicts the evolution of ||Δw(k)Q||2 with the
number of iterations. The experimental results show that the algorithm still works for such limited
precision. In Table 3.2, we present a summary of the results obtained from simulation experiments
and a comparison with the results predicted by the theory. The experimental results are obtained by
averaging the results of 200 independent runs. The relations employed to calculate the theoretical
results shown in Table 3.2 correspond to equations (B.26) and (B.32) derived in Appendix B. These
relations are repeated here for convenience:

E[||Δw(k)Q||2] =
μ(σ2

n + σ2
e)(N + 1)

1− μ(N + 1)σ2
x

+
(N + 1)σ2

w
4μσ2

x[1− μ(N + 1)σ2
x]
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Table 3.1 Evaluation of the LMS Algorithm

Misadjustment τemax τwmax Iterations
μ λmax

λmin
Experiment Theory

0.02 1 0.2027 0.1905 12.5 25 58

0.01280 20 0.1298 0.1141 102.5 205 473

0.01024 80 0.1045 0.0892 338.9 677.5 1561

0.01 1 0.0881 0.0870 25 50 116

0.006401 20 0.0581 0.0540 205 410 944

0.005119 80 0.0495 0.0427 677.5 1355 3121

ξ(k)Q =
σ2

e + σ2
n

1− μ(N + 1)σ2
x

+
(N + 1)σ2

w
4μ[1− μ(N + 1)σ2

x]

The results of Table 3.2 confirm that the finite-precision implementation analysis presented is accu-
rate.

Table 3.2 Results of the Finite Precision Implementation of the LMS Algorithm

ξ(k)Q E[||Δw(k)Q||2]
No. of bits Experiment Theory Experiment Theory

16 1.629 10−3 1.630 10−3 1.316 10−4 1.304 10−4

12 1.632 10−3 1.631 10−3 1.309 10−4 1.315 10−4

10 1.663 10−3 1.648 10−3 1.465 10−4 1.477 10−4

(e) The performance of the LMS algorithm is also tested in the nonstationary environment above
described. The excess MSE is measured and depicted in Fig. 3.12. For this example μopt is found
to be greater than μmax. The value of μ used in the example is 0.05. The excess MSE in steady state
predicted by the relation

ξtotal ≈ μσ2
ntr[R]

1− μtr[R]
+

σ2
w

4μ

N∑
i=0

1
1− μλi

is 0.124, whereas the measured excess MSE in steady state is 0.118. Once more the results obtained
from the analysis are accurate.

�
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Figure 3.10 Learning curves for the LMS algorithm implemented with fixed-point arithmetic and with
μ = 0.01.
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Figure 3.12 The excess MSE of the LMS algorithm in nonstationary environment, μ = 0.05.

3.6.3 Channel Equalization Simulations

In this subsection an equalization example is described. This example will be used as pattern for
comparison of several algorithms presented in this book.

Example 3.6

Perform the equalization of a channel with the following impulse response

h(k) = 0.1 (0.5k)

for k = 0, 1, . . . 8. Use a known training signal that consists of independent binary samples (-1,1).
An additional Gaussian white noise with variance 10−2.5 is present at the channel output.

(a) Find the impulse response of an equalizer with 50 coefficients.

(b) Convolve the equalizer impulse response at a given iteration after convergence, with the channel
impulse response and comment on the result.
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Solution:

We apply the LMS algorithm to solve the equalization problem. We use μmax/5 for the value of the
convergence factor. In order to obtain μmax, the values of λmax = 0.04275 and σ2

x = 0.01650 are
measured and applied in equation (3.30). The resulting value of μ is 0.2197.

The appropriate value of L is found to be round( 9+50
2 ) = 30. The impulse response of the resulting

equalizer is shown in Fig. 3.13. By convolving this response with the channel impulse response, we
obtain the result depicted in Fig. 3.14 that clearly approximates an impulse. The measured MSE is
0.3492.
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Figure 3.13 Equalizer impulse response; LMS algorithm.

3.6.4 Fast Adaptation Simulations

The exact evaluation of the learning curves of the squared error or coefficients of an adaptive filter
is a difficult task. In general the solution is to run repeated simulations and average their results.
For the LMS algorithm this ensemble averaging leads to results which are close to those predicted
by independence theory [4], if the convergence factor is small. In fact, the independence theory is a
first-order approximation in μ to the actual learning curves of ξ(k) [4], [22].
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Figure 3.14 Convolution result; LMS algorithm.

However, for large μ the results from the ensemble average can be quite different from the theoretical
prediction [21]. The following example explores this observation.

Example 3.7

An adaptive-filtering algorithm is used to identify a system. Consider three cases described below.

(a) The unknown system has length 10, the input signal is a stationary Gaussian noise with variance
σ2

x = 1 and the measurement noise is Gaussian white noise uncorrelated with the input and with
variance σ2

n = 10−4.

(b) The unknown system has length 2, the input signal is a stationary uniformly distributed noise in
the range -0.5 and 0.5, and there is no measurement noise.

(c) Study the behavior of the ensemble average as well as the mean square value of the coefficient
error of an LMS algorithm with a single coefficient, when the input signal is a stationary uniformly
distributed noise in the range −a and a, and there is no measurement noise.
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Solution:

(a) Fig. 3.15 depicts the theoretical learning curve for the squared error obtained using the indepen-
dence theory as well as the curves obtained by averaging the results of 10 and 100 independent runs.
The chosen convergence factor is μ = 0.08. As we can observe the simulation curves are not close
to the theoretical one, but they get closer as the number of independent runs increases.
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Figure 3.15 Learning curves for the LMS algorithm with convergence factor μ = 0.08, result of ensemble
averages with 10 and 100 independent simulations as well as the theoretical curve.

(b) Fig. 3.16 shows the exact theoretical learning curve for the squared error obtained from [23] along
with the curves obtained by averaging the results of 100, 1000 and 10000 independent runs. The
chosen convergence factor is μ = 4.00. As we can observe the theoretical learning curve diverges
whereas the simulation curves converge. A closer look at this problem is given in the next item.

(c) From equation (3.12), the evolution of the squared deviation in the tap coefficient is given by

Δw2(k + 1) =
[
1− 2μx2(k)

]2
Δw2(k)

where Δw(0) is fixed, and the additional noise is zero. Note that the evolution of Δw2(k) is governed

by the random factor
[
1− 2μx2(k)

]2
. With the assumptions on the input signal these random factors

form an independent, identically distributed random sequence. The above model can then be rewritten
as

Δw2(k + 1) =

{
k∏

i=0

[
1− 2μx2(i)

]2}
Δw2(0) (3.86)
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Figure 3.16 Learning curves for the LMS algorithm with convergence factor μ = 4.00, result of ensemble
averages with 100, 1000 and 10000 independent simulations as well as the theoretical curve.

The objective now is to study the differences between the expected value of Δw2(k + 1) and its
ensemble average. In the first case, by using the independence of the random factors in equation
(3.86) we have that

E[Δw2(k + 1)] =

{
k∏

i=0

E
[
(1− 2μx2(i))2

]}
Δw2(0)

= {E [(1− 2μx2(0))2
]}k+1Δw2(0) (3.87)

Since the variance of the input signal is σ2
x = a2

3 and its fourth-order moment is given by a4

5 , the
above equation can be rewritten as

E[Δw2(k + 1)] =
{
E
[
(1− 2μx2(0))2

]}k+1
Δw2(0)

=
(

1− 4μ
a2

3
+ 4μ2 a4

5

)k+1

Δw2(0) (3.88)

From the above equation we can observe that the rate of convergence of E[Δw2(k)] is equal to
ln{E [(1− 2μx2(0))2

]}.
Let’s examine now how the ensemble average of Δw2(k) evolves, for large k and μ, by computing
its logarithm as follows:

ln[Δw2(k + 1)] =
k∑

i=0

ln[(1− 2μx2(i))2] + ln[Δw2(0)] (3.89)
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By assuming that ln[(1 − 2μx2(i))2] exists and by employing the law of large numbers [13], we
obtain

ln[Δw2(k + 1)]
k + 1

=
1

k + 1

{
k∑

i=0

ln[(1− 2μx2(i))2] + ln[Δw2(0)]

}
(3.90)

which converges asymptotically to

E{ln[(1− 2μx2(i))2]}
For large k, after some details found in [21], from the above relation it can be concluded that

Δw2(k + 1) ≈ Ce(k+1)E{ln[(1−2μx2(i))2]} (3.91)

where C is a positive number which is not a constant and will be different for each run of the algorithm.
In fact, C can have quite large values for some particular runs. In conclusion, the ensemble average
of Δw2(k + 1) decreases or increases with a time constant close to E{ln[(1− 2μx2(i))2]}−1. Also
it converges to zero if and only if E{ln[(1 − 2μx2(i))2]} < 0, leading to a distinct convergence
condition on 2μx2(i) from that obtained by the mean-square stability. In fact, there is a range of
values of the convergence factor in which the ensemble average converges but the mean-square value
diverges, explaining the convergence behavior in Fig. 3.16.

Fig. 3.17 depicts the curves of ln{E [(1− 2μx2(0))2
]} (the logarithm of the rate of convergence of

mean-square coefficient error) and of E{ln[(1 − 2μx2(i))2]} as a function of 2μx2(i). For small
values of 2μx2(i) both curves are quite close, however for larger values they are somewhat different
in particular at the minima of the curves which correspond to the fastest convergence rate. In addition,
as the curves become further apart the convergence is faster for the ensemble average of the squared
coefficient error than for the mean-square coefficient error for large k.

�

3.6.5 The Linearly Constrained LMS Algorithm

In the narrowband beamformer application discussed in section 2.5, our objective was to minimize
the array output power subjecting the linear combiner coefficients to a set of constraints. Now, let
us derive an adaptive version of the LCMV filter by first rewriting the linearly constrained objective
function of equation (2.107) for the case of multiple constraints as

ξc = E
[
wT x(k)xT (k)w

]
+ λT

[
CT w− f

]
= wT Rw + λT

[
CT w− f

]
(3.92)

where R is the input signal autocorrelation matrix, C is the constraint matrix, and λ is the vector of
Lagrange multipliers.

The constrained LMS-based algorithm [24] can be derived by searching for the coefficient vector
w(k + 1) that satisfies the set of constraints and represents a small update with respect to w(k) in
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the direction of the negative of the gradient (see equation (2.108)), i.e.,

w(k + 1) = w(k)− μgw{ξc(k)}
= w(k)− μ[2R(k)w(k) + Cλ(k)] (3.93)

where R(k) is some estimate of the input signal autocorrelation matrix at instant k, C is again the
constraint matrix, and λ(k) is the (N + 1)× 1 vector of Lagrange multipliers.

In the particular case of the constrained LMS algorithm, matrix R(k) is chosen as an instantaneous
rank-one estimate given by x(k)xT (k). In this case, we can utilize the method of Lagrange multipliers
to solve the constrained minimization problem defined by

ξc(k) = wT (k)x(k)xT (k)w(k) + λT (k)
[
CT w(k)− f

]
= wT (k)x(k)xT (k)w(k) +

[
wT (k)C− fT

]
λ(k) (3.94)

The gradient of ξc(k) with respect to w(k) is given by

gw{ξc(k)} = 2x(k)xT (k)w(k) + Cλ(k) (3.95)

The constrained LMS updating algorithm related to equation (3.93) becomes

w(k + 1) = w(k)− 2μx(k)xT (k)w(k)− μCλ(k)
= w(k)− 2μy(k)x(k)− μCλ(k) (3.96)
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If we apply the constraint relation CT w(k + 1) = f to the above expression, it follows that

CT w(k + 1) = f

= CT w(k)− 2μCT x(k)xT (k)w(k)− μCT Cλ(k)
= CT w(k)− 2μy(k)CT x(k)− μCT Cλ(k) (3.97)

By solving the above equation for μλ(k) we get

μλ(k) =
[
CT C

]−1
CT [w(k)− 2μy(k)x(k)]− [CT C

]−1
f (3.98)

If we substitute equation (3.98) in the updating equation (3.96), we obtain

w(k + 1) = P[w(k)− 2μy(k)x(k)] + fc (3.99)

where fc = C(CT C)−1f and P = I − C(CT C)−1CT . Notice that the updated coefficient vector
given in equation (3.99) is a projection onto the hyperplane defined by CT w = 0 of an unconstrained
LMS solution plus a vector fc that brings the projected solution back to the constraint hyperplane.

If there is a reference signal d(k), the updating equation is given by

w(k + 1) = Pw(k) + 2μe(k)Px(k) + fc (3.100)

In the case of the constrained normalized LMS algorithm (see section 4.4), the solution satisfies
wT (k + 1)x(k) = d(k) in addition to CT w(k + 1) = f [25]. Alternative adaptation algorithms may
be derived such that the solution at each iteration also satisfies a set of linear constraints [26].

For environments with complex signals and complex constraints, the updating equation is given by

w(k + 1) = Pw(k) + μce
∗(k)Px(k) + fc (3.101)

where CHw(k + 1) = f, fc = C(CHC)−1f and P = I− C(CHC)−1CH .

An efficient implementation for constrained adaptive filters was proposed in [27], which consists
of applying a transformation to the input signal vector based on Householder transformation. The
method can be regarded as an alternative implementation of the generalized sidelobe canceller struc-
ture, but with the advantages of always utilizing orthogonal/unitary matrices and rendering low
computational complexity.

Example 3.8

An array of antennas with four elements, with inter-element spacing of 0.15 meters, receives signals
from two different sources arriving at 90◦ and 30◦ of angles with respect to the axis where the
antennas are placed. The desired signal impinges on the antenna at 90◦. The signal of interest is
a sinusoid of frequency 20MHz and the interferer signal is a sinusoid of frequency 70MHz. The
sampling frequency is 2GHz.

Use the linearly-constrained LMS algorithm in order adapt the array coefficients.
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Solution:

The adaptive-filter coefficients is initialized with w(0) = C(CT C)−1f. The value of μ used is 0.1.
Fig. 3.18 illustrates the learning curve for the output signal. Fig. 3.19 illustrates details of the
output signal in the early iterations where we can observe the presence of both sinusoid signals. In
Fig. 3.20, the details of the output signal after convergence shows that mainly the desired sinusoid
signal is present. The array output power response after convergence, as a function of the angle of
arrival, is depicted in Fig. 3.21. From this figure, we observe the attenuation imposed by the array
on signals arriving at 30◦ of angle, where the interference signal impinges.
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Figure 3.18 Learning curves for the linearly-constrained LMS algorithm with convergence factor μ =
0.1.

3.7 CONCLUDING REMARKS

In this chapter, we studied the LMS adaptive algorithm that is certainly the most popular among the
adaptive-filtering algorithms. The attractiveness of the LMS algorithm is due to its simplicity and
accessible analysis under idealized conditions. As demonstrated in the present chapter, the noisy
estimate of the gradient that is used in the LMS algorithm is the main source of loss in performance
for stationary environments. Further discussions on the convergence behavior and on the optimality
of the LMS algorithm have been reported in the open literature, see for example [28]-[34].
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Figure 3.19 Learning curves for the linearly-constrained LMS algorithm with convergence factor μ =
0.1; early output signal.
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Figure 3.20 Learning curves for the linearly-constrained LMS algorithm with convergence factor μ =
0.1; output signal after convergence.
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Figure 3.21 Array output power after convergence, as a function of the angle of arrival.

For nonstationary environments we showed how the algorithm behaves assuming the optimal pa-
rameter can be modeled as a first-order Markov process. The analysis allowed us to determine the
conditions for adequate tracking and acceptable excess MSE. Further analysis can be found in [35].

The quantization effects on the behavior of the LMS algorithm are presented in Appendix B. The
algorithm is fairly robust against quantization errors, and this is for sure one of the reasons for its
choice in a number of practical applications [36]-[37].

A number of simulation examples with the LMS algorithm was presented in this chapter. The
simulations included examples in system identification and equalization. Also a number of theoret-
ical results derived in the present chapter were verified, such as the excess MSE in stationary and
nonstationary environments, the finite-precision analysis etc.
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3.9 PROBLEMS

1. The LMS algorithm is used to predict the signal x(k) = cos(πk/3) using a second-order FIR
filter with the first tap fixed at 1, by minimizing the mean squared value of y(k). Calculate an
appropriate μ, the output signal, and the filter coefficients for the first 10 iterations. Start with
wT (0) = [1 0 0].

2. The signal
x(k) = −0.85x(k − 1) + n(k)

is applied to a first-order predictor, where n(k) is Gaussian white noise with variance σ2
n = 0.3.

(a) Compute the Wiener solution.

(b) Choose an appropriate value for μ and plot the convergence path for the LMS algorithm on
the MSE error surface.

(c) Plot the learning curves for the MSE and the filter coefficients in a single run as well as for
the average of 25 runs.

3. Assuming it is desired to minimize the objective function E[e4(k)] utilizing a stochastic gradient
type of algorithm such as the LMS. The resulting algorithm is called least-mean fourth algorithm
[38]. Derive this algorithm.

4. The data-reusing LMS algorithm has the following updating equation

êl(k) = d(k)− ŵT
l (k)x(k)

ŵl+1(k) = ŵl(k) + 2μêl(k)x(k) (3.102)

for l = 0, 1, . . . , L− 1, and

w(k + 1) = ŵL(k) = ŵL−1(k) + 2μêL−1(k)x(k) (3.103)

where ŵ0(k) = w(k).
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(a) Compute the range of values of μ such that the coefficients converge in average.

(b) What is the objective function this algorithm actually minimizes?

(c) Compare its convergence speed and computational complexity with the LMS algorithm.

5. The momentum LMS algorithm has the following updating equation

w(k + 1) = w(k) + 2μe(k)x(k) + γ[w(k)−w(k − 1)] (3.104)

for |γ| < 1.

(a) Compute the range of values of μ such that the coefficients converge in average.

(b) What is the objective function this algorithm actually minimizes?

(c) Show that this algorithm can have faster convergence and higher misadjustment than the
LMS algorithm.

6. An LMS algorithm can be updated in a block form. For a block of length 2 the updating
equations have the following form.[

e(k)
e(k − 1)

]
=
[

d(k)
d(k − 1)

]
−
[

xT (k)w(k)
xT (k − 1)w(k − 1)

]

=
[

d(k)
d(k − 1)

]
−
[

xT (k)
xT (k − 1)

]
w(k − 1)

−
[

0 2μxT (k)x(k − 1)
0 0

] [
e(k)

e(k − 1)

]

This relation, in a more compact way, is equivalent to[
e(k)

e(k − 1)

]
=
[

1 −2μxT (k)x(k − 1)
0 1

]{[
d(k)

d(k − 1)

]
−
[

xT (k)
xT (k − 1)

]
w(k − 1)

}
(3.105)

Derive an expression for a block of length L + 1.

7. Use the LMS algorithm to identify a system with the transfer function given below. The input
signal is a uniformly distributed white noise with variance σ2

x = 1, and the measurement noise
is Gaussian white noise uncorrelated with the input with variance σ2

n = 10−3. The adaptive
filter has 12 coefficients.

H(z) =
1− z−12

1− z−1

(a) Calculate the upper bound for μ (μmax) to guarantee the algorithm stability.
(b) Run the algorithm for μmax/2, μmax/10, and μmax/50. Comment on the convergence
behavior in each case.
(c) Measure the misadjustment in each example and compare with the results obtained by
equation (3.50).
(d) Plot the obtained FIR filter frequency response at any iteration after convergence is achieved
and compare with the unknown system.
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8. Repeat the previous problem using an adaptive filter with 8 coefficients and interpret the results.

9. Repeat problem 2 in case the input signal is a uniformly distributed white noise with variance
σ2

nx
= 0.5 filtered by an all-pole filter given by

H(z) =
z

z − 0.9

10. Perform the equalization of a channel with the following impulse response

h(k) = ku(k)− (2k − 9)u(k − 5) + (k − 9)u(k − 10)

Using a known training signal that consists of a binary (-1,1) random signal, generated by
applying a white noise to a hard limiter (the output is 1 for positive input samples and -1 for
negative). An additional Gaussian white noise with variance 10−2 is present at the channel
output.
(a) Apply the LMS with an appropriate μ and find the impulse response of an equalizer with
100 coefficients.
(b) Convolve one of the equalizer’s impulse response after convergence with the channel impulse
response and comment on the result.

11. Under the assumption that the elements of x(k) are jointly Gaussian, show that equation (3.24)
is valid.

12. In a system identification problem the input signal is generated by an autoregressive process
given by

x(k) = −1.2x(k − 1)− 0.81x(k − 2) + nx(k)

where nx(k) is zero-mean Gaussian white noise with variance such that σ2
x = 1. The unknown

system is described by

H(z) = 1 + 0.9z−1 + 0.1z−2 + 0.2z−3

The adaptive filter is also a third-order FIR filter, and the additional noise is zero-mean Gaussian
white noise with variance σ2

n = 0.04. Using the LMS algorithm:
(a) Choose an appropriate μ, run an ensemble of 20 experiments, and plot the average learning
curve.
(b) Plot the curve obtained using equations (3.41), (3.45), and (3.46), and compare the results.
(c) Compare the measured and theoretical values for the misadjustment.
(d) Calculate the time constants τwi and τei, and the expected number of iterations to achieve
convergence.

13. In a nonstationary environment the optimal coefficient vector is described by

wo(k) = −λ1wo(k − 1)− λ2wo(k − 2) + nw(k)

where nw(k) is a vector whose elements are zero-mean Gaussian white processes with variance
σ2

w. Calculate the elements of the lag-error vector.

14. Repeat the previous problem for

wo(k) = λwwo(k − 1) + (1− λw)nw(k)
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15. The LMS algorithm is applied to identify a 7th-order time-varying unknown system whose
coefficients are first-order Markov processes with λw = 0.999 and σ2

w = 0.001. The initial
time-varying-system multiplier coefficients are

wT
o =

[0.03490 − 0.011 − 0.06864 0.22391 0.55686 0.35798 − 0.0239 − 0.07594]

The input signal is Gaussian white noise with variance σ2
x = 0.7, and the measurement noise is

also Gaussian white noise independent of the input signal and of the elements of nw(k), with
variance σ2

n = 0.01.
(a) For μ = 0.05, compute the excess MSE.
(b) Repeat (a) for μ = 0.01.
(c) Compute μopt and comment if it can be used.

16. Simulate the experiment described in problem 15, measure the excess MSE, and compare to the
calculated results.

17. Reduce the value of λw to 0.97 in problem 15, simulate, and comment on the results.

18. Suppose a 15th-order FIR digital filter with multiplier coefficients given below is identified
through an adaptive FIR filter of the same order using the LMS algorithm.
(a) Considering that fixed-point arithmetic is used, compute the expected value for ||Δw(k)Q||2
and ξ(k)Q, and the probable number of iterations before the algorithm stops updating, for the
following case:

Additional noise: white noise with variance σ2
n = 0.0015

Coefficient wordlength: bc = 16 bits
Signal wordlength: bd = 16 bits
Input signal: Gaussian white noise with variance σ2

x = 0.7
μ = 0.01

Hint: Utilize the formulas for the time constant in the LMS algorithm and equation (B.28).
(b) Simulate the experiment and plot the learning curves for the finite- and infinite-precision
implementations.
(c) Compare the simulated results with those obtained through the closed form formulas.

wT
o = [0.0219360 0.0015786 − 0.0602449 − 0.0118907 0.1375379

0.0574545 − 0.3216703 − 0.5287203 − 0.2957797 0.0002043 0.290670
−0.0353349 − 0.068210 0.0026067 0.0010333 − 0.0143593]

19. Repeat the above problem for the following cases
(a) σ2

n = 0.01, bc = 12 bits, bd = 12 bits, σ2
x = 0.7, μ = 2.0 10−3.

(b) σ2
n = 0.1, bc = 10 bits, bd = 10 bits, σ2

x = 0.8, μ = 1.0 10−4.
(c) σ2

n = 0.05, bc = 14 bits, bd = 14 bits, σ2
x = 0.8, μ = 2.0 10−3.

20. Find the optimal value of μ (μopt) that minimizes the excess MSE given in equation (B.32), and
compute for μ = μopt the expected value of ||Δw(k)Q||2 and ξ(k)Q for the examples described
in problem 19.

21. Repeat problem 18 for the case where the input signal is a first-order Markov process with
λx = 0.95.
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22. A digital channel model can be represented by the following impulse response:

[−0.001 − 0.002 0.002 0.2 0.6 0.76 0.9 0.78 0.67 0.58
0.45 0.3 0.2 0.12 0.06 0 − 0.2 − 1 − 2 − 1 0 0.1]

The channel is corrupted by Gaussian white noise with power spectrum given by

|S(ejω)|2 = κ′|ω|3/2

where κ′ = 10−1.5. The training signal consists of independent binary samples (-1,1).

Design an FIR equalizer for this problem and use the LMS algorithm. Use a filter of order 50
and plot the learning curve.

23. For the previous problem, using the maximum of 51 adaptive filter coefficients, implement a
DFE equalizer and compare the results with those obtained with the FIR filter. Again use the
LMS algorithm.

24. Implement with fixed-point arithmetic the DFE equalizer of problem 23, using the LMS algo-
rithm with 12 bits of wordlength for data and coefficients.

25. Use the complex LMS algorithm to equalize a channel with the transfer function given below.
The input signal is a four Quadrature Amplitude Modulation (QAM)5 signal representing a

randomly generated bit stream with the signal to noise ratio σ2
x̃

σ2
n

= 20 at the receiver end, that is,
x̃(k) is the received signal without taking into consideration the additional channel noise. The
adaptive filter has 10 coefficients.

H(z) = (0.34− 0.27j) + (0.87 + 0.43j)z−1 + (0.34− 0.21j)z−2

(a) Calculate the upper bound for μ (μmax) to guarantee the algorithm stability.
(b) Run the algorithm for μmax/2, μmax/10, and μmax/50. Comment on the convergence
behavior in each case.
(c) Plot the real versus imaginary parts of the received signal before and after equalization.
(d) Increase the number of coefficients to 20 and repeat the experiment in (c).

26. In a system identification problem the input signal is generated from a four QAM of the form

x(k) = xre(k) + jxim(k)

where xre(k) and xim(k) assume values ±1 randomly generated. The unknown system is
described by

H(z) = 0.32 + 0.21j + (−0.3 + 0.7j)z−1 + (0.5− 0.8j)z−2 + (0.2 + 0.5j)z−3

The adaptive filter is also a third-order complex FIR filter, and the additional noise is zero-mean
Gaussian white noise with variance σ2

n = 0.4. Using the complex LMS algorithm, choose an
appropriate μ, run an ensemble of 20 experiments, and plot the average learning curve.

5The M -ary QAM constellation points are represented in by si = ãi + jb̃i, with ãi = ±d̃, ±3d̃, . . . , ±(
√

M −1)d̃, and
b̃i = ±d̃, ±3d̃, . . . , ±(

√
M −1)d̃. The parameter d̃ is represents half of the distance between two points in the constellation.



4
LMS-BASED ALGORITHMS

4.1 INTRODUCTION

There are a number of algorithms for adaptive filters which are derived from the conventional LMS
algorithm discussed in the previous chapter. The objective of the alternative LMS-based algorithms
is either to reduce computational complexity or convergence time. In this chapter, several LMS-
based algorithms are presented and analyzed, namely, the quantized-error algorithms [1]-[11], the
frequency-domain (or transform-domain) LMS algorithm [12]-[14], the normalized LMS algorithm
[15], the LMS-Newton algorithm [16]-[17], and the affine projection algorithm [19]-[25]. Several
algorithms that are related to the main algorithms presented in this chapter are also briefly discussed.

The quantized-error algorithms reduce the computational complexity of the LMS algorithms by
representing the error signal with short wordlength or by a simple power-of-two number.

The convergence speed in the LMS-Newton algorithm is independent of the eigenvalue spread of the
input signal correlation matrix. This improvement is achieved by using an estimate of the inverse of
the input signal correlation matrix, leading to a substantial increase in the computational complexity.

The normalized LMS algorithm utilizes a variable convergence factor that minimizes the instan-
taneous error. Such a convergence factor usually reduces the convergence time but increases the
misadjustment.

In the frequency-domain algorithm, a transform is applied to the input signal in order to allow the
reduction of the eigenvalue spread of the transformed signal correlation matrix as compared to the
eigenvalue spread of the input signal correlation matrix. The LMS algorithm applied to the better
conditioned transformed signal achieves faster convergence.

The affine projection algorithm reuses old data resulting in fast convergence when the input signal
is highly correlated, leading to a family of algorithms that can trade-off computational complexity
with convergence speed.

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_4,  
© Springer Science+Business Media, LLC 2008  
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4.2 QUANTIZED-ERROR ALGORITHMS

The computational complexity of the LMS algorithm is mainly due to multiplications performed in
the coefficient updating and in the calculation of the adaptive-filter output. In applications where
the adaptive filters are required to operate in high speed, such as echo cancellation and channel
equalization, it is important to minimize hardware complexity.

A first step to simplify the LMS algorithm is to apply quantization to the error signal, generating the
quantized-error algorithm which updates the filter coefficients according to

w(k + 1) = w(k) + 2μQ[e(k)]x(k) (4.1)

where Q[·] represents a quantization operation. The quantization function is discrete valued, bounded,
and nondecreasing. The type of quantization identifies the quantized-error algorithm.

If the convergence factor μ is a power-of-two number, the coefficient updating can be implemented
with simple multiplications, basically consisting of bit shifts and additions. In a number of applica-
tions, such as the echo cancellation in full-duplex data transmission [2] and equalization of channels
with binary data [3], the input signal x(k) is a binary signal, i.e., assumes values +1 and−1. In this
case, the adaptive filter can be implemented without any intricate multiplication.

The quantization of the error actually implies a modification in the objective function that is mini-
mized, denoted by F [e(k)]. In a general gradient-type algorithm coefficient updating is performed
by

w(k + 1) = w(k)− μ
∂F [e(k)]
∂w(k)

= w(k)− μ
∂F [e(k)]

∂e(k)
∂e(k)
∂w(k)

(4.2)

For a linear combiner the above equation can be rewritten as

w(k + 1) = w(k) + μ
∂F [e(k)]

∂e(k)
x(k) (4.3)

Therefore, the objective function that is minimized in the quantized-error algorithms is such that

∂F [e(k)]
∂e(k)

= 2Q[e(k)] (4.4)

where F [e(k)] is obtained by integrating 2Q[e(k)] with respect to e(k). Note that the chain rule
applied in equation (4.3) is not valid at the points of discontinuity of Q[·] where F [e(k)] is not
differentiable [6].

The performances of the quantized-error and LMS algorithms are obviously different. The analyses
of some widely used quantized-error algorithms are presented in the following subsections.
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Algorithm 4.1

Sign-Error Algorithm

Initialization
x(0) = w(0) = [0 0 . . . 0]T

Do for k ≥ 0
e(k) = d(k)− xT (k)w(k)
ρ = sgn[e(k)]
w(k + 1) = w(k) + 2μρx(k)

4.2.1 Sign-Error Algorithm

The simplest form for the quantization function is the sign (sgn) function defined by

sgn[b] =

⎧⎨
⎩

1, b > 0
0, b = 0

−1, b < 0
(4.5)

The sign-error algorithm utilizes the sign function as the error quantizer, where the coefficient vector
updating is performed by

w(k + 1) = w(k) + 2μ sgn[e(k)] x(k) (4.6)

Fig. 4.1 illustrates the realization of the sign-error algorithm for a delay line input x(k). If μ is a
power-of-two number, one iteration of the sign-error algorithm requires N +1 multiplications for the
error generation. The total number of additions is 2N +2. The detailed description of the sign-error
algorithm is shown in Algorithm 4.1. Obviously, the vectors x(0) and w(0) can be initialized in a
different way from that described in the algorithm.

The objective function that is minimized by the sign-error algorithm is the modulus of the error
multiplied by two, i.e.,

F [e(k)] = 2|e(k)| (4.7)

Note that the factor two is included only to present the sign-error and LMS algorithms in a unified
form. Obviously, in real implementation this factor can be merged with convergence factor μ.

Some of the properties related to the convergence behavior of the sign-error algorithm in a stationary
environment are described, following the same procedure used in the previous chapter for the LMS
algorithm.
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Figure 4.1 Sign-error adaptive FIR filter: Q[e(k)] = sgn[e(k)].

4.2.1.1 Steady-State Behavior of the Coefficient Vector

The sign-error algorithm can be alternatively described by

Δw(k + 1) = Δw(k) + 2μ sgn[e(k)] x(k) (4.8)

where Δw(k) = w(k)− wo. The expected value of the coefficient-error vector is then given by

E[Δw(k + 1)] = E[Δw(k)] + 2μE{sgn[e(k)] x(k)} (4.9)

The importance of the probability density function of the measurement noise n(k) on the con-
vergence of the sign-error algorithm is a noteworthy characteristic. This is due to the fact that
E{sgn[e(k)] x(k)} = E{sgn[−ΔwT (k)x(k) + n(k)]x(k)}, where the result of the sign operation
is highly dependent on the probability density function of n(k). In [1], the authors present a conver-
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gence analysis of the output MSE, i.e., E[e2(k)], for different distributions of the additional noise,
such as Gaussian, uniform, and binary distributions.

A closer examination of equation (4.8) indicates that even if the error signal becomes very small, the
adaptive-filter coefficients will be continually updated due to the sign function applied to the error
signal. Therefore, in a situation where the adaptive filter has a sufficient number of coefficients to
model the desired signal, and there is no additional noise, Δw(k) will not converge to zero. In this
case, w(k) will be convergent to a balloon centered at wo, when μ is appropriately chosen. The
mean absolute value of e(k) is also convergent to a balloon centered around zero, that means |e(k)|
remains smaller than the balloon radius r [6].

Recall that the desired signal without measurement noise is denoted as d′(k). If it is considered
that d′(k) and the elements of x(k) are zero mean and jointly Gaussian and that the additional noise
n(k) is also zero mean, Gaussian, and independent of x(k) and d′(k), the error signal will also be
zero-mean Gaussian signal conditioned on Δw(k). In this case, using the results of the Price theorem
described in [27] and in Papoulis [28], the following result is valid

E{sgn[e(k)] x(k)} ≈
√

2
πξ(k)

E[x(k)e(k)] (4.10)

where ξ(k) is the variance of e(k) assuming the error has zero mean. The above approximation is
valid for small values of μ. For large μ, e(k) is dependent on Δw(k) and conditional expected value
on Δw(k) should be used instead [3]-[5].

By applying equation (4.10) in equation (4.9) and by replacing e(k) by eo(k) − ΔwT (k)x(k), it
follows that

E[Δw(k + 1)] =

{
I− 2μ

√
2

πξ(k)
E[x(k)xT (k)]

}
E[Δw(k)]

+2μ

√
2

πξ(k)
E[eo(k)x(k)] (4.11)

From the orthogonality principle we know that E[eo(k)x(k)] = 0, so that the last element of the
above equation is zero. Therefore,

E[Δw(k + 1)] =

[
I− 2μ

√
2

πξ(k)
R

]
E[Δw(k)] (4.12)

Following the same steps for the analysis of E[Δw(k)] in the traditional LMS algorithm, it can be
shown that the coefficients of the adaptive filter implemented with the sign-error algorithm converge
in the mean if the convergence factor is chosen in the range

0 < μ <
1

λmax

√
πξ(k)

2
(4.13)

where λmax is the largest eigenvalue of R. It should be mentioned that in case λmax
λmin

is large, the
convergence speed of the coefficients depends on the value of λmin which is related to the slowest
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mode in equation (4.12). This conclusion can be drawn by following the same steps of the convergence
analysis of the LMS algorithm, where by applying a transformation to equation (4.12) we obtain an
equation similar to equation (3.17).

A more practical range for μ, avoiding the use of eigenvalue, is given by

0 < μ <
1

tr[R]

√
πξ(k)

2
(4.14)

Note that the upper bound for the value of μ requires the knowledge of the MSE, i.e., ξ(k).

4.2.1.2 Coefficient-Error-Vector Covariance Matrix

The covariance of the coefficient-error vector defined as

cov[Δw(k)] = E
[
(w(k)− wo) (w(k)− wo)

T
]

(4.15)

is calculated by replacing equation (4.8) in equation (4.15) following the same steps used in the LMS
algorithm. The resulting difference equation for cov[Δw(k)] is given by

cov[Δw(k + 1)] = cov[Δw(k)] + 2μE{sgn[e(k)]x(k)ΔwT (k)}
+2μE{sgn[e(k)]Δw(k)xT (k)}+ 4μ2R (4.16)

The first term with expected value operation in the above equation can be expressed as

E{sgn[e(k)]x(k)ΔwT (k)} = E{sgn[eo(k)−ΔwT (k)x(k)]x(k)ΔwT (k)}
= E{E[sgn[eo(k)−ΔwT (k)x(k)]x(k)|Δw(k)]ΔwT (k)}

where E[a|Δw(k)] is the expected value of a conditioned on the value of Δw(k). In the first equality,
e(k) was replaced by the relation d(k)−wT (k)x(k)−wT

o x(k) + wT
o x(k) = eo(k)−ΔwT (k)x(k).

In the second equality, the concept of conditioned expected value was applied.

Using the Price theorem and considering that the minimum output error eo(k) is zero-mean and
uncorrelated with x(k), the following approximations result

E{E[sgn[eo(k)−ΔwT (k)x(k)]x(k)|Δw(k)]ΔwT (k)}

≈ E

{√
2

πξ(k)
E[eo(k)x(k)− x(k)xT (k)Δw(k)|Δw(k)]ΔwT (k)

}

≈ −E

{√
2

πξ(k)
RΔw(k)ΔwT (k)

}

= −
√

2
πξ(k)

Rcov[Δw(k)] (4.17)

Following similar steps to derive the above equation, the second term with the expected value oper-
ation in equation (4.16) can be approximated as

E{sgn[e(k)]Δw(k)xT (k)} ≈ −
√

2
πξ(k)

cov[Δw(k)]R (4.18)
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Substituting equations (4.17) and (4.18) in equation (4.16), we can calculate the vector v′(k) con-
sisting of diagonal elements of cov[Δw′(k)], using the same steps employed in the LMS case (see
equation (3.26)). The resulting dynamic equation for v′(k) is given by

v′(k + 1) =

(
I− 4μ

√
2

πξ(k)
Λ

)
v′(k) + 4μ2λ (4.19)

The value of μ must be chosen in a range that guarantees the convergence of v′(k), which is given
by

0 < μ <
1

2λmax

√
πξ(k)

2
(4.20)

A more severe and practical range for μ is

0 < μ <
1

2tr[R]

√
πξ(k)

2
(4.21)

For k →∞ each element of v′(k) tends to

vi(∞) = μ

√
πξ(∞)

2
(4.22)

4.2.1.3 Excess Mean-Square Error and Misadjustment

The excess MSE can be expressed as a function of the elements of v′(k) by

Δξ(k) =
N∑

i=0

λivi(k) = λT v′(k) (4.23)

Substituting equation (4.22) in equation (4.23) yields

ξexc = μ

N∑
i=0

λi

√
πξ(k)

2
, k →∞

= μ

N∑
i=0

λi

√
π

ξmin + ξexc

2
(4.24)

since limk→∞ ξ(k) = ξmin + ξexc. Therefore,

ξ2
exc = μ2

(
N∑

i=0

λi

)2(
πξmin

2
+

πξexc

2

)
(4.25)

There are two solutions for ξ2
exc in the above equation, where only the positive one is valid. The

meaningful solution for ξexc, when μ is small, is approximately given by

ξexc ≈ μ

√
πξmin

2

N∑
i=0

λi

= μ

√
πξmin

2
tr[R] (4.26)
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By comparing the excess MSE predicted by the above equation with the corresponding equation
(3.49) for the LMS algorithm, it can be concluded that both can generate the same excess MSE if μ
in the sign-error algorithm is chosen such that

μ = μLMS

√
2
π

ξ−1
min (4.27)

The misadjustment in the sign-error algorithm is

M = μ

√
π

2ξmin
tr[R] (4.28)

Equation (4.26) would leave the impression that if there is no additional noise and there are sufficient
parameters in the adaptive filter, the output MSE would converge to zero. However, when ξ(k)
becomes small, ||E[Δw(k + 1)]|| in equation (4.11) can increase, since the condition of equation
(4.13) will not be satisfied. This is the situation where the parameters reach the convergence balloon.
In this case, from equation (4.8) we can conclude that

||Δw(k + 1)||2 − ||Δw(k)||2 = −4μ sgn[e(k)] e(k) + 4μ2||x(k)||2 (4.29)

from where it is possible to show that a decrease in the norm of Δw(k) is obtained only when

|e(k)| > μ||x(k)||2 (4.30)

For no additional noise, first transpose the vectors in equation (4.8) and postmultiply each side by
x(k). Next, squaring the resulting equation and applying the expected value operation on each side,
the obtained result is

E[e2(k + 1)] = E[e2(k)]− 4μE[|e(k)| ||x(k)||2] + 4μ2E[||x(k)||4] (4.31)

After convergence E[e2(k + 1)] ≈ E[e2(k)]. Also, considering that

E[|e(k)| ||x(k)||2] ≈ E[|e(k)|]E[||x(k)||2]
and

E[||x(k)||4]
E[||x(k)||2] ≈ E[||x(k)||2]

we conclude that
E[|e(k)|] ≈ μE[||x(k)||2], k →∞ (4.32)

For zero-mean Gaussian e(k), the following approximation is valid

E[|e(k)|] ≈
√

2
π

σe(k), k →∞ (4.33)

therefore, the expected variance of e(k) is

σ2
e(k) ≈ π

2
μ2 tr2[R], k →∞ (4.34)
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where we used the relation tr[R] = E[||x(k)||2]. This relation gives an estimate of the variance of
the output error when no additional noise exists. As can be noted, unlike the LMS algorithm, there
is an excess MSE in the sign-error algorithm caused by the nonlinear device, even when σ2

n = 0.

If n(k) has frequently large absolute values as compared to −ΔwT (k)x(k), then for most iterations
sgn[e(k)] = sgn[n(k)]. As a result, the sign-error algorithm is fully controlled by the additional
noise. In this case, the algorithm does not converge.

4.2.1.4 Transient Behavior

The ratios rwi
of the geometric decaying convergence curves of the coefficients in the sign-error

algorithm can be derived from equation (4.12) by employing an identical analysis of the transient
behavior for the LMS algorithm. The ratios are given by

rwi
=

(
1− 2μ

√
2

πξ(k)
λi

)
(4.35)

for i = 0, 1, . . . , N . If μ is chosen as suggested in equation (4.27), in order to reach the same excess
MSE of the LMS algorithm, then

rwi =

(
1− 4

π
μLMS

√
ξmin

ξ(k)
λi

)
(4.36)

By recalling that rwi
for the LMS algorithm is (1− 2μLMSλi), since 2

π

√
ξmin
ξ(k) < 1, it is concluded

that the sign-error algorithm is slower than the LMS for the same excess MSE.

Example 4.1

Suppose in an adaptive-filtering environment that the input signal consists of

x(k) = ejω0k + n(k)

and that the desired signal is given by

d(k) = ejω0(k−1)

where n(k) is a uniformly distributed white noise with variance σ2
n = 0.1 and ω0 = 2π

M . In this case
M = 8.

Compute the input signal correlation matrix for a first-order adaptive filter. Calculate the value of
μmax for the sign-error algorithm.

Solution:

The input signal correlation matrix for this example can be calculated as shown below:

R =
[

1 + σ2
n ejω0

e−jω0 1 + σ2
n

]
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Since in this case tr[R] = 2.2 and ξmin = 0.1, we have

ξexc ≈ μ

√
πξmin

2
tr[R] = 0.87μ

The range of values of the convergence factor is given by

0 < μ <
1

2tr[R]

√
π(ξmin + ξexc)

2

From the above expression, it is straightforward to calculate the upper bound for the convergence
factor that is given by

μmax ≈ 0.132

�

4.2.2 Dual-Sign Algorithm

The dual-sign algorithm attempts to perform large corrections to the coefficient vector when the
modulus of the error signal is larger than a prescribed level. The basic motivation to use the dual-sign
algorithm is to avoid the slow convergence inherent to the sign-error algorithm that is caused by
replacing e(k) by sgn[e(k)] when |e(k)| is large.

The quantization function for the dual-sign algorithm is given by

ds[a] =
{

γ sgn[a], |a| > ρ
sgn[a], |a| ≤ ρ

(4.37)

where γ > 1 is a power of two. The dual-sign algorithm utilizes the function above described as the
error quantizer, and the coefficient updating is performed as

w(k + 1) = w(k) + 2μ ds[e(k)]x(k) (4.38)

The objective function that is minimized by the dual-sign algorithm is given by

F [e(k)] =
{

2γ|e(k)| − 2ρ(γ − 1), |e(k)| > ρ
2|e(k)|, |e(k)| ≤ ρ

(4.39)

where the constant 2ρ(γ−1) was included in the objective function to make it continuous. Obviously
the gradient of F [e(k)] with respect to the filter coefficients is 2μ ds[e(k)]x(k) except at points where
ds[e(k)] is nondifferentiable [6].

The same analysis procedure used for the sign-error algorithm can be applied to the dual-sign algo-
rithm except for the fact that the quantization function is now different. The alternative quantization
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leads to particular expectations of nonlinear functions whose solutions are not presented here. The
interested reader should refer to the work of Mathews [7]. The choice of γ and ρ determine the
convergence behavior of the dual-sign algorithm [7], typically, a large γ tends to increase both con-
vergence speed and excess MSE. A large ρ tends to reduce both the convergence speed and the excess
MSE. If limk→∞ ξ(k) � ρ2, the excess MSE of the dual-sign algorithm is approximately equal to
the one given by equation (4.26) for the sign-error algorithm [7], since in this case |e(k)| is usually
much smaller than ρ. For a given MSE in steady state, the dual-sign algorithm is expected to converge
faster than the sign-error algorithm.

4.2.3 Power-of-Two Error Algorithm

The power-of-two error algorithm applies to the error signal a quantization defined by

pe[b] =

⎧⎨
⎩

sgn[b], |b| ≥ 1
2floor[log2|b|] sgn[b], 2−bd+1 ≤ |b| < 1
τsgn[b], |b| < 2−bd+1

(4.40)

where floor[·] indicates integer smaller than [·], bd is the data wordlength excluding the sign bit, and
τ is usually 0 or 2−bd .

The coefficient updating for the power-of-two error algorithm is given by

w(k + 1) = w(k) + 2μ pe[e(k)]x(k) (4.41)

For τ = 2−bd , the additional noise and the convergence factor can be arbitrarily small and the
algorithm will not stop updating. For τ = 0, when |e(k)| < 2−bd+1 the algorithm reaches the
so-called dead zone, where the algorithm stops updating if |e(k)| is smaller than 2−bd+1 most of
the time [4], [8].

A simplified and somewhat accurate analysis of this algorithm can be performed by approximating
the function pe[e(k)] by a straight line passing through the center of each quantization step. In this
case, the quantizer characteristics can be approximated by pe[e(k)] ≈ 2

3e(k) as illustrated in Fig. 4.2.
Using this approximation, the algorithm analysis can be performed exactly in the same way as the
LMS algorithm. The results for the power-of-two error algorithm can be obtained from the results
for the LMS algorithm, by replacing μ by 2

3μ. It should be mentioned that such results are only
approximate, and more accurate ones can be found in [8].

4.2.4 Sign-Data Algorithm

The algorithms discussed in this subsection cannot be considered as quantized error algorithms, but
since they were proposed with similar motivation we decided to introduce them here. An alternative
way to simplify the computational burden of the LMS algorithm is to apply quantization to the data
vector x(k). One possible quantization scheme is to apply the sign function to the input signals,
giving rise to the sign-data algorithm whose coefficient updating is performed as

w(k + 1) = w(k) + 2μe(k) sgn[x(k)] (4.42)
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Figure 4.2 Transfer characteristic of a quantizer with 3 bits and τ = 0.

where the sign operation is applied to each element of the input vector.

The quantization of the data vector can lead to a decrease in the convergence speed, and possible
divergence. In the LMS algorithm, the average gradient direction follows the true gradient direction
(or steepest-descent direction), whereas in the sign-data algorithm only a discrete set of directions
can be followed. The limitation in the gradient direction followed by the sign-data algorithm may
cause updates that result in frequent increase in the squared error, leading to instability. Therefore, it
is relatively easy to find inputs that would lead to the convergence of the LMS algorithm and to the
divergence of the sign-data algorithm [6], [9]. It should be mentioned, however, that the sign-data
algorithm is stable for Gaussian inputs, and, as such, has been found useful in certain applications.

Another related algorithm is the sign-sign algorithm that has very simple implementation. The
coefficient updating in this case is given by

w(k + 1) = w(k) + 2μ sgn[e(k)] sgn[x(k)] (4.43)

The sign-sign algorithm also presents the limitations related to the quantized-data algorithm.
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4.3 THE LMS-NEWTON ALGORITHM

In this section, the LMS-Newton algorithm incorporating estimates of the second-order statistics of
the environment signals is introduced. The objective of the algorithm is to avoid the slow convergence
of the LMS algorithm when the input signal is highly correlated. The improvement in the convergence
rate is achieved at the expense of an increased computational complexity.

Nonrecursive realization of the adaptive filter leads to an MSE surface that is a quadratic function of
the filter coefficients. For the direct-form FIR structure, the MSE can be described by

ξ(k + 1) = ξ(k) + gw
T (k) [w(k + 1)− w(k)] + [w(k + 1)− w(k)]T R [w(k + 1)− w(k)]

(4.44)

ξ(k) represents the MSE when the adaptive-filter coefficients are fixed at w(k) and gw(k) = −2p +
2Rw(k) is the gradient vector of the MSE surface as related to the filter coefficients at w(k). The
MSE is minimized at the instant k + 1 if

w(k + 1) = w(k)− 1
2

R−1gw(k) (4.45)

This equation is the updating formula of the Newton method. Note that in the ideal case, where
matrix R and gradient vector gw(k) are known precisely, w(k + 1) = R−1p = wo. Therefore, the
Newton method converges to the optimal solution in a single iteration, as expected for a quadratic
objective function.

In practice, only estimates of the autocorrelation matrix R and of the gradient vector are available.
These estimates can be applied to the Newton updating formula in order to derive a Newton-like
method given by

w(k + 1) = w(k)− μR̂
−1

(k)ĝw(k) (4.46)

The convergence factor μ is introduced so that the algorithm can be protected from divergence,
originated by the use of noisy estimates of R and gw(k).

For stationary input signals, an unbiased estimate of R is

R̂(k) =
1

k + 1

k∑
i=0

x(i)xT (i)

=
k

k + 1
R̂(k − 1) +

1
k + 1

x(k)xT (k) (4.47)

since

E[R̂(k)] =
1

k + 1

k∑
i=0

E[x(i)xT (i)]

= R (4.48)

However, this is not a practical estimate for R, since for large k any change on the input signal
statistics would be disregarded due to the infinite memory of the estimation algorithm.
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Another form to estimate the autocorrelation matrix can be generated by employing a weighted
summation as follows:

R̂(k) = αx(k)xT (k) + (1− α)R̂(k − 1)

= αx(k)xT (k) + α

k−1∑
i=0

(1− α)k−ix(i)xT (i) (4.49)

where in practice, α is a small factor chosen in the range 0 < α ≤ 0.1. This range of values of α
allows a good balance between the present and past input signal information. By taking the expected
value on both sides of the above equation and assuming that k →∞, it follows that

E[R̂(k)] = α

k∑
i=0

(1− α)k−iE[x(i)xT (i)]

= R k →∞ (4.50)

Therefore, the estimate of R of equation (4.49) is unbiased.

In order to avoid inverting R̂(k), which is required by the Newton-like algorithm, we can use the
so-called matrix inversion lemma given by

[A + BCD]−1 = A−1 −A−1B[DA−1B + C−1]−1DA−1 (4.51)

where A, B, C and D are matrices of appropriate dimensions, and A and C are nonsingular. The
above relation can be proved by simply showing that the result of premultiplying the expression on
the right-hand side by A + BCD is the identity matrix (see problem 21). If we choose A = (1− α)
R̂(k − 1), B = DT = x(k), and C = α, it can be shown that

R̂
−1

(k) =
1

1− α

[
R̂
−1

(k − 1)− R̂
−1

(k − 1)x(k)xT (k)R̂
−1

(k − 1)
1−α

α + xT (k)R̂
−1

(k − 1)x(k)

]
(4.52)

The resulting equation to calculate R̂
−1

(k) is less complex to update (of order N2 multiplications)
than the direct inversion of R̂(k) at every iteration (of order N3 multiplications).

If the estimate for the gradient vector used in the LMS algorithm is applied in equation (4.46), the
following coefficient updating formula for the LMS-Newton algorithm results

w(k + 1) = w(k) + 2 μ e(k) R̂
−1

(k)x(k) (4.53)

The complete LMS-Newton algorithm is outlined in Algorithm 4.2. It should be noticed that alter-
native initialization procedures to the one presented in Algorithm 4.2 are possible.

As previously mentioned, the LMS gradient direction has the tendency to approach the ideal gradient

direction. Similarly, the vector resulting from the multiplication of R̂
−1

(k) to the LMS gradient
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Algorithm 4.2

LMS-Newton Algorithm

Initialization

R̂
−1

(−1) = δI (δ a small positive constant)
w(0) = x(−1) = [0 0 . . . 0]T

Do for k ≥ 0
e(k) = d(k)− xT (k)w(k)

R̂
−1

(k) = 1
1−α

[
R̂
−1

(k − 1)− R̂
−1

(k−1)x(k)xT (k)R̂
−1

(k−1)
1−α

α +xT (k)R̂
−1

(k−1)x(k)

]
w(k + 1) = w(k) + 2 μ e(k) R̂

−1
(k)x(k)

direction tends to approach the Newton direction. Therefore, we can conclude that the LMS-Newton
algorithm converges in a more straightforward path to the minimum of the MSE surface. It can
also be shown that the convergence characteristics of the algorithm is independent of the eigenvalue
spread of R.

The LMS-Newton algorithm is mathematically identical to the recursive least-squares (RLS) algo-
rithm if the forgetting factor (λ) in the latter is chosen such that 2μ = α = 1 − λ [39]. Since a
complete discussion of the RLS algorithm is given later, no further discussion of the LMS-Newton
algorithm is included here.

4.4 THE NORMALIZED LMS ALGORITHM

If one wishes to increase the convergence speed of the LMS algorithm without using estimates
of the input signal correlation matrix, a variable convergence factor is a natural solution. The
normalized LMS algorithm usually converges faster than the LMS algorithm, since it utilizes a
variable convergence factor aiming at the minimization of the instantaneous output error.

The updating equation of the LMS algorithm can employ a variable convergence factor μk in order
to improve the convergence rate. In this case, the updating formula is expressed as

w(k + 1) = w(k) + 2μke(k)x(k) = w(k) + Δw̃(k) (4.54)

where μk must be chosen with the objective of achieving a faster convergence. A possible strategy is
to reduce the instantaneous squared error as much as possible. The motivation behind this strategy
is that the instantaneous squared error is a good and simple estimate of the MSE.
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The instantaneous squared error is given by

e2(k) = d2(k) + wT (k)x(k)xT (k)w(k)− 2d(k)wT (k)x(k) (4.55)

If a change given by w̃(k) = w(k) + Δw̃(k) is performed in the weight vector, the corresponding
squared error can be shown to be

ẽ2(k) = e2(k) + 2Δw̃T (k)x(k)xT (k)w(k) + Δw̃T (k)x(k)xT (k)Δw̃(k)− 2d(k)Δw̃T (k)x(k)
(4.56)

It then follows that

Δe2(k)
�
= ẽ2(k)− e2(k)
= −2Δw̃T (k)x(k)e(k) + Δw̃T (k)x(k)xT (k)Δw̃(k) (4.57)

In order to increase the convergence rate, the objective is to make Δe2(k) negative and minimum by
appropriately choosing μk.

By replacing Δw̃(k) = 2μke(k)x(k) in equation (4.57), it follows that

Δe2(k) = −4μke2(k)xT (k)x(k) + 4μ2
ke2(k)[xT (k)x(k)]2 (4.58)

The value of μk such that ∂Δe2(k)
∂μk

= 0 is given by

μk =
1

2xT (k)x(k)
(4.59)

This value of μk leads to a negative value of Δe2(k), and, therefore, it corresponds to a minimum
point of Δe2(k).

Using this variable convergence factor, the updating equation for the LMS algorithm is then given
by

w(k + 1) = w(k) +
e(k)x(k)

xT (k)x(k)
(4.60)

Usually a fixed convergence factor μn is introduced in the updating formula in order to control the
misadjustment, since all the derivations are based on instantaneous values of the squared errors and
not on the MSE. Also a parameter γ should be included, in order to avoid large step sizes when
xT (k)x(k) becomes small. The coefficient updating equation is then given by

w(k + 1) = w(k) +
μn

γ + xT (k)x(k)
e(k) x(k) (4.61)

The resulting algorithm is called the normalized LMS algorithm, and is summarized inAlgorithm 4.3.
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Algorithm 4.3

The Normalized LMS Algorithm

Initialization
x(0) = ŵ(0) = [0 0 . . . 0]T

choose μn in the range 0 < μn ≤ 2
γ = small constant

Do for k ≥ 0
e(k) = d(k)− xT (k)w(k)
w(k + 1) = w(k) + μn

γ+xT (k)x(k) e(k) x(k)

The range of values ofμn to guarantee stability can be derived by first considering thatE[xT (k)x(k)] =
tr[R] and that

E

[
e(k)x(k)

xT (k)x(k)

]
≈ E[e(k)x(k)]

E[xT (k)x(k)]

Next, consider that the average value of the convergence factor actually applied to the LMS direction
2e(k)x(k) is μn

2 tr[R]
. Finally, by comparing the updating formula of the standard LMS algorithm

with that of the normalized LMS algorithm, the desired upper bound result follows:

0 < μ =
μn

2 tr[R]
<

1
tr[R]

(4.62)

or 0 < μn < 2.

4.5 THE TRANSFORM-DOMAIN LMS ALGORITHM

The transform-domain LMS algorithm is another technique to increase the convergence speed of the
LMS algorithm when the input signal is highly correlated. The basic idea behind this methodology
is to modify the input signal to be applied to the adaptive filter such that the conditioning number of
the corresponding correlation matrix is improved.

In the transform-domain LMS algorithm, the input signal vector x(k) is transformed in a more
convenient vector s(k), by applying an orthonormal (or unitary) transform [10]-[12], i.e.,

s(k) = Tx(k) (4.63)

where TTT = I. The MSE surface related to the direct-form implementation of the FIR adaptive
filter can be described by

ξ(k) = ξmin + ΔwT (k)RΔw(k) (4.64)



148 Chapter 4 LMS-Based Algorithms

where Δw(k) = w(k)− wo. In the transform-domain case, the MSE surface becomes

ξ(k) = ξmin + ΔŵT (k)E[s(k)sT (k)]Δŵ(k)

= ξmin + ΔŵT (k)TRTT Δŵ(k) (4.65)

where ŵ(k) represents the adaptive coefficients of the transform-domain filter. Fig. 4.3 depicts the
transform-domain adaptive filter.
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Figure 4.3 Transform-domain adaptive filter.

The effect of applying the transformation matrix T to the input signal is to rotate the error surface
as illustrated in the numerical examples of Figs. 4.4 and 4.5. It can be noticed that the eccentricity
of the MSE surface remains unchanged by the application of the transformation, and, therefore,
the eigenvalue spread is unaffected by the transformation. As a consequence, no improvement in
the convergence rate is expected to occur. However, if in addition each element of the transform
output is power normalized, the distance between the points where the equal-error contours (given
by the ellipses) meet the coefficient axes (Δŵ0 and Δŵ1) and the origin (point 0× 0) are equalized.
As a result, a reduction in the eigenvalue spread is expected, especially when the coefficient axes
are almost aligned with the principal axes of the ellipses. Fig. 4.6 illustrates the effect of power
normalization. The perfect alignment and power normalization means that the error surface will
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become a hyperparaboloid spheric, with the eigenvalue spread becoming equal to one. Alternatively,
it means that the transform was able to turn the elements of the vector s(k) uncorrelated. Fig. 4.7
shows another error surface which after properly rotated and normalized is transformed into the error
surface of Fig. 4.8.
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Figure 4.4 Contours of the original MSE surface.
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Figure 4.7 Contours of the original MSE surface.

The autocorrelation matrix related to the transform-domain filter is given by

Rs = TRTT (4.66)

therefore if the elements of s(k) are uncorrelated, matrix Rs is diagonal, meaning that the application
of the transformation matrix was able to diagonalize the autocorrelation matrix R. It can then be
concluded that TT , in this case, corresponds to a matrix whose columns consist of the orthonor-
mal eigenvectors of R. The resulting transformation matrix corresponds to the Karhunen-Loève
Transform (KLT)[26].

The normalization of s(k) and subsequent application of the LMS algorithm would lead to a transform-
domain algorithm with the limitation that the solution would be independent of the input signal
power. An alternative solution, without this limitation, is to apply the normalized LMS algorithm
to update the coefficients of the transform-domain algorithm. We can give an interpretation for the
good performance of this solution. Assuming the transform was efficient in the rotation of the MSE
surface, the variable convergence factor is large in the update of the coefficients corresponding to
low signal power. On the other hand, the convergence factor is small if the corresponding transform
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Figure 4.8 Contours of the rotated and power normalized MSE surface.

output power is high. Specifically, the signals si(k) are normalized by their power denoted by σ2
i (k)

only when applied in the updating formula. The coefficient update equation in this case is

ŵi(k + 1) = ŵi(k) +
2μ

γ + σ2
i (k)

e(k)si(k) (4.67)

where σ2
i (k) = αs2

i (k) + (1 − α)σ2
i (k − 1), α is a small factor chosen in the range 0 < α ≤ 0.1,

and γ is also a small constant to avoid that the second term of the update equation becomes too large
when σ2

i (k) is small.

In matrix form the above updating equation can be rewritten as

ŵ(k + 1) = ŵ(k) + 2μe(k)Σ−2(k)s(k) (4.68)

where Σ−2(k) is a diagonal matrix containing as elements the inverse of the power estimates of the
elements of s(k) added to γ.
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It can be shown that if μ is chosen appropriately, the adaptive-filter coefficients converge to

ŵo = Rs
−1ps (4.69)

where Rs = TRTT and ps = Tp. As a consequence, the optimum coefficient vector is

ŵo = (TRTT )
−1

Tp = TR−1p = Two (4.70)

The convergence speed of the coefficient vector ŵ(k) is determined by the eigenvalue spread of
Σ−2(k)Rs.

The requirement on the transformation matrix is that it should be invertible. If the matrix T is not
square (number of columns larger than rows), the space spanned by the polynomials formed with
the rows of T will be of dimension N + 1, but these polynomials are of order larger than N . This
subspace does not contain the complete space of polynomials of order N . In general, except for
very specific desired signals, the entire space of N th-order polynomials would be required. For an
invertible matrix T there is a one-to-one correspondence between the solutions obtained by the LMS
and transform-domain LMS algorithms. Although the transformation matrix is not required to be
unitary, it appears that no advantages are obtained by using nonunitary transforms [13].

The best unitary transform for the transform-domain adaptive filter is the KLT. However, since the
KLT is a function of the input signal, it cannot be efficiently computed in real time. An alternative
is to choose a unitary transform that is close to the KLT of the particular input signal. By close is
meant that both transforms perform nearly the same rotation of the MSE surface. In any situation,
the choice of an appropriate transform is not an easy task. Some guidelines can be given, such as: i)
Since the KLT of a real signal is real, the chosen transform should be real for real input signals; ii)
For speech signals the discrete-time cosine transform (DCT) is a good approximation for the KLT
[26]; iii) Transforms with fast algorithms should be given special attention.

A number of real transforms such as DCT, discrete-time Hartley transform, and others, are available
[26]. Most of them have fast algorithms or can be implemented in recursive frequency-domain
format. In particular, the outputs of the DCT are given by

s0(k) =
1√

N + 1

N∑
l=0

x(k − l) (4.71)

and

si(k) =

√
2

N + 1

N∑
l=0

x(k − l) cos
[
πi

(2l + 1)
2(N + 1)

]
(4.72)

From Fig. 4.3, we observe that the delay line and the unitary transform form a single-input and
multiple-output preprocessing filter. In case the unitary transform is the DCT, the transfer function
from the input to the outputs of the DCT preprocessing filter can be described in a recursive format
as follows:

Ti(z) =
k0

N + 1
cos τi

[zN+1 − (−1)i](z − 1)
zN [z2 − (2 cos 2τi)z + 1]

(4.73)
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Algorithm 4.4

The Transform-Domain LMS Algorithm

Initialization
x(0) = ŵ(0) = [0 0 . . . 0]T

γ = small constant
0 < α ≤ 0.1

Do for each x(k) and d(k) given for k ≥ 0
s(k) = Tx(k)
e(k) = d(k)− sT (k)ŵ(k)
ŵ(k + 1) = ŵ(k) + 2 μ e(k) Σ−2(k)s(k)

where

k0 =
{ √

2 if i = 0
2 if i = 1, ..., N

and τi = πi
2(N+1) . The derivation details are not given here, since they are beyond the scope of this

text.

For complex input signals, the discrete-time Fourier transform (DFT) is a natural choice due to its
efficient implementations.

Although no general procedure is available to choose the best transform when the input signal is not
known a priori, the decorrelation performed by the transform, followed by the power normalization,
is sufficient to reduce the eigenvalue spread for a broad (not all) class of input signals. Therefore, the
transform-domain LMS algorithms are expected to converge faster than the standard LMS algorithm
in most applications [13].

The complete transform-domain LMS algorithm is outlined on Algorithm 4.4.

Example 4.2

Repeat the equalization problem of example 3.1 of the previous chapter using the transform-domain
LMS algorithm.

(a) Compute the Wiener solution.

(b) Choose an appropriate value for μ and plot the convergence path for the transform-domain LMS
algorithm on the MSE surface.
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Solution:

(a) In this example, the correlation matrix of the adaptive-filter input signal is given by

R =
[

1.6873 −0.7937
−0.7937 1.6873

]
and the cross-correlation vector p is

p =
[

0.9524
0.4762

]

For square matrix R of dimension 2, the transformation matrix corresponding to the cosine transform
is given by

T =

[ √
2

2

√
2

2√
2

2 −
√

2
2

]

For this filter order, the above transformation matrix coincides with the KLT.

The coefficients corresponding to the Wiener solution of the transform-domain filter are given by

ŵo = (TRTT )−1Tp

=
[ 1

0.8936 0
0 1

2.4810

] [
1.0102
0.3367

]

=
[

1.1305
0.1357

]

(b) The transform-domain LMS algorithm is applied to minimize the MSE using a small convergence
factor μ = 1/300, in order to obtain a smoothly converging curve. The convergence path of the
algorithm in the MSE surface is depicted in Fig. 4.9. As can be noted, the transformation aligned the
coefficient axes with the main axes of the ellipses belonging to the error surface. The reader should
notice that the algorithm follows an almost straight path to the minimum and that the effect of the
eigenvalue spread is compensated by the power normalization. The convergence in this case is faster
than for the LMS case.

�

From the transform-domain LMS algorithm point of view, we can consider that the LMS-Newton

algorithm attempts to utilize an estimate of the KLT through R̂
−1

(k). On the other hand, the
normalized LMS algorithm utilizes an identity transform with an instantaneous estimate of the input
signal power given by xT (k)x(k).
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Figure 4.9 Convergence path of the transform-domain adaptive filter.

4.6 THE AFFINE PROJECTION ALGORITHM

There are situations where it is possible to recycle the old data signal in order to improve the conver-
gence of the adaptive-filtering algorithms. Data-reusing algorithms [18], [19]-[24] are considered an
alternative to increase the speed of convergence in adaptive-filtering algorithms in situations where
the input signal is correlated. The penalty to be paid by data reusing is increased algorithm misad-
justment, and as usual a trade-off between final misadjustment and convergence speed is achieved
through the introduction of a convergence factor.

Let’s assume we keep the last L + 1 input signal vectors in a matrix as follows:

Xap(k) =

⎡
⎢⎢⎢⎣

x(k) x(k − 1) · · · x(k − L + 1) x(k − L)
x(k − 1) x(k − 2) · · · x(k − L) x(k − L− 1)

...
...

. . .
...

...
x(k −N) x(k −N − 1) · · · x(k − L−N + 1) x(k − L−N)

⎤
⎥⎥⎥⎦

= [x(k) x(k − 1) . . . x(k − L)] (4.74)

We can also define some vectors representing the partial reusing results at a given iteration k, such
as the adaptive-filter output, the desired signal, and the error vectors.
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These vectors are

yap(k) = XT
ap(k)w(k) =

⎡
⎢⎢⎢⎣

yap,0(k)
yap,1(k)

...
yap,L(k)

⎤
⎥⎥⎥⎦ (4.75)

dap(k) =

⎡
⎢⎢⎢⎣

d(k)
d(k − 1)

...
d(k − L)

⎤
⎥⎥⎥⎦ (4.76)

eap(k) =

⎡
⎢⎢⎢⎣

eap,0(k)
eap,1(k)

...
eap,L(k)

⎤
⎥⎥⎥⎦=
⎡
⎢⎢⎢⎣

d(k)− yap,0(k)
d(k − 1)− yap,1(k)

...
d(k − L)− yap,L(k)

⎤
⎥⎥⎥⎦=dap(k)− yap(k) (4.77)

The objective of the affine projection algorithm is to minimize

1
2
‖w(k + 1)− w(k)‖2

subject to :
dap(k)− XT

ap(k)w(k + 1) = 0 (4.78)

The affine projection algorithm maintains the next coefficient vector w(k + 1) as close as possible
to the current one1 w(k), while forcing the a posteriori2 error to be zero.

Using the method of Lagrange multipliers to turn the constrained minimization into an unconstrained
one, the unconstrained function to be minimized is

F [w(k + 1)] =
1
2
‖w(k + 1)− w(k)‖2 + λT

ap(k)[d(k)− XT
ap(k)w(k + 1)] (4.79)

where λap(k) is an (L + 1)× 1 vector of Lagrange multipliers. The above expression can be
rewritten as

F [w(k + 1)] =
1
2

[w(k + 1)− w(k)]T [w(k + 1)− w(k)]

+
[
dT (k)− wT (k + 1)Xap(k)

]
λap(k) (4.80)

The gradient of F [w(k + 1)] with respect to w(k + 1) is given by

gw {F [w(k + 1)]} =
1
2

[2w(k + 1)− 2w(k)]− Xap(k)λap(k) (4.81)

1This procedure is known as minimal distance principle.
2The a posteriori error is the one computed with the current available data (up to instant k) using the already updated

coefficient vector w(k + 1).
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Algorithm 4.5

The Affine Projection Algorithm

Initialization
x(0) = w(0) = [0 0 . . . 0]T

choose μ in the range 0 < μ ≤ 2
γ = small constant

Do for k ≥ 0
eap(k) = dap(k)− XT

ap(k)w(k)
w(k + 1) = w(k) + μXap(k)

(
XT

ap(k)Xap(k) + γI
)−1

eap(k)

After setting the gradient of F [w(k + 1)] with respect to w(k + 1) equal to zero, we get

w(k + 1) = w(k) + Xap(k)λap(k) (4.82)

If we substitute equation (4.82) in the constraint relation of equation (4.78), we obtain

XT
ap(k)Xap(k)λap(k) = dap(k)− XT

ap(k)w(k) = eap(k) (4.83)

The update equation is now given by equation (4.82) with λap(k) being the solution of equation
(4.83), i.e.,

w(k + 1) = w(k) + Xap(k)
(
XT

ap(k)Xap(k)
)−1

eap(k) (4.84)

The above algorithm corresponds to the conventional affine projection algorithm [19] with unity
convergence factor. A trade-off between final misadjustment and convergence speed is achieved
through the introduction of a convergence factor as follows

w(k + 1) = w(k) + μXap(k)
(
XT

ap(k)Xap(k)
)−1

eap(k) (4.85)

Note that with the convergence factor the a posteriori error is no longer zero. In fact, when measure-
ment noise is present in the environment, zeroing the a posteriori error is not a good idea since we are
forcing the adaptive filter to compensate for the effect of a noise signal which is uncorrelated with the
adaptive-filter input signal. The result is a high misadjustment when the convergence factor is one.
The description of the affine projection algorithm is given in Algorithm 4.5, where an identity matrix
multiplied by a small constant was added to the matrix XT

ap(k)Xap(k) in order to avoid numerical
problems in the matrix inversion. The order of the matrix to be inverted depends on the number of
data vectors being reused.

Let’s define the hyperplane S(k) as follows

S(k) = {w(k + 1) ∈ RN+1 : d(k)− wT (k + 1)x(k) = 0} (4.86)
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It is noticed that the a posteriori error over this hyperplane is zero, that is, given the current input
data stored in the vector x(k) the coefficients are updated to a point where the error computed with
the coefficients updated is zero. This definition allows an insightful geometric interpretation for the
affine projection algorithm.

In the affine projection algorithm the coefficients are computed such that they belong to an L + 1-
dimensional subspace ∈ R

N+1, where R represents the set of real numbers, spanned by the L + 1
columns of Xap(k). The objective of having L + 1 a posteriori errors equal to zero has infinity
number of solutions, such that any solution on S(k) can be added to a coefficient vector lying on
S⊥(k). By also minimizing 1

2‖w(k + 1)− w(k)‖2 specifies a solution with minimum disturbance.

The matrix Xap(k)
(
XT

ap(k)Xap(k)
)−1

XT
ap(k) represents an orthogonal projection operator on the

L + 1-dimensional subspace of R
N+1 spanned by the L + 1 columns of Xap(k). This projection

matrix has L + 1 eigenvalues equal to 1 and N − L eigenvalues of value 0. On the other hand,

the matrix I − μXap(k)
(
XT

ap(k)Xap(k)
)−1

XT
ap(k) has L + 1 eigenvalues equal to 1 and N − L

eigenvalues of value 1− μ.

When L = 0 and L = 1 the affine projection algorithm has the normalized LMS and binormalized
LMS algorithms [21] as special cases, respectively. In the binormalized case the matrix inversion
has closed form solution. Fig. 4.10 illustrates the updating of the coefficient vector for a two-
dimensional problem for the LMS algorithm, for the normalized LMS algorithm, for the normalized
LMS algorithm with a single data reuse3, and the binormalized LMS algorithm. Here we assume that
the coefficients are originally at w̃ when the new data vector x(k) becomes available and x(k − 1)
is still stored, and this scenario is used to illustrate the coefficient updating of related algorithms.
In addition, it is assumed an environment with no additional noise and a system identification with
sufficient order, where the LMS algorithm utilizes a small convergence factor whereas the remaining
algorithms use unit convergence factor. The conventional LMS algorithm takes a step towards S(k)
yielding a solution w(k + 1), anywhere between points 1 and 3 in Fig. 4.10, that is closer to S(k)
than w̃. The NLMS algorithm with unit convergence factor performs a line search in the direction
of x(k) to yield in a single step the solution w(k + 1), represented by point 3 in Fig. 4.10, which
belongs to S(k). A single reuse of the previous data using normalized LMS algorithm would lead
to point 4. The binormalized LMS algorithm, which corresponds to an affine projection algorithm
with two projections, yields the solution that belongs to S(k − 1) and S(k), represented by point 5
in Fig. 4.10. As an illustration, it is possible to observe in Fig. 4.11 that by repeatedly re-utilizing the
data vectors x(k) and x(k− 1) to update the coefficients with the normalized LMS algorithm would
reach point 5 in a zig-zag pattern after an infinite number of iterations. This approach is known as
Kaczmarz method [22].

For a noise-free environment and sufficient-order identification problem, the optimal solution wo is at
the intersection of L+1 hyperplanes constructed with linearly independent input signal vectors. The
affine projection algorithm with unit convergence factor updates the coefficient to the intersection.
Fig. 4.12 illustrates the coefficient updating for a three-dimensional problem for the normalized

3In this algorithm the updating is performed in two steps: ŵ(k) = w(k) + e(k)x(k)
xT (k)x(k)

and w(k + 1) = ŵ(k) +
ê(k−1)x(k−1)

xT (k−1)x(k−1)
, where in the latter case ê(k − 1) is computed with the previous data d(k − 1) and x(k − 1) using the

coefficients ŵ(k).
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Figure 4.10 Coefficient vector updating for the normalized LMS algorithm and binormalized LMS al-
gorithm.
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Figure 4.11 Multiple data reuse for the normalized LMS algorithm.
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and binormalized LMS algorithms. It can be observed in Fig. 4.12 that x(k) and, consequently,
gw[e2(k)] are orthogonal to the hyperplane S(k). Similarly, x(k−1) is orthogonal to the hyperplane
S(k − 1). The normalized LMS algorithm moves the coefficients from point 1 to point 2, whereas
the binormalized LMS algorithm updates the coefficients to point 3 at the intersection of the two
hyperplanes.

θ

S(k)

S(k − 1)

w(k)

x(k)

w̃(k + 1)

w(k + 1)

θ
x(k − 1)

3
1

2

0

Figure 4.12 Three-dimensional coefficient vector updating for the normalized LMS algorithm and bi-
normalized LMS algorithm.

The affine projection algorithm combines data reusing, orthogonal projections of L consecutive
gradient directions, and normalization in order to achieve faster convergence than many other LMS-
based algorithms. At each iteration, the affine projection algorithm yields the solution w(k + 1)
which is at the intersection of hyperplanes S(k),S(k− 1), . . . ,S(k−L) and is as close as possible
to w(k). The computational complexity of the affine projection algorithm is related to the number of
data vectors being reused which ultimately determines the order of the matrix to be inverted. Some
fast versions of the algorithm can be found in [20], [25]. It is also possible to reduce computations
by employing data-selective strategies as will be discussed in Chapter 6.

4.6.1 Misadjustment in the Affine Projection Algorithm

The analysis of the affine projection algorithm is somewhat more involved than some of the LMS-
based algorithms. The following framework provides an alternative analysis approach utilizing the
concept of energy conservation [44]-[48]. This framework has been widely used in recent literature
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to analyze several adaptive-filtering algorithms [48]. In particular, the approach is very useful to
analyze the behavior of the affine projection algorithm in a rather simple manner [47].

A general adaptive-filtering algorithm utilizes the following coefficient updating form

w(k + 1) = w(k)− μFx(k)fe(k) (4.87)

where Fx(k) is a matrix whose elements are functions of the input data and fe(k) is a vector whose
elements are functions of the error. Assuming that the desired signal is given by

d(k) = wT
o x(k) + n(k) (4.88)

the underlying updating equation can be alternatively described by

Δw(k + 1) = Δw(k)− μFx(k)fe(k) (4.89)

where Δw(k) = w(k)− wo.

In the case of the affine projection algorithm

fe(k) = −eap(k) (4.90)

according to equation (4.77). By premultiplying equation (4.89) by the input vector matrix of equation
(4.74), the following expressions result

XT
ap(k)Δw(k + 1) = XT

ap(k)Δw(k) + μXT
ap(k)Fx(k)eap(k)

−ε̃ap(k) = −ẽap(k) + μXT
ap(k)Fx(k)eap(k) (4.91)

where

ε̃ap(k) = −XT
ap(k)Δw(k + 1) (4.92)

is the noiseless a posteriori error vector and

ẽap(k) = −XT
ap(k)Δw(k) = eap(k)− nap(k) (4.93)

is the noiseless a priori error vector with

nap(k) =

⎡
⎢⎢⎢⎣

n(k)
n(k − 1)

...
n(k − L)

⎤
⎥⎥⎥⎦

being the standard noise vector.

For the regularized affine projection algorithm

Fx(k) = Xap(k)
(
XT

ap(k)Xap(k) + γI
)−1
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where the matrix γI is added to the matrix to be inverted in order to avoid numerical problems in the
inversion operation in the cases XT

ap(k)Xap(k) is ill conditioned.

By solving equation (4.91), we get

1
μ

(
XT

ap(k)Xap(k)
)−1

(ẽap(k)− ε̃ap(k)) =
(
XT

ap(k)Xap(k) + γI
)−1

eap(k)

If we replace the above equation in

Δw(k + 1) = Δw(k) + μXap(k)
(
XT

ap(k)Xap(k) + γI
)−1

eap(k) (4.94)

which corresponds to equation (4.89) for the affine projection case, it is possible to deduce that

Δw(k + 1)− Xap(k)
(
XT

ap(k)Xap(k)
)−1

ẽap(k) =

Δw(k)− Xap(k)
(
XT

ap(k)Xap(k)
)−1

ε̃ap(k) (4.95)

From the above equation it is possible to prove that

E
[‖Δw(k + 1)‖2]+ E

[
ẽT
ap(k)

(
XT

ap(k)Xap(k)
)−1

ẽap(k)
]

=

E
[‖Δw(k)‖2]+ E

[
ε̃T
ap(k)

(
XT

ap(k)Xap(k)
)−1

ε̃ap(k)
]

(4.96)

Proof:

One can now calculate the Euclidean norm of both sides of equation (4.95)[
Δw(k + 1)− Xap(k)

(
XT

ap(k)Xap(k)
)−1

ẽap(k)
]T

×
[
Δw(k + 1)− Xap(k)

(
XT

ap(k)Xap(k)
)−1

ẽap(k)
]

=[
Δw(k)− Xap(k)

(
XT

ap(k)Xap(k)
)−1

ε̃ap(k)
]T

×
[
Δw(k)− Xap(k)

(
XT

ap(k)Xap(k)
)−1

ε̃ap(k)
]

By performing the inner products one by one, the above equation becomes

ΔwT (k + 1)Δw(k + 1)−ΔwT (k + 1)Xap(k)
(
XT

ap(k)Xap(k)
)−1

ẽap(k)

−
[
Xap(k)

(
XT

ap(k)Xap(k)
)−1

ẽap(k)
]T

Δw(k + 1)

+
[
Xap(k)

(
XT

ap(k)Xap(k)
)−1

ẽap(k)
]T [

Xap(k)
(
XT

ap(k)Xap(k)
)−1

ẽap(k)
]

=

ΔwT (k)Δw(k)−ΔwT (k)Xap(k)
(
XT

ap(k)Xap(k)
)−1

ε̃ap(k)

−
[
Xap(k)

(
XT

ap(k)Xap(k)
)−1

ε̃ap(k)
]T

Δw(k)

+
[
Xap(k)

(
XT

ap(k)Xap(k)
)−1

ε̃ap(k)
]T [

Xap(k)
(
XT

ap(k)Xap(k)
)−1

ε̃ap(k)
]
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Since ε̃ap(k) = −XT
ap(k)Δw(k + 1) and ẽap(k) = −XT

ap(k)Δw(k)

‖Δw(k + 1)‖2 + ε̃T
ap(k)

(
XT

ap(k)Xap(k)
)−1

ẽap(k)

+ ẽT
ap(k)

(
XT

ap(k)Xap(k)
)−1

ε̃ap(k) + ẽT
ap(k)

(
XT

ap(k)Xap(k)
)−1

ẽap(k) =

‖Δw(k)‖2 + ẽT
ap(k)

(
XT

ap(k)Xap(k)
)−1

ε̃ap(k)

+ ε̃T
ap(k)

(
XT

ap(k)Xap(k)
)−1

ẽap(k) + ε̃T
ap(k)

(
XT

ap(k)Xap(k)
)−1

ε̃ap(k)

By removing the equal terms on both sides of the last equation the following equality holds

‖Δw(k + 1)‖2 + ẽT
ap(k)

(
XT

ap(k)Xap(k)
)−1

ẽap(k) =

‖Δw(k)‖2 + ε̃T
ap(k)

(
XT

ap(k)Xap(k)
)−1

ε̃ap(k) (4.97)

As can be observed no approximations were utilized so far. Now by applying the expected value
operation on both sides of the above equation, the expression of equation (4.96) holds.

�

If it is assumed that the algorithm has converged, that is, the coefficients remain in average unchanged,
then E

[‖Δw(k + 1)‖2] = E
[‖Δw(k)‖2]. As a result the following equality holds in the steady

state.

E
[
ẽT
ap(k)

(
XT

ap(k)Xap(k)
)−1

ẽap(k)
]

= E
[
ε̃T
ap(k)

(
XT

ap(k)Xap(k)
)−1

ε̃ap(k)
]

(4.98)

In the above expression it is useful to remove the dependence on the a posteriori error, what can be
achieved by applying equation (4.91) to the affine projection algorithm case.

ε̃ap(k) = ẽap(k)− μXT
ap(k)Xap(k)

(
XT

ap(k)Xap(k) + γI
)−1

eap(k) (4.99)

By substituting equation (4.99) in equation (4.98) we get

E
[
ẽT
ap(k)

(
XT

ap(k)Xap(k)
)−1

ẽap(k)
]

= E
[
ẽT
ap(k)

(
XT

ap(k)Xap(k)
)−1

ẽap(k)

− μẽT
ap(k)

(
XT

ap(k)Xap(k) + γI
)−1

eap(k)− μeT
ap(k)

(
XT

ap(k)Xap(k) + γI
)−1

ẽap(k)

+ μ2eT
ap(k)

(
XT

ap(k)Xap(k) + γI
)−1

XT
ap(k)Xap(k)

(
XT

ap(k)Xap(k) + γI
)−1

eap(k)
]

(4.100)

The above expression can be simplified as

μ2E
[
eT
ap(k)Ŝap(k)R̂ap(k)Ŝap(k)eap(k)

]
=μE

[
ẽT
ap(k)Ŝap(k)eap(k) + eT

ap(k)Ŝap(k)ẽap(k)
]

(4.101)
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where the following definitions are employed to simplify the discussion

R̂ap(k) = XT
ap(k)Xap(k)

Ŝap(k) =
(
XT

ap(k)Xap(k) + γI
)−1

(4.102)

By rescuing the definition of the error squared of equation (3.39) and applying the expected value
operator we obtain

ξ(k) = E[e2(k)] = E[n2(k)]− 2E[n(k)ΔwT (k)x(k)] + E[ΔwT (k)x(k)xT (k)Δw(k)]
(4.103)

If the coefficients have weak dependency of the additional noise and applying the orthogonality
principle, we can simplify the above expression as follows

ξ(k) = σ2
n + E[ΔwT (k)x(k)xT (k)Δw(k)]

= σ2
n + E[ẽ2

ap,0(k)] (4.104)

where ẽap,0(k) is the first element of vector ẽap(k).

In order to compute the excess of mean-square error we can remove the value of E[ẽ2
ap,0(k)] from

equation (4.101). Since our aim is to compute E[ẽ2
ap,0(k)], we can substitute equation (4.93) in

equation (4.101) in order to get rid of eap(k). The resulting expression is given by

E
[
μ(ẽap(k) + nap(k))T Ŝap(k)R̂ap(k)Ŝap(k)(ẽap(k) + nap(k))

]
=

E
[
ẽT
ap(k)Ŝap(k)(ẽap(k) + nap(k)) + (ẽap(k) + nap(k))T Ŝap(k)ẽap(k)

]
(4.105)

By considering the noise white and statistically independent of the input signal, the above relation
can be further simplified as

μE
[
ẽT
ap(k)Ŝap(k)R̂ap(k)Ŝap(k)ẽap(k) + nT

ap(k)Ŝap(k)R̂ap(k)Ŝap(k)nap(k)
]

=

2E
[
ẽT
ap(k)Ŝap(k)ẽap(k)

]
(4.106)

The above expression, after some rearrangements, can be rewritten as

2E
{

tr[ẽap(k)ẽT
ap(k)Ŝap(k)]

}
− μE

{
tr[ẽap(k)ẽT

ap(k)Ŝap(k)R̂ap(k)Ŝap(k)]
}

=

μE
{

tr[nap(k)nT
ap(k)Ŝap(k)R̂ap(k)Ŝap(k)]

}
(4.107)

where we used the property tr[A · B] = tr[B ·A].

In addition, if matrix R̂ap(k) is invertible it can be noticed that

Ŝap(k) =
[
R̂ap(k) + γI

]−1

= R̂
−1
ap (k)

[
I− γR̂

−1
ap (k) + γ2R̂

−2
ap (k)− γ3R̂

−3
ap (k) + · · ·

]
≈ R̂

−1
ap (k)

[
I− γR̂

−1
ap (k)

]
≈ R̂

−1
ap (k) (4.108)
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where the last two relations are valid for γ � 1.

By assuming that the matrix Ŝap(k) is statistically independent of the noiseless a priori error after
convergence, and of the noise, the equation (4.107) can be rewritten as

2tr
{

E[ẽap(k)ẽT
ap(k)]E[Ŝap(k)]

}
− μtr

{
E[ẽap(k)ẽT

ap(k)]E[Ŝap(k)]
}

+γμtr
{

E[ẽap(k)ẽT
ap(k)]

}
= μtr

{
E[nap(k)nT

ap(k)]E[Ŝap(k)]
}
− γμtr

{
E[nap(k)nT

ap(k)]
}

(4.109)

This equation can be further simplified by assuming the noise is white4 and γ is small leading to the
following expression

(2− μ)tr{E[ẽap(k)ẽT
ap(k)]E[Ŝap(k)]} = μσ2

ntr{E[Ŝap(k)]} (4.110)

Our task now is to compute E[ẽap(k)ẽT
ap(k)] where we will assume in the process that this matrix is

diagonal dominant whose final result has the following form

E[ẽap(k)ẽT
ap(k)] = AE[ẽ2

ap,0(k)] + μ2Bσ2
n

Proof:

The i-th rows of equations (4.92) and (4.93) are given by

ε̃ap,i(k) = −xT (k − i)Δw(k + 1) (4.111)

and

ẽap,i(k) = −xT (k − i)Δw(k) = eap,i(k)− n(k − i) (4.112)

for i = 0, . . . , L. Using in equation (4.91) the fact that XT
ap(k)Fx(k) ≈ I for small γ, then

−ε̃ap(k) = −ẽap(k) + μeap(k) (4.113)

By properly utilizing in equations (4.111) and (4.112) the i-th row of equation (4.91), we obtain

ε̃ap,i(k) = −xT (k − i)Δw(k + 1)
= (1− μ)ẽap,i(k)− μn(k − i)
= (1− μ)xT (k − i)Δw(k)− μn(k − i) (4.114)

Squaring the above equation, assuming the coefficients are weakly dependent on the noise which
is in turn white noise, and following closely the procedure to derive equation (4.96) from equation
(4.95), we get

E[(xT (k − i)Δw(k + 1))2] = (1− μ)2E[(xT (k − i)Δw(k))2] + μ2σ2
n (4.115)

4In this case, E[nap(k)nT
ap(k)] = σ2

nI.
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The above expression relates the squared values of the a posteriori and a priori errors. However, the
same kind of relation holds for the previous time instant, that is

E[(xT (k − i− 1)Δw(k))2] = (1− μ)2E[(xT (k − i− 1)Δw(k − 1))2] + μ2σ2
n

or

E[ẽ2
ap,i+1(k)] = (1− μ)2E[ẽ2

ap,i(k − 1)] + μ2σ2
n (4.116)

Note that for i = 0 this term corresponds to the second diagonal element of the matrixE[ẽap(k)ẽT
ap(k)].

Specifically we can compute E[ẽ2
ap,1(k)] as

E[(xT (k − 1)Δw(k))2] = E[ẽ2
ap,1(k)]

= (1− μ)2E[(xT (k − 1)Δw(k − 1))2] + μ2σ2
n

= (1− μ)2E[ẽ2
ap,0(k − 1)] + μ2σ2

n (4.117)

For i = 1 equation (4.116) becomes

E[(xT (k − 2)Δw(k))2] = E[ẽ2
ap,2(k)]

= (1− μ)2E[(xT (k − 2)Δw(k − 1))2] + μ2σ2
n

= (1− μ)2E[ẽ2
ap,1(k − 1)] + μ2σ2

n (4.118)

By substituting equation (4.117) in the above equation it follows that

E[ẽ2
ap,2(k)] = (1− μ)4E[ẽ2

ap,0(k − 2)] + [1 + (1− μ)2]μ2σ2
n (4.119)

By induction one can prove that

E[ẽ2
ap,i+1(k)] = (1− μ)2(i+1)E[ẽ2

ap,0(k − i− 1)] +

[
1 +

i∑
l=1

(1− μ)2l

]
μ2σ2

n (4.120)

By assuming that E[ẽ2
ap,0(k)] ≈ E[ẽ2

ap,0(k − i)] for i = 0, . . . , L, then

E[ẽap(k)ẽT
ap(k)] = AE[ẽ2

ap,0(k)] + μ2Bσ2
n (4.121)

with

A =

⎡
⎢⎢⎢⎢⎢⎣

1
(1− μ)2 0

(1− μ)4

0
. . .

(1− μ)2L

⎤
⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1 0

1 + (1− μ)2

. . .

0 1 +
∑i

l=1(1− μ)2l

. . .

1 +
∑L−1

l=1 (1− μ)2l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where it was also considered that the above matrix E[ẽap(k)ẽT
ap(k)] was diagonal dominant, as it is

usually the case in practice. Note from the above relation that the convergence factor μ should be
chosen in the range 0 < μ < 2, so that the elements of the noiseless a priori error remain bounded
for any value of L.

�

We have available all the quantities required to calculate the excess of MSE in the affine projection
algorithm. Specifically, we can substitute the result of equation (4.121) in equation (4.110) obtaining

(2− μ)
[
E[ẽ2

ap,0(k)]tr{AE[Ŝap(k)]}+ μ2σ2
ntr{BE[Ŝap(k)]}

]
= μσ2

ntr{E[Ŝap(k)]} (4.122)

The second term on the left-hand side can be neglected in case the signal to noise ratio is high. For
small μ this term also becomes substantially smaller than the term on the right-hand side. For μ close
to one the referred terms become comparable only for large L, when the misadjustment becomes less
sensitive to L. In the following discussions we will not consider the term multiplied by μ2.

Assuming the diagonal elements of E[Ŝap(k)] are equal and the matrix A multiplying it on the
left-hand side is a diagonal matrix, after a few manipulations it is possible to deduce that

E[ẽ2
ap,0(k)] =

μ

2− μ
σ2

n

tr{E[Ŝap(k)]}
tr{AE[Ŝap(k)]}

=
(L + 1)μ

2− μ

1− (1− μ)2

1− (1− μ)2(L+1) σ
2
n (4.123)

Therefore, the misadjustment for the affine projection algorithm is given by

M =
(L + 1)μ

2− μ

1− (1− μ)2

1− (1− μ)2(L+1) (4.124)

For large L and small 1− μ, this equation can be approximated by

M =
(L + 1)μ
(2− μ)

(4.125)

In [23], by considering a simplified model for the input signal vector consisting of vectors with
discrete angular orientation and the independence assumption, an expression for the misadjustment
of the affine projection algorithm was derived, that is

M =
μ

2− μ
E

[
1

‖x(k)‖2
]

tr[R] (4.126)

which is independent of L. It is observed in the experiments that higher number of reuses leads to
higher misadjustment, as indicated in equation (4.125). The equivalent expression of (4.126) using
the derivations presented here would lead to

M =
(L + 1)μ

2− μ
E

[
1

‖x(k)‖2
]

tr[R] (4.127)
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which can obtained from equation (4.123) by considering that

tr{E[Ŝap(k)]} ≈ (L + 1)E
[

1
‖x(k)‖2

]
and

1
tr{AE[Ŝap(k)]} ≈ tr[R]

for μ close to one.

4.6.2 Behavior in Nonstationary Environments

In a nonstationary environment the error in the coefficients is described by the following vector

Δw(k + 1) = w(k + 1)− wo(k + 1) (4.128)

where wo(k + 1) is the optimal time-varying vector. For this case, equation (4.95) becomes

Δw(k + 1) = Δŵ(k) + μXap(k)
(
XT

ap(k)Xap(k) + γI
)−1

eap(k) (4.129)

where Δŵ(k) = w(k)− wo(k + 1). By premultiplying the above expression by XT
ap(k) it follows

that

XT
ap(k)Δw(k + 1) = XT

ap(k)Δŵ(k) + μXT
ap(k)Xap(k)

(
XT

ap(k)Xap(k) + γI
)−1

eap(k)

−ε̃ap(k) = −ẽap(k) + μXT
ap(k)μXap(k)

(
XT

ap(k)Xap(k) + γI
)−1

eap(k) (4.130)

By solving the equation (4.130), it is possible to show that

1
μ

(
XT

ap(k)Xap(k)
)−1

[ẽap(k)− ε̃ap(k)] =
(
XT

ap(k)Xap(k) + γI
)−1

eap(k) (4.131)

Following the same procedure to derive equation (4.95), we can now substitute equation (4.131) in
equation (4.129) in order to deduce that

Δw(k + 1)− Xap(k)
(
XT

ap(k)Xap(k)
)−1

ẽap(k)

= Δŵ(k)− Xap(k)
(
XT

ap(k)Xap(k)
)−1

ε̃ap(k) (4.132)

By computing the energy on both sides of this equation as previously performed in equation (4.96),
it is possible to show that

E
[‖Δw(k + 1)‖2]+ E

[
ẽT
ap(k)

(
XT

ap(k)Xap(k)
)−1

ẽap(k)
]

= E
[‖Δŵ(k)‖2]+ E

[
ε̃T
ap(k)

(
XT

ap(k)Xap(k)
)−1

ε̃ap(k)
]

= E
[‖Δw(k) + Δwo(k + 1)‖2]+ E

[
ε̃T
ap(k)

(
XT

ap(k)Xap(k)
)−1

ε̃ap(k)
]

≈ E
[‖Δw(k)‖2]+ E

[‖Δwo(k + 1)‖2]+ E
[
ε̃T
ap(k)

(
XT

ap(k)Xap(k)
)−1

ε̃ap(k)
]

(4.133)
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where Δwo(k + 1) = wo(k) − wo(k + 1), and in the last equality we have assumed that
E
[
ΔwT (k)Δwo(k + 1)

] ≈ 0. This assumption is valid for simple models for the time-varying
behavior of the unknown system, such as random walk model [28]5. We will adopt this assumption
in order to simplify our analysis.

The time-varying characteristic of the unknown system leads to an excess mean-square error. As
before, in order to calculate the excess MSE we assume that each element of the optimal coefficient
vector is modeled as a first-order Markov process. As previously mentioned, this nonstationary
environment can be considered somewhat simplified, but allows a manageable mathematical analysis.
The first-order Markov process is described by

wo(k) = λwwo(k − 1) + κwnw(k) (4.134)

where nw(k) is a vector whose elements are zero-mean white noise processes with variance σ2
w,

and λw < 1. If κw = 1 this model may not represent a real system when λw → 1, since the
E[wo(k)wT

o (k)] will have unbounded elements if, for example, nw(k) is not exactly zero mean. A
better model utilizes a factor κw = (1− λw)

p
2 , for p ≥ 1, multiplying nw(k) in order to guarantee

that E[wo(k)wT
o (k)] is bounded.

In our derivations of the excess of MSE, the covariance of Δwo(k + 1) = wo(k) − wo(k + 1) is
required. That is

cov[Δwo(k + 1)] = E
[
(wo(k + 1)− wo(k))(wo(k + 1)− wo(k))T

]
= E

[
(λwwo(k) + κwnw(k)− wo(k))(λwwo(k) + κwnw(k)− wo(k))T

]
= E

{
[(λw − 1)wo(k) + κwnw(k)][(λw − 1)wo(k) + κwnw(k)]T

}
(4.135)

Since each element of nw(k) is a zero-mean white noise process with variance σ2
w, and λw < 1, by

applying the result of equation (2.82), it follows that

cov[Δwo(k + 1)] = κ2
wσ2

w
(1− λw)2

1− λ2
w

I + κ2
wσ2

wI

= κ2
w

[
1− λw
1 + λw

+ 1
]

σ2
wI (4.136)

By employing this result, we can compute

E
[‖Δwo(k + 1)‖2] = tr{cov[Δwo(k + 1)]} = (N + 1)

[
2κ2

w
1 + λw

]
σ2

w (4.137)

We are now in a position to solve equation (4.133) utilizing the result of equation (4.137). Again by
assuming that the algorithm has converged, that is, the Euclidean norm of the coefficients increment

5In this model the coefficients change according to wo(k) = wo(k − 1) + nw(k).
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remains in average unchanged, then E
[‖Δw(k + 1)‖2] = E

[‖Δw(k)‖2]. As a result, equation
(4.133) can be rewritten as

E
[
ẽT
ap(k)

(
XT

ap(k)Xap(k)
)−1

ẽap(k)
]

= E
[
ε̃T
ap(k)

(
XT

ap(k)Xap(k)
)−1

ε̃ap(k)
]

+(N + 1)
[

2κ2
w

1 + λw

]
σ2

w (4.138)

Leading to the equivalent of equation (4.101) as follows

μ2E
[
eT
ap(k)Ŝap(k)R̂ap(k)Ŝap(k)eap(k)

]
= μE

[
ẽT
ap(k)Ŝap(k)eap(k) + eT

ap(k)Ŝap(k)ẽap(k)
]

+(N + 1)
[

2κ2
w

1 + λw

]
σ2

w (4.139)

By solving this equation following precisely the same procedure as equation (4.101) was solved, we
can derive the excess of MSE only due to the time-varying unknown system.

ξlag =
N + 1

μ(2− μ)

[
2κ2

w
1 + λw

]
σ2

w (4.140)

By taking into consideration the additional noise and the time-varying parameters to be estimated,
the overall excess of MSE is given by

ξexc =
(L + 1)μ

2− μ

1− (1− μ)2

1− (1− μ)2(L+1) σ
2
n +

N + 1
μ(2− μ)

[
2κ2

w
1 + λw

]
σ2

w

=
1

2− μ

{
(L + 1)μ

1− (1− μ)2

1− (1− μ)2(L+1) σ
2
n +

N + 1
μ

[
2κ2

w
1 + λw

]
σ2

w

}
(4.141)

If κw = 1, L is large, and |1− μ| < 1, the above expression becomes simpler

ξexc =
1

2− μ

{
(L + 1)μσ2

n +
2(N + 1)
μ(1 + λw)

σ2
w

}
(4.142)

As can be observed, the contribution due to the lag is inversely proportional to the value of μ. This
is an expected result since for small values of μ an adaptive-filtering algorithm will face difficulties
in tracking the variations in the unknown system.

4.6.3 Transient Behavior

This subsection presents some considerations related to the behavior of the affine projection algorithm
during the transient. In order to achieve this goal we start by removing the dependence of equation
(4.96) on the noiseless a posteriori error through equation (4.99), very much like previously performed
in the derivations of equations (4.100) and (4.101). The resulting expression is

E
[‖Δw(k + 1)‖2] = E

[‖Δw(k)‖2]+ μ2E
[
eT
ap(k)Ŝap(k)R̂ap(k)Ŝap(k)eap(k)

]
−μE

[
ẽT
ap(k)Ŝap(k)eap(k) + eT

ap(k)Ŝap(k)ẽap(k)
]

(4.143)
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Since from equation (4.93)

eap(k) = ẽap(k) + nap(k)
= −XT

ap(k)Δw(k) + nap(k)

the above expression (4.143) can be rewritten as

E
[‖Δw(k + 1)‖2] = E

[‖Δw(k)‖2]
+μ2E

[(−ΔwT (k)Xap(k) + nT
ap(k)

)
Ŝap(k)R̂ap(k)Ŝap(k)

(−XT
ap(k)Δw(k) + nap(k)

)]
−μE

[(−ΔwT (k)Xap(k)
)

Ŝap(k)
(−XT

ap(k)Δw(k) + nap(k)
)

+
(−ΔwT (k)Xap(k) + nT

ap(k)
)

Ŝap(k)
(−XT

ap(k)Δw(k)
)]

(4.144)

By considering the noise white and uncorrelated with the other quantities of this recursion, the above
equation can be simplified to

E
[‖Δw(k + 1)‖2] = E

[‖Δw(k)‖2]− 2μE
[
ΔwT (k)Xap(k)Ŝap(k)XT

ap(k)Δw(k)
]

+μ2E
[
ΔwT (k)Xap(k)Ŝap(k)R̂ap(k)Ŝap(k)XT

ap(k)Δw(k)
]

+μ2E
[
nT

ap(k)Ŝap(k)R̂ap(k)Ŝap(k)nap(k)
]

(4.145)

By applying the property that tr[AB] = tr[BA], this relation is equivalent to

tr{cov[Δw(k + 1)]} = tr [cov[Δw(k)]]− 2μtr
{

E
[
Xap(k)Ŝap(k)XT

ap(k)Δw(k)ΔwT (k)
]}

+μ2tr
{

E
[
Xap(k)Ŝap(k)R̂ap(k)Ŝap(k)XT

ap(k)Δw(k)ΔwT (k)
]}

+μ2tr
{

E
[
Ŝap(k)R̂ap(k)Ŝap(k)

]
E
[
nap(k)nT

ap(k)
]}

(4.146)

By assuming that the Δw(k + 1) is independent of the data and the noise is white, it follows that

tr{cov[Δw(k + 1)]} = tr
{[

I− E
(
2μXap(k)Ŝap(k)XT

ap(k)

+ μ2Xap(k)Ŝap(k)R̂ap(k)Ŝap(k)XT
ap(k)

)]
cov[Δw(k)]

}
+μ2σ2

ntr
{

E
[
Ŝap(k)R̂ap(k)Ŝap(k)

]}
(4.147)

Now by recalling that

Ŝap(k) ≈ R̂
−1
ap (k)

[
I− γR̂

−1
ap (k)

]
and by utilizing the unitary matrix Q, that in the present discussion diagonalizes
E[Xap(k)Ŝap(k)XT

ap(k)], the following relation is valid

tr{cov[Δw(k + 1)]QQT } = tr
{

QQT
[
I− E

(
2μXap(k)Ŝap(k)XT

ap(k)

+ (1− γ)μ2Xap(k)Ŝap(k)XT
ap(k)

)]
QQT cov[Δw(k)]QQT

}
+(1− γ)μ2σ2

ntr
{

E
[
Ŝap(k)

]}
(4.148)
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Again by applying the property that tr[AB] = tr[BA] and assuming γ small, it follows that

tr{QT cov[Δw(k + 1)]Q} = tr
{

Q
[
I−QT E

(
2μXap(k)Ŝap(k)XT

ap(k)

+ μ2Xap(k)Ŝap(k)XT
ap(k)

)
Q
]

QT cov[Δw(k)]QQT
}

+μ2σ2
ntr
{

E
[
Ŝap(k)

]}
(4.149)

By defining

Δw′(k + 1) = Δw(k + 1)Q

equation (4.149) can be rewritten as

tr{cov[Δw′(k + 1)]} = tr
{

QT Q
[
I−QT E

(
−2μXap(k)Ŝap(k)XT

ap(k)

+ μ2Xap(k)Ŝap(k)XT
ap(k)

)
Q
]
cov[Δw′(k)]

}
+μ2σ2

ntr
{

E
[
Ŝap(k)

]}
= tr

{[
I− 2μΛ̂ + μ2Λ̂

]
cov[Δw′(k)]

}
+ μ2σ2

ntr
{

E
[
Ŝap(k)

]}
(4.150)

where Λ̂ is a diagonal matrix whose elements are the eigenvalues of E[Xap(k)Ŝap(k)XT
ap(k)], de-

noted as λ̂i, for i = 0, . . . , N .

By using the likely assumption that cov[Δw′(k + 1)] and Ŝap(k) are diagonal dominant, we can
disregard the trace operator in the above equation and observe that the geometric decaying curves
have ratios rcov[Δw(k)] = (1 − 2μλ̂i + μ2λ̂i). As a result, according to the considerations in the
derivation of equation (3.52), it is possible to infer that the convergence time constant is given by

τei = τcov[Δw(k)]

=
1

μλ̂i

1
2− μ

(4.151)

since the error squared depends on the convergence of the diagonal elements of the covariance
matrix of the coefficient-error vector, see discussions around equation (3.53). As can be ob-
served, the time constants for error convergence are dependent on the inverse of the eigenvalues
of E[Xap(k)Ŝap(k)XT

ap(k)]. However, since μ is not constrained by these eigenvalues, the speed of
convergence is expected to be higher than for the LMS algorithm, particularly in situations where the
eigenvalue spread of the input signal is high. Simulation results confirm the improved performance
of the affine projection algorithm.

4.6.4 Complex Affine Projection Algorithm

Using the method of Lagrange multipliers to transform the constrained minimization into an uncon-
strained one, the unconstrained function to be minimized is

F [w(k + 1)] =
1
2
‖w(k + 1)− w(k)‖2 + re

{
λT

ap(k)[dap(k)− XT
ap(k)w∗(k + 1)]

}
(4.152)
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where λap(k) is a complex (L + 1)× 1 vector of Lagrange multipliers, and the real part operator
is required in order to turn the overall objective function real valued. The above expression can be
rewritten as

F [w(k + 1)] =
1
2
[w(k + 1)− w(k)]H [w(k + 1)− w(k)]

+
1
2
λH

ap(k)
[
d∗ap(k)− XH

ap(k)w(k + 1)
]

+
1
2
λT

ap(k)
[
dap(k)− XT

ap(k)w∗(k + 1)
]

(4.153)

The gradient of F [w(k + 1)] with respect to w∗(k + 1) is given by6

∂F [w(k + 1)]
∂w∗(k + 1)

= gw∗{F [w(k + 1)]} =
1
2

[w(k + 1)− w(k)]− 1
2

Xap(k)λap(k) (4.154)

After setting the gradient of F [w(k + 1)] with respect to w∗(k + 1) equal to zero, the expression
below follows

w(k + 1) = w(k) + Xap(k)λap(k) (4.155)

By replacing equation (4.155) in the constraint relation d∗ap(k)−XH
ap(k)w(k + 1) = 0, we generate

the expression

XH
ap(k)Xap(k)λap(k) = d∗ap(k)− XH

ap(k)w(k) = e∗ap(k) (4.156)

The update equation is now given by equation (4.155) with λap(k) being the solution of equation
(4.156), i.e.,

w(k + 1) = w(k) + Xap(k)
(
XH

ap(k)Xap(k)
)−1

e∗ap(k) (4.157)

This updating equation corresponds to the complex affine projection algorithm with unity conver-
gence factor. As common practice, we introduce a convergence factor in order to trade-off final
misadjustment and convergence speed as follows

w(k + 1) = w(k) + μXap(k)
(
XH

ap(k)Xap(k)
)−1

e∗ap(k) (4.158)

The description of the complex affine projection algorithm is given in Algorithm 4.6, where as before
a regularization is introduced through an identity matrix multiplied by a small constant added to the
matrix XH

ap(k)Xap(k) in order to avoid numerical problems in the matrix inversion.

4.7 SIMULATION EXAMPLES

In this section, some adaptive-filtering problems are described and solved by using some of the
algorithms presented in this chapter.

6The reader should recall that when computing the gradient with respect to w∗(k + 1), w(k + 1) is treated as a constant.
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Algorithm 4.6

Complex Affine Projection Algorithm

Initialization
x(0) = w(0) = [0 0 . . . 0]T

choose μ in the range 0 < μ ≤ 2
γ = small constant

Do for k ≥ 0
e∗ap(k) = d∗ap(k)− XH

ap(k)w(k)
w(k + 1) = w(k) + μXap(k)

(
XH

ap(k)Xap(k) + γI
)−1

e∗ap(k)

Example 4.3: Transform-Domain LMS Algorithm

Use the transform-domain LMS algorithm to identify the system described in example of subsection
3.6.2. The transform is the DCT.

Solution:

All the results presented here for the transform-domain LMS algorithm are obtained by averaging
the results of 200 independent runs.

We run the algorithm with a value of μ = 0.01, with α = 0.05 and γ = 10−6. With this value of
μ, the misadjustment of the transform-domain LMS algorithm is about the same as that of the LMS
algorithm with μ = 0.02. In Fig. 4.13, the learning curves for the eigenvalue spreads 20 and 80 are
illustrated. First note that the convergence speed is about the same for different eigenvalue spreads,
showing the effectiveness of the rotation performed by the transform in this case. If we compare
these curves with those of Fig. 3.9 for the LMS algorithm, we conclude that the transform-domain
LMS algorithm has better performance than the LMS algorithm for high eigenvalue spread. For an
eigenvalue spread equal to 20, the transform-domain LMS algorithm requires around 200 iterations
to achieve convergence, whereas the LMS requires at least 500 iterations. This improvement is
achieved without increasing the misadjustment as can be verified by comparing the results of Tables
3.1 and 4.1.

The reader should bear in mind that the improvements in convergence of the transform-domain LMS
algorithm can be achieved only if the transformation is effective. In this example, since the input
signal is colored using a first-order all-pole filter, the cosine transform is known to be effective
because it approximates the KLT.
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The finite-precision implementation of the transform-domain LMS algorithm presents similar per-
formance to that of the LMS algorithm, as can be verified by comparing the results of Tables 3.2 and
4.2. An eigenvalue spread of one is used in this example. The value of μ is 0.01, while the remaining
parameter values are γ = 2−bd and α = 0.05. The value of μ in this case is chosen the same as for
the LMS algorithm.

�

Table 4.1 Evaluation of the Transform-Domain LMS Algorithm

λmax
λmin

Misadjustment

1 0.2027

20 0.2037

80 0.2093

Table 4.2 Results of the Finite-Precision Implementation of the Transform-Domain LMS Algorithm

ξ(k)Q E[||Δw(k)Q||2]
No of bits Experiment Experiment

16 1.627 10−3 1.313 10−4

12 1.640 10−3 1.409 10−4

10 1.648 10−3 1.536 10−4

Example 4.4: Affine Projection Algorithm

An adaptive-filtering algorithm is used to identify the system described in example of subsection
3.6.2 using the affine projection algorithm using L = 0, L = 1 and L = 4. Do not consider the
finite-precision case.

Solution:

Fig. 4.14 depicts the estimate of the MSE learning curve of the affine projection algorithm for the case
of eigenvalue spread equal to 1, obtained by averaging the results of 200 independent runs. As can
be noticed by increasing L the algorithm becomes faster. The chosen convergence factor is μ = 0.4,
and the measured misadjustments are M = 0.32 for L = 0, M = 0.67 for L = 1, and M = 2.05 for
L = 4. In all cases γ = 0 is utilized, and for L = 1 in the first iteration we start with L = 0, whereas
for L = 4 in the first four iterations we employ L = 0, 1, 2, and 3, respectively. If we consider

that the term E
[

1
‖x(k)‖2

]
≈ 1

(N+1)σ2
x

, the expected misadjustment according to equation (4.126) is

M = 0.25, which is somewhat close to the measured ones considering the above approximation as
well as the approximations in the derivation of the theoretical formula.
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Figure 4.13 Learning curves for the transform-domain LMS algorithm for eigenvalue spreads: 20 and
80.

Fig. 4.15 depicts the average of the squared error obtained from 200 independent runs for the case
of eigenvalue spread equal to 80. Again we verify that by increasing L the algorithm becomes faster.
The chosen convergence factor is also μ = 0.4, and the measured misadjustments for three values
of the eigenvalue spread are listed in Table 4.3. It can be observed that higher eigenvalue spreads do
not increase the misadjustment substantially.

Table 4.3 Evaluation of the Affine Projection Algorithm, μ = 0.4

λmax
λmin

Misadjustment, L = 0 Misadjustment, L = 1 Misadjustment, L = 4

Experiment Theory Experiment Theory Experiment Theory

1 0.32 0.25 0.67 0.37 2.05 0.81

20 0.35 0.25 0.69 0.37 2.29 0.81

80 0.37 0.25 0.72 0.37 2.43 0.81

In Fig. 4.16, it is shown the effect of using different values for the convergence factor, when L = 1
and the eigenvalue spread is equal to 1. For μ = 0.2 the misadjustment is M = 0.30, for μ = 0.4
the misadjustment is M = 0.67, and for μ = 1 the misadjustment is M = 1.56.

�
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Figure 4.14 Learning curves for the affine projection algorithms for L = 0, L = 1, and L = 4,
eigenvalue spread equal 1.

4.7.1 Signal Enhancement Simulation

In this subsection, a signal enhancement simulation environment is described. This example will
also be employed in some of the following chapters.

In a signal enhancement problem, the reference signal is

r(k) = sin(0.2πk) + nr(k)

where nr(k) is zero-mean Gaussian white noise with variance σ2
nr

= 10. The input signal is given
by nr(k) passed through a filter with the following transfer function

H(z) =
0.4

z2 − 1.36z + 0.79

The adaptive filter is a 20th-order FIR filter. In all examples, a delay L = 10 is applied to the
reference signal.

Example 4.5: Quantized-Error and Normalized LMS Algorithms

Using the sign-error, power-of-two error with bd = 12, and normalized LMS algorithms:
(a) Choose an appropriate μ in each case and run an ensemble of 50 experiments. Plot the average
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Figure 4.15 Learning curves for the affine projection algorithms for L = 0, L = 1, and L = 4,
eigenvalue spread equal 80.

learning curve.
(b) Plot the output errors and comment on the results.

Solution:

The maximum value of μ for the LMS algorithm in this example is 0.005. The value of μ for both
the sign-error and power-of-two LMS algorithms is chosen 0.001. The coefficients of the adaptive
filter are initialized with zero. For the normalized LMS algorithm μn = 0.4 and γ = 10−6 are used.
Fig. 4.17 depicts the learning curves for the three algorithms. The results show that the sign-error
and power-of-two error algorithms present similar convergence speed, whereas the normalized LMS
algorithm is faster to converge. The reader should notice that the MSE after convergence is not small
since we are dealing with an example where the signal to noise ratio is low.

The DFT with 128 points of the input signal is shown in Fig. 4.18 where the presence of the sinusoid
cannot be noted. In the same figure are shown the DFT of the error and the error signal itself, for
the experiment using the normalized LMS algorithm. In the cases of DFT, the result presented is the
magnitude of the DFT outputs. As can be verified, the output error tends to produce a signal with
the same period of the sinusoid after convergence and the DFT shows clearly the presence of the
sinusoid. The other two algorithms lead to similar results.

�
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Figure 4.16 Learning curves for the affine projection algorithms for μ = 0.2, μ = 0.4, and μ = 1.

4.7.2 Signal Prediction Simulation

In this subsection a signal prediction simulation environment is described. This example will also
be used in some of the following chapters.

In a prediction problem the input signal is

x(k) = −
√

2 sin(0.2πk) +
√

2 sin(0.05πk) + nx(k)

where nx(k) is zero-mean Gaussian white noise with variance σ2
nx

= 1. The adaptive filter is a
fourth-order FIR filter.
(a) Run an ensemble of 50 experiments and plot the average learning curve.
(b) Determine the zeros of the resulting FIR filter and comment on the results.

Example 4.6: Quantized-Error and Normalized LMS Algorithms

We solve the above problem using the sign-error, power-of-two error with bd = 12, and normalized
LMS algorithms.
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Figure 4.17 Learning curves for the (a) Sign-error, (b) Power-of-two, and (c) Normalized LMS algo-
rithms.
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LMS algorithm.
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Solution:

In the first step, each algorithm is tested in order to determine experimentally the maximum value
of μ in which the convergence is achieved. The choice of the convergence factor is μmax/5 for each
algorithm. The chosen values of μ for the sign-error and power-of-two LMS algorithms are 0.0028
and 0.0044, respectively. For the normalized LMS algorithm, μn = 0.4 and γ = 10−6 are used. The
coefficients of the adaptive filter are initialized with zero. In all cases, we notice a strong attenuation
of the predictor response around the frequencies of the two sinusoids. See, for example, the response
depicted in Fig. 4.19 obtained by running the power-of-two LMS algorithm. The learning curves for
the three algorithms are depicted in Fig. 4.20. The zeros of the transfer function from the input to
the output error are calculated for the power-of-two algorithm:

−0.3939; −0.2351± j0.3876; −0.6766± j0.3422

Notice that the predictor tends to place its zeros at low frequencies, in order to attenuate the two
low-frequency sinusoids.

In the experiments, we notice that for a given additional noise, smaller convergence factor leads to
higher attenuation at the sinusoid frequencies. This is an expected result since the excess MSE is
smaller. Another observation is that the attenuation also grows as the signal to noise ratio is reduced,
again due to the smaller MSE.

�

4.8 CONCLUDING REMARKS

In this chapter, a number of adaptive-filtering algorithms were presented derived from the LMS
algorithm. There were two basic directions followed in the derivation of the algorithms: one direction
was to search for simpler algorithms from the computational point of view, and the other was to
sophisticate the LMS algorithm looking for improvements in performance. The simplified algorithms
lead to low-power, low-complexity and/or high-speed integrated circuit implementations [29], at a
cost of increasing the misadjustment and/or of losing convergence speed among other things [30].
The simplified algorithms discussed here were the quantized-error algorithms.

We also introduced the LMS-Newton algorithm, whose performance is independent of the eigenvalue
spread of the input signal correlation matrix. This algorithm is related to the RLS algorithm which
will be discussed in the following chapter, although some distinctive features exist between them
[39]. Newton-type algorithms with reduced computational complexity are also known [40]-[41], and
the main characteristic of this class of algorithms is to reduce the computation involving the inverse
of the estimate of R.

In the normalized LMS algorithm, the straightforward objective was to find the step size that mini-
mizes the instantaneous output error. There are many papers dealing with the analysis [31]-[33] and
applications [34] of the normalized LMS algorithm. The idea of using variable step size in the LMS
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Figure 4.19 Magnitude response of the FIR adaptive filter at a given iteration after convergence using
the power-of-two LMS algorithm.

and normalized LMS algorithms can lead to a number of interesting algorithms [35]-[37], that in
some cases are very efficient in tracking nonstationary environments [38].

The transform-domain LMS algorithm aimed at reducing the eigenvalue spread of the input signal
correlation matrix. Several frequency-domain adaptive algorithms, which are related in some sense
to the transform-domain LMS algorithm, have been investigated in the recent years [42]. Such
algorithms exploit the whitening property associated with the normalized transform-domain LMS
algorithm, and most of them update the coefficients at a rate lower than the input sampling rate.
One of the resulting structures, presented in [43], can be interpreted as a direct generalization of
the transform-domain LMS algorithm and is called generalized adaptive subband decomposition
structure. Such structure consists of a small-size fixed transform, which is applied to the input
sequence, followed by sparse adaptive subfilters which are updated at the input rate. In high-order
adaptive-filtering problems, the use of this structure with appropriately chosen transform-size and
sparsity factor can lead to significant convergence rate improvement for colored input signals when
compared to the standard LMS algorithm. The convergence rate improvement is achieved without the
need for large transform sizes. Other algorithms to deal with high-order adaptive filters are discussed
in Chapter 12.
The affine projection algorithm is very appealing in applications requiring a trade-off between conver-
gence speed and computational complexity. Although the algorithms in the affine projection family
might have high misadjustment, their combination with deterministic objective functions leading
to data selective updating results in computationally efficient algorithms with low misadjustment
and high convergence speed [24], as will be discussed in Chapter 6. Several simulation examples
involving the LMS-based algorithms were presented in this chapter. These examples aid the reader
to understand what are the main practical characteristics of the LMS-based algorithms.
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Figure 4.20 Learning curves for the (a) Sign-error, (b) Power-of-two, and (c) Normalized LMS algo-
rithms.
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algorithms for adaptive FIR filters,” IEEE Trans. on Acoust., Speech, and Signal Processing,
vol. ASSP-29, pp. 670-678, June 1981.

2. N. A. M. Verhoeckx and T. A. C. M. Claasen, “Some considerations on the design of adaptive
digital filters equipped with the sign algorithm,” IEEE Trans. on Communications, vol. COM-
32, pp. 258-266, March 1984.

3. N. J. Bershad, “Comments on ‘Comparison of the convergence of two algorithms for adaptive
FIR digital filters’,” IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-33, pp.
1604-1606, Dec. 1985.

4. P. Xue and B. Liu, “Adaptive equalizer using finite-bit power-of-two quantizer,” IEEE Trans.
on Acoust., Speech, and Signal Processing, vol. ASSP-34, pp. 1603-1611, Dec. 1986.

5. V. J. Mathews and S. H. Cho, “Improved convergence analysis of stochastic gradient adaptive
filters using the sign algorithm,” IEEE Trans. on Acoust., Speech, and Signal Processing, vol.
ASSP-35, pp. 450-454, April 1987.

6. W.A. Sethares and C. R. Johnson, Jr., “A comparison of two quantized state adaptive algorithms,”
IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-37, pp. 138-143, Jan. 1989.

7. V. J. Mathews, “Performance analysis of adaptive filters equipped with dual sign algorithm,”
IEEE Trans. on Signal Processing, vol. 39, pp. 85-91, Jan. 1991.

8. E. Eweda, “Convergence analysis and design of an adaptive filter with finite-bit power-of-two
quantizer error,” IEEE Trans. on Circuits and Systems II : Analog and Digital Signal Processing,
vol. 39, pp. 113-115, Feb. 1992.

9. W. A. Sethares, I. M. X. Mareels, B. D. O. Anderson, C. R. Johnson, Jr., and R. R. Bitmead,
“Excitation conditions for signed regressor least mean square adaptation,” IEEE Trans. on
Circuits and Systems, vol. 35, pp. 613-624, June 1988.

10. S. H. Cho and V. J. Mathews, “Tracking analysis of the sign algorithm in nonstationary envi-
ronments,” IEEE Trans. on Acoust., Speech, and Signal Processing, vol. 38, pp. 2046-2057,
Dec. 1990.

11. J. C. M. Bermudez and N. J. Bershad, “A nonlinear analytical model for the quantized LMS
algorithm: The arbitrary step size case,” IEEE Trans. on Signal Processing, vol. 44, pp.
1175-1183, May 1996.

12. S. S. Narayan, A. M. Peterson, and M. J. Narasimha, “Transform domain LMS algorithm,” IEEE
Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-31, pp. 609-615, June 1983.

13. D. F. Marshall, W. K. Jenkins, and J. J. Murphy, “The use of orthogonal transform for improving
performance of adaptive filters, ” IEEE Trans. on Circuits and Systems, vol. 36, pp. 474-484,
April 1989.



1874.9 References

14. J. C. Lee and C. K. Un, “Performance of transform-domain LMS adaptive digital filters,” IEEE
Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-34, pp. 499-510, June 1986.

15. F. F. Yassa, “Optimality in the choice of convergence factor for gradient based adaptive algo-
rithms,” IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-35, pp. 48-59,
Jan. 1987.

16. B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice Hall, Englewood Cliffs, NJ,
1985.

17. P. S. R. Diniz and L. W. Biscainho, “Optimal variable step size for the LMS/Newton algorithm
with application to subband adaptive filtering,” IEEE Trans. on Signal Processing, vol. SP-40,
pp. 2825-2829, Nov. 1992.

18. S. Roy and J. J. Shynk, “Analysis of the data-reusing LMS algorithm,” Proc. Midwest Sympo-
sium on Circuits and Systems, Urbana, IL, pp. 1127-1130, Aug. 1989.

19. K. Ozeki and T. Umeda, “An adaptive filtering algorithm using an orthogonal projection to an
affine subspace and its properties,” Electronics and Communications in Japan, vol. 67-A, pp.
19-27, 1984.

20. S. L. Gay and S. Tavathia, “The fast affine projection algorithm,” Proc. IEEE Int. Conf. on
Acoust., Speech, and Signal Processing, Detroit, MI, pp. 3023-3026, May 1995.

21. J. A. Apolinário, M. L. R. de Campos, and P. S. R. Diniz, “The binormalized data-reusing LMS
algorithm,” IEEE Trans. on Signal Processing, vol. 48, pp. 3235-3242, Nov. 2000.

22. R. A. Soni, K. A. Gallivan, and W. K. Jenkins, “Low-complexity data-reusing methods in
adaptive filtering,” IEEE Trans. on Signal Processing, vol. 52, pp. 394-405, Feb. 2004.

23. S. G. Sankaran and A. A. (Louis) Beex, “Convergence behavior of affine projection algorithms,”
IEEE Trans. on Signal Processing, vol. 48, pp. 1086-1096, April 2000.

24. S. Werner and P. S. R. Diniz, “Set-membership affine projection algorithm,” IEEE Signal Pro-
cessing Letters, vol. 8, pp. 231-235, Aug 2001.

25. G.-O. Glentis, K. Berberidis, and S. Theodoridis, “Efficient least squares adaptive algorithms
for FIR transversal filtering,” IEEE Signal Processing Magazine, vol. 16, pp. 13-41, July 1999.

26. N. S. Jayant and P. Noll, Digital Coding of Waveforms: Principles and Applications to Speech
and Video, Prentice Hall, Englewood Cliffs, NJ, 1984.

27. R. Price, “A useful theorem for nonlinear devices having Gaussian inputs,” IRE Trans. on
Information Theory, vol. IT-4, pp. 69-72, June 1958.

28. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edition, McGraw-
Hill, New York, NY, 1991.

29. H. Samueli, B. Daneshrad, R. B. Joshi, B. C. Wong, and H. T. Nicholas, III, “A 64-tap CMOS
echo canceller/decision feedback equalizer for 2B1Q HDSL ,” IEEE Journal on Selected Areas
in Communications, vol. 9, pp. 839-847, Aug. 1991.



188 Chapter 4 LMS-Based Algorithms

30. C. R. Johnson, Jr., Lectures on Adaptive Parameter Estimation, Prentice Hall, Englewood Cliffs,
NJ, 1988.

31. D. T. Slock, “On the convergence behavior of the LMS and normalized LMS algorithms,” IEEE
Trans. on Signal Processing, vol. 40, pp. 2811-2825, Sept. 1993.

32. N. J. Bershad, “Analysis of the normalized LMS algorithm with Gaussian inputs,” IEEE Trans.
on Acoust., Speech, and Signal Processing, vol. ASSP-34, pp. 793-806, Aug. 1986.

33. M. Tarrab and A. Feuer, “Convergence and performance analysis of the normalized LMS algo-
rithm with uncorrelated Gaussian data,” IEEE Trans. on Information Theory, vol. IT-34, pp.
680-691, July 1988.

34. J. F. Doherty, “An adaptive algorithm for stable decision-feedback filtering,” IEEE Trans. on
Circuits and Systems–II: Analog and Digital Signal Processing, vol. 40, pp. 1-8, Jan. 1993.

35. W. B. Mikhael, F. H. Fu, L. G. Kazovsky, G. S. Kang, and L. J. Fransen, “Adaptive filter
with individual adaptation of parameters,” IEEE Trans. on Circuits and Systems, vol. 33, pp.
677-686, July 1986.

36. R. W. Harris, D. M. Chabries, and F. A. Bishop, “A variable step (VS) adaptive filter algorithm,”
IEEE Trans. on Acoust., Speech, and Signal Processing, vol. ASSP-34, pp. 309-316, April
1986.

37. C. S. Modlin and J. M. Cioffi, “A fast decision feedback LMS algorithm using multiple step
sizes,” Proc. IEEE Inter. Conf. on Communications, New Orleans, pp. 1201-1205, May 1994.

38. S. D. Peters and A. Antoniou, “Environment estimation for enhanced NLMS adaptation,” Proc.
IEEE Pac. Rim Conf. on Comm., Comp. and Sig. Proc., Victoria, Canada, pp. 342-345, May
1993.

39. P. S. R. Diniz, M. L. R. de Campos, and A. Antoniou, “Analysis of LMS-Newton adaptive
filtering algorithms with variable convergence factor,” IEEE Trans. on Signal Processing, vol.
43, pp. 617-627, March 1995.

40. D. F. Marshall and W. K. Jenkins, “A fast quasi-Newton adaptive filtering algorithm,” IEEE
Trans. on Signal Processing, vol. 40, pp. 1652-1662, July 1993.

41. G. V. Moustakides and S. Theodoridis, “Fast Newton transversal filters - A new class of adaptive
estimation algorithm,” IEEE Trans. on Signal Processing, vol. 39, pp. 2184-2193, Oct. 1991.

42. J. J. Shynk, “Frequency-domain and multirate adaptive filtering," IEEE Signal Processing Mag-
azine, vol. 9, pp. 15-37, Jan. 1992.

43. M. R. Petraglia and S. K. Mitra,“Adaptive FIR filter structure based on the generalized subband
decomposition of FIR filters,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 40, pp. 354-362, June 1993.

44. A. H. Sayed and M. Rupp, “Error-energy bounds for adaptive gradient algorithms,” IEEE Trans.
on Signal Processing, vol. 44, pp. 1982-1989, August 1996.



1894.10 Problems

45. N. R. Yousef and A. H. Sayed, “A unified approach to the steady-state and tracking analyses of
adaptive filters,” IEEE Trans. on Signal Processing, vol. 49, pp. 314-324, Feb. 2001.

46. T. Y. Al-Naffouri and A. H. Sayed, “Transient analysis of adaptive filters with error nonlineari-
ties,” IEEE Trans. on Signal Processing, vol. 51, pp. 653-663, March 2003.

47. H.-C. Shin and A. H. Sayed, “Mean-square performance of a family of affine projection algo-
rithms,” IEEE Trans. on Signal Processing, vol. 52, pp. 90-102, Jan. 2004.

48. A. H. Sayed, Fundamentals of Adaptive Filtering, John Wiley & Sons, Hoboken, NJ, 2003.

49. M. L. R. de Campos and A. Antoniou, “A new quasi-Newton adaptive filtering algorithm,” IEEE
Trans. on Circuits and Systems–II: Analog and Digital Signal Processing, vol. 44, pp. 924-934,
Nov. 1997.

4.10 PROBLEMS

1. From equation (4.16) derive the difference equation for v′(k) given by equation (4.19).

2. Prove the validity of equation (4.27).

3. The sign-error algorithm is used to predict the signal x(k) = sin(πk/3) using a second-order
FIR filter with the first tap fixed at 1, by minimizing the mean square value of y(k). This is
an alternative way to interpret how the predictor works. Calculate an appropriate μ, the output
signal y(k), and the filter coefficients for the first 10 iterations. Start with wT (0) = [1 0 0].

4. Derive an LMS-Newton algorithm leading to zero a posteriori error.

5. Derive the updating equations of the affine projection algorithm, for L = 1.

6. Use the sign-error algorithm to identify a system with the transfer function given below. The
input signal is a uniformly distributed white noise with variance σ2

x = 1, and the measurement
noise is Gaussian white noise uncorrelated with the input with variance σ2

n = 10−3. The
adaptive filter has 12 coefficients.

H(z) =
1− z−12

1 + z−1

(a) Calculate the upper bound for μ (μmax) to guarantee the algorithm stability.
(b) Run the algorithm for μmax/2, μmax/5, and μmax/10. Comment on the convergence
behavior in each case.
(c) Measure the misadjustment in each example and compare with the results obtained by
equation (4.28).
(d) Plot the obtained FIR filter frequency response at any iteration after convergence is achieved
and compare with the unknown system.

7. Repeat the previous problem using an adaptive filter with 8 coefficients and interpret the results.
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8. Repeat problem 6 when the input signal is a uniformly distributed white noise with variance
σ2

nx
= 0.5, filtered by an all-pole filter given by

H(z) =
z

z − 0.9

9. In problem 6, consider that the additional noise has the following variances (a) σ2
n = 0, (b)

σ2
n = 1. Comment on the results obtained in each case.

10. Perform the equalization of a channel with the following impulse response

h(k) = ku(k)− (2k − 9)u(k − 5) + (k − 9)u(k − 10)

using a known training signal consisting of a binary (-1,1) random signal. An additional Gaussian
white noise with variance 10−2 is present at the channel output.
(a) Apply the sign-error with an appropriate μ and find the impulse response of an equalizer
with 15 coefficients.
(b) Convolve the equalizer impulse response at an iteration after convergence, with the channel
impulse response and comment on the result.

11. In a system identification problem, the input signal is generated by an autoregressive process
given by

x(k) = −1.2x(k − 1)− 0.81x(k − 2) + nx(k)

where nx(k) is zero-mean Gaussian white noise with variance such that σ2
x = 1. The unknown

system is described by

H(z) = 1 + 0.9z−1 + 0.1z−2 + 0.2z−3

The adaptive filter is also a third-order FIR filter. Using the sign-error algorithm:
(a) Choose an appropriate μ, run an ensemble of 20 experiments, and plot the average learning
curve.
(b) Measure the excess MSE and compare the results with the theoretical value.

12. In the previous problem, calculate the time constant τwi and the expected number of iterations
to achieve convergence.

13. The sign-error algorithm is applied to identify a 7th-order time-varying unknown system whose
coefficients are first-order Markov processes with λw = 0.999 and σ2

w = 0.001. The initial
time-varying system multiplier coefficients are

wT
o = [0.03490 − 0.011 − 0.06864 0.22391 0.55686 0.35798 − 0.0239 − 0.07594]

The input signal is Gaussian white noise with variance σ2
x = 0.7, and the measurement noise is

also Gaussian white noise independent of the input signal and of the elements of nw(k), with
variance σ2

n = 0.01.
For μ = 0.01, simulate the experiment described and measure the excess MSE.

14. Reduce the value of λw to 0.95 in problem 13, simulate, and comment on the results.
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15. Suppose a 15th-order FIR digital filter with multiplier coefficients given below, is identified
through an adaptive FIR filter of the same order using the sign-error algorithm. Use fixed-point
arithmetic and run simulations for the following case.

Additional noise: white noise with variance σ2
n = 0.0015

Coefficient wordlength: bc = 16 bits
Signal wordlength: bd = 16 bits
Input signal: Gaussian white noise with variance σ2

x = 0.7
μ = 0.01

wT
o = [0.0219360 0.0015786 − 0.0602449 − 0.0118907 0.1375379

0.0574545 − 0.3216703 − 0.5287203 − 0.2957797 0.0002043 0.290670
−0.0353349 − 0.068210 0.0026067 0.0010333 − 0.0143593]

Plot the learning curves of the estimates of E[||Δw(k)Q||2] and ξ(k)Q obtained through 25
independent runs, for the finite- and infinite-precision implementations.

16. Repeat the above problem for the following cases
(a) σ2

n = 0.01, bc = 12 bits, bd = 12 bits, σ2
x = 0.7, μ = 10−4.

(b) σ2
n = 0.1, bc = 10 bits, bd = 10 bits, σ2

x = 0.8, μ = 2.0 10−5.
(c) σ2

n = 0.05, bc = 14 bits, bd = 16 bits, σ2
x = 0.8, μ = 3.5 10−4.

17. Repeat problem 15 for the case where the input signal is a first-order Markov process with
λx = 0.95.

18. Repeat problem 6 for the dual-sign algorithm given γ = 16 and ρ = 1, and comment on the
results.

19. Repeat problem 6 for the power-of-two error algorithm given bd = 6 and τ = 2−bd , and
comment on the results.

20. Repeat problem 6 for the sign-data and sign-sign algorithms and compare the results.

21. Show the validity of the matrix inversion lemma defined in equation (4.51).

22. For the setup described in problem 8, choose an appropriate μ and run the LMS-Newton algo-
rithm.
(a) Measure the misadjustment.
(b) Plot the frequency response of the FIR filter obtained after convergence is achieved and
compare with the unknown system.

23. Repeat problem 8 using the normalized LMS algorithm.

24. Repeat problem 8 using the transform-domain LMS algorithm with DCT. Compare the results
with those obtained with the standard LMS algorithm.

25. Repeat problem 8 using the affine projection algorithm.

26. Repeat problem 8 using the transform-domain LMS algorithm with DCT.

27. For the input signal described in problem 8, derive the autocorrelation matrix of order one (2×
2). Apply the DCT and the normalization to R in order to generate R̂ = Σ−2TRTT . Compare
the eigenvalue spreads of R and R̂.
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28. Repeat the previous problem for R with dimension 3 by 3.

29. Use the complex affine projection algorithm with L = 3 to equalize a channel with the transfer
function given below. The input signal is a four QAM signal representing a randomly generated

bit stream with the signal to noise ratio σ2
x̃

σ2
n

= 20 at the receiver end, that is, x̃(k) is the received
signal without taking into consideration the additional channel noise. The adaptive filter has 10
coefficients.

H(z) = (0.34− 0.27j) + (0.87 + 0.43j)z−1 + (0.34− 0.21j)z−2

(a) Run the algorithm for μ = 0.1, μ = 0.4, and μ = 0.8. Comment on the convergence
behavior in each case.
(b) Plot the real versus imaginary parts of the received signal before and after equalization.
(c) Increase the number of coefficients to 20 and repeat the experiment in (b).

30. Repeat the problem 29 for the case of the normalized LMS algorithm.

31. In a system identification problem the input signal is generated from a four QAM of the form

x(k) = xre(k) + jxim(k)

where xre(k) and xim(k) assume values ±1 randomly generated. The unknown system is
described by

H(z) = 0.32 + 0.21j + (−0.3 + 0.7j)z−1 + (0.5− 0.8j)z−2 + (0.2 + 0.5j)z−3

The adaptive filter is also a third-order complex FIR filter, and the additional noise is composed
of zero-mean Gaussian white noises in the real and imaginary parts with variance σ2

n = 0.4.
Using the complex affine projection algorithm with L = 1, choose an appropriate μ, run an
ensemble of 20 experiments, and plot the average learning curve.

32. Repeat the problem 31 utilizing the affine projection algorithm with L = 4.

33. Derive a complex transform-domain LMS algorithm for the case the transformation matrix is
the DFT.

34. The Quasi-Newton algorithm first proposed in [49] is described by the following set of equations

e(k) = d(k)− wT (k)x(k)

μ(k) =
1

2xT (k)R̂
−1

(k)x(k)

w(k + 1) = w(k) + 2 μ(k) e(k) R̂
−1

(k)x(k)

R̂
−1

(k + 1) = R̂
−1

(k)− 2μ(k) (1− μ(k)) R̂
−1

(k)x(k)xT (k)R̂
−1

(k) (4.159)

(a) Apply this algorithm as well as the binormalized LMS algorithm to identify the system

H(z) = 1 + z−1 + z−2
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when the additional noise is a uniformly distributed white noise with variance σ2
n = 0.01, and

the input signal is a Gaussian noise with unit variance filtered by an all-pole filter given by

G(z) =
0.19z

z − 0.9

Through simulations, compare the convergence speed of the two algorithms when their misad-
justments are approximately the same. The later condition can be met by choosing the μ in the
binormalized LMS algorithm appropriately.
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CONVENTIONAL RLS ADAPTIVE FILTER

5.1 INTRODUCTION

Least-squares algorithms aim at the minimization of the sum of the squares of the difference between
the desired signal and the model filter output [1]-[2]. When new samples of the incoming signals are
received at every iteration, the solution for the least-squares problem can be computed in recursive
form resulting in the recursive least-squares (RLS) algorithms. The conventional version of these
algorithms will be the topic of the present chapter.

The RLS algorithms are known to pursue fast convergence even when the eigenvalue spread of the
input signal correlation matrix is large. These algorithms have excellent performance when working
in time-varying environments. All these advantages come with the cost of an increased computational
complexity and some stability problems, which are not as critical in LMS-based algorithms [3]-[4].

Several properties related to the RLS algorithms are discussed including misadjustment, tracking
behavior, which are verified through a number of simulation results.

Appendix C deals with the quantization effects in the conventional RLS algorithm. Appendix D
provides an introduction to Kalman filters whose special case can be related to the RLS algorithms.

5.2 THE RECURSIVE LEAST-SQUARES ALGORITHM

The objective here is to choose the coefficients of the adaptive filter such that the output signal y(k),
during the period of observation, will match the desired signal as closely as possible in the least-
squares sense. The minimization process requires the information of the input signal available so
far. Also, the objective function we seek to minimize is deterministic.

The generic FIR adaptive filter realized in the direct form is shown in Fig. 5.1. The input signal
information vector at a given instant k is given by

x(k) = [x(k) x(k − 1) . . . x(k −N)]T (5.1)

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_5,  
© Springer Science+Business Media, LLC 2008  
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Figure 5.1 Adaptive FIR filter.

where N is the order of the filter. The coefficients wj(k), for j = 0, 1, . . . , N , are adapted aiming at
the minimization of a given objective function. In the case of least-squares algorithms, the objective
function is deterministic and is given by

ξd(k) =
k∑

i=0

λk−iε2(i)

=
k∑

i=0

λk−i
[
d(i)− xT (i)w(k)

]2
(5.2)
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where w(k) = [wo(k) w1(k) . . . wN (k)]T is the adaptive-filter coefficient vector and ε(i) is the a
posteriori output error1 at instant i. The parameter λ is an exponential weighting factor that should be
chosen in the range 0 � λ ≤ 1. This parameter is also called forgetting factor since the information
of the distant past has an increasingly negligible effect on the coefficient updating.

It should be noticed that in the development of the LMS and LMS-based algorithms we utilized the a
priori error. In the RLS algorithms ε(k) is used to denote the a posteriori error whereas e(k) denotes
the a priori error. The a posteriori error will be our first choice in the development of the RLS-based
algorithms.

As can be noted, each error consists of the difference between the desired signal and the filter output,
using the most recent coefficients w(k). By differentiating ξd(k) with respect to w(k), it follows that

∂ξd(k)
∂w(k)

= −2
k∑

i=0

λk−ix(i)[d(i)− xT (i)w(k)] (5.3)

By equating the result to zero, it is possible to find the optimal vector w(k) that minimizes the
least-squares error, through the following relation:

−
k∑

i=0

λk−ix(i)xT (i)w(k) +
k∑

i=0

λk−ix(i)d(i) =

⎡
⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎦

The resulting expression for the optimal coefficient vector w(k) is given by

w(k) =

[
k∑

i=0

λk−ix(i)xT (i)

]−1 k∑
i=0

λk−ix(i)d(i)

= R−1
D (k)pD(k) (5.4)

where RD(k) and pD(k) are called the deterministic correlation matrix of the input signal and the
deterministic cross-correlation vector between the input and desired signals, respectively.

In equation (5.4) it was assumed that RD(k) is nonsingular. However, if RD(k) is singular a
generalized inverse [1] should be used instead in order to obtain a solution for w(k) that minimizes
ξd(k). Since we are assuming that in most practical applications the input signal has persistence of
excitation, the cases requiring generalized inverse are not discussed here. It should be mentioned
that if the input signal is considered to be zero for k < 0 then RD(k) will always be singular for
k < N , i.e., during the initialization period. During this period, the optimal value of the coefficients
can be calculated for example by the backsubstitution algorithm to be presented in subsection 9.2.1.

The straightforward computation of the inverse of RD(k) results in an algorithm with computational
complexity of O[N3]. In the conventional RLS algorithm the computation of the inverse matrix is

1The a posteriori error is computed after the coefficient vector is updated, and taking into consideration the most recent
input data vector x(k).
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avoided through the use of the matrix inversion lemma [1], first presented in the previous chapter for
the LMS-Newton algorithm. Using the matrix inversion lemma, see equation (4.51), the inverse of
the deterministic correlation matrix can then be calculated in the following form

SD(k) = R−1
D (k) =

1
λ

[
SD(k − 1)− SD(k − 1)x(k)xT (k)SD(k − 1)

λ + xT (k)SD(k − 1)x(k)

]
(5.5)

The complete conventional RLS algorithm is described in Algorithm 5.1.

Algorithm 5.1

Conventional RLS Algorithm

Initialization
SD(−1) = δI

where δ can be the inverse of the input signal power estimate
pD(−1) = x(−1) = [0 0 . . . 0]T

Do for k ≥ 0 :
SD(k) = 1

λ [SD(k − 1)− SD(k−1)x(k)xT (k)SD(k−1)
λ+xT (k)SD(k−1)x(k)

]
pD(k) = λpD(k − 1) + d(k)x(k)
w(k) = SD(k)pD(k)

If necessary compute
y(k) = wT (k)x(k)
ε(k) = d(k)− y(k)

An alternative way to describe the conventional RLS algorithm can be obtained if equation (5.4) is
rewritten in the following form[

k∑
i=0

λk−ix(i)xT (i)

]
w(k) = λ

[
k−1∑
i=0

λk−i−1x(i)d(i)

]
+ x(k)d(k) (5.6)

By considering that RD(k − 1)w(k − 1) = pD(k − 1), it follows that[
k∑

i=0

λk−ix(i)xT (i)

]
w(k) = λpD(k − 1) + x(k)d(k)

= λRD(k − 1)w(k − 1) + x(k)d(k)

=

[
k∑

i=0

λk−ix(i)xT (i)− x(k)xT (k)

]
w(k − 1) + x(k)d(k)

(5.7)
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where in the last equality the matrix x(k)xT (k) was added and subtracted inside square bracket on
the right side of equation (5.7). Now, define the a priori error as

e(k) = d(k)− xT (k)w(k − 1) (5.8)

By expressing d(k) as a function of the a priori error and replacing the result in equation (5.7), after
few manipulations, it can be shown that

w(k) = w(k − 1) + e(k)SD(k)x(k) (5.9)

With equation (5.9), it is straightforward to generate an alternative conventional RLS algorithm as
shown in Algorithm 5.2.

Algorithm 5.2

Alternative RLS Algorithm

Initialization
SD(−1) = δI

where δ can be the inverse of an estimate of the input signal power
x(−1) = w(−1) = [0 0 . . . 0]T

Do for k ≥ 0
e(k) = d(k)− xT (k)w(k − 1)
ψ(k) = SD(k − 1)x(k)

SD(k) = 1
λ [SD(k − 1)− ψ(k)ψT

(k)

λ+ψT
(k)x(k)

]

w(k) = w(k − 1) + e(k)SD(k)x(k)
If necessary compute

y(k) = wT (k)x(k)
ε(k) = d(k)− y(k)

In Algorithm 5.2, ψ(k) is an auxiliary vector required to reduce the computational burden defined
by

ψ(k) = SD(k − 1)x(k) (5.10)

Further reduction in the number of divisions is possible if an additional auxiliary vector is used,
defined as

φ(k) =
ψ(k)

λ + ψT (k)x(k)
(5.11)

This vector can be used to update SD(k) as follows:

SD(k) =
1
λ

[
SD(k − 1)−ψ(k)φT (k)

]
(5.12)

As will be discussed, the above relation can lead to stability problems in the RLS algorithm.
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5.3 PROPERTIES OF THE LEAST-SQUARES SOLUTION

In this section, some properties related to the least-squares solution are discussed in order to give
some insight to the algorithm behavior in several situations to be discussed later on.

5.3.1 Orthogonality Principle

Define the matrices X(k) and d(k) that contain all the information about the input signal vector x(k)
and the desired signal vector d(k) as follows:

X(k) =

⎡
⎢⎢⎢⎣

x(k) λ1/2x(k − 1) · · · λ(k−1)/2x(1) λk/2x(0)
x(k − 1) λ1/2x(k − 2) · · · λ(k−1)/2x(0) 0

...
...

...
...

x(k −N) λ1/2x(k −N − 1) · · · 0 0

⎤
⎥⎥⎥⎦

= [x(k) λ1/2x(k − 1) . . . λk/2x(0)] (5.13)

d(k) = [d(k) λ1/2d(k − 1) . . . λk/2d(0)]T (5.14)

where X(k) is (N + 1)× (k + 1) and d(k) is (k + 1)× 1.

By using the matrices above defined it is possible to replace the least-squares solution of equation
(5.4) by the following relation

X(k)XT (k)w(k) = X(k)d(k) (5.15)

The product XT (k)w(k) forms a vector including all the adaptive-filter outputs when the coefficients
are given by w(k). This vector corresponds to an estimate of d(k). Hence, defining

y(k) = XT (k)w(k) = [y(k) λ1/2y(k − 1) . . . λk/2y(0)]T (5.16)

it follows from equation (5.15) that

X(k)XT (k)w(k)− X(k)d(k) = X(k)[y(k)− d(k)] = 0 (5.17)

This relation means that the weighted-error vector given by

ε(k) =

⎡
⎢⎢⎢⎣

ε(k)
λ1/2ε(k − 1)

...
λk/2ε(0)

⎤
⎥⎥⎥⎦ = d(k)− y(k) (5.18)

is in the null space of X(k), i.e., the weighted-error vector is orthogonal to all row vectors of X(k).
This justifies the fact that (5.15) is often called normal equation. A geometrical interpretation can
easily be given for a least-squares problem solution with a single coefficient filter.
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Example 5.1

Suppose that λ = 1 and that the following signals are involved in the least-squares problem

d(1) =
[

0.5
1.5

]
X(1) = [1 − 2]

The optimal coefficient is given by

X(1)XT (1)w(1) = [1 − 2]
[

1
−2

]
w(1)

= X(1)d(1)

= [1 − 2]
[

0.5
1.5

]
After performing the calculations the result is

w(1) = −1
2

The output of the adaptive filter with coefficient given by w(1) is

y(1) =
[ − 1

2
1

]
Note that

X(1)[y(1)− d(1)] = [1 − 2]
[ −1
−0.5

]
= 0

Fig. 5.2 illustrates the fact that y(1) is the projection of d(1) in the X(1) direction. In the general
case we can say that the vector y(k) is the projection of d(k) onto the subspace spanned by the rows
of X(k).

�

5.3.2 Relation Between Least-Squares and Wiener Solutions

When λ = 1 the matrix 1
k+1RD(k) for large k is a consistent estimate of the input signal autocorrela-

tion matrix R, if the process from which the input signal was taken is ergodic. The same observation
is valid for the vector 1

k+1pD(k) related to p if the desired signal is also ergodic. In this case,

R = lim
k→∞

1
k + 1

k∑
i=0

x(i)xT (i) = lim
k→∞

1
k + 1

RD(k) (5.19)
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ε

Figure 5.2 Geometric interpretation of least-squares solution.

and

p = lim
k→∞

1
k + 1

k∑
i=0

x(i)d(i) = lim
k→∞

1
k + 1

pD(k) (5.20)

It can then be shown that
w(k) = R−1

D (k)pD(k) = R−1p = wo (5.21)

when k tends to infinity. This result indicates that the least-squares solution tends to the Wiener
solution if the signals involved are ergodic and stationary. The stationarity requirement is due to the
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fact that the estimate of R given by equation (5.19) is not sensitive to any changes in R for large
values of k. If the input signal is nonstationary RD(k) is a biased estimate for R. Note that in this
case R is time varying.

5.3.3 Influence of the Deterministic Autocorrelation Initialization

The initialization of SD(−1) = δI causes a bias in the coefficients estimated by the adaptive filter.
Suppose that the initial value given to RD(k) is taken into account in the actual RLS solution as
follows:

k∑
i=−1

λk−ix(i)xT (i)w(k) = [
k∑

i=0

λk−ix(i)xT (i) +
λk+1

δ
I]w(k)

= pD(k) (5.22)

By recognizing that the deterministic autocorrelation matrix leading to an unbiased solution does
not include the initialization matrix, we now examine the influence of this matrix. By multiplying
SD(k) = R−1

D (k) on both sides of equation (5.22), and by considering k →∞, it can be concluded
that

w(k) +
λk+1

δ
SD(k)w(k) = wo (5.23)

where wo is the optimal solution for the RLS algorithm.

The bias caused by the initialization of SD(k) is approximately

w(k)− wo ≈ −λk+1

δ
SD(k)wo (5.24)

For λ < 1, it is straightforward to conclude that the bias tends to zero as k tends to infinity. On the
other hand, when λ = 1 the elements of SD(k) get smaller when the number of iterations increase,
as a consequence this matrix approaches a null matrix for large k.

The RLS algorithm would reach the optimum solution for the coefficients after N + 1 iterations if
no measurement noise is present, and the influence of the initialization matrix SD(−1) is negligible
at this point. This result follows from the fact that after N + 1 iterations, the input signal vector
has enough information to allow the adaptive algorithm to identify the coefficients of the unknown
system. In other words, enough information means the tap delay line is filled with information of
the input signal.

5.3.4 Steady-State Behavior of the Coefficient Vector

In order to understand better the steady-state behavior of the adaptive-filter coefficients, suppose that
an FIR filter with coefficients given by wo is being identified by an adaptive FIR filter of the same
order employing an LS algorithm. Also assume that a measurement noise signal n(k) is added to
the desired signal before the error signal is calculated as follows:

d(k) = wT
o x(k) + n(k) (5.25)
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where the additional noise is considered to be a white noise with zero mean and variance given by
σ2

n.

Given the adaptive-filter input vectors x(k), for k = 0, 1, . . ., we are interested in calculating the
average values of the adaptive-filter coefficients wi(k), for i = 0, 1, . . . , N . The desired result is the
following equality valid for k ≥ N .

E[w(k)] = E
{[

X(k)XT (k)
]−1

X(k)d(k)
}

= E
{[

X(k)XT (k)
]−1

X(k)[XT (k)wo + n(k)]
}

= E
{[

X(k)XT (k)
]−1

X(k)XT (k)wo

}
= wo (5.26)

where n(k) = [n(k) λ1/2n(k − 1) λn(k − 2) . . . λk/2n(0)]T is the noise vector, whose elements
were considered orthogonal to the input signal. The above equation shows that the estimate given
by the LS algorithm is an unbiased estimate when λ ≤ 1.

A more accurate analysis reveals the behavior of the adaptive-filter coefficients during the transient
period. The error in the filter coefficients can be described by the following (N + 1)× 1 vector

Δw(k) = w(k)− wo (5.27)

It follows from equation (5.7) that

RD(k)w(k) = λRD(k − 1)w(k − 1) + x(k)d(k) (5.28)

Defining the minimum output error as

eo(k) = d(k)− xT (k)wo (5.29)

and replacing d(k) in equation (5.28), it can be deduced that

RD(k)Δw(k) = λRD(k − 1)Δw(k − 1) + x(k)eo(k) (5.30)

where the following relation was used

RD(k) = λRD(k − 1) + x(k)xT (k) (5.31)

The solution of equation (5.30) is given by

Δw(k) = λk+1SD(k)RD(−1)Δw(−1) + SD(k)
k∑

i=0

λk−ix(i)eo(i) (5.32)

By replacing RD(−1) by 1
δ I and taking the expected value of the resulting equation, it follows that

E[Δw(k)] =
λk+1

δ
E[SD(k)]Δw(−1) + E[SD(k)

k∑
i=0

λk−ix(i)eo(i)] (5.33)
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Since SD(k) is dependent on all past input signal vectors, becoming relatively invariant when the
number of iterations increase, the contribution of any individual x(i) can be considered negligible.
Also, due to the orthogonality principle, eo(i) can also be considered uncorrelated to all elements of
x(i). This means that the last vector in equation (5.33) cannot have large element values. On the
other hand, the first vector in equation (5.33) can have large element values only during the initial
convergence, since as k → ∞, λk+1 → 0 and SD(k) is expected to have a nonincreasing behavior,
i.e., RD(k) is assumed to remain positive definite as k → ∞ and the input signal power does not
become too small. The above discussion leads to the conclusion that the adaptive-filter coefficients
tend to the optimal values in wo almost independently from the eigenvalue spread of the input signal
correlation matrix.

If we consider the spectral decomposition of the matrix E[SD(k)] (see equation (2.65)), the depen-
dency on the eigenvalues of R can be easily accounted for in the simple case of λ = 1. Applying the
expected value operator to the relation of equation (5.19), we can infer that

E[SD(k)] ≈ R−1

(k + 1)
(5.34)

for large k. Now consider the slowest decaying mode of the spectral decomposition of E[SD(k)]
given by

SDmax =
qminqT

min

(k + 1)λmin
(5.35)

where λmin is the smallest eigenvalue of R and qmin is the corresponding eigenvector. Applying this
result to equation (5.33), with λ = 1, we can conclude that the value of the minimum eigenvalue
affects the convergence of the filter coefficients only in the first few iterations, because the term k+1
in the denominator reduces the values of the elements of SDmax .

Further interesting properties of the coefficients generated by the LS algorithm are:

The estimated coefficients are the best linear unbiased solution to the identification problem
[1], in the sense that no other unbiased solution generated by alternative approaches has lower
variance.

If the additive noise is normally distributed the LS solution reaches the Cramer-Rao lower
bound, resulting in a minimum-variance unbiased solution [1]. The Cramer-Rao lower bound
establishes a lower bound to the coefficient-error-vector covariance matrix for any unbiased
estimator of the optimal parameter vector wo.

5.3.5 Coefficient-Error-Vector Covariance Matrix

So far, we have shown that the estimation parameters in the vector w(k) converge on average to
their optimal value of the vector wo. However, it is essential to analyze the coefficient-error-vector
covariance matrix in order to determine how good is the obtained solution, in the sense that we are
measuring how far the parameters wander around the optimal solution.
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Using the same convergence assumption of the last section, it will be shown here that for λ = 1 the
coefficient-error-vector covariance matrix is given by

cov[Δw(k)] = E
[
(w(k)− wo)(w(k)− wo)T

]
= σ2

nE[SD(k)] (5.36)

Proof:

First note that by using equations (5.4) and (5.15), the following relations are verified

w(k)− wo = SD(k)pD(k)− SD(k)S−1
D (k)wo (5.37)

=
[
X(k)XT (k)

]−1
X(k)

[
d(k)− XT (k)wo

]
(5.38)

=
[
X(k)XT (k)

]−1
X(k)n(k) (5.39)

where n(k) = [n(k) λ1/2n(k − 1) λn(k − 2) . . . λk/2n(0)]T .

Applying the last equation to the covariance of the coefficient-error-vector it follows that

cov[Δw(k)] = E
{[

X(k)XT (k)
]−1

X(k)E[n(k)nT (k)]XT (k)
[
X(k)XT (k)

]−1
}

= E
{
σ2

nSD(k)X(k)ΛXT (k)SD(k)
}

where

Λ =

⎡
⎢⎢⎢⎢⎢⎣

1
λ 0

λ2

0
. . .

λk

⎤
⎥⎥⎥⎥⎥⎦

For λ = 1, Λ = I, it follows that

cov[Δw(k)] = E
[
σ2

nSD(k)X(k)XT (k)SD(k)
]

= E
[
σ2

nSD(k)RD(k)SD(k)
]

= σ2
nE [SD(k)]

�

Therefore, when λ = 1, the coefficient-error-vector covariance matrix tends to decrease its norm
as time progresses since SD(k) is also norm decreasing. The variance of the additional noise n(k)
influences directly the norm of the covariance matrix.
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5.3.6 Behavior of the Error Signal

It is important to understand how the error signal behaves in the RLS algorithm. When a measurement
noise is present in the adaptive-filtering process, the a priori error signal is given by

e(k) = d′(k)− wT (k − 1)x(k) + n(k) (5.40)

where d′(k) = wT
o x(k) is the desired signal without measurement noise.

Again if the input signal is considered known (conditional expectation), then

E[e(k)] = E[d′(k)]− E[wT (k − 1)]x(k) + E[n(k)]
= E[wT

o − wT
o ]x(k) + E[n(k)]

= E[n(k)] (5.41)

assuming that the adaptive-filter order is sufficient to model perfectly the desired signal.

From equation (5.41), it can be concluded that if the noise signal has zero mean then

E[e(k)] = 0

It is also important to assess the minimum mean value of the squared error that is reachable using
an RLS algorithm. The minimum mean-square error (MSE) in the presence of external uncorrelated
noise is given by

ξmin = E[e2(k)] = E[e2
o(k)] = E[n2(k)] = σ2

n (5.42)

where it is assumed that the adaptive-filter multiplier coefficients were frozen at their optimum values
and that the number of coefficients of the adaptive filter is sufficient to model the desired signal. In
the conditions described the a priori error corresponds to the minimum output error as defined in
equation (5.29). It should be noted, however, that if the additive noise is correlated with the input and
the desired signals, a more complicated expression for the MSE results, accounting for the referred
correlation.

When employing the a posteriori error the value of minimum MSE, denoted by ξmin,p, differs from
the corresponding value related to the a priori error. First note that by using equation (5.39), the
following relation is verified

Δw(k) = SD(k)X(k)n(k) (5.43)

When a measurement noise is present in the adaptive-filtering process, the a posteriori error signal
is given by

ε(k) = d′(k)− wT (k)x(k) + n(k) = −ΔwT (k)x(k) + eo(k) (5.44)

The expression for the MSE related to the a posteriori error is then given by

ξ(k) = E[ε2(k)]
= E[e2

o(k)]− 2E[xT (k)Δw(k)eo(k)] + E[ΔwT (k)x(k)xT (k)Δw(k)] (5.45)
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By replacing the expression (5.43) in equation (5.45) above, the following relations follow

ξ(k)=E[e2
o(k)]− 2E[xT (k)SD(k)X(k)n(k)eo(k)] + E[ΔwT (k)x(k)xT (k)Δw(k)]

=σ2
n − 2E[xT (k)SD(k)X(k)]

⎡
⎢⎢⎢⎣

σ2
n

0
...
0

⎤
⎥⎥⎥⎦+ E[ΔwT (k)x(k)xT (k)Δw(k)]

= σ2
n − 2E[xT (k)SD(k)x(k)]σ2

n + E[ΔwT (k)x(k)xT (k)Δw(k)]
= ξmin,p + E[ΔwT (k)x(k)xT (k)Δw(k)] (5.46)

where in the second equality it was considered that the additional noise is uncorrelated with the input
signal and that eo(k) = n(k). This equality occurs when the adaptive filter has sufficient order to
identify the unknown system.

Note that ξmin,p related to the a posteriori error in equation (5.46) is not the same as minimum MSE of
the a priori error, denoted in this book by ξmin. The last term, that is E[ΔwT (k)x(k)xT (k)Δw(k)],
in equation (5.46) determines the excess MSE of the RLS algorithm.

It is possible to verify that the following expressions for ξmin,p are accurate approximations

ξmin,p = {1− 2E[xT (k)SD(k)x(k)]}σ2
n

=
{
1− 2tr

[
E
(
SD(k)x(k)xT (k)

)]}
σ2

n

=
{

1− 2tr
[

1− λ

1− λk+1 I
]}

σ2
n

=
{

1− 2(N + 1)
[

1− λ

1− λk+1

]}
σ2

n

=
{

1− 2(N + 1)
[

1
1 + λ + λ2 + · · ·+ λk

]}
σ2

n (5.47)

In the above expression, it is considered that SD(k) is slowly varying as compared to x(k) when
λ → 1, such that

E[SD(k)x(k)xT (k)] ≈ E [SD(k)]E
[
x(k)xT (k)

]
and that by using equation (5.55)

E
[
SD(k)x(k)xT (k)

] ≈ 1− λ

1− λk+1 I

Equation (5.47) applies to the case where λ < 1, and as can be observed from the term multiplying
N + 1 there is a transient for small k which dies away when the number of iterations increases2. If
we fit the decrease in the term multiplying N + 1 at each iteration to an exponential envelop, the

2The expression for ξmin,p can be negative, however, ξ(k) is always non negative.
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time constant will be 1
λk+1 . Unlike the LMS algorithm, this time constant is time varying and is not

related to the eigenvalue spread of the input signal correlation matrix.

Example 5.2

Repeat the equalization problem of example 3.1 using the RLS algorithm.

(a) Using λ = 0.99, run the algorithm and save matrix SD(k) at iteration 500 and compare with the
inverse of the input signal correlation matrix.

(b) Plot the convergence path for the RLS algorithm on the MSE surface.

Solution:

(a) The inverse of matrix R, as computed in the example 3.1, is given by

R−1 = 0.45106
[

1.6873 0.7937
0.7937 1.6873

]
=
[

0.7611 0.3580
0.3580 0.7611

]

The initialization matrix SD(−1) is a diagonal matrix with the diagonal elements equal to 0.1. The
matrix SD(k) at the 500th iteration, obtained by averaging the results of 30 experiments, is

SD(500) =
[

0.0078 0.0037
0.0037 0.0078

]

Also, the obtained values of the deterministic cross-correlation vector is

pD(500) =
[

95.05
46.21

]

Now, we divide each element of the matrix R−1 by

1− λk+1

1− λ
= 99.34

since in a stationary environment E[SD(k)] = 1−λ
1−λk+1 R−1, see equation (5.55) for a formal proof.

The resulting matrix is

1
99.34

R−1 =
[

0.0077 0.0036
0.0036 0.0077

]

As can be noted the values of the elements of the above matrix are close to the average values of the
corresponding elements of matrix SD(500).
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Similarly, if we multiply the cross-correlation vector p by 99.34, the result is

99.34p =
[

94.61
47.31

]

The values of the elements of this vector are also close to the corresponding elements of pD(500).

(b) The convergence path of the RLS algorithm on the MSE surface is depicted in Fig. 5.3. The
reader should notice that the RLS algorithm approaches the minimum using large steps when the
coefficients of the adaptive filter are far away from the optimum solution.

�
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Figure 5.3 Convergence path of the RLS adaptive filter.

5.3.7 Excess Mean-Square Error and Misadjustment

In a practical implementation of the recursive least-squares algorithm, the best estimation for the
unknown parameter vector is given by w(k), whose expected value is wo. However, there is always
an excess MSE at the output caused by the error in the coefficient estimation, namely Δw(k) =



2115.3 Properties of the Least-Squares Solution

w(k)− wo. The mean-square error is (see equation (5.46))

ξ(k) = ξmin,p + E{[w(k)− wo]T x(k)xT (k)[w(k)− wo]}
= ξmin,p + E[ΔwT (k)x(k)xT (k)Δw(k)] (5.48)

Now considering that Δwj(k), for j = 0, 1, . . . , N , are random variables with zero mean and
independent of x(k), the MSE can be calculated as follows

ξ(k) = ξmin,p + E[ΔwT (k)RΔw(k)]
= ξmin,p + E{tr[RΔw(k)ΔwT (k)]}
= ξmin,p + tr{RE[Δw(k)ΔwT (k)]}
= ξmin,p + tr{Rcov[Δw(k)]} (5.49)

On a number of occasions it is interesting to consider the analysis for λ = 1 separated from that for
λ < 1.

Excess MSE for λ = 1

By applying in equation (5.49) the results of equations (5.36) and (5.19), and considering that

ξmin,p =
(

1− 2
N + 1
k + 1

)
ξmin =

(
1− 2

N + 1
k + 1

)
σ2

n

for λ = 1 (see equations (5.42) and (5.47)), we can infer that

ξ(k) =
[
1− 2

N + 1
k + 1

]
σ2

n + tr {RE[SD(k)]}σ2
n

=
[
1− 2

N + 1
k + 1

+ tr(R
R−1

k + 1
)
]

σ2
n for k →∞

=
(

1− 2
N + 1
k + 1

+
N + 1
k + 1

)
σ2

n for k →∞

=
(

1− N + 1
k + 1

)
σ2

n for k →∞

As can be noted the minimum MSE can be reached only after the algorithm has operated on a number
of samples larger than the filter order.

Excess MSE for λ < 1

Again assuming that the mean-square error surface is quadratic as considered in equation (5.48), the
expected excess in the MSE is then defined by

Δξ(k) = E[ΔwT (k)RΔw(k)] (5.50)
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The objective now is to calculate and analyze the excess MSE when λ < 1. From equation (5.30)
one can show that

Δw(k) = λSD(k)RD(k − 1)Δw(k − 1) + SD(k)x(k)eo(k) (5.51)

By applying equation (5.51) to (5.50), it follows that

E[ΔwT (k)RΔw(k)] = ρ1 + ρ2 + ρ3 + ρ4 (5.52)

where

ρ1 = λ2E[ΔwT (k − 1)RD(k − 1)SD(k)RSD(k)RD(k − 1)Δw(k − 1)]
ρ2 = λE[ΔwT (k − 1)RD(k − 1)SD(k)RSD(k)x(k)eo(k)]
ρ3 = λE[xT (k)SD(k)RSD(k)RD(k − 1)Δw(k − 1)eo(k)]
ρ4 = E[xT (k)SD(k)RSD(k)x(k)e2

o(k)]

Now each term in equation (5.52) will be evaluated separately.

1- Evaluation of ρ1

First note that as k →∞, it can be assumed that RD(k) ≈ RD(k − 1), then

ρ1 ≈ λ2E[ΔwT (k − 1)RΔw(k − 1)] (5.53)

2- Evaluation of ρ2

Since each element of RD(k) is given by

rd,ij(k) =
k∑

l=0

λk−lx(l − i)x(l − j) (5.54)

for 0 ≤ i, j ≤ N . Therefore,

E[rd,ij(k)] =
k∑

l=0

λk−lE[x(l − i)x(l − j)]

If x(k) is stationary, r(i− j) = E[x(l − i)x(l − j)] is independent of the value l, then

E[rd,ij(k)] = r(i− j)
1− λk+1

1− λ
≈ r(i− j)

1− λ
(5.55)

Equation (5.55) allows the conclusion that

E[RD(k)] ≈ 1
1− λ

E[x(k)xT (k)] =
1

1− λ
R (5.56)
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In each step, it can be considered that

RD(k) =
1

1− λ
R + ΔR(k) (5.57)

where ΔR(k) is a symmetric error matrix with zero-mean stochastic entries that are independent of
the input signal. From equations (5.56) and (5.57), it can be concluded that

SD(k)R ≈ (1− λ)
[
I− (1− λ)R−1ΔR(k)

]
(5.58)

where in the last relation SD(k)ΔR(k) was considered approximately equal to

(1− λ)R−1ΔR(k)

by using equation (5.56) and disregarding second-order errors.

In the long run, it is known that E[SD(k)R] = (1−λ)I, that means the second term inside the square
bracket in equation (5.58) is a measure of the perturbation caused by ΔR(k) in the product SD(k)R.
Denoting the perturbation by ΔI(k), that is

ΔI(k) = (1− λ)R−1ΔR(k) (5.59)

it can be concluded that

ρ2 ≈ λ(1− λ)E
{
ΔwT (k − 1)[I−ΔIT (k)]x(k)eo(k)

}
≈ λ(1− λ)E[ΔwT (k − 1)]E[x(k)eo(k)] = 0 (5.60)

where it was considered that ΔwT (k−1) is independent of x(k) and eo(k), ΔI(k) was also considered
an independent error matrix with zero mean, and finally we used the fact that x(k) and eo(k) are
orthogonal.

3- Following a similar approach it can be shown that

ρ3 ≈ λ(1− λ)E
{

xT (k)[I−ΔI(k)]Δw(k − 1)eo(k)
}

≈ λ(1− λ)E[xT (k)eo(k)]E[Δw(k − 1)] = 0 (5.61)

4- Evaluation of ρ4

ρ4 = E[xT (k)SD(k)RSD(k)RR−1x(k)e2
o(k)]

≈ (1− λ)2E
{

xT (k)[I−ΔI(k)]2R−1x(k)
}

ξmin (5.62)

where equations (5.58) and (5.29) were used and eo(k) was considered independent of x(k) and
ΔI(k). By using the property that

E
{

xT (k)[I−ΔI(k)]2R−1x(k)
}

= trE
{
[I−ΔI(k)]2R−1x(k)xT (k)

}
and recalling that ΔI(k) has zero mean and is independent of x(k), then equation (5.62) is simplified
to

ρ4 = (1− λ)2tr{I + E[ΔI2(k)]}ξmin (5.63)
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where tr[·] means trace of [·], and we utilized the fact that E{R−1x(k)xT (k)} = I.

By using equations (5.53), (5.60), and (5.63), it follows that

E[ΔwT (k)RΔw(k)] = λ2E[ΔwT (k − 1)RΔw(k − 1)] + (1− λ)2tr{I + E[ΔI2(k)]}ξmin

(5.64)

Asymptotically, the solution of the above equation is

ξexc =
1− λ

1 + λ
tr{I + E[ΔI2(k)]}ξmin (5.65)

Note that the term given by E[ΔI2(k)] is not easy to estimate and is dependent on fourth-order
statistics of the input signal. However, in specific situations, it is possible to compute an approximate
estimate for this matrix. In steady state, it can be considered for white noise input signal that only
the diagonal elements of R and ΔR are important to the generation of excess MSE. Even when the
input signal is not white, this diagonal dominance can be considered a reasonable approximation in
most of the cases. From the definition of ΔI(k) in equation (5.59), it follows that

E[ΔI2ii(k)] = (1− λ)2
E[Δr2

ii(k)]
[σ2

x]2
(5.66)

where σ2
x is variance of x(k). By calculating ΔR(k)−λΔR(k− 1) using equation (5.57), we show

that
Δrii(k) = λΔrii(k − 1) + x(k − i)x(k − i)− rii (5.67)

Squaring the above equation, applying the expectation operation, and using the independence between
Δrii(k) and x(k), it follows that

E[Δr2
ii(k)] =λ2E[Δr2

ii(k − 1)] + E
{
[x(k − i)x(k − i)− rii]2

}
(5.68)

Therefore, asymptotically

E[Δr2
ii(k)] =

1
1− λ2 σ2

x2(k−i) =
1

1− λ2 σ2
x2 (5.69)

By substituting equation (5.69) in (5.66), it becomes

E[ΔI2ii(k)] =
1− λ

1 + λ

σ2
x2

(σ2
x)2

=
1− λ

1 + λ
K (5.70)

where K =
σ2

x2

(σ2
x)2 is dependent on input signal statistics. For Gaussian signals, K = 2 [7].

Returning to our main objective, the excess MSE can then be described as

ξexc = (N + 1)
1− λ

1 + λ

(
1 +

1− λ

1 + λ
K
)

ξmin (5.71)
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If λ is approximately one and K is not very large then

ξexc = (N + 1)
1− λ

1 + λ
ξmin (5.72)

this expression can be reached through a simpler analysis [6]. However, the more complete derivation
shown here can give more insight to the interpretation of the results obtained by using the RLS
algorithm, mainly when λ is not very close to one.

The misadjustment formula can be deduced from equation (5.71)

M =
ξexc

ξmin
= (N + 1)

1− λ

1 + λ

(
1 +

1− λ

1 + λ
K
)

(5.73)

As can be noted, the decrease of λ from one brings a fourth-order statistics term into the picture by
increasing the misadjustment. Then, the fast adaptation of the RLS algorithm, that corresponds to
smaller λ, brings a noisier steady-state response. Therefore, when working in a stationary environ-
ment the best choice for λ would be one, if the excess MSE in the steady state is considered high for
other values of λ. However, other problems such as instability due to quantization noise are prone
to occur when λ = 1.

5.4 BEHAVIOR IN NONSTATIONARY ENVIRONMENTS

In cases where the input signal and/or the desired signal are nonstationary, the optimal values of
the coefficients are time variant and described by wo(k). That means the autocorrelation matrix
R(k) and/or the cross-correlation vector p(k) are time variant. For example, typically in a system
identification application the autocorrelation matrix R(k) is time invariant while the cross-correlation
matrix p(k) is time variant, because in this case the designer can choose the input signal. On the
other hand, in equalization, prediction, and signal enhancement applications both the input and the
desired signal are nonstationary leading to time-varying matrices R(k) and p(k).

The objective in the present section is to analyze how close the RLS algorithm is able to track the
time-varying solution wo(k). Also, it is of interest to learn how the tracking error in w(k) affects
the output MSE [7]. Here, the effects of the measurement noise are not considered, since only the
nonstationary effects are desired. Also, both effects on the MSE can be added since, in general, they
are independent.

Recall from equations (5.8) and (5.9) that

w(k) = w(k − 1) + SD(k)x(k)[d(k)− xT (k)w(k − 1)] (5.74)

and
d(k) = xT (k)wo(k − 1) + e′o(k) (5.75)

The error signal e′o(k) is the minimum error at iteration k being generated by the nonstationarity of
the environment. One can replace equation (5.75) in (5.74) in order to obtain the following relation

w(k) = w(k − 1) + SD(k)x(k)xT (k)[wo(k − 1)− w(k − 1)] + SD(k)x(k)e′o(k) (5.76)
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By taking the expected value of equation (5.76), considering that x(k) and e′o(k) are approximately
orthogonal, and that w(k − 1) is independent of x(k), then

E[w(k)] = E[w(k − 1)] + E[SD(k)x(k)xT (k)] {wo(k − 1)− E[w(k − 1)]} (5.77)

It is now needed to compute E[SD(k)x(k)xT (k)] in the case of nonstationary input signal. From
equations (5.54) and (5.56), one can show that

RD(k) =
k∑

l=0

λk−lR(l) + ΔR(k) (5.78)

since E[RD(k)] =
k∑

l=0

λk−lR(l). The matrix ΔR(k) is again considered a symmetric error matrix

with zero-mean stochastic entries that are independent of the input signal.

If the environment is considered to be varying at a slower pace than the memory of the adaptive RLS
algorithm, then

RD(k) ≈ 1
1− λ

R(k) + ΔR(k) (5.79)

Considering that (1 − λ)||R−1(k)ΔR(k)|| < 1 and using the same procedure to deduce equation
(5.58), we obtain

SD(k) ≈ (1− λ)R−1(k)− (1− λ)2R−1(k)ΔR(k)R−1(k) (5.80)

it then follows that

E[w(k)] = E[w(k − 1)] +
{
(1− λ)E[R−1(k)x(k)xT (k)]

− (1− λ)2E[R−1(k)ΔR(k)R−1(k)x(k)xT (k)]
} {wo(k − 1)− E[w(k − 1)]}

≈ E[w(k − 1)] + (1− λ) {wo(k − 1)− E[w(k − 1)]} (5.81)

where it was considered that ΔR(k) is independent of x(k) and has zero expected value.

Now defining the lag-error vector in the coefficients as

lw(k) = E[w(k)]− wo(k) (5.82)

From equation (5.81), it can be concluded that

lw(k) = λlw(k − 1)− wo(k) + wo(k − 1) (5.83)

Equation (5.83) is equivalent to say that the lag is generated by applying the optimal instantaneous
value wo(k) through a first-order discrete-time filter as follows:

Li(z) = − z − 1
z − λ

Woi(z) (5.84)



2175.4 Behavior in Nonstationary Environments

The discrete-time filter transient response converges with a time constant given by

τ =
1

1− λ
(5.85)

The time constant is of course the same for each individual coefficient. Note that the tracking ability of
the coefficients in the RLS algorithm is independent of the eigenvalues of the input signal correlation
matrix.

The lag in the coefficients leads to an excess MSE. In order to calculate the MSE suppose that the
optimal coefficient values are first-order Markov processes described by

wo(k) = λwwo(k − 1) + nw(k) (5.86)

where nw(k) is a vector whose elements are zero-mean white noise processes with variance σ2
w, and

λw < 1. Note that λ < λw < 1, since the optimal coefficients values must vary slower than the
filter tracking speed, that means 1

1−λ < 1
1−λw .

The excess MSE due to lag is then given by (see the derivations around equation (3.41))

ξlag = E[lTw(k)Rlw(k)]
= E

{
tr[Rlw(k)lTw(k)]

}
= tr

{
RE[lw(k)lTw(k)]

}
= tr

{
ΛE[l′w(k)l′Tw (k)]

}
=

N∑
i=0

λiE[l
′2
i (k)] (5.87)

For λw not close to one, it is a bit more complicated to deduce the excess MSE due to lag than for
λw ≈ 1. However, the effort is worth it because the resulting expression is more accurate. From
equation (5.84), we can see that the lag-error vector elements are generated by applying a first-order
discrete-time system to the elements of the unknown system coefficient vector. On the other hand,
the coefficients of the unknown system are generated by applying each element of the noise vector
nw(k) to a first-order all-pole filter, with the pole placed at λw. For the unknown coefficient vector
with the above model, the lag-error vector elements can be generated by applying the elements of
the noise vector nw(k) to a discrete-time filter with transfer function

H(z) =
−(z − 1)z

(z − λ)(z − λw)
(5.88)

This transfer function consists of a cascade of the lag filter with the all-pole filter representing the
first-order Markov process. The solution for the variance of the lag terms li can be computed through
the inverse Z-transform as follows:

E[l
′2
i (k)] =

1
2πj

∮
H(z)H(z−1)σ2

wz−1 dz (5.89)

The above integral can be solved using the residue theorem as previously shown in the LMS algorithm
case.
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Using the solution for the variance of the lag terms of equation (5.89) for values of λw < 1, and
substituting the result in the last term of equation (5.87) it can be shown that

ξlag ≈ tr[R]σ2
w

λw(1 + λ2)− λ(1 + λ2
w)

(
1− λ

1 + λ
− 1− λw

1 + λw

)

=
(N + 1)σ2

wσ2
x

λw(1 + λ2)− λ(1 + λ2
w)

(
1− λ

1 + λ
− 1− λw

1 + λw

)
(5.90)

where it was used the fact that tr[R] =
∑N

i=0 λi = (N + 1)σ2
x, for a tap delay line. It should be

noticed that assumptions such as the correlation matrix R being diagonal and the input signal being
white noise were not required in this derivation.

If λ = 1 and λw ≈ 1, the MSE due to lag tends to infinity indicating that the RLS algorithm in this
case cannot track any change in the environment. On the other hand, for λ < 1 the algorithm can
track variations in the environment, leading to an excess MSE that depends on the variance of the
optimal coefficient disturbance and on the input signal variance.

For λw = 1 and λ ≈ 1, it is possible to rewrite equation (5.90) as

ξlag ≈ (N + 1)
σ2

w
2(1− λ)

σ2
x (5.91)

The total excess MSE accounting for the lag and finite memory is given by

ξtotal ≈ (N + 1)
[
1− λ

1 + λ
ξmin +

σ2
wσ2

x

2(1− λ)

]
(5.92)

By differentiating the above equation with respect to λ and setting the result to zero, an optimum
value for λ can be found that yields minimum excess MSE.

λopt =
1− σwσx

2σn

1 + σwσx

2σn

(5.93)

In the above equation we used σn =
√

ξmin. Note that the optimal value of λ does not depend on the
adaptive-filter order N , and can be used when it falls in an acceptable range of values for λ. Also,
this value is optimum only when quantization effects are not important and the first-order Markov
model (with λw ≈ 1) is a good approximation for the nonstationarity of the desired signal.

When implemented with finite-precision arithmetic, the conventional RLS algorithm behavior can
differ significantly from what is expected under infinite precision. A series of inconvenient effects can
show up in the practical implementation of the conventional RLS algorithm, such as divergence and
freezing in the updating of the adaptive-filter coefficients. Appendix C, presents a detailed analysis
of the finite-wordlength effects in the RLS algorithm.
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5.5 COMPLEX RLS ALGORITHM

In the complex data case the RLS objective function is given by

ξd(k) =
k∑

i=0

λk−i|ε(i)|2 =
k∑

i=0

λk−i|d(i)− wH(i)x(k)|2

=
k∑

i=0

λk−i
[
d(i)− wH(i)x(k)

] [
d∗(i)− wT (i)x∗(k)

]
(5.94)

Differentiating ξd(k) with respect to the complex coefficient w∗(k) leads to3

∂ξd(k)
∂w∗(k)

= −
k∑

i=0

λk−ix(i)[d∗(i)− wT (i)x∗(k)] (5.95)

The optimal vector w(k) that minimizes the least-squares error, is computed by equating the above
equation to zero that is

−
k∑

i=0

λk−ix(i)xH(i)w(k) +
k∑

i=0

λk−ix(i)d∗(i) =

⎡
⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎦

leading to the following expression

w(k) =

[
k∑

i=0

λk−ix(i)xH(i)

]−1 k∑
i=0

λk−ix(i)d∗(i)

= R−1
D (k)pD(k) (5.96)

The matrix inversion lemma to the case of complex data is given by

SD(k) = R−1
D (k) =

1
λ

[
SD(k − 1)− SD(k − 1)x(k)xH(k)SD(k − 1)

λ + xH(k)SD(k − 1)x(k)

]
(5.97)

The complete conventional RLS algorithm is described in Algorithm 5.3.

An alternative complex RLS algorithm has an updating equation described by

w(k) = w(k − 1) + e∗(k)SD(k)x(k) (5.98)

where
e(k) = d(k)− wH(k − 1)x(k) (5.99)

With equation (5.98), it is straightforward to generate an alternative conventional RLS algorithm as
shown in Algorithm 5.4.

3Again the reader should recall that when computing the gradient with respect to w∗(k), w(k) is treated as a constant.
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Algorithm 5.3

Conventional Complex RLS Algorithm

Initialization
SD(−1) = δI

where δ can be the inverse of the input signal power estimate
pD(−1) = x(−1) = [0 0 . . . 0]T

Do for k ≥ 0 :
SD(k) = 1

λ [SD(k − 1)− SD(k−1)x(k)xH(k)SD(k−1)
λ+xH(k)SD(k−1)x(k)

]
pD(k) = λpD(k − 1) + d∗(k)x(k)
w(k) = SD(k)pD(k)

If necessary compute
y(k) = wH(k)x(k)
ε(k) = d(k)− y(k)

Algorithm 5.4

Alternative Complex RLS Algorithm

Initialization
SD(−1) = δI

where δ can be the inverse of an estimate of the input signal power
x(−1) = w(−1) = [0 0 . . . 0]T

Do for k ≥ 0
e(k) = d(k)− wH(k − 1)x(k)
ψ(k) = SD(k − 1)x(k)

SD(k) = 1
λ [SD(k − 1)− ψ(k)ψH

(k)

λ+ψH
(k)x(k)

]

w(k) = w(k − 1) + e∗(k)SD(k)x(k)
If necessary compute

y(k) = wH(k)x(k)
ε(k) = d(k)− y(k)
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5.6 SIMULATION EXAMPLES

In this section, some adaptive-filtering problems described in the last two chapters are solved using
the conventional RLS algorithm presented in this chapter.

Example 5.3: System Identification Simulations

The conventional RLS algorithm is employed in the identification of the system described in the
subsection 3.6.2. The forgetting factor is chosen as λ = 0.99.

Solution:

In the first test, we address the sensitivity of the RLS algorithm to the eigenvalue spread of the input
signal correlation matrix. The measured simulation results are obtained by ensemble averaging 200
independent runs. The learning curves of the mean-squared a priori error are depicted in Fig. 5.4, for
different values of the eigenvalue spread. Also, the measured misadjustment in each example is given
in Table 5.1. From these results, we conclude that the RLS algorithm is insensitive to the eigenvalue
spread. It is worth mentioning at this point that the convergence speed of the RLS algorithm is
affected by the choice of λ, since a smaller value of λ leads to faster convergence while increasing
the misadjustment in stationary environment. Table 5.1 shows the misadjustment predicted by theory,
calculated using the relation repeated below. As can be seen from this table the analytical results
agree with those obtained through simulations.

M = (N + 1)
1− λ

1 + λ
(1 +

1− λ

1 + λ
K)

Table 5.1 Evaluation of the RLS Algorithm

Misadjustment
λmax
λmin

Experiment Theory

1 0.04211 0.04020

20 0.04211 0.04020

80 0.04547 0.04020

The conventional RLS algorithm is implemented with finite-precision arithmetic, using fixed-point
representation with 16, 12, and 10 bits, respectively. The results presented are measured before any
sign of instability is noticed. Table 5.2 summarizes the results of the finite-precision implementation
of the conventional RLS algorithm. Note that in most cases there is a close agreement between the
measurement results and those predicted by the equations given below. These equations correspond
to equations (C.37) and (C.48) derived in Appendix C.

E[||Δw(k)Q||2]≈(1− λ)(N + 1)
2λ

σ2
n + σ2

e

σ2
x

+
(N + 1)σ2

w
2λ(1− λ)
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Figure 5.4 Learning curves for RLS algorithm for eigenvalue spreads: 1, 20, and 80; λ = 0.99.

ξ(k)Q ≈ ξmin + σ2
e +

(N + 1)σ2
wσ2

x

2λ(1− λ)

For the simulations with 12 and 10 bits, the discrepancy between the measured and theoretical
estimates of E[||Δw(k)Q||2] are caused by the freezing of some coefficients.

If the results presented here are compared with the results presented inTable 3.2 for the LMS, we notice
that both the LMS and the RLS algorithms performed well in the finite-precision implementation.
The reader should bear in mind that the conventional RLS algorithm requires an expensive strategy
to keep the deterministic correlation matrix positive definite, as discussed in Appendix C.

Table 5.2 Results of the Finite-Precision Implementation of the RLS Algorithm

ξ(k)Q E[||Δw(k)Q||2]
No. of bits Experiment Theory Experiment Theory

16 1.566 10−3 1.500 10−3 6.013 10−5 6.061 10−5

12 1.522 10−3 1.502 10−3 3.128 10−5 6.261 10−5

10 1.566 10−3 1.532 10−3 6.979 10−5 9.272 10−5

The simulations related to the experiment described for nonstationary environments are also per-
formed. From the simulations we measure the total excess MSE, and then compare the results to
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those obtained with the expression below.

ξexc ≈ (N + 1)
1− λ

1 + λ
(1 +

1− λ

1 + λ
K)ξmin +

(N + 1)σ2
wσ2

x

λw(1 + λ2)− λ(1 + λ2
w)

(
1− λ

1 + λ
− 1− λw

1 + λw
)

An attempt to use the optimal value of λ is made. The predicted optimal value, in this case, is too
small and as a consequence λ = 0.99 is used. The measured excess MSE is 0.0254, whereas the
theoretical value predicted by the above equation is 0.0418. Note that the theoretical result is not as
accurate as all the previous cases discussed so far, due to a number of approximations used in the
analysis. However, the above equation provides a good indication of what is expected in the practical
implementation. By choosing a smaller value for λ a better tracking performance is obtained, a
situation where the above equation is not as accurate.

�

Example 5.4: Signal Enhancement Simulations

We solved the same signal enhancement problem described in the subsection 4.7.1 with the conven-
tional RLS and LMS algorithms.

Solution:

For the LMS algorithm, the convergence factor is chosen μmax/5. The resulting value for μ in the
LMS case is 0.001, whereas λ = 1.0 is used for the RLS algorithm. The learning curves for the
algorithms are shown in Fig. 5.5, where we can verify the faster convergence of the RLS algorithm.
By plotting the output errors after convergence, we noted the large variance of the MSE for both
algorithms. This result is due to the small signal to noise ratio, in this case. Fig. 5.6 depicts the
output error and its DFT with 128 points for the RLS algorithm. In both cases, we can clearly detect
the presence of the sinusoid.

�

5.7 CONCLUDING REMARKS

In this chapter, we introduced the conventional RLS algorithm and discussed various aspects related
to its performance behavior. Much of the results obtained herein through mathematical analysis are
valid for the whole class of RLS algorithms to be presented in the following chapters, except for the
finite-precision analysis since that depends on the form the internal calculations of each algorithm
are performed. The analysis presented here is far from being complete. However, the main aspects of
the conventional RLS have been addressed, such as: convergence behavior and tracking capabilities.
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The interested reader should consult [9]-[11] for some further results. Appendix C complements this
chapter by addressing the finite-precision analysis of the conventional RLS algorithm.

From the analysis presented, one can conclude that the computational complexity and the stability
in finite-precision implementations are two aspects to be concerned. When the elements of the input
signal vector consist of delayed versions of the same signal, it is possible to derive a number of
fast RLS algorithms whose computational complexity is of order N per output sample. Several
different classes of these algorithms are presented in the following chapters. In all cases, their
stability conditions in finite-precision implementation are briefly discussed.

For the general case where the elements of the input signal vector have different origins the QR-RLS
algorithm is a good alternative to the conventional RLS algorithm. The stability of the QR-RLS
algorithm can be easily guaranteed.

The conventional RLS algorithm is fully tested in a number of simulation results included in this
chapter. These examples were meant to verify the theoretical results discussed in the present chapter
and to compare the RLS algorithm with the LMS algorithm.

The LMS algorithm is usually referred to as stochastic gradient algorithm originated from the stochas-
tic formulation of the Wiener filter which in turn deals with stationary noises and signals. The RLS
algorithm is derived from a deterministic formulation meant to achieve weighted least-squares error
minimization in a sequential recursive format. A widely known generalization of the Wiener filter is
the Kalman filter which deals with nonstationary noises and signals utilizing a stochastic formula-
tion. However, it is possible to show that the discrete-time version of the Kalman filtering algorithm
can be considered to be a generalization of the RLS algorithm. In Appendix D we present a brief
description of Kalman filters as well as its relationship with the RLS algorithm.
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5.9 PROBLEMS

1. The RLS algorithm is used to predict the signal x(k) = cos πk
3 using a second-order FIR filter

with the first tap fixed at 1. Given λ = 0.98, calculate the output signal y(k) and the tap
coefficients for the first 10 iterations. Note that we aim the minimization of E[y2(k)].

Start with wT (−1) = [1 0 0] and δ = 100.

2. Show that the solution in equation (5.4) is a minimum point.
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3. Show that SD(k) approaches a null matrix for large k, when λ = 1.

4. Suppose that the measurement noise n(k) is a random signal with zero-mean and the probability
density with normal distribution. In a sufficient-order identification of an FIR system with
optimal coefficients given by wo, show that the least-squares solution with λ = 1 is also
normally distributed with mean wo and covariance E[SD(k)σ2

n].

5. Prove that equation (5.42) is valid. What is the result when n(k) has zero mean and is correlated
to the input signal x(k)?

Hint: You can use the relation E[e2(k)] = E[e(k)]2 + σ2[e(k)], where σ2[·] means variance of
[·].

6. Consider that the additive noise n(k) is uncorrelated with the input and the desired signals and
is also a nonwhite noise with autocorrelation matrix Rn. Determine the transfer function of a
prewhitening filter that applied to d′(k) + n(k) and x(k) generates the optimum least-squares
solution wo = R−1p for k →∞.

7. Show that if the additive noise is uncorrelated with d′(k) and x(k), and nonwhite, the least-
squares algorithm will converge asymptotically to the optimal solution.

8. In problem 4, when n(k) is correlated to x(k), is wo still the optimal solution? If not, what is
the optimal solution?

9. Show that in the RLS algorithm the following relation is true

ξd(k) = λξd(k − 1) + ε(k)e(k)

where e(k) is the a priori error as defined in equation (5.8).

10. Prove the validity of the approximation in equation (5.80).

11. Demonstrate that the updating formula for the complex RLS algorithm is given by equation
(5.98).

12. Show that for an input signal with diagonal dominant correlation matrix R the following ap-
proximation related to equations (C.28) and (C.32) is valid.

E{NSD
(k)x(k)xT (k)cov[Δw(k − 1)Q]x(k)xT (k)NSD

(k)} ≈ σ2
SD

σ4
xtr {cov[Δw(k − 1)Q]} I

13. Derive the equations (C.35), (C.36), and (C.37).

14. The conventional RLS algorithm is applied to identify a 7th-order time-varying unknown system
whose coefficients are first-order Markov processes with λw = 0.999 and σ2

w = 0.033. The
initial time-varying system multiplier coefficients are

wT
o = [0.03490 − 0.01100 − 0.06864 0.22391 0.55686 0.35798 − 0.02390 − 0.07594]

The input signal is Gaussian white noise with variance σ2
x = 1 and the measurement noise is

also Gaussian white noise independent of the input signal and of the elements of nw(k), with
variance σ2

n = 0.01.
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(a) For λ = 0.97, compute the excess MSE.

(b) Repeat (a) for λ = λopt.

(c) Simulate the experiment described, measure the excess MSE, and compare to the calculated
results.

15. Reduce the value of λw to 0.97 in problem 14, simulate, and comment on the results.

16. Suppose a 15th-order FIR digital filter with multiplier coefficients given below is identified
through an adaptive FIR filter of the same order using the conventional RLS algorithm. Consider
that fixed-point arithmetic is used.

Additional noise : white noise with variance σ2
n = 0.0015

Coefficient wordlength: bc = 16 bits
Signal wordlength: bd = 16 bits
Input signal: Gaussian white noise with variance σ2

x = 0.7
λ = λopt

wT
o = [0.0219360 0.0015786 − 0.0602449 − 0.0118907 0.1375379

0.0574545 − 0.3216703 − 0.5287203 − 0.2957797 0.0002043 0.290670
− 0.0353349 − 0.0068210 0.0026067 0.0010333 − 0.0143593]

(a) Compute the expected value for ||Δw(k)Q||2 and ξ(k)Q for the described case.

(b) Simulate the identification example described and compare the simulated results with those
obtained through the closed form formulas.

(c) Plot the learning curves for the finite- and infinite-precision implementations. Also, plot
E[||Δw(k)||2] versus k in both cases.

17. Repeat the above problem for the following cases

(a) σ2
n = 0.01, bc = 9 bits, bd = 9 bits, σ2

x = 0.7, λ = λopt.

(b) σ2
n = 0.1, bc = 10 bits, bd = 10 bits, σ2

x = 0.8, λ = λopt.

(c) σ2
n = 0.05, bc = 8 bits, bd = 16 bits, σ2

x = 0.8, λ = λopt.

18. In problem 17, compute (do not simulate) E[||Δw(k)Q||2], ξ(k)Q, and the probable number of
iterations before the algorithm stop updating for λ = 1, λ = 0.98, λ = 0.96, and λ = λopt.

19. Repeat problem 16 for the case where the input signal is a first-order Markov process with
λx = 0.95.

20. A digital channel model can be represented by the following impulse response:

[−0.001 − 0.002 0.002 0.2 0.6 0.76 0.9 0.78 0.67 0.58
0.45 0.3 0.2 0.12 0.06 0 − 0.2 − 1 − 2 − 1 0 0.1]

The channel is corrupted by Gaussian noise with power spectrum given by

|S(ejω)|2 = κ′|ω|3/2

where κ′ = 10−1.5. The training signal consists of independent binary samples (-1,1).

Design an FIR equalizer for this problem and use the RLS algorithm. Use a filter of order 50
and plot the learning curve.



230 Chapter 5 Conventional RLS Adaptive Filter

21. For the previous problem, using the maximum of 51 adaptive-filter coefficients, implement a
DFE equalizer and compare the results with those obtained with the FIR equalizer. Again use
the RLS algorithm.

22. Use the complex RLS algorithm to equalize a channel with the transfer function given below.
The input signal is a four QAM signal representing a randomly generated bit stream with the

signal to noise ratio σ2
x̃

σ2
n

= 20 at the receiver end, that is, x̃(k) is the received signal without
taking into consideration the additional channel noise. The adaptive filter has 10 coefficients.

H(z) = (0.34− 0.27j) + (0.87 + 0.43j)z−1 + (0.34− 0.21j)z−2

(a) Use an appropriate value for λ in the range 0.95− 0.99, run the algorithm and comment on
the convergence behavior.
(b) Plot the real versus imaginary parts of the received signal before and after equalization.
(c) Increase the number of coefficients to 20 and repeat the experiment in (b).

23. In a system identification problem the input signal is generated from a four QAM of the form

x(k) = xre(k) + jxim(k)

where xre(k) and xim(k) assume values ±1 randomly generated. The unknown system is
described by

H(z) = 0.5 + 0.2j + (−0.1 + 0.4j)z−1 + (0.2− 0.4j)z−2 + (0.2 + 0.7j)z−3

The adaptive filter is also a third-order complex FIR filter, and the additional noise is zero-
mean Gaussian white noise with variance σ2

n = 0.3. Using the complex RLS algorithm run an
ensemble of 20 experiments, and plot the average learning curve.

24. Apply the Kalman filter to equalize the system

H(z) =
0.19z

z − 0.9

when the additional noise is a uniformly distributed white noise with variance σ2
n = 0.1, and

the input signal to the channel is a Gaussian noise with unit variance.
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DATA-SELECTIVE ADAPTIVE FILTERING

6.1 INTRODUCTION

The families of adaptive-filtering algorithms introduced so far present a tradeoff between speed of
convergence and the misadjustment after the transient. These characteristics are easily observable
in stationary environments. In general fast converging algorithms tend to be very dynamic, a feature
not necessarily advantageous after convergence in a stationary environment. In this chapter, an
alternative formulation to govern the updating of the adaptive-filter coefficients is introduced. The
basic assumption is that the additional noise is considered bounded, and the bound is either known
or can be estimated [1]. The key strategy of the formulation is to find a feasibility set1 such that
the bounded error specification is met for any member of this set. As a result, the set-membership
filtering (SMF) is aimed at estimating the feasibility set itself or a member of this set [2].

As a byproduct, the SMF allows the reduction of computational complexity in adaptive filtering,
since the filter coefficients are updated only when the output estimation error is higher than the
pre-determined upper bound [2]-[3].

Set-membership adaptive filters employ a deterministic objective function related to a bounded error
constraint on the filter output, such that the updates belong to a set of feasible solutions. The objective
function resembles the prescribed specifications of non-adaptive digital filter design. In the latter,
any filter whose amplitude ripples in some frequency bands are smaller than given bounds is an
acceptable solution. The main difference is that in the SMF the considered bound applies to the time-
domain output error. As compared with their competing algorithms such as the normalized LMS,
affine projection, and RLS algorithms [4]-[11], the SMF algorithms lead to reduced computational
complexity primarily due to data-selective updates.

Usually the set-membership algorithms perform updates more frequently during the early iterations
in stationary environments. As such, if these updates entail more computational complexity than
available, some alternative solution is required. A possible strategy to maintain some control on the

1This set is defined as the set of filter coefficients leading to output errors whose moduli fall below a prescribed upper
bound.

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_6,  
© Springer Science+Business Media, LLC 2008  



232 Chapter 6 Data-Selective Adaptive Filtering

amount of computational resources is to adopt partial update, where only a subset of the adaptive-
filter coefficients are updated at each iteration. The resulting algorithms are collectively called
partial-update (PU) algorithms [14]-[19].

This chapter presents several alternative set-membership algorithms which are closely related to
the normalized LMS algorithm [7], the binormalized data-reusing LMS algorithm (here denoted
as SM-BNLMS) [10], and the affine projection (SM-AP) [11] algorithm. In addition, this chapter
describes the set-membership affine projection algorithm with partial update in some detail. The
family of algorithms described in this chapter leads to more flexible management of the computational
resources, in comparison with the algorithms presented in the previous chapters.

6.2 SET-MEMBERSHIP FILTERING

The SMF concept is a framework applicable to adaptive-filtering problems that are linear in param-
eters. The adaptive-filter output is given by

y(k) = wT x(k) (6.1)

where x(k) = [x0(k) x1(k) . . . xN (k)]T is the input signal vector, and w = [w0 w1 . . . wN ]T is
the parameter vector.

Considering a desired signal sequence d(k) and a sequence of input vectors x(k), both for for
k = 0, 1, 2, . . . ,∞, the estimation error sequence e(k) is calculated as

e(k) = d(k)− wT x(k) (6.2)

also for k = 0, 1, 2, . . . ,∞. The vectors x(k) and w ∈ R
N+1, where R represents the set of

real numbers, whereas y(k) and e(k) represent the adaptive-filter output signal and output error,
respectively. The objective of the SMF is to design w such that the magnitude of estimation output
error is upper bounded by a prescribed quantity γ̄. If the value of γ̄ is properly chosen there are
several valid estimates for w. In summary, any filter parameter leading to a magnitude of the output
estimation error smaller than a deterministic threshold is an acceptable solution. From the bounded
error constraint results a set of filters rather than a single estimate. If γ̄ is chosen too small there
might be no solution.

Assuming that S̄ denotes the set of all possible input-desired data pairs (x, d) of interest, it is possible
to define Θ as the set of all possible vectors w leading to output errors whose magnitudes are bounded
by γ̄ whenever (x, d) ∈ S̄. The set Θ, called feasibility set, is given by

Θ =
⋂

(x,d)∈S̄
{w ∈ R

N+1 : |d− wT x| ≤ γ̄} (6.3)

Now let’s consider the practical case where only measured data are available. Given a set of data
pairs {x(i), d(i)}, for i = 0, 1, . . . , k, let’s define H(k) as the set containing all vectors w such that
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the associated output error at time instant k is upper bounded in magnitude by γ̄. That is,

H(k) = {w ∈ R
N+1 : |d(k)− wT x(k)| ≤ γ̄} (6.4)

The set H(k) is usually referred to as the constraint set. The boundaries of H(k) are hyperplanes.
For the two-dimensional case, where the coefficient vector has two elements, H(k) comprises the
region between the lines where d(k)−wT x(k) = ±γ̄ as depicted in Fig. 6.1. For more dimensions,
H(k) represents the region between two parallel hyperplanes in the parameter space w.

d(k)−wTx(k) = γ

H(k)

d(k)−wTx(k) = −γ

Figure 6.1 Constraint set in w plane for a two-dimension example.

Since for each data pair there is an associated constraint set, the intersection of the constraint sets
over all the available time instants i = 0, 1, . . . , k, is called the exact membership set ψ(k), formally
defined as

ψ(k) =
k⋂

i=0

H(i) (6.5)

The set ψ(k) represents a polygon in the parameter space whose location is one of the main objectives
of the set-membership filtering.
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For a set of data pairs including substantial innovation, the polygon in w, ψ(k), should become small.
This property usually occurs after a large number of iterations k, when most likely ψ(k) = ψ(k− 1)
since ψ(k− 1) is entirely contained in the constraint setH(k) as depicted in Fig. 6.2.a. In this case,
the adaptive-filter coefficients do not need updating because the current membership set is totally
inside the constraint set, resulting in a selection of update which is data dependent. The selective
updating of the set-membership filtering brings about opportunities for power and computational
savings, so crucial in devices such as mobile terminals. On the other hand, in the early iterations it is
highly possible that the constraint set reduces the size of the membership-set polygon as illustrates
Fig. 6.2.b.

At any given time instant, it can be observed that the feasibility set Θ is a subset of the exact
membership set ψ(k). The feasibility set is the limiting set of the exact membership set because the
two sets are equal if the available input-desired data pairs traverses all signal pairs belonging to S̄.

The goal of set-membership adaptive filtering is to adaptively find an estimate that belongs to the
feasibility set. The easiest approach is to compute a point estimate using, for example, the information
provided by the constraint set H(k) like in the set-membership NLMS algorithm considered in the
following section, or several previous constraint sets like the set-membership affine projection (SM-
AP) algorithm discussed in section 6.4, [10], [11].

For historical reasons, it is worth mentioning that the first SMF approach proposed in the literature tries
to outer bound ψ(k) with ellipsoids and the resulting algorithms are called optimal bounding ellipsoid
(OBE) algorithms [4]-[6]. These algorithms bear a close resemblance with the RLS algorithm [2] and
have inherent data selectivity. In the OBE algorithms the membership set are bounded by ellipsoids
comprising the smallest closed set [4]-[6]. These algorithms are also important but they are not
included as they present higher computational complexity than those discussed here.

6.3 SET-MEMBERSHIP NORMALIZED LMS ALGORITHM

The set-membership NLMS (SM-NLMS) algorithm first proposed in [7] has a form similar to the
conventional NLMS algorithm presented in section 4.4. The key idea of the SM-NLMS algorithm
is to perform a test to verify if the previous estimate w(k) lies outside the constraint set H(k), i.e.,
|d(k)− wT (k)x(k)| > γ̄. If the modulus of the error signal is greater than the specified bound, the
new estimate w(k + 1) will be updated to the closest boundary ofH(k) at a minimum distance, i.e.,
the SM-NLMS minimizes ‖w(k +1)−w(k)‖2 subjected to w(k +1) ∈ H(k) [12]. The updating is
performed by an orthogonal projection of the previous estimate onto the closest boundary of H(k).
Fig. 6.3 illustrates the updating procedure of the SM-NLMS algorithm.

In order to derive the update equations, first consider the a priori error e(k) given by

e(k) = d(k)− wT (k)x(k) (6.6)
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Figure 6.2 Exact membership set ψ(k) and its possible intersection with the constraint set H(k).

d(k) – wTx(k) = γ

d(k) – wTx(k) = – γ

ψ (k – 1)

(a) Exact membership set, ψ (k – 1), contained in the constraint set, ψ (k – 1) ⊂ H(k).

H(k)

H(k)

d(k) – wTx(k) = –γ

d(k) – wTx(k) = γ

ψ (k – 1)

(b) Exact membership set, ψ (k – 1), not contained in the constraint set, ψ (k – 1) ⊆ H(k).
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.

H(k)

d(k)−wTx(k) = γ

d(k)−wTx(k) = −γ

w(k + 1)

w(k)

Figure 6.3 Coefficient vector updating for the set-membership normalized LMS algorithm.

then, let’s start with the normalized LMS algorithm which utilizes the following recursion for updating
w(k)

w(k + 1) = w(k) +
μ(k)

γ + xT (k)x(k)
e(k) x(k) (6.7)

where in the present discussion μ(k) is the variable step size that should be appropriately chosen in
order to satisfy the desired set-membership updating.

The update should occur either if

e(k) = d(k)− wT (k)x(k) > γ̄

or

e(k) = d(k)− wT (k)x(k) < −γ̄

and the a posteriori error should be given by

ε(k) = d(k)− wT (k + 1)x(k) = ±γ̄

= d(k)− wT (k)x(k)− μ(k)
γ + xT (k)x(k)

e(k) xT (k)x(k)

= e(k)− μ(k)
γ + xT (k)x(k)

e(k) xT (k)x(k) (6.8)



2376.4 Set-Membership Affine Projection Algorithm

where ε(k) becomes equal to ±γ̄ because the coefficients are updated to the closest boundary of
H(k). Since γ, whose only task is regularization, is a small constant it can be disregarded leading to
the following equality

ε(k) = e(k)[1− μ(k)] = ±γ̄ (6.9)

The above equation leads to

1− μ(k) = ± γ̄

e(k)
(6.10)

where the plus (+) sign applies for the case when e(k) > 0 and the minus (−) sign applies for the
case where e(k) < 0. Therefore, by inspection we conclude that the variable step size, μ(k), is given
by

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise
(6.11)

The updating equations (6.6), (6.11), and (6.7) are quite similar to those of the NLMS algorithm
except for the variable step size μ(k). The SM-NLMS algorithm is outlined in Algorithm 6.1. As
a rule of thumb, the value of γ̄ is chosen around

√
5σn, where σ2

n is the variance of the additional
noise, some further discussion in this matter is found in section 6.7 [7], [25].

The reader should recall that the NLMS algorithm minimizes ‖w(k + 1)−w(k)‖2 subjected to the
constraint that wT (k + 1)x(k) = d(k), as such it is a particular case of the SM-NLMS algorithm by
choosing the bound γ̄ = 0. It should be noticed that by using a step size μ(k) = 1 in the SM-NLMS
whenever w(k) �∈ H(k), one performs a valid update since the hyperplane with zero a posteriori
error lies in H(k). In this case, the resulting algorithm does not minimize the Euclidean distance
‖w(k + 1)− w(k)‖2 since the a posteriori error is zero and less than γ̄.

6.4 SET-MEMBERSHIP AFFINE PROJECTION ALGORITHM

The exact membership set ψ(k) previously defined in equation (6.5) suggests the use of more
constraint-sets in the update [11]. This section generalizes the concept of set-membership in or-
der to conceive algorithms whose updates belong to the past L+1 constraint sets. In order to achieve
our goal, it is convenient to express ψ(k) as

ψ(k) =

(
k−L−1⋂

i=0

H(i)

)⎛⎝ k⋂
j=k−L

H(j)

⎞
⎠ = ψk−L−1(k)

⋂
ψL+1(k) (6.12)

where ψL+1(k) represents the intersection of the L + 1 last constraint sets, whereas ψk−L−1(k) is
the intersection of the first k−L constraint sets. The aim of this derivation is to conceive an algorithm
whose coefficient update belongs to the last L + 1 constraint-sets, i.e., w(k + 1) ∈ ψL+1(k).

Just like in the original affine projection algorithm of section 4.6, we can retain the last L + 1 input
signal vectors in a matrix as follows:

Xap(k) = [x(k) x(k − 1) . . . x(k − L)] (6.13)
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Algorithm 6.1

The Set-Membership Normalized LMS Algorithm

Initialization
x(0) = w(0) = [0...0]T

choose γ̄ around
√

5σn

γ = small constant
Do for k ≥ 0

e(k) = d(k)− xT (k)w(k)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise
w(k + 1) = w(k) + μ(k)

γ+xT (k)x(k) e(k) x(k)

where Xap(k) ∈ R
(N+1)×(L+1) contains the corresponding retained inputs, with x(k) being the

input-signal vector

x(k) = [x(k) x(k − 1) . . . x(k −N)]T (6.14)

The vectors representing the data considered at a given iteration k, such as the desired signal and
error vectors are given by

dap(k) =

⎡
⎢⎢⎢⎣

d(k)
d(k − 1)

...
d(k − L)

⎤
⎥⎥⎥⎦ (6.15)

eap(k) =

⎡
⎢⎢⎢⎣

eap,0(k)
eap,1(k)

...
eap,L(k)

⎤
⎥⎥⎥⎦ (6.16)

where dap(k) ∈ R
(L+1)×1 contains the desired outputs from the L + 1 last time instants.

Consider thatS(k − i + 1)denotes the hyperplane which contains all vectors w such thatd(k − i + 1)−
wT x(k − i + 1) = γ̄i(k), for i = 1, . . . , L + 1, where the parameters γ̄i(k) represent the bound
constraint to be satisfied by the error magnitudes after coefficient updating. Some particular choices
for the parameters γ̄i(k) are discussed later on, for now any choice satisfying the bound constraint is
valid. That is, if all γ̄i(k) are chosen such that |γ̄i(k)| ≤ γ̄ then S(k − i + 1) ∈ H(k − i + 1), for
i = 1, . . . , L + 1. Vector γ̄(k) ∈ R

(L+1)×1 specifies the point in ψL+1(k), where

γ̄(k) = [γ̄1(k) γ̄2(k) . . . γ̄L+1(k)]T (6.17)
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The objective function to be minimized in the set-membership affine projection (SM-AP) algorithm
can now be stated. Perform a coefficient update whenever w(k) �∈ ψL+1(k) in such a way that2

min ‖w(k + 1)− w(k)‖2 (6.18)

subject to:

dap(k)− XT
ap(k)w(k + 1) = γ̄(k) (6.19)

where the constraint can be rewritten as d(k − i + 1) − xT (k − i + 1)w(k + 1) = γ̄i(k), for
i = 1, . . . , L + 1. Fig. 6.4 illustrates a typical coefficient update related to the SM-AP algorithm
for the case with two coefficients, L = 1 and |γ̄i(k)| < |γ̄|, such that w(k + 1) is not placed at the
border ofH(k).

w(k)

H(k − 1)

d(k − 1)−wTx(k − 1) = γ

d(k − 1)−wTx(k − 1) = −γ

H(k)

d(k)−wTx(k) = γ

d(k)−wTx(k) = −γ

d(k − 1)−wTx(k − 1) = γ2(k)

d(k)−wTx(k) = γ1(k)

w(k + 1)

Figure 6.4 SM-AP algorithm coefficient update.

Using the method of Lagrange multipliers [12], the unconstrained function to be minimized is

F [w(k + 1)] = ‖w(k + 1)− w(k)‖2 + λT
ap(k)[dap(k)− XT

ap(k)w(k + 1)− γ̄(k)] (6.20)

where the vector of Lagrange multipliers, λap(k) ∈ R
(L+1)×1, is given by

λap(k) = [λap,1(k) λap,2(k) . . . λap,L+1(k)]T (6.21)

2The reader should note that in earlier definition of the objective function related to the affine projection algorithm a
constant 1

2 was multiplied to the norm to be minimized. This constant is not relevant and is only used when it simplifies the
algorithm derivation.
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such that the constraints can be rewritten in the above equation as follows

F [w(k + 1)] = ‖w(k + 1)− w(k)‖2

+
L+1∑
i=1

λap,i(k)[d(k − i + 1)− xT (k − i + 1)w(k + 1)− γ̄i(k)] (6.22)

We solve the minimization problem of equation (6.18) by first setting the gradient of the function
F [w(k + 1)] with respect to w(k + 1) equal to zero, in order to derive the following equation

w(k + 1) = w(k) +
L+1∑
i=1

λi(k)
2

x(k − i + 1)

= w(k) + Xap(k)
λap(k)

2
(6.23)

By premultiplying the above equation by XT
ap(k) and utilizing the constraints

XT
ap(k)w(k + 1) = dap(k)− γ̄(k)

given in equation (6.19), we obtain

dap(k)− γ̄(k) = XT
ap(k)w(k) + XT

ap(k)Xap(k)
λap(k)

2
(6.24)

or alternatively

d(k − i + 1)− γ̄i(k) = xT (k − i + 1)w(k) +
L+1∑
j=1

λj(k)
2

xT (k − i + 1)x(k − j + 1)

for i = 1, . . . , L + 1.

Equation (6.24) can be rewritten in a more interesting format as

XT
ap(k)Xap(k)

λap(k)
2

= dap(k)− XT
ap(k)w(k)− γ̄(k)

= eap(k)− γ̄(k) (6.25)

leading to

λap(k)
2

=
[
XT

ap(k)Xap(k)
]−1

[eap(k)− γ̄(k)] (6.26)

It is now possible to derive the updating equation by starting from equation (6.23) with λap(k) being
given by equation (6.26), i.e.,

w(k + 1) =

{
w(k) + Xap(k)

[
XT

ap(k)Xap(k)
]−1

[eap(k)− γ̄(k)] if |e(k)| > γ̄
w(k) otherwise

(6.27)
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Algorithm 6.2

The Set-Membership Affine Projection Algorithm

Initialization
x(0) = w(0) = [0 . . . 0]T

choose γ̄ around
√

5σn

γ = small constant
Do for k ≥ 0

eap(k) = dap(k)− XT
ap(k)w(k)

w(k + 1) =

{
w(k) + Xap(k)

[
XT

ap(k)Xap(k) + γI
]−1

[eap(k)− γ̄(k)] if |e(k)| > γ̄
w(k) otherwise

where

eap(k) = [e(k) ε(k − 1) . . . ε(k − L)]T (6.28)

with ε(k − i) = d(k − i)− xT (k − i)w(k) denoting the a posteriori error calculated with the data
pair of iteration k − i using the coefficients of iteration k. Algorithm 6.2 describes in detail the
general form of the SM-AP algorithm.

Several properties related to the SM-AP algorithm are straightforward to infer.

For time instants k < L + 1, i.e., during initialization, we can only assume knowledge ofH(i)
for i = 0, 1, . . . , k. As a result, if an update is needed when k < L + 1, the algorithm is used
with the only k + 1 constraint sets available.

In order to verify if an update w(k + 1) is required, we only have to check if w(k) �∈ H(k)
since due to previous updates w(k) ∈ H(k − i + 1) holds for i = 2, . . . , L + 1.

By choosing the bound γ̄ = 0, it is possible to verify that the algorithm becomes the conventional
AP algorithm with unity step-size.

6.4.1 A Trivial Choice for Vector γ̄(k)

In the above discussions no specific choice for the parameters γ̄i(k) has been discussed except for the
requirement that the adaptive-filter coefficients should be inH(k − i + 1), meaning that |γ̄i(k)| ≤ γ̄.
There is infinite number of possible choices for γ̄i(k), each leading to a different update.
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The most trivial choice would be γ̄(k) = 0, i.e., to force the a posteriori errors to be zero at the last
L + 1 time instants. If we replace γ̄(k) = 0 in equation (6.24) and solving for λap(k) the following
recursions result

λap(k)
2

=
(
XT

ap(k)Xap(k)
)−1

eap(k) (6.29)

The update recursion is given by

w(k + 1) =

{
w(k) + Xap(k)

(
XT

ap(k)Xap(k)
)−1

eap(k) if |e(k)| > γ̄
w(k) otherwise

(6.30)

The above updating equation is identical to the conventional affine-projection (AP) algorithm with
unity step size whenever an update takes place, that is, w(k) �∈ H(k). However, owing to the data
selectivity, the SM-AP algorithm leads to considerable reduction in complexity as compared with
the conventional AP algorithm. Fig. 6.5 depicts a typical coefficient update, where for illustration
purposes w(k) does not lie in the zero a posteriori hyperplane belonging toH(k − 1).

H(k)

d(k)−wTx(k) = 0

w(k)

d(k − 1)−wTx(k − 1) = 0
H(k − 1) w(k + 1)

d(k − 1)−wTx(k − 1) = γ

d(k − 1)−wTx(k − 1) = −γ

d(k)−wTx(k) = γ

d(k)−wTx(k) = −γ

Figure 6.5 SM-AP algorithm coefficient updated with zero a posteriori error.

6.4.2 A Simple Vector γ̄(k)

Any choice for γ̄i(k) is valid as long as they correspond to points represented by the adaptive-filter
coefficients in H(k − i + 1), i.e., |γ̄i(k)| ≤ γ̄. One can exploit this freedom in order to make the
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resulting algorithm more suitable for a target application. A particularly simple SM-AP version is
obtained if γ̄i(k) for i �= 1 corresponds to the a posteriori error ε(k − i + 1) = d(k − i + 1) −
wT (k)x(k−i+1) and γ̄1(k) = e(k)/|e(k)|. Since the coefficients were updated considering previous
data pairs then at this point it is true that w(k) ∈ H(k − i + 1), i.e., |ε(k − i + 1)| = |d(k − i + 1)−
xT (k − i + 1)w(k)| ≤ γ̄, for i = 2, . . . , L + 1. Therefore, by choosing γ̄i(k) = ε(k − i + 1), for
i �= 1, all the elements on the right-hand side of equation (6.24) become zero, except for first element.

It is only left now the choice of the constraint value γ̄1(k), that can be selected as in the SM-NLMS
algorithm where γ̄1(k) is such that the solution lies at the nearest boundary ofH(k), i.e.,

γ̄1(k) = γ̄
e(k)
|e(k)| (6.31)

Such choices utilized in equation (6.25) leads to

XT
ap(k)Xap(k)

λap(k)
2

= μ(k)e(k)u1 (6.32)

where μ(k) = 1− γ̄
|e(k)| and u1 = [1 0 . . . 0]T .

The resulting update equation is then given by

w(k + 1) = w(k) + Xap(k)
[
XT

ap(k)Xap(k)
]−1

μ(k)e(k)u1 (6.33)

where

e(k) = d(k)− wT (k)x(k) (6.34)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise
(6.35)

This algorithm minimizes the Euclidean distance ‖w(k + 1) − w(k)‖2 subject to the constraint
w(k + 1) ∈ ψL+1(k) such that the a posteriori errors at iteration k − i, ε(k − i), are kept constant
for i = 2, . . . , L + 1. Fig. 6.6 illustrates a typical coefficient updating for the simplified SM-AP
algorithm where it is observed that the a posteriori error related to previous data remains unaltered.

The simplified SM-AP algorithm given by equation (6.33) will perform an update if and only if
w(k) �∈ H(k), or e(k) > γ̄. The step-by-step description of the simplified SM-AP algorithm is
presented in Algorithm 6.3.

6.4.3 Reducing the Complexity in the Simplified SM-AP Algorithm

In the updating expression of equation (6.33) vector u1 has a special form which can be exploited in
order to reduce the computational complexity.

The inverse matrix in equation (6.33) can be partitioned as[
XT

ap(k)Xap(k)
]−1

=
{[

x(k) X̃ap(k)
]T [

x(k) X̃ap(k)
]}−1

=
[
a bT

b C

]
(6.36)
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H(k − 1)

H(k)

d(k)−wTx(k) = γ

d(k − 1)−wTx(k − 1) = γ2(k − 1)
w(k)

w(k + 1)

d(k)−wTx(k) = −γ

d(k − 1)−wTx(k − 1) = γ

d(k − 1)−wTx(k − 1) = −γ

Figure 6.6 Simplified SM-AP algorithm coefficient update with constant a posteriori error.

Algorithm 6.3

The Simplified Set-Membership
Affine Projection Algorithm

Initialization
x(0) = w(0) = [0 . . . 0]T

choose γ̄ around
√

5σn

γ = small constant
Do for k ≥ 0

eap(k) = dap(k)− XT
ap(k)w(k)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise

w(k + 1) = w(k) + Xap(k)
[
XT

ap(k)Xap(k) + γI
]−1

μ(k)e(k)u1
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where

a =
[
ϕT (k)ϕ(k)

]−1
(6.37)

b = −
[
X̃

T

ap(k)X̃ap(k)
]−1

X̃
T

ap(k)x(k)a (6.38)

with ϕ(k) defined as

ϕ(k) = x(k)− X̃ap(k)
[
X̃

T

ap(k)X̃ap(k)
]−1

X̃
T

ap(k)x(k) (6.39)

where the vector ϕ(k) ∈ R
(N+1)×1, see problem 12.

As a result,

Xap(k)
[
XT

ap(k)Xap(k)
]−1

u1 =
[
x(k) X̃ap(k)

] [a
b

]

=
[
x(k) X̃ap(k)

] [1
b
a

]
a

=
[

x(k)−
[
X̃

T

ap(k)X̃ap(k)
]−1

X̃
T

ap(k)x(k)
]

a

= ϕ(k)
[
ϕT (k)ϕ(k)

]−1
(6.40)

where the last equality follows from equations (6.37) and (6.39).

An efficient expression for the coefficient update is obtained using the partition in equation (6.36),
that is

w(k + 1) = w(k) +
ϕ(k)

ϕT (k)ϕ(k)
e(k) (6.41)

where ϕ(k) is defined as in equation (6.39). This representation of the SM-AP algorithm is compu-
tationally attractive since it utilizes matrices with lower dimensions than those presented in equation

(6.33), specifically matrix
[
X̃

T

ap(k)X̃ap(k)
]

in equation (6.39) has dimension L×L whereas matrix[
XT

ap(k)Xap(k)
]

in equation (6.33) has dimension (L + 1) × (L + 1). The number of reuses L
is in most of the cases chosen in the range 0 ≤ L ≤ 5, therefore the strategy for reducing the
computational burden of the inversion brings about significant benefit.

6.5 SET-MEMBERSHIP BINORMALIZED LMS ALGORITHMS

In the SM-AP algorithm the computational complexity is directly related to the number of data reuses.
The main component of the computational burden is the information matrix inversion. Since the SM-
NLMS algorithm only considers the constraint setH(k) in its update, it has low complexity per update
whereas its convergence speed follows the pattern of the NLMS algorithm. Both algorithms have
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their convergence speed governed by the eigenvalue spread of the input-signal correlation matrix. In
order to alleviate this drawback while keeping the implementation complexity as low as possible, an
attractive particular solution for the SM-AP algorithm is the set-membership binormalized LMS (SM-
BNLMS) algorithm. Two algorithms are derived requiring that the solution belongs to the constraint
sets at time instants k and k − 1, i.e., w(k + 1) ∈ H(k) ∩H(k − 1), which are general cases of the
binormalized LMS algorithm [13]. The SM-BNLMS algorithms can be seen as extensions of the
SM-NLMS algorithm that use two consecutive constraint sets for each update, and also as special
cases of the SM-AP algorithms.

Let’s assume S(k − i + 1), for i = 1, 2, denote the hyperplanes which contain all vectors w such
that d(k− i+1)−wT x(k− i+1) = γ̄i(k), where γ̄i(k) are the values of the bound constraints that
should be met in order to validate a given estimate. Specifically, if γ̄i(k), for i = 1, 2, are chosen
such that |γ̄i(k)| ≤ γ̄, then S(k − i + 1) ∈ H(k − i + 1) [10].

Whenever w(k) �∈ H(k) ∩H(k − 1), we can propose an objective function such as

min ‖w(k + 1)− w(k)‖2
subject to:

d(k)− xT (k)w(k + 1) = γ̄1(k)
d(k − 1)− xT (k − 1)w(k + 1) = γ̄2(k) (6.42)

where the pair of thresholds (γ̄1(k), γ̄2(k)) specifies the point in H(k) ∩ H(k − 1) where the final
parameter estimate will be placed. The previously shown Fig. 6.4 illustrates how the coefficients are
updated to prescribed a posteriori errors determined by (γ̄1(k), γ̄2(k)).

In principle there is a need to verify if an update according to equation (6.42) is required, where such
an update can be skip if w(k) ∈ H(k)∩H(k− 1). There are ways of keeping w(k +1) ∈ H(k− 1)
whenever an update is required, that is, whenever w(k) �∈ H(k). This type of solution is discussed
further in subsection 6.5.2. At any rate, we can solve the general constrained minimization problem
of equation (6.42) for the binormalized case by applying Lagrange multiplier method, resulting in
the following unconstrained objective function

F [w(k + 1)] = ‖w(k + 1)− w(k)‖2 + λ1(k)[d(k)− xT (k)w(k + 1)− γ̄1(k)]
+λ2(k)[d(k − 1)− xT (k − 1)w(k + 1)− γ̄2(k)] (6.43)

By computing the gradient of equation (6.43) with respect to w(k + 1), setting the result to zero, we
get

w(k + 1) = w(k) + Xap(k)
λap(k)

2

= w(k) + [x(k) x(k − 1)]

[
λ1(k)

2
λ2(k)

2

]
(6.44)

where this expression is the specialized form of equation (6.23) to the binormalized case.
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The Lagrange multipliers are obtained by replacing equation (6.44) in the constraints of equation
(6.42) such that[

xT (k)
xT (k − 1)

]
[x(k) x(k − 1)]

[
λ1(k)

2
λ2(k)

2

]
=
[

d(k)
d(k − 1)

]
−
[

xT (k)
xT (k − 1)

]
w(k)− γ̄(k)

=
[

e(k)
ε(k − 1)

]
−
[

γ̄1(k)
γ̄2(k)

]
(6.45)

By solving the above equation we obtain

λ1(k)
2

=
[e(k)− γ̄1(k)] ‖x(k − 1)‖2 − [ε(k − 1)− γ̄2(k)] xT (k)x(k − 1)

‖x(k)‖2‖x(k − 1)‖2 − [xT (k − 1)x(k)]2
(6.46)

λ2(k)
2

=
[ε(k − 1)− γ̄2(k)] ‖x(k)‖2 − [e(k)− γ̄1(k)] xT (k − 1)x(k)

‖x(k)‖2‖x(k − 1)‖2 − [xT (k − 1)x(k)]2
(6.47)

where the errors in the above equations are the a priori error at iteration k, defined as e(k) = d(k)−
wT (k)x(k), and the a posteriori error at iterationk−1, defined as ε(k−1) = d(k−1)−wT (k)x(k−1).

The expression for the coefficient update of the SM-BNLMS algorithm is then given by

w(k + 1) =
{

w(k) + λ1(k)
2 x(k) + λ2(k)

2 x(k − 1) if |e(k)| > γ̄
w(k) otherwise

(6.48)

Some special forms of the SM-BNLMS algorithm are following discussed.

6.5.1 SM-BNLMS Algorithm 1

The first form of the SM-BNLMS algorithm is derived by employing two steps, where in each step we
minimize the Euclidean distance between the old filter coefficients and the new update, subjected to
the constraint that the new update lies in constraint setH(k). Then, we test if the new update belongs
in the previous constraint setH(k−1) and if not a new update takes place. Basically, the SM-BNLMS
algorithm 1 performs a step according to the SM-NLMS algorithm and if the solution belongs to both
constraint setsH(k) andH(k−1) no further update is required. If the initial step moves the solution
away fromH(k−1), then a second update is performed in order to place the solution at the intersection
ofH(k) andH(k− 1) at a minimum distance from w(k). Fig. 6.7 illustrates the coefficient updates
according to the situations discussed so far. As desired, the SM-BNLMS algorithm 1 minimizes
‖w(k + 1)− w(k)‖2 subject to the constraint that w(k + 1) ∈ H(k) ∩H(k − 1).

The updating equation for the SM-BNLMS algorithm 1 can be derived by first performing an or-
thogonal projection of w(k) onto the nearest boundary ofH(k) just like in the SM-NLMS algorithm

ŵ(k) = w(k) + μ(k)
e(k)x(k)
‖x(k)‖2 (6.49)
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H(k)

w(k)

d(k)−wTx(k) = −γ

d(k)−wTx(k) = γ

d(k − 1)−wTx(k − 1) = −γ

d(k − 1)−wTx(k − 1) = γ

H(k − 1) w(k + 1).

(a) w(k + 1) ∈ H(k) ∩H(k − 1), no further update.

H(k)

d(k)−wTx(k) = −γ

d(k)−wTx(k) = γ

d(k − 1)−wTx(k − 1) = γ

d(k − 1)−wTx(k − 1) = −γ

w(k)

w(k + 1)

.

H(k − 1)

(b) w(k + 1) �∈ H(k − 1), further update.

Figure 6.7 Possible coefficient updates for the SM-BNLMS algorithm 1.
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where μ(k) is the variable convergence factor given by equation (6.11) and e(k) is the a priori output
error defined in equation (6.6). If ŵ(k) ∈ H(k − 1), i.e., |d(k − 1) − ŵT (k)x(k − 1)| ≤ γ̄, no
further update is required, therefore w(k + 1) = ŵ(k). On the other hand, if ŵ(k) �∈ H(k − 1) a
second step is necessary in order to move the solution to the intersection of H(k) and H(k − 1) at
a minimum distance. This second step is performed in the orthogonal direction with respect to the
first step, namely x⊥(k). The resulting second updating is then performed in the following form

w(k + 1) = ŵ(k) + μ̂(k)
ε(k − 1)x⊥(k)
‖x⊥(k)‖2 (6.50)

where

x⊥(k) =
(

I− x(k)xT (k)
‖x(k)‖2

)
x(k − 1) (6.51)

ε(k − 1) = d(k − 1)− ŵT (k)x(k − 1) (6.52)

μ̂(k) = 1− γ̄

|ε(k − 1)| (6.53)

Algorithm 6.4 describes in detail the SM-BNLMS algorithm 1, where we utilized an explicit form
for x⊥(k), see problem 2. It is straightforward to observe that if the bound of the estimation error is
chosen to be zero, i.e., γ̄ = 0, the updating equations of the SM-BNLMS algorithm 1 coincide with
those of binormalized LMS algorithm with unity step-size [13].

In the SM-BNLMS algorithm 1 if the constraint setsH(k) andH(k−1) are parallel, the denominator
term ‖x⊥(k)‖2 is zero, since this term is given by

‖x⊥(k)‖2 = ‖x(k − 1)‖2 − [xT (k − 1)x(k)]2

‖x(k)‖2

As a result the second step of equation (6.50) is not performed to avoid division by zero.

6.5.2 SM-BNLMS Algorithm 2

The SM-BNLMS algorithm 2 reduces the computational complexity per update even further by
avoiding the intermediate constraint check required by the SM-BNLMS algorithm 1. A smart idea
to avoid extra computation is, at instant k, to maintain the value of the a posteriori error ε(k − 1),
which utilizes the data from instant k − 1, equal to the constraint threshold, that is by choosing
γ̄2(k) = ε(k − 1). Since the previous coefficient estimate w(k) ∈ H(k − 1), then it is a fact that
ε(k − 1) ≤ γ̄. Therefore by choosing γ̄2(k) = ε(k − 1) then γ̄2(k) ≤ γ̄. On the other hand, if we
choose γ̄1(k) such that the update lies on the closest boundary of H(k), i.e., γ̄1(k) = γ̄sign[e(k)],
the new coefficient estimate w(k +1) lies on the nearest boundary ofH(k) such that the a posteriori
error at iteration k − 1, ε(k − 1), is kept constant. By specializing the updating equation of the
general SM-BNLMS algorithm to the SM-BNLMS algorithm 2 case, we have

w(k + 1) = w(k) +
λ′1(k)

2
x(k) +

λ′2(k)
2

x(k − 1) (6.54)
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Algorithm 6.4

The Set-Membership Binormalized LMS Algorithm 1

Initialization
x(0) = w(0) = [0...0]T

choose γ̄ around
√

5σn

γ = small constant
Do for k ≥ 0

e(k) = d(k)− xT (k)w(k)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise
ŵ(k) = w(k) + μ(k) e(k)x(k)

γ+‖x(k)‖2
ε(k − 1) = d(k − 1)− ŵT (k)x(k − 1)

μ̂(k) =
{

1− γ̄
|ε(k−1)| , if |e(k)| > γ̄ and |ε(k − 1)| > γ̄

0 otherwise
λ1(k)

2 = − μ̂(k)ε(k−1)xT (k−1)x(k)
γ+‖x(k)‖2‖x(k−1)‖2−[xT (k−1)x(k)]2

λ2(k)
2 = μ̂(k)ε(k−1)‖x(k)‖2

γ+‖x(k)‖2‖x(k−1)‖2−[xT (k−1)x(k)]2

w(k + 1) = ŵ(k) + λ1(k)
2 x(k) + λ2(k)

2 x(k − 1)

where

λ′1(k)
2

=
μ(k)e(k)‖x(k − 1)‖2

‖x(k)‖2‖x(k − 1)‖2 − [xT (k − 1)x(k)]2
(6.55)

λ′2(k)
2

= − μ(k)e(k)xT (k − 1)x(k)
‖x(k)‖2‖x(k − 1)‖2 − [xT (k − 1)x(k)]2

(6.56)

μ(k) =
{

1− γ̄
|e(k)| , if |e(k)| > γ̄

0 otherwise
(6.57)

Fig. 6.6 depicts the update procedure of the SM-BNLMS algorithm 2, whereas Algorithm 6.5 de-
scribes it stepwise.

In the SM-BNLMS algorithm 2 if the constraint setsH(k) andH(k−1) are parallel, the denominators
of the λ′i(k), for i = 1, 2 are zero. In this case, in order to avoid division by zero a regularization
factor, as in equation (6.7), is employed instead.
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Algorithm 6.5

The Set-Membership Binormalized LMS Algorithm 2

Initialization
x(0) = w(0) = [0...0]T

choose γ̄ around
√

5σn

γ = small constant
Do for k ≥ 0

e(k) = d(k)− xT (k)w(k)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise
λ′1(k)

2 = μ(k)e(k)‖x(k−1)‖2
γ+‖x(k)‖2‖x(k−1)‖2−[xT (k−1)x(k)]2

λ′2(k)
2 = − μ(k)e(k)xT (k−1)x(k)

γ+‖x(k)‖2‖x(k−1)‖2−[xT (k−1)x(k)]2

w(k + 1) = w(k) + λ′1(k)
2 x(k) + λ′2(k)

2 x(k − 1)

6.6 COMPUTATIONAL COMPLEXITY

A brief comparison of the computational complexity among some algorithms presented in this chapter
is appropriate at this point. The figure of merit considered is the number of multiplications, additions,
and divisions, where it is assumed that the implementation minimizes the number of divisions,
multiplications, and additions in that order. Table 6.1 lists the computational complexity for several
algorithms, where in the case of the SM-BNLMS algorithm 1 there are two entries since the update
complexity is related to the number of steps a given update requires. Two steps are required if after
the first step ŵ(k) �∈ H(k − 1). The SM-BNLMS algorithm 2 has fix complexity whenever an
update occurs whereas for the SM-BNLMS algorithm 1 the complexity depends not only on when
an update occurs but also how often the second step takes place. As expected the two versions of the
SM-BNLMS algorithm lead to a small increase in computational complexity when compared with
the SM-NLMS algorithm. On the other hand, the former algorithms usually require less updates and
converge faster than the SM-NLMS algorithm.

The computational complexity reduction is essential in applications where the filter order is high and
the resources are limited. Therefore, special care should be taken to exploit opportunities to reduce
the computational burden, for example, assuming the value of ‖x(k−1)‖2 at iteration k is unknown.
If ‖x(k−1)‖2 is known, we can compute ‖x(k)‖2 using only two additional multiplications through
‖x(k)‖2 = ‖x(k−1)‖2+x2(k)−x2(k−N), also in case the value of x2(k−N) is prestored then only
one multiplication is required. This strategy has been considered when evaluating the multiplication
and addition counts of the SM-BNLMS algorithms. If update occurs at two successive time instants,
‖x(k− 1)‖2 and xT (k− 1)x(k− 2) have already been computed in the previous update, as a result,
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Table 6.1 Computational Complexity in Set-membership Algorithms, † The Numbers for the RLS Apply
to the Particular Implementation of Algorithm 5.2

Algorithm Multiplication Addition Division

LMS 2N + 3 2N + 2 0

NLMS 2N + 3 2N + 5 1

SM-NLMS 2N + 4 2N + 6 1

SM-BNLMS 1 (1 step) 3N + 4 3N + 7 1

SM-BNLMS 1 (2 steps) 5N + 13 5N + 16 2

SM-BNLMS 2 3N + 11 3N + 10 1

RLS† 3N2 + 11N + 8 3N2 + 7N + 4 1

the number of multiplications and additions in such updates can be further reduced by approximately
N + 1 for the SM-NLMS algorithm and 2N + 2 for the SM-BNLMS algorithms 1 and 2, depending
on the implementation. Finally, note that if one continuously computes ‖x(k)‖2 and xT (k)x(k− 1),
regardless if an update is required or not, the SM-BNLMS algorithm 2 is always more efficient than
SM-BNLMS algorithm 1.

6.7 TIME-VARYING γ̄

In this section, an automatic way to choose γ̄ is presented in order to avoid overbounding and
underbounding of such a crucial parameter. In case γ̄ is chosen too small the feasibility set might
become null, whereas if the threshold parameter is chosen too big the resulting estimate might be
meaningless and inconsistent [24].

Let’s first consider the case of channel equalization application such as that of Fig. 2.13. In a typical
multiuser communication environment the noise signal vector can be composed as follows [32]

n(k) = nn(k) + nISI(k) + nMAI(k) (6.58)

where n(k) = [n(k) n(k − 1) . . . n(k −N)]T , and

nn(k) represents the contribution of the environment noise.

nISI(k) is the contribution of the intersymbol interference (ISI) originated when the transmitted
signal crosses a channel with memory, in other words, whenever multiple paths are perceived
by the receiver.

nMAI(k) accounts for the multi-access interference (MAI), that is, the signals from other users
that reach the receiver.
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At the equalizer output, the disturbance due to noise can be accounted for as follows

yn(k) = wT (k)n(k) (6.59)

where wT (k) is the equalizer coefficient vector and yn(k) is the noise signal vector filtered by the
equalizer. As a result, the equalizer output y(k) is described by

y(k) = yn̄(k) + yn(k) (6.60)

with yn̄(k) representing the equalized signal when there is no noise at the adaptive-filter input.

The average power of the disturbance, for a given equalizer with parameters w(k), can be calculated
as

σ2
yn

(k) = E[y2
n(k)] = wT (k)E[n(k)nT (k)]w(k) = ‖w(k)‖2σ2

n(k) (6.61)

Assuming there is an estimate of σ2
yn

(k) denoted as σ̂2
yn

(k) = ‖w(k)‖2σ̂2
n(k) we can generate a

time-varying threshold parameter as follows

γ̄(k + 1) = αγ̄(k) + (1− α)
√

β‖w(k)‖2σ̂2
n(k) (6.62)

where α is a forgetting factor and β is a constant to be set. As justified in [25], a range of values for
β leading to a good compromise between misadjustment and speed of convergence is 4 ≤ β ≤ 5.

In equalization environments the best way to estimate σ2
n(k) is to remove the effect of the detected

symbols from x(k) in order to get a rough estimate of n(k) [26]-[28], and from this estimate compute

σ̂2
n(k + 1) = ασ̂2

n(k) + (1− α)n̂2(k) (6.63)

where again α is a forgetting factor. Fig. 6.8 illustrates how the environment noise can be typically
estimated in a general equalizer setup.

For system identification environment as depicted in Fig. 2.10, an estimate of the additional noise
plus an eventual effect of undermodeling can be calculated from the output error itself. If the input
signal and the additional noise are considered white noise and uncorrelated, see equation (2.148) for
details, the MSE can be calculated as

ξ = E[e2(k)]
= E{[hT x∞(k)− wT xN+1(k)]2 + n2(k)}

= σ2
x

∞∑
i=N+1

h2(i) + σ2
n (6.64)

where x∞(k) and xN+1(k) are the input signal vector with infinite and finite lengths, respectively.
Likewise the equalization setup, a time-varying threshold parameter for the system identification
application is given by

γ̄(k + 1) = αγ̄(k) + (1− α)
√

βσ̂2
n(k) (6.65)
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Figure 6.8 Environment noise estimation.

where for this case

σ̂2
n(k + 1) = ασ̂2

n(k) + (1− α)e2(k) (6.66)

In [25] some analytical expressions are developed in order to provide values for γ̄(k) such that the
some prescribed updating rate are nearly satisfied after the algorithm has reached convergence.

6.8 PARTIAL-UPDATE ADAPTIVE FILTERING

In several applications the number of coefficients to be updated might be prohibitive, therefore some
strategies to control the computational complexity is desirable. In some cases like in acoustics echo
cancellation, which might use a few thousands of adaptive coefficients, the convergence would entail
a large number of iterations, calling for more sophisticated updating algorithms which are inherently
more computationally intensive. A good compromise might be to update only part of the filter
coefficients at each iteration instant, generating a family of algorithms called partial-update (PU)
algorithms. The most widely known PU algorithm in the literature is the normalized LMS with
partial update [14]-[19].

In this section special emphasis is given to the set-membership partial-update affine projection (SM-
PUAP) algorithms. The combination of the partial-update with set-membership allows the updating
of a selected set of coefficients whenever an update is needed. The resulting algorithms capitalize
not only from the sparse updating related to the set-membership framework but also from the partial
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update of the coefficients, reducing the average computational complexity. It is expected that the SM-
PUAP algorithms have comparable performance to that of SM-AP algorithms and affine projection
algorithms with partial-update whereas computational complexity is reduced with respect to both
updating schemes.

Two versions of the SM-PUAP algorithm are discussed:

Fix partial update, where a constant number of coefficients is updated whenever required.

Variable partial update, where the number of coefficients to be updated vary up to a maximum
prescribed number.

In the partial update adaptation strategy, the main objective is to perform updates in M̄ out of the
N + 1 adaptive-filter coefficients. The M̄ coefficients to be updated at time instant k are selected
through an index set IM̄ (k) = {i0(k) . . . iM̄−1(k)} where the indexes {ij(k)}M̄−1

j=0 are chosen
from the set {0 1 . . . N} representing the available coefficients to be updated. The partition of the
N + 1 coefficients into mutually exclusive subsets, each with M̄ elements, plays a key role in the
performance and in the effectiveness of the partial-update strategy. As a result, IM̄ (k) varies with
the iteration index k such that the M̄ coefficients to be updated can change according to the iteration.
The choice of which M̄ coefficients should be updated is related to the objective function considered
in the algorithm derivation.

As already known, in the SM-AP algorithms the new coefficient vector can be obtained as the vector
w(k + 1) that minimizes the Euclidean distance ‖w(k + 1)− w(k)‖2, subject to the constraint that
the moduli of a posteriori errors fall below certain prescribed threshold. The same idea can be used
in order to derive the SM-PUAP algorithm, specifically the vector w(k +1) is chosen by minimizing
the Euclidean distance ‖w(k +1)−w(k)‖2 subject to the constraint w(k +1) ∈ H(k) in such a way
that only M̄ coefficients are updated. If w(k) ∈ H(k), there is no update and the Euclidean distance
is zero.

The objective function to be minimized in the set-membership partial-update affine projection (SM-
PUAP) algorithm is following described. A coefficient update is performed whenever w(k) �∈
ψL+1(k) such that

min ‖w(k + 1)− w(k)‖2 (6.67)

subject to:

dap(k)− XT
ap(k)w(k + 1) = γ̄(k)

C̃IM̄(k)
[w(k + 1)− w(k)] = 0 (6.68)

where γ̄(k) is a vector determining a point within the constraint setH(k), such that |γ̄i(k)| ≤ γ̄, for
i = 0, 1, . . . , L. The matrix C̃IM̄(k)

= I− CIM̄ (k) is a complementary matrix of CIM̄ (k) enforcing

C̃IM̄ (k)w(k + 1) = C̃IM̄ (k)w(k), such that only M̄ coefficients are updated. A possible choice
for γ̄0(k) is such that the updated vector belongs to the closest bounding hyperplane in H(k), i.e.,
γ̄0(k) = γ̄ e(k)/|e(k)|. On the other hand, some alternative choices |γ̄i(k)| ≤ γ̄, for i = 1, 2, . . . , L,
had been discussed. The matrix CIM̄ (k) is a diagonal matrix that determines the coefficients to be
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updated at instant k, if an update is required. This matrix has M̄ nonzero elements equal to one
placed at positions indicated by IM̄ (k).

Applying the method of Lagrange multipliers gives the recursive updating rule

w(k + 1) = w(k) + CIM̄ (k)Xap(k)
[
XT

ap(k)CIM̄ (k)Xap(k)
]−1

[eap(k)− γ̄(k)] (6.69)

The updating equation of the SM-PUAP algorithm is given by

w(k + 1) ={
w(k) + CIM̄ (k)Xap(k)

[
XT

ap(k)CIM̄ (k)Xap(k)
]−1

[eap(k)− γ̄(k)] if |e(k)| > γ̄
w(k) otherwise

(6.70)

As can be noticed from equation (6.70), for a fixed value of ‖eap(k)− γ̄(k)‖2, the Euclidean distance
between two consecutive coefficient vectors is minimized if ‖XT

ap(k)CIM̄ (k)Xap(k)‖ is maximized.
As a result, a natural choice for the M̄ coefficients to be updated are those that will be multiplied by
the elements of Xap(k) with the largest norm.

Like in the case of the SM-AP algorithm of equation (6.33), it is straightforward to derive a simplified
version of the SM-PUAP algorithm, whose update equation is given by

w(k + 1) = w(k) + CIM̄ (k)Xap(k)
[
XT

ap(k)CIM̄ (k)Xap(k)
]−1

μ(k)e(k)u1 (6.71)

where

e(k) = d(k)− wT (k)x(k) (6.72)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise
(6.73)

This algorithm also minimizes the Euclidean distance ‖w(k + 1)−w(k)‖2 subject to the constraint
w(k + 1) ∈ ψL+1(k) maintaining the values of the a posteriori errors, ε(k − i), at iteration k − i.
Note that μ(k) starts with high values, becomes small when the error reduces, and reaches zero
whenever moduli of the errors become smaller than the threshold. An interesting choice for the index
set IM̄ (k) specifying the coefficients to be updated is the M̄ coefficients leading to the maximum
value of ‖XT

ap(k)CIM̄ (k)Xap(k)‖. Algorithm 6.6 describes in detail the simplified version of the
SM-PUAP algorithm.

6.8.1 Set-Membership Partial-Update NLMS Algorithm

The simplest form of the SM-PUAP algorithm is the set-membership partial-update NLMS (SM-
PUNLMS) algorithm. The updating equation of the SM-PUNLMS algorithm follows directly from
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Algorithm 6.6

The Simplified Set-Membership
Partial-Update Affine Projection Algorithm

Initialization
x(0) = w(0) = [0 . . . 0]T

choose γ̄ around
√

5σn

γ = small constant
Do for k ≥ 0

eap(k) = dap(k)− XT
ap(k)w(k)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise

w(k + 1) = w(k) + CIM̄ (k)Xap(k)
[
XT

ap(k)CIM̄ (k)Xap(k) + γI
]−1

μ(k)e(k)u1

equation (6.71) and is given by

w(k + 1) = w(k) + μ(k)
e(k)CIM̄ (k)x(k)
‖CIM̄(k)

x(k)‖2 (6.74)

where

μ(k) =

{
1− γ̄

|e(k)| if w(k) �∈ H(k), i.e., if |e(k)| > γ̄

0 otherwise
(6.75)

In [17], a number of properties and an interesting geometrical interpretation of the SM-PU-NLMS
algorithm update are provided, some of these results are discussed here. Fig. 6.9 depicts the situation
where one coefficient updates out of three, i.e., M̄ = 1 and N + 1 = 3. As can be observed, the
element x2(k) is the largest in magnitude among the elements of x(k), therefore a natural choice
for CIM̄2

(k) is a diagonal matrix whose diagonal elements are [0 1 0]. The solution denoted by
wSM−NLMS is obtained by an orthogonal projection starting from w(k) onto the closest boundary of
the constraint setH(k). The angle denoted by θ shown in Fig. 6.9 is the angle between the direction
of update CIM̄2

(k)x(k) = [0 x2(k) 0]T and the input vector x(k). When M̄ coefficients are updated,

the general expression for the cosine of θ in R
N+1 is given by the relation

cos θ =
‖CIM̄ (k)x(k)‖
‖x(k)‖ (6.76)

whereas for the case in discussion, the particular expression for the cosine is

cos θ =
|x2(k)|√|x1(k)|2 + |x2(k)|2 + |x3(k)|2
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Figure 6.9 Partial coefficient update for R
3 and M̄ = 1, where |x2(k)| > |x1(k)| > |x3(k)|.

The SM-PUNLMS algorithm may face convergence problem whenever trying to find a solution in
the constraint set. If the number of coefficients to be updated is small, cos θ might become small
according to equation (6.76), with θ becoming close to π

2 , as can be observed in Fig. 6.10. As a
result, the solution in the constraint set will depart from the SM-NLMS solution, and will give rise
to stability problems.

A possible solution is to increase M̄ up to the point where the solution provided by the SM-PUNLMS
algorithm reaches a prescribed closer distance of SM-NLMS or NLMS solutions. Unfortunately this
solution does not impose an upper bound on the value of M̄ , and it is highly probable that during
initial iterations M̄ would be close to the overall number of filter coefficients N + 1. On the other
hand, it is desirable that M̄ � N + 1 in order to make the partial update effective in reducing the
computational complexity.

Let’s first define as M̄max the maximum number of coefficients that can be updated at any given
iteration. It is now required to derive a strategy to control the number of coefficients to be updated
while keeping a bound on the norm of the update. If ‖CIM̄ (k)x(k)‖2 = ‖x(k)‖2, it is straightforward
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Figure 6.10 Projection in partial-update algorithms.

to verify that the angle φ is equal to π
2 and wNLMS−w(k +1) represents the projection of wNLMS−

w(k) into CIM̄ (k)x(k). For angle φ < π
2 the norm of the updating term might become large in

order to meet the error modulus requirement, placing the partial solution far way from wNLMS
and wSM−NLMS. Indeed, whenever φ ≥ π

2 the norm of the updating term becomes smaller than
the one required to turn the a posteriori error equal to zero (the one reaching wNLMS). Then,
an alternative solution is to increase the number of coefficients to update up to the condition that
‖CIM̄ (k)x(k)‖2 ≥ μ(k)‖x(k)‖2, for μ(k) = 1− γ̄/|e(k)|, or M̄ = M̄max. This strategy will keep
the angle φ lower bounded by π

2 . If M̄ = M̄max, increase the threshold γ̄ temporarily at the kth
iteration to

γ̄(k) =
(‖x(k)‖2 − ‖CIM̄(k)

x(k)‖2)
‖x(k)‖2 |e(k)| (6.77)

Fig. 6.11 shows that this strategy temporarily expands the constraint set in order to allow a feasible
solution in the case where the required number of coefficients to meet a solution in the constraint set
exceeds M̄max, at a given iteration.

Another possible strategy for the partial update is to choose the set of coefficients to be updated in a
random manner [19] utilizing randomly partitions of the N + 1 coefficients consisting of mutually
exclusive subsets of M̄ elements, each determined by the index setIM̄ (k) = {i0(k) . . . iM̄−1(k)}, as
previously defined. This solution avoids the possible instability of the partial-update LMS algorithm
originated by the choice of subsets in a deterministic manner, since in the latter case it is usually
possible to generate input signals in which the algorithm fails to converge.
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Figure 6.11 Variable constraint set H(k) with threshold γ̄(k).

6.9 SIMULATION EXAMPLES

In this section, some adaptive-filtering problems are described and solved by using some of the
algorithms presented in this chapter.

Example 6.1: SM-AP Algorithms, system identification simulation

An adaptive-filtering algorithm is used to identify the system described in the example of subsection
3.6.2 using the following SM-AP algorithms:

Set-membership affine projection using L = 0, L = 1 and L = 4.

Set-membership partial-update affine projection with M̄ = 5, using L = 0, L = 1 and L = 2
and only for the eigenvalue spread of 20.

Do not consider the finite-precision case.

Solution:

All the results presented here for the affine projection and the SM-AP algorithms are obtained by
averaging the results of 200 independent runs. We first run the affine projection algorithm with a
value of μ = 0.18, with γ = 10−6. With this value of μ, the misadjustment of the affine projection
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algorithm is about the same as that of the LMS algorithm with μ = 0.0128 and eigenvalue spread of
the input signal autocorrelation matrix of 20, see Table 3.1. Fig. 6.12 illustrates the learning curves
for the eigenvalue spread 80 and distinct values of L. As expected the convergence speed and the
misadjustment increase with the value of L.
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Figure 6.12 Learning curves for the affine projection algorithms for L = 0, L = 1, and L = 4,
eigenvalue spread equal 80.

Table 6.2 lists the measured misadjustments along with their theoretical values obtained from equation
(4.125) for distinct versions of the affine projection algorithms. As expected the misadjustment
increases with the values of the reuse factor and with the ratio λmax

λmin
.

Table 6.2 Evaluation of the Affine Projection Algorithm, μ = 0.18

λmax
λmin

Misadjustment, L = 0 Misadjustment, L = 1 Misadjustment, L = 4

Experiment Theory Experiment Theory Experiment Theory

1 0.1275 0.0989 0.2665 0.1978 0.9554 0.4945

20 0.1458 0.0989 0.2951 0.1978 1.0881 0.4945

80 0.1708 0.0989 0.3157 0.1978 1.2091 0.4945

Figs. 6.13, 6.14 and 6.15 depict the the learning curves for the simplified SM-AP algorithm for the
eigenvalue spreads 1, 20 and 80, respectively. In each figure, distinct values of L are tested and the
value of γ̄ is

√
5σn. As can be observed, the convergence speed and the misadjustment increase with
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the value of L. As will be discussed, a reduction in the misadjustment is achieved at the expense of
mild increase in number of iterations for convergence.
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Figure 6.13 Learning curves for the SM-AP algorithms for L = 0, L = 1, and L = 4, eigenvalue
spread equal 1.

Table 6.3 illustrates the convergence speeds of the affine projection algorithms and the SM-AP
algorithms for distinct input signal eigenvalue spreads and distinct reuse factors. As can be observed,
the SM-AP algorithms have convergence speeds comparable to the corresponding affine projection
algorithms, being better for low values of L and worse for high values of L. The number of iterations
for convergence is measured whenever the average square error reaches a value 5% above the noise
floor.

Table 6.3 Convergence Speed of the Affine Projection and SM-AP Algorithms

Convergence speed
λmax
λmin

L = 0 L = 1 L = 4

AP SM-AP AP SM-AP AP SM-AP

1 316 227 213 225 143 201

20 465 344 195 227 137 200

80 644 468 197 229 135 200
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Figure 6.14 Learning curves for the SM-AP algorithms for L = 0, L = 1, and L = 4, eigenvalue
spread equal 20.
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Figure 6.15 Learning curves for the SM-AP algorithms for L = 0, L = 1, and L = 4, eigenvalue
spread equal 80.
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Table 6.4 includes the measures misadjustments of the affine projection algorithms and the SM-AP
algorithms considering the same input signal eigenvalue spreads and distinct reuse factors as before.
As can be seen, the SM-AP algorithms have lower misadjustments than the corresponding affine
projection algorithms for higher values of L.

Table 6.4 Misadjustment of the Affine Projection and SM-AP Algorithms

Misadjustment
λmax
λmin

L = 0 L = 1 L = 4

AP SM-AP AP SM-AP AP SM-AP

1 0.1275 0.1542 0.2665 0.1797 0.9554 0.3570

20 0.1458 0.2094 0.2951 0.2793 1.0881 0.5462

80 0.1708 0.2723 0.3157 0.3895 1.2091 0.6934

The SM-PUAP algorithm was set to update only 5 coefficients per iteration. For the SM-PUAP
algorithm the learning curves are depicted in Fig. 6.16 for distinct values of L. The values of γ̄
for L = 0, 1, and 2 are

√
5σ2

n,
√

7σ2
n, and

√
17σ2

n, respectively. The corresponding measured
misadjustments were 0.1979, 0.3137, and 0.8189. An efficient algorithm for the best selection of the
updating coefficients in the partial-updating affine projection algorithm is an open problem, although
some approximate solutions exist [21]. The choice of the coefficients to be updated relies on a low
complexity procedure to sort out the M̄ columns of XT

ap(k) consisting of choosing the ones whose
Euclidean norm have higher values.

�

6.9.1 Echo Cancellation Environment

The elimination of echo signals in communication networks and in hands-free communication envi-
ronment are challenging problems in which adaptive filtering plays a major role [29]-[30].

The network echo, also known as line echo, is caused by the hybrid transformer whose main task is
to convert the two-wire loop connection between the end user and the central office into a four-wire
circuit. In the two-wire case, the signal in both directions traverses the two wires, whereas in the
four-wires the signals in each direction are separated. Fig. 6.17 illustrates a very simplified long-
distance telephone system where the location of the echo canceller is also included. The four-wire
circuit exists only in long-distance connections and the delay included in Fig. 6.17 accounts for the
traveling time of the signal from one hybrid to the other. Usually the far-end hybrid leaks back to
the phone its own transmitted signal giving rise to the echo. If the echo delay is over 100 ms, its
effect in the conversation is very disturbing. The early solution comprised of echo suppressor, whose
aim was removing the echo from the talker by cutting off the outgoing hybrid port whenever an
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incoming signal is detected. This approach works well for low round trip delays, but for large delays
an adaptive echo canceller is more effective.

Echo cancellers are also used in acoustics echo cancellation problems where its task is to model the
transfer function from the loudspeaker to the microphone in a given room. This application is more
challenging than the network echo cancellation since the echo path impulse response is much longer,
usually well above 500 taps, and changes quite rapidly. As depicted in Figs. 6.17 and 6.18, the echo
cancellation problems in networks and in acoustics are closely related, with the latter requiring more
sophisticated algorithms such as the subband adaptive filters of Chapter 12.

For both applications two measures of performance are the echo return loss (ERL) and the the echo
return loss enhancement (ERLE). The ERL is ratio of the returned-echo power and the input-signal
power, measuring the attenuation faced by the signal in the echo path. The ERL, measured in dB, is
defined as

ERL = −10 log
σ2

d

σ2
x

= −10 log
E[d2(k)]
E[x2(k)]

(6.78)

The ERLE measures the reduction in the echo obtained by utilizing the echo canceller, that is

ERLE = −10 log
σ2

e

σ2
d

= −10 log
E[e2(k)]
E[d2(k)]

(6.79)

For simulation purposes we will utilize the models recommended by the International Telecom-
munication Union (ITU) in the ITU-T recommendation G.168 for digital network echo cancellers
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Figure 6.16 Learning curves for the SM-PUAP algorithms for L = 0, L = 1, and L = 2, eigenvalue
spread equal 20.
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Figure 6.17 Two-wire to four-wire conversion in long-distance telephone calls.

[31]. The main focus is to highlight the typical artificial input signals and echo path models utilized
to test the performance of the echo canceller algorithms. The echo cancellers should be disabled
during signaling transmission periods, however, no mention is given here to this and many other
practical issues described in the recommendation related to the actual implementation of the echo
canceller, see [31] for details.

The tests recommended by the standard ITU-T G.168 utilize particular signals such as noise, tones,
facsimile signals and a set of composite source signals (CSS). In our simulations we apply the CSS
input signal as input to the echo cancellers. The CSS simulates speech characteristics in single talk
and double talk enabling a performance test for echo cancellers for speech signals. The CSS consists
of speech signal, non speech signal and pauses. The speech signal activates the speech detectors
and has approximately 50 msec of duration. The speech signal is followed by a pseudo-noise signal
having constant magnitude Fourier transform whose phase changes with time. The pause is the third
component of the CSS representing an amplitude modulation to the CSS and the usual pauses during
a conversation. The pause duration ranges from 100 msec to 150 msec. Fig. 6.19 illustrates the CSS
for single talk. The specific timings are:

Tvst (Speech signal): 48.62 msec.

Tpn (Pseudo noise): 200.00 msec.

Tpst (Pause): 101.38 msec.

Tst1 (Half period): 350.00 msec.

Tst (Full period): 700.00 msec.

The echo path model according to the recommendation ITU-T G.168, is a linear digital filter whose
impulse response h(k) is given by

h(k) = (Ki10−ERL/20)mi(k − δ) (6.80)
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Figure 6.18 Echo cancellation setups.

where ERL is the echo return loss defined in equation (6.78) and h(k) consists of a delayed and
attenuated version of any sequence sorted from mi(k), i = 1, 2, ..., 8, for the channel models 1 to 8.
These models represent channels whose origins range from hybrid simulation models to measured
responses on telephone networks. The constants Ki are determined by the input signal used in the
test [31] and are different for distinct echo path models.

Just for illustration Table 6.5 shows the sequence m1(k) composing the echo-path impulse response.
In this case, for CSS type input signal, the scaling signal should be signal K1 = 1.39 and the
minimum value of the ERL to be used in the test is 6 dB. The resulting echo-path impulse response
is depicted in Fig. 6.20. For the other cases, please refer to [31].
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Figure 6.19 CSS single talk characteristics.

Table 6.5 Coefficients of m1(k), with k Ranging from 0 to 63, to be Read Column-wise

m1(k)

-0.00436 0.46150 0.00390 -0.03948 -0.01098 0.00745 0.01033 0.00899 0.00073 -0.00512 -0.00772

-0.00829 0.34480 -0.08191 -0.02557 -0.00618 0.00716 0.01091 0.00716 -0.00119 -0.00580 -0.00820

-0.02797 -10427 -0.01751 -0.03372 -0.00340 0.00946 0.01053 0.00390 -0.00109 -0.00704 -0.00839

-0.04208 0.09049 -0.06051 -0.01808 -0.00061 0.00880 0.01042 0.00313 -0.00176 -0.00618 -0.00724

-0.17968 -0.01309 -0.03796 -0.02259 0.00323 0.01014 0.00794 0.00304 -0.00359 -0.00685

-0.11215 -0.06320 -0.04055 -0.01300 0.00419 0.00976 0.00831 0.00304 -0.00407 -0.00791
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Figure 6.20 Echo-path impulse response.
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Example 6.2: Echo cancellation simulations

For the algorithms pointed below, run simulations for an echo cancellation experiment consisting of
50 independent runs describing the average performance for single talk input signal for one of the eight
channel models described in [31], specifically the one described in Table 6.5 with an ERL = 12dBs.
List the resulting ERLE in dB for each algorithm as well as their respective number of iterations to
convergence, measured whenever the average of the last 100 error signals is 10% above the error in
steady state. Utilize echo cancellers with sufficient order.

Normalized LMS algorithm.

RLS algorithm.

SM-NLMS algorithm.

The simplified SM-AP algorithm with L = 0, 1, 4.

The SM-PUAP algorithm with L = 0, 1, 4, and M̄ = floor[2(N+1)
3 ] where floor[·] indicates the

largest integer smaller than [·].

For channel model 1, depict the learning curves for the simplified SM-AP and the SM-PUAP algo-
rithms.

Solution:

The numbers and figures presented in this example are result of averaging fifty independent runs. The
normalized LMS algorithm utilizes a value of μ = 0.5, with the value of the regularization parameter
of γ = 10−6. The forgetting factor of the RLS algorithm is λ = 0.99. These values of μ and
λ were chosen after some simulation trials indicating favorable performances of the corresponding
algorithms. In the SM-AP algorithms distinct values of L are tested and the value of γ̄ is 0.0002.

Fig. 6.21 depicts the CSS signal utilized in this example. Fig. 6.22 illustrates the error signal for
the simplified SM-AP algorithm with L = 0, 1, 4, where it can be observed that the error reduces
faster for the case with L = 4 since the algorithm is more sophisticate, even though the convergence
speeds for L = 1 and L = 4 are quite similar. Fig. 6.23 shows that with the SM-PUAP algorithm
the convergence speed is not substantially reduced, showing that the partial updating strategy is very
useful. A low complexity way to choose the elements to be updated was to sort out the M̄ columns
of XT

ap(k) whose Euclidean norm have higher values. The SM-PUAP algorithm was set to update
only 2

3 of the coefficients.

Table 6.6 lists the relevant parameters in the echo cancellation environment, namely the ERLE in
dB for each algorithm as well as their respective convergence speed. As can be seen in Table 6.6,
the algorithms SM-NLMS (L = 0), SM-AP, and SM-PUAP require less updates than the remaining
algorithms compared. The fastest converging algorithm is the SM-AP (L = 4) but it requires the
highest computational complexity among the set-membership algorithms. The algorithms SM-AP
and SM-PUAP, with L = 4, are faster converging than the RLS while requiring much less updates and
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Figure 6.23 Learning curves for the SM-PUAP algorithm L = 0, 1, 4.

computations. On the other hand the RLS algorithm lead to much higher ERLE than the remaining
algorithms followed by the NLMS. The SM-NLMS and NLMS algorithms have less computations
but are slow converging as compared to the remaining SM-AP algorithms of this example.

�

6.9.2 Wireless Channel Environment

A typical continuous-time model for mobile communication channels is described by [33]

h̃(t) =
I∑

i=0

√
piai(t)bi(t− τi) (6.81)

where t is the time variable, pi represents the power of the ith tap weight of the FIR model, ai(t) is
complex Gaussian process that multiplies the corresponding transmitted symbol denoted by bi(t−τi),
and τi accounts for the relative delay that the receiver detects the ith replica of the transmitted symbols.

The power spectrum of ai(t) is responsible for the rate of fading of the ith replica (or reflection) of
the transmitted symbols. This spectrum is also known as Doppler spectrum. The complete model
requires the specification of the Doppler spectrum of the tap weights, denoted by Ra(f) with f being
the analog frequency, the delays τi, as well as the powers pi, for i = 0, . . . , I .
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Table 6.6 Simulation Results: Channel Model - ITU-T G.168, No. 1

Reuse Factor L

0 1 4

Updates

SM-AP 1320 497 290

SM-PUAP 1335 584 364

Convergence

NLMS 8423 - -

RLS 6598 - -

SM-AP 2716 2289 1832

SM-PUAP 2725 2303 1832

ERLE

NLMS 80.30 - -

RLS 307.83 - -

SM-AP 42.96 43.00 43.62

SM-PUAP 43.87 42.72 43.42

The process ai(t) is the result of a cluster of multipath components that cannot be resolved by the
receiver, arriving within a range of delays3. Usually for outdoor environments of mobile communi-
cation systems, the model for the Doppler power spectrum is represented by the Jakes model [32]
given by

Ra(f) =

⎧⎨
⎩

1
πfD

1√
1−( f

fD
)2

for |f | ≤ fD

0 for |f | > fD

where fD = v
λs

= vfo

c is the maximum Doppler frequency shift, λs is the carrier wavelength, v

is the mobile velocity in m/s, c is the speed of light (3.00 × 108 m/s), and fo is the carrier central
frequency.

If we assume that the input signal is complex and bandlimited to a bandwidth around BW, the
received signal can be generated by filtering the input signal through a tapped delay line whose tap
coefficients are given by

√
piai(t) and the delay elements correspond to T = 1

BW [33].

As an illustration, Table 6.7 lists the parameters of test channel models for an outdoor to indoor
environment to be utilized in simulations. These models originate from a standard described in [34]
for the Universal Mobile Telecommunications System (UMTS). In Table 6.7, the delays are relative

3τi − 1
2BW < τ < τi + 1

2BW with BW denoting the bandwidth of the transmitted signal.
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to the first tap whereas the power is relative to the strongest tap. The Doppler power spectrum applies
to each tap.

Let’s consider for illustration a typical case of UMTS where the chip duration is 260.04 nano seconds
(ns) for a transmission rate of 3.84 Mc/s (Mega chips per second). In the case the time difference
between two multipath components is at least 260.04 = 1

3.84 ns, it is possible for the receiver to
separate them. For example according to Table 6.7, in a digital simulation environment where the
input signal is sampled at chip rate for channel B, it will be possible to verify the presence of the
multipath signals of the taps at approximately

1 chip from the reference for tap 2.

3 chips from the reference for tap 3.

5 chips from the reference for tap 4.

9 chips from the reference for tap 5.

14 chips from the reference for tap 6.

where it was taken into consideration that the relative delays in the table represent the time where
the energy of the continuous-time reflection reaches its maximum.

Table 6.7 Channel Model Parameters: Outdoor to Indoor Test Environment with Jakes Doppler Spectrum

Tap Channel A Channel B

Relative Delay Average Power Relative Delay Average Power

ns dB ns dB

1 0 0 0 0

2 110 -9.7 200 -0.9

3 190 -19.2 800 -4.9

4 410 -22.8 1200 -8.0

5 – – 2300 -7.8

6 – – 3700 -23.9

The coefficients of a time-varying channel including the Doppler effects can be generated as depicted
in Fig. 6.24, where n̄(t) is a Gaussian noise source and the Doppler filter is an approximation of
HD(f) =

√
Ra(f). Fig. 6.25 shows an efficient way to generate the coefficients of the channel

model [36]-[37], where from two real-valued Gaussian sources with N̄ + 1 points we calculate their
symmetrical FFT spectrum [38]. Then we multiply the FFT outputs by HD(fm̄) where fm̄ = m̄ 2fD

N̄+1
for m̄ = 0, 1, . . . , N̄ , and the resulting vector is applied as input to an N̄ + 1 length IFFT. The
quadrature and in-phase results are squared at each point in time, added, with the result square
rooted. Finally, an N̄ + 1-length time series is generated. In an actual simulation environment the
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Gaussian noise is generated with around α1 samples per period of the maximum Doppler frequency,
that is 1

α1fD
, therefore the sampling rate of the channel coefficients is around α1fD with α1 being an

integer usually chosen in the range 5 to 12. As can be noticed the coefficients of the channel model
are generated from the Jakes model of the Doppler effect. However, the system simulation takes
place at much higher frequency rate denoted as fsim. As a result, an interpolation operation given by
Lsim = floor[ fsim

α1fD
] should be applied to the coefficients of the channel model.

n t( ) a ti ( )

pi

H fD ( )
-

x

Figure 6.24 Generation of multipath coefficient including Doppler effect.

Figure 6.25 Simulation setup for Jakes model.

Example 6.3: CDMA receiver simulations

Consider a downlink connection of a synchronous direct-sequence code-division multiple access
(DS-CDMA) system with J users, G + 1 chips per symbol and a channel with I + 1 paths. Assume
the user receiver is moving at v = 30.00m/s and the carrier frequency is at fo = 1.0GHz. We
consider a simple model for the channel inspired by the UMTS test model above described. The
channel model should be generated at a simulation sampling rate of at least fsim = α2× 1

T = α2BW
samples per second, with α2 being normally an integer ranging from 5 to 12. It is worth emphasizing
again that the channel coefficients will be generated at a much lower rate than the simulation sampling
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rate. As a result, some standard interpolation technique [38] should be used in order to match the
channel model generation rate with simulation sampling rate.

Consider that the chip rate of the CDMA system is 0.5 Mc/s (Mega chips per second) and that we
utilize α2 = 10 samples per chip to simulate the system. As such, the CDMA system simulation has
sampling rate equal to 5 Msamples/s. In this case the interpolation factor applied to the chip level
signal should be Linterp = floor[5Mc/s

1
T

] = floor[5Mc/s
BW ], where floor[·] indicates the largest integer

smaller than [·]. The sampling frequency that the channel model should be generated is then given
by

fsim ≈ BWLinterp ≈ α1fDLsim

in Msamples/s. In this particular discussion, assuming the input signal sampling rate equal to the
chip rate the interpolation factor Linterp is equal to 10. Note that in the above discussion we satisfy
the sampling theorem by utilizing the complex envelope, that is the complex lowpass equivalent, of
the transmitted signal. This means the sampling rate is equal to the channel bandwidth.

Assuming the channel model as described is constant during each symbol interval, and that the input
signal vector x(k) is given by4

x(k) =
J∑

j=1

Ajbj(k)Cjh(k) + n(k)

=
J∑

j=1

Ajbj(k)Cjh(k) + nn(k) + nISI(k) (6.82)

where x(k) is an (N + 1 = G + I + 1) × 1 vector and nn(k) is defined in equation (6.58). We
consider that nn(k) is a complex Gaussian noise vector with E[nn(k)nH

n (k)] = σ2
nI. The symbols

bj(k) are four QAM given by
√

2
2 {±1± j1}, where the amplitude of user j is Aj . The channel vector

is h(k) = [h0(k) . . . hI(k)]T and the (N + 1)× (I + 1) convolution matrix Ck contains one-chip
shifted versions of the signature sequence for user j given by sj = [sj,0 sj,1 . . . sj,G]T . Matrix Ck

has the following format

Cj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj,0 0 0 · · · 0
sj,1 sj,0 0 · · · 0
sj,2 sj,1 sj,0 · · · 0

...
...

. . .
...

...
0 sj,G sj,G−1 · · · sj,G−I

...
...

. . .
...

...
0 0 · · · 0 sj,G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.83)

This example aims to access the bit error rate (BER) performance of some adaptive-filtering algo-
rithms such as:

4In an actual implementation x(k) originates from the received signal after filtering it through a chip-pulse matched filter
and then sampled at chip rate.
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Normalized LMS algorithm.

RLS algorithm.

SM-NLMS algorithm.

The simplified SM-AP algorithm with L = 4 and time-varying γ̄(k).

The SM-PUAP algorithm with L = 1, and M̄ = floor[ (N+1)
1.8 ] where floor[·] indicates the

largest integer smaller than [·].

The receiver of the DS-CDMA system simulation setup is depicted in Fig. 6.26 where we utilize
as spreading sequences the Gold sequences of length G + 1 = 7 listed in Table 6.26 [35]. The
Gold sequences are not orthogonal to each other leaving some multi-access interference from the
other users in the CDMA system on the information of the user of interest, even in synchronous
transmission case.

e k( )

y k( )
x k( )

Training
Sequence

Decision
Device

Linear
Receiver

w k( )

+
-

z
-L

Figure 6.26 Simulations setup for DS-CDMA example.

Table 6.8 Length 7 Gold Sequences

Sequences Gold Sequences

s1 1 0 0 1 0 1 1

s2 1 1 1 0 1 0 0

s3 0 1 1 1 1 1 1

s4 1 1 1 0 0 0 1

s5 1 0 1 0 1 1 0

s6 0 0 0 0 1 0 1

s7 1 1 0 1 1 0 0

s8 0 0 1 1 0 0 0

s9 0 1 0 0 0 1 0
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All users are synchronized such that all their information face the same channel with three paths with
relative powers given by 0, −0.9 and −4.9 dB, respectively. The relative delays between the paths
are determined by a uniformly distributed random variable whose outcome is mapped to integers in
the range 1 to 4, where these integers represent the number of chips.

The system starts with 5 users where all the 4 interferers have transmission powers 3 dB below the
desired user power level. The corresponding signal to noise ratio, defined as the ratio between the
desired user symbol energy per bit and the environment noise, is given by Eb/N0 = 20 dB. The
quantityN0/2 corresponds to power spectral density of the noise for positive and negative frequencies,
that is N0 is average noise power per bandwidth where the noise is measured at the receiver input. At
2000 symbols, an interferer with the same power as the desired user power enters the system, whereas
2 interferers with the same level of power disconnect. This dynamic behavior aims at addressing, for
this particular example, if some noticeable disturbance to the receiver performance originates from
user access and disconnection from the system.

Plot the evolution of the estimated of the noise and ISI powers as compared with the actual interference
power.

Solution:

For this example we measure the results by averaging the outcomes from 50 independent runs. In the
case of the normalized LMS algorithm the value of μ is 0.3, whereas the regularization parameter
value is γ = 10−6. The RLS algorithm is implemented with λ = 0.97. Again these values of μ
and λ were chosen after some simulation trials. The SM-AP algorithm uses L = 4 and variable γ̄,
whereas the SM-PUAP algorithm uses L = 1.

For a better view of the results the channel was allowed to change completely in an interval of 50
symbols, equivalent to 450 chips. Fig. 6.27 depicts the first 450 samples of the learning curves for the
algorithms compared in this example, whereas Fig. 6.28 shows the behavior of these algorithms in the
long run. In both figures the channel changes are noticeable every 350 chips, where the first change
occurs at around 370 chips due to the channel plus spreading delays. As can be observed, the NLMS,
RLS, SM-NLMS and the SM-AP algorithms were able to track the changes in the channel to some
extent. However, as shown in Fig. 6.29, the simplified SM-PUAP algorithm with L = 1 using variable
γ̄ has very competitive performance since it is among the fastest converging in such nonstationary
environment. Very similar result is obtained with the simplified SM-AP algorithm which has higher
computational cost. All the algorithms did not show any noticeable distinct behavior after the entrance
and exit of users in the system, mainly due to the fact that the channel model changes at every 50
symbols was the main source of changes.
Fig. 6.30 plots the evolution of the estimated noise and ISI powers as compared with the actual
interference power. The estimated curve was obtained using equation (6.63) with α = 0.96. As can
be observed, the estimated average power of the interferences follows closely its actual value for
this particular example, except at iteration 2000 when the interference estimate takes a few iterations
to track the true interference power. The accurate estimate of the disturbances turns the SM-AP
algorithms very attractive since virtually no environment dependent parameter is required to achieve
good overall performance.

�
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Figure 6.27 Learning curves for the NLMS, RLS, SM-NLMS, and SM-AP algorithms; 250 iterations.
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Figure 6.28 Learning curves for the NLMS, RLS, SM-NLMS, and SM-AP algorithms.
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6.10 CONCLUDING REMARKS

In this chapter, a number of adaptive affine projection algorithms were derived utilizing the set-
membership concept. Although the algorithms in the affine projection family might have high
misadjustment, their combination with deterministic objective functions leading to data selective up-
dating results in computationally efficient algorithms with low misadjustment and high convergence
speed. The set-membership family of algorithms can be very attractive for mobile terminals, sensor
arrays and embedded systems where by avoiding unnecessary computation the battery life is in-
creased. In stationary environments, the set-membership algorithms require more frequent updating
during the early iterations, as a consequence, if the computational complexity is of major concern
some strategy to reduce even further the computation count is required. The proposed solution is
to introduce the concept of partial update, in which only a subset of the adaptive filter are updated
in each iteration. It is mentioned that some caution should be exercised in choosing the selection
of the coefficients in order to avoid stability problems. The resulting set-membership affine projec-
tion algorithms with partial update are powerful solutions to exploit the tradeoff between speed of
convergence and misadjustment with computational burden.

It should be mention that there are set-membership algorithms with automatic data-reusing factor
according with the progress of the algorithm [20], [23]. Simulation results show that in most of
iterations the SM-AP algorithm requires a small number of reuses, that is in the limit, it becomes
the SM-NLMS or the SM-BNLMS algorithms. The set-membership technique can also be applied
to generate constrained affine projection algorithms with low computational complexity as proposed
in [39].
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29. E. Hänsler and G. Schmidt, Acoustics Echo and Noise Control: A Practical Approach, John
Wiley & Sons, Hoboken, NJ, 2004.
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6.12 PROBLEMS

1. In a system identification application the unknown system has transfer function given by

H(z) =
1
2
− 1

2
z−1

whereas the input signal is a binary (−1, 1) random signal, and the additional noise is generated
via (− 1

4 , 1
4 ) by tossing a fair coin. Evaluate by hand the first 10 iterations SM-NLMS algorithm.

2. Show that the updating equation (6.50) is equivalent to the second coefficient updating of
Algorithm 6.4.

3. Repeat problem 1 for the SM-BNLMS algorithm 1.

4. Repeat problem 1 for the SM-BNLMS algorithm 2.
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5. Perform the equalization of a channel with the following impulse response

h(k) = ku(k)− (2k − 9)u(k − 5) + (k − 9)u(k − 10)

using a known training signal consisting of a binary (-1,1) random signal. An additional Gaussian
white noise with variance 10−2 is present at the channel output.
(a) Apply the SM-NLMS algorithm with an appropriate γ̄ and find the impulse response of an
equalizer with 15 coefficients.
(b) Convolve the equalizer impulse response at an iteration after convergence, with the channel
impulse response and comment on the result.

6. In a system identification problem, the input signal is generated by an autoregressive process
given by

x(k) = −1.2x(k − 1)− 0.81x(k − 2) + nx(k)

where nx(k) is zero-mean Gaussian white noise with variance such that σ2
x = 1. The unknown

system is described by

H(z) = 1 + 0.9z−1 + 0.1z−2 + 0.2z−3

The adaptive filter is also a third-order FIR filter, and the additional noise is a zero-mean Gaussian
noise with variance given by σ2

n = 0.001.

Using the SM-BNLMS algorithm:
(a) Choose an appropriate γ̄, run an ensemble of 20 experiments, and plot the average learning
curve.
(b) Measure the excess MSE.

7. Derive the complex versions of the SM-BNLMS algorithms 1 and 2 to equalize a channel with
the transfer function given below. The input signal is a four QAM signal representing a randomly

generated bit stream with the signal to noise ratio σ2
x̃

σ2
n

= 20 at the receiver end, that is, x̃(k) is
the received signal without taking into consideration the additional channel noise. The adaptive
filter has 10 coefficients.

H(z) = (0.34− 0.27j) + (0.87 + 0.43j)z−1 + (0.34− 0.21j)z−2

(a) Run the algorithm for μ = 0.1, μ = 0.4, and μ = 0.8. Comment on the convergence
behavior in each case.
(b) Plot the real versus imaginary parts of the received signal before and after equalization.
(c) Increase the number of coefficients to 20 and repeat the experiment in (b).

8. In a system identification problem, the input signal is generated from a four QAM of the form

x(k) = xre(k) + jxim(k)

where xre(k) and xim(k) assume values ±1 randomly generated. The unknown system is
described by

H(z) = 0.32 + 0.21j + (−0.3 + 0.7j)z−1 + (0.5− 0.8j)z−2 + (0.2 + 0.5j)z−3
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Algorithm 6.7

The Complex Set-Membership Affine Projection Algorithm

Initialization
x(0) = w(0) = [0 . . . 0]T

choose γ̄ around
√

5σn

γ = small constant
Do for k ≥ 0

e∗ap(k) = d∗ap(k)− XH
ap(k)w(k)

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise

w(k + 1) = w(k) + Xap(k)
[
XH

ap(k)Xap(k) + γI
]−1

μ(k)e∗(k)u1

The adaptive filter is also a third-order complex FIR filter, and the additional noise is zero-mean
Gaussian white noise with variance σ2

n = 0.04. Derive and use the complex set-membership
normalized LMS algorithm, choose an appropriate γ̄, run an ensemble of 20 experiments, and
plot the average learning curve.

9. Repeat problem 8 utilizing the complex version of SM-AP algorithm, detailed in Algorithm 6.7
provided, with L = 4.

10. The double threshold SM-AP algorithm can be derived for applications such as echo cancellation
where there is no interest in reducing the error signal power beyond certain level. Derive an SM-
AP algorithm by choosing the vector γ̄(k) in such a way that the echo canceller does not reduce
the output error power below the power of the far-end signal. Instead of using as threshold a
single value of γ̄, the proposed algorithm uses a range for the acceptable output error value
between γ̄1 and γ̄2, where γ̄1 > γ̄2, as depicted in Fig. 6.31.

11. In applications where the parameters to be estimated are dominated by few dominant coefficients,
that is, they are sparse, it is often desirable to employ a proportionate adaptation strategy
where weights are assigned to parameter components proportional to their magnitude [20]. The
updating equation of the proportionate SM-AP algorithm is given by

w(k + 1) = w(k) + P(k)Xap(k)
[
XT

ap(k)Xap(k)
]−1

[eap(k)− γ̄(k)] (6.84)
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H(k)

H(k − 1)

d(k)−wTx(k) = γ1

d(k)−wTx(k) = γ2

d(k)−wTx(k) = −γ2

d(k)−wTx(k) = −γ1

d(k)−wTx(k) = 0

d(k − 1)−wTx(k − 1) = ε(k − 1)

w(k)

w(k + 1)

w(k)

w(k)

w(k + 1)

w(k + 1)

w(k + 1)

w(k)

Figure 6.31 SM-AP algorithm with double threshold.

where

P(k) = μ(k)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p0(k) 0 · · · 0

0 p1(k)
...

... 0 · · · ...

...
... 0

0 0 · · · pN (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

μ(k) =
{

1− γ̄
|e(k)| if |e(k)| > γ̄

0 otherwise

and

pi(k) =
1− κμ(k)

N + 1
+

κμ(k)|w|i(k)∑N
i=0 |w|i(k)

Use the proportionate adaption algorithm identify a system whose impulse response is given
below.

h(k) = [1 0 0 0.5 0 2]

The input signal is a uniformly distributed white noise with variance σ2
x = 1, and the measure-

ment noise is Gaussian white noise uncorrelated with the input with variance σ2
n = 5.25 10−3.

The adaptive filter has 6 coefficients.

(a) Use κ = 0.5, experiment some values of γ̄ and discuss the results.
(b) Plot the obtained FIR filter impulse response at any iteration after convergence is achieved
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and compare with the unknown system.
(c) Compare the best solution with that obtained by the corresponding SM-AP algorithm.

12. Prove from equations (6.36) to (6.39) that

{[
x(k) X̃ap(k)

]T [
x(k) X̃ap(k)

]} [a
b

]
=

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦

13. In SM-PUAP algorithm only N + 1− M̄ coefficients are updated at a given iteration. Exploit
this fact to derive a reduced complexity algorithm by generalizing the procedure used to derive
equations (6.36) to (6.41).

14. Identify a typical Channel A model for wireless environment described in Table 6.7 with the
SM-BNLMS algorithm 2, using as input signal a Gaussian white noise and such that the signal
to noise ratio at the receiver end is 10dB’s. Determine though simulations the approximate
number of training symbols to achieve a good channel estimation of sufficient order.



7
ADAPTIVE LATTICE-BASED RLS

ALGORITHMS

7.1 INTRODUCTION

There are a large number of algorithms that solve the least-squares problem in a recursive form.
In particular, the algorithms based on the lattice realization are very attractive because they allow
modular implementation and require a reduced number of arithmetic operations (of order N ) [1]-
[7]. As a consequence, the lattice recursive least-squares (LRLS) algorithms are considered fast
implementations of the RLS problem.

The LRLS algorithms are derived by solving the forward and backward linear prediction problems
simultaneously. The lattice-based formulation provides the prediction and the general adaptive
filter (joint-process estimation) solutions of all intermediate orders from 1 to N simultaneously.
Consequently, the order of the adaptive filter can be increased or decreased without affecting the
lower order solutions. This property allows the user to activate or deactivate sections of the lattice
realization in real time according to performance requirements.

Unlike the RLS algorithm previously discussed, which requires only time-recursive equations, the
lattice RLS algorithms use time-update and order-update equations. A key feature of the LRLS
algorithms is that the prediction process discloses the properties (or the model) of the input signal.
The internal signals of the prediction part retain in a sense nonredundant information of the input
signal that can be utilized in a decoupled form in the following processing. This mechanism is
inherently built in the lattice algorithm derivations.

The performance of the LRLS algorithms when implemented with infinite-precision arithmetic is
identical to that of any other RLS algorithm. However, in finite-precision implementation each
algorithm will perform differently.

In this chapter, several forms of the LRLS algorithm are presented. First, the standard LRLS algorithm
based on a posteriori errors is presented, followed by the normalized version. The algorithms with
error feedback are also derived. Finally, the LRLS algorithm based on a priori errors is described.

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_7,  
© Springer Science+Business Media, LLC 2008  
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7.2 RECURSIVE LEAST-SQUARES PREDICTION

The solutions of the RLS forward and backward prediction problems are essential to derive the order-
updating equations inherent to the LRLS algorithms. In both cases, the results are derived following
the same derivation procedure as in the conventional RLS algorithm, since the only distinct feature
of the prediction problems is the definition of the reference signal d(k). For example, in the forward
prediction case we have d(k) = x(k) whereas the input signal vector has the sample x(k− 1) as the
most recent data. For the backward prediction case d(k) = x(k − i− 1), where the index i defines
the sample in the past which we wish to predict, and the input signal vector has x(k) as the most
recent data. In this section, these solutions are studied and the results demonstrate how information
can be exchanged between the forward and backward predictor solutions.

7.2.1 Forward Prediction Problem

The objective of the forward prediction is to predict a future sample of a given input sequence using
the currently available information of the sequence. For example, one can try to predict the value of
x(k) using past samples x(k−1), x(k−2) . . . , through an FIR prediction filter with i+1 coefficients
as

yf (k, i + 1) = wT
f (k, i + 1)x(k − 1, i + 1) (7.1)

where yf (k, i + 1) is the predictor output signal,

wf (k, i + 1) = [wf0(k) wf1(k) . . . wfi(k)]T

is the FIR forward prediction coefficient vector, and

x(k − 1, i + 1) = [x(k − 1) x(k − 2) . . . x(k − i− 1)]T

is the available input signal vector. The second variable included in the vectors of equation (7.1) is
to indicate the vector dimension, since it is required in the order-updating equations of the LRLS
algorithm. This second variable will be included where needed in the present chapter.

The instantaneous a posteriori forward prediction error is given by

εf (k, i + 1) = x(k)− wT
f (k, i + 1)x(k − 1, i + 1) (7.2)

For the RLS formulation of the forward prediction problem, define the weighted forward prediction
error vector as

εf (k, i + 1) = x̂(k)− XT (k − 1, i + 1)wf (k, i + 1) (7.3)

where

x̂(k) = [x(k) λ1/2x(k − 1) λx(k − 2) . . . λk/2x(0)]T
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εf (k, i + 1) = [εf (k, i + 1) λ1/2εf (k − 1, i + 1) λεf (k − 2, i + 1) . . . λk/2εf (0, i + 1)]T

and

X(k − 1, i + 1) =

⎡
⎢⎢⎢⎣

x(k − 1) λ1/2x(k − 2) · · · λ(k−2)/2x(1) λ(k−1)/2x(0) 0
x(k − 2) λ1/2x(k − 3) · · · λ(k−2)/2x(0) 0 0

...
...

...
...

...
x(k − i− 1) λ1/2x(k − i− 2) · · · 0 0 0

⎤
⎥⎥⎥⎦

It is straightforward to show that εf (k, i + 1) can be rewritten as

εf (k, i + 1) = XT (k, i + 2)
[

1
−wf (k, i + 1)

]
(7.4)

The objective function that we want to minimize in the least-squares sense is the forward prediction
error given by

ξd
f (k, i + 1) = εT

f (k, i + 1)εf (k, i + 1)

=
k∑

l=0

λk−lε2
f (l, i + 1)

=
k∑

l=0

λk−l[x(l)− xT (l − 1, i + 1)wf (k, i + 1)]2 (7.5)

By differentiating ξd
f (k, i + 1) with respect to wf (k, i + 1) and equating the result to zero, we can

find the optimum coefficient vector that minimizes the objective function, namely,

wf (k, i + 1) =

[
k∑

l=0

λk−lx(l − 1, i + 1)xT (l − 1, i + 1)

]−1 k∑
l=0

λk−lx(l − 1, i + 1)x(l)

= [X(k − 1, i + 1)XT (k − 1, i + 1)]−1X(k − 1, i + 1)x̂(k)
= R−1

Df (k − 1, i + 1)pDf (k, i + 1) (7.6)

where RDf (k − 1, i + 1) is equal to the deterministic correlation matrix RD(k − 1) of order i + 1
and pDf (k, i + 1) is the deterministic cross-correlation vector between x(l) and x(l − 1, i + 1).
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The exponentially weighted sum of squared errors can be written as (see equation (7.5)):

ξd
f (k, i + 1) =

k∑
l=0

λk−l
{
x2(l)− 2x(l)xT (l − 1, i + 1)wf (k, i + 1)

+
[
xT (l − 1, i + 1)wf (k, i + 1)

]2}
=

k∑
l=0

λk−l
[
x2(l)− x(l)xT (l − 1, i + 1)wf (k, i + 1)

]

+
k∑

l=0

λk−l
[−x(l) + xT (l − 1, i + 1)wf (k, i + 1)

]
xT (l − 1, i + 1)wf (k, i + 1)

=
k∑

l=0

λk−lx(l)
[
x(l)− xT (l − 1, i + 1)wf (k, i + 1)

]
+
[∑k

l=0 − λk−lx(l)xT (l − 1, i + 1)

+ wT
f (k, i + 1)

∑k
l=0 λk−lx(l − 1, i + 1)xT (l − 1, i + 1)

]
wf (k, i + 1) (7.7)

If we replace equation (7.6) in the second term of the last relation above, it can be shown by using the
fact that RD(k−1) is symmetric that this term is zero. Therefore, the minimum value of ξd

f (k, i+1)1

is given by

ξd
fmin

(k, i + 1) =
k∑

l=0

λk−lx(l)[x(l)− xT (l − 1, i + 1)wf (k, i + 1)]

=
k∑

l=0

λk−lx2(l)− pT
Df (k, i + 1)wf (k, i + 1)

= σ2
f (k)− wT

f (k, i + 1)pDf (k, i + 1) (7.8)

By combining equation (7.6) for wf (k, i) and equation (7.8) for ξd
fmin

(k, i + 1) the following matrix
equation can be obtained[

σ2
f (k) pT

Df (k, i + 1)
pDf (k, i + 1) RDf (k − 1, i + 1)

] [
1

− wf (k, i + 1)

]
=
[

ξd
fmin

(k, i + 1)
0

]
(7.9)

1Notice that no special notation was previously used for the minimum value of the RLS objective function. However,
when deriving the lattice algorithms, this definition is necessary.
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Since σ2
f (k) =

∑k
l=0 λk−lx2(l) and pDf (k, i + 1) =

∑k
l=0 λk−lx(l − 1, i + 1)x(l), it is possible

to conclude that the leftmost term of equation (7.9) can be rewritten as[ ∑k
l=0 λk−lx2(l)

∑k
l=0 λk−lxT (l − 1, i + 1)x(l)∑k

l=0 λk−lx(l − 1, i + 1)x(l)
∑k

l=0 λk−lx(l − 1, i + 1)xT (l − 1, i + 1)

]

=
k∑

l=0

λk−l

[
x(l)

x(l − 1, i + 1)

]
[x(l) xT (l − 1, i + 1)]

= RD(k, i + 2) (7.10)

Therefore,

RD(k, i + 2)
[

1
−wf (k, i + 1)

]
=
[

ξd
fmin

(k, i + 1)
0

]
where RD(k, i + 2) corresponds to RD(k) used in the previous chapter with dimension i + 2. The
above equation relates the deterministic correlation matrix of order i+2 to the minimum least-squares
forward prediction error. The appropriate partitioning of matrix RD(k, i + 2) enables the derivation
of the order-updating equation for the predictor tap coefficients, as will be discussed later.

7.2.2 Backward Prediction Problem

The objective of the backward predictor is to generate an estimate of a past sample of a given input
sequence using the currently available information of the sequence. For example, sample x(k−i−1)
can be estimated from x(k, i + 1), through an FIR backward prediction filter with i + 1 coefficients
as

yb(k, i + 1) = wT
b (k, i + 1)x(k, i + 1) (7.11)

where yb(k, i + 1) is the backward predictor output signal, and

wT
b (k, i + 1) = [wb0(k) wb1(k) . . . wbi(k)]T

is the FIR backward prediction coefficient vector.

The instantaneous a posteriori backward prediction error is given by

εb(k, i + 1) = x(k − i− 1)− wT
b (k, i + 1)x(k, i + 1) (7.12)

The weighted backward prediction error vector is defined as

εb(k, i + 1) = x̂(k − i− 1)− XT (k, i + 1)wb(k, i + 1) (7.13)

where

x̂(k − i− 1) = [x(k − i− 1) λ1/2x(k − i− 2) . . . λ(k−i−1)/2x(0) 0 . . . 0]T

εb(k, i + 1) = [εb(k, i + 1) λ1/2εb(k − 1, i + 1) . . . λk/2εb(0, i + 1)]T
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and

X(k, i + 1) =

⎡
⎢⎢⎢⎣

x(k) λ1/2x(k − 1) · · · λ(k−1)/2x(1) λ(k)/2x(0)
x(k − 1) λ1/2x(k − 2) · · · λ(k−2)/2x(0) 0

...
...

...
...

x(k − i) λ1/2x(k − i− 1) · · · 0 · · · 0

⎤
⎥⎥⎥⎦

The error vector can be rewritten as

εb(k, i + 1) = XT (k, i + 2)
[ −wb(k, i + 1)

1

]
(7.14)

The objective function to be minimized in the backward prediction problem is given by

ξd
b (k, i + 1) = εT

b (k, i + 1)εb(k, i + 1)

=
k∑

l=0

λk−lε2
b(l, i + 1)

=
k∑

l=0

λk−l[x(l − i− 1)− xT (l, i + 1)wb(k, i + 1)]2 (7.15)

The optimal solution for the coefficient vector is

wb(k, i + 1) =

[
k∑

l=0

λk−lx(l, i + 1)xT (l, i + 1)

]−1 k∑
l=0

λk−lx(l, i + 1)x(l − i− 1)

= [X(k, i + 1)XT (k, i + 1)]−1X(k, i + 1)x̂(k − i− 1)
= R−1

Db(k, i + 1)pDb(k, i + 1) (7.16)

where RDb(k, i + 1) is equal to the deterministic correlation matrix RD(k) of order i + 1, and
pDb(k, i + 1) is the deterministic cross-correlation vector between x(l − i− 1) and x(l, i + 1).

Using the same procedure to derive the minimum least-squares solution in the RLS problem, it can
be shown that the minimum value of ξd

b (k) is given by

ξd
bmin

(k, i + 1) =
k∑

l=0

λk−lx(l − i− 1)[x(l − i− 1)− xT (l, i + 1)wb(k, i + 1)]

=
k∑

l=0

λk−lx2(l − i− 1)− pT
Db(k, i + 1)wb(k, i + 1)

= σ2
b (k)− wT

b (k, i + 1)pDb(k, i + 1) (7.17)
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By combining equations (7.16) and (7.17), we obtain[
RDb(k, i + 1) pDb(k, i + 1)
pT

Db(k, i + 1) σ2
b (k)

] [ −wb(k, i + 1)
1

]

=

[ ∑k
l=0 λk−lx(l, i + 1)xT (l, i + 1)

∑k
l=0 λk−lx(l, i + 1)x(l − i− 1)∑k

l=0 λk−lxT (l, i + 1)x(l − i− 1)
∑k

l=0 λk−lx2(l − i− 1)

]

·
[ −wb(k, i + 1)

1

]

= RD(k, i + 2)
[ −wb(k, i + 1)

1

]

=
[

0
ξd
bmin

(k, i + 1)

]
(7.18)

where RD(k, i+2) is equal to RD(k) of dimension i+2. The above equation relates the deterministic
correlation matrix of order i + 1 to the minimum least-squares backward prediction error. This
equation is important in the derivation of the order-updating equation for the backward predictor tap
coefficients. This issue is discussed in the following section.

7.3 ORDER-UPDATING EQUATIONS

The objective of this section is to derive the order-updating equations for the forward and backward
prediction errors. These equations are the starting point to generate the lattice realization.

7.3.1 A New Parameter δ(k, i)

Using the results of equations (7.9) and (7.10), and the decomposition of RD(k, i + 2) given in
equation (7.18), we can show that

RD(k, i + 2)

⎡
⎣ 1
−wf (k, i)

0

⎤
⎦ =

[
RD(k, i + 1) pDb(k, i + 1)
pT

Db(k, i + 1) σ2
b (k)

]⎡⎣ 1
−wf (k, i)

0

⎤
⎦

=

⎡
⎢⎢⎣

ξd
fmin

(k, i)
0

pT
Db(k, i + 1)

[
1

−wf (k, i)

]
⎤
⎥⎥⎦

=

⎡
⎣ ξd

fmin
(k, i)
0

δf (k, i)

⎤
⎦ (7.19)
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where relation (7.9) was employed in the second equality. From the last element relation of the above
vector and the definition of pDb(k, i + 1), we obtain

δf (k, i) =
k∑

l=0

λk−lx(l)x(l − i− 1)−
k∑

l=0

λk−lx(l − i− 1)xT (l − 1, i)wf (k, i)

=
k∑

l=0

λk−lx(l)x(l − i− 1)−
k∑

l=0

λk−lx(l − i− 1)yf (l, i)

=
k∑

l=0

λk−lεf (l, i)x(l − i− 1)

and yf (l, i) = xT (l−1, i)wf (k, i) is the output of a forward prediction filter of order i−1. Note that
the parameter δf (k, i) can be interpreted as the deterministic cross-correlation between the forward
prediction error εf (l, i) with the coefficients fixed at wf (k, i) and the desired signal of the backward
predictor filter x(l − i− 1).

Similarly, using the results of equations (7.17) and (7.18) it can be shown that

RD(k, i + 2)

⎡
⎣ 0
−wb(k − 1, i)

1

⎤
⎦ =

[
σ2

f (k) pT
Df (k, i + 1)

pDf (k, i + 1) RD(k − 1, i + 1)

]⎡⎣ 0
−wb(k − 1, i)

1

⎤
⎦

=

⎡
⎢⎢⎣ pT

Df (k, i + 1)
[ −wb(k − 1, i)

1

]
0

ξd
bmin

(k − 1, i)

⎤
⎥⎥⎦

=

⎡
⎣ δb(k, i)

0
ξd
bmin

(k − 1, i)

⎤
⎦ (7.20)

where in the second equality we applied the result of equation (7.18), and

δb(k, i) =
k∑

l=0

λk−lx(l − i− 1)x(l)−
k∑

l=0

λk−lx(l)xT (l − 1, i)wb(k − 1, i)

=
k∑

l=0

λk−lx(l − i− 1)x(l)−
k∑

l=0

λk−lx(l)yb(l − 1, i)

=
k∑

l=0

λk−lεb(l − 1, i)x(l)

where yb(l − 1, i) = xT (l − 1, i)wb(k − 1, i) is the output of a backward prediction filter of order
i− 1 with the input data of instant l− 1, when the coefficients of the predictor are wb(k− 1, i). The
parameter δb(k, i) can be interpreted as the deterministic cross-correlation between the backward
prediction error εb(l − 1, i) and the desired signal of the forward predictor filter x(l).
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In equations (7.19) and (7.20) two new parameters were defined, namely δf (k, i) and δb(k, i). In the
following derivations we will show that these parameters are equal. If RD(k, i + 2) is premultiplied
by [0 − wT

b (k − 1, i) 1] and postmultiplied by [1 − wf (k, i) 0]T , it can be shown that

[0 − wT
b (k − 1, i) 1] RD(k, i + 2)

⎡
⎣ 1
−wf (k, i)

0

⎤
⎦ = δf (k, i) (7.21)

By transposing the first and last terms of equation (7.20) the following relation is obtained

[0 − wT
b (k − 1, i) 1] RD(k, i + 2) = [δb(k, i) 0T ξd

bmin
(k − 1, i)] (7.22)

By substituting this result in equation (7.21), we obtain

[δb(k, i) 0T ξd
bmin

(k − 1, i)]

⎡
⎣ 1
−wf (k, i)

0

⎤
⎦ = δb(k, i) (7.23)

Therefore, from equations (7.21) and (7.23) we conclude that

δf (k, i) = δb(k, i) = δ(k, i) (7.24)

In effect, the deterministic cross-correlations between εf (l, i) and x(l−i−1) and between εb(l−1, i)
and x(l) are equal.

7.3.2 Order Updating of ξd
bmin

(k, i) and wb(k, i)

The order updating of the minimum LS error and the tap coefficients for the backward predictor can
be deduced by multiplying equation (7.19) by the scalar δ(k, i)/ξd

fmin
(k, i), i.e.,

δ(k, i)
ξd
fmin

(k, i)
RD(k, i + 2)

⎡
⎣ 1
−wf (k, i)

0

⎤
⎦ =

⎡
⎢⎣

δ(k, i)
0

δ2(k,i)
ξd

fmin
(k,i)

⎤
⎥⎦ (7.25)

Subtracting equation (7.20) from this result yields

RD(k, i + 2)

⎡
⎢⎢⎣

δ(k,i)
ξd

fmin
(k,i)

−wf (k, i) δ(k,i)
ξd

fmin
(k,i) + wb(k − 1, i)

−1

⎤
⎥⎥⎦ =

[
0

−ξd
bmin

(k − 1, i) + δ2(k,i)
ξd

fmin
(k,i)

]

(7.26)
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Comparing equations (7.18) and (7.26), we conclude that

ξd
bmin

(k, i + 1) = ξd
bmin

(k − 1, i)− δ2(k, i)
ξd
fmin

(k, i)
(7.27)

and

wb(k, i + 1) =
[

0
wb(k − 1, i)

]
− δ(k, i)

ξd
fmin

(k, i)

[ −1
wf (k, i)

]
(7.28)

7.3.3 Order Updating of ξd
fmin

(k, i) and wf(k, i)

Similarly, by multiplying equation (7.20) by δ(k, i)/ξd
bmin

(k − 1, i), we get

δ(k, i)
ξd
bmin

(k − 1, i)
RD(k, i + 2)

⎡
⎣ 0
−wb(k − 1, i)

1

⎤
⎦ =

⎡
⎢⎣

δ2(k,i)
ξd

bmin
(k−1,i)

0
δ(k, i)

⎤
⎥⎦ (7.29)

Subtracting equation (7.29) from equation (7.19), it follows that

RD(k, i + 2)

⎡
⎢⎢⎣

1
δ(k,i)

ξd
bmin

(k−1,i)wb(k − 1, i)− wf (k, i)

− δ(k,i)
ξd

bmin
(k−1,i)

⎤
⎥⎥⎦ =

[
ξd
fmin

(k, i)− δ2(k,i)
ξd

bmin
(k−1,i)

0

]
(7.30)

Comparing this equation with equation (7.9), we conclude that

ξd
fmin

(k, i + 1) = ξd
fmin

(k, i)− δ2(k, i)
ξd
bmin

(k − 1, i)
(7.31)

and

wf (k, i + 1) =
[

wf (k, i)
0

]
− δ(k, i)

ξd
bmin

(k − 1, i)

[
wb(k − 1, i)

−1

]
(7.32)

7.3.4 Order Updating of Prediction Errors

The order updating of the a posteriori forward and backward prediction errors can be derived as
described below. From the definition of a posteriori forward error, we have

εf (k, i + 1) = xT (k, i + 2)
[

1
−wf (k, i + 1)

]

= xT (k, i + 2)

⎡
⎣ 1
−wf (k, i)

0

⎤
⎦+

δ(k, i)
ξd
bmin

(k − 1, i)
xT (k, i + 2)

⎡
⎣ 0

wb(k − 1, i)
−1

⎤
⎦

= εf (k, i)− κf (k, i)εb(k − 1, i) (7.33)
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where in the second equality we employed the order-updating equation (7.32) for the forward pre-
diction coefficients. The coefficient κf (k, i) = δ(k,i)

ξd
bmin

(k−1,i) is the so-called forward reflection

coefficient.

The order updating of the a posteriori backward prediction error is obtained by using equation (7.28)
as

εb(k, i + 1) = xT (k, i + 2)
[ −wb(k, i + 1)

1

]

= xT (k, i + 2)

⎡
⎣ 0
−wb(k − 1, i)

1

⎤
⎦+

δ(k, i)
ξd
fmin

(k, i)
xT (k, i + 2)

⎡
⎣ −1

wf (k, i)
0

⎤
⎦

= εb(k − 1, i)− κb(k, i)εf (k, i) (7.34)

where we employed the order-updating equation for the backward prediction coefficients (7.28) in
the second equality. The coefficient κb(k, i) = δ(k,i)

ξd
fmin

(k,i) is the backward reflection coefficient.

Equations (7.33) and (7.34) above can be implemented with a lattice section as illustrated in Fig. 7.1.a.
An order-increasing lattice-based forward and backward predictor can be constructed as illustrated in
Fig. 7.1.b. The coefficients κb(k, i) and κf (k, i) are often called reflection coefficients of the lattice
realization.

In the first section of the lattice, the forward and backward prediction errors are equal to the input
signal itself since no prediction is performed before the first lattice section; therefore

εb(k, 0) = εf (k, 0) = x(k) (7.35)

and

ξd
fmin

(k, 0) = ξd
bmin

(k, 0) =
k∑

l=0

λk−lx2(l) = x2(k) + λξd
fmin

(k − 1, 0) (7.36)

A closer look at equations (7.9) and (7.18) leads to the conclusion that the backward and forward
predictors utilize the same information matrix RD(k, i + 2). This result was key in deriving the
expressions for the a posteriori forward and backward prediction errors of equations (7.33) and
(7.34). Of particular note, these expressions can be shown to be independent of the predictor tap
coefficients. This result will be proved in the following section, which will present an updating
formula for δ(k, i) that is not directly dependent on wf (k, i) and wb(k − 1, i).

Now that all order-updating equations are available, it is necessary to derive the time-updating
equations to allow the adaptation of the lattice predictor coefficients.



300 Chapter 7 Adaptive Lattice-Based RLS Algorithms

+

+

X

X

z
-1

�f ( )k,N

�b ( )k,N

-k k,Nb ( )

�b ( 1)k,N+

�f ( 1)k,N+

- ( )k k,Nf

(a)

Section
1

Section
2

Section
3

Section
(N+1)

�f ( 1)k, �f ( 2)k, �f ( 3)k, �f ( )k,N

�b ( 1)k, �b ( 2)k, �b ( 3)k, �b ( )k,N
x k( )

(b)

Figure 7.1 Least-squares lattice-based predictor.

7.4 TIME-UPDATING EQUATIONS

The time-updating equations are required to deal with the new incoming data that becomes available.
Recall that up to this point in this text we have studied adaptive-filtering algorithms utilizing the new
incoming data as soon as it becomes available. In this section, the time-updating equations for the
internal quantities of the lattice algorithm are derived.

7.4.1 Time Updating for Prediction Coefficients

From equation (7.6), the time updating of the forward prediction filter coefficients is given by

wf (k, i) = SD(k − 1, i)pDf (k, i)

= R−1
D (k − 1, i)pDf (k, i) (7.37)

This is the standard expression for the computation of the optimal coefficient vector leading to the
minimization of the LS objective function and adapted to the forward prediction case.

The updating formula of SD(k, i) based on the matrix inversion lemma derived in the previous chapter
(see Algorithm 5.2) for the conventional RLS algorithm can be used in equation (7.37). The resulting
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equation is given by

wf (k, i) =
1
λ

[
SD(k − 2, i)− ψ(k − 1, i)ψT (k − 1, i)

λ + ψT (k − 1, i)x(k − 1, i)

]
pDf (k, i)

=
1
λ

[
SD(k − 2, i)− ψ(k − 1, i)xT (k − 1, i)SD(k − 2, i)

λ + ψT (k − 1, i)x(k − 1, i)

]
· [λpDf (k − 1, i) + x(k)x(k − 1, i)

]
= wf (k − 1, i)− ψ(k − 1, i)xT (k − 1, i)wf (k − 1, i)

λ + ψT (k − 1, i)x(k − 1, i)
+

x(k)
λ

c (7.38)

where in the we have applied the time-recursive updating formula of pDf (k, i) in the second equality,
and we have replaced SD(k − 2, i)pDf (k − 1, i) by wf (k − 1, i) in the second term of the final
expression. Vector c is given by

c = SD(k − 2, i)x(k − 1, i)− ψ(k − 1, i)xT (k − 1, i)SD(k − 2, i)x(k − 1, i)
λ + ψT (k − 1, i)x(k − 1, i)

=
λSD(k − 2, i)x(k − 1, i)

λ + ψT (k − 1, i)x(k − 1, i)

It is convenient at this point to recall that ψ(k−1, i) = SD(k−2, i)x(k−1, i) (see equation (5.10)).

The last term in equation (7.38) can be simplified if we apply the refined definition based on equation
(5.11)

φ(k − 1, i) =
ψ(k − 1, i)

λ + ψT (k − 1, i)x(k − 1, i)
(7.39)

where φ(k− 1, i) now includes the order index i. Using this definition in the second and third terms
of the last expression of equation (7.38), it can be shown that

wf (k, i) = wf (k − 1, i) + φ(k − 1, i)[x(k)− wT
f (k − 1, i)x(k − 1, i)]

= wf (k − 1, i) + φ(k − 1, i)ef (k, i) (7.40)

where ef (k, i) is the a priori forward prediction error of a predictor of order i−12, so-called because
it utilizes the tap coefficients of the previous instant k − 1.

Following similar steps to those used to derive equation (7.40), we can show that the time updating
for the backward predictor filter is given by

wb(k, i) =
1
λ

[
SD(k − 1, i)− ψ(k, i)ψT (k, i)

λ + ψT (k, i)x(k, i)

]
[λpDb(k − 1, i) + x(k, i)x(k − i)]

= wb(k − 1, i)− φ(k, i)xT (k, i)wb(k − 1, i) + φ(k, i)x(k − i)
= wb(k − 1, i) + φ(k, i)eb(k, i) (7.41)

where eb(k, i) is the a priori backward prediction error of a predictor filter of order i− 1.

2The predictor filter is of order i − 1 whereas the predictor including the desired signal is of order i.
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7.4.2 Time Updating for δ(k, i)

From the computational point of view, it would be interesting to compute the prediction errors without
explicitly using the predictor’s tap coefficients, because working with these coefficients requires the
use of inner products. In order to achieve this, a time-updating expression for δ(k, i) is derived. A
byproduct of this derivation is the introduction of a new parameter, namely γ(k, i), that is shown to
be a conversion factor between a priori and a posteriori errors.

From the definition in equation (7.19), we have

δ(k, i) = pT
Db(k, i + 1)

[
1

−wf (k, i)

]
(7.42)

where pDb(k, i + 1) can be expressed in recursive form as

pDb(k, i + 1) =
k∑

l=0

λk−lx(l, i + 1)x(l − i− 1)

= x(k, i + 1)x(k − i− 1) + λpDb(k − 1, i + 1) (7.43)

Substituting equations (7.40) and (7.43) in equation (7.42), we get

δ(k, i) = [x(k − i− 1)xT (k, i + 1) + λpT
Db(k − 1, i + 1)]

·
[

1
− wf (k − 1, i)− φ(k − 1, i)ef (k, i)

]

= λδ(k − 1, i) + λpT
Db(k − 1, i + 1)

[
0

− φ(k − 1, i)ef (k, i)

]

+x(k − i− 1)xT (k, i + 1)
[

1
− wf (k − 1, i)

]

+x(k − i− 1)xT (k, i + 1)
[

0
− φ(k − 1, i)ef (k, i)

]
(7.44)

where the equality of equation (7.42) for the order index i − 1 was used to obtain the first term of
the last equality.

We now derive two relations which are essential to obtain a time-updating equation for δ(k, i). The
resulting equation is efficient from the computational point of view. From the definitions of φ(k−1, i)
and ψ(k − 1, i), (see equation (7.39) and the comments after equation (7.38) respectively) it can be
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shown that

pT
Db(k − 1, i + 1)

[
0

φ(k − 1, i)

]
= pT

Db(k − 2, i)φ(k − 1, i)

=
pT

Db(k − 2, i)ψ(k − 1, i)
λ + ψT (k − 1, i)x(k − 1, i)

=
pT

Db(k − 2, i)SD(k − 2, i)x(k − 1, i)
λ + ψT (k − 1, i)x(k − 1, i)

=
wT

b (k − 2, i)x(k − 1, i)
λ + ψT (k − 1, i)x(k − 1, i)

= − eb(k − 1, i)− x(k − i− 1)
λ + ψT (k − 1, i)x(k − 1, i)

(7.45)

Now using equation (7.39) it is possible to obtain the relation

xT (k, i + 1)
[

0
φ(k − 1, i)

]
=

xT (k − 1, i)SD(k − 2, i)x(k − 1, i)
λ + ψT (k − 1, i)x(k − 1, i)

=
ψT (k − 1, i)x(k − 1, i)

λ + ψT (k − 1, i)x(k − 1, i)
(7.46)

If we recall that the a priori forward prediction error can be computed in the form

xT (k, i + 1)
[

1
−wf (k − 1, i)

]
= ef (k, i)

and by substituting equations (7.45) and (7.46) into equation (7.44), after some straightforward
manipulations, we obtain the following time-updating equation for δ(k, i)

δ(k, i) = λδ(k − 1, i) +
λeb(k − 1, i)ef (k, i)

λ + ψT (k − 1, i)x(k − 1, i)
= λδ(k − 1, i) + γ(k − 1, i)eb(k − 1, i)ef (k, i) (7.47)

where

γ(k − 1, i) =
λ

λ + ψT (k − 1, i)x(k − 1, i)

= 1− φT (k − 1, i)x(k − 1, i) (7.48)

The last relation follows from the definition of φ(k− 1, i) in equation (7.39). Parameter γ(k− 1, i)
plays a key role in the relation between the a posteriori and a priori prediction errors, as will be
demonstrated below.

In order to allow the derivation of a lattice-based algorithm utilizing only a posteriori errors, the
relationship between the a priori and a posteriori errors is now derived. The a posteriori forward



304 Chapter 7 Adaptive Lattice-Based RLS Algorithms

prediction error is related to the a priori forward prediction error as

εf (k, i) = x(k)− wT
f (k, i)x(k − 1, i)

= x(k)− wT
f (k − 1, i)x(k − 1, i)− φT (k − 1, i)x(k − 1, i)ef (k, i)

= ef (k, i)[1− φT (k − 1, i)x(k − 1, i)]
= ef (k, i)γ(k − 1, i) (7.49)

Similarly, the relationship between a posteriori and a priori backward prediction errors can be
expressed as

εb(k, i) = x(k − i)− wT
b (k, i)x(k, i)

= x(k − i)− wT
b (k − 1, i)x(k, i)− φT (k, i)x(k, i)eb(k, i)

= eb(k, i)[1− φT (k, i)x(k, i)]
= eb(k, i)γ(k, i) (7.50)

Parameter γ(k, i) is often called a conversion factor between a priori and a posteriori errors.

Using equations (7.49) and (7.50), equation (7.47) can be expressed as

δ(k, i) = λδ(k − 1, i) +
εb(k − 1, i)εf (k, i)

γ(k − 1, i)
(7.51)

As a general rule each variable of the lattice-based algorithms requires an order-updating equation.
Therefore, an order-updating equation for γ(k, i) is necessary. This is the objective of the derivations
in the following subsection.

7.4.3 Order Updating for γ(k, i)

Variable γ(k − 1, i) is defined by

γ(k − 1, i) = 1− φT (k − 1, i)x(k − 1, i)

where φ(k − 1, i) = SD(k − 1, i)x(k − 1, i). The relation for φ(k − 1, i) can be obtained by
replacing SD(k − 1, i) by the expression derived by the matrix inversion lemma of equation (5.5)
and verifying that the resulting simplified expression leads to equation (7.39). By multiplying the
expression φ(k − 1, i) = SD(k − 1, i)x(k − 1, i) by RD(k − 1, i) on both sides, we obtain the
following relation

RD(k − 1, i)φ(k − 1, i) = x(k − 1, i) (7.52)

With this equation, we will be able to derive an order-updating equation for φ(k − 1, i) with the aid
of an appropriate partitioning of RD(k − 1, i).
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By partitioning matrix RD(k − 1, i) as in equation (7.19), we get

RD(k − 1, i)
[

φ(k − 1, i− 1)
0

]
=
[

RD(k − 1, i− 1) pDb(k − 1, i− 1)
pT

Db(k − 1, i− 1) σ2
b (k − 1)

]

·
[

φ(k − 1, i− 1)
0

]

=
[

RDb(k − 1, i− 1)φ(k − 1, i− 1)
pT

Db(k − 1, i− 1)φ(k − 1, i− 1)

]

We can proceed by replacing φ(k − 1, i− 1) using equation (7.52) in the last element of the above
vector, that is,

RD(k − 1, i)
[

φ(k − 1, i− 1)
0

]
=
[

RDb(k − 1, i− 1)φ(k − 1, i− 1)
pT

Db(k − 1, i− 1)SDb(k − 1, i− 1)x(k − 1, i− 1)

]

=
[

RDb(k − 1, i− 1)φ(k − 1, i− 1)
wT

b (k − 1, i− 1)x(k − 1, i− 1)

]

=
[

x(k − 1, i− 1)
x(k − i)− εb(k − 1, i− 1)

]

= x(k − 1, i)−
[

0
εb(k − 1, i− 1)

]
(7.53)

By multiplying the above equation by SD(k − 1, i), we have[
φ(k − 1, i− 1)

0

]
= φ(k − 1, i)− SD(k − 1, i)

[
0

εb(k − 1, i− 1)

]
(7.54)

If we replace the above relation in the definition of the conversion factor, we deduce

γ(k − 1, i) = 1− φT (k − 1, i)x(k − 1, i)
= γ(k − 1, i− 1)− [0T εb(k − 1, i)]T SD(k − 1, i)x(k − 1, i)

(7.55)

This equation can be expressed into a more useful form by using a partitioned version of SD(k−1, i)
given by

SD(k − 1, i) =
[

0 0T

0 SD(k − 2, i− 1)

]

+
1

ξd
fmin

(k − 1, i− 1)

[
1

− wf (k − 1, i− 1)

] [
1 − wT

f (k − 1, i− 1)
]
(7.56)

The proof of validity of the above expression follows.
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Proof:

The partitioned expression of RD(k − 1, i) is

RD(k − 1, i) =
[

0 0T

0 RD(k − 2, i− 1)

]
+
[

σ2
f (k − 1) pT

Df (k − 1, i− 1)
pDf (k − 1, i− 1) 0i−1,i−1

]
(7.57)

By assuming equation (7.56) is valid and premultiplying it by RD(k − 1, i) as in equation (7.57), it
follows that

RD(k − 1, i)SD(k − 1, i) =
[

0 0T

0 Ii−1,i−1

]
+
[

0 pT
Df (k − 1, i− 1)SD(k − 2, i− 1)

0 0T

]

+
1

ξd
fmin

(k − 1, i− 1)
RD(k − 1, i)

·
[

1
− wf (k − 1, i− 1)

]
[1 − wT

f (k − 1, i− 1)]

=
[

0 0T

0 Ii−1,i−1

]
+
[

0 wT
f (k − 1, i− 1)

0 0i−2,i−2

]

+
1

ξd
fmin

(k − 1, i− 1)

[
ξd
fmin

(k − 1, i− 1)
0

]
·[1 − wT

f (k − 1, i− 1)]

=
[

0 wT
f (k − 1, i− 1)

0 Ii−1,i−1

]
+
[

1 −wT
f (k − 1, i− 1)

0 0i−1,i

]
= Ii,i

proving the validity of equation (7.56).

�

By applying equation (7.56) in equation (7.55), we obtain

γ(k, i + 1) = 1− φT (k, i + 1)x(k, i + 1)

= γ(k − 1, i)− ε2
f (k, i)

ξd
fmin

(k, i)
(7.58)

Following a similar method to that used in deriving equation (7.56), it can be shown that

SD(k − 1, i) =
[

SD(k − 1, i− 1) 0i−1

0T
i−1 0

]

+
1

ξd
bmin

(k − 1, i− 1)

[ − wb(k − 1, i− 1)
1

] [− wT
b (k − 1, i− 1) 1

]
(7.59)
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Now by replacing the above equation in equation (7.55), we can show that

γ(k − 1, i) = γ(k − 1, i− 1)− εb(k − 1, i− 1)
ξd
bmin

(k − 1, i− 1)

[−wT
b (k − 1, i− 1) 1

]
x(k − 1, i)

= γ(k − 1, i− 1)− ε2
b(k − 1, i− 1)

ξd
bmin

(k − 1, i− 1)
(7.60)

The last equation completes the set of relations required to solve the backward and forward prediction
problems. In the following section, the modeling of a reference signal (joint-processor estimation)
is discussed.

7.5 JOINT-PROCESS ESTIMATION

In the previous sections, we considered only the forward and backward prediction problems and
explored some common features in their solutions. In a more general situation, the goal is to predict
the behavior of one process represented by d(k) through measurements of a related process contained
in x(k, i + 1). Therefore, it is important to derive an adaptive lattice-based realization to match a
desired signal d(k) through the minimization of the weighted squared error function given by

ξd(k, i + 1) =
k∑

l=0

λk−lε2(l, i + 1)

=
k∑

l=0

λk−l[d(l)− wT (k, i + 1)x(l, i + 1)]2 (7.61)

where y(k, i + 1) = wT (k, i + 1)x(k, i + 1) is the adaptive-filter output signal and ε(l, i + 1) is the
a posteriori error at a given instant l if the adaptive-filter coefficients were fixed at w(k, i + 1). The
minimization procedure of ξd(k, i + 1) is often called joint-process estimation.

The prediction lattice realization generates the forward and backward prediction errors and requires
some feedforward coefficients to allow the minimization of ξd(k, i+1). In fact, the lattice predictor
in this case works as a signal processing building block which improves the quality of the signals
(in the sense of reducing the eigenvalue spread of the autocorrelation matrix) that are inputs to the
output taps. The question is where should the taps be placed. We give some statistical arguments for
this choice here. First, we repeat, for convenience, the expression of the backward prediction error:

εb(k, i + 1) = xT (k, i + 2)
[ −wb(k, i + 1)

1

]
From the orthogonality property of the RLS algorithm, for k →∞, we can infer that

E[εb(k, i + 1)x(k − l)] = 0

for l = 0, 1, . . . , i. From this equation, it is possible to show that

E[εb(k, i + 1)xT (k, i + 1)] = 0T
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If we postmultiply the above equation by [−wb(k, i) 1]T , we obtain

E

{
εb(k, i + 1)xT (k, i + 1)

[ −wb(k, i)
1

]}
= E[εb(k, i + 1)εb(k, i)] = 0

This result shows that backward prediction errors of consecutive orders are uncorrelated. Using
similar arguments one can show that E[εb(k, i + 1)εb(k, l)] = 0, for l = 0, 1, . . . , i.

In problem 4, it is shown that backward prediction errors are uncorrelated with each other in the
sense of time averaging and, as a consequence, should be naturally chosen as inputs to the output
taps. The objective function can now be written as

ξd(k, i + 1) =
k∑

l=0

λk−lε2(l, i + 1)

=
k∑

l=0

λk−l[d(l)− ε̂T
b (k, i + 1)v(l, i + 1)]2 (7.62)

where ε̂T
b (k, i + 1) = [εb(k, 0) εb(k, 1) . . . εb(k, i)] is the backward prediction error vector and

vT (k, i + 1) = [v0(k) v1(k) . . . vi(k)] is the feedforward coefficient vector.

The main objective of the present section is to derive a time-updating formula for the output tap
coefficients. From equations (7.61) and (7.62), it is obvious that the lattice realization generates
the optimal estimation by using a parameterization different from that related to the direct-form
realization. We can derive the updating equations for the elements of the forward coefficient vector
using the order-updating equation for the tap coefficients of the direct-form realization. Employing
equation (7.59), the equivalent optimal solution with the direct-form realization can be expressed as

w(k, i + 1) = SD(k, i + 1)pD(k, i + 1)

=
[

SD(k, i) 0i

0T
i 0

]
pD(k, i + 1)

+
1

ξd
bmin

(k, i)

[ −wb(k, i)
1

]
[−wT

b (k, i) 1]pD(k, i + 1)

=
[

w(k, i)
0

]
+

δD(k, i)
ξd
bmin

(k, i)

[ −wb(k, i)
1

]
(7.63)

where

δD(k, i) = [−wT
b (k, i) 1]pD(k, i + 1)

= −wT
b (k, i)

k∑
l=0

λk−lx(l, i)d(l) +
k∑

l=0

λk−lx(l − i)d(l)

=
k∑

l=0

λk−lεb(l, i)d(l)
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and

pD(k, i + 1) =
k∑

l=0

λk−lx(l, i + 1)d(l)

Since

pD(k, i + 1) = λpD(k − 1, i + 1) + d(k)x(k, i + 1)

and

wb(k, i) = wb(k − 1, i) + φ(k, i)eb(k, i)

see equation (7.41), by following the same steps we used to deduce the time update of δ(k, i) in
equation (7.47), we can show that

δD(k, i) = λδD(k − 1, i) +
ε(k, i)εb(k, i)

γ(k, i)
(7.64)

By calculating the output signal of the joint-process estimator using the order-updating equation
(7.63) for the direct-form realization, we can show that

wT (k, i + 1)x(k, i + 1) = [wT (k, i) 0]x(k, i + 1) +
δD(k, i)

ξd
bmin

(k, i)
[−wT

b (k, i) 1]x(k, i + 1)

(7.65)

This equation can be rewritten as

y(k, i + 1) = y(k, i) +
δD(k, i)

ξd
bmin

(k, i)
εb(k, i) (7.66)

where it can now be noticed that the joint-predictor output y(k, i + 1) is a function of the backward
prediction error εb(k, i). This was the motivation for using the decomposition of SD(k, i + 1) given
by equation (7.59) in equation (7.63).

The feedforward multiplier coefficients can be identified as

vi(k) =
δD(k, i)

ξd
bmin

(k, i)
(7.67)

and the a posteriori output error of the adaptive filter of order i from 1 to N are obtained simultane-
ously, where

ε(k, i + 1) = ε(k, i)− vi(k)εb(k, i) (7.68)

The above result was derived by subtracting d(k) from both sides of equation (7.66). The resulting
lattice realization is depicted in Fig. 7.2.

We now have available all the relations required to generate the lattice recursive least-squares adaptive-
filtering algorithm based on a posteriori estimation errors. The algorithm is described in Algorithm
7.1, which highlights in boxes the terms that should be saved in order to avoid repeated computation.
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Algorithm 7.1

Lattice RLS Algorithm
Based on A Posteriori Errors

Initialization

Do for i = 0, 1 . . . , N
δ(−1, i) = δD(−1, i) = 0 (assuming x(k) = 0 for k < 0)
ξd
bmin

(−1, i) = ξd
fmin

(−1, i) = ε (a small positive constant)
γ(−1, i) = 1
εb(−1, i) = 0

End

Do for k ≥ 0
γ(k, 0) = 1
εb(k, 0) = εf (k, 0) = x(k) (7.35)
ξd
bmin

(k, 0) = ξd
fmin

(k, 0) = x2(k) + λξd
fmin

(k − 1, 0) (7.36)
ε(k, 0) = d(k)

Do for i = 0, 1 . . . , N

δ(k, i) = λδ(k − 1, i)+ εb(k−1,i)
γ(k−1,i) εf (k, i) (7.51)

γ(k, i + 1) = γ(k, i)− ε2
b(k,i)

ξd
bmin

(k,i) (7.60)

κb(k, i) = δ(k,i)
ξd

fmin
(k,i)

κf (k, i) = δ(k,i)
ξd

bmin
(k−1,i)

εb(k, i + 1) = εb(k − 1, i)− κb(k, i)εf (k, i) (7.34)
εf (k, i + 1) = εf (k, i)− κf (k, i)εb(k − 1, i) (7.33)
ξd
bmin

(k, i + 1) = ξd
bmin

(k − 1, i)− δ(k, i)κb(k, i) (7.27)
ξd
fmin

(k, i + 1) = ξd
fmin

(k, i)− δ(k, i)κf (k, i) (7.31)

Feedforward Filtering

δD(k, i) = λδD(k − 1, i)+ εb(k,i)
γ(k,i) ε(k, i) (7.64)

vi(k) = δD(k,i)
ξd

bmin
(k,i) (7.67)

ε(k, i + 1) = ε(k, i)− vi(k)εb(k, i) (7.68)
End

End
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Figure 7.2 Joint-process estimation lattice realization.

7.6 TIME RECURSIONS OF THE LEAST-SQUARES ERROR

In this section, we provide a set of relations for the time updating of the minimum LS error of the
prediction problems. These relations allow the derivation of two important equations involving the
ratio of conversion factor of consecutive order prediction problems, namely γ(k−1,i+1)

γ(k−1,i) and γ(k,i+1)
γ(k−1,i) .

The results provided in this section are required for the derivation of some alternative lattice algorithms
such as the error feedback, as well as for the fast RLS algorithms of Chapter 8.

By replacing each term in the definition of the minimum weighted least-squares error for the backward
prediction problem by their time-updating equation, we have (see equations (7.16), (7.17))

ξd
bmin

(k, i) = σ2
b (k)− wT

b (k, i)pDb(k, i)

= σ2
b (k)−

[
wT

b (k − 1, i) + eb(k, i)φT (k, i)
]
[λpDb(k − 1, i) + x(k − i)x(k, i)]

= σ2
b (k)− λwT

b (k − 1, i)pDb(k − 1, i)− x(k − i)wT
b (k − 1, i)x(k, i)

− λeb(k, i)φT (k, i)pDb(k − 1, i)− eb(k, i)φT (k, i)x(k, i)x(k − i)
= x2(k − i) + λσ2

b (k − 1)− λwT
b (k − 1, i)pDb(k − 1, i)

−x(k − i)wT
b (k − 1, i)x(k, i)− λeb(k, i)φT (k, i)pDb(k − 1, i)

−eb(k, i)φT (k, i)x(k, i)x(k − i) (7.69)

By combining the second and third terms, we get

λ[σ2
b (k − 1)− wT

b (k − 1, i)pDb(k − 1, i)] = λξd
bmin

(k − 1, i)

Similarly, by combining the first, fourth and sixth terms, we obtain

x(k − i)[x(k − i)− wT
b (k − 1, i)x(k, i)− eb(k, i)φT (k, i)x(k, i)]

= x(k − i)[eb(k, i)− eb(k, i)φT (k, i)x(k, i)]
= x(k − i)eb(k, i)[1− φT (k, i)x(k, i)]
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Now by applying these results in equation (7.69), we can show that

ξd
bmin

(k, i) = λξd
bmin

(k − 1, i) + x(k − i)eb(k, i)[1− φT (k, i)x(k, i)]

−λeb(k, i)φT (k, i)pDb(k − 1, i)
= λξd

bmin
(k − 1, i) + x(k − i)eb(k, i)

−eb(k, i)φT (k, i)[x(k − i)x(k, i) + λpDb(k − 1, i)]

If we apply the definition of φ(k, i) in equation (7.39) and the equation (7.16) for the backward
prediction problem, we obtain

ξd
bmin

(k, i) = λξd
bmin

(k − 1, i) + x(k − i)eb(k, i)− eb(k, i)φT (k, i)pDb(k, i)

= λξd
bmin

(k − 1, i) + x(k − i)eb(k, i)− eb(k, i)xT (k, i)SD(k − 1, i)pDb(k, i)

= λξd
bmin

(k − 1, i) + eb(k, i)[x(k − i)− wT
b (k, i)x(k, i)]

= λξd
bmin

(k − 1, i) + eb(k, i)εb(k, i)

= λξd
bmin

(k − 1, i) +
ε2

b(k, i)
γ(k, i)

(7.70)

Following similar steps to those used to obtain the above equation, we can show that

ξd
fmin

(k, i) = λξd
fmin

(k − 1, i) +
ε2

f (k, i)
γ(k − 1, i)

(7.71)

From the last two equations, we can easily infer the relations that are useful in deriving alternative
lattice-based algorithms, namely the normalized and error-feedback algorithms. These relations are

λξd
bmin

(k − 2, i)
ξd
bmin

(k − 1, i)
= 1− ε2

b(k − 1, i)
γ(k − 1, i)ξd

bmin
(k − 1, i)

=
γ(k − 1, i + 1)

γ(k − 1, i)
(7.72)

and

λξd
fmin

(k − 1, i)

ξd
fmin

(k, i)
= 1− ε2

f (k, i)

γ(k − 1, i)ξd
fmin

(k, i)

=
γ(k, i + 1)
γ(k − 1, i)

(7.73)

where equations (7.60) and (7.58), respectively, were used in the derivation of the right-hand-side
expressions of the above equations.
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7.7 NORMALIZED LATTICE RLS ALGORITHM

An alternative form of the lattice RLS algorithm can be obtained by applying a judicious normalization
to the internal variables of the algorithm, keeping their magnitude bounded by one. This normalized
lattice is specially suitable for fixed-point arithmetic implementation. Also, this algorithm requires
fewer recursions and variables than the unnormalized lattices, i.e., only three equations per prediction
section per time sample.

7.7.1 Basic Order Recursions

A natural way to normalize the backward and forward prediction errors is to divide them by the
square root of the corresponding weighted least-squares error. However, it will be shown that a wiser
strategy leads to a reduction in the number of recursions. At the same time, we must think of a way to
normalize variable δ(k, i). In the process of normalizing εf (k, i), εb(k, i), and δ(k, i), we can reduce
the number of equations by eliminating the conversion variable γ(k, i + 1). Note that γ(k, i + 1) is
originally normalized. These goals can be reached if the normalization of δ(k, i) is performed as

δ(k, i) =
δ(k, i)√

ξd
fmin

(k, i)ξd
bmin

(k − 1, i)
(7.74)

By noting that the conversion variable γ(k−1, i) divides the product εf (k, i)εb(k−1, i) in the time-
updating formula (7.51), we can devise a way to perform the normalization of the prediction errors
leading to its elimination. The appropriate normalization of the forward and backward estimation
errors are, respectively, performed as

εf (k, i) =
εf (k, i)√

γ(k − 1, i)ξd
fmin

(k, i)
(7.75)

εb(k, i) =
εb(k, i)√

γ(k, i)ξd
bmin

(k, i)
(7.76)

where the terms
√

ξd
fmin

(k, i) and
√

ξd
bmin

(k, i)perform the power normalization whereas
√

γ(k − 1, i)

and
√

γ(k, i) perform the so-called angle normalization, since γ(k, i) is related to the angle between
the spaces spanned by x(k − 1, i) and x(k, i).

From the above equations and equation (7.51), we can show that

δ(k, i)
√

ξd
fmin

(k, i)ξd
bmin

(k − 1, i) = λδ(k − 1, i)
√

ξd
fmin

(k − 1, i)ξd
bmin

(k − 2, i)

+εb(k − 1, i)εf (k, i)
√

ξd
fmin

(k, i)ξd
bmin

(k − 1, i)

(7.77)
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Therefore,

δ(k, i) = λδ(k − 1, i)

√√√√ξd
fmin

(k − 1, i)ξd
bmin

(k − 2, i)

ξd
fmin

(k, i)ξd
bmin

(k − 1, i)
+ εb(k − 1, i)εf (k, i) (7.78)

We now show that the term under the square root in the above equation can be expressed in terms of
the normalized errors by using equations (7.72), (7.73), (7.75), and (7.76), that is,

λξd
bmin

(k − 2, i)
ξd
bmin

(k − 1, i)
=

γ(k − 1, i + 1)
γ(k − 1, i)

= 1− ε2
b(k − 1, i)

γ(k − 1, i)ξd
bmin

(k − 1, i)

= 1− ε2
b(k − 1, i) (7.79)

and

λξd
fmin

(k − 1, i)

ξd
fmin

(k, i)
=

γ(k, i + 1)
γ(k − 1, i)

= 1− ε2
f (k, i)

γ(k − 1, i)ξd
fmin

(k, i)

= 1− ε2
f (k, i) (7.80)

Substituting the last two equations into equation (7.78), we can show that

δ(k, i) = δ(k − 1, i)
√

(1− ε2
b(k − 1, i))(1− ε2

f (k, i)) + εb(k − 1, i)εf (k, i)

(7.81)

Following a similar procedure used to derive the time-updating equation for δ(k, i), one can derive
the order-updating equation of the normalized forward and backward prediction errors. In the case
of the forward prediction error, the following order-updating relation results:

εf (k, i + 1)=
[
εf (k, i)− δ(k, i)εb(k − 1, i)

]√√√√ ξd
fmin

(k, i)

ξd
fmin

(k, i + 1)

√
γ(k − 1, i)

γ(k − 1, i + 1)
(7.82)

Here again, we can express the functions under the square roots in terms of normalized variables.
Using equations (7.31), (7.74), and (7.77), it can be shown that

εf (k, i + 1) =
εf (k, i)− δ(k, i)εb(k − 1, i)√
1− δ

2
(k, i)

√
1− ε2

b(k − 1, i)
(7.83)
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If the same steps to derive εf (k, i + 1) are followed, we can derive the order-updating equation for
the backward prediction error as

εb(k, i + 1) =
[
εb(k − 1, i)− δ(k, i)εf (k, i)

]√ξd
bmin

(k − 1, i)
ξd
bmin

(k, i + 1)

√
γ(k − 1, i)
γ(k, i + 1)

=
εb(k − 1, i)− δ(k, i)εf (k, i)√

1− δ
2
(k, i)

√
1− ε2

f (k, i)
(7.84)

7.7.2 Feedforward Filtering

The procedure to generate the joint-processor estimator is repeated here, using normalized variables.
Define

δD(k, i) =
δD(k, i)√

ξd
min(k, i)ξd

bmin
(k, i)

(7.85)

and

ε(k, i) =
ε(k, i)√

γ(k, i)ξd
min(k, i)

(7.86)

Using a similar approach to that used to derive equation (7.31), one can show that

ξd
min(k, i + 1) = ξd

min(k, i)− δ2
D(k, i)

ξd
bmin

(k, i)
(7.87)

The procedure used to derive the order-updating equations for the normalized prediction errors and the
parameter δ(k, i) can be followed to derive the equivalent parameters in the joint-process estimation
case. For the a posteriori output error the following equation results

ε(k, i + 1) =

√
γ(k, i)

γ(k, i + 1)

√
ξd
min(k, i)

ξd
min(k, i + 1)

[
ε(k, i)− δD(k, i)εb(k, i)

]
=

1√
1− ε2

b(k, i)

1√
1− δ

2
D(k, i)

[
ε(k, i)− δD(k, i)εb(k, i)

]
(7.88)

The order-updating equation of δD(k, i) is (see equation (7.78))

δD(k, i) =

√
λ2ξd

min(k − 1, i)ξd
bmin

(k − 1, i)
ξd
min(k, i)ξd

bmin
(k, i)

δD(k − 1, i) + ε(k, i)εb(k, i)

=
√

(1− ε2
b(k, i))(1− ε2(k, i))δD(k − 1, i) + ε(k, i)εb(k, i) (7.89)
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where we used the fact that

λξd
min(k − 1, i)
ξd
min(k, i)

= 1− ε2(k, i) (7.90)

The normalized lattice RLS algorithm based on a posteriori errors is described in Algorithm 7.2.

Notice that in the updating formulas of the normalized errors, the terms involving the square root op-
eration could be conveniently implemented through separate multiplier coefficients, namely ηf (k, i),
ηb(k, i), and ηD(k, i). In this way, one can perform the order updating by calculating the numerator
first and proceeding with a single multiplication. These coefficients are given by

ηf (k, i + 1) =
1√

1− δ
2
(k, i)

√
1− ε2

b(k − 1, i)
(7.91)

ηb(k, i + 1) =
1√

1− δ
2
(k, i)

√
1− ε2

f (k, i)
(7.92)

ηD(k, i + 1) =
1√

1− ε2
b(k, i)

√
1− δ

2
D(k, i)

(7.93)

With these multipliers it is straightforward to obtain the structure for the joint-processor estimator
depicted in Fig. 7.3.
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Figure 7.3 Joint-process estimation normalized lattice realization.

The unique feature of the normalized lattice algorithm is the reduced number of equations and
variables at the expense of employing a number of square root operations. These operations can
be costly to implement in most types of hardware architectures. Another interesting feature of the
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Algorithm 7.2

Normalized Lattice RLS Algorithm
Based on A Posteriori Error

Initialization

Do for i = 0, 1 . . . , N

δ(−1, i) = 0 (assuming x(k) = d(k) = 0 for k < 0)
δD(−1, i) = 0
εb(−1, i) = 0

End

σ2
x(−1) = σ2

d(−1) = ε (ε small positive constant)

Do for k ≥ 0
σ2

x(k) = λσ2
x(k − 1) + x2(k) (Input signal energy)

σ2
d(k) = λσ2

d(k − 1) + d2(k) (Reference signal energy)
εb(k, 0) = εf (k, 0) = x(k)/σx(k)
ε(k, 0) = d(k)/σd(k)

Do for i = 0, 1 . . . , N

δ(k, i) = δ(k − 1, i)
√

(1− ε2
b(k − 1, i))(1− ε2

f (k, i)) + εb(k − 1, i)εf (k, i) (7.81)

εb(k, i + 1) = εb(k−1,i)−δ(k,i)εf (k,i)√
(1−δ

2(k,i))(1−ε2
f (k,i))

(7.84)

εf (k, i + 1) = εf (k,i)−δ(k,i)εb(k−1,i)√
(1−δ

2(k,i))(1−ε2
b(k−1,i))

(7.83)

Feedforward Filter

δD(k, i) = δD(k − 1, i)
√

(1− ε2
b(k, i))(1− ε2(k, i)) + ε(k, i)εb(k, i) (7.89)

ε(k, i + 1) = 1√
(1−ε2

b(k,i))(1−δ
2
D(k,i))

[
ε(k, i)− δD(k, i)εb(k, i)

]
(7.88)

End

End
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normalized lattice algorithm is that the forgetting factor λ does not appear in the internal updating
equations; it appears only in the calculation of the energy of the input and reference signals. This
property may be advantageous from the computational point of view in situations where there is a
need to vary the value of λ. On the other hand, since all internal variables are normalized, the actual
amplitude of the error signals and other quantities do not match those in other lattice structures. In
fact, from the normalized lattice structure one can only effectively extract the shape of the frequency
model the structure identifies, since the mapping between the parameters of normalized and non
normalized structures is computationally intensive.

7.8 ERROR-FEEDBACK LATTICE RLS ALGORITHM

The reflection coefficients of the lattice algorithm have so far been updated in an indirect way,
without time recursions. This section describes an alternative method of updating the reflection
coefficients using time updating. These updating equations are recursive in nature and are often
called direct updating, since the updating equations used for κb(k, i) and κf (k, i) in Algorithm 7.1
are dependent exclusively on quantities other than past reflection coefficients. Algorithms employing
the recursive time updating are called error-feedback lattice RLS algorithms. These algorithms have
better numerical properties than their indirect updating counterparts [3].

7.8.1 Recursive Formulas for the Reflection Coefficients

The derivation of a direct updating equation for κf (k, i) starts by replacing δ(k, i) by its time-updating
equation (7.51)

κf (k, i) =
δ(k, i)

ξd
bmin

(k − 1, i)

=
λδ(k − 1, i)

ξd
bmin

(k − 1, i)
+

εb(k − 1, i)εf (k, i)
γ(k − 1, i)ξd

bmin
(k − 1, i)

By multiplying and dividing the first term by ξd
bmin

(k − 2, i) and next using equation (7.72) in the
first and second terms, we obtain

κf (k, i) =
δ(k − 1, i)

ξd
bmin

(k − 2, i)
λξd

bmin
(k − 2, i)

ξd
bmin

(k − 1, i)
+

εb(k − 1, i)εf (k, i)
γ(k − 1, i)ξd

bmin
(k − 1, i)

= κf (k − 1, i)
γ(k − 1, i + 1)

γ(k − 1, i)
+

εb(k − 1, i)εf (k, i)γ(k − 1, i + 1)
γ2(k − 1, i)λξd

bmin
(k − 2, i)

=
γ(k − 1, i + 1)

γ(k − 1, i)

[
κf (k − 1, i) +

εb(k − 1, i)εf (k, i)
γ(k − 1, i)λξd

bmin
(k − 2, i)

]
(7.94)



3197.9 Lattice RLS Algorithm Based on A Priori Errors

Similarly, using equations (7.51) and (7.73), it is straightforward to show that

κb(k, i) =
γ(k, i + 1)
γ(k − 1, i)

[
κb(k − 1, i) +

εb(k − 1, i)εf (k, i)
γ(k − 1, i)λξd

fmin
(k − 1, i)

]
(7.95)

The feedforward coefficients can also be time updated in a recursive form, by appropriately combining
equations (7.64), (7.67), and (7.72). The time-recursive updating equation for vi(k) is

vi(k) =
γ(k, i + 1)

γ(k, i)

[
vi(k − 1) +

ε(k, i)εb(k, i)
γ(k, i)λξd

bmin
(k − 1, i)

]
(7.96)

The error-feedback LRLS algorithm described in Algorithm 7.3 employs the equations (7.94), (7.95),
and (7.96). This algorithm is directly derived from Algorithm 7.1.

Alternative a posteriori LRLS algorithms can be obtained if we replace equations (7.27) and (7.31)
by (7.70) and (7.72) in Algorithms 7.1 and 7.3, respectively. These modifications as well as possible
others do not change the behavior of the LRLS algorithm when implemented with infinite precision
(long wordlength). However, differences exist in computational complexity and in the effects of
quantization error propagation.

7.9 LATTICE RLS ALGORITHM BASED ON A PRIORI ERRORS

The lattice algorithms presented so far are based on a posteriori errors; however alternative algorithms
based on a priori errors exist and one of them is derived in this section.

The time updating of the quantity δ(k, i) as a function of the a priori errors was previously derived
(see equation (7.47)) and is repeated here for convenience.

δ(k, i) = λδ(k − 1, i) + γ(k − 1, i)eb(k − 1, i)ef (k, i) (7.97)

The time updating of the forward prediction a priori error can be obtained by using equation (7.32)
as

ef (k, i + 1) = xT (k, i + 2)
[

1
−wf (k − 1, i + 1)

]

= xT (k, i + 2)

⎡
⎣ 1
−wf (k − 1, i)

0

⎤
⎦+

δ(k − 1, i)
ξd
bmin

(k − 2, i)
xT (k, i + 2)

⎡
⎣ 0

wb(k − 2, i)
−1

⎤
⎦

= ef (k, i)− δ(k − 1, i)
ξd
bmin

(k − 2, i)
eb(k − 1, i)

= ef (k, i)− κf (k − 1, i)eb(k − 1, i) (7.98)
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Algorithm 7.3

Error-Feedback LRLS Algorithm
Based on A Posteriori Errors

Initialization

Do for i = 0, 1 . . . , N
κb(−1, i) = κf (−1, i) = vi(−1) = δ(−1, i) = 0, γ(−1, i) = 1
ξd
bmin

(−2, i) = ξd
bmin

(−1, i) = ξd
fmin

(−1, i) = ε (a small positive constant)
εb(−1, i) = 0

End

Do for k ≥ 0
γ(k, 0) = 1
εb(k, 0) = εf (k, 0) = x(k) (7.35)
ξd
fmin

(k, 0) = ξd
bmin

(k, 0) = x2(k) + λξd
fmin

(k − 1, 0) (7.36)
ε(k, 0) = d(k)

Do for i = 0, 1 . . . , N

δ(k, i) = λδ(k − 1, i)+ εb(k−1,i)εf (k,i)
γ(k−1,i) (7.51)

γ(k, i + 1) = γ(k, i)− ε2
b(k,i)

ξd
bmin

(k,i) (7.60)

κf (k, i) = γ(k−1,i+1)
γ(k−1,i)

[
κf (k − 1, i) + εb(k−1,i)εf (k,i)

γ(k−1,i)
1

λξd
bmin

(k−2,i)

]
(7.94)

κb(k, i) = γ(k,i+1)
γ(k−1,i)

[
κb(k − 1, i) + εb(k−1,i)εf (k,i)

γ(k−1,i)
1

λξd
fmin

(k−1,i)

]
(7.95)

εb(k, i + 1) = εb(k − 1, i)− κb(k, i)εf (k, i) (7.34)
εf (k, i + 1) = εf (k, i)− κf (k, i)εb(k − 1, i) (7.33)

ξd
fmin

(k, i + 1) = ξd
fmin

(k, i)− δ2(k,i)
ξd

bmin
(k−1,i) (7.31)

ξd
bmin

(k, i + 1) = ξd
bmin

(k − 1, i)− δ2(k,i)
ξd

fmin
(k,i) (7.27)

Feedforward Filtering

vi(k) = γ(k,i+1)
γ(k,i)

[
vi(k − 1) + ε(k,i)εb(k,i)

γ(k,i)λξd
bmin

(k−1,i)

]
(7.96)

ε(k, i + 1) = ε(k, i)− vi(k)εb(k, i) (7.68)
End

End
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With equation (7.28), we can generate the time-updating equation of the backward prediction a priori
error as

eb(k, i + 1) = xT (k, i + 2)

⎡
⎣ 0
−wb(k − 2, i)

1

⎤
⎦− δ(k − 1, i)

ξd
fmin

(k − 1, i)
xT (k, i + 2)

⎡
⎣ −1

wf (k − 1, i)
0

⎤
⎦

= eb(k − 1, i)− δ(k − 1, i)
ξd
fmin

(k − 1, i)
ef (k, i)

= eb(k − 1, i)− κb(k − 1, i)ef (k, i) (7.99)

The order updating of γ(k− 1, i) can be derived by employing the relations of equations (7.50) and
(7.60). The result is

γ(k − 1, i + 1) = γ(k − 1, i)− γ2(k − 1, i)e2
b(k − 1, i)

ξd
bmin

(k − 1, i)
(7.100)

The updating of the feedforward coefficients of the lattice realization based on a priori errors is
performed by the following equations

δD(k, i) = λδD(k − 1, i) + γ(k, i)eb(k, i)e(k, i) (7.101)

e(k, i + 1) = e(k, i)− vi(k − 1)eb(k, i) (7.102)

vi(k − 1) =
δD(k − 1, i)

ξd
bmin

(k − 1, i)
(7.103)

The derivations are omitted since they follow the same steps of the predictor equations.

An LRLS algorithm based on a priori errors is described in Algorithm 7.4. The normalized and error-
feedback versions of the LRLS algorithm based on a priori errors also exist and their derivations are
left as problems.

7.10 QUANTIZATION EFFECTS

A major issue related to the implementation of adaptive filters is their behavior when implemented
with finite-precision arithmetic. In particular, the roundoff errors arising from the quantization of the
internal quantities of an algorithm propagate internally and can even cause instability. The numerical
stability and accuracy are algorithm dependent. In this section, we summarize some of the results
obtained in the literature related to the LRLS algorithms [3], [7]-[8].

One of the first attempts to study the numerical accuracy of the lattice algorithms was reported in [7].
Special attention was given to the normalized lattice RLS algorithm, since this algorithm is suitable
for fixed-point arithmetic implementation, due to its internal normalization. In this study, it was
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Algorithm 7.4

LRLS Algorithm
Based on A Priori Errors

Initialization
Do for i = 0, 1 . . . , N

δ(−1, i) = δD(−1, i) = 0 (assuming x(k) = 0 for k < 0)
γ(−1, i) = 1
ξd
bmin

(−1, i) = ξd
fmin

(−1, i) = ε (a small positive constant)
eb(−1, i) = 0
κf (−1, i) = κb(−1, i) = 0

End

Do for k ≥ 0
γ(k, 0) = 1
eb(k, 0) = ef (k, 0) = x(k)
ξd
fmin

(k, 0) = ξd
bmin

(k, 0) = x2(k) + λξd
fmin

(k − 1, 0)
e(k, 0) = d(k)
Do for i = 0, 1 . . . , N
δ(k, i) = λδ(k − 1, i) + γ(k − 1, i)eb(k − 1, i)ef (k, i) (7.47)

γ(k, i + 1) = γ(k, i)−
γ2(k, i)e2

b(k, i)
ξd

bmin
(k,i) (7.100)

eb(k, i + 1) = eb(k − 1, i)− κb(k − 1, i)ef (k, i) (7.99)
ef (k, i + 1) = ef (k, i)− κf (k − 1, i)eb(k − 1, i) (7.98)
κf (k, i) = δ(k,i)

ξd
bmin

(k−1,i)

κb(k, i) = δ(k,i)
ξd

fmin
(k,i)

ξd
fmin

(k, i + 1) = ξd
fmin

(k, i)− δ(k, i)κf (k, i) (7.31)
ξd
bmin

(k, i + 1) = ξd
bmin

(k − 1, i)− δ(k, i)κb(k, i) (7.27)

Feedforward Filtering

δD(k, i) = λδD(k − 1, i)+ γ(k, i)eb(k, i) e(k, i) (7.101)

e(k, i + 1) = e(k, i)− vi(k − 1)eb(k, i) (7.102)
vi(k) = δD(k,i)

ξd
bmin

(k,i) (7.103)

End
End
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shown that the bias error in the reflection coefficients was more significant than the variance of the
estimate error. The bias in the estimated reflection coefficients is mainly caused by the quantization
error associated with the calculation of the square roots of [1 − ε2

b(k − 1, i)] and [1 − ε2
f (k, i)],

assuming they are calculated separately. An upper bound for this quantization error is given by

msq = 2−b (7.104)

assuming that b is the number of bits after the sign bit and that quantization is performed through
rounding. In the analysis, the basic assumption that 1− λ � 2−b+1 was used. The upper bound of
the bias error in the reflection coefficients is given by [7]

Δδ(k, i) =
2−b+1δ(k, i)

1− λ
(7.105)

Obviously, the accuracy of this result depends on the validity of the assumptions used in the analysis
[7]. However it is a good indication of how the bias is generated in the reflection coefficients. It
should also be noted that the above result is valid as long as the updating of the related reflection
coefficient does not stop. An analysis for the case in which the updating stops is also included in [7].

The bias error of a given stage of the lattice realization propagates to the succeeding stages and its
accumulation in the prediction errors can be expressed as

Δε2
b(k, i + 1) = Δε2

f (k, i + 1) ≈ 2−b+2
i∑

l=0

δ
2
(k, l)

1− δ
2
(k, l)

(7.106)

for i = 0, 1, . . . , N . This equation indicates that whenever the value of the parameter δ
2
(k, l) is

small, the corresponding term in the summation is also small. On the other hand, if the value of
this parameter tends to one, the corresponding term of the summation is large. Also note that the
accumulated error tends to grow as the number of sections of the lattice is increased. In a finite-
precision implementation, it is possible to determine the maximum order that the lattice can have
such that the error signals at the end of the realization still represent actual signals and not only
accumulated quantization noise.

The lattice algorithms remain stable even when using quite short wordlength in fixed- and floating-
point implementations. In terms of accuracy the error-feedback algorithms are usually better than the
conventional LRLS algorithms [3]. The reduction in the quantization effects of the error-feedback
LRLS algorithms is verified in [3], where a number of examples show satisfactory performance for
implementation with less than 10 bits in fixed-point arithmetic.

Another investigation examines the finite-wordlength implementation employing floating-point arith-
metic of the unnormalized lattice with and without error feedback [8]. As expected, the variance of the
accumulated error in the reflection coefficients of the error-feedback algorithms are smaller than that
for the conventional LRLS algorithm. Another important issue relates to the so-called self-generated
noise that originates in the internal stages of the lattice realization when the order of adaptive filter is
greater than necessary. In the cases where the signal-to-noise ratio is high in the desired signal, the
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internal signals of the last stages of the lattice realization can reach the quantization level and start
self-generated noise, leading to an excess mean-square error and possibly to instability. The stability
problem can be avoided by turning off the stages after the one in which the weighted forward and
backward squared errors are smaller than a given threshold.

Example 7.1

The system identification problem described in Chapter 3 (subsection 3.6.2) is solved using the
lattice algorithms presented in this chapter. The main objective is to compare the performance of the
algorithms when implemented in finite precision.

Solution:

We present here the results of using the unnormalized, the normalized and error-feedback a posteriori
lattice RLS algorithms in the system identification example. All results presented are obtained by
running 200 independent experiments and calculating the average of the quantities of interest. We
consider the case of eigenvalue spread 20, and λ = 0.99. Parameter ε is 0.1, 0.01, and 0.1 for
the unnormalized, the normalized, and the error-feedback lattice filters, respectively. The measured
misadjustments of the lattice algorithms are given in Table 7.1. As expected, the results are close to
those obtained by the conventional RLS algorithm, where in the latter the misadjustment is 0.0421.
Not included is the result for the normalized lattice because the a posteriori error is not available, in
this case the measured normalized MSE is 0.00974.

Table 7.2 summarizes the results obtained by the implementation of the lattice algorithms with
finite precision. Parameter ε in the finite-precision implementation is 0.1, 0.04 and 0.5 for the
unnormalized, normalized and error-feedback lattices, respectively. These values assure a good
convergence behavior of the algorithms in this experiment. In short-wordlength implementation of
the lattice algorithms, it is advisable to test if the denominator expressions of the algorithm steps
involving division are not rounded to zero. In the case of the detection of a zero denominator, replace
its value by the value of the least significant bit. Table 7.2 shows that for the unnormalized and
error-feedback lattices, the mean-squared errors are comparable to the case of the conventional RLS
previously shown in Table 5.2. The normalized lattice is more sensitive to quantization errors due to its
higher computational complexity. The errors introduced by the calculations to obtain w(k)Q, starting
with the lattice coefficients, is the main reason for the increased values of E[||Δw(k)Q||2] shown in
Table 7.2. Therefore, this result should not be considered as an indication of poor performance of
the normalized lattice implemented with finite precision.

�



3257.10 Quantization Effects

Table 7.1 Evaluation of the Lattice RLS Algorithms

Algorithm Misadjustment

Unnorm. 0.0416

Error Feed. 0.0407

Table 7.2 Results of the Finite-Precision Implementation of the Lattice RLS Algorithms

ξ(k)Q E[||Δw(k)Q||2]
No. of bits Unnorm. Norm. Error Feed. Unnorm. Norm. Error Feed.

16 1.563 10−3 8.081 10−3 1.555 10−3 9.236 10−4 2.043 10−3 9.539 10−4

12 1.545 10−3 8.096 10−3 1.567 10−3 9.317 10−4 2.201 10−3 9.271 10−4

10 1.587 10−3 10.095 10−3 1.603 10−3 9.347 10−4 4.550 10−3 9.872 10−4

Example 7.2

The channel equalization example first described in subsection 3.6.3 is used in simulations using the
lattice RLS algorithm with error feedback. The present example uses a 25th-order equalizer.

Solution:

Applying the error-feedback lattice RLS algorithm, using λ = 0.99 with a 25th-order equalizer, we
obtain after 100 iterations the equalizer whose impulse response is shown in Fig. 7.4. The appropriate
value of L for this case is 18. The algorithm is initialized with ε = 0.1.

The convolution of this response with the channel impulse response is depicted in Fig. 7.5, which
clearly approximates an impulse. In this case, the measured MSE was 0.3056, a value comparable
with that obtained with the LMS algorithm in the example of subsection 3.6.3. Note that in the LMS
case a 50th-order equalizer was used.

�
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Figure 7.4 Equalizer impulse response, lattice RLS algorithm with error feedback.
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Figure 7.5 Convolution result, lattice RLS algorithm with error feedback.
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7.11 CONCLUDING REMARKS

A number of alternative RLS algorithms based on the lattice realization were introduced. These
algorithms consist of stages where growing-order forward and backward predictors of the input
signal are built from stage to stage. This feature makes the lattice-based algorithms attractive in a
number of applications where information about the statistics of the input signal, such as the order
of the input signal model, is useful. Another important feature of the lattice-based algorithms is their
robust performance when implemented in finite-precision arithmetic.

Also, their computational complexity of at least 16N multiplications per output sample is acceptable
in a number of practical situations. However, by starting from the lattice formulation without making
extensive use of order updating, it is possible to derive the fast transversal RLS algorithms, which
can reduce the computational complexity to orders of 7N multiplications per output sample. The
derivation of these algorithms is the subject of the Chapter 8.

Several interesting topics related to the lattice formulation of adaptive filters have been addressed in
the open literature [9]-[13]. The geometric formulation of the least-squares estimation problem can be
used to derive the lattice-based algorithms [9] in an elegant manner. Also, an important situation that
we usually find in practice is the case where the input data cannot be considered zero before the first
iteration of the adaptive algorithm. The derivation of the lattice algorithms that account for nonzero
initial conditions for the input data is found in [10]. Another important problem is the characterization
of the conditions under which the stability of the lattice algorithm is maintained when perturbations
to the normal operation occur [11]. There is also a family of lattice-based algorithms employing
gradient-type updating equations. These algorithms present reduced computational complexity and
good behavior when implemented with finite-precision arithmetic [12]-[13].

A number of simulation examples involving the lattice algorithms were presented. In these examples
the performance of the lattice algorithm was evaluated in different applications as well as in finite-
precision implementations.
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7.13 PROBLEMS

1. Deduce the time-updating formula for the backward predictor coefficients.

2. Given a square matrix

P =
[

A B
C D

]

where A and D are also square matrices, the inverse of P can be expressed as

P−1 =
[

A−1[I + B(D− CA−1B)−1CA−1] −A−1B(D− CA−1B)−1

−(D− CA−1B)−1CA−1 (D− CA−1B)−1

]

=
[

(A− BD−1C)−1 −(A− BD−1C)−1BD−1

−D−1C(A− BD−1C)−1 D−1[I + C(A− BD−1C)−1BD−1]

]

(a) Show the validity of this result.

(b) Use the appropriate partitioned forms of RD(k − 1, i) to derive the partitioned forms of
SD(k − 1, i) of equations (7.56) and (7.59).

3. Derive the time-updating formula of δD(k, i).

4. Demonstrate that the backward a posteriori prediction errors εb(k, i) and εb(k, j) for i �= j are
uncorrelated when the average is calculated over time.

5. Justify the initialization of ξd
bmin

(0) and ξd
fmin

(0) in the lattice RLS algorithm.

6. Derive the a posteriori lattice RLS algorithm for complex input signals.

7. Derive equation (7.71).

8. Derive the order-updating equation of the normalized forward and backward errors.

9. Demonstrate the validity of the order-updating formula of the weighted least-squares error of
the joint-process estimation described in equation (7.88).

10. Derive equation (7.89).

11. Derive the error-feedback LRLS algorithm based on a priori errors.

12. Derive the normalized LRLS algorithm based on a priori errors.

13. The lattice RLS algorithm based on a posteriori errors is used to predict the signal x(k) = sin πk
4 .

Given λ = 0.99, calculate the error and the tap coefficients for the first 10 iterations.

14. The normalized lattice RLS algorithm based on a posteriori errors is used to predict the signal
x(k) = sin πk

4 . Given λ = 0.99, calculate the error and the multiplier coefficients for the first
10 iterations.
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15. The error-feedback LRLS algorithm is applied to identify a 7th-order time-varying unknown
system whose coefficients are first-order Markov processes with λw = 0.999 and σ2

w = 0.033.
The initial time-varying system multiplier coefficients are

wT
o = [0.03490 − 0.01100 − 0.06864 0.22391 0.55686 0.35798 − 0.02390 − 0.07594]

The input signal is Gaussian white noise with variance σ2
x = 1 and the measurement noise is

also Gaussian white noise independent of the input signal and of the elements of nw(k) with
variance σ2

n = 0.01.

Simulate the experiment above described and measure the excess MSE for λ = 0.97 and
λ = 0.99.

16. Repeat the experiment described in problem 15 using the normalized lattice algorithm.

17. Suppose that a 15th-order FIR digital filter with the multiplier coefficients given below is iden-
tified through an adaptive FIR filter of the same order using the unnormalized LRLS algorithm.
Considering that fixed-point arithmetic is used, simulate the identification problem described
using the following specifications:

Additional noise : white noise with variance σ2
n = 0.0015

Coefficients wordlength: bc = 16 bits
Signal wordlength: bd = 16 bits
Input signal: Gaussian white noise with variance σ2

x = 0.7
λ = 0.98

wT
o = [0.0219360 0.0015786 − 0.0602449 − 0.0118907 0.1375379

0.0574545 − 0.3216703 − 0.5287203 − 0.2957797 0.0002043 0.290670
− 0.0353349 − 0.0068210 0.0026067 0.0010333 − 0.0143593]

Plot the learning curves for the finite- and infinite-precision implementations. Also plot
E[||Δκf (k, 0)||2] and E[||Δκb(k, 0)||2] versus k in both cases.

18. Repeat the above problem for the following cases:

(a) σ2
n = 0.01, bc = 9 bits, bd = 9 bits, σ2

x = 0.7, λ = 0.98.

(b) σ2
n = 0.1, bc = 10 bits, bd = 10 bits, σ2

x = 0.8, λ = 0.98.

(c) σ2
n = 0.05, bc = 8 bits, bd = 16 bits, σ2

x = 0.8, λ = 0.98.

19. In problem 17, rerun the simulations for λ = 1, λ = 0.940. Comment on the results.

20. Repeat problem 18, using the normalized and error-feedback LRLS algorithms. Compare the
results for the different algorithms.

21. Repeat problem 17 for the case where the input signal is a first-order Markov process with
λx = 0.98.

22. Given a channel with impulse response

h(k) = 0.9k + 0.4k

for k = 0, 1, 2, . . . , 25, design an adaptive equalizer. The input signal is white noise with unit
variance and the adaptive-filter input signal-to-noise ratio is 30 dB. Use the unnormalized lattice
algorithm of order 35.
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23. The unnormalized lattice algorithm is used to perform the forward prediction of a signal x(k)
generated by applying zero-mean Gaussian white noise signal with unit variance to the input of
a linear filter with transfer function given by

H(z) =
0.5

(1− 1.512z−1 + 0.827z−2)(1− 1.8z−1 + 0.87z−2)

Calculate the zeros of the resulting predictor error transfer function and compare with the poles
of the linear filter.

24. Determine the computational complexity of the Algorithms 7.1, 7.2, 7.3, and 7.4.



8
FAST TRANSVERSAL RLS ALGORITHMS

8.1 INTRODUCTION

Among the large number of algorithms that solve the least-squares problem in a recursive form, the
fast transversal recursive least-squares (FTRLS) algorithms are very attractive due to their reduced
computational complexity [1]-[7].

The FTRLS algorithms can be derived by solving simultaneously the forward and backward linear
prediction problems, along with two other transversal filters: the joint-process estimator and an
auxiliary filter whose desired signal vector has one as its first and unique nonzero element (i.e.,
d(0) = 1). Unlike the lattice-based algorithms, the FTRLS algorithms require only time-recursive
equations. However, a number of relations required to derive some of the FTRLS algorithms can be
taken from the previous chapter on LRLS algorithms. The FTRLS algorithm can also be considered
a fast version of an algorithm to update the transversal filter for the solution of the RLS problem,
since a fixed-order update for the transversal adaptive filter coefficient vector is computed at each
iteration.

The relations derived for the backward and forward prediction in the lattice-based algorithms can
be used to derive the FTRLS algorithms. The resulting algorithms have computational complexity
of order N making them especially attractive for practical implementation. When compared to the
lattice-based algorithms, the computational complexity of the FTRLS algorithms is lower due to
the absence of order-updating equations. In particular, FTRLS algorithms typically require 7N to
11N multiplications and divisions per output sample, as compared to 14N to 29N for the LRLS
algorithms. Therefore, FTRLS algorithms are considered the fastest implementation solutions of the
RLS problem [1]-[7].

Several alternative FTRLS algorithms have been proposed in the literature. The so-called fast Kalman
algorithm [1], which is certainly one of the earlier fast transversal RLS algorithms, has computational
complexity of 11N multiplications and divisions per output sample. In a later stage of research
development in the area of fast transversal algorithms, the fast a posteriori error sequential technique
(FAEST) [2], and the fast transversal filter (FTF) [3] algorithms were proposed, both requiring an
order of 7N multiplications and divisions per output sample. The FAEST and FTF algorithms have

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_8,  
© Springer Science+Business Media, LLC 2008  
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the lowest complexity known for RLS algorithms, and are useful for problems where the input vector
elements consist of delayed versions of a single input signal. Unfortunately, these algorithms are
very sensitive to quantization effects and become unstable if certain actions are not taken [5]-[7], [9].

In this chapter, a particular form of the FTRLS algorithm is presented, where most of the derivations
are based on those presented for the lattice algorithms. It is well known that the quantization errors
in the FTRLS algorithms present exponential divergence [1]-[7]. Since the FTRLS algorithms have
unstable behavior when implemented with finite-precision arithmetic, we discuss the implementation
of numerically stable FTRLS algorithms, and provide the description of a particular algorithm [8]-
[10].

8.2 RECURSIVE LEAST-SQUARES PREDICTION

All fast algorithms explore some structural property of the information data in order to achieve low
computational complexity. In the particular case of the fast RLS algorithms discussed in this text, the
reduction in the computational complexity is achieved for the cases where the input signal consists
of consecutively delayed samples of the same signal. In this case, the patterns of the fast algorithms
are similar in the sense that the forward and backward prediction filters are essential parts of these
algorithms. The predictors perform the task of modeling the input signal, which as a result allows
the replacement of matrix equations by vector and scalar relations.

In the derivation of the FTRLS algorithms, the solutions of the RLS forward and backward prediction
problems are required in the time-update equations. In this section, these solutions are reviewed with
emphasis on the results that are relevant to the FTRLS algorithms. As previously mentioned, we
will borrow a number of derivations from the previous chapter on lattice algorithms. It is worth
mentioning that the FTRLS could be introduced through an independent derivation, however the
derivation based on the lattice is probably more insightful and certainly more straightforward at this
point.

8.2.1 Forward Prediction Relations

The instantaneous a posteriori forward prediction error for an N th-order predictor is given by

εf (k, N) = x(k)− wT
f (k, N)x(k − 1, N)

= xT (k, N + 1)
[

1
−wf (k, N)

]
(8.1)

The relationship between a posteriori and a priori forward prediction error, first presented in equation
(7.49) and repeated here for convenience, is given by

ef (k, N) =
εf (k, N)

γ(k − 1, N)
(8.2)
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A simple manipulation of equation (7.73), leads to the following relation for the time updating of the
minimum weighted least-squares error, which will be used in the FTRLS algorithm:

ξd
fmin

(k, N) = λξd
fmin

(k − 1, N) + ef (k, N)εf (k, N) (8.3)

From the same equation (7.73), we can obtain the following equality that will also be required in the
FTRLS algorithm:

γ(k, N + 1) =
λξd

fmin
(k − 1, N)

ξd
fmin

(k, N)
γ(k − 1, N) (8.4)

The updating equation of the forward prediction tap-coefficient vector can be performed through
equation (7.40) of the previous chapter, i.e.,

wf (k, N) = wf (k − 1, N) + φ(k − 1, N)ef (k, N) (8.5)

where φ(k − 1, N) = SD(k − 1, N)x(k − 1, N).

As will be seen, the updating of vector φ(k−1, N) to φ(k, N +1) is needed to update the backward
predictor coefficient vector. Also, the last element of φ(k, N + 1) is used to update the backward
prediction a priori error and to obtain γ(k, N). Vector φ(k, N + 1) can be obtained by post-
multiplying both sides of equation (7.56), at instant k and for order N , by x(k, N +1) = [x(k)xT (k−
1, N)]T . The result can be expressed as

φ(k, N + 1) =
[

0
φ(k − 1, N)

]
+

1
ξd
fmin

(k, N)

[
1

−wf (k, N)

]
εf (k, N) (8.6)

However, it is not convenient to use the above equation in the FTRLS algorithm because when
deriving the backward prediction part, it would lead to extra computation. The solution is to use

an alternative recursion involving φ̂(k, N + 1) = φ(k,N+1)
γ(k,N+1) instead of φ(k, N + 1) (see problem

7 for further details). The resulting recursion can be derived after some algebraic manipulations of
equations (8.6) and (8.3) to (8.5), leading to

φ̂(k, N + 1) =
[

0
φ̂(k − 1, N)

]
+

1
λξd

fmin
(k − 1, N)

[
1

−wf (k − 1, N)

]
ef (k, N) (8.7)

The forward prediction tap-coefficient vector should then be updated using φ̂(k − 1, N) as

wf (k, N) = wf (k − 1, N) + φ̂(k − 1, N)εf (k, N) (8.8)

8.2.2 Backward Prediction Relations

In this subsection, the relations involving the backward prediction problem that are used in the FTRLS
algorithm are derived.
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The relationship between a posteriori and a priori backward prediction errors can be expressed as

εb(k, N) = eb(k, N)γ(k, N) (8.9)

It is also known that the ratio of conversion factors for different orders is given by

γ(k, N + 1)
γ(k, N)

=
λξd

bmin
(k − 1, N)

ξd
bmin

(k, N)
(8.10)

see equation (7.79) of the previous chapter.

We rewrite for convenience the last equality of equation (7.70), i.e.,

ξd
bmin

(k, N) = λξd
bmin

(k − 1, N) +
ε2

b(k, N)
γ(k, N)

(8.11)

This equation can be rewritten as

1 +
ε2

b(k, N)
λγ(k, N)ξd

bmin
(k − 1, N)

=
ξd
bmin

(k, N)
λξd

bmin
(k − 1, N)

(8.12)

Now we recall that the time updating for the backward predictor filter is given by

wb(k, N) = wb(k − 1, N) + φ(k, N)eb(k, N)

= wb(k − 1, N) + φ̂(k, N)εb(k, N) (8.13)

Following a similar approach to that used to derive equation (8.7), by first post-multiplying both
sides of equation (7.59), at instant k and for order N , by x(k, N + 1) = [xT (k, N) x(k−N)]T , and
using relations (8.10), (8.11), and (8.13), we have[

φ̂(k, N)
0

]
= φ̂(k, N + 1)− 1

λξd
bmin

(k − 1, N)

[ −wb(k − 1, N)
1

]
eb(k, N) (8.14)

Note that in this equation the last element of φ̂(k, N +1) was already calculated in equation (8.7). In
any case, it is worth mentioning that the last element of φ̂(k, N + 1) can alternatively be expressed
as

φ̂N+1(k, N + 1) =
eb(k, N)

λξd
bmin

(k − 1, N)
(8.15)

By applying equations (8.9), (8.15), and (8.10) in equation (8.12), we can show that

1 + φ̂N+1(k, N + 1)εb(k, N) =
γ(k, N)

γ(k, N + 1)
(8.16)
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By substituting equation (8.9) into the above equation, we can now derive an updating equation that
can be used in the FTRLS algorithm as

γ−1(k, N) = γ−1(k, N + 1)− φ̂N+1(k, N + 1)eb(k, N) (8.17)

The updating equations related to the forward and backward prediction problems and for the conver-
sion factor γ(k, N) are now available. We can thus proceed with the derivations to solve the more
general problem of estimating a related process represented by the desired signal d(k), known as
joint-process estimation.

8.3 JOINT-PROCESS ESTIMATION

As for all previously presented adaptive-filter algorithms, it is useful to derive a FTRLS algorithm
that can match a desired signal d(k) through the minimization of the weighted squared error. Starting
with the a priori error

e(k, N) = d(k)− wT (k − 1, N)x(k, N) (8.18)

we can calculate the a posteriori error as

ε(k, N) = e(k, N)γ(k, N) (8.19)

As in the conventional RLS algorithm, the time updating for the output tap coefficients of the joint-
process estimator can be performed as

w(k, N) = w(k − 1, N) + φ(k, N)e(k, N)

= w(k − 1, N) + φ̂(k, N)ε(k, N) (8.20)

All the updating equations are now available to describe the fast transversal RLS algorithm. The FRLS
algorithm consists of equations (8.1)-(8.3), (8.7)-(8.8), and (8.4) related to the forward predictor;
equations (8.15), (8.17), (8.9), (8.11), (8.14), and (8.13) related to the backward predictor and the
conversion factor; and (8.18)-(8.20) related to the joint-process estimator. The FTRLS algorithm is
in step-by-step form as Algorithm 8.1. The computational complexity of the FTRLS algorithm is
7(N)+14 multiplications per output sample. The key feature of the FTRLS algorithm is that it does
not require matrix multiplications. Because of this, the implementation of the FTRLS algorithm has
complexity of order N multiplications per output sample.

The initialization procedure consists of setting the tap coefficients of the backward prediction, forward
prediction, and joint-process estimation filters to zero, namely

wf (−1, N) = wb(−1, N) = w(−1, N) = 0 (8.21)

Vector φ̂(−1, N) is set to 0 assuming that the input and desired signals are zero for k < 0, i.e.,
prewindowed data. The conversion factor should be initialized as

γ(−1, N) = 1 (8.22)
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Algorithm 8.1

Fast Transversal RLS Algorithm

Initialization

wf (−1, N) = wb(−1, N) = w(−1, N) = 0
φ̂(−1, N) = 0, γ(−1, N) = 1
ξd
bmin

(−1, N) = ξd
fmin

(−1, N) = ε (a small positive constant)

Prediction Part

Do for each k ≥ 0,

ef (k, N) = xT (k, N + 1)
[

1
−wf (k − 1, N)

]
εf (k, N) = ef (k, N)γ(k − 1, N) (8.2)
ξd
fmin

(k, N) = λξd
fmin

(k − 1, N) + ef (k, N)εf (k, N) (8.3)

wf (k, N) = wf (k − 1, N) + φ̂(k − 1, N)εf (k, N) (8.8)

φ̂(k, N + 1) =
[

0
φ̂(k − 1, N)

]
+ 1

λξd
fmin

(k−1,N)

[
1

−wf (k − 1, N)

]
ef (k, N) (8.7)

γ(k, N + 1) =
λξd

fmin
(k−1,N)

ξd
fmin

(k,N)
γ(k − 1, N) (8.4)

eb(k, N) = λξd
bmin

(k − 1, N)φ̂N+1(k, N + 1) (8.15)

γ−1(k, N) = γ−1(k, N + 1) − φ̂N+1(k, N + 1)eb(k, N) (8.17)
εb(k, N) = eb(k, N)γ(k, N) (8.9)
ξd
bmin

(k, N) = λξd
bmin

(k − 1, N) + εb(k, N)eb(k, N) (8.11)[
φ̂(k, N)

0

]
= φ̂(k, N + 1) − φ̂N+1(k, N + 1)

[ −wb(k − 1, N)
1

]
(8.14)

wb(k, N) = wb(k − 1, N) + φ̂(k, N)εb(k, N) (8.13)

Joint-Process Estimation

e(k, N) = d(k) − wT (k − 1, N)x(k, N) (8.18)
ε(k, N) = e(k, N)γ(k, N) (8.19)
w(k, N) = w(k − 1, N) + φ̂(k, N)ε(k, N) (8.20)

End

since no difference between a priori and a posteriori errors exists during the initialization period.
The weighted least-square errors should be initialized with a positive constant ε

ε = ξd
fmin

(−1, N) = ξd
bmin

(−1, N) (8.23)

in order to avoid division by zero in the first iteration. The reason for introducing this initialization
parameter suggests that it should be a small value. However, for stability reasons, the value of ε
should not be small (see the examples at the end of this chapter).

It should be mentioned that there are exact initialization procedures for the fast transversal RLS filters
with the aim of minimizing the objective function at all instants during the initialization period [3].
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These procedures explore the fact that during the initialization period the number of data samples
in both d(k) and x(k) is less than N + 1. Therefore the objective function can be made zero
since there are more parameters than needed. The exact initialization procedure of [3] replaces the
computationally intensive backsubstitution algorithm and is rather simple when the adaptive-filter
coefficients are initialized with zero. The procedure can also be generalized to the case where some
nonzero initial values for the tap coefficients are available.

As previously mentioned, several fast RLS algorithms based on the transversal realization exist;
the one presented here corresponds to the so-called FTF proposed in [3]. A number of alternative
algorithms are introduced in the problems.

8.4 STABILIZED FAST TRANSVERSAL RLS ALGORITHM

Although the fast transversal algorithms proposed in the literature provide a nice solution to the
computational complexity burden inherent to the conventional RLS algorithm, these algorithms are
unstable when implemented with finite-precision arithmetic. Increasing the wordlength does not
solve the instability problem. The only effect of employing a longer wordlength is that the algorithm
will take longer to diverge. Earlier solutions to this problem consisted of restarting the algorithm
when the accumulated errors in chosen variables reached prescribed thresholds [3]. Although the
restart procedure would use past information, the resulting performance is suboptimal due to the
discontinuity of information in the corresponding deterministic correlation matrix.

The cause for the unstable behavior of the fast transversal algorithms is the inherent positive feedback
mechanism. This explanation led to the idea that if some specific measurements of the numerical
errors were available, they could conveniently be fed back in order to make the negative feedback
dominant in the error propagation dynamics. Fortunately, some measurements of the numerical
errors can be obtained by introducing computational redundancy into the fast algorithm. Such a
computational redundancy would involve calculating a given quantity using two different formulas.
In finite-precision implementation, the resulting values for the quantity calculated by these formulas
are not equal and their difference is a good measurement of the accumulated errors in that quantity.
This error can then be fed back in an attempt to stabilize the algorithm. The key problem is to
determine the quantities where the computational redundancy should be introduced such that the
error propagation dynamics can be stabilized. In the early proposed solutions [6]-[7], only a single
quantity was chosen to introduce the redundancy. Later, it was shown that at least two quantities are
required in order to guarantee the stability of the FTRLS algorithm [9]. Another relevant question
is where should the error be fed back inside the algorithm. Note that any point could be chosen
without affecting the behavior of the algorithm when implemented with infinite precision, since the
feedback error is zero in this case. A natural choice is to feed the error back into the expressions of
the quantities that are related to it. That means for each quantity in which redundancy is introduced,
its final value is a combination of the two forms of computing it.

The FTRLS algorithm can be seen as a discrete-time nonlinear dynamic system [9]: when finite
precision is used in the implementation, quantization errors will rise. In this case, the internal
quantities will be perturbed when compared with the infinite-precision quantities. When modeling
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the error propagation, a nonlinear system can be described that, if properly linearized, allows the
study of the error propagation mechanism. Using an averaging analysis, which is meaningful for
stationary input signals, it is possible to obtain a system characterized by its set of eigenvalues whose
dynamic behavior is similar to that of the error propagation behavior when k →∞ and (1−λ) → 0.
Through these eigenvalues, it is possible to determine the feedback parameters as well as the quantities
to choose for the introduction of redundancy. The objective here is to modify the unstable modes
through the error feedback in order to make them stable [9]. Fortunately, it was found in [9] that
the unstable modes can be modified and stabilized by the introduced error feedback. The unstable
modes can be modified by introducing redundancy in γ(k, N) and eb(k, N). These quantities can
be calculated using different relations and in order to distinguish them an extra index is included in
their description.

The a priori backward error can be described in a number of alternative forms such as

eb(k, N, 1) = λξd
bmin

(k − 1, N)φ̂N+1(k, N + 1) (8.24)

eb(k, N, 2) =
[−wT

b (k − 1, N) 1
]

x(k, N + 1) (8.25)

and

eb,i(k, N, 3) = eb(k, N, 2)κi + eb(k, N, 1)[1− κi]
= eb(k, N, 1) + κi[eb(k, N, 2)− eb(k, N, 1)] (8.26)

where the first form was employed in the FTRLS algorithm and the second form corresponds to the
inner product implementation of the a priori backward error. The third form corresponds to a linear
combination of the first two forms where the numerical difference between these forms is fed back
to determine the final value of eb,i(k, N, 3) which will be used at different places in the stabilized
algorithm. For each κi, i = 1, 2, 3, we choose a different value in order to guarantee that the related
eigenvalues are less than one.

The conversion factor γ(k, N) is probably the first parameter to show signs that the algorithm
is becoming unstable. This parameter can also be calculated through different relations. These
alternative relations are required to guarantee that all modes of the error propagation system become
stable. The first equation is given by

γ−1(k, N + 1, 1) = γ−1(k − 1, N, 3)
ξd
fmin

(k, N)

λξd
fmin

(k − 1, N)

= γ−1(k − 1, N, 3)

[
1 +

ef (k, N)εf (k, N)
λξd

fmin
(k − 1, N)

]

= γ−1(k − 1, N, 3) +
e2

f (k, N)

λξd
fmin

(k − 1, N)

= γ−1(k − 1, N, 3) + φ̂0(k, N + 1)ef (k, N) (8.27)

where φ̂0(k, N + 1) is the first element of φ̂(k, N + 1). The above equalities are derived from
equations (8.4), (8.3), (8.2) and (8.7), respectively. The second expression for the conversion factor
is derived from equation (8.14) and given by

γ−1(k, N, 2) = γ−1(k, N + 1, 1)− φ̂N+1(k, N + 1)eb,3(k, N, 3) (8.28)
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The third expression is

γ−1(k, N, 3) = 1 + φ̂
T
(k, N)x(k, N) (8.29)

In equation (8.27), the conversion factor was expressed in different ways, one of which was first
presented in the FTRLS algorithm of [9]. The second form already uses an a priori backward error
with redundancy. The third form can be derived from equation (7.48) for the lattice RLS algorithms
(see problem 10).

An alternative relation utilized in the stabilized fast transversal algorithm involves the minimum
forward least-squares error. From equations (8.3) and (8.7), we can write

[ξd
fmin

(k, N)]−1 = λ−1[ξd
fmin

(k − 1, N)]−1 − ef (k, N)εf (k, N)
λξd

fmin
(k − 1, N)ξd

fmin
(k, N)

= λ−1[ξd
fmin

(k − 1, N)]−1 − φ̂0(k, N)εf (k, N)
ξd
fmin

(k, N)

From (8.6), we can deduce that

εf (k, N)
ξd
fmin

(k, N)
= φ0(k, N) = φ̂0(k, N)γ(k, N + 1, 1)

With this relation, we can obtain the desired equation as

[ξd
fmin

(k, N)]−1 = λ−1[ξd
fmin

(k − 1, N)]−1 − γ(k, N + 1, 1)φ̂
2
0(k, N + 1)

(8.30)

where the choice of γ(k, N + 1, 1) is used to keep the error-system modes stable [9].

Using the equations for the conversion factor and for the a priori backward error with redundancy, we
can obtain the stabilized fast transversal RLS algorithm (SFTRLS) whose step-by-step implementa-
tion is given as Algorithm 8.2. The parameters κi for i = 1, 2, 3 were determined through computer
simulation search [9] where the optimal values found were κ1 = 1.5, κ2 = 2.5, and κ3 = 1. It was
also found in [9] that the numerical behavior is quite insensitive to values of κi around the optimal
and that optimal values chosen for a given situation work well for a wide range of environments and
algorithm setup situations (for example, for different choices of the forgetting factor).

Another issue related to the SFTRLS algorithm concerns the range of values for λ such that stability
is guaranteed. Results of extensive simulation experiments [9] indicate that the range is

1− 1
2(N + 1)

≤ λ < 1 (8.31)

where N is the order of the adaptive filter. It was also verified that the optimal numerical behavior
is achieved when the value of λ is chosen as

λ = 1− 0.4
N + 1

(8.32)
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Algorithm 8.2

Stabilized Fast Transversal RLS Algorithm

Initialization

wf (−1, N) = wb(−1, N) = w(−1, N) = 0
φ̂(−1, N) = 0, γ(−1, N, 3) = 1
ξd
bmin

(−1, N) = ξd
fmin

(−1, N) = ε (a small positive constant)
κ1 = 1.5, κ2 = 2.5, κ3 = 1

Prediction Part

Do for each k ≥ 0,

ef (k, N) = xT (k, N + 1)
[

1
−wf (k − 1, N)

]
εf (k, N) = ef (k, N)γ(k − 1, N, 3) (8.2)

φ̂(k, N + 1) =
[

0
φ̂(k − 1, N)

]
+ 1

λξd
fmin

(k−1,N)

[
1

−wf (k − 1, N)

]
ef (k, N) (8.7)

γ−1(k, N + 1, 1) = γ−1(k − 1, N, 3) + φ̂0(k, N + 1)ef (k, N) (8.27)

[ξd
fmin

(k, N)]−1 = λ−1[ξd
fmin

(k − 1, N)]−1 − γ(k, N + 1, 1)φ̂
2
0(k, N + 1) (8.30)

wf (k, N) = wf (k − 1, N) + φ̂(k − 1, N)εf (k, N) (8.8)
eb(k, N, 1) = λξd

bmin
(k − 1, N)φ̂N+1(k, N + 1) (8.15)

eb(k, N, 2) =
[−wT

b (k − 1, N) 1
]

x(k, N + 1) (8.25)
eb,i(k, N, 3) = eb(k, N, 2)κi + eb(k, N, 1)[1 − κi] for i = 1, 2, 3 (8.25)
γ−1(k, N, 2) = γ−1(k, N + 1, 1) − φ̂N+1(k, N + 1)eb,3(k, N, 3) (8.28)
εb,j(k, N, 3) = eb,j(k, N, 3)γ(k, N, 2) j = 1, 2
ξd
bmin

(k, N) = λξd
bmin

(k − 1, N) + εb,2(k, N, 3)eb,2(k, N, 3) (8.11)[
φ̂(k, N)

0

]
= φ̂(k, N + 1) − φ̂N+1(k, N + 1)

[ −wb(k − 1, N)
1

]
(8.14)

wb(k, N) = wb(k − 1, N) + φ̂(k, N)εb,1(k, N, 3) (8.13)

γ−1(k, N, 3) = 1 + φ̂
T

(k, N)x(k, N) (8.29)

Joint-Process Estimation

e(k, N) = d(k) − wT (k − 1, N)x(k, N) (8.18)
ε(k, N) = e(k, N)γ(k, N, 3) (8.19)
w(k, N) = w(k − 1, N) + φ̂(k, N)ε(k, N) (8.20)

End

The range of values for λ as well as its optimal value can be very close to one for high-order filters.
This can be a potential limitation for the use of the SFTRLS algorithm, especially in nonstationary
environments where smaller values for λ are required.

The computational complexity of the SFTRLS algorithm is of order 9N multiplications per output
sample. There is an alternative algorithm with computational complexity of order 8N (see problem 9).
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Before leaving this section, it is worth mentioning a nice interpretation for the fast transversal RLS
algorithm. The FTRLS algorithm can be viewed as four transversal filters working in parallel
and exchanging quantities with each other, as depicted in Fig. 8.1. The first filter is the forward
prediction filter that utilizes x(k − 1, N) as the input signal vector, wf (k, N) as the coefficient
vector, and provides quantities εf (k, N), ef (k, N), and ξd

fmin
(k, N) as outputs. The second filter

is the backward prediction filter that utilizes x(k, N) as the input signal vector, wb(k, N) as the
coefficient vector, and provides quantities εb(k, N), eb(k, N), and ξd

bmin
(k, N) as outputs. The third

filter is an auxiliary filter whose coefficients are given by −φ̂(k, N), whose input signal vector
is x(k, N), and whose output parameter is γ−1(k, N). For this filter, the desired signal vector is
constant and equal to [1 0 0 . . . 0]T . The fourth and last filter is the joint-process estimator whose
input signal vector is x(k, N), whose coefficient vector is w(k, N), and which provides the quantities
ε(k, N) and e(k, N) as outputs.

x k( )

wf (k,N)

�b ( )k, N

�f ( )k, N

eb ( )k, N

ef ( )k, N

� ( )k, N

e ( )k, N

�
-1

( )k, N

�b min ( )k, N

�f min ( )k, N

wb ( )k, N

x ( )k

w ( )k, N

- ( )	b k, N

x k-( 1)

x k-N+( 1)
x k-N( )

^

Figure 8.1 Fast transversal RLS algorithm: block diagram.

Example 8.1

The system identification problem described in subsection 3.6.2 is solved using the stabilized fast
transversal algorithm presented in this chapter. The main objective is to check the stability of the
algorithm when implemented in finite precision.
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Solution:

According to equation (8.31), the lower bound for λ in this case is 0.9375. A value λ = 0.99 is
chosen. The stabilized fast transversal algorithm is applied to solve the identification problem and
the measured MSE is 0.0432.

Using ε = 2, we ran the algorithm with finite precision and the results are summarized in Table 8.1.
No sign of instability is found for λ = 0.99. These results are generated by ensemble averaging 200
experiments. A comparison of the results of Table 8.1 with those of Tables 5.2 and 7.2 shows that
the SFTRLS algorithm has similar performance compared to the conventional and lattice-based RLS
algorithms, in terms of quantization error accumulation. The question is which algorithm remains
stable in most situations. Regarding the SFTRLS, for large-order filters we are left with a limited
range of values to choose λ. Also, it was found in our experiments that the choice of the initialization
parameter ε plays an important role in the performance of this algorithm when implemented in finite
precision. In some cases, even when the value of λ is within the recommended range, the algorithm
does not converge if ε is small. By increasing the value of ε, we increase the usual convergence time
while keeping the algorithm stable.

�

Table 8.1 Results of the Finite-Precision Implementation of the SFTRLS Algorithm

ξ(k)Q E[||Δw(k)Q||2]
No of bits Experiment Experiment

16 1.545 10−3 6.089 10−5

12 1.521 10−3 3.163 10−5

10 1.562 10−3 6.582 10−5

Example 8.2

The channel equalization example described in subsection (3.6.3) is also used in simulations to test
the SFTRLS algorithm. We use a 25th-order equalizer and a forgetting factor λ = 0.99.

Solution:

In order to solve the equalization problem the stabilized fast transversal RLS algorithm is initialized
with ε = 0.5. The results presented here were generated by ensemble averaging 200 experiments.
The resulting learning curve of the MSE is shown in Fig. 8.2, and the measured MSE is 0.2973. The
overall performance of the SFTRLS algorithm for this particular example is as good as any other
RLS algorithm, such as lattice-based algorithms.

�
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Figure 8.2 Learning curves for the stabilized fast transversal RLS algorithm.

8.5 CONCLUDING REMARKS

In this chapter we have presented some fast transversal RLS algorithms. This class of algorithms is
computationally more efficient than conventional and lattice-based RLS algorithms. Some simula-
tion examples were included where the SFTRLS algorithm was employed. The finite-wordlength
simulations are of special interest for the reader.

A number of alternative FTRLS algorithms as well as theoretical results can be found in [3]. The
derivation of normalized versions of the FTRLS algorithm is also possible and was not addressed in
the present chapter, for this result refer to [4]. The most computationally efficient FTRLS algorithms
are known to be unstable. The error-feedback approach was briefly introduced that allowed the
stabilization of the FTRLS algorithm. The complete derivation and justification for the error-feedback
approach is given in [9].

In nonstationary environments, it might be useful to employ a time-varying forgetting factor. There-
fore it is desirable to obtain FTRLS algorithms allowing the use of variable λ. This problem was first
addressed in [11]. However a computationally more efficient solution was proposed in [8] where the
concept of data weighting was introduced to replace the concept of error weighting.

The FTRLS algorithm has potential for a number of applications. In particular, the problem in
which the signals available from the environment are noisy version of a transmitted signal and noisy
filtered versions of the same transmitted signal is an interesting application. In this problem, both
the delay and unknown filter coefficients have to be estimated. The weighted squared errors have to
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be minimized while considering both the delay and the unknown system parameters. This problem
of joint estimation can be elegantly solved by employing the FTRLS algorithm [12].
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8.7 PROBLEMS

1. Show that

φ(k, N) = SD(k, N)x(k, N)

=
SD(k − 1, N)x(k, N)

λ + xT (k, N)SD(k − 1, N)x(k, N)

Hint: Use the matrix inversion lemma for SD(k, N).

2. Show that

φN (k − 1, N)− wf,N (k)εf (k, N)
ξd
fmin

(k, N)
=
−εb(k, N)
ξd
bmin

(k, N)
= φN+1(k, N + 1)

where wf,N (k) represents the last element of wf (k, N).

3. Using a proper mixture of relations of the lattice RLS algorithm based on a posteriori and the
FTRLS algorithm, derive a fast exact initialization procedure for the transversal filter coeffi-
cients.

4. Show that the following relations are valid, assuming the input signals are prewindowed:

det[SD(k, N + 1)]
det[SD(k − 1, N)]

=
1

ξd
fmin

(k, N)

det[SD(k, N + 1)]
det[SD(k, N)]

=
1

ξd
bmin

(k, N)

5. Show that

γ−1(k, N) =
det[RD(k, N)]

λNdet[RD(k − 1, N)]

Hint: det[I + AB] = det[I + BA].

6. Using the results of problems 4 and 5, prove that

γ−1(k, N) =
ξd
fmin

(k, N)

λNξd
bmin

(k, N)

7. Derive equations (8.7) and (8.14). Also show that the use of φ(k, N) would increase the
computational complexity of the FTRLS algorithm.

8. If one avoids the use of the conversion factor γ(k, N), it is necessary to use inner products to
derive the a posteriori errors in the fast algorithm. Derive a fast algorithm without the conversion
factor.
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9. By replacing the relation for γ(k, N, 3) in the SFTRLS algorithm by the relation

γ(k, N) =
λNξd

bmin
(k, N)

ξd
fmin

(k, N)

derived in problem 6, describe the resulting algorithm and show that it requires order 8N
multiplications per output sample.

10. Derive the equation (8.29).

11. The FTRLS algorithm is applied to predict the signal x(k) = sin(πk
4 + π

3 ). Given λ = 0.98,
calculate the error and the tap coefficients for the first 10 iterations.

12. The SFTRLS algorithm is applied to predict the signal x(k) = sin(πk
4 + π

3 ). Given λ = 0.98,
calculate the error and the tap coefficients for the first 10 iterations.

13. The FTRLS algorithm is applied to identify a 7th-order unknown system whose coefficients are

wT = [0.0272 0.0221 − 0.0621 0.1191 0.6116 − 0.3332 − 0.0190 − 0.0572]

The input signal is Gaussian white noise with variance σ2
x = 1 and the measurement noise is

also Gaussian white noise independent of the input signal with variance σ2
n = 0.01.

Simulate the experiment above described and measure the excess MSE for λ = 0.97 and
λ = 0.98.

14. Repeat problem 13 for the case where the input signal is a first-order Markov process with
λx = 0.98.

15. Redo problem 13 using a fixed-point implementation with the FTRLS and SFTRLS algorithms.
Use 12 bits in the fractional part of the signal and parameter representations.

16. Suppose a 15th-order FIR digital filter with the multiplier coefficients given below is identi-
fied through an adaptive FIR filter of the same order using the FTRLS algorithm. Assuming
fixed-point arithmetic, simulate the identification problem described in terms of the following
specifications:

Additional noise : white noise with variance σ2
n = 0.0015

Coefficients wordlength: bc = 16 bits
Signal wordlength: bd = 16 bits
Input signal: Gaussian white noise with variance σ2

x = 0.7
λ = 0.98

wT
o = [0.0219360 0.0015786 − 0.0602449 − 0.0118907 0.1375379

0.0574545 − 0.3216703 − 0.5287203 − 0.2957797 0.0002043 0.290670
− 0.0353349 − 0.0068210 0.0026067 0.0010333 − 0.0143593]

Plot the learning curves for the finite- and infinite-precision implementations.

17. Repeat the above problem for the SFTRLS algorithm. Also reduce the wordlength used until a
noticeable (10 percent increase) excess MSE is observed at the output.

18. Repeat problem 16 for the SFTRLS algorithm, using λ = 0.999 and λ = 0.960. Comment on
the results.
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19. The SFTRLS algorithm is used to perform the forward prediction of a signal x(k) generated by
applying zero-mean Gaussian white noise with unit variance to the input of a linear filter with
transfer function given by

H(z) =
0.5

(1− 1.512z−1 + 0.827z−2)(1− 1.8z−1 + 0.87z−2)

Calculate the zeros of the resulting predictor error transfer function and compare with the poles
of the linear filter.

20. Perform the equalization of a channel with impulse response given by

h(k) = 0.96k + (−0.9)k

for k = 0, 1, 2, . . . , 15. The transmitted signal is zero-mean Gaussian white noise with unit
variance and the adaptive filter input signal-to-noise ratio is 30 dB. Use the SFTRLS algorithm
of order 100.



9
QR-DECOMPOSITION-BASED RLS

FILTERS

9.1 INTRODUCTION

The application of QR decomposition [1] to triangularize the input data matrix results in an alternative
method for the implementation of the recursive least-squares (RLS) method previously discussed. The
main advantages brought about by the recursive least-squares algorithm based on QR decomposition
are its possible implementation in systolic arrays [2]-[4] and its improved numerical behavior when
quantization effects are taken into account [5].

The earlier proposed RLS algorithms based on the QR decomposition [2]-[3] focused on the trian-
gularization of the information matrix in order to avoid the use of matrix inversion. However, their
computational requirement was of O[N2] multiplications per output sample. Later, fast versions of
the QR-RLS algorithms were proposed with a reduced computational complexity of O[N ] [4]-[11].

In this chapter, the QR-RLS algorithms based on Givens rotations are presented together with some
stability considerations. Two families of fast algorithms are also discussed [4]-[11], and one fast
algorithm is presented in detail. These fast algorithms are related to the tapped delay line FIR filter
realization of the adaptive filter.

9.2 TRIANGULARIZATION USING QR-DECOMPOSITION

The RLS algorithm provides in a recursive way the coefficients of the adaptive filter which lead to
the minimization of the following cost function

ξd(k) =
k∑

i=0

λk−iε2(i) =
k∑

i=0

λk−i[d(i)− xT (i)w(k)]2 (9.1)

where

x(k) = [x(k) x(k − 1) . . . x(k −N)]T

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_9,  
© Springer Science+Business Media, LLC 2008  
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is the input signal vector,

w(k) = [w0(k) w1(k) . . . wN (k)]T

is the coefficient vector at instant k, ε(i) is the a posteriori error at instant i, and λ is the forgetting
factor.

The same problem can be rewritten as a function of increasing dimension matrices and vectors which
contain all the weighted signal information available so far to the adaptive filter. These matrices are
redefined here for convenience:

XT (k) = X(k)

=

⎡
⎢⎢⎢⎣

x(k) λ1/2x(k − 1) · · · λ(k−1)/2x(1) λk/2x(0)
x(k − 1) λ1/2x(k − 2) · · · λ(k−1)/2x(0) 0

...
...

. . .
...

...
x(k −N) λ1/2x(k −N − 1) · · · 0 0

⎤
⎥⎥⎥⎦

= [x(k) λ1/2x(k − 1) . . . λk/2x(0)] (9.2)

y(k) = X(k)w(k) =

⎡
⎢⎢⎢⎣

y(k)
λ1/2y(k − 1)

...
λk/2y(0)

⎤
⎥⎥⎥⎦ (9.3)

d(k) =

⎡
⎢⎢⎢⎣

d(k)
λ1/2d(k − 1)

...
λk/2d(0)

⎤
⎥⎥⎥⎦ (9.4)

ε(k) =

⎡
⎢⎢⎢⎣

ε(k)
λ1/2ε(k − 1)

...
λk/2ε(0)

⎤
⎥⎥⎥⎦ = d(k)− y(k) (9.5)

The objective function of equation (9.1) can now be rewritten as

ξd(k) = εT (k)ε(k) (9.6)

As shown in Chapter 5, equation (5.15), the optimal solution to the least-squares problem at a given
instant of time k can be found by solving the following equation

XT (k)X(k)w(k) = XT (k)d(k) (9.7)

However, solving this equation by using the conventional RLS algorithm can be a problem when the
matrix RD(k) = XT (k)X(k) and its correspondent inverse estimate become ill-conditioned due to
loss of persistence of excitation of the input signal or to quantization effects.
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The QR decomposition approach avoids inaccurate solutions to the RLS problem, and allows easy
monitoring of the positive definiteness of a transformed information matrix in ill-conditioned situa-
tions.

9.2.1 Initialization Process

During the initialization period, i.e., from k = 0 to k = N , the solution of equation (9.7) can be
found exactly without using any matrix inversion. From equation (9.7), it can be found that for k = 0
and x(0) �= 0

w0(0) =
d(0)
x(0)

(9.8)

for k = 1

w0(1) =
d(0)
x(0)

w1(1) =
−x(1)w0(1) + d(1)

x(0)
(9.9)

for k = 2

w0(2) =
d(0)
x(0)

w1(2) =
−x(1)w0(2) + d(1)

x(0)

w2(2) =
−x(2)w0(2)− x(1)w1(2) + d(2)

x(0)
(9.10)

at the instant k, we can show by induction that

wi(k) =

−
i∑

j=1

x(j)wi−j(k) + d(i)

x(0)
(9.11)

The above equation represents the so-called back-substitution algorithm.

9.2.2 Input Data Matrix Triangularization

After the instant k = N , the above equation (9.11) is no longer valid and the inversion of RD(k) or
the calculation of SD(k) is required to find the optimal solution for the coefficients w(k). This is
exactly what makes the conventional RLS algorithm more sensitive to quantization effects and input
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signal conditioning. The matrix X(k) at instant k = N + 1 is given by

X(N + 1) =

⎡
⎢⎢⎢⎢⎢⎣

x(N + 1) x(N) · · · x(1)
λ1/2x(N) λ1/2x(N − 1) · · · λ1/2x(0)
λx(N − 1) λx(N − 2) · · · 0

...
...

. . .
...

λ
N+1

2 x(0) 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

=
[

x(N + 1)x(N) · · ·x(1)
λ1/2X(N)

]
=
[

xT (N + 1)
λ1/2X(N)

]
(9.12)

As it is noted, the matrix X(k) is no longer upper triangular, and, therefore, the back-substitution
algorithm cannot be employed to find the tap-weight coefficients.

The matrix X(N +1) can be triangularized through an orthogonal triangularization approach such as
Givens rotations, Householder transformation, or Gram-Schmidt orthogonalization [1]. Since here
the interest is to iteratively apply the triangularization procedure to each new data vector added to
X(k), the Givens rotation seems to be the most appropriate approach.

In the Givens rotation approach, each element of the first line of equation (9.12) can be eliminated
by premultiplying the matrix X(N + 1) by a series of Givens rotation matrices given by

Q̃(N + 1) = Q′N (N + 1) ·Q′N−1(N + 1) · · ·Q′0(N + 1)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θN (N + 1) · · · 0 · · · − sin θN (N + 1)
...

...
0 IN 0
...

...
sin θN (N + 1) · · · 0 · · · cos θN (N + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θN−1(N + 1) · · · 0 · · · − sin θN−1(N + 1) 0
...

...
...

0 IN−1 0 0
...

...
...

sin θN−1(N + 1) · · · 0 · · · cos θN−1(N + 1) 0
0 · · · 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ0(N + 1) − sin θ0(N + 1) · · · 0 · · · 0
sin θ0(N + 1) cos θ0(N + 1) · · · 0 · · · 0

...
...

0 0 IN

...
...

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.13)

where Ii is an i by i identity matrix. The rotation angles θi are chosen such that each entry of the
first row of the resulting matrix is zero. Consider first the matrix product Q′0(N + 1)X(N + 1). If:

cos θ0(N + 1)x(1)− sin θ0(N + 1)λ1/2x(0) = 0 (9.14)
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the element in the position (1, N + 1) of the resulting matrix product will be zero. If it is further
considered that cos2 θ0(N + 1) + sin2 θ0(N + 1) = 1, it can be easily deduced that

cos θ0(N + 1) =
λ1/2x(0)√

λx2(0) + x2(1)
(9.15)

sin θ0(N + 1) =
x(1)√

λx2(0) + x2(1)
(9.16)

Next, Q′1(N +1) premultiplies Q′0(N +1)X(N +1) with the objective of generating a zero element
at the position (1, N) in the resulting product matrix. Note that the present matrix product does not
remove the zero of the element (1, N + 1). The required rotation angle can be calculated by first
noting that the elements (1, N) and (3, N) of Q′0(N + 1)X(N + 1) are respectively

a = cos θ0(N + 1)x(2)− λ1/2x(1) sin θ0(N + 1) (9.17)

b = λx(0) (9.18)

From these expressions we can compute the elements required in the following rotation, which are
given by

cos θ1(N + 1) =
b√

a2 + b2
(9.19)

sin θ1(N + 1) =
a√

a2 + b2
(9.20)

In this manner, after the last Givens rotation the input signal information matrix will be transformed
in a matrix with null first row

Q̃(N + 1)X(N + 1) =
[

0 0 · · · 0
U(N + 1)

]
(9.21)

where U(N + 1) is an upper triangular matrix.

In the next iteration, the input signal matrix X(N + 2) receives a new row that should be replaced
by a zero vector through a QR decomposition. In this step, the matrices involved are the following

X(N + 2) =
[

x(N + 2) x(N + 1) · · · x(2)
λ1/2X(N + 1)

]
(9.22)

and ⎡
⎢⎢⎢⎢⎣

1 0 · · · · · ·
0
... Q̃(N + 1)
...

⎤
⎥⎥⎥⎥⎦X(N + 2) =

⎡
⎣ x(N + 2) x(N + 1) · · · x(2)

0 0 · · · 0
λ1/2U(N + 1)

⎤
⎦ (9.23)

In order to eliminate the new input vector through rotations with the corresponding rows of the
triangular matrix λ1/2U(N + 1), we apply the QR decomposition to equation (9.23) as follows:

Q̃(N + 2)
[

1 0
0 Q̃(N + 1)

]
X(N + 2) =

⎡
⎣ 0 0 · · · 0

0 0 · · · 0
U(N + 2)

⎤
⎦ (9.24)
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where again U(N + 2) is an upper triangular matrix and Q̃(N + 2) is given by

Q̃(N + 2) = Q′N (N + 2)Q′N−1(N + 2) · · ·Q′0(N + 2)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θN (N + 2) · · · 0 · · · − sin θN (N + 2)
...

...
0 IN+1 0
...

...
sin θN (N + 2) · · · 0 · · · cos θN (N + 2)

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θN−1(N + 2) · · · 0 · · · − sin θN−1(N + 2) 0
...

...
0 IN 0
...

...
sin θN−1(N + 2) cos θN−1(N + 2) 0

0 · · · 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ0(N + 2) 0 − sin θ0(N + 2) · · · 0
0 1 0 · · · 0

sin θ0(N + 2) 0 cos θ0(N + 2) · · · 0
...

...
...

...
...

... IN

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.25)

The above procedure should be repeated for each new incoming input signal vector as follows:

Q(k)X(k) = Q̃(k)
[

1 0
0 Q̃(k − 1)

] [
I2 0
0 Q̃(k − 2)

]

· · ·
[

Ik−N 0
0 Q̃(k −N)

]
X(k) =

⎡
⎢⎢⎣ 0

U(k)

⎤
⎥⎥⎦
}

k −N}
N + 1

︸︷︷︸
N+1

(9.26)

where Q(k) is a (k + 1) by (k + 1) matrix which represents the overall triangularization matrix via
elementary Givens rotations matrices Q′i(m) for all m ≤ k and 0 ≤ i ≤ N .
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Since each Givens rotation matrix is orthogonal, then it can easily be proved that Q(k) is also
orthogonal (actually orthonormal), i.e.,

Q(k)QT (k) = Ik+1 (9.27)

Also, from equation (9.26), it is straightforward to note that

Q(k) = Q̃(k)
[

1 0
0 Q(k − 1)

]
(9.28)

where Q̃(k) is responsible for zeroing the latest input vector xT (k) in the first row of X(k). The
matrix Q̃(k) is given by

Q̃(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θN (k) · · · 0 · · · − sin θN (k)
...

...
0 Ik−1 0
...

...
sin θN (k) · · · 0 · · · cos θN (k)

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θN−1(k) · · · 0 · · · − sin θN−1(k) 0
...

...
...

0 Ik−2 0 0
...

...
...

sin θN−1(k) · · · 0 · · · cos θN−1(k) 0
0 · · · 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ0(k) · · · 0 · · · − sin θ0(k) 0
...

...
...

0 Ik−N−1 0 0
...

...
...

sin θ0(k) · · · 0 · · · cos θ0(k) 0
0 IN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∏
i=0

cos θi(k) · · · 0 · · · −
N∏

i=1

cos θi(k) sin θ0(k)

...
...

0 Ik−N−1 0
...

...
sin θ0(k) cos θ0(k)

...
...

...
j−1∏
i=0

cos θi(k) sin θj(k) · · · 0 · · · ...

...
... − sin θN (k)

N−1∏
i=1

cos θi(k) sin θ0(k)

· · · −
N∏

i=j+1

cos θi(k) sin θj(k) · · · − sin θN (k)

0
. . .

. . . 0
cos θN−1(k)

cos θN (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.29)

Note that the matrix Q̃(k) has the following general form

N + 1︷ ︸︸ ︷

Q̃(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 · · · 0 · · · 0 ∗ · · · ∗
0
... Ik−N−1 0
∗ ∗
... 0

. . .
∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎬
⎭N + 1

(9.30)

where ∗ represents a nonzero element. This structure of Q̃(k) is useful for developing some fast
QR-RLS algorithms.
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Returning to equation (9.26), we can conclude that

Q(k)X(k) = Q̃(k)

⎡
⎢⎢⎢⎢⎢⎣

x(k) x(k − 1) · · · x(k −N)
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

λ1/2U(k − 1)

⎤
⎥⎥⎥⎥⎥⎦ (9.31)

The first Givens rotation angle required to replace x(k −N) by a zero is θ0(k) such that

cos θ0(k)x(k −N)− sin θ0(k)λ1/2u1,N+1(k − 1) = 0 (9.32)

where u1,N+1(k − 1) is the element (1, N + 1) of U(k − 1). Then, it follows that

cos θ0(k) =
λ1/2u1,N+1(k − 1)

u1,N+1(k)
(9.33)

sin θ0(k) =
x(k −N)
u1,N+1(k)

(9.34)

where
u2

1,N+1(k) = x2(k −N) + λu2
1,N+1(k − 1) (9.35)

From equation (9.35), it is worth noting that the (1, N + 1) element of U(k) is the square root of the
exponentially weighted input signal energy, i.e.,

u2
1,N+1(k) =

k−N∑
i=0

λix2(k −N − i) (9.36)

In the triangularization process, all the submatrices multiplying each column of X(k) are orthogonal
matrices and as a consequence the norm of each column in X(k) and Q(k)X(k) should be the same.
This confirms that equation (9.36) is valid. Also, it can be shown that

k+1∑
i=1

x2
i,j(k) =

N+2−j∑
i=1

u2
i,j(k) =

k+1∑
i=1

λi−1x2(k + 2− i− j) (9.37)

for j = 1, 2, . . . , N + 1.

Now consider that the intermediate calculations of equation (9.31) are performed as follows:

Q̃(k)

⎡
⎣ xT (k)

0
λ1/2U(k − 1)

⎤
⎦ = Q′N (k)Q′N−1(k) · · ·Q′i(k)

⎡
⎣ x′i(k)

0
U′i(k)

⎤
⎦ (9.38)

where x′i(k) = [x′i(k)x′i(k−1) . . . x′i(k−N−i)0 . . . 0] and U′i(k) is an intermediate upper triangular
matrix. Note that x′0(k) = xT (k), U′0(k) = λ1/2U(k − 1), and U′N+1(k) = U(k). In practice, the
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multiplication by the zero elements in equation (9.38) should be avoided. We start by removing the
increasing Ik−N−1 section of Q̃(k) (see equation (9.30)), thereby generating a matrix with reduced
dimension denoted by Qθ(k). The resulting equation is

Qθ(k)
[

xT (k)
λ1/2U(k − 1)

]
= Q′θN

(k)Q′θN−1
(k) · · ·Q′θi

(k)
[

x′i(k)
U′i(k)

]

=
[

0
U(k)

]
(9.39)

where Q′θi
(k) is derived from Q′i(k) by removing the Ik−N−1 section of Q′i(k) along with the

corresponding rows and columns, resulting in the following form

Q′θi
(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θi(k) · · · 0 · · · − sin θi(k) · · · 0
...

...
...

0 Ii 0 · · · 0
...

...
...

sin θi(k) · · · 0 · · · cos θi(k) · · · 0
...

...
... IN−i

0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.40)

The Givens rotation elements are calculated by

cos θi(k) =
[U′i(k)]i+1,N+1−i

ci
(9.41)

sin θi(k) =
x′i(k −N − i)

ci
(9.42)

where ci =
√

[U′i(k)]2i+1,N+1−i + x
′2
i (k −N − i) and [·]i,j is the (i, j) element of the matrix.

9.2.3 QR-Decomposition RLS Algorithm

The triangularization procedure above discussed can be applied to generate the QR-RLS algorithm
that avoids the calculation of the SD(k) matrix of the conventional RLS algorithm. The weighted a
posteriori error vector can be written as a function of the input data matrix, that is

ε(k) =

⎡
⎢⎢⎢⎣

ε(k)
λ1/2ε(k − 1)

...
λk/2ε(0)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

d(k)
λ1/2d(k − 1)

...
λk/2d(0)

⎤
⎥⎥⎥⎦− X(k)w(k) (9.43)
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By premultiplying the above equation by Q(k), it follows that

εq(k) = Q(k)ε(k) = Q(k)d(k)−Q(k)X(k)w(k)

= dq(k)−
[

0
U(k)

]
w(k) (9.44)

where

εq(k) =

⎡
⎢⎢⎢⎣

εq1(k)
εq2(k)

...
εqk+1(k)

⎤
⎥⎥⎥⎦

and

dq(k) =

⎡
⎢⎢⎢⎣

dq1(k)
dq2(k)

...
dqk+1(k)

⎤
⎥⎥⎥⎦

Since Q(k) is an orthogonal matrix, equation (9.6) is equivalent to

ξd(k) = εT
q (k)εq(k) (9.45)

because
εT

q (k)εq(k) = εT (k)QT (k)Q(k)ε(k) = εT (k)ε(k)

The weighted-square error can be minimized in equation (9.45) by calculating w(k) such that
εqk−N+1(k) to εqk+1(k) are made zero using a back-substitution algorithm such as

wi(k) =

−
i∑

j=1

uN+1−i,i−j+1(k)wi−j(k) + dq k+1−i(k)

uN+1−i,i+1(k)
(9.46)

for i = 0, 1, . . . , N , where
∑i−1

j=i [·] = 0. With this choice for w(k), the minimum weighted-square
error at instant k is given by

ξd
min(k) =

k−N∑
i=1

ε2
qi

(k) (9.47)
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An important relation can be deduced by rewriting equation (9.44) as

dq(k) =

⎡
⎣ dq1(k)
−−−−
dq2(k)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dq1(k)
...

dqk−N
(k)

−−−−−
dqk−N+1(k)

...
dqk+1(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

εq1(k)
...

εqk−N
(k)

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
[

0
U(k)

]
w(k) (9.48)

where w(k) is the optimum coefficient vector at instant k. By examining the equations (9.31) and
(9.44), the right-most side of equation (9.48) can then be expressed as

[
εq1(k)
dq2(k)

]
=

⎡
⎢⎢⎢⎣

εq1(k)
...

εqk−N
(k)

dq2(k)

⎤
⎥⎥⎥⎦ = Q̃(k)

⎡
⎢⎢⎢⎢⎢⎣

d(k)

λ1/2

⎡
⎢⎢⎢⎣

εq1(k − 1)
...

εqk−N−1(k − 1)
dq2(k − 1)

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎦ (9.49)

Using similar arguments around equations (9.38) to (9.40), and starting from equation (9.49), the
transformed weighted-error vector can be updated as described below:

Q̃(k)

⎡
⎣ d(k)

λ1/2
[

εq1(k − 1)
dq2(k − 1)

] ⎤⎦ = Q′N (k)Q′N−1(k) · · ·Q′i(k)

⎡
⎣ d′i(k)

ε′qi
(k)

d′q2i
(k)

⎤
⎦ (9.50)

where d′i(k), ε′qi
(k), and d′q2i

(k) are intermediate quantities generated during the rotations. Note
that ε′qN+1

(k) = [εq2(k) εq3(k) . . . εqk−N
(k)]T , d′N+1(k) = εq1(k), and d′q2N+1

= dq2(k).

If we delete all the columns and rows of Q̃(k) whose elements are zeros and ones, i.e., the Ik−N−1
section of Q̃(k) with the respective bands of zeros below, above, and on each side of it in equation
(9.30), one would obtain matrix Qθ(k). In this case, the resulting equation corresponding to equation
(9.49) is given by

d(k) =
[

εq1(k)
dq2(k)

]
= Qθ(k)

[
d(k)

λ1/2dq2(k − 1)

]
(9.51)
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Therefore, we eliminate the vector ε′qN+1
(k) which is always increasing, such that in real-time

implementation the updating is performed through

d(k) = Qθ(k)
[

d(k)
λ1/2dq2(k − 1)

]

= Q′θN
(k)Q′θN−1

(k) · · ·Q′θi
(k)
[

d′i(k)
d′q2i

(k)

]
(9.52)

Another important relation can be derived from equation (9.44) by premultiplying both sides by
QT (k), transposing the result, and postmultiplying the result by the pinning vector

εT
q (k)Q(k)

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ = εT (k)

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ = ε(k) (9.53)

Then, from the definition of Q(k) in equations (9.28) and (9.29), the following relation is obtained

ε(k) = εq1(k)
N∏

i=0

cos θi(k)

= εq1(k)γ(k) (9.54)

This relation shows that the a posteriori output error can be computed without the explicit calculation
of w(k). The only information needed is the Givens rotation cosines. In applications where only the
a posteriori output error is of interest, the computationally intensive back-substitution algorithm of
equation (9.46) to obtain wi(k) can be avoided.

Now, all the mathematical background to develop the QR-RLS algorithm has been derived. After
initialization, the Givens rotation elements are computed using equations (9.41) and (9.42). These
rotations are then applied to the information matrix and the desired signal vector respectively as
indicated in equations (9.39) and (9.52). The next step is to compute the error signal using equation
(9.54). Finally, if the tap-weight coefficients are required we should calculate them using equation
(9.46). Algorithm 9.1 summarizes the algorithm with all essential computations.

Example 9.1

In this example, we solve the system identification problem described in subsection 3.6.2 by using
the QR-RLS algorithm described in this section.

Solution:

In the present example, we are mainly concerned in testing the algorithm implemented in finite
precision, since the remaining characteristics (such as: misadjustment, convergence speed etc.)
should follow the same pattern of the conventional RLS algorithm. We considered the case where
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Algorithm 9.1
QR-RLS Algorithm

w(−1) = [0 0 . . . 0]T , w0(0) = d(0)
x(0)

For k = 1 to N (Initialization)
Do for i = 1 to k

wi(k) =

−
i∑

j=1

x(j)wi−j(k) + d(i)

x(0) (9.11)
End

End
U′0(N + 1) = λ1/2X(N) (9.12)
d′q2 0

(N + 1) = [ λ1/2d(N) λd(N − 1) . . . λ(N+1)/2d(0)]T

For k ≥ N + 1
Do for each k
γ′−1 = 1
d′0(k) = d(k)
x′0(k) = xT (k)
Do for i = 0 to N

ci =
√

[U′i(k)]2i+1,N+1−i + x′2i (k −N − i)

cos θi = [U′i(k)]i+1,N+1−i

ci
(9.41)

sin θi = x′i(k−N−i)
ci

(9.42)[
x′

i+1
(k)

U′i+1(k)

]
= Q′θi

(k)
[

x′
i
(k)

U′i(k)

]
(9.39)

γ′i = γ′i−1 cos θi (9.54)[
d′

i+1
(k)

d′q2i+1
(k)

]
= Q′θi

(k)
[

d′
i
(k)

d′q2i
(k)

]
(9.51)

End
d′q20

(k + 1) = λ1/2d′q2N+1
(k)

U′0(k + 1) = λ1/2U′N+1(k)
γ(k) = γ′N
ε(k) = d′N+1(k)γ(k) (9.51)

If required compute

d(k) =
[

d′N+1(k)
d′q2N+1

(k)

]
(9.51)

w0(k) =
dN+2(k)

uN+1,1(k)
Do for i = 1 to N

wi(k) =

−
i∑

j=1

uN+1−i,i−j+1(k)wi−j(k) + dN+2−i(k)

uN+1−i,i+1(k) (9.46)
End

End
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eigenvalue spread of the input signal correlation matrix is 20, with λ = 0.99. The presented results
were obtained by averaging the outcomes of 200 independent runs. Table 9.1 summarizes the results,
where it can be noticed that the MSE is comparable to the case of the conventional RLS algorithm
(consult Table 5.2). On the other hand, the quantization error introduced by the calculations to obtain
w(k)Q is considerable. After leaving the algorithm running for a large number of iterations, we
found no sign of divergence.

In the infinite-precision implementation, the misadjustment measured was 0.0429. As expected (con-
sult Table 5.1) this result is close to the misadjustment obtained by the conventional RLS algorithm.

�

Table 9.1 Results of the Finite-Precision Implementation of the QR-RLS Algorithm

ξ(k)Q E[||Δw(k)Q||2]
No. of bits Experiment Experiment

16 1.544 10−3 0.03473

12 1.563 10−3 0.03254

10 1.568 10−3 0.03254

9.3 SYSTOLIC ARRAY IMPLEMENTATION

The systolic array implementation of a given algorithm consists of mapping the algorithm in a
pipelined sequence of basic computation cells. These basic cells perform their task in parallel,
such that in each clock period all the cells are activated. An in depth treatment of systolic array
implementation and parallelization of algorithms is beyond the scope of this text. Our objective in
this section is to demonstrate in a summarized form that the QR-RLS algorithm can be mapped in a
systolic array. Further details regarding this subject can be found in references [2]-[4], [13]-[14].

A Givens rotation requires two basic steps. The first step is the calculation of the sine and cosine
which are the elements of the rotation matrix. The second step is the application of the rotation
matrix to given data. Therefore, the basic computational elements required to perform the systolic
array implementation of the QR-RLS algorithm introduced in the last section are the angle and the
rotation processors shown in Fig. 9.1. The angle processor computes the cosine and sine, transferring
the results to outputs 1 and 2 respectively, whereas in output 3 the cell delivers a partial product of
cosines meant to generate the error signal as in equation (9.54). The rotation processor performs
the rotation between the data coming from input 1 with the internal element of the matrix U(l) and
transfers the result to output 3. This processor also updates the elements of U(l) and transfers the
cosine and sine values to the neighboring cell on the left.
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Now, imagine that we have the upper triangular matrix U(k) arranged below the row consisting of the
new information data vector as in equation (9.31), or equivalently as in equation (9.39). Following
the same pattern, we can arrange the basic cells in order to compute the rotations of the QR-RLS
algorithm as shown in Fig. 9.2, with the input signal x(k) entering the array serially. In this figure,
do not consider for this moment the time indexes and the left-hand side column. The input data
weighting is performed by the processors of the systolic array.

Basically, the computations corresponding to the triangularization of equation (9.31) are performed
through the systolic array shown in Fig. 9.2, where at each instant of time an element of the matrix
U(k) is stored in the basic processor as shown inside the building blocks. Note that these stored
elements are skewed in time, and are initialized with zero. The left-hand cells store the elements of
the vector d(k) defined in equation (9.51), which are also initialized with zero and updated in each
clock cycle. The column on the left-hand side of the array performs the rotation and stores the rotated
values of the desired signal vector which are essential to compute the error signal.

In order to allow the pipelining, the outputs of each cell are computed at the present clock period
and made available to the neighboring cells in the following clock period. Note that the neighboring
cells on the left and below a given cell are performing computations related to a previous iteration,
whereas the cells on the right and above are performing the computations of one iteration in advance.
This is the pipelining scheme of Fig. 9.2.

Each row of cells in the array implements a basic Givens rotation between one row of λU(k−1) and
a vector related to the new incoming data x(k). The top row of the systolic array performs the zeroing
of the last element of the most recent incoming x(k) vector. The result of the rotation is then passed
to the second row of the array. This second row performs the zeroing of the second-to-last element
in the rotated input signal. The zeroing processing continues in the following rows by eliminating
the remaining elements of the intermediate vectors x′i(k), defined in equation (9.38), through Givens
rotations. The angle processors compute the rotation angles that are passed to each row to perform
the rotations.

More specifically, returning to equation (9.31), at the instant k, the element x(k − N) of x(k)
is eliminated by calculating the angle θ0(k) in the upper angle processor. The same processor
also performs the computation of u1,N+1(k) that will be stored and saved for later elimination of
x(k−N +1), which occurs during the triangularization of X(k +1). In the same period of time, the
neighboring rotation processor performs the computation of u1,N (k − 1) using the angle θ0(k − 1)
that was received from the angle processor in the beginning of the present clock period k. The
modifications to the first row of the U(k) matrix and to the vector d(k) related to the desired signal
are performed in the first row of the array, due to the rotation responsible for the elimination of
x(k−N). Note that the effect of the angle θ0(k) in the remaining elements of the first row of U(k)
will be felt only in the following iterations, one element each time, starting from the right- to the
left-hand side.

The second row of the systolic array is responsible for the rotation corresponding to θ1(l) that
eliminates the element x′1(l − N + 1) of x′1(l) defined in equation (9.38). The rotation θ1(l) of
course modifies the remaining nonzero elements of x′1(l) generating x′2(l), whose elements are
calculated by the rotation processor and forwarded to the next row through output 3.
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i2

O2

O3

O1

i1

ui,j(l)

If i1=0 then
O1 ← 1, O2 ← 0, O3 ← i2
ui,j = λui,j

Otherwise

c←
√

λ2u2
i,j(l) + i21

O1 ← cos θi−1 = λui,j(l)
c

O2 ← sin θi−1 = i1
c

O3 ← i2O1
ui,j(l + 1)← c
End

(a)

i2

i3
O2

O3

ui,j(l)
O1

i1

O1 ← i2
O2 ← i3
O3 ← i1i2 − i3λui,j(l)
ui,j(l + 1)← i1i3 + i2λui,j(l)

(b)

Figure 9.1 Basic cells: (a) Angle processor, (b) Rotation processor.
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__d2 (k-5)

d(k-4)

x (k-3)

__d3 (k-6)

__d4 (k-7)

__d5 (k-8)

u3,1 (k-6)

u2,1 (k-5)

u1,1 (k-4) u1,2 (k-3) u1,3 (k-2) u1,4 (k-1)

u2,3 (k-3)u2,2 (k-4)

u3,2 (k-5)

z -1

z -1

z -1

1

+

z -1

u4,1(k-7)

ε(k − 9)

Figure 9.2 QR-Decomposition systolic array for N=3.

Likewise, the (i + 1)th row performs the rotation θi(l) that eliminates x′i(l − N + i) and also the
rotation in the vector d(l).

In the bottom part of the systolic array, the product of εq1(l) and γ(l) is calculated at each clock
instant, in order to generate a posteriori output error given by ε(l). The output error obtained in a
given sample period k corresponds to the error related to the input data vector of 2(N + 1) clock
periods before.
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The systolic array of Fig. 9.2 exhibits several desirable features such as local interconnection, reg-
ularity, and simple control circuitry, that yields a simple implementation. A possible problem, as
pointed out in [13], is the need to distribute a single clock throughout a large array, without incurring
any clock skew.

The presented systolic array does not allow the computation of the tap-weight coefficients. A solution
pointed out in [13] employs the array of Fig. 9.2 by freezing the array and applying an appropriate
input signal sequence such that the tap-weight coefficients are made available at the array output ε(l).
An alternative way is add a systolic array to solve the back-substitution problem [13]. The array is
shown in Fig. 9.3 with the corresponding algorithm. The complete computation of the coefficient
vector w(k) requires 2N+1 clock samples. In this array, the square cells produce the partial products
involved in equation (9.11). The round cell performs the subtraction of the sum of the product result
with an element of the vector d(k − 8), namely d5−i(k − 8). This cell also performs the division
of the subtraction result by the element uN+1−i,i+1(k − 8) of the matrix U(k − 8). Starting with
i = 0, the sum of products has no elements and as a consequence the round cell just performs the

division
d5−i(k−8)

uN+1−i,i+1(k−8) . On the other hand, for i = N all the square cells are actually taking part
in the computation of the sum of products. Note that in this case, in order to obtain wN (k − 8), the
results of all the cells starting from left to right must be ready, i.e., there is no pipelining involved.

uN+1-i,i-2(k-8) uN+1-i,i-1(k-8) uN+1-i,i+1(k-8)
wi(k-8)

wi-1(k-8)

__d5-i(k-8)

wi-2(k-8)wi-3(k-8)

yi(2) yi(3)yi(0) yi(1)

uN+1-i,i(k-8)

wi = 0 for i < 0
Do for i = 0, 1, . . . , N
yi(N − i) = 0
Do for l= N − i + 1, . . . , N
yi(l) = yi(l − 1) + uN+1−i,i−N+l(k − 8)wi−N+l−1(k − 8)
End

wi(k − 8) =
d5−i(k − 8)− yi(3)
uN+1−i,i+1(k − 8)

End

Figure 9.3 Systolic array and algorithm for the computation of w(k).
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Example 9.2

Let us choose a simple example, in order to illustrate how the systolic array implementation works, and
compare the results with those belonging to the standard implementation of the QR-RLS algorithm.
The chosen order is N = 3 and the forgetting factor is λ = 0.99.

Suppose that in an adaptive-filtering environment, the input signal consists of

x(k) = sin(ω0k)

where ω0 = π
250 .

The desired signal is generated by applying the same sinusoid to an FIR filter whose coefficients are
given by

wo = [1.0 0.9 0.1 0.2]T

Solution:

First consider the results obtained with the conventional QR-RLS algorithm. The contents of the
vector d(k) and of the matrix U(k) are given below for the first four iterations.

Iteration k = 1

d(k) =

⎡
⎢⎢⎣

0.0000
0.0000
0.0000
0.0126

⎤
⎥⎥⎦ U(k) =

⎡
⎢⎢⎣

0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0126 0.0000 0.0000 0.0000

⎤
⎥⎥⎦ (9.55)

Iteration k = 2

d(k) =

⎡
⎢⎢⎣

0.0000
0.0000
0.0364
0.0125

⎤
⎥⎥⎦ U(k) =

⎡
⎢⎢⎣

0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0251 0.0126 0.0000 0.0000
0.0125 0.0000 0.0000 0.0000

⎤
⎥⎥⎦ (9.56)

Iteration k = 3

d(k) =

⎡
⎢⎢⎣

0.0000
0.0616
0.0363
0.0124

⎤
⎥⎥⎦ U(k) =

⎡
⎢⎢⎣

0.0000 0.0000 0.0000 0.0000
0.0377 0.0251 0.0126 0.0000
0.0250 0.0125 0.0000 0.0000
0.0124 0.0000 0.0000 0.0000

⎤
⎥⎥⎦ (9.57)

Iteration k = 4

d(k) =

⎡
⎢⎢⎣

0.0892
0.0613
0.0361
0.0124

⎤
⎥⎥⎦ U(k) =

⎡
⎢⎢⎣

0.0502 0.0377 0.0251 0.0126
0.0375 0.0250 0.0125 0.0000
0.0249 0.0124 0.0000 0.0000
0.0124 0.0000 0.0000 0.0000

⎤
⎥⎥⎦ (9.58)



3719.3 Systolic Array Implementation

Iteration k = 5

d(k) =

⎡
⎢⎢⎣

0.1441
0.0668
0.0359
0.0123

⎤
⎥⎥⎦ U(k) =

⎡
⎢⎢⎣

0.0785 0.0617 0.0449 0.0281
0.0409 0.0273 0.0136 0.0000
0.0248 0.0124 0.0000 0.0000
0.0123 0.0000 0.0000 0.0000

⎤
⎥⎥⎦ (9.59)

The data stored in the systolic array implementation represent the elements of the vector d(k) and
of the matrix U(k) skewed in time. This data is shown below starting from the the fourth iteration,
since before that no data is available to the systolic array.

Observe when the elements of the U(k) appear stored at the systolic array. For example, consider the
highlighted elements. In particular, the element (4, 1) at instant k = 4 appears stored in the systolic
array at instant k = 10, whereas the elements (3, 1) and (3, 2) at instant k = 3 appear stored in the
systolic array at instants k = 8 and k = 7, respectively. Following the same line of thought, it is
straightforward to understand how the remaining elements of the systolic array are calculated.

Iteration k = 4 ⎡
⎢⎢⎣

0.
0.
0.
0.

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0. 0. 0. 0.0126
0. 0. 0.
0. 0.
0.

⎤
⎥⎥⎦ (9.60)

Iteration k = 5 ⎡
⎢⎢⎣

0.
0.
0.
0.

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0. 0. 0.0251 0.0281
0. 0. 0.0126
0. 0.
0.

⎤
⎥⎥⎦ (9.61)

Iteration k = 6 ⎡
⎢⎢⎣

0.
0.
0.
0.

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0. 0.0377 0.0449 0.0469
0. 0.0251 0.0125
0. 0.0126
0.

⎤
⎥⎥⎦ (9.62)

Iteration k = 7 ⎡
⎢⎢⎣

0.
0.
0.
0.

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0.0502 0.0617 0.0670 0.0686
0.0377 0.0250 0.0136
0.0251 0.0125
0.0126

⎤
⎥⎥⎦ (9.63)

Iteration k = 8 ⎡
⎢⎢⎣

0.0892
0.0616
0.0364
0.0126

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0.0785 0.0870 0.0913 0.0927
0.0375 0.0273 0.0148
0.0250 0.0124
0.0125

⎤
⎥⎥⎦ (9.64)
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Iteration k = 9 ⎡
⎢⎢⎣

0.1441
0.0613
0.0363
0.0125

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0.1070 0.1141 0.1179 0.1191
0.0409 0.0297 0.0160
0.0249 0.0124
0.0124

⎤
⎥⎥⎦ (9.65)

Iteration k = 10 ⎡
⎢⎢⎣

0.2014
0.0668
0.0361
0.0124

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0.1368 0.1430 0.1464 0.1475
0.0445 0.0319 0.0170
0.0248 0.0123
0.0124

⎤
⎥⎥⎦ (9.66)

Iteration k = 11 ⎡
⎢⎢⎣

0.2624
0.0726
0.0359
0.0124

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0.1681 0.1737 0.1768 0.1778
0.0479 0.0340 0.0180
0.0246 0.0123
0.0123

⎤
⎥⎥⎦ (9.67)

It is a good exercise for the reader to examine the elements of the vectors and matrices in equations
(9.60)-(9.67) and detect when these elements appear in the corresponding vectors d(k) and matrices
U(k) of equations (9.55)-(9.59).

�

9.4 SOME IMPLEMENTATION ISSUES

Several articles related to implementation issues of the QR-RLS algorithm such as the elimination
of square root computation [16], stability and quantization error analyses [17]-[20] are available in
the open literature. In this section, some of these results are briefly reviewed.

The stability of the QR-RLS algorithm is the first issue to be concerned when considering a real
implementation. Fortunately, the QR-RLS algorithm implemented in finite precision was proved
stable in the bounded input/bounded output sense in [18]. The proof was based on the analysis of
the bounds for the internal recursions of the algorithm [18]-[19]. From another study based on the
quantization-error propagation in the finite-precision implementation of the QR-RLS algorithm, it
was possible to derive the error recursions for the main quantities of the algorithm, leading to the
stability conditions of the QR-RLS algorithm [20]. The convergence on average of the QR-RLS
algorithm can be guaranteed if the following inequality is satisfied [20]:

λ1/2 ‖ Q̃Q(k) ‖2≤ 1 (9.68)

where the two norm ‖ · ‖2 of a matrix used here is the square root of the largest eigenvalue and the
notation [·]Q denotes the finite-precision version of [·]. Therefore,

‖ Q̃Q(k) ‖2= MAXi

√
cos2Q θi(k) + sin2

Q θi(k) (9.69)
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where MAXi[·] is the maximum value of [·]. The stability condition can be rewritten as follows:

λ ≤ 1
MAXi [cos2Q θi(k) + sin2

Q θi(k)]
(9.70)

It can then be concluded that keeping the product of the forgetting factor and the maximum eigenvalue
of the Givens rotations smaller than unity is a sufficient condition to guarantee the stability.

For the implementation of any adaptive algorithm, it is necessary to estimate quantitatively the
dynamic range of all internal variables of the algorithm in order to determine the length of all
the registers required in the actual implementation. Although this issue should be considered in
the implementation of any adaptive-filtering algorithm, it is particularly relevant in the QR-RLS
algorithms due to their large number of internal variables. The first attempt to address this problem
was reported in [19], where expressions for the steady-state values of the cosines and sines of the
Givens rotations were determined, as well as the bounds for the dynamic range of the information
stored in the processing cells. The full quantitative analysis of the dynamic range of all internal
quantities of the QR-RLS algorithm was presented in [20] for the conventional and systolic-array
forms. For fixed-point implementation, it is important to determine the internal signal with the largest
energy such that frequent overflow in the internal variables of the QR-RLS algorithm can be avoided.
The first entry of the triangularized information matrix can be shown to have the largest energy [20]
and its steady-state value is approximately

u0,0(k) ≈ σx√
1− λ

(9.71)

where σ2
x is the variance of the input signal.

The procedure to derive the results above discussed consists of first analyzing the QR-RLS algorithm
for ideal infinite-precision implementation. The second step is modeling the quantization errors
and deriving the recursive equations that include the overall error in each quantity of the QR-RLS
algorithm [20]. Then conditions to guarantee the stability of the algorithm could be derived. A further
step is to derive closed-form solutions to the mean-squared values of the deviations in the internal
variables of the algorithm due to finite-precision operations. The main objective in this step is to
obtain the excess mean-square error and the variance of the deviation in the tap-weight coefficients.
Analytical expressions for these quantities are not very simple unless a number of assumptions about
the input and reference signals are assumed [20]. However, they are useful to the designer.

9.5 FAST QR-RLS ALGORITHM

For the derivation of the fast QR-RLS algorithms, it is first necessary to study the solutions of the
forward and backward prediction problems. As seen in Chapters 7 and 8, the predictor solutions
were also required in the derivation of the lattice-based and the fast transversal RLS algorithms.

A family of fast QR-RLS algorithms can be generated depending on the following aspects of their
derivation:



374 Chapter 9 QR-Decomposition-Based RLS Filters

The type of triangularization applied to the input signal matrix, taking into consideration the
notation adopted in this book where the first element of the data vectors corresponds to the most
recent data. The upper triangularization is related to the updating of forward prediction errors,
whereas the lower triangularization involves the updating of backward prediction errors.

The type of error utilized in the updating process, namely, if it is a priori or a posteriori error.

Table 9.2 shows the classification of the fast QR-RLS algorithms indicating the references where the
specific algorithms can be found. Although these algorithms are comparable in terms of computa-
tional complexity, those based on backward prediction errors (which utilize lower triangularization
of the information matrix) are numerically stable when implemented in finite precision. This good
numerical behavior is related to backward consistency and minimal properties inherent to these
algorithms [21].

Table 9.2 Classification of the Fast QR-RLS Algorithms

Error Prediction

Type Forward Backward

A Priori [9] [10], [11]

A Posteriori [4] [8], [12]

In this section, we start with the application of the QR decomposition to the lower triangularization of
the input signal information matrix. Then, the decomposition is applied to the backward and forward
prediction problems. This type of triangularization is related to the updating of backward prediction
errors.

A fast QR-RLS algorithm is derived by performing the triangularization of the information matrix
in this alternative form, namely by generating a lower triangular matrix, and by first applying the
triangularization to the backward linear prediction problem. Originally, the algorithm to be presented
here was proposed in [5] and later detailed in [7] and [8]. The derivations are quite similar to those
presented for the standard QR-RLS algorithm. Therefore, we will use the previous results in order
to avoid unnecessary repetition. In order to accomplish this objective while avoiding confusion, the
following notations are respectively used for the triangularization matrix and the lower triangular
matrices Q and U . These matrices have the following forms

U(k) =

⎡
⎢⎢⎢⎣

0 0 · · · 0 u1,N+1
0 0 · · · u2,N u2,N+1
...

...
...

uN+1,1 uN+1,2 · · · uN+1,N uN+1,N+1

⎤
⎥⎥⎥⎦ (9.72)
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Q̃(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θN (k) · · · 0 · · · − sin θN (k) 0
...

...
...

0 Ik−N−1 0
...

...
...

...
sin θN (k) · · · 0 · · · cos θN (k) 0

0 IN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θN−1(k) · · · 0 · · · − sin θN−1(k) 0
...

...
...

0 Ik−N 0
...

...
...

...
sin θN−1(k) · · · 0 · · · cos θN−1(k) 0

0 · · · 0 · · · 0 IN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ0(k) · · · 0 · · · − sin θ0(k)
...

...
0 Ik−1 0
...

...
sin θ0(k) · · · 0 · · · cos θ0(k)

⎤
⎥⎥⎥⎥⎥⎥⎦ (9.73)

The triangularization procedure has the following general form

Q(k)X(k) = Q̃(k)
[

1 0
0 Q̃(k − 1)

] [
I2 0
0 Q̃(k − 2)

]

· · ·
[

Ik−N 0
0 Q̃(k −N)

]
X(k)

=

⎡
⎢⎢⎣ 0

U(k)

⎤
⎥⎥⎦

}
k −N}
N + 1

(9.74)

︸︷︷︸
N+1

where Q(k) is a (k + 1) by (k + 1) matrix which represents the overall triangularization matrix.

As usual the multiplication by zero elements can be avoided by replacing Q̃(k) byQθ(k), where the
increasing Ik−N−1 section of Q̃(k) is removed very much like in equations (9.38) and (9.39). The
resulting equation is

Qθ(k)
[

xT (k)
λ1/2U(k − 1)

]
= Q′θN

(k)Q′θN−1
(k) · · · Q′θi

(k)
[

x′i(k)
U ′i(k)

]
(9.75)
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where Q′θi
(k) is derived from Q′i(k) by removing the Ik−N−1 section of Q′i(k) along with the

corresponding rows and columns, resulting in the following form

Q′θi
(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θi(k) · · · 0 · · · − sin θi(k) · · · 0
...

...
...

0 IN−i 0 · · · 0
...

...
...

sin θi(k) · · · 0 · · · cos θi(k) · · · 0
...

...
... Ii

0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.76)

The Givens rotation elements are calculated by

cos θi(k) =
[U ′i(k)]N+1−i,i+1

ci
(9.77)

sin θi(k) =
x′i(k − i)

ci
(9.78)

where ci =
√

[U ′i(k)]2N+1−i,i+1 + x
′2
i (k − i), and [·]i,j denotes the (i, j) element of the matrix.

9.5.1 Backward Prediction Problem

In the backward prediction problem, the desired signal and vector are respectively

db(k + 1) = x(k −N) (9.79)

db(k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k −N)
λ1/2x(k −N − 1)

...
λ

k−N
2 x(0)
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.80)

The reader should note that in the present case an extra row was added to the vector db(k + 1). For
example, the dimension of db(k + 1) is now (k + 2) by 1. The backward-prediction-error vector is
given by

εb(k + 1) = db(k + 1)− X(k + 1)wb(k + 1)

= [X(k + 1) db(k + 1)]
[ −wb(k + 1)

1

]
(9.81)
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The triangularization matrix Q(k + 1) of the input data matrix can be applied to the backward
prediction error resulting in

Q(k + 1)εb(k + 1) = Q(k + 1)db(k + 1)−
[

0
U(k + 1)

]
wb(k + 1) (9.82)

or equivalently

εbq(k + 1) = dbq(k + 1)−
[

0
U(k + 1)

]
wb(k + 1) (9.83)

From equations and (9.81) and (9.83), it follows that

εbq(k + 1) = Q(k + 1)[X(k + 1) db(k + 1)]
[ −wb(k + 1)

1

]

=

⎡
⎢⎢⎢⎢⎢⎣

εbq1(k + 1)
0 εbq2(k + 1)

...
εbqk−N+1(k + 1)

U(k + 1) xq3(k + 1)

⎤
⎥⎥⎥⎥⎥⎦
[ −wb(k + 1)

1

]
(9.84)

Also note that
[X(k + 1) db(k + 1)] = X(N+2)(k + 1) (9.85)

where X(N+2)(k + 1) is an extended version of X(k + 1), with one input signal information vector
added. In other words, X(N+2)(k + 1) is the information matrix that would be obtained if one
additional delay was added at the end of the delay line.

In order to avoid increasing vectors in the algorithm, εbq1(k +1), εbq2(k +1),. . ., εbqk−N
(k +1) can

be eliminated in equation (9.84) through Givens rotations, as follows:

Qb(k + 1)εbq(k + 1) = Qb(k + 1)

⎡
⎢⎢⎢⎢⎢⎣

εbq1(k + 1)
0 εbq2(k + 1)

...
εbqk−N+1(k + 1)

U(k + 1) xq3(k + 1)

⎤
⎥⎥⎥⎥⎥⎦
[ −wb(k + 1)

1

]

=

⎡
⎣ 0 0

||εb(k + 1)||
U(k + 1) xq3(k + 1)

⎤
⎦[ −wb(k + 1)

1

]
(9.86)

Note that by induction [U ]N+1−i,i+1(k + 1) = ||εb,i(k + 1)||, where ||εb,i(k + 1)||2 corresponds to
the least-square backward prediction error of an (i− 1)th-order predictor.
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9.5.2 Forward Prediction Problem

In the forward prediction problem, the following relations are valid:1

df (k) = x(k + 1) (9.87)

df (k) =

⎡
⎢⎢⎢⎣

x(k + 1)
λ1/2x(k)

...
λ

k+1
2 x(0)

⎤
⎥⎥⎥⎦ (9.88)

εf (k) = df (k)−
[

X(k)
0

]
wf (k) (9.89)

where df (k) is the desired signal, df (k) is the desired signal vector, and εf (k) is the error signal
vector.

Now, we can consider applying the QR decomposition, as was previously done in equation (9.74) to
the forward prediction error above defined. It should be noted that in the present case an extra row
was added to the vectors εf (k) and df (k), as can be verified in the following relations:

εf (k) =

⎡
⎣ df (k)

∣∣∣∣∣∣
X(k)

0

⎤
⎦[ 1

−wf (k)

]
(9.90)

and

εfq(k) =
[ Q(k) 0

0 1

]⎡⎣ df (k)

∣∣∣∣∣∣
X(k)

0

⎤
⎦[ 1

−wf (k)

]

=

⎡
⎢⎢⎢⎢⎢⎣

εfq1(k)
... 0

εfqk−N
(k)

xq2(k) U(k)
λ

k+1
2 x(0) 0

⎤
⎥⎥⎥⎥⎥⎦
[

1
−wf (k)

]
(9.91)

Note that: ⎡
⎣ df (k)

∣∣∣∣∣∣
X(k)

0

⎤
⎦ = X(N+2)(k + 1) (9.92)

which is an order extended version of X(k + 1) and has dimension (k + 2) by (N + 2).

In order to recursively solve equation (9.91) without dealing with ever increasing matrices, a set
of Givens rotations are applied in order to eliminate εfq1(k), εfq2(k), . . . , εfqk−N

(k), such that

1The reader should note that here the definition of forward prediction error is slightly different from that used in Chapters
7 and 8, where in the present case we are using the input and desired signals one step ahead. This allows us to use the same
information matrix as the conventional QR-Decomposition algorithm of subsection 9.2.3.
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the information matrix that premultiplies the vector [1 − wf (k)]T is triangularized. The Givens
rotations can recursively be obtained by

Qf (k) = Q̃f (k)
[

1 0
0 Qf (k − 1)

]

= Q̃f (k)
[

1 0
0 Q̃f (k − 1)

]
· · ·
[

Ik−N−1 0
0 Q̃f (N + 1)

]
(9.93)

where Q̃f (k) is defined as

Q̃f (k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θf (k) · · · 0 · · · − sin θf (k)
...

...
0 Ik 0
...

...
sin θf (k) · · · 0 · · · cos θf (k)

⎤
⎥⎥⎥⎥⎥⎥⎦ (9.94)

If in each iteration, the above rotation is applied to equation (9.91), we have

ε′fq(k) = Q̃f (k)
[

1 0
0 Qf (k − 1)

]
⎡
⎢⎢⎢⎢⎢⎣

εfq1(k)
... 0

εfqk−N
(k)

xq2(k) U(k)
λ

k+1
2 x(0) 0

⎤
⎥⎥⎥⎥⎥⎦
[

1
−wf (k)

]

= Q̃f (k)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

εfq1(k)
0 0
...
0

xq2(k) U(k)
λ1/2||εf (k − 1)|| 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
[

1
−wf (k)

]

=

⎡
⎢⎢⎢⎢⎢⎣

0
... 0
0

xq2(k) U(k)
||εf (k)|| 0

⎤
⎥⎥⎥⎥⎥⎦
[

1
−wf (k)

]
(9.95)

where

cos θf (k) =
λ1/2||εf (k − 1)||√

λ||εf (k − 1)||2 + ε2
fq1

(k)
(9.96)

sin θf (k) =
εfq1(k)√

λ||εf (k − 1)||2 + ε2
fq1

(k)
(9.97)
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and ||εf (k)|| is the norm of the forward prediction error vector shown in equation (9.91). This result
can be shown by evoking the fact that the last element of ε′fq(k) is equal to ||εf (k)||, since ||ε′fq(k)|| =
||εfq(k)|| = ||εf (k)||, because these error vectors are related through unitary transformations.

Also, it is worthwhile to recall that in equation (9.95) the relation [U ]N+1−i,i+1(k) = ||εb,i(k)|| is
still valid (see equation (9.86)). Also, by induction, it can easily be shown from equation (9.91) that:

For k = 0, 1, . . . , N

||εf (k)|| = λ
k+1
2 x(0)

for k = N + 1

||ε′fq(k)|| = ||εf (k)|| =
√

λk+1x2(0) + ε2
fq1

(k)

for k = N + 2

||εf (k)|| =
√

λk+1x2(0) + λε2
fq1

(k − 1) + ε2
fq1

(k)

=
√

λ||εf (k − 1)||2 + ε2
fq1

(k)

for k > N + 2
||εf (k)||2 = λ||εf (k − 1)||2 + ε2

fq1
(k) (9.98)

In the present case, it can be assumed that the partial triangularization can be performed at each
iteration as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0 0
...
0

xq2(k) U(k)
||εf (k)|| 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= Q̃f (k)
[ Q̃(k) 0

0 1

]
⎡
⎢⎢⎢⎢⎢⎢⎣

x(k + 1) xT (k)

0 0

λ1/2xq2(k − 1) λ1/2U(k − 1)
λ1/2||εf (k − 1)|| 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (9.99)

Now we can eliminate xq2(k) through a set of rotations Q′f (k + 1) such that

U (N+2)(k + 1) = Q′f (k + 1)
[

xq2(k) U(k)
||εf (k)|| 0

]
(9.100)

where the superscript (N + 2) in the above matrices denotes rotation matrices applied to data with
(N + 2) elements.
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From the above equation, we can realize that Q′f (k + 1) consists of a series of rotations in the
following order

Q′f (k + 1) =

⎡
⎣ IN 0

0 cos θ′f1
(k + 1) − sin θ′f1

(k + 1)
sin θ′f1

(k + 1) cos θ′f1
(k + 1)

⎤
⎦

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · · · · · · · · · · 0
0 cos θ′fN

(k + 1) 0 · · · 0 · · · 0 − sin θ′fN
(k + 1)

... 0 0

... IN−1
...

...
0 sin θ′fN

(k + 1) 0 · · · 0 · · · 0 cos θ′fN
(k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ′fN+1
(k + 1) 0 · · · 0 · · · 0 − sin θ′fN+1

(k + 1)
0 0
... IN

...
...

...
sin θ′fN+1

(k + 1) 0 · · · 0 · · · 0 cos θ′fN+1
(k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦ (9.101)

where the rotation entries of Q′f (k + 1) are calculated as follows:

μi =
√

μ2
i−1 + x2

q2i(k)

cos θ′fN+2−i
(k + 1) =

μi−1

μi

sin θ′fN+2−i
(k + 1) =

xq2i(k)
μi

(9.102)

for i = 1, . . . , N + 1, where μ0 = ||εf (k)||. Note that μN+1 is the norm of the weighted backward
prediction error ||εb,0(k +1)||, for a zero-order predictor (see equation (9.86)). The quantity xq2i(k)
denotes the ith element of the vector xq2(k).

Since the above rotations, at instant k, are actually completing the triangularization of X(N+2)(k+1),
it follows that

Q̃(N+2)(k + 1) =
[

Ik−N 0
0 Q′f (k + 1)

]
Q̃f (k)

[ Q̃(k) 0
0 1

]
(9.103)
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If the pinning vector, [1 0 . . . 0]T , is postmultiplied on both sides of the above equation, we obtain
the following relation

Q̃(N+2)(k + 1)

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ =

[
Ik−N 0

0 Q′f (k + 1)

]
Q̃f (k)

[ Q̃(k) 0
0 1

]⎡⎢⎢⎢⎣
1
0
...
0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

γ(N+2)(k + 1)
0
...

r(N+2)(k + 1)

⎤
⎥⎥⎥⎦}

N + 2

=
[

Ik−N 0
0 Q′f (k + 1)

]
Q̃f (k)

⎡
⎢⎢⎢⎢⎢⎣

γ(k)
0
...

r(k)
0

⎤
⎥⎥⎥⎥⎥⎦}

N + 1

(9.104)

where r(N+2)(k) and r(k) are vectors representing the last nonzero elements in the first column of
Q̃(N+2)(k) and Q̃(k), respectively, as can be seen in equation (9.73). Now, we can proceed by taking
the product involving the matrix Q̃f (k) resulting in the following relation

1
{

k −N

{
N + 1

{

⎡
⎢⎢⎢⎢⎢⎣

γ(k) cos θf (k)
0
...

r(k)
γ(k) sin θf (k)

⎤
⎥⎥⎥⎥⎥⎦=
[

Ik−N 0
0 Q′Tf (k + 1)

]⎡⎢⎢⎢⎣
γ(N+2)(k + 1)

0
...

r(N+2)(k + 1)

⎤
⎥⎥⎥⎦
}

1}
k −N − 1}
N + 2

(9.105)

Since our interest is to calculate r(k + 1), the above equation can be reduced to

Q′f (k + 1)
[

r(k)
γ(k) sin θf (k)

]
= r(N+2)(k + 1) (9.106)

where the unused k − N rows and columns were deleted and r(k + 1) is the last N + 1 rows of
r(N+2)(k+1). Now, since we have r(k+1) available as a function of known quantities, it is possible
to calculate the angles of the reduced rotation matrix Qθ(k + 1) using the following relation.

[
γ(k + 1)
r(k + 1)

]
= Qθ(k + 1)

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ (9.107)
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By examining the definition of Qθ(k + 1) in equations (9.75) and (9.76), it is possible to conclude
that it has the following general form (see equations (9.29) and (9.30) for similar derivation)

N + 1︷ ︸︸ ︷

Qθ(k + 1) =

⎡
⎢⎢⎢⎣
∗ ∗ · · · ∗
∗ ∗
...

. . .
∗ ∗ · · · ∗

⎤
⎥⎥⎥⎦ ⎫⎬
⎭N + 1

(9.108)

where ∗ represents a nonzero element, with the first column given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∏
i=0

cos θi(k + 1)

N−1∏
i=0

cos θi(k + 1) sin θN (k + 1)

...

j−1∏
i=0

cos θi(k + 1) sin θj(k + 1)

...
sin θ0(k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.109)

Although γ(k + 1) is not known, referring back to equation (9.107) and considering that each angle
θi is individually responsible for an element in the vector r(k+1), it is possible to show that equation
(9.107) can be solved by the following algorithm:

Initialize γ′0 = 1

For i = 1 to N + 1 calculate

sin θi−1(k + 1) =
rN+2−i(k + 1)

γ′0
(9.110)

γ′21 = γ′20[1− sin2 θi−1(k + 1)]

= γ′20 − r2
N+2−i(k + 1) (9.111)

cos θi−1(k + 1) =
γ′1
γ′0

(9.112)

γ′0 = γ′1 (9.113)

After computation is finished make γ(k + 1) = γ′1.

In the fast QR-RLS algorithm, we first calculate the rotated forward prediction error as in equation
(9.99), followed by the calculation of the energy of the forward prediction error using equation
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(9.98) and the elements of Q̃f (k) given in equations (9.96) and (9.97), respectively. The rotation
entries of Q′f (k +1) are calculated using the relations of (9.102), which in turn allow us to calculate
r(N+2)(k+1) through equation (9.106). Given r(N+2)(k+1), the rotation angles θi can be calculated
via equations (9.110)-(9.112). The remaining equations of the algorithm are the joint-processor
section and the computation of the forward prediction error given by equations (9.51) and (9.54),
respectively.

The resulting Algorithm 9.2 is almost the same as the hybrid QR-lattice algorithm of [8]. The main
difference is the order the of computation of the angles θi. In [8] the computation starts from θN by
employing the relation

γ(k + 1) =
√

1− ||r(k + 1)||2 (9.114)

This algorithm is closely related to the normalized lattice algorithm (see [8]). Some key results are
needed to establish the relation between these algorithms. For example it can be shown that the
parameter γ(k, N + 1) of the lattice algorithms corresponds to γ2(k) in the fast QR algorithm.

In problem 17, it is proved that the elements of r(k+1) in equation (9.106) correspond to normalized
backward prediction a posteriori errors of distinct orders [8]. This is the explanation for the clas-
sification of Algorithm 9.2 in Table 9.2 as one which updates the a posteriori backward prediction
errors.

Example 9.3

In this example, the system identification problem described in subsection 3.6.2 is solved using the
QR-RLS algorithm described in this section. We implemented the fast QR-RLS algorithm with finite
precision.

Solution:

The main objective of this example is to test the stability of the fast QR-RLS algorithm. For that we
run the algorithm implemented with fixed-point arithmetic. The wordlengths used are 16, 12, and 10
bits respectively. We force the rotations to be kept passive. In other words, for each rotation the sum
of the squares of the quantized sine and cosine are kept less or equal to one. Also, we test γ′1 to prevent
it from becoming less than zero. With these measures, we did not notice any sign of divergence in
our experiments. Table 9.3 shows the measured MSE in the finite-precision implementation, where
the expected MSE for the infinite-precision implementation is 0.0015. The analysis of these results
shows that the fast QR-RLS has low sensitivity to quantization effects and is comparable to the other
stable RLS algorithms presented in this text.

�

9.6 CONCLUSIONS AND FURTHER READING

Motivated by the numerically well conditioned Givens rotations, two types of rotation-based al-
gorithms were presented in this chapter. In both cases the QR decomposition implemented with
orthogonal Givens rotations were employed. The first algorithm is computationally intensive (order
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Algorithm 9.2

Fast QR-RLS Algorithm
Based on a Posteriori Backward Prediction Error

Initialization
||εf (−1)|| = δ δ small

All cosines with 1 (use for k ≤ N + 1)
All other variables with zero.
Do for each k ≥ 0[

εfq1(k)
xq2(k)

]
= Qθ(k)

[
x(k + 1)

λ1/2xq2(k − 1)

]
(9.99)

||εf (k)||2 = λ||εf (k − 1)||2 + ε2
fq1

(k) (9.98)

sin θf (k) =
εfq1(k)
||εf (k)|| (9.97)

μ0 = ||εf (k)||
Do for i = 1 to N + 1

μi =
√

μ2
i−1 + x2

q2i(k) (9.102)

cos θ′fN+2−i
(k + 1) = μi−1

μi
(9.102)

sin θ′fN+2−i
(k + 1) = xq2i(k)

μi
(9.102)

End

r(N+2)(k + 1) = Q′f (k + 1)
[

r(k)
γ(k) sin θf (k)

]
(9.106)

r(k + 1) = last N + 1 elements of r(N+2)(k + 1)
γ′0 = 1

Do for i = 1 to N + 1

sin θi−1(k + 1) =
rN+2−i(k + 1)

γ′0
(9.110)

γ′21 = γ′20 − r2
N+2−i(k + 1) (9.111)

cos θi−1(k + 1) =
γ′1
γ′0

(9.112)

γ′0 = γ′1
End

γ(k + 1) = γ′1
Filter evolution[

εq1(k + 1)
dq2(k + 1)

]
= Qθ(k + 1)

[
d(k + 1)

λ1/2dq2(k)

]
(9.51)

ε(k + 1) = εq1(k + 1)γ(k + 1) (9.54)
End
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Table 9.3 Results of the Finite-Precision Implementation of the Fast QR-RLS Algorithm

ξ(k)Q

No. of bits Experiment

16 1.7 10−3

12 2.0 10−3

10 2.1 10−3

N2) and is mainly useful in applications where the input signal vector does not consist of time de-
layed elements. The advantages of this algorithm are its numerical stability and its systolic array
implementation. The second class of algorithms explores the time-shift property of the input signal
vector which is inherent to a number of applications, yielding the fast QR-RLS algorithms with order
N numerical operations per output sample.

It should be noticed that the subject of QR-decomposition-based algorithms is not fully covered
here. A complete approach to generating fast QR-RLS algorithm using lattice formulation is known
[23]-[26]. In [23], the author applied QR decomposition to avoid inversion of covariance matrices
in the multichannel problem employing lattice RLS formulation. A full orthogonalization of the
resulting algorithm was later proposed in [25]. By using different formulations, the works of [24],
[25], and [26], propose virtually identical QR-decomposition-based lattice RLS algorithms. In terms
of computational complexity, the fast QR-RLS algorithm presented in this chapter is more efficient.
Although not discussed here, a solution to compute the adaptive-filter weights from the internal
quantities of the fast QR-RLS algorithm is currently available [27].

Another family of algorithms employing QR decomposition are those that replace the Givens rotation
by the Householder transformation [1]. The Householder transformation can be considered an
efficient method to compute the QR decomposition and is known to yield more accurate results than
the Givens rotations in finite-precision implementations. In [28], the fast Householder RLS adaptive-
filtering algorithm was proposed and shown to require computational complexity on the order of 7N .
However, no stability proof for this algorithm exists so far. In another work, the Householder
transformation is employed to derive a block-type RLS algorithm that can be mapped on a systolic-
block Householder transformation [29]. In [30], by employing the Householder transformation, a
QR-based LMS algorithm was proposed as a numerically stable and fast converging algorithm with
O[N ] computational complexity.

A major drawback of the conventional QR-RLS algorithm is the backsubstitution algorithm which
is required for computing the weight vector. In a systolic array, it can be implemented as shown
in this chapter, through a bidirectional array that requires extra clock cycles. Alternatively, a two-
dimensional array can be employed despite being more computationally expensive [13]. An approach
called inverse QR method can be used to derive a QR-based RLS algorithm such that the weight
vector can be calculated without backsubstitution [31]-[32], however, no formal proof of stability
for this algorithm is known.
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The QR decomposition has also been shown to be useful for the implementation of numerically stable
nonlinear adaptive-filtering algorithms. In [33], a QR-based RLS algorithm for adaptive nonlinear
filtering has been proposed.

Some performance evaluations of the QR-RLS and fast QR-RLS algorithms are found in this chapter
where these algorithms were employed in some simulation examples.
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9.8 PROBLEMS

1. If we consider each anti-diagonal element of λ
1
2 U(k) as a scaling constant di, and we divide

the input signal vector initially by a constant δ, we can derive a QR-decomposition algorithm
without square roots as described below:

The first two rows to be rotated are
δx̃(k) δx̃(k − 1) · · · δx̃(k −N)
d1λ

1/2ũ1,1(k − 1) d1λ
1/2ũ1,2(k − 1) · · · d1

where d1 = λ1/2u1,N+1(k − 1). The parameter δ can be initialized with 1.
Applying the Givens rotation to the rows above results in
δ
′
x
′
1(k) δ

′
x
′
1(k − 1) · · · δ

′
x
′
1(k −N + 1) 0

d
′
1ũ
′
1,1(k) d

′
1ũ
′
1,2(k) · · · d

′
1ũ
′
1,N (k) d

′
1

where
d
′2
1 = d2

1 + δ2x̃2(k −N)
c = d2

1
d2
1+δ2x̃2(k−N)

δ
′2 = d2

1δ2

d2
1+δ2x̃2(k−N)

s = δ2x̃(k−N)
d2
1+δ2x̃2(k−N)

x
′
1(k −N + i) = x̃(k −N + i)− x̃(k −N)λ1/2ũ1,N−i+1(k − 1)
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ũ
′
1,N−i+1(k) = cλ1/2ũ1,N+1−i(k − 1) + sx̃(k −N + i)

The same procedure can be used to triangularize completely the input signal matrix.

(a) Using the above procedure derive a QR-RLS algorithm without square roots.

(b) Compare the computational complexity of the QR-RLS algorithms with and without square
roots.

(c) Show that the triangularized matrix Ũ(k) is related with U(k) through

U(k) = D
′
Ũ(k)

where D
′

is a diagonal matrix with the diagonal elements given by d
′
i for i = 1, 2, . . . , N + 1.

2. Since QT (k)Q(k) = Ik+1, the following identity is valid for any matrix A and B:
CT D = AT B for Q(k) [A | B] = [C | D]
where Q(k),A, B, C,and D have the appropriate dimensions. By choosing A, B, C, and D
appropriately, derive the following relations.

(a)UT (k)U(k) = λUT (k − 1)U(k − 1) + x(k)xT (k)

(b)pD(k) = λpD(k − 1) + x(k)d(k)
where pD(k) = Σk

i=0λ
kx(i)d(i)

(c)UT (k)U−T (k)x(k) = x(k)
where U−T (k) =

[
U−1(k)

]T
(d)pT

D(k)U−1(k)U−T (k)x(k) + εq1(k)γ(k) = d(k)

3. Partitioning Qθ(k) as follows:

Qθ(k) =
[

γ(k) qT
θ (k)

q′θ(k) Qθr(k)

]

show from equations (9.51) and (9.39) that

qT
θ (k)λ1/2U(k − 1) + γ(k)xT (k) = 0T

qT
θ (k)λ1/2dq2(k − 1) + γ(k)d(k) = εq1(k)

4. Using the relations of the previous two problems and the fact that U(k)w(k) = dq2(k), show
that

(a)e(k) = εq1(k)
γ(k)

(b)ε(k) = e(k)γ2(k)

(c)εq1(k) =
√

ε(k)e(k)

5. Show that UT (k)dq2(k) = pD(k).

6. Using some of the formulas of the conventional RLS algorithm show that

γ2(k) = 1− xT (k)R−1
D (k)x(k).
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7. The QR-RLS algorithm is used to predict the signal x(k) = cos(πk/3) using a second-order
FIR filter with the first tap fixed at 1. Note that we are interested in minimizing the MSE of
the FIR output error. Given λ = 0.985, calculate y(k) and the filter coefficients for the first 10
iterations.

8. Use the QR-RLS algorithm to identify a system with the transfer function given below. The input
signal is uniformly distributed white noise with variance σ2

x = 1 and the measurement noise is
Gaussian white noise uncorrelated with the input with variance σ2

n = 10−3. The adaptive filter
has 12 coefficients.

H(z) =
1− z−12

1− z−1

(a) Run the algorithm for λ = 1, λ = 0.99, and λ = 0.97. Comment on the convergence
behavior in each case.
(b) Plot the obtained FIR filter frequency response at any iteration after convergence is achieved
and compare with the unknown system.

9. Perform the equalization of a channel with the following impulse response

h(k) =
10∑

l=k

(l − 10)[u(k)− u(k − 10)]

where u(k) is a step sequence.

Use a known training signal that consists of a binary (-1,1) random signal. An additional
Gaussian white noise with variance 10−2 is present at the channel output.
(a) Apply the QR-RLS with an appropriate λ and find the impulse response of an equalizer with
50 coefficients.
(b) Convolve the equalizer impulse response at a given iteration after convergence, with the
channel impulse response and comment on the result.

10. In a system identification problem the input signal is generated by an autoregressive process
given by

x(k) = −1.2x(k − 1)− 0.81x(k − 2) + nx(k)

where nx(k) is zero-mean Gaussian white noise with variance such that σ2
x = 1. The unknown

system is described by

H(z) = 1 + 0.9z−1 + 0.1z−2 + 0.2z−3

The adaptive filter is also a third-order FIR filter. Using the QR-RLS algorithm:
Choose an appropriate λ, run an ensemble of 20 experiments, and plot the average learning curve.

11. The QR-RLS algorithm is applied to identify a 7th-order time-varying unknown system whose
coefficients are first-order Markov processes with λw = 0.999 and σ2

w = 0.001. The initial
time-varying system multiplier coefficients are

wT
o = [0.03490 − 0.01100 − 0.06864 0.22391 0.55686 0.35798 − 0.02390 − 0.07594]
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The input signal is Gaussian white noise with variance σ2
x = 0.7, and the measurement noise is

also Gaussian white noise independent of the input signal and of the elements of nw(k), with
variance σ2

n = 0.01.

(a) For λ = 0.97 measure the excess MSE.

(b) Repeat (a) for λ = λopt.

12. Suppose a 15th-order FIR digital filter with multiplier coefficients given below is identified
through an adaptive FIR filter of the same order using the QR-RLS algorithm. Considering that
fixed-point arithmetic is used and for 10 independent runs, calculate an estimate of the expected
value of ||Δw(k)Q||2 and ξ(k)Q for the following case.

Additional noise : white noise with variance σ2
n = 0.0015

Coefficients wordlength: bc = 16 bits
Signal wordlength: bd = 16 bits
Input signal: Gaussian white noise with variance σ2

x = 0.7
λ = 0.99

wT
o = [0.0219360 0.0015786 − 0.0602449 − 0.0118907 0.1375379

0.0574545 − 0.3216703 − 0.5287203 − 0.2957797 0.0002043 0.290670
− 0.0353349 − 0.0068210 0.0026067 0.0010333 − 0.0143593]

Plot the learning curves for the finite- and infinite-precision implementations.

13. Repeat the above problem for the following cases

(a) σ2
n = 0.01, bc = 9 bits, bd = 9 bits, σ2

x = 0.7, λ = 0.98.

(b) σ2
n = 0.1, bc = 10 bits, bd = 10 bits, σ2

x = 0.8, λ = 0.98.

(c) σ2
n = 0.05, bc = 8 bits, bd = 16 bits, σ2

x = 0.8, λ = 0.98.

14. Repeat problem 12 for the case where the input signal is a first-order Markov process with
λx = 0.95.

15. Repeat problem 9 using the fast QR-RLS algorithm.

16. From equation (9.74) it is straightforward to show that

X(k) = QT (k)

⎡
⎢⎢⎣ 0

U(k)

⎤
⎥⎥⎦

= [Qu(k) Qd(k)]

⎡
⎢⎢⎣ 0

U(k)

⎤
⎥⎥⎦

where Q(k) = [Qu(k)Qd(k)]T .

(a) Using the above relation show that the elements of xq2(k) in equation (9.95) are given by

xq2i(k) = [qT
di(k) 0]df (k)
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where qdi(k) is the ith column of Qd(k).

(b) Show that the a posteriori error vector for an N th-order forward predictor can be given by

εf (k, N + 1) = df (k)−
N+1∑
i=1

xq2i(k)

⎡
⎢⎢⎣ qdi(k)

0

⎤
⎥⎥⎦

(c) Can the above expression be generalized to represent the a posteriori error vector for an
(N − j)th-order forward predictor? See the expression below

εf (k, N + 1− j) = df (k)−
N+1∑
i=j

xq2i(k)

⎡
⎢⎢⎣ qdi(k)

0

⎤
⎥⎥⎦

17. For the fast QR-RLS algorithm, show that the elements of r(k + 1) correspond to a normalized
backward prediction a posteriori error defined as

rN+1−i(k) = εb(k, i) =
εb(k, i)
||εb,i(k)|| =

εbqi
(k, i)

||εb,i(k)||
i−1∏
j=0

cos θj(k)

where
∏−1

j=0 = 1, and εb(k, i + 1) is the a posteriori backward prediction error for a predictor
of order i, with i = 0, 1, . . .. Note that ||εb,i(k)||2 corresponds to ξd

bmin
(k, i + 1) used in the

lattice derivations of Chapter 7.



10
ADAPTIVE IIR FILTERS

10.1 INTRODUCTION

Adaptive infinite impulse response (IIR) filters are those in which the zeros and poles of the filter can
be adapted. For that benefit the adaptive IIR filters usually1 have adaptive coefficients on the transfer
function numerator and denominator. Adaptive IIR filters present some advantages as compared
with the adaptive FIR filters, including reduced computational complexity. If both have the same
number of coefficients, the frequency response of the IIR filter can approximate much better a desired
characteristic. Therefore, an IIR filter in most cases requires fewer coefficients, mainly when the
desired model has poles and zeros, or sharp resonances [2]-[1]. There are applications requiring
hundreds and sometimes thousands of taps in an FIR filter where the use of an adaptive IIR filter
is highly desirable. Among these applications are satellite-channel and mobile-radio equalizers,
acoustic echo cancellation, etc.

The advantages of the adaptive IIR filters come with a number of difficulties, some of them not
encountered in the adaptive FIR counterparts. The main drawbacks are: possible instability of the
adaptive filter, slow convergence, and error surface with local minima or biased global minimum
depending on the objective function [3].

In this chapter, several strategies to implement adaptive IIR filters will be discussed. First, adaptive IIR
filters having as objective function the minimization of the mean-square output error are introduced.
Several alternative structures are presented and some properties of the error surface are addressed. In
addition, some algorithms based on the minimization of alternative objective functions are discussed.
The algorithms are devised to avoid the multimodality inherent to the methods based on the output
error.

1There are adaptive filtering algorithms with fixed poles.

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_10,  
© Springer Science+Business Media, LLC 2008  
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10.2 OUTPUT-ERROR IIR FILTERS

In the present section, we examine strategies to reduce a function of the output error given by

ξ(k) = F [e(k)] (10.1)

using an adaptive filter with IIR structure. The output error is defined by

e(k) = d(k)− y(k) (10.2)

as illustrated in Fig. 10.1.a. As usual, an adaptation algorithm determines how the coefficients of the
adaptive IIR filter should change in order to get the objective function reduced.

Let us consider that the adaptive IIR filter is realized using the direct-form structure of Fig. 10.1.b.
The signal information vector in this case is defined by

φ(k) = [y(k − 1) y(k − 2) . . . y(k −N) x(k) x(k − 1) . . . x(k −M)]T (10.3)

where N and M are the adaptive filter denominator and numerator orders, respectively.

The direct-form adaptive filter can be characterized in time domain by the following difference
equation

y(k) =
M∑

j=0

bj(k)x(k − j)−
N∑

j=1

aj(k)y(k − j) (10.4)

In the system identification field [8], the above difference equation is in general described through
polynomial operator as follows:

y(k) =
B(k, q−1)
A(k, q−1)

x(k) (10.5)

where

B(k, q−1) = b0(k) + b1(k)q−1 + · · ·+ bM (k)q−M

A(k, q−1) = 1 + a1(k)q−1 + · · ·+ aN (k)q−N

and q−j denotes a delay operation in a time domain signal of j samples, i.e., q−jx(k) = x(k − j).
The difference equation (10.4) can also be rewritten in a vector form, which is more convenient for
the algorithm description and implementation, as described below

y(k) = θT (k)φ(k) (10.6)

where θ(k) is the adaptive-filter coefficient vector given by

θ(k) = [−a1(k) − a2(k) . . .− aN (k) b0(k) b1(k) . . . bM (k)]T (10.7)

In a given iteration k, the adaptive-filter transfer function can be expressed as follows:

Hk(z) = zN−M b0(k)zM + b1(k)zM−1 + · · ·+ bM−1(k)z + bM (k)
zN + a1(k)zN−1 + · · ·+ aN−1(k)z + aN (k)

= zN−M Nk(z)
Dk(z)

(10.8)
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IIR
adaptive

filter

y(k)
x(k)

d(k)

e(k)+
-

(a)

x(k) y(k)
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bM (k) -aN(k)

-a1 (k)

-a2 (k)

z -1

z -1
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z -1

z -1

+

(b)

Figure 10.1 Adaptive IIR Filtering: (a) General configuration, (b) Adaptive IIR direct-form realization.
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Given the objective function F [e(k)], the gradient vector required to be employed in the adaptive
algorithm is given by

g(k) =
∂F [e(k)]

∂e(k)
∂e(k)
∂θ(k)

(10.9)

where e(k) is the output error. The first derivative in the above gradient equation is a scalar dependent
on the objective function, while the second derivative is a vector whose elements are obtained by

∂e(k)
∂ai(k)

=
∂[d(k)− y(k)]

∂ai(k)
= − ∂y(k)

∂ai(k)

for i = 1, 2, . . . , N , and

∂e(k)
∂bj(k)

=
∂[d(k)− y(k)]

∂bj(k)
= − ∂y(k)

∂bj(k)
(10.10)

for j = 0, 1, . . . , M , where we used the fact that the desired signal d(k) is not dependent on the
adaptive-filter coefficients.

The derivatives of y(k) with respect to the filter coefficients can be calculated from the difference
equation (10.4) as follows:

∂y(k)
∂ai(k)

= −y(k − i)−
N∑

j=1

aj(k)
∂y(k − j)

∂ai(k)

for i = 1, 2, . . . , N , and

∂y(k)
∂bj(k)

= x(k − j)−
N∑

i=1

ai(k)
∂y(k − i)
∂bj(k)

(10.11)

for j = 0, 1, . . . , M . The partial derivatives of y(k − i) with respect to the coefficients, for i =
1, 2, . . . , N , are different from zero because the adaptive filter is recursive. As a result, the present
coefficients ai(k) and bj(k) are dependent on the past output samples y(k−i). The precise evaluation
of these partial derivatives is a very difficult task, and does not have a simple implementation.
However, as first pointed out in [5] and [6], if small step sizes are used in the coefficient updating,
the following approximations are valid

ai(k) ≈ ai(k − j) for i, j = 1, 2, . . . , N

and

bj(k) ≈ bj(k − i) for j = 0, 1, . . . , M and i = 1, 2, . . . , N (10.12)

As a consequence, equations (10.11) can be rewritten as

− ∂y(k)
∂ai(k)

≈ +y(k − i)−
N∑

j=1

aj(k)
[−∂y(k − j)

∂ai(k − j)

]
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for i = 1, 2, . . . , N , and

∂y(k)
∂bj(k)

≈ x(k − j)−
N∑

i=1

ai(k)
∂y(k − i)
∂bj(k − i)

(10.13)

for j = 0, 1, . . . , M . Note that these equations are standard difference equations.

The above equations can be implemented by all-pole filters having as input signals −y(k − i) and
x(k− j) for the first and second set of equations, respectively. The implementation of the derivative
signals of equations (10.13) is depicted in Fig. 10.2. The all-pole sections realization can be performed
through IIR direct-form structure, with transfer function given by

Sai(z) = Z
[

∂y(k)
∂ai(k)

]
=
−zN−i

Dk(z)
Y (z)

for i = 1, 2, . . . , N , and

Sbj (z) = Z
[

∂y(k)
∂bi(k)

]
=

zN−j

Dk(z)
X(z) (10.14)

for j = 0, 1, . . . , M , respectively, where Z[·] denotes the Z-transform of [·].

∂y (k)
∂bM (k)

∂b0 (k)

∂y (k)
∂aN (k)

∂y (k)

∂y (k)
∂a1 (k)

y(k)Hk(z)x(k)

zN

Dk(z)

zN

Dk(z)
zN

Dk(z)

zN

Dk(z)
z-1

z-1

z-1

-

-

Figure 10.2 Derivative implementation.

The amount of computation spent to obtain the derivatives is relatively high, as compared with the
adaptive-filter computation itself. A considerable reduction in the amount of computation can be
achieved, if it is considered that the coefficients of the adaptive-filter denominator polynomial are
slowly varying, such that

Dk(z) ≈ Dk−i(z) for i = 1, 2, . . . ,max(N, M) (10.15)
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where max(a, b) denotes maximum between a and b. The interpretation is that the denominator
polynomial is kept almost constant for a number of iterations. With this approximation, it is possible
to eliminate the duplicating all-pole filters of Fig. 10.2, and replace them by a single all-pole in front
of the two sets of delays as depicted in Fig. 10.3.a. In addition, if the recursive part of the adaptive
filter is implemented before the numerator part, one more all-pole section can be saved as illustrated
in Fig. 10.3.b [7].

Note that in the time domain, the approximations of equation (10.15) imply the following relations

∂y(k)
∂ai(k)

≈ q−i+1 ∂y(k)
∂a1(k)

for i = 1, 2, . . . , N , and

∂y(k)
∂bj(k)

≈ q−j ∂y(k)
∂b0(k)

(10.16)

for j = 0, 1, . . . , M , where ∂y(k)
∂a1(k) represents the partial derivative of y(k) with respect to the first

non unit coefficient of the denominator polynomial, whereas ∂y(k)
∂b0(k) is the partial derivative of y(k)

with respect to the first coefficient of the numerator polynomial.

10.3 GENERAL DERIVATIVE IMPLEMENTATION

The derivatives of the output signal as related to the adaptive-filter coefficients are always required
to generate the gradient vector that is used in most adaptive algorithms. These derivatives can
be obtained in a systematic form by employing a sensitivity property of digital filters with fixed
coefficients [2]-[1], if the adaptive-filter coefficients are slowly varying as assumed in equation
(10.12).

Refer to Fig. 10.4.a, where the multiplier with coefficient c is an internal multiplier of a digital filter
with fixed coefficients. A good measure of how the digital filter characteristics change when the
value of c changes is the sensitivity function, defined as the partial derivative of the digital filter
transfer function H(z) as related to the coefficient c. It is well known from classical digital filtering
theory [2]-[1] that the partial derivative of the digital filter transfer function, with respect to a given
multiplier coefficient c, is given by the product of the transfer function H13(z) from the filter input
to the multiplier input and the transfer function H42(z) from the multiplier output to the filter output,
that is

Sc(z) = H13(z) ·H42(z) (10.17)

Fig. 10.4.b illustrates the derivative implementation. It can be noted that the implementation of the
derivatives for the direct-form structure shown in Fig. 10.2 can be obtained by employing equation
(10.17). In the time domain, the filtering operation performed in the implementation of Fig. 10.4.b
is given by

∂y(k)
∂c

= h13(k) ∗ h42(k) ∗ x(k) (10.18)
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Figure 10.3 Simplified derivative implementation: (a) Simplification I, (b) Simplification II.
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where ∗ denotes convolution and hij(k) is the impulse response related to Hij(z). When the digital
filter coefficients are slowly varying, the desired derivatives can be derived as in Fig. 10.4 for each
adaptive coefficient. In this case, only an approximated derivative is obtained

∂y(k)
∂c(k)

≈ h13k(k) ∗ h42k(k) ∗ x(k) (10.19)

10.4 ADAPTIVE ALGORITHMS

In this section, the adaptation algorithms used in IIR adaptive filtering are described. In particular,
we present the RLS, the Gauss-Newton, and the gradient-based algorithms.

10.4.1 Recursive Least-Squares Algorithm

A possible objective function for adaptive IIR filtering based on output error is the least-squares
function2

ξd(k) =
k∑

i=0

λk−ie2(i) =
k∑

i=0

λk−i[d(i)− θT (k)φ(i)]2 (10.20)

The forgetting factor λ is usually chosen in the range 0 � λ < 1, with the objective of turning the
distant past information increasingly negligible. By differentiating ξd(k) with respect to θ(k), it
follows that

2gD(k) =
∂ξd(k)
∂θ(k)

= 2
k∑

i=0

λk−iϕ(i)[d(i)− θT (k)φ(i)]

= 2ϕ(k)e(k) + λ
∂ξd(k − 1)

∂θ(k)
(10.21)

where the vector ϕ(k) is the derivative of e(i) with respect to θ(k), i.e.,

ϕ(k) =
∂e(k)
∂θ(k)

= −∂y(k)
∂θ(k)

(10.22)

and without loss of generality we considered that ξd(k− 1) is a function of θ(k) and not of θ(k− 1)
as in the FIR case. The second-derivative matrix 2RD(k) of ξd(k)3 with respect to θ(k) is then given
by

∂2ξd(k)
∂θ2(k)

= 2RD(k) = 2λRD(k − 1) + 2ϕ(k)ϕT (k)− 2
∂2y(k)
∂θ2(k)

e(k) (10.23)

2The reader should note that this definition of the deterministic weighted least squares utilizes the a priori error with
respect to the latest data pair d(k) and x(k), unlike the FIR RLS case.

3By differentiating 2gD(k) in equation (10.21) with respect to θ(k).
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(a)

(b)

Figure 10.4 General derivative implementation: (a) General structure, (b) Derivative implementation.
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Now, several assumptions are made to generate a recursive algorithm. The adaptive-filter parameters
are considered to be updated by

θ(k + 1) = θ(k)− R−1
D (k)gD(k) (10.24)

As can be noted from equations (10.21) and (10.23), the calculations of the last terms in both RD(k)
and gD(k) require a knowledge of the signal information vector since the beginning of the algorithm
operation, namely ϕ(i) for i < k. However, if the algorithm step sizes, i.e., the elements of
|θ(k + 1)− θ(k)|, are considered small, then

∂ξd(k − 1)
∂θ(k)

≈ 0 (10.25)

assuming that the vector θ(k) is the optimal estimate for the parameters at the instant k − 1. This
conclusion can be drawn by approximating ξd(k − 1) by a Taylor series around θ(k − 1) and
considering only the first-order term [8]. Also, close to the minimum solution, the output error e(k)
can be considered approximately a white noise (if the measurement noise is also a white noise) and

independent of ∂2y(k)
∂θ2

(k)
. This assumption allows us to consider the expected value of the last term in

equation (10.23) negligible as compared to the remaining terms.

Applying the above approximations, an RLS algorithm for adaptive IIR filtering is derived in which
the basic steps are:

e(k) = d(k)− θT (k)φ(k) (10.26)

ϕ(k) = −∂y(k)
∂θ(k)

(10.27)

SD(k) =
1
λ

[
SD(k − 1)− SD(k − 1)ϕ(k)ϕT (k)SD(k − 1)

λ + ϕT (k)SD(k − 1)ϕ(k)

]
(10.28)

θ(k + 1) = θ(k)− SD(k)ϕ(k)e(k) (10.29)

The description of the RLS adaptive IIR filter is given in Algorithm 10.1.

Note that the primary difference between the RLS algorithm for FIR and IIR adaptive filtering relies
on the signal information vector, ϕ(k), that in the IIR case is obtained through a filtering operation
while in the FIR case it corresponds to the input signal vector x(k).

10.4.2 The Gauss-Newton Algorithm

Consider as objective function the mean-square error (MSE) defined as

ξ = E[e2(k)] (10.30)

In the Gauss-Newton algorithm, the minimization of the objective function is obtained by performing
searches in the Newton direction, using estimates of the inverse Hessian matrix and the gradient vector.
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Algorithm 10.1

Output Error Algorithm, RLS Version

Initialization
ai(k) = bi(k) = e(k) = 0
y(k) = x(k) = 0 , k < 0
SD(0) = δ−1I

Definition
ϕT (k) = [−y′(k − 1) . . .− y′(k −N) − x′(k) − x′(k − 1) . . .− x′(k −M)]
For each x(k), d(k), k ≥ 0, do
y(k) = φT (k)θ(k)
y′(k) = −y(k)−∑N

i=1 ai(k)y′(k − i)
x′(k) = x(k)−∑N

i=1 ai(k)x′(k − i)
e(k) = d(k)− y(k)

SD(k) = 1
λ

[
SD(k − 1)− SD(k−1)ϕ(k)ϕT (k)SD(k−1)

λ+ϕT (k)SD(k−1)ϕ(k)

]
θ(k + 1) = θ(k)− SD(k)ϕ(k)e(k)
Stability test

The gradient vector is calculated as follows:

∂ξ

∂θ(k)
= E[2e(k)ϕ(k)] (10.31)

where ϕ(k) = ∂e(k)
∂θ(k)

as defined in equation (10.22).

The Hessian matrix is then given by

∂2ξ

∂θ2(k)
= 2E

[
ϕ(k)ϕT (k) +

∂2e(k)
∂θ2(k)

e(k)
]

(10.32)

where the expected value of the second term in the above equation is approximately zero, since close
to a solution the output error e(k) is “almost” a white noise independent of the following term

∂2e(k)
∂θ2(k)

= −∂2y(k)
∂θ2(k)

The determination of the gradient vector and the Hessian matrix requires statistical expectation
calculations. In order to derive a recursive algorithm, estimates of the gradient vector and Hessian
matrix have to be used. For the gradient vector, the most commonly used estimation is the stochastic
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gradient given by
∂ξ̂

∂θ(k)
= 2e(k)ϕ(k) (10.33)

where ξ̂ is an estimate of ξ. Such approximation was also used in the derivation of the LMS algorithm.
The name stochastic gradient originates from the fact that the estimates point to random directions
around the true gradient direction.

The Hessian estimate can be generated by employing a weighted summation as follows:

R̂(k + 1) = αϕ(k)ϕT (k) + α

k−1∑
i=0

(1− α)k−iϕ(i)ϕT (i)

= αϕ(k)ϕT (k) + (1− α)R̂(k) (10.34)

where α is a small factor chosen in the range 0 < α < 0.1. By taking the expected value on both
sides of the above equation and assuming that k →∞, it follows that

E[R̂(k + 1)] = α
k∑

i=0

(1− α)k−iE[ϕ(i)ϕT (i)]

≈ E[ϕ(k)ϕT (k)] (10.35)

Applying the approximation discussed and the matrix inversion lemma to calculate the inverse of
R̂(k +1), i.e., Ŝ(k +1), the Gauss-Newton algorithm for IIR adaptive filtering is derived, consisting
of the following basic steps

e(k) = d(k)− θT (k)φ(k) (10.36)

ϕ(k) =
∂e(k)
∂θ(k)

(10.37)

Ŝ(k + 1) =
1

1− α

[
Ŝ(k)− Ŝ(k)ϕ(k)ϕT (k)Ŝ(k)

1−α
α + ϕT (k)Ŝ(k)ϕ(k)

]
(10.38)

θ(k + 1) = θ(k)− μŜ(k + 1)ϕ(k)e(k) (10.39)

where μ is the convergence factor. In most cases, μ is chosen approximately equal to α.

In the updating of the R̂(k) matrix, the factor (1 − α) plays the role of a forgetting factor that
determines the effective memory of the algorithm when computing the present estimate. The closer
α is to zero the more important is the past information, in other words, the longer is the memory of
the algorithm.
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10.4.3 Gradient-Based Algorithm

If in the Gauss-Newton algorithm, the estimate of the Hessian matrix is replaced by the identity
matrix, the resulting basic algorithm is given by

e(k) = d(k)− θT (k)φ(k) (10.40)

ϕ(k) =
∂e(k)
∂θ(k)

(10.41)

θ(k + 1) = θ(k)− μϕ(k)e(k) (10.42)

These are the steps of a gradient-based algorithm for IIR filtering. The computational complexity
is much lower in gradient-based algorithm than in the Gauss-Newton algorithm. With the latter,
however, faster convergence is in general achieved.

10.5 ALTERNATIVE ADAPTIVE FILTER STRUCTURES

The direct-form structure is historically the most widely used realization for the IIR adaptive filter.
The main advantages of the direct form are the minimum number of multiplier coefficients required to
realize a desired transfer function and the computationally efficient implementation for the gradient
(which is possible under the assumption that the denominator coefficients are slowly varying, as
illustrated in Fig. 10.3). On the other hand, the stability monitoring of the direct form is difficult
because it requires either the factorization of a high-order denominator polynomial in each algorithm
step or the use of a sophisticated stability test. In addition, the coefficient sensitivities and output
quantization noise are known to be high in the direct form [2].

Alternate solutions are the cascade and parallel realizations using first- or second-order sections as
building blocks [9]-[10]. Also, the lattice structures are popular in the implementation of adaptive
filters [13]-[19]. All these structures allow easy stability monitoring while the parallel form appears
to be most efficient in the gradient computation. The standard parallel realization, however, may
converge slowly if two poles approach each other, as will be discussed later and, when a Newton-based
algorithm is employed, the estimated Hessian matrix becomes ill-conditioned bringing convergence
problems. This problem can be alleviated by applying a preprocessing to the input signal [10]-[11].

10.5.1 Cascade Form

Any N th-order transfer function can be realized by connecting several first- or second-order sections
in series, generating the so-called cascade form. Here we consider that all subfilters are second-order
sections without loss of generality, and if an odd-order adaptive filter is required we add a single
first-order section. Also, only filters with real multiplier coefficients are discussed. The cascade
realization transfer function is given by

Hk(z) =
m∏

i=1

b0iz
2 + b1i(k)z + b2i(k)

z2 + a1i(k)z + a2i(k)
=

m∏
i=1

Hki(z) (10.43)
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where m denotes the number of sections.

The parameter vector in the cascade form is

θ(k) = [−a11(k) − a21(k) b01(k) b11(k) b21(k) . . .− a1m(k) − a2m(k) b0m(k) b1m(k) b2m(k)]T

The transfer function derivatives as related to the multiplier coefficients can be generated by employ-
ing the general result of Fig. 10.4. Fig. 10.5 depicts the cascade realization along with the generation
of the derivative signals of interest, where the sections were realized through the direct form of
Fig. 10.1.

Figure 10.5 Cascade form.

Any alternative second-order section can be used in the cascade form and the appropriate choice
depends on a trade-off between quantization effects, hardware resources, computation time, and other
factors. The main drawbacks of the cascade form are the amount of extra computations required to
generate the gradients, and the manifolds (see sections 10.6 and 10.7) generated on the error surface
which may result in slow convergence of the gradient-based algorithms.
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10.5.2 Lattice Structure

In this subsection we discuss the lattice algorithm starting from its realization. Although this might
appear to be a recipe approach, the development presented here allows us to access the nice properties
of the lattice realization. The book by Regalia [12] provides a detailed presentation of the various
forms of lattice realization.
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Figure 10.6 Lattice structure including a sample of gradient computation.

The two-multiplier lattice structure [13]-[18] for IIR filters is depicted in Fig. 10.6 with a sample
of gradient computation. The coefficients κi(k) in the recursive part of the structure are called
reflection coefficients. The internal signals f̂i(k) and b̂i(k) are the forward and backward residuals,



410 Chapter 10 Adaptive IIR Filters

respectively. These internal signals are calculated as follows:

f̂N+1(k) = x(k)

f̂N−i(k) = f̂N−i+1(k)− κN−i(k)b̂N−i(k)

b̂N−i+1(k + 1) = κN−i(k)f̂N−i(k) + b̂N−i(k)

for i = 0, 1, . . . , N , and
b̂0(k + 1) = f̂0(k) (10.44)

The zero placement is implemented by a weighted sum of the backward residuals b̂i(k), generating
the filter output according to

y(k) =
N+1∑
i=0

b̂i(k + 1)vi(k) (10.45)

where vi(k), for i = 0, 1, . . . , N + 1, are the output coefficients.

The derivatives of the filter output y(k) with respect to the output tap coefficients vi(k) are given
by the backward residuals b̂i(k + 1). On the other hand, the derivatives of y(k) as related to the
reflection multiplier coefficients κi(k) require one additional lattice structure for each κi(k). In
Fig. 10.6, the extra lattice required to calculate ∂y(k)

∂κN−1(k) is shown for illustration. The overall
structure for the calculation of the referred partial derivative can be obtained by utilizing the general
derivative implementation of Fig. 10.4.b. First note that the transfer functions from the filter input
to the inputs of the multipliers ±κN−1(k) were realized by the original adaptive lattice filter. Next,
the overall partial derivative is obtained by taking the input signals of ±κN−1(k) in the first lattice
structure to their corresponding output nodes in a second lattice structure whose external input is
zero. For each derivative ∂y(k)

∂κj(k) , the following algorithm must be used

f̂ ′N+1(k) = 0
If i �= N − j

f̂ ′N−i(k) = f̂ ′N−i+1(k)− κN−i(k)b̂′N−i(k)

b̂′N−i+1(k + 1) = κN−i(k)f̂ ′N−i(k) + b̂′N−i(k)
for i = 0, 1, . . . , N − j − 1, N − j + 1, . . . , N

If i = N − j

f̂ ′j(k) = f̂ ′j+1(k)− κj(k)b̂′j(k)− b̂j(k)

b̂′j+1(k + 1) = κj(k)f̂ ′j(k) + b̂′j(k) + f̂j(k)

b̂′o(k + 1) = f̂o(k)
Then

∂y(k)
∂κj(k)

=
N+1∑
i=0

b̂′i(k + 1)vi(k) (10.46)

The main desirable feature brought about by the lattice IIR realization is the simple stability test.
The stability requires only that reflection coefficients κi(k) be maintained with modulus less than
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one [17]. However, the gradient computations are extremely complex, and of order N2 in terms
of multiplication count. An approach for the gradient computations with order N multiplications
and divisions was proposed [16], which is still more complex than for the direct-form realization. It
should be noticed that in the direct form, all the signals at the multiplier’s input are delayed versions
of each other, and the transfer function from the multiplier’s output to the filter output are the same.
These properties make the gradient computational complexity in the direct form low. The lattice IIR
realization does not have these features.

When the two-multiplier lattice structure is realizing a transfer function with poles close to the unit
circle, the internal signals may present a large dynamic range, resulting in poor performance due
to quantization effects. In this case, the normalized lattice [19] is a better choice despite its higher
computational complexity. There are alternative lattice structures, such as the two-multiplier with
distinct reflection coefficients and the one-multiplier structures [15], that can also be employed in
adaptive filtering. For all these options the stability test is trivial, retaining the main feature of the
two-multiplier lattice structure.

An application where adaptive IIR filtering is the natural choice is sinusoid detection using notch
filters. A notch transfer function using direct-form structure is given by

HN(z) =
1− 2 cos ω0z

−1 + z−2

1− 2r cos ω0z−1 + r2z−2 (10.47)

where ω0 is the notch frequency and r is the pole radius [20]. The closer the pole radius is to the unit
circle the narrower is the notch transfer function, leading to better estimate of the sinusoid frequency
in a noisy environment. However, in the direct form the noise gain, caused by the notch transfer
function, varies with the sinusoid frequency, causing a bias in the frequency estimate [12].

An alternative is to construct a notch filter by using a lattice structure. A second-order notch filter
can be generated by

HN(z) =
1
2

[1 + HAP(z)] (10.48)

where HAP(z) is an all-pass transfer function which can be realized by a lattice structure by setting
v2 = 1 and v1 = v0 = 0 in Fig. 10.6. In this case,

HAP(z) =
κ1 + κ0(1 + κ1)z−1 + z−2

1 + κ0(1 + κ1)z−1 + κ1z−2 (10.49)

The notch frequency ω0 and the relation between −3 dB attenuation bandwidth Δω3dB and κ1 are
given by

ω0 = cos−1(−κ0) (10.50)

and

κ1 =
1− tan Δω3dB

2

1 + tan Δω3dB
2

(10.51)
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respectively. The main feature of the notch filter based on the lattice structure is the independent
control of the notch frequency and the −3 dB attenuation bandwidth.

It is worth mentioning that an enhanced version of the sinusoid signal can be obtained by applying
the noisy input signal to the bandpass filter whose transfer function is given by

HBP(z) =
1
2

[1−HAP(z)] (10.52)

For identification of multiple sinusoids the most widely used structure is the cascade of second-order
sections, where each section identifies one of the sinusoids removing the corresponding sinusoid
from the input to the following sections.

Sinusoid detection in noise utilizing adaptive notch filter has rather simple implementation as com-
pared with other methods, and finds application in synchronization, tone detection and tracking for
music signals among others.

Example 10.1

Apply an IIR notch adaptive filter using the second-order lattice structure to detect a sinusoid buried
in noise.

The input signal noise is a Gaussian white noise with variance σ2
x = 1, whereas the sampling fre-

quency is 10000Hz and the sinusoid to be detected is at 1000Hz. Use a gradient-based algorithm.
(a) Choose the appropriate value of μ.
(b) Run the algorithm using for signal to noise ratios of 0 and −5dB, respectively.
(c) Show the learning curves for the detected frequency, the input and the bandpass filtered output
signal.

Solution:

A rather small convergence factor μ = 0.000001 is used in this example. Higher values can be
used for lower ratio between the sampling frequency and the sinusoid frequency. The starting search
frequency is 1100Hz. A quality factor of 10 is used, where this factor measures ratio between the
notch frequency and the frequencies with −3dB of attenuation with respect to the gain in the pass
band of filter. The stopband width is then 100 Hz. Figs. 10.7.a and 10.7.b depict the input signals
for the cases where the signal to noise ratios are 0 and−5 dB’s, respectively. Figs. 10.8.a and 10.8.b
show the learning curves for the sinusoid frequencies where in both cases the correct frequencies
are detected in less than one second which is equivalent to 1000 iterations. As can be observed,
the noisier input leads to noisier output. Figs. 10.9.a and 10.9.b depict the bandpass output signal
where the sinusoidal components are clearly seen, and again the higher signal to noise ratio results
in cleaner sinusoids. In these plots we froze the value of κ0 at a given iteration after convergence in
order to generate the band-passed signals.

�
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Figure 10.7 Sinusoid buried in noise for signal to noise ratio (a) 0dB, (b) −5dB.
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Figure 10.8 Learning curves of the sinusoid frequency (a) 0dB, (b) −5dB.
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10.5.3 Parallel Form

In the parallel realization, the transfer function is realized by a parallel connection of sections as
shown in Fig. 10.10. The sections are in most of the cases of first- or second-order, making the
stability test trivial. The transfer function when second-order sections are employed is given by

Hk(z) =
m−1∑
i=0

b0i(k)z2 + b1i(k)z + b2i(k)
z2 + a1i(k)z + a2i(k)

(10.53)

The parameter vector for the parallel form is

θ(k) = [−a10(k) − a20(k) b00(k) b10(k) b20(k)

. . .− a1 m−1(k) − a2 m−1(k) b0 m−1(k) b1 m−1(k) b2 m−1(k)]T

(10.54)

Section 1

Section 2

Section m

x(k)

y(k)+

Figure 10.10 Parallel form.

The transfer function derivatives as related to the multiplier coefficients in the parallel form are simple
to calculate, because they depend on the derivative of the individual section transfer function with
respect to the multiplier coefficients belonging to that section. Basically, the technique of Fig. 10.4
can be applied to each section individually.
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Since the interchange of sections in the parallel form does not alter the transfer function, there are m!
global minimum points each located in separate subregions of the MSE surface. These subregions
are separated by boundaries that are reduced-order manifolds as will be discussed in section 10.7.
These boundaries contain saddle points and if the filter parameters are initialized on a boundary, the
convergence rate is most probably slow. Consider that the internal signals cross-correlation matrix
is approximately estimated by

R̂(k + 1) = α

k∑
i=0

(1− α)k−iϕ(i)ϕT (i) (10.55)

when k is large. In this case, if the sections coefficients are identical the information vector consists of
a set of identical subvectors ϕ(i), which in turn makes R̂(k+1) ill-conditioned. The above discussion
suggests that the sections in the parallel realization should be initialized differently, although there
is no guarantee that this will avoid the ill-conditioning problems.

10.5.4 Frequency-Domain Parallel Structure

A possible alternative parallel realization first proposed in [10] incorporates a preprocessing of the
input signal using a discrete-time Fourier transform, generating m signals that are individually
applied as input to first-order complex-coefficients sections. With this strategy, the matrix R̂(k) is
more unlikely to become ill-conditioned. Also, it is more difficult for a gradient-based algorithm
to get stuck on a reduced-order manifold, resulting in faster convergence. The parallel realization
can also be implemented using a real-coefficient transform for the preprocessing and second-order
sections.

The frequency-domain parallel structure is illustrated in Fig. 10.11, where d(k) is the reference
signal, x(k) is the input signal, n(k) is an additive noise source, and y(k) is the output. The ith
parallel section is represented by the transfer function

Hi(z) =
b0i(k)z2 + b1i(k)z + b2i(k)

z2 + a1i(k)z + a2i(k)
k = 0, 1, . . . , m− 1 (10.56)

where a1i(k), a2i(k), b0i(k), b1i(k), and b2i(k) are adjustable real coefficients. The inputs of the
filter sections are preprocessed as shown in Fig. 10.11.

The purpose of preprocessing in Fig. 10.11 is to generate a set of uncorrelated signals x1(k), x2(k),
. . . , xm(k) in order to reduce the probability that two or more sections converge to the same solution,
to simplify the adaptation algorithm, and to improve the rate of convergence.

On employing the discrete-time cosine transform (DCT), the input signals to the subfilters in Fig. 10.11
are given by

x0(k) =
√

2
m

m−1∑
l=0

x(k − l)
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Figure 10.11 Real coefficient frequency-domain adaptive filter.

and

xi(k) =

√
2
m

m−1∑
l=0

x(k − l) cos[πi(2l + 1)/(2m)] (10.57)

The transfer function from the input to the outputs of the DCT preprocessing filter (or prefilter) can
be described through the recursive frequency-domain description given by

Ti(z) =
k0

m
cos τi

[zm − (−1)i](z − 1)
zm−1[z2 − (2 cos 2τi)z + 1]

(10.58)
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where

k0 =

⎧⎨
⎩
√

2 if i = 0

√
2m if i = 1, 2, . . . , m− 1

and τi = πi/(2m). The DCT can be efficiently implemented through some fast algorithms, or by
employing equation (10.58). In the latter case, special consideration must be given to the poles on
the unit circle.

Alternatively, the transfer functions of the prefilter can be expressed as

Ti(z) =
1
m

m−1∑
j=0

tijz
−j =

1
m

m−2∏
r=0

(z − τir)
z

=
1

zm−1

(z − 1)[zm − (−1)i]
[z2 − (2 cos πi

m )z + 1]
(10.59)

where the tij are the coefficients of the transform matrix T, and the τir are the zeros of Ti(z). The
gain constants k0 and cos τ were dropped in equation (10.59) and will not be considered from now
on, since they can be absorbed by the numerator coefficients b0i(k), b1i(k), and b2i(k) of Hi(z).

The overall transfer function of the frequency-domain adaptive filter of Fig. 10.11 is given by

H(z) =
m−1∑
i=0

Ti(z)Hi(z)

=
1
m

(
1

zm−1 )

[
m−1∑
i=0

(
b0iz

2 + b1iz + b2i

z2 + a1iz + a2i

)m−2∏
r=0

(z − τir)

]

=
1
m

1
z3m+1

⎡
⎢⎢⎢⎢⎢⎣

m−1∑
i=0

(b0iz
2 + b1iz + b2i)

m−1∏
j=0, �=i

(z2 + a1jz + a2j)
m−2∏
r=0

(z − τir)

m−1∏
l=0

(z2 + a1lz + a2l)

⎤
⎥⎥⎥⎥⎥⎦
(10.60)

Now assume that the realization discussed is used to identify a system of order 2Np described by

HD(z) = Kz2Np−P

P−1∏
r=0

(z − γr)

Np−1∏
i=0

(z2 + α1iz + α2i)

(10.61)

where K is a gain constant, p0i and p1i are the poles of section i, and γr are the zeros of HD(z) such
that

γr �= p0i, p1i for r = 0, . . . , P − 1 and for i = 0, . . . , Np − 1

It can be shown that if the conditions outlined below are satisfied, the filter of Fig. 10.11 can identify
exactly systems with Np ≤ m and P ≤ 3m + 1. The sufficient conditions are:
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i) The transformation matrix T of the prefilter is square and has linearly independent rows.

ii) a1i �= a1j , and a2i �= a2j for i �= j; a1i and a2i are not simultaneously zero for all i.

iii) The zeros of the prefilter do not coincide with the system’s poles, i.e., τij �= p0l, τij �= p1l, for
all i, j, and l.

Adaptation Algorithm

The adaptation algorithm entails the manipulation of a number of vectors, namely, the coefficient
vector

θ(k) =
[
θT

0 (k) . . .θT
m−1(k)

]T
where

θi(k) = [−a1i(k) − a2i(k) b0i(k) b1i(k) b2i(k)]T

the internal data vector

φ(k) =
[
φT

0 (k) . . .φT
m−1(k)

]T
where

φi(k) = [yi(k − 1) yi(k − 2) xi(k) xi(k − 1) xi(k − 2)]T

the gradient vector
ϕ̃(k) = [ϕT

0 (k) . . .ϕT
m−1(k)]T

where
ϕi(k) = [−y′i(k − 1) − y′i(k − 2) − x′i(k) − x′i(k − 1) − x′i(k − 2)]T

and the matrix Ŝ(k) which is an estimate of the inverse Hessian R̂
−1

(k).

The elements of the gradient vector can be calculated by using the relations

x′i(k) = xi(k)− a1i(k)x′i(k − 1)− a2i(k)x′i(k − 2)

and
y′i(k) = −yi(k)− a1i(k)y′i(k − 1)− a2i(k)y′i(k − 2)

An adaptation algorithm for updating the filter coefficients based on the Gauss-Newton algorithm
is summarized in Algorithm 10.2. The algorithm includes the updating of matrix Ŝ(k), which is
obtained through the matrix inversion lemma.

The stability monitoring consists of verifying whether each set of coefficients a1i(k) and a2i(k)
defines a point outside the stability triangle [2], i.e., by testing whether

1− a1i(k) + a2i(k) < 0 or 1 + a1i(k) + a2i(k) < 0 or |a2i(k)| ≥ 1 (10.62)

If instability is detected in a particular section, the poles must be projected back inside the unit circle.
A possible strategy is to project each pole by keeping its angle and inverting its modulus. In this
case, a2i and a1i should be replaced by 1/a2i(k) and −a1i(k)/a2i(k), respectively.
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Algorithm 10.2

Frequency-Domain Parallel Algorithm, RLS Version

Initialization

Ŝ(0) = δI(δ > 0)

θi(k), 0 ≤ i ≤ m− 1

For each x(k) and d(k) given for k ≥ 0, compute:

XDCT(k) = DCT[x(k) . . . x(k −m + 1)]

Do for i = 0, 1, . . . , m− 1 :

x′i(k) = xi(k)− a1i(k)x′i(k − 1)− a2i(k)x′i(k − 2)

yi(k) = θT
i (k)φi(k)

y′i(k) = −yi(k)− a1i(k)y′i(k − 1)− a2i(k)y′i(k − 2)

End

e(k) = d(k)−∑m−1
i=0 yi(k)

h(k) = Ŝ(k)ϕ̃(k)

Ŝ(k + 1) =
[

Ŝ(k)− h(k)hT
(k)

( 1
α−1)+hT

(k)ϕ̃(k)

]
( 1
1−α )

θ(k + 1) = θ(k)− μŜ(k + 1)ϕ̃(k)e(k)

Carry out stability test.
End

If the outputs of the DCT prefilter xi(k) are sufficiently uncorrelated, the Hessian matrix is approx-
imately block-diagonal consisting of 5× 5 submatrices R̂i(k). In this case, instead of computing a
5m× 5m inverse Hessian estimate Ŝ(k), several 5× 5 submatrices are computed and applied in the
above algorithm as follows:
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For i = 0, 1, . . . , m− 1

hi(k) = Ŝi(k)ϕi(k)

Ŝi(k + 1) =

[
Ŝi(k)− hi(k)hT

i (k)
( 1

α − 1) + hT
i (k)ϕi(k)

]
(

1
1− α

)

θi(k + 1) = θi(k)− μŜi(k + 1)ϕi(k)e(k)

�

The choice of the adaptive-filter realization has implications on the computational complexity as
well as on the convergence speed. Some studies exploring this aspect related to the frequency-
domain realization can be found in [21]. The exploration of realization related properties of the IIR
adaptive MSE surface led to a fast parallel realization where no transform preprocessing is required
[22]. In this approach, the reduced-order manifolds are avoided by properly configuring the parallel
sections which are implemented with general purpose second-order sections [23]. An analysis of the
asymptotic convergence speed of some adaptive IIR filtering algorithms from the realization point of
view can be found in [24]. Another approach proposes a cascade/parallel orthogonal realization, with
simplified gradient computation, by utilizing some of the ideas behind the derivation of improved
parallel realizations [25].

Example 10.2

An IIR adaptive filter of sufficient order is used to identify a system with the transfer function given
below.

H(z) =
0.8(z2 − 1.804z + 1)2

(z2 − 1.512z + 0.827)(z2 − 1.567z + 0.736)

The input signal is a uniformly distributed white noise with variance σ2
x = 1, and the measurement

noise is Gaussian white noise uncorrelated with the input with variance σ2
n = 10−1.5. Use a gradient-

based algorithm.
(a) Choose the appropriate values of μ.
(b) Run the algorithm using the direct-form structure, the lattice structure, the parallel realization
with preprocessing, and the cascade realization with direct-form sections. Compare their convergence
speed.
(c) Measure the MSE.
(d) Plot the obtained IIR filter frequency response at any iteration after convergence is achieved and
compare with the unknown system. Consider for this item only the direct-form realization.

Solution:

A convergence factor μ = 0.004 is used in all examples, except for the lattice realization where
μ = 0.0002 is employed for the internal coefficients and a larger μ = 0.002 is employed for the
updating of the feedforward coefficients, for stability reasons. Although the chosen value of μ is
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not an optimal value in any sense, it led to the convergence of all algorithms. Fig. 10.12 depicts the
magnitude response of the adaptive filter using the direct form at a given iteration after convergence.
For comparison the magnitude response of the system being modeled is also plotted. As can be
seen, the responses are close outside the frequency range where the unknown system has a notch.
Fig. 10.13 shows the learning curves of the algorithms obtained by averaging the results of 200
independent runs. As can be seen the faster algorithms led to higher MSE. The cascade realization
presented faster convergence, followed by the parallel and lattice realizations. The measured MSEs
are given in Table 10.1.

There are very few results published in the literature addressing the finite-precision implementation of
IIR adaptive filters. For this particular example, all algorithms are also implemented with fixed point
arithmetic, with 12 and 16 bits. No sign of divergence is detected during the early 2000 iterations.
However, the reader should not take this result as conclusive.

�
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426 Chapter 10 Adaptive IIR Filters

Table 10.1 Evaluation of the IIR Algorithms

Realization MSE

Direct Form 0.0391

Lattice 0.1514

Transf. Dom. Parallel 0.1478

Cascade 0.1592

10.6 MEAN-SQUARE ERROR SURFACE

The error surface properties in the case of adaptive IIR filtering are key in understanding the difficulties
in applying gradient-based algorithms to search for the optimal filter coefficient vector. In this section,
the main emphasis is given to the system identification application where the unknown system is
modeled by

d(k) =
G(q−1)
C(q−1)

x(k) + n(k) (10.63)

where

G(q−1) = g0 + g1q
−1 + · · ·+ gMd

q−Md

C(q−1) = 1 + c1q
−1 + · · ·+ cNd

q−Nd

and n(k) is the measurement noise that is considered uncorrelated with the input signal x(k).

The unknown transfer function is

Ho(z) = zNd−Md
g0z

Md + g1z
Md−1 + · · ·+ gMd−1z + gMd

zNd + c1zNd−1 + · · ·+ cNd−1z + cNd

= zNd−Md
No(z)
Do(z)

(10.64)

The desired feature of the identification problem is that the adaptive-filter transfer function Hk(z)
approximates Ho(z) as much as possible in each iteration. If the performance criterion is the mean-
square error (MSE), the objective function is expressed in terms of the input signal and the desired
signals as follows:

ξ = E[e2(k)] = E{[d(k)− y(k)]2}
= E[d2(k)− 2d(k)y(k) + y2(k)]

= E

{[(
G(q−1)
C(q−1)

x(k) + n(k)
)
− B(k, q−1)

A(k, q−1)
x(k)

]2}
(10.65)
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Since n(k) is not correlated to x(k) and E[n(k)] = 0, equation (10.65) can be rewritten as

ξ = E

{[(
G(q−1)
C(q−1)

− B(k, q−1)
A(k, q−1)

)
x(k)

]2}
+ E[n2(k)] (10.66)

The interest here is to study the relation between the objective function ξ and the model filter
coefficients, independently if these coefficients are adaptive or not. The polynomials operators
B(k, q−1) and A(k, q−1) will be considered fixed, denoted respectively by B(q−1) and A(q−1).

The power spectra of the signals involved in the identification process are given by

Rxx(z) = Z[rxx(l)]
Rnn(z) = Z[rnn(l)]
Rdd(z) = Ho(z) Ho(z−1) Rxx(z) + Rnn(z)
Ryy(z) = Hk(z) Hk(z−1) Rxx(z)
Rdy(z) = Ho(z) Hk(z−1) Rxx(z) (10.67)

By noting that for any processes x1(k) and x2(k)

E[x1(k)x2(k)] =
1

2πj

∮
Rx1x2(z)

dz

z
(10.68)

where the integration path is the counterclockwise unit circle, the objective function, as in equation
(10.65), can be rewritten as

ξ =
1

2πj

∮ [|Ho(z)−Hk(z)|2Rxx(z) + Rnn(z)
] dz

z

=
1

2πj

[∮
Ho(z)Ho(z−1)Rxx(z)

dz

z
− 2

∮
Ho(z)Hk(z−1)Rxx(z)

dz

z

+
∮

Hk(z)Hk(z−1)Rxx(z)
dz

z
+
∮

Rnn(z)
dz

z

]
(10.69)

For the case the input and additional noise signals are white with variances respectively given by σ2
x

and σ2
n, the equation (10.69) can be simplified to

ξ =
σ2

x

2πj

∮ [
Ho(z)Ho(z−1)− 2Ho(z)Hk(z−1) + Hk(z)Hk(z−1)

] dz

z
+ σ2

n (10.70)

This expression provides the relation between the MSE surface represented by ξ and the coefficients
of the adaptive filter. The following example illustrates the use of the above equation.

Example 10.3
An all-pole adaptive filter of second-order is used to identify a system with transfer function

Ho(z) =
1

z2 + 0.9z + 0.81
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The input signal and the measurement (additional) noise are white with σ2
x = 1 and σ2

n = 0.1,
respectively. Compute the MSE as a function of the adaptive-filter multiplier coefficients.

Solution
The adaptive-filter transfer function is given by

Hk(z) =
b2

z2 + a1z + a2

Equation (10.70) can be solved by employing the residue theorem [1] which results in

ξ =
b2
2(1 + a2)

(1− a2)(1 + a2 − a1)(1 + a2 + a1)

− 2b2(1− 0.81a2)
1− 0.9a1 − 0.81a2 − 0.729a1a2 + 0.81a2

1 + 0.6561a2
2

+3.86907339 + 0.1 (10.71)

If the adaptive-filter coefficients are set to their optimal values, i.e., b2 = 1, a1 = 0.9 and a2 = 0.81,
indicating a perfect identification of the unknown system, the resulting MSE is

ξ = 3.86907339− 7.73814678 + 3.86907339 + 0.1
= 0.1

Note that the minimum MSE is equal to the measurement noise variance.

�

Equations (10.69) and (10.70), and more specifically equation (10.71), indicate clearly that the
MSE surface is a nonquadratic function of the multiplier coefficients of the adaptive filter. This is
particularly true for the multiplier coefficients pertaining to the denominator of the adaptive filter.
As a consequence, the MSE surface may have several local minima, some of those corresponding
to the desired global minimum. The multiplicity of minimum points depends upon the order of the
adaptive IIR filter as compared to the unknown system that shapes the desired signal, and also upon
the input signal properties when it is a colored noise.

Note that when the adaptive filter is FIR there is only a minimum point because the MSE surface is
quadratic, independently of the unknown system and input signal characteristics. If the input or the
desired signal are not stationary, the minimum point of the MSE surface moves in time but it is still
unique.

The main problem brought about by the multimodality of the MSE surface is that gradient and Newton
direction search algorithms will converge to a local minimum. Therefore, the adaptive filter may
converge to a very bad point where the MSE assumes a large and unacceptable value. For example,
in the system identification application, the generated transfer function may differ significantly from
the unknown system transfer function.
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Example 10.4
An unknown system with transfer function

Ho(z) =
z − 0.85
z + 0.99

is supposed to be identified by a first-order adaptive filter described by

Hk(z) =
bz

z − a

Plot the error surface, considering the input signal variance σ2
x = 1.

Solution
The expression for the MSE is given by

ξ = 171.13064− (2− 1.7a)b
1 + 0.99a

+
b2

1− a2

The MSE surface is depicted in Fig. 10.14, where the MSE is clipped at 1 for a better view.

�

Several results regarding the uniqueness of the minimum point in the MSE surface are available in
the literature [26]-[31]. Here, some of these results are summarized without proof, in order to give
the designer some tools to support the appropriate choice of the adaptive IIR filter order.

First consider the case of inverse filtering or equalization, where the adaptive filter is placed in
cascade with an unknown system and the desired signal is a delayed version of the overall cascade
input signal. This case had been originally explored by Ȧström and Söderström [26], and they proved
that if the adaptive filter is of sufficient order to find the inverse filter of the unknown system all the
local minima will correspond to global minima if the input signal is a white noise. The sufficient
order means that

N ≥ Md

and

M ≥ Nd (10.72)

where N and M are the numerator and denominator orders of the adaptive filter as indicated in
equation (10.5), Nd and Md are the corresponding orders for the unknown system as indicated in
equation (10.64).

When N > Md and M > Nd, there are infinitely many solutions given by

N(z) = L(z)Do(z)

and

D(z) = L(z)No(z) (10.73)



430 Chapter 10 Adaptive IIR Filters

0
0.5

1
1.5

2

-1

-0.5

0

0.5

1
0.9925

0.993

0.9935

0.994

0.9945

0.995

0.9955

0.996

ba

M
S

E

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

b

a

 0.994

 0.995

 0.995

 0.994

 0.996

(b)

Figure 10.14 (a) MSE error surface, (b) MSE contours.
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where L(z) = z−Nl(zNl + l1z
Nl−1 + · · · + lNl

), Nl = min(N − Md, M − Nd), and li, for
i = 1, 2, . . . , Nl, are arbitrary.

The input signal can be colored noise generated for example by applying an IIR filter to a white noise.
In this case, the adaptive filter must have order sufficient to generate the inverse of the unknown system
and the input signal must be persistently exciting of order max(N +Md, M +Nd), see for example
[26]-[27], in order to guarantee that all local minima correspond to global minima.

For insufficient-order equalization, several local minima that do not correspond to a global minimum
may occur. In this case, the MSE may not attain its minimum value after the algorithm convergence.

The situation is not the same in system identification application, as thought in the early investigations
[28]. For this application, the sufficient order means

N ≥ Nd

and

M ≥ Md (10.74)

since the desired feature is to reproduce the unknown system frequency response, and not its inverse
as in the equalization case. For N > Nd and M > Md, the local minima corresponding to global
minima must satisfy the following conditions

N(z) = L(z)No(z)

and

D(z) = L(z)Do(z) (10.75)

where L(z) = z−Nl(zNl + liz
Nl−1 + · · · + lNl

), Nl = min(N − Md, M − Nd), and li, for
i = 1, 2, . . . , Nl, are arbitrary.

The strongest result derived so far regarding the error surface property in system identification was
derived by Söderström and Stoica [29]. The result states: For white noise input, all the stationary
points correspond to global minima if

M ≥ Nd − 1

and

min(N −Nd, M −Md) ≥ 0 (10.76)

Suppose that the input signal is an ARMA process generated by filtering a white noise with an
IIR filter of orders Mn by Nn, and that there are no common zeros between the unknown system
denominator and the input coloring IIR filter. In this case, all stationary points correspond to global
minima if

M −Nd + 1 ≥ Nn
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and

min(N −Nd, M −Md) ≥ Mn (10.77)

The conditions summarized by equations (10.76) and (10.77) are sufficient but not necessary to
guarantee that all stationary solutions correspond to the minimum MSE.

For N = Nd = 1, M ≥ Md ≥ 0 and the input signal persistently exciting of order Md there is a
unique solution given by [29]

D(z) = Do(z)

and

N(z) = No(z) (10.78)

Also, when the adaptive filter and unknown system are all-pole second-order sections the unique
solution is given by equation (10.78) [30].

Another particular result of some interest presented in [31], states that if

N −Nd = M −Md = 0

and

M ≥ Nd − 2 (10.79)

the MSE surface has a unique stationary point corresponding to a global minimum.

For the case of insufficient-order identification [32], i.e., min(N−Nd, M−Md) < 0, or of sufficient
order not satisfying the condition related to equations (10.77)-(10.79), the MSE surface may have
local minima not attaining the minimum MSE, i.e., that are not global minima.

To satisfy any of the conditions of equations (10.77)-(10.79) a knowledge of the unknown system
numerator and denominator orders is required. This information is not in general available or easy
to obtain. This is one of the reasons adaptive IIR filters are not as popular as their FIR counterparts.
However, there are situations where either a local minimum is acceptable or some information about
the unknown system is available.

It should be noted that a vast literature is available for system identification [8],[33]-[34]. Here,
the objective was to summarize some properties of the MSE surface, when the unknown system is
modeled as an IIR filter with additive, white, and uncorrelated measurement noise. The assumptions
regarding the measurement noise are quite reasonable for most applications of adaptive filtering.
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10.7 INFLUENCE OF THE FILTER STRUCTURE ON THE MSE

SURFACE

Some characteristics of the MSE surface differ when alternative structures are used in the realization
of the adaptive filter. Each realization has a different relation between the filter transfer function and
the multiplier coefficients, originating modifications in the MSE surface [35].

The MSE surfaces related to two alternative realizations for the adaptive filter can be described as
functions of the filter multiplier coefficients by F1(θ1) and F2(θ2), respectively. Note that no index
was used to indicate the varying characteristics of the adaptive-filter parameters, since this simplifies
the notation while keeping the relevant MSE surface properties. It is assumed that the desired signal
and the input signal are the same in the alternative experiments. Also, it is considered that for any
set of parameters θ1 leading to a stable filter, there is a continuous mapping given by f3(θ1) = θ2,
where θ2 also leads to a stable filter. Both θ1 and θ2 are N ′ by 1 vectors.

The two alternative structures are equivalent if the objective functions are equal, i.e.,

F1(θ1) = F2(θ2) = F2[f3(θ1)] (10.80)

First consider the case where f3 is differentiable, and then from the above equation it follows that

∂F1(θ1)
∂θ1

=
∂F2[f3(θ1)]

∂θ1
=

∂F2[f3(θ1)]
∂f3(θ1)

∂f3(θ1)
∂θ1

(10.81)

where the first partial derivative on the rightmost side of the above equation is an 1 by N ′ vector
while the second partial derivative is a matrix with dimensions N ′ by N ′, where N ′ is the number
of parameters in θ1. Suppose that θ′2 is a stationary point of F2(θ2), it then follows that

∂F2(θ2)
∂θ2

|θ2=θ′2
= 0 =

∂F1(θ1)
∂θ1

|θ1=θ′1
(10.82)

where θ′2 = f3(θ
′
1). Note that the type of the stationary points of F1(θ1) and F2(θ2) are the same,

since their second derivatives have the same properties at these stationary points (see problem 1).

Now consider the case where
∂F2[f3(θ1)]

∂f3(θ1)
|θ1=θ′′1

= 0 (10.83)

but
∂F1(θ1)

∂θ1
|θ1=θ′′1

�= 0 (10.84)

that can happen only when f3(θ1) is not differentiable at θ1 = θ′′1 . In this case, the chain rule of
equation (10.81) does not apply. The new generated stationary points in F2(θ2) can be shown to be
saddle points (see problem 2).
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Example 10.5
An unknown second-order system described by

Ho(z) =
2z + c1

z2 + c1z + c2

is to be identified by using two different structures for the adaptive filter, namely the direct form and
the parallel form described respectively by

Hd(z) =
2z + a1

z2 + a1z + a2

and

Hp(z) =
1

z + p1
+

1
z + p2

=
2z + p1 + p2

z2 + (p1 + p2)z + p1p2

verify the existence of new saddle points in the parallel realization.

Solution
The function relating the parameters of the two realizations can be given by

θ2 =

⎡
⎣ a1+

√
a2
1−4a2

2
a1−
√

a2
1−4a2

2

⎤
⎦ = f3(θ1)

where function f3(θ1) is not differentiable when a2 = a2
1
4 .

The inverse of the matrix ∂f 3(θ1)
∂θ1

is given by

[
∂f3(θ1)

∂θ1

]−1

=
[

1 1
p2 p1

]

and, if p1 = p2, the above matrix is singular, which makes it possible that ∂F1(θ1)
∂θ1

�= 0 when

∂F2(θ2)
∂θ2

= 0, as previously mentioned in equations (10.81) and (10.82).

Note that, as expected, p1 = p2 only when a2 = a2
1
4 . On this parabola, the objective function F1(θ1)

has a minimum that corresponds to a saddle point of the function F2(θ2). Also, this is the situation
where the parallel realization is of reduced order, i.e., first order.

�

Basically, the manifold generated by the parallel realization is due to the fact that a given section can
identify any pole of the unknown system, leaving the other poles to the remaining sections in parallel.
This means that in a sufficient-order identification problem, if for the direct-form realization there
is a unique global minimum point, in the case of parallel realization with first-order sections there
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will be N ! global minima, where N is the number of poles in the unknown system. When using a
parallel realization it is assumed that no multiple poles exist in the unknown system.

In the initialization of the algorithm, the adaptive-filter parameters should not be in a reduced-order
manifold, because by employing a gradient-based algorithm the parameters may be kept in the
manifold and eventually reach a saddle point. The measurement noise, that is in general present
in the adaptive-filtering process, will help the parameters to skip the manifolds, but despite that
the convergence will be slowed. A similar phenomenon occurs with the cascade realization of the
adaptive filter.

10.8 ALTERNATIVE ERROR FORMULATIONS

The error signal (in some cases the regressor) can be chosen in alternative ways in order to avoid some
of the drawbacks related to the output error formulation, as for example the multiple local minima.
Several formulations have been investigated in the literature [36]-[37], [39], [40]-[42], [45]-[46], [51]-
[52], where each of them has its own advantages and disadvantages. The choice of the best error
formulation depends on the application and on the information available about the adaptive-filtering
environment. In this section, we present two alternative error formulations, namely the equation
error and Steiglitz-McBride methods, and discuss some of their known properties. Throughout the
section other error formulations are briefly mentioned.

10.8.1 Equation Error Formulation

In the equation error (EE) formulation, the information vector instead of having past samples of the
adaptive-filter output, uses delayed samples of the desired signal as follows:

φe(k) = [d(k − 1) d(k − 2) . . . d(k −N) x(k) x(k − 1) . . . x(k −M)]T (10.85)

The equation error is defined by

ee(k) = d(k)− θT (k)φe(k) (10.86)

as illustrated in Fig. 10.15. The parameter vector θ(k) is given by

θ(k) = [−a1(k) − a2(k) . . .− aN (k) b0(k) . . . bM (k)]T (10.87)

The equation error can be described in a polynomial form as follows:

ee(k) = A(k, q−1)d(k)−B(k, q−1)x(k) (10.88)

where, once again

B(k, q−1) = b0(k) + b1(k)q−1 + · · ·+ bM (k)q−M

A(k, q−1) = 1 + a1(k)q−1 + · · ·+ aN (k)q−N
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Figure 10.15 Equation error configuration.

The output signal related to the EE formulation is obtained through the following linear difference
equation

ye(k) =
M∑

j=0

bj(k)x(k − j)−
N∑

j=1

aj(k)d(k − j)

= θT (k)φe(k) (10.89)

As can be noted, the adaptive filter does not have feedback and ye(k) is a linear function of the
parameters.

In the EE formulation, the adaptation algorithm determines how the coefficients of the adaptive IIR
filter should change in order to minimize an objective function which involves ee(k) defined as

ξe = F [ee(k)] (10.90)

Usually, the objective function to be minimized is the mean-squared value of the EE (MSEE), i.e.,

ξe(k) = E[e2
e(k)] (10.91)

Since the input and desired signals are not functions of the adaptive-filter parameters, it can be
expected that the sole approximation in the gradient computation is due to the estimate of the expected
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value required in practical implementations. The key point is to note that since the MSEE is a
quadratic function of the parameters, only a global minimum exists provided the signals involved are
persistently exciting. When the estimate of the MSEE is the instantaneous squared equation error, the
gradient vector is proportional to minus the information vector. In this case, the resulting algorithm
is called LMSEE algorithm whose coefficient updating equation is given by

θ(k + 1) = θ(k) + 2μφe(k)ee(k) (10.92)

A number of approaches with different points of view are available to analyze the convergence
properties of this method. A particularly interesting result is that if the convergence factor is chosen
in the range

0 < μ <
1

λmax
(10.93)

the convergence in the mean of the LMSEE algorithm can be guaranteed [37], where λmax is the
maximum eigenvalue of E[φe(k)φT

e (k)]. This result can be easily proved by exploring the similarity
between the LMSEE algorithm and the standard FIR LMS algorithm. Some stability results of the
LMSEE algorithm can be found in [38].

An alternative objective function for adaptive IIR filtering based on equation error is the least-squares
function

ξe(k) =
k∑

i=0

λk−ie2
e(i) =

k∑
i=0

λk−i[d(i)− θT (k)φe(i)]
2 (10.94)

The forgetting factor λ, as usual is chosen in the range 0 << λ < 1, allowing the distant past
information to be increasingly negligible. In this case, the corresponding RLS algorithm consists of
the following basic steps

e(k) = d(k)− θT (k)φe(k) (10.95)

SDe(k + 1) =
1
λ

[
SDe(k)− SDe(k)φe(k)φT

e (k)SDe(k)
λ + φT

e (k)SDe(k)φe(k)

]
(10.96)

θ(k + 1) = θ(k) + SDe(k + 1)φe(k)ee(k) (10.97)

In a given iteration k, the adaptive IIR filter transfer function related to the EE formulation can be
expressed as follows:

Hk(z) = zN−M b0(k)zM + b1(k)zM−1 + · · ·+ bM−1(k)z + bM (k)
zN + a1(k)zN−1 + · · ·+ aN−1(k)z + aN (k)

(10.98)

In Fig. 10.16 an alternative structure for the EE approach where the IIR adaptive filter appears
explicitly is depicted. Note that the structure shows clearly that the polynomial A(k, q−1) is meant
to model the denominator polynomial of the unknown system, in system identification applications.
During the adaptation process, it is necessary to monitor the stability of the poles, as described for the
output error method. The full description of the RLS equation error algorithm is given in Algorithm
10.3.

The basic problem related to this method is the parameter bias induced by the measurement noise
[37]-[38], even for sufficient-order case. The bias is caused by the fact that the additional noise n(k)
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Figure 10.16 Basic configuration for system identification using equation error.

Algorithm 10.3

EE Algorithm, RLS Version

Initialization
ai(k) = bi(k) = e(k) = 0
y(k) = x(k) = 0 , k < 0
SDe(0) = δ−1I

For each x(k), d(k), k ≥ 0, do
ee(k) = d(k)− φT

e (k)θ(k)

SDe(k + 1) = 1
λ

[
SDe(k)− SDe(k)φe(k)φT

e (k)SDe(k)

λ+φT

e (k)SDe(k)φe(k)

]
θ(k + 1) = θ(k) + SDe(k + 1)φe(k)ee(k)
Stability test

is filtered by the FIR filter represented by the polynomial A(k, q−1). Since the coefficients of this
polynomial are updated with the objective of minimizing the EE signal, they also attempt to minimize
the contribution of n(k) to the EE power. The bias is induced by the fact that the additional noise
does not belong to the unknown system model. An increase in the power of n(k) leads to higher bias
in the parameter estimate.

The Instrumental Variable methods [39] were proposed to solve the bias problem. In these methods
the stability cannot be guaranteed under the same general conditions as for the LMSEE method.
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Another approach was proposed in [40], and extended in [41] and [42], where a family of asymp-
totically stable algorithms was introduced. The resulting algorithms are based on a modification of
the basic LMSEE updating equations, that within sufficiently general conditions lead to consistent
parameter estimates. These algorithms employ a type of output error feedback to the information
vector. There are also algorithms that combine different algorithms to define the objective function
[43]-[44].

10.8.2 The Steiglitz-McBride Method

The Steiglitz-McBride (SM) error formulation [45], by employing some extra all-pole filtering, leads
to algorithms whose behavior resembles the EE approach in the initial iterations and the output error
approach after convergence. The main motivation of the SM method is the global convergence be-
havior for some cases of insufficient-order system identification. Such interest sparked investigations
which resulted in a number of on-line algorithms based on the SM method that are suitable for adap-
tive IIR filtering [46]. The main problem associated with the SM method is the inconsistent behavior
when the measurement noise is colored [47]. Since the on-line method converges asymptotically to
the off-line solution, the bias error also affects the on-line algorithms proposed in [46].

In order to introduce the SM method, consider the identification of a system whose model is described
by

d(k) =
G(q−1)
C(q−1)

x(k) + n(k) = yd(k) + n(k) (10.99)

where d(k) is the reference signal, x(k) is the input signal, n(k) is the measurement noise, and
yd(k) is the output signal of the plant, with C(q−1) = 1−∑Nd

i=1 ciq
−i and G(q−1) =

∑Md

i=0 giq
−i

coprime. The polynomial C(q−1) has zeros inside the unit circle, and the input signal x(k) and the
measurement noise n(k) are assumed independent. The estimation of the parameters associated with
the polynomials C(q−1) and G(q−1) through the SM method is based on the minimization of the
following criterion [45]

ξs(θ(k + 1)) = E

{[
A(k + 1, q−1)

d(k)
A(k, q−1)

−B(k + 1, q−1)
x(k)

A(k, q−1)

]2}
(10.100)

where A(k, q−1) = 1 +
∑N

i=1 ai(k)q−i and B(k, q−1) =
∑M

i=0 bi(k)q−i are the denominator and
numerator estimator polynomials, respectively, and

θ(k) = [−a1(k) − a2(k) . . .− aN (k) b0(k) . . . bM (k)]T (10.101)

is the adaptive-filter parameter vector.

The estimate θ(k + 1) is obtained by minimizing equation (10.100) assuming θ(k) known. The
solution of this MSE minimization problem at iteration (k + 1) is

θ(k + 1) =
[
E
{

φs(k)φT
s (k)

}]−1
E

[
φs(k)

d(k)
A(k, q−1)

]
=
[
E
{

φs(k)φT
s (k)

}]−1
E [φs(k)df (k)] (10.102)
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where

φs(k) =
[

d(k − 1)
A(k, q−1)

...
d(k −N)
A(k, q−1)

x(k)
A(k, q−1)

...
x(k −M)
A(k, q−1)

]T

= [df (k − 1) ... df (k −N) xf (k) ... xf (k −M)]T (10.103)

is the regressor related to the SM method.

If the input signal is persistently exciting of sufficient order and the adaptive filter has strictly sufficient
order, some properties of the estimate resulting from equation (10.102) are known [47]: a) The
estimate that minimizes equation (10.100) is unique; b) If the measurement noise is not white, the
estimate resulting from equation (10.102) is biased.

In real-time signal processing applications, it is important to consider an on-line version of the SM
method. In this case, some approximations are necessary. First note that the error criterion whose
variance is to be minimized in equation (10.102) is

es(k) =
d(k)

A(k, q−1)
− θT (k + 1)φs(k) (10.104)

The SM error is computed as illustrated in Fig. 10.17. Assuming a sufficiently slow parameter
variation, we can consider that θ(k + 1) ≈ θ(k). Therefore, equation (10.104) can be rewritten as
follows:

es(k) ≈ d(k)
A(k, q−1)

− θT (k)φs(k) (10.105)

The exact implementation of the regressor φs(k) requires an independent filtering of each component
by an all-pole filter with denominator polynomial A(k, q−1). A useful approximation that reduces
considerably the computational complexity is possible by assuming slow parameter variation [46] in
such a way that

θ(k − 1) ≈ θ(k − 2)... ≈ θ(k −N) (10.106)

With these simplifications only one all-pole filtering is required. Note that a hypothesis similar to
equation (10.106) was utilized in the output error method in order to simplify the implementation.
However, in the case of the output error method, the measurement noise does not affect the regressor,
since the regressor vector is composed of delayed samples of the adaptive-filter input and output.
For the SM method, except for white measurement noise, the simplification in equation (10.106) is
not easily justified.

The updating equation of the on-line SM algorithm for system identification employing a stochastic
gradient search is given by

θ(k + 1) = θ(k) + 2μφs(k)
[

d(k)
A(k, q−1)

− φT
s (k)θ(k)

]
= θ(k) + 2μφs(k)es(k) (10.107)

The description of a gradient SM algorithm is given in the Algorithm 10.4.
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Figure 10.17 Steiglitz-McBride configuration.

The SM method can be implemented using different realizations such as cascade [48], lattice [49],
and the series-parallel realization [50]. These realizations allow easy stability monitoring, and their
choice affects the convergence speed [50].

It should be mentioned that a family of algorithms based on the SM method that solves the problem
of inconsistency of the parameter estimates was proposed in [51]-[52]. These algorithms are very
attractive for adaptive IIR filtering due to their behavior in terms of consistency (i.e., definition of
stationary points) and convergence properties. In [55], simulation results as well as an alternative
implementation for the consistent SM method was presented.

The interested reader can also find some interesting results about the convergence behavior of the SM-
based algorithms in [53]-[54] and in the references therein. Also, applications of the SM algorithm
to equalization can be found in [56].
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Algorithm 10.4

SM Based Algorithm, Gradient Version

Initialization
ai(k) = bi(k) = 0
df (k) = xf (k) = 0 , k < 0

For each x(k), d(k), k ≥ 0 do
xf (k) = x(k)−∑N

i=1 ai(k) xf (k − i)
df (k) = d(k)−∑N

i=1 ai(k) df (k − i)
es(k) = df (k)− φT

s (k)θ(k)
θ(k + 1) = θ(k) + 2μφs(k)es(k)
Stability test

10.9 CONCLUSION

It is recognized that the adaptive IIR filter can be potentially used in a number of applications due to its
superior system modeling owing to poles. These advantages come with drawbacks such as possible
local minima in the performance surface and the possible instability during the adaptation process.
Also, the nonlinear relation between the adaptive-filter parameters and the internal signals in some
formulations makes the gradient computation and convergence analysis much more complicated as
compared to the FIR case. In this chapter, the theory of adaptive IIR filters was presented exposing
several solutions to the above mentioned drawbacks, such that the designer can decide which is the
best configuration for a given application.

In this chapter, an example of application of adaptive IIR filters in system identification was presented.
In this example, some of the realizations presented here were tested and compared. Another example
exploited the use of notch filters for sinusoid detection in noise.
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29. T. Söderström and P. Stoica, “Some properties of the output error model,” Automatica, vol. 18,
pp. 93-99, Jan. 1982.

30. H. Fan and M. Nayeri, “On error surfaces of sufficient order adaptive IIR filters: Proofs and
counterexamples to a unimodality conjecture,” IEEE Trans. on Acoust., Speech, and Signal
Processing, vol. 37, pp. 1436-1442, Sept. 1989.

31. M. Nayeri, “Uniqueness of MSOE estimates in IIR adaptive filtering; a search for necessary
conditions,” Proc. IEEE Intern. Conf. on Acoust., Speech, Signal Processing, Glasgow,
Scotland, pp. 1047-1050, May 1989.



44510.10 References

32. M. Nayeri, H. Fan, and W. K. Jenkins, “Some characteristics of error surfaces for insufficient
order adaptive IIR filters,” IEEE Trans. on Acoust., Speech, and Signal Processing, vol. 38, pp.
1222-1227, July 1990.

33. L. Ljung, System Identification: Theory for the User, Prentice Hall Inc., Englewood Cliffs, NJ,
1987.
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39. T. Söderström and P. Stoica, Instrumental Variable Methods for System Identification, Springer
Verlag, New York, NY, 1983.

40. J. -N. Lin and R. Unbehauen, “Bias-remedy least mean square equation error algorithm for IIR
parameter recursive estimation,” IEEE Trans. on Signal Processing, vol. 40, pp. 62-69, Jan.
1992.

41. P. S. R. Diniz and J. E. Cousseau, “A family of equation-error based IIR adaptive algorithms,”
IEEE Proc. Midwest Symposium of Circuits and Systems, Lafayette, LA, pp. 1083-1086, 1994.

42. J. E. Cousseau and P. S. R. Diniz, “A general consistent equation-error algorithm for adaptive
IIR filtering,” Signal Processing, vol. 56, pp. 121-134, 1997.

43. J. B. Kenney and C. E. Rohrs, “The composite regressor algorithm for IIR adaptive systems,”
IEEE Trans. on Signal Processing, vol. 41, pp. 617-628, Feb. 1993.

44. S. L. Netto and P. S. R. Diniz, “Composite algorithms for adaptive IIR filtering,” IEE Electronics
Letters, vol. 28, pp. 886-888, April 1992.

45. K. Steiglitz and L. E. McBride, “A technique for the identification of linear systems,” IEEE
Trans. on Automatic Control, vol. AC-10, pp. 461-464, Oct. 1965.

46. H. Fan and W. K. Jenkins, “A new adaptive IIR filter,” IEEE Trans. on Circuits and Systems,
vol. CAS-33, pp. 939-947, Oct. 1986.
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10.11 PROBLEMS

1. Show that the stationary points related to two equivalent adaptive realizations of the type in
equation (10.82) have the same nature, i.e., are minimum, maximum or saddle point.

2. Show that the new stationary points generated by the discontinuity in f3(θ1) as discussed after
equation (10.84) are saddle points.

3. Describe how the manifolds are formed in the MSE surface when a cascade realization is used
for the adaptive-filter implementation. Give a generic example.

4. Derive a general expression for the transfer function of the two-multiplier lattice structure.

5. Derive an adaptive-filtering algorithm which employs the canonic direct-form structure shown
in Fig. 10.18. Consider that the adaptive-filter parameters are slowly varying in order to derive
an efficient implementation for the gradient vector.
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6. A second-order all-pole adaptive filter is used to find the inverse model of the signal x(k) =
1.7n(k−1)+0.81n(k−2)+n(k), where n(k) is Gaussian white noise with variance 0.1. Using
the gradient algorithm, calculate the error and the filter coefficients for the first 10 iterations.
Start with a1(0) = 0, a2(0) = 0.

7. Repeat the problem 6 using the Gauss-Newton algorithm.

8. Use an IIR adaptive filter of sufficient order to identify a system with the transfer function
given below. The input signal is a uniformly distributed white noise with variance σ2

x = 1,
and the measurement noise is Gaussian white noise uncorrelated with the input with variance
σ2

n = 10−2. Use a Gauss-Newton based algorithm and the direct-form structure.

H(z) =
0.000058(z2 − 2z + 1)3

(z2 + 1.645z + 0.701)(z2 + 1.575z + 0.781)(z2 + 1.547z + 0.917)

(a) Run the algorithm for three values of μ. Comment on the convergence behavior in each case.
(b) Measure the MSE in each example.
(c) Plot the obtained IIR filter frequency response at any iteration after convergence is achieved
and compare with the unknown system.

9. Repeat the previous problem using a second-order adaptive filter and interpret the results.

10. A sinusoid of normalized frequency equal to π
4 with unit amplitude is buried in noise. The signal

to noise ratio is 0 dB. Detect the sinusoid with notch filters using the lattice and the direct-form
structures.

(a) After convergence compute an estimate of the frequency by averaging the result of ten
samples for each structure and comment on the result.

(b) Depict the input signal and the output signal for the bandpass filter based on the lattice
structure.

x(k) y(k)

b1

b0

b2

bM-aN

-a1

-a2

z -1

z -1

z -1

++

Figure 10.18 Direct form of Problem 5.
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11. Replace the direct-form structure in problem 8 by the parallel realization with preprocessing.

12. Replace the direct-form structure in problem 8 by the cascade realization.

13. Repeat problem 8 in case the input signal is a uniformly distributed white noise with variance
σ2

nx
= 0.1, filtered by all-pole filter given by

H(z) =
z

z − 0.95

14. In problem 8 consider that the additional noise has the following variances (a) σ2
n = 0, (b)

σ2
n = 1. Comment on the results obtained in each case.

15. Perform the equalization of a channel with the following transfer function

H(z) =
z2 − 1.359z + 0.81
z2 − 1.919z + 0.923

using a known training signal that consists of a binary (-1,1) random signal. An additional
Gaussian white noise with variance 10−2 is present at the channel output.
(a) Apply a Newton-based algorithm with direct-form structure.
(b) Plot the magnitude response of the cascade of the channel and the adaptive-filter transfer
functions. Comment on the result.

16. In a system identification problem the input signal is generated by an autoregressive process
given by

x(k) = −1.2x(k − 1)− 0.81x(k − 2) + nx(k)

where nx(k) is zero-mean Gaussian white noise with variance such that σ2
x = 1. The unknown

system is described by

H(z) =
80z3(z2 + 0.81)(z − 0.9)

(z2 − 0.71z + 0.25)(z2 + 0.75z + 0.56)(z2 − 0.2z + 0.81)

The adaptive filter is also a sixth-order IIR filter.
Choose an appropriate λ, run an ensemble of 20 experiments, and plot the average learning
curve. Use the RLS algorithm for IIR filters.

17. A second-order IIR adaptive-filtering algorithm is applied to identify a 3rd-order time-varying
unknown system whose coefficients are first-order Markov processes with λw = 0.999 and
σ2

w = 0.001. The initial time-varying system multiplier coefficients are

wT
o = [0.03490 − 0.011 − 0.06864 0.22391]

The input signal is Gaussian white noise with variance σ2
x = 0.7, and the measurement noise is

also Gaussian white noise independent of the input signal and of the elements of nw(k), with
variance σ2

n = 0.01.
Simulate the experiment described and plot the learning curve, by using the direct-form structure
with a gradient-type algorithm.
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18. Suppose a second-order IIR digital filter, with multiplier coefficients given below, is identified
by an adaptive IIR filter of the same order using the gradient algorithm. Considering that fixed-
point arithmetic is used, measure the values of E[||Δθ(k)Q||2] and ξ(k)Q for the case described
below. Plot the learning curves for the finite- and infinite-precision implementations. Also plot
an estimate of the expected value of ||Δθ(k)||2 versus k in both cases.

Additional noise: white noise with variance σ2
n = 0.0015

Coefficient wordlength: bc = 16 bits
Signal wordlength: bd = 16 bits
Input signal: Gaussian white noise with variance σ2

x = 0.7

H(z) =
z2 − 1.804z + 1

z2 − 1.793z + 0.896

19. Repeat the above problem for the following cases
(a) σ2

n = 0.01, bc = 9 bits, bd = 9 bits, σ2
x = 0.7.

(b) σ2
n = 0.1, bc = 10 bits, bd = 10 bits, σ2

x = 0.8.
(c) σ2

n = 0.05, bc = 8 bits, bd = 16 bits, σ2
x = 0.8.

20. Replace the direct-form structure in problem 18 by the lattice structure, and comment on the
results.

21. Repeat problem 8 using the LMSEE algorithm.

22. Show the inequality in equation (10.93).

23. Repeat problem 15 using the LMSEE algorithm.

24. Repeat problem 8 using a gradient-type algorithm based on the SM method.

25. Repeat problem 15 using a gradient-type algorithm based on the SM method.

26. Derive the RLS-type algorithm based on the SM method.
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NONLINEAR ADAPTIVE FILTERING

11.1 INTRODUCTION

The classic adaptive-filtering algorithms, such as those discussed in the remaining chapters of this
book, consist of adapting the coefficients of linear filters in real time. These algorithms have applica-
tions in a number of situations where the signals measured in the environment can be well modeled
as Gaussian noises applied to linear systems, and their combinations are of additive type. In digital
communication systems, most of the classical approaches model the major impairment affecting the
transmission with a linear model. For example, channel noise is considered additive Gaussian noise,
intersymbol and co-channel interferences are also considered of additive type, and channel models
are assumed to be linear frequency selective filters. While these models are accurate, there is nothing
wrong with the use of linear adaptive filters1 to remedy these impairments. However, the current
demand for higher-speed communications leads to the exploration of the channel resources beyond
the range their models can be considered linear. For example, when the channel is the pair of wires
of the telephone system, it is widely accepted that linear models are not valid for data transmis-
sion above 4.8 Kb/s. Signal companding, amplifier saturation, multiplicative interaction between
Gaussian signals, and nonlinear filtering of Gaussian signals are typical phenomena occurring in
communication systems that cannot be well modeled with linear adaptive systems. In addition, if
the channel transfer function does not have minimum phase and/or the signal to noise ratio is not
high enough, the use of linear adaptive-filtering equalizer yields poor performance measured in terms
of bit error rate. A major drawback of dealing with nonlinear models is the lack of mathematical
tools that, on the other hand, are widely available for linear models. The lack of analytical tools
originates in the high degrees and dimensionality of the nonlinearities. The improved performance of
the nonlinear equalizer is mainly justified by extensive simulation results available in the literature,
where the bit error rate is used as a performance measure.

In this chapter, we will describe some of the techniques available to model nonlinear systems using
nonlinear adaptive systems using the general structure depicted in Fig. 11.1. In particular, the
following approaches for nonlinear adaptive filtering will be discussed here:

1The reader should bear in mind that adaptive filters are nonlinear filters, even if we are adapting the coefficients of a linear
filter structure, therefore the term linear adaptive filter means that we are adapting the coefficients of a linear filter structure.

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_11,  
© Springer Science+Business Media, LLC 2008  
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1. The nonrecursive polynomial model based on the Volterra series expansion.

2. The recursive polynomial model based on nonlinear difference equations.

3. The multilayer perceptron (MLP) neural network.

4. The radial basis function (RBF) neural network.

In the following sections, we will introduce the methods above mentioned for modeling nonlinear
systems and for each approach adaptive algorithms for updating the corresponding nonlinear filter
coefficients will be described. The chapter includes examples aimed at comparing the different
structures and algorithms.
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Figure 11.1 Adaptive nonlinear filter.

11.2 THE VOLTERRA SERIES ALGORITHM

The Volterra series model is the most widely used model for nonlinear systems for several reasons.
In particular, this model is useful for nonlinear adaptive filtering because the classical formulation
of linear adaptive filters can be easily extended to fit this model. The Volterra series expansion of a
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nonlinear system consists of a nonrecursive series in which the output signal is related to the input
signal as follows2

d′(k) =
∞∑

l1=0

wo1(l1)x(k − l1)

+
∞∑

l1=0

∞∑
l2=0

wo2(l1, l2)x(k − l1)x(k − l2)

+
∞∑

l1=0

∞∑
l2=0

∞∑
l3=0

wo3(l1, l2, l3)x(k − l1)x(k − l2)x(k − l3)

+
∞∑

l1=0

∞∑
l2=0

· · ·

∞∑
li=0

woi(l1, l2, . . . , li)x(k − l1)x(k − l2) · · ·x(k − li)

+ · · · (11.1)

where woi(l1, l2, . . . , li), for i = 0, 1, . . . ,∞, are the coefficients of the nonlinear filter model based
on the Volterra series, and d′(k) represents, in the context of system identification application, the
unknown system output when no measurement noise exists. The term woi(l1, l2, . . . , li) is also
known as the Volterra kernel of the system. Note that the input signals in this case are assumed
to consist of a tapped-delay line. For the general case, where the signals of the input signal vector
come from different origins, such as in an antenna array, the Volterra series representation is given by

d′(k) =
∞∑

l1=0

wo1(l1)xl1(k)

+
∞∑

l1=0

∞∑
l2=0

wo2(l1, l2)xl1(k)xl2(k)

+
∞∑

l1=0

∞∑
l2=0

∞∑
l3=0

wo3(l1, l2, l3)xl1(k)xl2(k)xl3(k)

+
∞∑

l1=0

∞∑
l2=0

· · ·

∞∑
li=0

woi(l1, l2, . . . , li)xl1(k)xl2(k) · · ·xli(k)

+ · · · (11.2)

2The reader should note that the Volterra series expansion includes a constant term wo0 which is irrelevant for our
discussions here, and will not be further included in the expansion.
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where woi(l1, l2, . . . , li), for i = 0, 1, . . . ,∞, are the coefficients of the nonlinear combiner model
based on the Volterra series.

As discussed by Mathews [1], the Volterra series expansion can be interpreted as a Taylor series
expansion with memory. As such, the Volterra series representation is not suitable to model systems
containing discontinuities on their models, as occurs with the Taylor series representation of functions
with discontinuities. Another clear drawback of the Volterra series representation is the computa-
tional complexity, if the complete series is employed. By truncating the series one can reduce the
computational complexity by sacrificing the accuracy of the series expansion. With reduced order,
the Volterra series representation is quite complex even when the orders of the series and the filter
are moderate. The interested reader can also refer to [2] for a deeper treatment of fixed and adaptive
polynomial signal processing.

11.2.1 LMS Volterra Filter

In this subsection, the Volterra LMS algorithm is presented for a second-order series and N th-order
filter. This choice reduces the computational complexity to an acceptable level for some applications
and also simplifies the derivations. The extension for higher-order cases is straightforward. The
adaptive filter that estimates the signal d′(k) using a truncated Volterra series expansion of second
order, can be described by

y(k) =
N∑

l1=0

wl1(k)x(k − l1) +
N∑

l1=0

N∑
l2=0

wl1,l2(k)x(k − l1)x(k − l2) (11.3)

where wl1(k) and wl1,l2(k), for l1, l2 = 0, 1, . . . , N , are the coefficients of the nonlinear filter model
based on the second-order Volterra series expansion, and y(k) represents the adaptive-filter output
signal.

The standard approach to derive the LMS algorithm is to use as estimate of the mean-square error
(MSE) defined as

F [e(k)] = ξ(k) = E[e2(k)] = E[d2(k)− 2d(k)y(k) + y2(k)] (11.4)

the instantaneous square error given by

e2(k) = d2(k)− 2d(k)y(k) + y2(k) (11.5)
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Most of the analyses and algorithms presented for the linear LMS apply equally to the nonlinear
LMS filter case, if we interpret the information and coefficient vectors as follows

x(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k)
x(k − 1)

...
x(k −N)

x2(k)
x(k)x(k − 1)

...
x(k)x(k −N)

...
x(k −N)x(k −N + 1)

x2(k −N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.6)

w(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0(k)
w1(k)

...
wN (k)
w0,0(k)
w0,1(k)

...
w0,N (k)

...
wN,N−1(k)
wN,N (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.7)

As illustrated in Fig. 11.2, the adaptive-filter output is given by

y(k) = wT (k)x(k) (11.8)

The estimate of the MSE objective function can now be rewritten as

e2(k) = d2(k)− 2d(k)wT (k)x(k) + wT (k)x(k)xT (k)w(k) (11.9)

An LMS-based algorithm can be used to minimize the objective function as follows:

w(k + 1) = w(k)− μĝw(k)

= w(k)− 2μe(k)
∂e(k)
∂w(k)

(11.10)

for k = 0, 1, 2, . . ., where ĝw(k) represents an estimate of the gradient vector of the objective function
with respect to the filter coefficients. However, it is wise to have different convergence factors for
the first- and second-order terms of the LMS Volterra filter. In this case, the updating equations are
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Algorithm 11.1

Volterra LMS Algorithm

Initialization

x(0) = w(0) = [0 0 . . . 0]T

Do for k ≥ 0

e(k) = d(k)− xT (k)w(k)

w(k + 1) = w(k) + 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1 · · · 0 0 · · · 0

0
. . . 0 0

. . . 0
0 · · · μ1 0 · · · 0
0 · · · 0 μ2 · · · 0

0
. . . 0 0

. . . 0
0 · · · 0 0 · · · μ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

e(k)x(k)

given by

wl1(k + 1) = wl1(k) + 2μ1e(k)x(k − l1) (11.11)

wl1,l2(k + 1) = wl2(k) + 2μ2e(k)x(k − l1)x(k − l2) (11.12)

where l1 = 0, 1, . . . , N and l2 = 0, 1, . . . , N . As can be observed in Algorithm 11.1, the Volterra
LMS algorithm has the same form as the conventional LMS algorithm except for the form of the
input vector x(k). In order to guarantee convergence of the coefficients in the mean, the convergence
factor of the Volterra LMS algorithm must be chosen in the range

0 < μ1 <
1

tr(R)
<

1
λmax

(11.13)

0 < μ2 <
1

tr(R)
<

1
λmax

(11.14)

whereλmax is the largest eigenvalue of the input signal vector autocorrelation matrix R = E[x(k)xT (k)].
It should be noted that this matrix involves high-order statistics of the input signal, leading to high
eigenvalue spread of the matrix R even if the input signal is a white noise. As a consequence,
the Volterra LMS algorithm has in general slow convergence. As an alternative, we can consider
implementing a Volterra adaptive filter using an RLS algorithm.
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Figure 11.2 Adaptive Volterra filter.

11.2.2 RLS Volterra Filter

The RLS algorithms are known to achieve fast convergence even when the eigenvalue spread of
the input vector correlation matrix is large. The objective of the RLS algorithm is to choose the
coefficients of the adaptive filter such that the output signal y(k), during the period of observation,
will match the desired signal as closely as possible in the least-squares sense. This minimization
process can be easily adapted to the nonlinear adaptive filtering case by reinterpreting the entries of
the input signal vector and the coefficient vector, as done in the LMS case.
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In the case of the RLS algorithm, the deterministic objective function is given by

ξd(k) =
k∑

i=0

λk−iε2(i)

=
k∑

i=0

λk−i
[
d(i)− xT (i)w(k)

]2
(11.15)

where ε(i) is the output error at instant i and

x(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(i)
x(i− 1)

...
x(i−N)

x2(i)
x(i)x(i− 1)

...
x(i)x(i−N)

...
x(i−N)x(i−N + 1)

x2(i−N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.16)

w(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0(k)
w1(k)

...
wN (k)
w0,0(k)
w0,1(k)

...
w0,N (k)

...
wN,N−1(k)
wN,N (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.17)

are the input and the adaptive-filter coefficient vectors, respectively. The parameter λ is an exponential
weighting factor that should be chosen in the range 0 � λ ≤ 1.

By differentiating ξd(k) with respect to w(k) and equating the result to zero, the optimal vector w(k)
that minimizes the least-squares error can be shown to be given by

w(k) =

[
k∑

i=0

λk−ix(i)xT (i)

]−1 k∑
i=0

λk−ix(i)d(i)

= R−1
D (k)pD(k) (11.18)
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where RD(k) and pD(k) are called the deterministic correlation matrix of the input vector and the
deterministic cross-correlation vector between the input vector and the desired signal, respectively.

The Volterra RLS algorithm has the same form as the conventional RLS algorithm as shown in
Algorithm 11.2, where the only difference is the form of the input vector x(k).

Algorithm 11.2

Volterra RLS Algorithm

Initialization
SD(−1) = δI

where δ can be the inverse of an estimate of the input signal power
x(−1) = w(−1) = [0 0 . . . 0]T

Do for k ≥ 0
e(k) = d(k)− xT (k)w(k − 1)
ψ(k) = SD(k − 1)x(k)

SD(k) = 1
λ [SD(k − 1)− ψ(k)ψT

(k)

λ+ψT
(k)x(k)

]

w(k) = w(k − 1) + e(k)SD(k)x(k)
If necessary compute

y(k) = wT (k)x(k)
ε(k) = d(k)− y(k)

A clear disadvantage of the Volterra RLS algorithm is the high computational complexity which
requires an order of N4 multiplications per output sample. However, by examining closely the
form of the input data vector it is possible to conclude that the nonlinear filtering problem can be
recast into a linear multichannel adaptive-filtering problem for which fast RLS algorithms exist.
Using this strategy, several fast RLS algorithms for Volterra filters have been proposed, namely the
fast transversal [3], the lattice and QR-based lattice algorithms [4], and the QR-decomposition-based
algorithm [5]. Other strategies to reduce computation while trying to retain fast convergence, include
the orthogonal lattice-based structures tailored for Gaussian input signals [6].

Example 11.1

A digital channel model can be represented by the following system of equations

v(k) = x(k) + 0.5x(k − 1)
y(k) = v(k) + 0.2v2(k) + 0.1v3(k) + n(k)

The channel is corrupted by Gaussian white noise with variance σ2
n, varying from−10dB to−25dB.

The training signal and the actual input signal, consist of independent binary samples (-1,1). The
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training period depends on the algorithm but our first attempt is 200 iterations, and after that one can
start normal operation.

(a) Design an equalizer for this problem. Use a filter of appropriate order and plot the learning curves.

(b) Using the same number of adaptive-filter coefficients, implement a DFE equalizer as shown in
Fig. 11.3 and compare the results with those obtained with the FIR equalizer.

We start with the normalized LMS and after making it work, we compare it with the:

1. DFE normalized LMS algorithm

2. Volterra normalized LMS algorithm

3. DFE Volterra normalized LMS algorithm
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Figure 11.3 Decision feedback equalizer.



46111.2 The Volterra Series Algorithm

Solution:

In the DFE of Fig. 11.3, we initially utilize a training sequence which consists of a properly delayed
version of the transmitted signal which is known to the receiver. Obviously, this is an overhead to
the communication system since in the beginning no information is actually being transmitted. After
the training period no actual reference signal is available, and the equalizer replaces the training
sequence by the output of the decision device by moving the switch to its output. The average of
square error to be presented corresponds to average of a hundred experiments, whereas the number
of errors are measured in single run experiments.

For the normalized LMS algorithm the number of coefficients is 10 with convergence factor μ = 0.2.
The square errors for the different levels of channel noise are depicted in Fig. 11.4. As can be
observed, the normalized LMS algorithm converges fast for this example where only few training
samples are required to train the filter, when the signal to noise ratio is high. However, since the
channel is nonlinear the square error after convergence does not reach low levels.
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Figure 11.4 Square error, normalized LMS algorithm.

In the next experiment, the decision feedback equalizer is tested using the normalized LMS algorithm
with convergence factors μ = 0.2 for the forward and feedback adaptive filters. The forward filter
has eight coefficients whereas the feedback filter has two coefficients. For comparison, the results
presented are the same as in the previous case for the same levels of channel noise. The resulting
square errors are depicted in Fig. 11.5. In this case, the algorithm requires a somewhat comparable
training period and also leads to similar square error after convergence. When the signal to noise
ratio is poor the standard and the DFE algorithms perform poorly.
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Figure 11.5 Square error for the experiments with the DFE normalized LMS algorithm.

The normalized LMS Volterra series algorithm is also tested in this experiment using a tapped delay
line as input with ten elements. The convergence factor for the first-order adaptive coefficients is
μ1 = 0.51 and for the second-order coefficients is μ2 = 0.08. The results are depicted in Fig. 11.6.
A distinct feature of the Volterra algorithm is its lower square error after convergence, which is a
consequence of the fact that it models the channel better. Its training period is usually longer due to
the larger number of coefficients and higher conditioning number of the information matrix.

We also test the Volterra series algorithm on a decision feedback equalizer. In the feedforward filter a
tapped-delay line with eight coefficients is used whereas in the feedback filter two taps are employed.
For these experiments the convergence factors used in the coefficients multiplying the linear terms
of the forward filter are μ1 = 0.15 and μ2 = 0.08, respectively. For the feedback adaptive filter the
chosen factors are μ1 = 0.2 and μ2 = 0.08, respectively. For comparison the results are presented
for the same levels of channel noise as the previous examples. These square errors are seen in
Fig. 11.7. The comparison between the DFE and non DFE Volterra filter implementation shows that
the DFE requires comparable training period while achieving lower square error and requiring less
computational effort. As expected, in all examples the lower additional noise leads to lower MSE
after convergence.

Table 11.1 illustrates the number of decision errors made in a single run of the algorithms analyzed
in this example. The table also contains the iteration number after which no decision errors are
noticed. As can be observed the DFE algorithms usually take longer to converge. Also, the Volterra
algorithms have longer learning periods.
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Figure 11.6 Square error for the experiments with the Volterra normalized LMS algorithm.

�

Table 11.1 Evaluation of the Volterra LMS Algorithms

Noise Level NLMS DFE NLMS Volterra DFE Volterra

No. of Errors -25 dBs 2 8 7 9

No. of Errors -10 dBs 9 11 12 17

Last Error Iter. -25 dBs 4 30 26 50

Last Error Iter. -10 dBs 23 25 102 168
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Figure 11.7 Square error for the experiments with DFE Volterra series algorithm.

11.3 ADAPTIVE BILINEAR FILTERS

As it is widely known, the reduction in the computational complexity is the main advantage the
adaptive IIR filters present when compared with the adaptive FIR filters. Motivated by this observa-
tion, we can consider implementing nonlinear adaptive filters via a nonlinear difference equation, in
order to reduce the computational burden related to the Volterra series expansion. The most widely
accepted nonlinear difference equation model used for adaptive filtering is the so-called bilinear
equation given by

y(k) =
M∑

m=0

bm(k)x(k −m)−
N∑

j=1

aj(k)y(k − j) +
I∑

i=0

L∑
l=1

ci,lx(k − i)y(k − l) (11.19)

where y(k) is the adaptive-filter output.

A bilinear adaptive filter in most cases requires fewer coefficients than the Volterra series adaptive
filter in order to achieve a given performance. The advantages of the adaptive bilinear filters come
with a number of difficulties, some of them not encountered in the Volterra series adaptive filters.
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In the present case, the signal information vector is defined by

φ(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k)
x(k − 1)

...
x(k −M)
y(k − 1)
y(k − 2)

...
y(k −N)

x(k)y(k − 1)
...

x(k − I)y(k − L + 1)
x(k − I)y(k − L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.20)

where N , M , I and L are the orders of the adaptive-filter difference equations. The coefficient vector
can then be described as

θ(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0(k)
b1(k)

...
bM (k)
−a1(k)
−a2(k)

...
−aN (k)
c0,1(k)

...
cI,L−1(k)
cI,L(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.21)

A possible objective function for adaptive bilinear filtering based on output error is the least-squares
function3

ξd(k) =
k∑

i=0

λk−ie2(i)

=
k∑

i=0

λk−i[d(i)− θT (k)φ(i)]2 (11.22)

3Like in Chapter 10, the reader should note that this definition of the deterministic weighted least squares utilizes the a
priori error with respect to the latest data pair d(k) and x(k), unlike the FIR RLS case.
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Figure 11.8 Adaptive bilinear filter.

The forgetting factor λ as usual is chosen in the range 0 << λ < 1. By differentiating ξd(k) with
respect to θ(k), and by using the same arguments used to deduce the output error RLS algorithm for
linear IIR adaptive filters, we conclude that the RLS algorithm for adaptive bilinear filtering consists
of the following basic steps:

e(k) = d(k)− θT (k)φ(k) (11.23)

ϕ(k) = −∂y(k)
∂θ(k)

≈ −φ(k) (11.24)

SD(k + 1) =
1
λ

[
SD(k)− SD(k)ϕ(k)ϕT (k)SD(k)

λ + ϕT (k)SD(k)ϕ(k)

]
(11.25)

θ(k + 1) = θ(k)− SD(k + 1)ϕ(k)e(k) (11.26)

The approximation of equation (11.24) is not accurate, however it is computationally simple and
simulation results confirm that it works. The reader should notice that the partial derivatives used
in this algorithm are only approximations, leading to a suboptimal RLS solution. More accurate
approximations can be derived by following the same reasonings in which the partial derivatives
were calculated for the output error RLS algorithm for linear IIR adaptive filters. The description of
the bilinear RLS algorithm is given in Algorithm 11.3.
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Algorithm 11.3

Bilinear RLS Algorithm

Initialization
ai(k) = bi(k) = ci,l(k) = e(k) = 0
y(k) = x(k) = 0 , k < 0
SD(0) = δ−1I

For each x(k), d(k), k ≥ 0, do
y(k) = φT (k)θ(k)
e(k) = d(k)− y(k)

SD(k + 1) = 1
λ

[
SD(k)− SD(k)ϕ(k)ϕT (k)SD(k)

λ+ϕT (k)SD(k)ϕ(k)

]
θ(k + 1) = θ(k)− SD(k + 1)ϕ(k)e(k)
Stability test

If we consider as objective function the mean-square error (MSE) defined as

ξ = E[e2(k)] (11.27)

we can derive a gradient-based algorithm, by using e2(k) as an estimate for ξ, leading to an updating
equation given by

θ(k + 1) = θ(k)− 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1 · · · 0 0 · · · 0 0 · · · 0

0
. . . 0 0

. . . 0 0
. . . 0

0 · · · μ1 0 · · · 0 0 · · · 0
0 · · · 0 μ2 · · · 0 0 · · · 0

0
. . . 0 0

. . . 0 0
. . . 0

0 · · · 0 0 · · · μ2 0 · · · 0
0 · · · 0 0 · · · 0 μ3 · · · 0

0
. . . 0 0

. . . 0 0
. . . 0

0 · · · 0 0 · · · 0 0 · · · μ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ϕ(k)e(k) (11.28)

where

e(k) = d(k)− θT (k)φ(k) (11.29)

and

ϕ(k) =
∂e(k)
∂θ(k)

(11.30)
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Again, the calculation of an accurate gradient vector can be quite cumbersome.

The main drawbacks of the adaptive bilinear filters based on the output error are: possible instability
of the adaptive filter [25], slow convergence, and convergence to local minima of the error surface.
It is also possible in the case of adaptive bilinear filter to apply an equation error formulation. In the
presence of additional noise, the equation error algorithm may also lead to instability or to a biased
global minimum solution.

Example 11.2

Identify an unknown system with the following model

d(k) = −0.3d(k − 1) + x(k) + 0.04x2(k) + 0.1x3(k) + n(k)

using the bilinear algorithm, and compare the results with those obtained with theVolterra normalized
LMS algorithm. The additional noise is Gaussian white noise with variance σ2

n = −10dB. Use
Gaussian white noise with unit variance as input.

Solution:

Three coefficients are sufficient for the bilinear algorithm to perform well. The chosen convergence
factor is μ = 0.005. For the Volterra normalized LMS algorithm we use six coefficients and μ = 0.1.
As can be observed in Fig. 11.9, the bilinear algorithm converges faster and leads to a lower square
error after convergence than the Volterra normalized LMS algorithm, since the unknown system has
a bilinear model.
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Figure 11.9 Square error for the experiment with the bilinear and Volterra normalized LMS algorithms.
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Figure 11.10 Neural network based adaptive filter.

11.4 MULTILAYER PERCEPTRON ALGORITHM

In this section, the multilayer perceptron algorithm is briefly presented [24]. This algorithm belongs
to a class of nonlinear adaptive filters where the input signal vector is mapped into another signal
vector through a multiport network containing several local nonlinearities, as depicted in Fig. 11.10.
Usually, the nonlinear multiport network consists of feedforward neural networks with several layers,
where the nonlinearities (neurons) are placed inside the network in a structurally modular form.

The multilayer perceptron structure consists of several layers including an input layer, an output
layer and several internal layers usually called hidden layers. Fig. 11.11 illustrates a multilayer
perceptron-based adaptive filter with three layers. In communication applications the output layer
usually has a single neuron, with y(k) representing the nonlinear adaptive-filter output signal. The
mathematical description for each neuron is

yl,i(k) = fl,i

⎧⎨
⎩

Nl−1−1∑
j=0

wl,i,j(k)yl−1,j(k)− bsl,i(k)

⎫⎬
⎭ (11.31)

where wl,i,j(k) are the weight coefficients connecting the output signal yl−1,j(k) of the jth neuron
from layer l − 1 to input of neuron i of layer l, for l = 0, 1, . . . , L − 1; i = 0, . . . , Nl − 1. Note
that Nl is the number of neurons in the lth layer and the index L is the number of layers. Each
constant bsl,i(k) is the bias term of the ith neuron at layer l, that is also known as the threshold. It is a
well known result that the multilayer perceptron network is able to implement any desired nonlinear
mapping by properly choosing the weights, the thresholds and the nonlinear activation function f{·}
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Figure 11.11 Multilayer perceptron adaptive filter.
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[26]. Although, the activation function and the threshold could be chosen to be different for each
layer, we will not consider this general case here. Also, it is possible to show that three layers is
always enough for practical purposes. However, the use of more than three layers is desirable in
many applications, where in the three layers case the hidden layer requires a large number of neurons
in order to achieve an acceptable nonlinear mapping.

The most widely used activation function is the sigmoid function, defined as

sgm(x) =
2c1

1 + e−c2x
− c1 (11.32)

where c1 and c2 are suitably chosen constants. The derivative of the sigmoid function is given by

sgd(x) =
c2

2c1
[c2

1 − sgm2(x)] (11.33)

A popular updating algorithm for the multilayer perceptron is the so-called backpropagation algo-
rithm. The objective function is to minimize the instantaneous output square error, that is

e2(k) = [d(k)− y(k)]2 (11.34)

In order to minimize the above objective function, the backpropagation algorithm uses a steepest-
decent updating, with the gradient calculated from the output layer to the input layer as following
presented. The derivation of the backpropagation algorithm falls beyond the scope of this book, the
interested reader should consult [26] or [27]. In the output layer the error signal is given by e(k)
itself, as a result the coefficient updating for the coefficients of the output layer is given by

wL−1,i,j(k + 1) = wL−1,i,j(k) + 2μL−1e(k)yL−1,j(k) (11.35)

where i = 0, 1, . . . , NL−2−1 and j = 0, 1, . . . , NL−1−1. Notice that in our case we are considering
a single output multilayer perceptron, therefore NL−1 = 1. The parameter μL−1 is the convergence
factor for the output layer. Also the simplified updating equation above resulted from not using an
activation function at the output node. If the activation function is included at the output node the
updating equation is given by

wL−1,i,j(k + 1) = wL−1,i,j(k) + 2μL−1e(k)sgd
{
sgm−1[yL−1,j(k)]

}
sgm[yL−2,j(k)]

(11.36)

Since we know the error in the output layer, we can propagate this error backwards, and calculate
the corresponding errors in the output of the internal neurons. By examining Fig. 11.11 closely, after
applying the chain rule for derivative and performing a number of manipulations (see [26] and [27]
for details) it is possible to show that the error signal at the jth neuron from layer l is given by

el,j(k) = sgd
{
sgm−1[yl,j(k)]

}Nl−1∑
i=0

wl+1,i,j(k)el+1,i(k)

= sgd

⎡
⎣Nl−1−1∑

j=0

wl,i,j(k)yl−1,j(k)

⎤
⎦Nl−1∑

i=0

wl+1,i,j(k)el+1,i(k)

(11.37)
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The updating equations for the coefficients of the internal layers and the bias terms are given by

wl,i,j(k + 1) = wl,i,j(k) + 2μlel,j(k)yl−1,j(k)
bsl,i(k + 1) = bsl,i(k)− 2μlel,j(k) (11.38)

for i = 0, 1, . . . , Nl−1 − 1 and j = 0, 1, . . . , Nl − 1.

The description of the multilayer perceptron algorithm for nonlinear adaptive filtering is given in
Algorithm 11.4.

Algorithm 11.4

Multilayer Perceptron Algorithm

Initialization
Choose each wl,i,j(0) randomly

Do for k ≥ 0
Choose y−1,j(k) = xj(k)
Do for l = 0, . . . , L− 1
Do for i = 0, . . . , Nl − 1
Do for j = 0, . . . , Nl−1 − 1
yl,j(k) = fl,j{

∑Nl−1−1
i=0 wl,j,i(k)yl−1,i(k)− bsl,j(k)}

End
End

End
e(k) = d(k)− yL−1,0(k)
Do for l = L− 1, . . . , 0
Do for i = 0, . . . , Nl − 1
Do for j = 0, . . . , Nl−1 − 1
If l = L− 1
wL−1,i,j(k + 1) = wL−1,i,j(k) + 2μL−1e(k)sgd

{
sgm−1[yL−1,j(k)]

}
sgm[yL−2,j(k)]

Else

el,j(k) = sgd
[∑Nl−1−1

j=0 wl,i,j(k)yl−1,j(k)
]∑Nl−1

i=0 wl+1,i,j(k)el+1,i(k)
wl,i,j(k + 1) = wl,i,j(k) + 2μlel,j(k)yl−1,j(k)
bsl,i(k + 1) = bsl,i(k)− 2μlel,j(k)

End if
End

End
End

This algorithm has an increased computational complexity as compared with the linear adaptive
filters, for a given number of adaptive coefficients. In addition, the convergence speed is likely to be



47311.5 Radial Basis Function Algorithm

slow, because we are employing a gradient-based algorithm to search an objective function with a
nonquadratic surface.

Some attempts to improve the convergence speed have been proposed, see for example [20]. Despite
that, nonlinear adaptive filters based on multilayer perceptron require long training periods, and have
no methodology to appropriately define the number of layers and the number of neurons, rendering
these algorithms difficult to apply in practical problems. However, it is worth it to search for improved
nonlinear solutions for the adaptive-filtering problem, because in many communication applications
the linear adaptive filter does not yield good enough performance.

Example 11.3

Identify the same system described in example 11.2 using the multilayer perceptron method, and
compare the results with those obtained with the Volterra normalized LMS algorithm.

Solution:

In order to identify the same system of example 11.2 with the multilayer perceptron method, we use
a network with 3 inputs and 8 neurons in each of the two hidden layers. The chosen convergence
factor is μ=0.1. As can be observed in Figs. 11.9 and 11.12, the multilayer perceptron algorithm
has worse performance than the bilinear algorithm, but converges slightly faster and reaches a lower
square error after convergence than the Volterra normalized LMS algorithm.

�

11.5 RADIAL BASIS FUNCTION ALGORITHM

The radial basis function network is an attractive alternative to the multilayer perceptron for nonlinear
adaptive filtering for a number of reasons. As mentioned in [27], the learning process of the radial
basis function neural network is the same as finding a surface in the multidimensional space which is
a best fit to the training data. In particular, in the case of communication applications this technique
is attractive because its learning allows the division of a multidimensional space in appropriate
subregions where each received data fits in.

For equalization problems [23], [21], it is well known that the maximum likelihood equalizer using
the Viterbi algorithm provides the best solution, with high computational cost. As a compromise, the
radial basis function has been proposed as an attractive alternative because of its lower computational
complexity and due to its close relationship with Bayesian methods [22]. The Bayesian methods are
effective in interference cancellation and channel equalization [9], [11]-[15]. In fact, the Bayesian
design leads to the optimal nonlinear adaptive equalizer [8]. In the Bayesian approach, the decision
in favor of a symbol is made only if the probability that the referred symbol had caused the current
input signal vector exceeds the probability that any other symbol had caused the same input. The
optimal decision boundaries are determined by the values of the input signal vector where these
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Figure 11.12 Square error for the experiment with the multilayer perceptron algorithm.

probabilities are the same. The Bayesian theory shows that in a number of situations the optimal
decision boundaries are not given by hyperplanes (the only ones realizable with linear equalizers), but
by nonplanar boundaries. This is exactly what happens when the channel model in communication
systems cannot be well modeled with linear adaptive systems, or if the channel transfer function does
not have minimum phase. Also, the linear adaptive equalizer does not explore the fact that the input
signal originates from transmitted signals consisting of a finite set of symbols.

Since the radial basis function can approximate the Bayesian solution within a reasonable training
time, it is a potential candidate to be employed in a number of communication applications where
nonlinear adaptive filters are required.

The radial basis function network consists of three layers where the first feeds the second layer directly
without any weighting (weights are equal to one), and the output layer is just a linear combiner as
depicted in Fig. 11.13.b. The hidden layer implements a nonlinear mapping on the input vector, as
represented in Fig. 11.13.a, and consists of two steps. In the first step, the input signal vector is
compared with a set of reference vectors ri(k), for i = 0, 1, . . . , NN −1, where NN is the number of
(hidden) neurons. These vectors are called centers. The comparison between the input signal vector
and the centers are usually measured through the Euclidean norm as follows

di(k) = ||x(k)− ri(k)|| (11.39)
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These distances are then applied to a nonlinear activation function, which is scalar and radially
symmetric. Typical choices are the Gaussian and thin-plate-spline functions, respectively given by

f(di(k)) = e
−d2

i (k)

σ2
i
(k)

f(di(k)) =
d2

i (k)
σ2

i (k)
log[

di(k)
σi(k)

] (11.40)

The parameter σi(k) controls the spread of the function, related to the radius of influence of radial
basis function f [di(k)]. The output signal is computed by

F [x(k)] = f2

{
NN−1∑

i=0

wi(k)f [di(k)]

}
(11.41)

where f2{·} is the activation function of the output signal. This function is usually of the following
form

f2(x) =
1− e−cx

1 + e−cx
(11.42)

where c is a suitably chosen constant. In most cases, no activation function is used at the output in
order to simplify the algorithm, that is f2(x) = x. As a result we will not consider it further.

Usually the training for the radial basis function adaptive filter is done in three steps, where the radius
parameters, the centers and the weights are trained separately and in sequence. By using a stochastic
gradient algorithm and Gaussian activation function, the radial basis function updating equations are
given by

wi(k + 1) = wi(k) + 2μwe(k)f [di(k)]

σi(k + 1) = σi(k) + 2μσe(k)f [di(k)]wi(k)
d2

i (k)
σ3

i (k)

ri(k + 1) = ri(k) + 2μre(k)f [di(k)]wi(k)
x(k)− ri(k)

σ2
i (k)

(11.43)

for i = 0, 1, . . . , NN − 1. In Algorithm 11.5, the adaptive nonlinear filter based on the radial basis
function is detailed. In many cases the parameters σi(k), that control the spread of the function in
each neuron, are kept constant, where in this case they are chosen as the expected channel noise
power.

In a number of communication applications the signals involved are originally complex. In those
cases, we need to use a complex radial basis function algorithm whose configuration is depicted in
Fig. 11.14. The complex algorithm is described in Algorithm 11.6, where the derivations are omitted
for the sake of brevity, for details consult [16]-[17], [18]-[19].
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Figure 11.13 The radial basis function adaptive filter.
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Algorithm 11.5

Radial Basis Function Algorithm

Initialization
Choose each wi(0) randomly

Do for k ≥ 0
y(k) = F (x(k)) =

∑NN−1
i=0 wi(k)f [di(k)]

e(k) = d(k)− y(k)
Do for i = 0, 1, . . . , NN − 1
wi(k + 1) = wi(k) + 2μwe(k)f [di(k)]
σi(k + 1) = σi(k) + 2μσf [di(k)]e(k)wi(k) d2

i (k)
σ3

i (k)

ri(k + 1) = ri(k) + 2μrf [di(k)]e(k)wi(k)x(k)−ri(k)
σ2

i (k)

End
End

Algorithm 11.6

Complex Radial Basis Function Algorithm

Initialization
Choose each wi(0) randomly
ri(k), xi(k) are complex vectors
e(k), is a complex scalar

Do for k ≥ 0
y(k) = F (x(k)) =

∑NN−1
i=0 w∗i (k)f(di(k))

e(k) = d(k)− y(k)
Do for i = 0, 1, . . . , NN − 1
wi(k + 1) = wi(k) + 2μwe(k)f [di(k)]

σi(k + 1) = σi(k) + 2μσf [di(k)]{re[e(k)]wRi(k) + im[e(k)]wIi(k)} d2
i (k)

σ3
i (k)

ri(k + 1) = ri(k) + 2μrf [di(k)]
re[e(k)]wRi

(k)re[x(k)−ri(k)]+jim[e(k)]wIi
(k)im[x(k)−ri(k)]

σ2
i (k)

End
End
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Figure 11.14 The radial basis function adaptive filter for complex signals.

Example 11.4

Solve the problem described in Example 11.1 using:

1. Radial basis function algorithm

2. DFE radial basis function algorithm

Solution:

In order to solve the problem, the following two experiments use neural network equalizers of the
radial basis function type with ten delays in the input tap-delay line and ten hidden neurons. In the
first experiments the standard radial basis approach is applied using a convergence factor for the
linear combiner of μw = 0.1, a convergence factor for the radius of μr = 0.9, and a spread factor of
σ = 0.8. Fig. 11.15 shows the learning curves for the square errors. As can be observed, the radial
basis algorithm requires longer training period than the previous algorithms. This is the price paid
by its generality in approximating nonlinear functions.
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Figure 11.15 Square errors for the experiments with the radial basis algorithm.

The final experiment uses a neural network DFE of the radial basis function type with eight taps
and hidden neurons in the forward filter and two in the feedback filter. The convergence factor for
the forward filter is μw = 0.5, the convergence factor for the radius is μr = 0.9, and the spread
factor is σ = 0.8. For the backward filter, these parameters are μw = 0.04, μr = 0.9, and σ = 1.2,
respectively. These results are depicted in Fig. 11.16 for an ensemble of a hundred experiments.
The results with DFE are better than in the case without DFE.

Table 11.2 illustrates the number of decision errors made in a single run of the radial basis function
algorithms for this example, including the iteration number after which no decision errors are noticed.
As can be observed, the radial basis function algorithms take longer to converge than the Volterra
algorithms for this example.

Table 11.2 Evaluation of the Radial Basis Function Algorithms

Radial Basis Algorithm DFE Radial Basis Algorithm

Noise level -25 dBs -10 dBs -25 dBs -10 dBs

No. of Errors 74 113 79 92

Iter. of Last Error 318 387 287 370

Fig. 11.17 depicts the results of an experiment with the radial basis function algorithm with DFE
where the training is done for a long period. The graphs show that after the learning is complete the
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Figure 11.16 Square errors for the experiments with DFE radial basis function algorithm.

algorithm enables perfect bit detection, reaching a lower square error level than the algorithms not
based on neural networks.

�

11.6 CONCLUSION

In this chapter, we introduced some nonlinear adaptive-filtering methods which can be applied in
communication systems, as well as in many other fields. The methods discussed here are far from
consisting of a complete set, many other methods have been investigated using different points of
view, see for example [28] and [29]. The emphasis was to describe methods allowing a training
period and suitable for channel equalization and co-channel interference. No attempt was made to
discuss blind equalization methods that are nonlinear adaptive filters which usually utilize high-order
statistics, see Chapter 13.

The wide use of these algorithms in modern communication systems, while required, remains to be
seen. However, with a deep knowledge of the type of nonlinearities affecting the given communication
environment, one can come up with a nonlinear adaptive-filtering algorithm tailored for that particular
application, where a good compromise concerning computational complexity, training period and
performance in terms of bit error rate can be reached.
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11.8 PROBLEMS

1. Perform the equalization of a nonlinear channel described by the following relation

r(k) = 0.9x(k) + 0.1x2(k)− 0.3x3(k) + n(k)

using a known training signal that consists of a binary (-1,1) random signal. An additional
Gaussian white noise with variance 10−2 is present at the channel output.
Apply the LMS and RLS Volterra series algorithms.

2. Repeat problem 1 using the adaptive bilinear structure.

3. Repeat problem 1 using the multilayer perceptron algorithm.

4. Repeat problem 1 using the adaptive radial basis function structure.

5. Utilize a DFE equalizer to problem 1, also using the LMS and RLS Volterra series algorithms,
and comment on the results.

6. Compare the performances of Volterra LMS and RLS algorithms in the identification of the
following system.

d(k) = −0.76x(k)− 1.0x(k − 1) + 1.0x(k − 2) + 0.5x2(k)
+2.0x(k)x(k − 2)− 1.6x2(k − 1) + 1.2x2(k − 2)
+0.8x(k − 1)x(k − 2) + n(k)

The input signal is a uniformly distributed white noise with variance σ2
nx

= 0.1, filtered by
all-pole filter given by

H(z) =
z

z − 0.95
An additional Gaussian white noise with variance 10−2 is present at unknown system output.

7. Identify an unknown system with the following model

d(k) = −0.6d(k − 1) + x(k) + 0.01x(k)d(k − 1) + 0.02x(k − 1)d(k − 1) + n(k)

using the bilinear algorithm. The additional noise is Gaussian white noise with variance σ2
n =

−20dB. Use Gaussian white noise with unit variance as input.

8. Repeat problem 7 using the multilayer perceptron algorithm.

9. Identify a system with the following nonlinear input to output relation

d(k) = −0.08x(k)− 0.15x(k − 1) + 0.14x(k − 2) + 0.055x2(k)
+0.30x(k)x(k − 2)− 0.16x2(k − 1) + 0.14x2(k − 2) + n(k)

The input signal is Gaussian white noise with variance σ2
x = 0.7, and the measurement noise is

also Gaussian white noise independent of the input signal with variance σ2
n = 0.01.

Apply the radial basis function algorithm.

10. Repeat problem 9 using the multilayer perceptron algorithm.
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SUBBAND ADAPTIVE FILTERS

12.1 INTRODUCTION

There are many applications where the required adaptive-filter order is high, as for example, in
acoustic echo cancellation where the unknown system (echo) model has a long impulse response, on
the order of a few thousand samples [1]-[5]. In such applications, the adaptive-filtering algorithm
entails a large number of computations. In addition, the high order of the adaptive filter affects the
convergence speed.

A solution to problems where long-impulse-response filters are needed is to employ adaptive filtering
in subbands. In subband adaptive filtering, both the input signal and the desired signal are split
into frequency subbands via an analysis filter bank. Assuming that the signal decomposition in
subchannels is effective, we can decimate (subsample) these subband signals and apply adaptive
filtering to the resulting signals. Each subband adaptive filter usually has shorter impulse response
than its fullband counterpart. If a gradient type algorithm is used to update the adaptive filters, we
can adjust the step size in the adaptation algorithm individually for each subband, which leads to
higher convergence speed than in the case of fullband adaptive filter.

Decimation allows the reduction in computational complexity. Mainly if critical subsampling (i.e.,
decimation by a factor equal to the number of subbands) is employed, aliasing effects may impair the
obtained filter estimates. This issue will be discussed during this chapter. Therefore, by judicious
use of adaptive filtering in subbands we can reduce the computational complexity, as well as increase
the algorithm convergence speed [1]-[7].

This chapter starts with a brief introduction to multirate systems, where the concepts of decimation,
interpolation, and filter banks are presented. Then, the basic structures for adaptive filtering in sub-
bands are presented along with a discussion regarding their main features. The concept of delayless
subband adaptive filtering is also addressed, where the adaptive-filter coefficients are updated in
subbands and mapped to an equivalent fullband filter. Finally, we point out the relation between
subband and block adaptive-filtering (also known as frequency-domain adaptive filters) algorithms.

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_12,  
© Springer Science+Business Media, LLC 2008  
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12.2 MULTIRATE SYSTEMS

In this section, we briefly review the fundamentals of multirate systems which are essential to
implement adaptive filters in subbands. For further details related to multirate systems and filter
banks the reader can refer to the review article [8] or the comprehensive textbook [9].

12.2.1 Decimation and Interpolation

Decimation (also known as down-sampling or compression) of a digital signal x(k) by a factor of
L means reducing its sampling rate L times. Decimation is achieved by retaining only every Lth
sample of the signal. The decimator symbol is depicted in Fig. 12.1.a.

Lx k( ) x mD ( )

(a)

Lx m( ) x kI ( )

(b)

Figure 12.1 (a) Decimation by a factor L, (b) Interpolation by a factor L.

The decimated signal is then xD(m) = x(mL). In the frequency domain, if the spectrum of x(k) is
X(ejω), the spectrum of the sub-sampled signal, XD(ejω) is given by [9]

XD(ejω) =
1
L

L−1∑
k=0

X(ej ω−2πk
L ) (12.1)

The above equation indicates that the spectrum of xD(m) is composed of copies of the spectrum
of x(k) expanded by L and repeated with period 2π. Figs. 12.2.a and 12.2.b depict the effect of
sub-sampling on the spectrum of x(k), for L = 2. This implies that, in order to avoid aliasing after
sub-sampling, the bandwidth of the signal x(k) must be limited to the interval [− π

L , π
L ]. In fact, the

sub-sampling operation is generally preceded by a lowpass filter that approximates the following
frequency response

HD(ejω) =
{

1, ω ∈ [− π
L , π

L ]
0, otherwise

(12.2)

It should be noted that the decimation operation is shift varying, i.e., if the input signal x(k) is shifted,
the output signal will not in general be a shifted version of the previous output. More precisely, the
decimation is a periodically shift-invariant operation.

The interpolation (or up-sampling) of a digital signal x(m) by a factor of L entails including L− 1
zeros in between samples. The interpolator symbol is depicted in Fig. 12.1.b.
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(a) Original spectrum

(b) Spectrum of a down-sampled signal

(c) Spectrum of an up-sampled signal

Figure 12.2 Spectra of up- and down-sampled signals.

The interpolated signal is then

xI(k) =
{

x( k
L ), k = mL, m ∈ Z

0, otherwise
(12.3)

If the spectrum of x(m) is X(ejω), it is straightforward to show that the spectrum of the up-sampled
signal, XI(ejω), is given by

XI(ejω) = X(ejωL) (12.4)

Since the spectrum of the input signal is periodic with period 2π, the spectrum of the interpolated
signal will have period 2π

L . Fig. 12.2.c illustrates how the signal spectrum is modified after the
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up-sampling operation. If we wish to obtain a smooth interpolated version of x(m), the spectrum
of the interpolated signal must have the same shape of the spectrum of x(m). This can be obtained
by filtering out the repetitions of the spectra beyond [− π

L , π
L ]. Thus, the up-sampling operation is

generally followed by a lowpass filter which approximates the following frequency response

HI(ejω) =
{

L, ω ∈ [− π
L , π

L ]
0, otherwise

(12.5)

The decimator and interpolator blocks are fundamental to represent (or implement) serial-to-parallel
and parallel-to-serial converters. That is, given a signal x(k) whose samples appear serially, we
can transform this sequence into blocks of length L by using delay operators and decimators whose
representation is depicted in Fig. 12.3.a. The signal block at the output retains L consecutive samples
of the input signal as follows

x(m) = [x(mL) x(mL− 1) . . . x(mL− L + 1)]T (12.6)

This notation is slightly different from the one to be used in the remaining chapters, since m here
denotes the block number and not the index of the most recent element of x(m). In this chapter we will
use the block notation because it leads to simpler description of the algorithms. The implementation of
the serial-to-parallel converter in terms of decimators and delays is further illustrated in Fig. 12.3.b.

On the other hand, given a block signal x(m), we can transform the parallel data of length L back into
a delayed serial data as shown in Fig. 12.4.a. The implementation of the parallel-to-serial converter
in terms of interpolators and delays is illustrated in Fig. 12.4.b.

12.3 FILTER BANKS

In subband adaptive filtering as well as in a number of other applications, it is advantageous to split
a sequence x(k) into several frequency bands. This is illustrated on the left-hand side of Fig. 12.5.

The analysis filters, represented by the transfer functions Fi(z) for i = 0, 1, . . . , M − 1, comprise of
a lowpass filter F0(z), bandpass filters Fi(z) for i = 1, 2, . . . , M−2, and a highpass filter FM−1(z).
Ideally these filters have nonoverlapping passbands, while they together cover the entire spectrum
of the input signal. Since each of the analysis filter outputs xi(k), i = 0, 1, . . . , M − 1 has the same
number of samples as the original signal x(k), after the M -band decomposition, all signals xi(k)
together have M times more samples than the original one. This expansion on the number of samples
is undesirable because of the resulting computational burden.

In most cases, the input signal is uniformly split into subbands, where each of the frequency bands
has the same bandwidth. Since the bandwidth of each analysis filter output band is M times smaller
than in the original signal, we can decimate each xi(k) by a factor of L smaller or equal to M without
destroying the original information. For L = M , the amount of data after the decimators in Fig. 12.5
is maintained when compared to the number of samples of the input signal. This case is called
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Figure 12.3 Serial-to-parallel converter (a) Symbol, (b) Implementation.

maximally (or critically) decimated analysis filter bank. If L > M , there is a loss of information due
to aliasing which does not allow the recovery of the original signal. For L ≤M , it is possible to retain
all information contained in the input signal by properly designing the analysis filters in conjunction
with the synthesis filters Gi(z), for i = 0, 1, . . . , M − 1. If no signal processing task is performed
in the subbands (see Fig. 12.5), the filter bank output y(k) can be made to be a delayed version of
the input signal x(k), where the delay is due to the causality of the subband filters. In this case, we
have a perfect reconstruction filter bank. In fact, there are several methods for designing the analysis
filters Fi(z) and the synthesis filters Gi(z) such that perfect reconstruction is achieved or arbitrarily
approximated. These filters can be finite-length (FIR) filters with overlapping frequency responses,
which are designed to cancel out the aliasing effects and results in the perfect reconstruction.
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In the case where L < M , the filter bank is called oversampled (or noncritically sampled) since we
are retaining more samples in the subbands than the input signal. Oversampled filter banks appear
frequently in subband adaptive-filtering applications, however their design is beyond the scope of
this book.

We will now discuss the polyphase representation of a transfer function which is quite useful in
describing filter banks. Defining Eij(z) =

∑Np−1
l=0 fi(Ll + j)z−l as the polyphase components of

the analysis filter Fi(z), and Np as the length of the polyphase components of the analysis filters, we
can express the transfer function of the filter Fi(z) as follows
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Fi(z) =
NpL−2L+1∑

k=0

fi(k)z−k

=
Np−1∑
l=0

fi(Ll)z−Ll + z−1
Np−1∑
l=0

fi(Ll + 1)z−Ll + · · ·+ z−L+1
Np−1∑
l=0

fi(Ll + L− 1)z−Ll

=
L−1∑
j=0

z−jEij(zL) (12.7)

In the polyphase decomposition we decompose each analysis filter Fi(z) into L filters, the first one
has an impulse response consisting of every sample of fi(k) whose indexes are multiples of L, the
second one has every sample of fi(k) whose indexes are one plus a multiple of L, and so on. The
resulting representation for an analysis subfilter, along with decimation, is depicted in Fig. 12.6. By
means of a noble identity [9], the cascade connection of Eij(zL) and the decimators can be replaced
by decimators followed by the polynomials Eij(z).

For the synthesis filter bank we can employ an alternative polyphase decomposition which matches
the interpolation operation. That is, each synthesis filter can be described in the following polyphase
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form

Gi(z) =
M−1∑
j=0

z−(L−1−j)Rji(zL) (12.8)

Again by means of a noble identity [9], the polynomials Rji(zL) preceded by interpolators can be
replaced by interpolators preceded by the polynomials Rji(z).

By replacing each of the filters Fi(z) and Gi(z) by their polyphase components, the M -band filter
bank of Fig. 12.5 can be transformed in the structure of Fig. 12.7. The matrices E(z) and R(z) are
formed from the polyphase components of Fi(z) and Gi(z). Eij(z) is the jth polyphase component
of Fi(z) and Rji(z) is the jth polyphase component of Gi(z). From Fig. 12.7 we conclude that if
R(z)E(z) = z−ΔI, where Δ is an arbitrary delay and I is the identity matrix, the M -band filter bank
holds the perfect reconstruction property.
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12.3.1 Two-Band Perfect Reconstruction Filter Banks

For a two-band perfect reconstruction filter bank with FIR analysis and synthesis filters, the following
conditions must be satisfied

F0(−z)F1(z)− F0(z)F1(−z) = 2cz−2l−1 (12.9)

G0(z) = −z2(l−Δ)

c
F1(−z) (12.10)

G1(z) =
z2(l−Δ)

c
F0(−z) (12.11)

where equation (12.9) guarantees that the synthesis filters are FIR, while equations (12.10) and
(12.11) guarantee perfect reconstruction. The delay Δ is included in equations (12.10) and (12.11)
in order to guarantee that the subfilters in the filter bank are causal.

Equations (12.9) to (12.11) lead to the following design procedure for the two-band perfect recon-
struction filter bank [10]: (1) Find a polynomial P (z) such that P (−z) − P (z) = 2z−2l−1; (2)
Factorize P (z) into two factors, F0(z) and F1(−z), such that F0(z) and F1(−z) are lowpass filters;
(3) Design G0(z) and G1(z) using equations (12.10) and (12.11). In step (1) P (z) is an approxi-
mation to a half-band filter1, whose amplitude response should be positive everywhere. In case this

1The amplitude response of a half-band filter is symmetric with respect to π
2 , with ωp +ωs = π, where ωp is the passband

edge and ωs is the stopband edge.
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condition is not initially satisfied in the design, we should add δz−2l−1 to P (z) such that δ is the
modulus of the smallest (negative) value of the designed P (z). We add that the factorization step (2)
becomes ill-conditioned when designing high-order filters. In this case, alternative design methods
can be employed [9].

In some applications, it is desired that the filter bank be made up of linear-phase filters. In this case,
one has to find a linear-phase product filter P (z), and perform linear-phase factorizations of it.

12.3.2 Analysis of Two-Band Filter Banks

From Fig. 12.5 we see that the signals after the analysis filters in a two-band filter bank are described
by

Xi(z) = Fi(z)X(z) for i = 0, 1 (12.12)

In the frequency domain, the decimated signals are

Ui(z) =
1
2
[Xi(z

1
2 ) + Xi(−z

1
2 )] for i = 0, 1 (12.13)

Thus after interpolation of the Ui(z), we get

Ui(z2) =
1
2
[Xi(z) + Xi(−z)]

=
1
2
[Fi(z)X(z) + Fi(−z)X(−z)] (12.14)

The reconstructed signal is then expressed as

Y (z) = G0(z)U0(z2) + G1(z)U1(z2)

=
1
2
[F0(z)G0(z) + F1(z)G1(z)]X(z) +

1
2
[F0(−z)G0(z) + F1(−z)G1(z)]X(−z)

=
1
2
[

X(z) X(−z)
] [ F0(z) F1(z)

F0(−z) F1(−z)

] [
G0(z)
G1(z)

]
(12.15)

The last equality is called modulation-matrix representation of a two-band filter bank. In this case,
the aliasing effect caused by the decimation operation is represented by the terms containing X(−z).

Note that it is possible to avoid aliasing at the output by properly choosing the synthesis filter, as for
example in the perfect reconstruction case.

12.3.3 Analysis of M -Band Filter Banks

The expression for two-band case can be easily generalized to M bands by noting that, after deci-
mation by L, the signals will have L− 1 aliased components. That is

Xd(z) =
1
L

L−1∑
k=0

X(z
1
L e−

j2πk
L ) (12.16)
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The kth aliased component of X(z) is X(z
1
L e−

j2πk
L ).

Therefore, the modulation matrix for the M -band filter bank is given by

Y (z) =
1
2
[

X(z) X(zW ) . . . X(zWL−1)
]

⎡
⎢⎢⎢⎣

F0(z) F1(z) . . . FM−1(z)
F0(zW ) F1(zW ) . . . FM−1(zW )

...
...

. . .
...

F0(zWL−1) F1(zWL−1) . . . FM−1(zWL−1)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

G0(z)
G1(z)

...
GM−1(z)

⎤
⎥⎥⎥⎦ (12.17)

where W = e−
j2π
L .

12.3.4 Hierarchical M -Band Filter Banks

By connecting two-band filter banks in series, we can produce many different kinds of maximally
decimated decompositions. For example, we can design a 2n-band uniform decomposition filter
bank as illustrated in Fig. 12.8 for n = 3. It is also possible to implement nonuniform filter banks
by using two-band filter banks in series, but using a different type of hierarchical decomposition [9].
A commonly used one is the octave-band decomposition.

12.3.5 Cosine-Modulated Filter Banks

Cosine-modulated filter banks are a class of filters efficient for the design and implementation of
filter banks with large number of subbands. A cosine-modulated filter bank is easy to design because
it is based on a single lowpass prototype filter whose impulse response satisfies some constraints
required to achieve perfect reconstruction. It also leads to low computational complexity because the
analysis and synthesis filter banks make use of the so-called discrete-time cosine transform (DCT),
for which there are many fast implementations available for its computation.

The design of the maximally decimated cosine-modulated filter bank starts with a linear-phase pro-
totype lowpass filter F (z) whose passband edge is π

2L − δ and the stop-band edge is π
2L + δ, where

2δ is the transition band. The length of the prototype filter is usually chosen to be an even multiple
of the number of subbands: Npr = 2KL, for K, an integer. Then, we generate cosine modulated
versions of the prototype filter in order to obtain the analysis and synthesis filter banks. The impulse
responses of the subfilters are given by

fl(n) = 2f(n) cos
[
(2l + 1)

π

2L

(
n− Npr − 1

2

)
+ (−1)l π

4

]
(12.18)

gl(n) = 2f(n) cos
[
(2l + 1)

π

2L

(
n− Npr − 1

2

)
− (−1)l π

4

]
(12.19)

for 1 ≤ n ≤ Npr and 0 ≤ l ≤ L − 1, where f(n), for n = 1, 2, . . . , Npr, denotes the elements of
the prototype impulse response. The constraints required to achieve perfect reconstruction are given
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Figure 12.8 Hierarchical uniform filter bank.

by

Ej(z−1)Ej(z) + Ej+L(z−1)Ej+L(z) =
1

2L
(12.20)

where Ej(z) for any j = 0, 1, . . . , L−1 is the jth polyphase component of the prototype filter F (z).

There are computationally efficient implementations for the cosine-modulated filter bank which make
use of the polyphase decomposition of the prototype filter. For further details refer to [9], [8]. Also,
it is possible to design oversampled cosine-modulated filter banks with perfect reconstruction [11],
which can be used in nonmaximally decimated subband adaptive filtering.
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12.3.6 Block Representation

By using the polyphase concept we can show that any scalar linear time-invariant transfer function
H(z) can be implemented through a pseudocirculant matrix H(z), where the particular case of a
3× 3 matrix H(z) is given by

H(z) =

⎡
⎣ H0(z) H1(z) H2(z)

z−1H2(z) H0(z) H1(z)
z−1H1(z) z−1H2(z) H0(z)

⎤
⎦ (12.21)

where the Hi(z), i = 0, 1, 2, are the polyphase components of H(z).

The overall realization of H(z) is equivalent to a cascade connection of the serial-to-parallel converter
of Fig. 12.3.b, the transfer matrix H(z), and the parallel-to-serial converter of Fig. 12.4.b, except
for a delay of z−L+1 since the converter of Fig. 12.4.b is causal (i.e., it utilizes negative powers of
z). See the implementation of Fig. 12.7 with H(z) replacing the cascade of E(z) and R(z). This
realization is known as blocked implementation of a scalar transfer function [32].

We note that the cascade of the unblock/block mechanisms of Figs. 12.4.b (noncausal case) and
12.4.a result in an identity matrix (see section 12.5). The reader is encouraged to verify this result.

12.4 SUBBAND ADAPTIVE FILTERS

A number of adaptive-filtering structures based on multirate techniques have been proposed in the
literature [1]-[7], [14]-[28]. In most of these structures, the input signal is decomposed into subbands
via an analysis filter bank, and the resulting signals are downsampled and filtered by adaptive filters.
Each of these adaptive filters has order smaller than the equivalent full-band adaptive filter (by a factor
approximately equal to the decimation rate). The subsampling operations create aliased versions of
the decimated signal which will affect the performance of the adaptive filter. The aliasing effect
is more severe when critically sampled filter banks are employed. An obvious solution is to allow
frequency gaps between adjacent subbands, which for sure degrades the original signal quality. Some
other structures apply subband decomposition only to the error signal in order to improve tracking
ability in nonstationary environments [29]-[30].

Several adaptive subband structures have been suggested. One early approach uses pseudo-QMF2

banks with overlapping subfilters and critical subsampling [1], i.e., with L = M . This results in
undesirable aliased components at the output, which causes severe degradation. A second approach
uses QMF banks with critical subsampling [2]. In order to avoid aliasing problems, it is shown
that additional adaptive cross terms among the subbands are necessary. These cross terms, however,
increase the computational complexity and reduce the convergence rate of the adaptive algorithm.

An alternative solution is to employ oversampling, that is, to use a decimation factor in the filtered
signals smaller than the critical subsampling factor (or number of bands), i.e., with L < M . In the

2Quadrature-mirror filter.
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oversampling case, the computational complexity is higher than needed because after decimation the
number of samples retained in the subbands is larger than that of the filter bank input. Despite this
problem, oversampled adaptive filters are often used in practice [3]-[7], [15]-[16]. In this chapter,
we focus on the critically decimated case, although some analysis is also carried out for the general
oversampled case.

In all subband structures above described, the convergence rate can be improved for colored input
signals by using a normalized gradient algorithm in the update of the coefficients of each subband
filter. This improvement is justified in Fig. 12.9, where considering that the filter bank consists of
ideal subfilters, the spectrum of each signal in the subbands after critical decimation will be closer to
that of white noise than that of the original fullband signal. If the spectral separation is perfect, the
subband structure allows the transformation of the fullband adaptive-filtering problem into several
independent narrowband adaptive-filtering subproblems. In general, the subband separation will
be effective when the order of each subband adaptive filter is much smaller than the order of the
fullband filter. The justification is that the speed of convergence becomes faster for all subbands, and
the overall computational complexity is further reduced due to decimation.

|F z |0 ( )
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|F z |1 ( ) |F z |2 ( ) |F z |3 ( )

�/4 �/2 3�/4 �
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j�




Figure 12.9 Spectrum split in subbands.

In the conventional subband adaptive filters, error signals are locally evaluated in each subband
and an objective function taking into account all these local errors is minimized during adaptation.
Fig. 12.10 illustrates the open-loop structure, where we can see that both input and reference signals
are first split into subbands by an analysis filter bank. Then, the subband signals are filtered by an
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adaptive-filter matrix in order to generate the output signals to be compared with the desired signals
in the subbands. In the open-loop scheme, we aim to minimize the subband error energy.
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Figure 12.10 Open-loop subband structure.

For the open-loop structure, the objective function can be a linear combination of the magnitude
square of the local errors as follows

ξ =
M−1∑
i=0

E[|ei(m)|2] (12.22)

If we assume that the adaptive-filter matrix is diagonal, and that the subband signals are complex, the
updating equation for the subband adaptive filters based on the normalized LMS algorithm is given
by

ei(m) = d̃i(m)− wT
i (m)ui(m) (12.23)

wi(m + 1) = wi(m) +
2μ

γ + Nsσ2
i (m)

ei(m)u∗i (m) (12.24)

where Ns is the length of the adaptive filter in the ith subband (which we consider the same for all
subbands in order to simplify the notation). In addition, σ2

i (m) = (1− α)σ2
i (m− 1) + α |ui(m)|2,

with α being a small factor chosen in the range 0 < α ≤ 0.1, and γ is a small constant to prevent
the updating factor from getting too large. The signal ei(m) is the subband error signal at the ith
subband, and ui(m) is the input signal vector to the ith adaptive filter.

Based on our knowledge of the normalized LMS algorithms, we can conjecture that the range of
values for the convergence factor is typically3

0 < μ < 1 (12.25)

3The upper bound can be tighter depending on the input signal statistics.
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Algorithm 12.1

Open-Loop Subband Adaptive-Filtering Algorithm

Initialization
x(0) = wl(0) = [0 0 . . . 0]T

γ = small constant
0 < α ≤ 0.1

Do for each x(iL) and d(iL) given, for i ≥ 0

u(m) =

⎡
⎢⎣ u0(m)

...
uM−1(m)

⎤
⎥⎦ =

[
E0 · · · ENp

] ⎡⎢⎣ x(i)
...

x(i−Np)

⎤
⎥⎦

d̃(m) =
[

E0 · · · ENp

] ⎡⎢⎣ d(i)
...

d(i−Np)

⎤
⎥⎦

y(m) =

⎡
⎢⎣ y0(m)

...
yM−1(m)

⎤
⎥⎦ =

[
W0 · · · WNs

] ⎡⎢⎣ u(m)
...

u(m−Ns)

⎤
⎥⎦

e(m) = d̃(m)− y(m)
Do for each for 0 ≤ l ≤M − 1

σ2
l (m) = (1− α)σ2

l (m− 1) + α |ul(m)|2
wl(m + 1) = wl(m) + 2μ

γ+Nsσ2
l (m)el(m)u∗l (m)

The steps of the open-loop algorithm are described in Algorithm 12.1, where x(iL− l) and d(iL− l)
represent a block of the input and desired signals respectively, El, for l = 0, 1, . . . , Np, are the
matrices containing the coefficients of the polyphase representation of the analysis filter bank, that
is,

E(z) =
Np∑
l=0

Elz
−l

The coefficient matrices Wl, for l = 0, 1, . . . , Ns, are the entries of the adaptive filter matrices.

Since the frequency responses of the subfilters that compose the filter bank are not ideal, the mini-
mization of an objective function based on local errors will not necessarily reduce the fullband error
energy to a minimum MSE. In this case, the unknown system might not be identified accurately.
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12.4.1 Subband Identification

Define the Z-transforms of the blocked versions of input and desired signals x(k) and d(k) as

X(z) =
∑
m

x(m)z−m

D(z) =
∑
m

d(m)z−m (12.26)

where x(m) is given in equation (12.6), and

d(m) = [d(mL) d(mL− 1) . . . d(mL− L + 1)]T (12.27)

If we describe the analysis filter transfer functions Fi(z), for i = 0, 1, . . . , L − 1, in terms of their
polyphase components, the subband input and desired signals, described in the Z-domain for the
critically decimated case (i.e. L = M ), can be written in vector form as

YYY(z) = W(z)E(z)X(z)
DDD(z) = E(z)D(z) (12.28)

where DDD(z) is the desired signal split into subbands, and YYY(z) is the adaptive system output (refer
to Figs. 12.7 and 12.10).

By describing the unknown system model in the block form, as explained in subsection 12.3.6, the
blocked desired signal is given by

D(z) = H(z)X(z) (12.29)

By substituting the above expression into equation (12.28), we obtain

DDD(z) = E(z)H(z)X(z) (12.30)

By defining the channel error vector as EEE(z) = DDD(z)−YYY(z) and setting it to zero, for X(z) �= 0, we
generate the optimal solution for the adaptive-filter coefficient matrix

E(z)H(z) = Wo(z)E(z) (12.31)

whose expression is given by

Wo(z) = E(z)H(z)E−1(z) (12.32)

Note that since Wo(z) is nondiagonal, it requires cross filters among channels in order to model the
unknown system perfectly.
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12.4.2 Two-Band Identification

The two-band case is easier to analyze in closed form, leading to interesting insights into the problem
of cross filters. Using the relations described in equations (12.12) and (12.13), and considering the
error signals equal to zero in Fig. 12.10, we can show that for the identification of an unknown
transfer function H(z), the optimal coefficients for the two-band adaptive filter are given by

Wo(z) =
[

F0(z
1
2 ) F0(−z

1
2 )

F1(z
1
2 ) F1(−z

1
2 )

] [
H(z

1
2 ) 0

0 H(−z
1
2 )

]
1

Ξ(z)

[
F1(−z

1
2 ) −F0(−z

1
2 )

−F1(z
1
2 ) F0(z

1
2 )

]

=
1

Ξ(z)

[
A(z) −F0(z

1
2 )F0(−z

1
2 )[H(z

1
2 )−H(−z

1
2 )]

F1(z
1
2 )F1(−z

1
2 )[H(z

1
2 )−H(−z

1
2 )] B(z)

]
(12.33)

where

Ξ(z) = F0(z
1
2 )F1(−z

1
2 )− F0(−z

1
2 )F1(z

1
2 )

A(z) = F0(z
1
2 )F0(−z

1
2 )H(z

1
2 )− F0(−z

1
2 )F1(z

1
2 )H(−z

1
2 )

B(z) = −F0(−z
1
2 )F1(z

1
2 )H(z

1
2 ) + F0(z

1
2 )F1(−z

1
2 )H(−z

1
2 )

The right-hand side of equation (12.33) shows that nonzero off-diagonal elements are required in
order to model the unknown system. Note that the products of F0(z

1
2 )F0(−z

1
2 ) and F1(z

1
2 )F1(−z

1
2 )

would be null if the analysis filter bank were ideal. In the case of a nonideal filter bank, ill-conditioned
signals appear in the adaptive part of the cross filters (which model the term [H(z

1
2 ) −H(−z

1
2 )]),

leading to slow convergence of the adaptive cross filters.

12.4.3 Closed-Loop Structure

An alternative subband adaptive-filtering realization is the closed-loop structure depicted in Fig. 12.11.
In the closed-loop structure, the fullband output signal of the adaptive filter is reconstructed through
a synthesis filter bank, and the overall error signal is computed and utilized in the objective function.
The overall error is split into subbands, which are then used in the adaptation algorithm. In the
closed-loop scheme we aim to minimize the fullband error energy. In this case, the NLMS updating
equation is given by

wi(m + 1) = wi(m) +
2μ

γ + Nsσ2
i (m)

u∗i (m−Δ)e′i(m) (12.34)

where the fullband error is evaluated as e(k) = d(k −ΔL) − y(k), and e′i(m) corresponds to the
ith component of the fullband error signal split into subbands. The delay Δ is key to compensate
for the extra delay the input signal faces, due to the analysis and synthesis filter bank, with respect
to the desired signal. The delay value is given by

Δ = �2KM − 1
L

� (12.35)

where �(·)� denotes the integer part of (·), 2KM is the length of the subfilters of the analysis and
synthesis filter banks, and K is a positive integer number. The closed-loop scheme allows for the
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Algorithm 12.2

Closed-Loop Subband Adaptive-Filtering Algorithm

Initialization
x(0) = wl(0) = [0 0 . . . 0]T

γ = small constant
0 < α ≤ 0.1

Do for each x(iL) and d(iL) given, for i ≥ 0

u(m) =
[

E0 · · · ENp

] ⎡⎢⎣ x(i)
...

x(i−Np)

⎤
⎥⎦

y(m) =
[

W0 · · · WNs

] ⎡⎢⎣ u(m)
...

u(m−Ns)

⎤
⎥⎦

y(k) =
[

1 · · · 1
] [

R0 · · · RNp

] ⎡⎢⎣ y(m)
...

y(m−Np)

⎤
⎥⎦

e(k) = d(k −ΔL)− y(k)

e′(m) =
[

E0 · · · ENp

] ⎡⎢⎣ e(i)
...

e(i−Np)

⎤
⎥⎦

Do for each for 0 ≤ l ≤M − 1
σ2

l (m) = (1− α)σ2
l (m− 1) + α |ul(m)|2

wl(m + 1) = wl(m) + 2μ
γ+Nsσ2

l (m)u∗l (m−Δ)e′l(m)

minimization of a cost function based on the fullband error signal, and guarantees that the algorithm
converges to a minimum MSE.

The closed-loop algorithm is described in detail in Algorithm 12.2. Note that the matrix coefficient
Rl, for l = 0, 1, . . . , Np, represents the element of order l of the synthesis filter polyphase matrix, and
y(m− l) is the subband adaptive-filter output vector at time instant (m− l). A comparison between
the two schemes shows that the open-loop scheme generates an excess MSE because it actually
minimizes the subband error energy, whereas the closed-loop scheme minimizes the fullband error.
On the other hand, since in the closed-loop scheme a delay is introduced by the synthesis filter bank,
and by the analysis filter bank applied to the error signal e(k), the adaptation algorithm uses past
information about the error signal, which can be shown to slow down the convergence. In fact, this
delay reduces the upper bound of μ that can be employed in the closed-loop algorithm. The recursive



504 Chapter 12 Subband Adaptive Filters

equations governing the convergence of the adaptive-filter coefficients of the closed-loop algorithm
have the following general characteristics polynomial (see problem 8)

p(Δ) = zΔ+1 − zΔ + 2μλi = 0 (12.36)

where Δ is the delay introduced by the filter banks and λi is related to the maximum eigenvalue of
the autocorrelation matrix of the input signal in the ith subband. Considering the critical case of
maximum eigenvalue λmax, the critical value of μ such that the zeros of equation (12.36) meet at the
real axis is

μcrit =
(Δ− 1)Δ−1

2λmaxΔΔ (12.37)

For higher values of μ the zeros move away from the real axis and eventually reach the unit circle
at μ ≈ 4.5μcrit, see [17] and [16] for further details. Higher delays lead to lower values of μ. As a
consequence, the closed-loop structures are more susceptible to convergence problems and less used
in practice.

Figure 12.11 Closed-loop subband structure.

For the closed-loop structure, the excess MSE due to gradient noise (which tends to zero as μ→ 0)
is not related to the additional error resulting from the use of non-ideal filter banks. By making
some simplifying assumptions, we can easily estimate the excess MSE in the closed-loop structure
(the open-loop scheme follows similar analysis). The final result will closely follow the one for the
standard LMS algorithm. If we consider that the input signal in each subband and the adaptive-filter
coefficients are uncorrelated, and that the subfilters in the filter bank are frequency selective, we
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can calculate the excess MSE individually in each subband, and combine them to derive the overall
excess MSE. The result is given by

ξexc ≈
M−1∑
i=0

μiσ
2
ni

tr[Ui]
1− μitr[Ui]

(12.38)

where Ui = E[ui(k)uH
i (k)], σ2

ni
≈ σ2

n/M , and μi = μ
γ+Nsσ2

i
. This equation provides a good

estimate to the excess MSE when the assumptions are closely met. A more accurate estimate is not
straightforward to obtain.

Example 12.1

Identify an unknown system with the following transfer function

H(z) =
0.1z

(z + 0.9)
+

0.08z

(z2 + 0.92)
+

0.1z

(z − 0.9)

The input signal is a uniformly distributed white noise with variance σ2
x = 1, and the measurement

noise is Gaussian white noise uncorrelated with the input with variance σ2
n = 10−3. The filter bank

is a cosine-modulated type of length 32.

(a) Start with a fullband filter using the normalized LMS algorithm.

(b) Compare the results obtained with those using an open-loop subband adaptive filter with three
bands. Plot the MSE for an average of five independent runs, including the local errors and the
overall error.

Solution:

Fig. 12.12 shows the MSE for the fullband normalized LMS algorithm.

The impulse response of the unknown system has infinite length. However, since the samples after
90 are rather small, we use three subband filters of length 30 each. No cross filters are employed.
The convergence factor in all subbands is μ = 0.1, and the parameters of the normalized updating
equation are given by: α = 0.1 and γ = 0.001. The prototype filter coefficients of the cosine-
modulated filter bank are given in Table 12.1. Figs. 12.13 and 12.14 depict the MSE measured in
the subbands and the global error computed after reconstruction of the adaptive-filter output through
the synthesis filter bank. As can be observed, the convergence speed of global and local errors are not
reduced due to the aliasing effects caused by the analysis filter banks. The aliasing errors appear at
the global error and cannot be cancelled by the synthesis filter bank. As we can observe in Fig. 12.12,
the fullband normalized LMS algorithm achieves a larger reduction in the excess of MSE since in
this case there are no aliasing effects. In both examples, some excess MSE is expected since the
unknown system has infinite length.

�
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Table 12.1 Coefficients of the prototype filter of the cosine modulated filter bank

n f(n) n f(n) n f(n) n f(n)

0 0.000689 8 -0.023394 16 0.188567 24 -0.015614

1 -0.000316 9 -0.023179 17 0.163319 25 -0.005030

2 0.001608 10 -0.008268 18 0.119646 26 0.001726

3 0.003180 11 0.023394 19 0.069041 27 0.004631

4 0.004631 12 0.069041 20 0.023394 28 0.003180

5 0.001726 13 0.119646 21 -0.008268 29 0.001608

6 -0.005030 14 0.163319 22 -0.023179 30 -0.000316

7 -0.015614 15 0.188567 23 -0.023394 31 0.000689
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Figure 12.12 MSE in the fullband normalized LMS algorithm.
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Figure 12.13 Subband errors in the open-loop structure.

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 500 1000 1500 2000

E
st

im
at

ed
 M

SE
  (

10
 lo

g(
M

SE
))

Number of iterations, k
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12.5 CROSS-FILTERS ELIMINATION

The design of sophisticated filter banks is beyond the scope of this book. Highly selective subfilters
are key to reduce the importance of the cross filters, and eventually eliminate them. However, for
moderately selective subfilters their elimination will always lead to an excess MSE at the adaptive-
filter output. In this section, we discuss the design of a special type of maximally decimated (M = L)
analysis filter bank for cross-filter elimination [23]. It will be verified that the generation of these
filter banks requires the design of fractional delays, which will also be briefly discussed. The price
paid for the elimination of the cross filters is the design of accurate fractional delays. Unlike the
adaptive cross filters, the fractional delays are fixed filters.

A solution to avoid the cross filters in a maximally decimated structure can be engineered if we
explore the special structure of the blocked matrix representation of the unknown system. This
implementation is given in Fig. 12.7 with H(z) replacing the cascade of E(z) and R(z). In a
subband adaptive-filtering configuration, this blocked matrix H(z) is followed by a parallel-to-serial
converter, belonging to the unknown system, which in turn is in cascade with a serial-to-parallel
converter, belonging to the analysis filter bank represented in the polyphase form. The cascade of
these converters is an identity matrix multiplied by a delay as depicted in Fig. 12.15. Without loss of
generality we can disregard the delay4. Since the polyphase matrix of the analysis filter bank E(z)
follows the pseudocirculant matrix H(z), if we choose an E(z) as a similarity transformation matrix
which transforms H(z) into its Jordan form, we can avoid most of (usually all) the off-diagonal
elements of the adaptive-filter matrix W(z). As mentioned in [18], the Jordan form is the extreme
effort in diagonalizing a matrix. The full diagonalization is impossible only for defective matrices.

In the following discussions, we assume that H(z) is not defective and therefore diagonalizable, that
is, there is a T(z) such that

T(z)H(z)T−1(z) =

⎡
⎢⎢⎢⎣
Wo,0(z) 0 · · · 0

0 Wo,1(z) · · · 0
...

...
. . .

...
0 0 · · · Wo,L−1(z)

⎤
⎥⎥⎥⎦ (12.39)

The matrix T−1(z), whose columns are the eigenvectors of any L × L pseudocirculant matrix, is
given by5

T−1(z) = Γ(z)F (12.40)

4This delay would not appear if we had employed a noncausal representation for the parallel-to-serial converter.
5In fact, any pseudocirculant matrix H(z) can be written as Γ(z)Hc(z)Γ−1(z) where Hc(z) is a circulant matrix. Since

any circulant matrix is diagonalized as F∗Hc(z)F , with F∗ being the inverse of F (in this case just the complex conjugate),
the result of equation (12.40) follows.
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Figure 12.15 (a) Cascade connection of block converters, (b) Equivalent circuit.

where F is the L×L DFT matrix whose element (i, j), for i, j = 0, 1, . . . , L− 1, is given by W ij√
L

,

where W = e
−j2π

L , and

Γ(z) =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 z−

1
L · · · 0

...
...

. . .
...

0 0 · · · z−
L−1

L

⎤
⎥⎥⎥⎦ (12.41)

Now if we examine equations (12.32) and (12.39) more closely, we conclude that by choosing the
polyphase matrix as E(z) = T(z)z−

L−1
L , where the delay was included in order to guarantee causality

of the analysis filter bank, the cross filters are eliminated.
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The optimal adaptive subfilters are given by the eigenvalues of H(z) (refer to equation (12.39)),
whose expressions are

Wo,i(z) =
1√
L

L−1∑
l=0

Hl(z)z−
l
L W li (12.42)

for i = 0, 1, . . . , M − 1, where Hl(z) is the lth polyphase component of H(z).

In conclusion, the polyphase-component matrix of the analysis filter bank is given by

E(z) = F∗Γ−1(z)z−
L−1

L

= F∗

⎡
⎢⎢⎢⎣

z−
L−1

L 0 · · · 0
0 z−

L−2
L · · · 0

...
...

. . .
...

0 0 · · · 1

⎤
⎥⎥⎥⎦ (12.43)

The structure of the analysis filter bank based on fractional delays is depicted in Fig. 12.16. Similarly,
we can derive the structure for the synthesis filter bank utilizing fractional delays illustrated in
Fig. 12.17. It is worth mentioning that selectivity of the subfilters in this type of bank is highly
dependent on the quality of the fractional delays design. The filter banks based on fractional delays
are particularly useful in the delayless subband structures of section 12.6.

12.5.1 Fractional Delays

The review article about fractional delays [31] proposes several techniques for the approximation of
a fractional delay. One of them consists of designing a symmetric Lth band filter (also known as a
Nyquist filter), and keeping its lth polyphase component to represent the fractional delay Δ̃ + l/L.
The delay Δ̃ is the integer part of the group delay inherent to the FIR filter approximating a fractional
delay. The Lth band filter has an impulse response that satisfies

h(kL) =
{

K, k = 0
0, otherwise

(12.44)

where K is a constant value. In the Z-domain, the representation of h(k) is

H(z) = K + z−1E1(zL) + · · ·+ z−(L−1)EL−1(zL) (12.45)

If H(z) satisfies the above condition, it can be shown that [9]

L−1∑
l=0

H(zW l) = LK (12.46)
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Figure 12.16 Analysis filter bank based on fractional delays.

where W = e−
j2π
L . The proof for the above relation is straightforward, if we just replace z by zW l

in equation (12.45), and compute the summation in equation (12.46).

Therefore, a natural proposition to eliminate adaptive cross filters is to design a DFT filter bank with
a lowpass prototype filter given by an Lth band filter whose polyphase components approximate
the fractional delays. The Lth band filter can be easily designed by using the so called eigenfilter
approach for FIR filter approximation [9]. This approach allows the incorporation of the constraints
inherent in the Nyquist filters. The Lth band filter is usually designed as a lowpass filter whose
passband (ωp) and stopband (ωs) edges are symmetric with respect to the normalized frequency π

L ,
that is ωp + ωs = 2 π

L . Although the fractional delays designed using Lth band filters are not very
accurate, they can be considered acceptable for the delayless structures discussed in section 12.6.

Another simple FIR filter design to approximate the fractional delay is through the classical Lagrange
interpolation formula. The interested reader should refer to [31].

Example 12.2

Repeat example 12.1 with a filter bank using fractional delays.
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Figure 12.17 Synthesis filter bank based on fractional delays.

Solution:

For this example we design the fractional delays via a three-band filter. The length of the polyphase
components is 9, with values given in Table 12.5.1. The length of the adaptive filters in the subbands
is N = 30, the convergence factor in all subbands is μ = 0.1, and parameters of the normalized
updating equation are given by α = 0.1 and γ = 0.001.

As can be observed in Figs. 12.18 and 12.19, the errors measured in the subbands and the global
error are rather high due to the aliasing effects. Due to these effects, we can see in Fig. 12.20 that the
magnitude response obtained after convergence resembles the unknown system response although
the approximation is not very close.

�
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Table 12.2 Coefficients of the fractional delays of the analysis filter bank

n E0 E1 E2

0 0.0000 0.0000 0.0000

1 -0.0072 -0.0117 0.0000

2 0.0320 0.0497 0.0000

3 -0.1090 -0.1592 0.0000

4 0.3880 0.8140 1.0000

5 0.8140 0.3880 0.0000

6 -0.1592 -0.1090 0.0000

7 0.0497 0.0320 0.0000

8 -0.0117 -0.0072 0.0000
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Figure 12.18 Subband errors in the open-loop structure.
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Figure 12.19 Global error in the open-loop structure.
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12.6 DELAYLESS SUBBAND ADAPTIVE FILTERING

In the subband adaptive-filtering schemes presented so far, a delay is always introduced in the signal
path due to the filter bank analysis and synthesis. In applications such as acoustic echo cancellation
and active noise control, the delay is highly undesirable. In acoustic echo cancellation, the echo is
not fully canceled and can be perceptually unacceptable. In active noise control the delay reduces
the cancellation bandwidth [21].

In order to avoid the effect of signal path delay in these applications, we can avoid the synthesis filter
bank and map the subband adaptive filters into a wideband filter, leading to the so called delayless
subband adaptive filters. Several techniques to perform this mapping have been proposed [22]-
[27], where the distinctive feature among them is the construction of each analysis filter bank and
its corresponding subband to fullband mapping. In this section, we describe the delayless subband
adaptive filter proposed in [23] which utilizes DFT-based filter banks with fractional delays discussed
in this chapter. Fig. 12.21 depicts the general configuration of a delayless adaptive filter in subbands,
employing a maximally decimated filter bank.

Equation (12.42) gives the coefficients of the optimal subband adaptive filters in each subband,
for the open-loop scheme. The transfer functions of these subfilters represent the eigenvalues of a
pseudocirculant matrix. Therefore, if we apply the inverse DFT to a vector whose elements are the
transfer functions of the adaptive subfilters, we can recover the polyphase components estimates of
the unknown system multiplied by fractional delays as described in the equation below

1√
L

⎡
⎢⎢⎢⎢⎣

Ĥ0(z)
Ĥ1(z)z−

1
L

...

ĤL−1(z)z−
(L−1)

L

⎤
⎥⎥⎥⎥⎦ = F∗

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

W0(z)
W1(z)

...
WL−1(z)

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ (12.47)

It should be noticed that in most cases the length of the adaptive subfilters is chosen as N
L , where N

is the unknown system length. However, from the above equation some extra coefficient should be
allotted to the subband adaptive filters in order to account for the fractional delays.

Since in our case any subfilter of the bank Fi(z) has an inherent fractional delay, it is reasonable to
conjecture that the product Fi(z)z−

i
L represents a filter with one more sample than Fi(z). Through

a number of simulations, we concluded that a single coefficient is enough to perform this task in
closed-loop schemes. As a consequence, the adaptive subfilters have length Ns = N

L + 1.

By denoting each element of the time-domain representation of Wi(z) as wi,l, we can compute the
previous equation in parts as follows⎡

⎢⎢⎢⎣
w′0,l

w′1,l
...

w′L−1,l

⎤
⎥⎥⎥⎦ = F∗

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

w0,l

w1,l

...
wL−1,l

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ (12.48)
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Figure 12.21 Delayless closed-loop subband structure.

for l = 0, 1, . . . , Ns − 1. The polyphase component of the corresponding fullband adaptive filter is
then given by 1√

L
Ĥi(z)z−

i
L = W ′

i (z), where W ′
i (z) represents the Z-transform of w′i,l, and Ĥi(z)

represents an estimate of the ith polyphase component of the unknown system. We can obtain the
polyphase components Ĥi(z) from W ′

i (z), if we note that

Ĥi(z)z−
i
L z−

L−i
L = Ĥi(z)z−1 (12.49)

for i = 0, 1, . . . , L−1. The above discussion indicates that the cascade of W ′
i (z) with the fractional

delay Ei−1(z), i = 1, . . . , L−1, leads to the polyphase component Ĥi(z) delayed by Δ̃+1 samples
and scaled by 1√

L
. Recall that Δ̃ is the integer part of the group delay introduced by the design of

the fractional delays.
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Note that the impulse response of Ĥ0(z) is represented by w′0,l. Similarly, we can infer that

W ′
0(z) ≈ 1√

L
Ĥ0(z)

W ′
i(z)Ei−1(z) ≈ 1√

L
Ĥi(z)z−(Δ̃+1) (12.50)

for i = 1, . . . , M − 1. In conclusion, to obtain the first polyphase filter Ĥ0(z) we simply discard
the last sample of w′0,l. For Ĥi(z), with i = 1, . . . , M − 1, we discard the first Δ̃ + 1 samples and
retain the next Ns− 1 samples (here the reader should recall that we used an extra coefficient for the
adaptive subfilters to compensate for the fractional delay in the subfilter of the analysis bank). The
fullband filter is then formed by

Ĥ(z) =
L−1∑
i=0

Ĥi(zL)z−i (12.51)

The delayless closed-loop algorithm is described in detail inAlgorithm 12.3, where e(mL) represents
a length L block of the error signal at instant mL. The detailed structure is shown in Fig. 12.22. It is
worth mentioning that the delayless closed-loop structure does not suffer as much from the stability
problems inherent in the standard closed-loop subband structure. This is because we do not have to
reconstruct the adaptive-filter output through a synthesis filter bank in order to generate the global
error. This reconstruction originates part of the convergence problems of the standard closed-loop
structure.

Example 12.3

Repeat example 12.1 using the closed-loop delayless structure whose filter banks employ fractional
delays.

Solution:

For this example, we use the same parameters as Example 12.2. As can be observed in Figs. 12.23
and 12.24, the errors measured in the subbands and the global error are reduced despite the fact that
the subfilters of the filter bank are not very selective. In this case, the delayless closed-loop structure
is able to compensate for the limitations of the filter bank. Fig. 12.25 shows that the magnitude
response obtained after convergence is very close to the unknown system response.

�

12.6.1 Computational Complexity

An interesting issue to illustrate the results of this chapter is to assess the overall computational
complexity of the subband structure. The computational complexity is counted in multiplications
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per input sample, and considering that the product of complex values is implemented through four
real multiplications. In the delayless subband structure, the overall computation consists of the
components described below.

The subband decomposition: It consists of one convolution of an Npr-length prototype fil-
ters, which is the total number of coefficients required to realize all the fractional delays, and
one L-point FFT for each block of L input samples. Assuming that the number of complex

Figure 12.22 Detailed delayless closed-loop subband structure.



51912.6 Delayless Subband Adaptive Filtering

Algorithm 12.3

Delayless Closed-Loop Subband Adaptive-Filtering Algorithm

Initialization
x(0) = wl(0) = [0 0 . . . 0]T

γ = small constant
0 < α ≤ 0.1

Do for each x(iL) and d(iL) given, for i ≥ 0
u(m) = F∗ [ E0 · · · ENp

] [
x(i) · · · x(i−Np)

]T
where El, for l = 0, 1, . . . , Np are diagonal matrices whose
elements are the lth element of the impulse response of the filter
implementing the fractional delays, and Np is the order of
fractional delays implementation.⎡
⎢⎢⎢⎣

w′0,l

w′1,l
...

w′L−1,l

⎤
⎥⎥⎥⎦ = F∗

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

w0,l

w1,l

...
wL−1,l

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

Get 1√
L

Ĥ0(z) by discarding the last sample of w′0,l.

For 1√
L

Ĥi(z), with i = 1, . . . , L− 1, we discard the first Δ̃ + 1
samples of the impulse response corresponding to equation (12.50)
and retain the following Ns − 1 samples.

ĥ(k) is the impulse response of Ĥ(z) =
∑L−1

i=0 Ĥi(zL)z−i.

e(k) = d(k)− ĥ
H

(k)x(k)
e′(m) = F∗ [ E0 · · · ENp

] [
e(i) · · · e(i−Np)

]T
Do for each for 0 ≤ l ≤ L− 1

σ2
l (m) = (1− α)σ2

l (m− 1) + α |ul(m)|2
wl(m + 1) = wl(m) + 2μ

γ+Nsσ2
l (m)u∗l (m)e′l(m)

multiplications required to compute a L-point FFT is L
2 log2 L, see [33], we obtain

2Npr

L
+ 2 log2 L (12.52)

real multiplications per input sample for the two analysis filter banks. The symmetry of the
IDFT for real signals allows us to process only half of the L channel complex signals. Therefore,
we have to update L

2 adaptive filters.
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Figure 12.23 Subband errors in the closed-loop structure.

The subband NLMS algorithm: Considering that we have to update L
2 adaptive filters of length

Ns = N
L + 1 for every L input samples, the computational complexity entails

2
N + L

L
(12.53)

real multiplications per input sample.

For the open-loop scheme an additional of 2N+L
L is required to evaluate the adaptive-filters

outputs y(m).

The wideband filter convolution: There are some approaches to reduce the computational com-
plexity of the wideband convolution as discussed in [22]. Here we consider only the direct
implementation which entails N multiplications per output sample.

The transformation from the subband adaptive filters to the wideband adaptive filter: It consists
of Ns IFFTs and L− 1 convolutions with the polyphase filters as indicated in equation (12.50).
However, there is no need to perform the transformation for every L input samples, since in
most applications the fullband adaptive-filter output cannot vary much faster then the length of
filter impulse response. The computational cost is then given by

1
r

[
(
N

L
+ 1) log2 L +

NNpr(L− 1)
L3

]
(12.54)

real multiplications per input sample, where rL represents how often the transformation is
performed in terms of the number of input samples.
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Figure 12.24 Global error in the closed-loop structure.

The overall computational complexity for the closed-loop scheme is

Pc =
2Npr

L
+ 2 log2 L +

2(N + L)
L

+
1
r

[
(
N

L
+ 1) log2 L +

NNpr(L− 1)
L3

]
+ N (12.55)

while for the open-loop scheme we have

Po =
2Npr

L
+ 2 log2 L +

4(N + L)
L

+
1
r

[
(
N

L
+ 1) log2 L +

NNpr(L− 1)
L3

]
+ N (12.56)

12.7 FREQUENCY-DOMAIN ADAPTIVE FILTERING

Frequency-domain adaptive algorithms, which employ block processing in order to reduce the com-
putational complexity associated with high-order adaptive filters, have been suggested in [34]. Such
algorithms utilize FFTs to implement convolutions (for filtering) and correlations (for coefficient
updating). More general block algorithms, in which the block size can be smaller than the order of
the adaptive filter, have also been investigated [35]. Such approach, called multidelay adaptive filter
(MDF) [37]-[40], utilizes adaptive filters in the bins (equivalent to the subbands), unlike the original
frequency-domain adaptive-filtering algorithms that use a single adaptive coefficient in each bin.
Like the subband adaptive filters discussed so far, frequency-domain adaptive filters can increase the
convergence speed by decreasing the eigenvalue spread of the autocorrelation matrices of the signals
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Figure 12.25 Magnitude responses of the unknown system and the obtained model at a given iteration.

at the inputs of the adaptive filters. In fact, the subband and the frequency-domain adaptive filters
are closely related as will become clear in the sequel.

Let us consider the case where both the input and desired signals are presented in their corresponding
blocked versions as described in subsection 12.3.6. The adaptive filter transfer function is represented
by a blocked matrix denoted by Ĥ(z). In this case, the adaptive-filter output is also represented in
block form y(m), which in turn is compared with the desired signal block d(m). These vectors are
defined as

y(m) = [y(mL) y(mL− 1) . . . y(mL− L + 1)]T

x(m) = [x(mL) x(mL− 1) . . . x(mL− L + 1)]T

d(m) = [d(mL) d(mL− 1) . . . d(mL− L + 1)]T (12.57)

In the particular case where the matrix Ĥ(z) is 3× 3, we have

Ĥ(z) =

⎡
⎣ Ĥ0(z) Ĥ1(z) Ĥ2(z)

z−1Ĥ2(z) Ĥ0(z) Ĥ1(z)
z−1Ĥ1(z) z−1Ĥ2(z) Ĥ0(z)

⎤
⎦

= Ĥ0(z)Ĥ1(z) (12.58)
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where Ĥi(z), i = 0, 1, 2, are the polyphase components of W (z), and

Ĥ0(z) =

⎡
⎣ Ĥ0(z) Ĥ1(z) Ĥ2(z) 0 0 0

0 Ĥ0(z) Ĥ1(z) Ĥ2(z) 0 0
0 0 Ĥ0(z) Ĥ1(z) Ĥ2(z) 0

⎤
⎦

Ĥ1(z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

z−1 0 0
0 z−1 0
0 0 z−1

⎤
⎥⎥⎥⎥⎥⎥⎦ (12.59)

The last column of Ĥ0(z) and the last row of Ĥ1(z) were artificially added to generate a square
circulant matrix in the sequel whose dimension can be designed to be a power of two, allowing the
use of FFTs. The overall factorization of Ĥ(z) as above described is crucial to derive the frequency-
domain algorithm and the MDF in the sequel. It is worth noting that our presentation follows the
embedding approach which was generalized in [41], and was indirectly employed in [42]. The
embedding approach leads to a simpler derivation than those presented in early references [35]-[40].

The embedding approach starts by defining a circulant matrix Ĥ2(z) as follows

Ĥ2(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ĥ0(z) Ĥ1(z) Ĥ2(z) 0 0 0
0 Ĥ0(z) Ĥ1(z) Ĥ2(z) 0 0
0 0 Ĥ0(z) Ĥ1(z) Ĥ2(z) 0
0 0 0 Ĥ0(z) Ĥ1(z) Ĥ2(z)

Ĥ2(z) 0 0 0 Ĥ0(z) Ĥ1(z)
Ĥ1(z) Ĥ2(z) 0 0 0 Ĥ0(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12.60)

The matrix Ĥ0(z) is embedded into Ĥ2(z), that is:

Ĥ0(z) =
[

IL 0
]

Ĥ2(z) (12.61)

where in the above equation we treat the general case, i.e., for block length equal to L instead of 3.
Since the matrix Ĥ2(z) is circulant, it can be diagonalized by a DFT matrix as follows

Ĥ2(z) = F∗W(z)F (12.62)

where W(z) is a diagonal matrix. If these diagonal elements are given by single complex coefficients,
the resulting algorithm is the so-called frequency-domain algorithm, whereas for higher order filters
the resulting algorithm is called MDF.

From equations (12.58), (12.61) and (12.62), we can relate the blocked matrix of the overall adaptive
filter to the adaptive filter in the bins as follows

Ĥ(z) =
[

IL 0
]F∗W(z)FĤ1(z) (12.63)
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In the frequency domain, the block output is given by

Z[y(m)] = Ĥ(z)Z[x(m)] (12.64)

whereas the error signal vector is given by

Z[e(m)] = Z[d(m)]−Z[y(m)] (12.65)

We use as an objective function the squared values of the error vector elements, that is

ξ =
L−1∑
i=0

|ei(m)|2 (12.66)

In problem 16, the resulting gradient estimate for the set of coefficients placed at each bin is shown
to be given by

ĝw,i(m) = −2u∗i (m)
(
F
[

IL

0

]
e(m)

)
i

= −2u∗i (m) (ẽ(m))i

= −2u∗i (m)ẽi(m) (12.67)

where u∗i (m) represents the complex conjugate of the data vector stored in ith bin, at instant m, and
(ẽ(m))i denotes the ith element of vector ẽ(m) with

ẽ(m) = F
[

IL

0

]
e(m)

It is worth mentioning that the data vectors are calculated as follows

Z

⎡
⎢⎣ uT

0 (m)
...

uT
2L−1(m)

⎤
⎥⎦ = FĤ1(z)Z [x(m) · · · x(m−Ns + 1)] (12.68)

In this case, the NLMS updating equation is given by

wi(m + 1) = wi(m) +
2μ

γ + σ2
i (m)

u∗i (m)ẽi(m) (12.69)

for i = 0, 1, . . . , Ns, where Ns is the length of the adaptive filter at the output of bin i, and σ2
i (m) =

(1− α)σ2
i (m− 1) + α |ui(m)|2, with 0 < α ≤ 0.1 and γ is a small constant as established before.
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If we examine the first row of the matrices in equation (12.62) and use the fact that F is a symmetric
matrix, it is straightforward to infer that⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĥ0(z)
Ĥ1(z)

...
ĤL−1(z)

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1√
2L
F

⎡
⎢⎢⎢⎣

W0(z)
W1(z)

...
W2L−1(z)

⎤
⎥⎥⎥⎦ (12.70)

where Wi(z), for i = 0, 1, . . . , 2L−1, are the transfer functions of the subfilters of W(z). The above
equation shows that the adaptive filters in the bins must be constrained such that Ĥ2(z) contains the
estimates of the polyphase components of the unknown system. Note that, in the update equation
(12.69), it is not guaranteed that this constraint is satisfied.

As a solution, we can enforce the constraint in the adaptive-filter updating with the help of equation
(12.70), as follows. First define the matrices that include all the coefficients and data of all subfilters:

WWW(m) =

⎡
⎢⎢⎢⎣

wT
0 (m)

wT
1 (m)

...
wT

2L−1(m)

⎤
⎥⎥⎥⎦

UUU(m) =

⎡
⎢⎢⎢⎣

uH
0 (m)

uH
1 (m)

...
uH

2L−1(m)

⎤
⎥⎥⎥⎦ (12.71)

and a diagonal matrix EEE(m) whose nonzero elements are the entries of vector ẽ(m).

In matrix form the updating equation (12.69) can be rewritten as

WWW(m + 1) =WWW(m) + 2μΣ−2(m)EEE(m)UUU(m) (12.72)

where Σ−2(m) is a diagonal matrix whose elements are 1
γ+σ2

i (m) , with σ2
i (m) = (1 − α)σ2

i (m −
1) + α |ui(m)|2.

A constrained version of the above equation can be derived by observing equation (12.70). The
resulting algorithm consists of enforcing the constraint in the update equation as follows (see problem
17)

WWWc(m + 1) = F∗
[

IL

0

] [
IL 0

]FWWW(m + 1) (12.73)

The above algorithm is widely known as the constrained frequency-domain algorithm. The original
constrained algorithm was derived for a single coefficient per bin, not for the more general MDF.
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Also, the particular version of the algorithm presented here corresponds to the overlap-save version,
in which the constraints are included in order to guarantee that the internal DFTs perform linear
convolutions on the signals involved. By examining equation (12.63), the reader should note that
the transform applied to the input signal after it is filtered by Ĥ1(z) has length 2L, whereas in the
calculation of the adaptive-filter output block, L signals are discarded due to the product by [IL 0].
This reflects the overlap-save characteristic of the algorithm. The block diagram related to this
algorithm is depicted in Fig. 12.26.

Figure 12.26 Frequency-domain adaptive-filtering structure.

The description of the constrained frequency-domain algorithm is detailed in Algorithm 12.4. Like-
wise, an overlap-add version of the constrained frequency domain algorithm also exists, and interested
readers should refer to [36], [41] (see problem 18).

It is worth mentioning that a delayless version of the constrained frequency-domain algorithm fol-
lows directly from equation (12.70) which implements the mapping from the subband filter to the
polyphase components of the fullband estimate. It is also important to note that although the em-
bedding approach presented here was based on the DFT, it can also be employed using other class
of transforms such as DCT, DST and Hartley transform. Though these alternative transforms re-
quire more cumbersome embedding formulations, they do not require complex arithmetic when
environment signals are not represented by complex numbers [41].

Example 12.4

Repeat example 12.1 using the multidelay structure with L = 64 and the frequency-domain structure.
Choose the appropriate order for the subfilters in the multidelay case.
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Algorithm 12.4

Constrained Frequency-Domain Algorithm

Initialization
γ = small constant
0 < α ≤ 0.1

Do for each x(iL) and d(iL) given, for i ≥ 0⎡
⎢⎣ uT

0 (m)
...

uT
2L−1(m)

⎤
⎥⎦ = FĤ1(z) [x(m) · · · x(m−Ns + 1)]

the dimension of F is 2L.

e(m) = d(m)− [ IL 0
]F∗

⎡
⎢⎢⎢⎣

wT
c,0(m)u∗0(m)

wT
c,1(m)u∗1(m)

...
wT

c,2L−1(m)u∗2L−1(m)

⎤
⎥⎥⎥⎦

where wc,l are the constrained adaptive-filter coefficients of the
(l − 1)th subband, that is the (l − 1)th row ofWWWc(m).

ẽ(m) = F
[

IL

0

]
e(m)

σ2
i (m) = (1− α)σ2

i (m− 1) + α |ui(m)|2
WWW(m + 1) =WWW(m) + 2μΣ−2(m)EEE(m)UUU(m)

WWWc(m + 1) = F∗
[

IL

0

] [
IL 0

]FWWW(m + 1)

Solution:

For the frequency-domain algorithm we use a block size of 90 and the following parameters: α = 0.5,
γ = 0.001, and μ = 0.2. The average MSE obtained from five runs is −29.2 dB.

Fig. 12.27 depicts the global MSE where the algorithm converges rather fast to the minimum MSE.
Fig. 12.28 shows that the magnitude response obtained after convergence approaches the unknown
system response.

For the multidelay filter, we use a block size of 18 with five coefficients in each bin and the following
parameters: α = 0.1, γ = 0.001, and μ = 0.4. The average MSE obtained from five runs is −29.0
dB. Fig. 12.29 depicts the global MSE where we observe that the MDF algorithm also converges
fast to the minimum MSE. Fig. 12.30 shows that the magnitude response obtained after convergence
does not approach so closely the unknown system response.
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Figure 12.27 Global error of the frequency-domain structure.
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Figure 12.28 Magnitude responses of the unknown system and the obtained model at a given iteration.
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Figure 12.29 Global error of the MDF structure.
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Figure 12.30 Magnitude responses of the unknown system and the obtained model at a given iteration,
MDF case.
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12.8 CONCLUSION

Subband adaptive filters are viable solutions to reduce the high-computational complexity inherent
in applications where long-impulse-response models are required. In addition, the effective split of
the internal signals into subbands leads to fast convergence.

This chapter presented several subband structures. After a brief introduction to multirate systems,
we discussed the design of two-band and M -band perfect reconstruction filter banks. The subband
adaptive filters using local subband errors, leading to the open-loop structure, were described. The
closed-loop subband filters, which make use of the global error, were also introduced. We presented a
special type of filter bank which aims to eliminate cross adaptive filters and utilizes fractional delays.

Another type of subband adaptive filter is based on a delayless structure. In this structure, the
adaptive-filter coefficient updating is performed in subbands and a subband to fullband mapping
allows the input signal to be filtered in fullband. This strategy avoids the signal path delay introduced
by the filter bank. Also, we presented expressions to estimate the computational complexity of the
subband adaptive filters.

Finally, we presented the frequency-domain and multidelay structures, which employ block pro-
cessing and are closely related to subband adaptive filters. These structures further lead to reduced
computational complexity.
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12.10 PROBLEMS

1. Show the validity of equation (12.1).

2. Design a linear-phase two-band filter bank of order 42 using the approach described in subsection
12.3.1.
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3. Design a uniform linear-phase 8-band filter bank having at least 40dB of stopband attenuation,
using a hierarchical filter bank.

4. Design a uniform 8-band filter bank having at least 40dB of stopband attenuation, using the
cosine-modulated method.

5. Design a fractional delay via a Nyquist filter having at least 60dB of stopband attenuation.

6. Use an open-loop subband adaptive filter with four bands to identify a system with the transfer
function given below. The input signal is a uniformly distributed white noise with variance
σ2

x = 1, and the measurement noise is Gaussian white noise uncorrelated with the input with
variance σ2

n = 10−3. The filter bank is a cosine-modulated type of length 64.

H(z) =
0.1z

(z + 0.9)
+

0.1z

(z − 0.9)

Choose the order of the equivalent FIR filter as the one for which the envelop of the unknown
system impulse response falls below 1

1000 of its leading term. Plot the MSE for an average of
five independent runs, including the local errors and the overall error.

7. Repeat the previous problem using a closed-loop algorithm and interpret the results.

8. Show that the recursive equation governing the convergence of the adaptive coefficients in the
closed-loop structure has the characteristic polynomial of equation (12.36).

9. For a prototype filter of length256, and32 subbands, calculate and plot the ratio between the com-
putational complexities of the subband and fullband implementations, forN = 256, 512, 1024, 2048,
and 4096. Consider the maximally decimated case as well as the cases where L = M − 1,
L = 3M

4 , and L = M
2 . Assume we are using a simple DFT filter bank (which is similar to the

filter bank using fractional delays where these delays are replaced by a transfer function equal
to one) and consider the cases of open-loop and closed-loop structures.

10. Replace the structure in problem 6 by the closed-loop and open-loop delayless structures with
the fractional delays designed via a Nyquist filter of order 64.

11. In a system identification problem, the input signal is a uniformly distributed white noise with
variance σ2

nx
= 0.1, filtered by an all-pole filter given by

Hnx
(z) =

z

z − 0.95

The unknown system is a 300th-order FIR filter whose impulse response is identical to the first
301 impulse response samples of the transfer function described by

H(z) =
0.00756z2

(z2 − 1.960636z + 0.9849357)

Choose the appropriate parameters, run an ensemble of 5 experiments, and plot the average
learning curve. Use the delayless subband filter using fractional delays in the open-loop scheme,
with 8-bands.

12. Repeat problem 11 using the closed-loop structure.
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13. Prove that the expressions for the computational complexity of the subband adaptive filters in
equations (12.52) to (12.56) are valid.

14. Solve problem 6 using the frequency-domain structure with L = 64.

15. Solve problem 6 using the multidelay structure with L = 16. Choose the appropriate order for
the subfilters.

16. Prove the validity of equations (12.67), (12.68), and (12.70). Hint: Create a block-diagonal
matrix of subband input signals consisting of

diag{uT
0 (m) uT

1 (m) · · · uT
2L−1(m)}

and a vector containing all the elements of the subband adaptive filters⎡
⎢⎢⎢⎣

w0(m)
w1(m)

...
w2L−1(m)

⎤
⎥⎥⎥⎦

17. Demonstrate how the relation below enforces the constraint of equation (12.70).

F∗
[

IL

0

] [
IL 0

]F
18. Derive an overlap-add version of the frequency-domain algorithm using the embedding strategy

in which a 3× 3 matrix Ĥ(z) can be written as

Ĥ(z) = Ĥ3(z)Ĥ4(z)

where

Ĥ3(z) =

⎡
⎣ 0 0 1 0 0

z−1 0 0 1 0
0 z−1 0 0 1

⎤
⎦

Ĥ4(z) =

⎡
⎢⎢⎢⎢⎢⎣

Ĥ2(z) 0 0
Ĥ1(z) Ĥ2(z) 0
Ĥ0(z) Ĥ1(z) Ĥ2(z)

0 Ĥ0(z) Ĥ1(z)
0 0 Ĥ0(z)

⎤
⎥⎥⎥⎥⎥⎦



13
BLIND ADAPTIVE FILTERING

13.1 INTRODUCTION

There are a number of applications where the reference signal is either not available or consists of a
training signal that in communication systems implies in reduction of useful data transmission. In
those cases, we should utilize some alternative objective functions applied to the available data as
well as some knowledge related to the nature (properties) of the signals involved.

In this chapter, some adaptive-filtering algorithms are presented which do not utilize reference signal
that are collectively known as blind adaptive-filtering algorithms. The algorithms are also called
training-less or unsupervised algorithms since their learning do not include any reference or training
signal. This chapter makes no attempt to cover this subject in breadth and in depth, but the interested
reader can consult some books [1]-[4] for further details.

There are two main types of blind signal processing procedures widely discussed in the literature,
namely blind source separation and blind deconvolution. In the former case several signal sources
are mixed by an unknown environment and the objective of the blind signal processor is to separate
these signal sources [2]. On the other hand, the blind deconvolution aims at removing the effect of
a linear time-invariant system on a signal source where the only assumptions are the observation of
the signal before the deconvolution process and the probability density of the input signal source.

Blind deconvolution is obviously closely related to blind equalization, and the distinction lies on the
fact that in the equalization case it is usually assumed that the input signal belongs to a prescribed finite
set (constellation) and the channel is a continuous-time channel. These features of the equalization
setup are assets that can be exploited by allowing nonlinear channel equalization solutions, whereas
blind deconvolution employs linear solutions because its input signal cannot be considered to belong
to a finite set constellation. However, it is fact that several solutions for both problems are closely
related and here we emphasize the blind equalization case.

P.S.R. Diniz, Adaptive Filtering, DOI: 10.1007/978-0-387-68606-6_13,  
© Springer Science+Business Media, LLC 2008  
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In blind equalization the channel model is either identified explicitly or implicitly. The algorithms uti-
lizing as objective function the minimization of the MSE or generating a zero-forcing (ZF) solution1

in general do not estimate the channel model explicitly. On the other hand, nonlinear solutions
for channel equalization such as maximum likelihood sequence detector (MLSD) [8] and the DFE
require explicit estimation of the channel model.

As a rule, the blind signal processing algorithms utilize second and higher order statistics indirectly
or explicitly. The high-order statistics are directly employed in algorithms based on cummulants, see
[9] for details, and they usually have slow convergence and high complexity. There is yet another
class of algorithms based on models originated from information theory [3].

This chapter deals with blind algorithms utilizing high-order statistics implicitly for the single-input
single-output (SISO) equalization case, e.g. constant modulus algorithm (CMA), and algorithms
employing second-order statistics for the single-input multi-output (SIMO) equalization case. Un-
fortunately the SISO blind solutions have some drawbacks related to the multiple minima solutions,
slow convergence, and difficulties in equalizing channels with nonminimum phase2. In the SIMO
case we are usually dealing with oversampled received signal, that is, the received signal is sampled
at rate multiple of the symbol rate (at least twice). Another SIMO situation is whenever we use
multiple receive antennas that can be proved to be equivalent to oversampling. Such sampling higher
than baud rate results in received signals which are cyclostationary allowing the extraction of phase
information of the channel. In the case of baud rate sampling and WSS inputs, the received signal
is also WSS and only minimum-phase channels can be identified from second-order statistics since
the channel phase information is lost. Under certain assumptions the SIMO configuration allows the
identification of the channel model as well as blind channel equalization utilizing only second-order
statistics. In particular, this chapter presents the Godard, CM, and Sato algorithms for the SISO case.
We also discuss some properties related to the error surface of the CMA. Then we derive the blind
CM affine projection algorithm which is then applied to the SISO and SIMO setups.

13.2 CONSTANT-MODULUS ALGORITHM

In this section we present a family of blind adaptive-filtering algorithms that minimizes the distance
between the modulus of the equalizer output and some prescribed constant values, without utilizing a
reference signal. These constant values are related to the modulus of constellation symbols, denoted
by C, of typical modulations utilized in many digital communication systems. The earlier blind
equalization proposals addressed the case of Pulse Amplitude Modulation (PAM) for the case the
channel model is considered a linear time-invariant Single-Input Single-Output (SISO) system [5]-
[6], operating at symbol rate. This approach was latter generalized in [7] by modifying the objective
function to consider higher order statistics of the adaptive-filter output signal that accommodates the
case of Quadrature Amplitude Modulation (QAM).

1In the ZF solution the equalized signal is forced to be equal to the transmitted signal, a solution not recommended
whenever the environment noise is not negligible, due to noise enhancement. The ZF equalizer aims at estimating a channel
inverse in order to eliminate intersymbol interference.

2Channels whose discrete-time models have poles and zeros outside the unit circle.
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Let’s assume here that symbols denoted by s(k) are transmitted through a communication channel.
The channel impulse response described by h(k) convolves with the sequence s(k) generating the
received signal given by

x(k + J) = s(k)h(J) +

⎛
⎝ k+J∑

l=−∞, l �=k

s(l)h(k + J − l)

⎞
⎠+ n(k + J) (13.1)

where J denotes the channel time delay which will be considered zero without loss of generality.
The transmitted signals s(k) belong to a set of possible symbols, that is s(k) ∈ C, with C representing
the constellation set, defined by the chosen constellation such as PAM3 and the complex QAM. The
symbol occurrence is uniformly distributed over the defined elements of the constellation. In the
following we present the Godard algorithm which relies on a high-order statistics property of the
chosen constellation to define its updating mechanism.

13.2.1 Godard Algorithm

The general objective of the Godard algorithm utilizing the criterion proposed in [7] is to minimize

ξGodard = E
[
(|wH(k)x(k)|q − rq)p

]
= E [(|y(k)|q − rq)p]
= E [ep

Godard(k)] (13.2)

with

rq =
E[|s(k)|2q]
E[|s(k)|q] (13.3)

where q and p are positive integers. The value of rq defines the level which |y(k)|q should approach,
with a penalization error powered by p.

The simple stochastic gradient version of this algorithm can be obtained by differentiating the ob-
jective function of equation (13.2) with respect to w∗(k). The resulting updating equation is given
by

w(k + 1) = w(k)− 1
2

μ p q (|y(k)|q − rq)p−1 |y(k)|q−2 y∗(k) x(k)

= w(k)− 1
2

μ p q ep−1
Godard(k) |y(k)|q−2 y∗(k) x(k) (13.4)

The detailed description of the Godard algorithm is provided by Algorithm 13.1.

3The M -ary PAM constellation points are represented by si = ãi, with ãi = ±d̃, ±3d̃, . . . , ±(
√

M − 1)d̃. The
parameter d̃ represents half of the distance between two points in the constellation.
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Algorithm 13.1

Godard Algorithm

Initialization
Choose p and q
x(0) = w(0) = random vectors
rq = E[|s(k)|2q ]

E[|s(k)|q ]
Do for k > 0

y(k) = wH(k)x(k)
eGodard(k) = |y(k)|q − rq

w(k + 1) = w(k)− 1
2 μ p q ep−1

Godard(k) |y(k)|q−2 y∗(k) x(k)

13.2.2 Constant-Modulus Algorithm

For q = p = 2 in the Godard framework, the objective function of equation (13.2) corresponds to
the constant-modulus algorithm (CMA) whose objective function is described by

E
[
e2
CMA(k)

]
= E

[
(|wH(k)x(k)|2 − r2)2

]
= E

[
(|y(k)|2 − r2)2

]
(13.5)

In this case,

r2 =
E[|s(k)|4]
E[|s(k)|2] (13.6)

meaning that whenever the input symbols have constant modulus, the CM error minimization aims
at keeping the modulus |y(k)|2 as close as possible to the constant value of r2. For the CMA, the
stochastic gradient update equation is given by

w(k + 1) = w(k)− 2μ (|y(k)|2 − r2) y∗(k) x(k)
= w(k)− 2μ eCMA(k) y∗(k) x(k) (13.7)

Algorithm 13.2 describes in detail the CM algorithm.

13.2.3 Sato Algorithm

A historically important objective function somewhat related to the case of the Godard algorithm
above is the so-called Sato algorithm whose objective function is defined as

eSato(k) = y(k)− sgn[y(k)]r1 (13.8)
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Algorithm 13.2

Constant-Modulus Algorithm

Initialization
x(0) = w(0) = random vectors
r2 = E[|s(k)|4]

E[|s(k)|2]
Do for k ≥ 0

y(k) = wH(k)x(k)
eCMA(k) = |y(k)|2 − r2
w(k + 1) = w(k)− 2μ eCMA(k) y∗(k) x(k)

Algorithm 13.3

Sato Algorithm

Initialization
x(0) = w(0) = random vectors
r1 = E[|s(k)|2]

E[|s(k)|]
Do for k ≥ 0

y(k) = wH(k)x(k)
eSato(k) = y(k)− sgn[y(k)]r1
w(k + 1) = w(k)− μ eSato(k) x(k)

where sgn[y] = y
|y| such that for y = 0, sgn[y] = 1. Its update equation is described by

w(k + 1) = w(k)− μ (y(k)− sgn[y(k)]r1) x(k)
= w(k)− μ eSato(k) x(k) (13.9)

In this case, the target is that the equalized signal y(k) follows the sign of the transmitted symbol, that
is, this algorithm follows the decision direction whenever the input signal is a binary PAM signal.
The Sato algorithm was the first blind adaptive equalizer taking into consideration PAM transmission
signals with multilevel. Algorithm 13.3 describes step by step the Sato algorithm.
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13.2.4 Error Surface of CMA

In this subsection we derive an expression for the CMA error surface for a simple and yet illustrative
case, where both the symbol constellation as well as the adaptive-filter coefficients are real valued.
Let’s assume the simplest equalization problem where the unknown channel is modeled as

H(z) =
κz

z + a
(13.10)

In a noiseless environment this channel has an ideal equalizer (zero forcing) given by

W (z) = ±z−i
(
w0 + w1z

−1)
= ±z−i

κ
[1 + az−1] (13.11)

where i is a nonnegative integer. For i = 0 it leads to an equalized signal with zero delay. For the
CMA case, the objective function in this particular example can be written as

ξCMA = E
{
[|y(k)|2 − r2]2

}
= E[|y(k)|4]− 2E[|y(k)|2]r2 + r2

2 (13.12)

The required expected values for the above equation are given by

E[|y(k)|2] = (w2
0 + w2

1)
κ2E[|s(k)|2]

1− a2 − 2w0w1
aκ2E[|s(k)|2]

1− a2 (13.13)

E[|y(k)|4] = (w4
0 + w4

1)
[
κ4E[|s(k)|4]

1− a4 +
6a2κ4{E[|s(k)|2]}2
(1− a4)(1− a2)

]

+6w2
0w

2
1

{
a2
[
κ4E[|s(k)|4]

1− a4 +
6a2κ4{E[|s(k)|2]}2
(1− a4)(1− a2)

]
+

κ2{E[|s(k)|2]}2
1− a2

}

−4w0w
3
1a

{[
κ4E[|s(k)|4]

1− a4

]
+

6a2κ4{E[|s(k)|2]}2
(1− a4)(1− a2)

}

−4w3
0w1

{
a3
[
κ4E[|s(k)|4]

1− a4 +
6a2κ4{E[|s(k)|2]}2
(1− a4)(1− a2)

]
+

3aκ4{E[|s(k)|2]}2
1− a2

}
(13.14)

where the detailed derivations pertaining to the above equations can be found in problem 2.

Example 13.1

Assume a QAM signal with four symbols is transmitted through an AR channel whose transfer
function is

H(z) =
0.36z

z + a

for the cases where a = 0.4 and a = 0.8, respectively. The equalizer is a first-order FIR adaptive
filter as described in equation (13.11). For a signal to noise ratio of 10dB, plot the CMA error surface
and its corresponding contours.
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Solution:

Fig. 13.1 depicts the error surface and its contours for the CM objective function, with a = 0.4, where
the surface is flattened for certain ranges of w0 and w1 in order to allow a better view of valleys
and local minima and maxima. As can be verified the surface presents multiple minima, the ones at
w0 = 0 do not correspond to global minima. The surface shape indicates that if a good initial point
is not given to a CM-based algorithm, the parameters will converge to an undesirable local minima
where the equalization performance might be very poor. In addition, if the algorithm traverses a
region in the neighborhood of a saddle point the convergence of stochastic gradient algorithms can
be particularly slow. Fig. 13.2 shows the error surface and its contours for a = 0.8, where in this
case the local minima are not so visible but they do exist.

�

Example 13.2

In this example we consider an equalization problem. Perform the equalization of a channel with the
following impulse response

h = [1.1 + j0.5 0.1− j0.3 − 0.2− j0.1]T

The transmitted signals are uniformly distributed four QAM samples with unitary power. An ad-
ditional Gaussian white noise with variance 10−2.5 is present at the channel output. Utilize the CMA.

(a) Find the Wiener solution for an equalizer with five coefficients and convolve with the channel
impulse response.

(b) Perform a blind equalization also with five coefficients and depict the detected symbols before
and after the equalization.

Solution:

(a) In the first step, we compute the Wiener solution and perform the convolution with the channel
impulse response in order to verify the effectiveness of the equalizer order in the present example.
For a delay of 1, the convolution samples are given by

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0052 + j0.0104
0.9675 + j0.0000
0.0074 + j0.0028
−0.0548− j0.0014
0.0129 + j0.0222
−0.0939− j0.0075
0.0328− j0.0098

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
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Figure 13.1 (a) CMA error surface, (b) CMA contours; a=0.4.
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Figure 13.2 (a) CMA error surface, (b) CMA contours; a=0.8.
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where as can be observed the real part of the second sample is much higher than the remaining
samples, showing that the equalization is successful.

(b) In Fig. 13.3 it is shown how the received signals are distributed in the input signal constellation
space, and as can be observed and expected the received signal requires an equalizer for proper
detection.
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Figure 13.3 Receiver signals before equalization.

By applying the CMA to solve the equalization problem with μ = 0.001, we run the algorithm for
10000 iterations with the results measured by averaging the outcomes of 200 independent runs. By
initializing the adaptive-filter coefficients at

w(0) =

⎡
⎢⎢⎢⎢⎣
−1.627563− j0.443856
−0.121194 + j0.338364
0.189390 + j0.063311
0.575142− j0.062878
0.364852− j0.6053977

⎤
⎥⎥⎥⎥⎦

the last 1000 equalized signals fall in the regions depicted in Fig. 13.4 representing the input signal
constellation space. As can be verified, the equalized symbols present four clusters which are not
centered at the actual transmitted symbols positions. On the other hand, these clusters are around
the same constant modulus position as the transmitted symbols but at different angles, that is, the
transmitted constellation is received after equalization rotated by an arbitrary angle. For differentially
encoded symbols the mentioned phase shift can be eliminated, allowing proper decoding of the
received symbols.
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Figure 13.4 Equalized signals for the CM algorithm using the first coefficient initialization.

If the CMA filter coefficients are initialized at

w(0) =

⎡
⎢⎢⎢⎢⎣

2.011934 + j0.157299
0.281061 + j0.324327
−0.017917 + j0.836021
−0.391982 + j1.144051
−0.185579− j0.898060

⎤
⎥⎥⎥⎥⎦

the resulting clusters are shown in Fig. 13.5, where it is possible to verify that in this case the clusters
occur at the right positions with respect to the transmitted symbols.

For illustration, Fig. 13.6 shows the equalization results when using the Wiener solution, where it
can be observed by comparing it with Fig. 13.5 that the CMA can lead to Wiener like solutions when
properly initialized.

The typical learning curve for the CM algorithm in the present example is illustrated in 13.7 where
in this case we utilized random initial coefficients for the adaptive filter.

�
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Figure 13.5 Equalized signals for the CM algorithm using the second coefficient initialization.
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Figure 13.6 Equalized signals for the Wiener filter.
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Figure 13.7 Learning curve of the CM algorithm.

13.3 AFFINE PROJECTION CM ALGORITHM

In general the CMA like algorithms present slow convergence when the update equation has a
stochastic gradient form. A possible alternative solution when the convergence speed is not acceptable
is to utilize the affine projection form. Let’s consider the cases where either the desired vector is a
CMA like function at each entry of a vector rap(k) or represents a nonlinear function G1[·] applied
to the adaptive-filter output, that is,

rap(k) = G1
[
yap(k)

]
= G1

[
XT

ap(k)w∗(k)
]

(13.15)

where the definitions of the data matrix and vectors of the affine projection algorithm are defined in
equations (4.74) and (4.77).

The objective function that the affine projection algorithm minimizes in this case is

‖w(k + 1)− w(k)‖2
subject to :
G2
{

rap(k)− XT
ap(k)w∗(k + 1)

}
= 0 (13.16)

where rap(k) is a vector replacing dap(k) in the blind formulation whose elements are determined
by the type of blind objective function at hand. G2[·] represents another nonlinear operation applied
elementwise on [·], usually given by (·)2 as in the CM algorithm. In any situation, G2(0) = 0. Also
in this case the affine projection algorithm keeps the next coefficient vector w(k + 1) as close as
possible to the current one and aims at making the a posteriori error to be zero. It is worth mentioning
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that if the minimization of ‖w(k+1)−w(k)‖2 is not included in the objective function, the problem
of keeping rap(k) = XT

ap(k)w∗(k+1) makes the coefficient vector underdetermined4 whenever this
vector has more than one entry.

As described in Chapter 4 by utilizing the method of Lagrange multipliers the constrained minimiza-
tion problem of equation (13.16) becomes

F [w(k + 1)] = ‖w(k + 1)− w(k)‖2 + λH
ap(k)G2

{
rap(k)− XT

ap(k)w∗(k + 1)
}

(13.17)

where λap(k) is the (L + 1)× 1 vector of Lagrange multipliers. In order to facilitate the gradient
computation let’s rewrite the above expression as

F [w(k + 1)] = [w(k + 1)− w(k)]H [w(k + 1)− w(k)]
+G2

{
rT
ap(k)− wH(k + 1)Xap(k)

}
λ∗ap(k) (13.18)

The gradient of F [w(k + 1)] with respect to w∗(k + 1)5 is given by

gw∗{F [w(k + 1)]} = [w(k + 1)− w(k)]
+Xap(k)gȳap

{
G2
[
rT
ap(k)− ȳT

ap(k)
]}

λ∗ap(k) (13.19)

where ȳap(k) represents the a posteriori adaptive-filter output signal. After setting the gradient of
F [w(k + 1)] with respect to w∗(k + 1) equal to zero, we get

w(k + 1) = w(k)− Xap(k)gȳap

{
G2
[
rT
ap(k)− ȳT

ap(k)
]}

λ∗ap(k) (13.20)

By premultiplying equation (13.20) by XH
ap(k), using the constraint relation of equation (13.16), and

considering the fact that G2(0) = 0 so that XH
ap(k)w(k + 1) = r∗ap(k), we obtain

−XH
ap(k)Xap(k)gȳap

{
G2
[
rT
ap(k)− ȳT

ap(k)
]}

λ∗ap(k) + XH
ap(k)w(k) = r∗ap(k) (13.21)

This expression leads to

gȳap

{
G2
[
rT
ap(k)− ȳT

ap(k)
]}

λ∗ap(k) =
[
XH

ap(k)Xap(k)
]−1 {−r∗ap(k) + XH

ap(k)w(k)
}

(13.22)

By substituting equation (13.22) in equation (13.20), the update equation can be rewritten as

w(k + 1) = w(k) + Xap(k)
(
XH

ap(k)Xap(k)
)−1 {

r∗ap(k)− XH
ap(k)w(k)

}
= w(k) + Xap(k)

(
XH

ap(k)Xap(k)
)−1

e∗ap(k) (13.23)

From the above equation it follows that

‖w(k + 1)− w(k)‖2 = eT
ap(k)

(
XH

ap(k)Xap(k)
)−1

e∗ap(k) (13.24)

4A solution exists but it is not unique.
5We could also formulate this solution employing the gradient with respect to w(k + 1), leading to the same results.
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such that the minimization of the terms on the left- and right-hand sides are equivalent. However,
the minimization of the right-hand side term does not mean minimizing ‖e∗ap(k)‖ unless the matrix(
XH

ap(k)Xap(k)
)−1

is a diagonal matrix with equal nonzero values in the main diagonal. Despite
of that, in order to generate a tractable solution we minimize ‖e∗ap(k)‖ and interpret the objective
function that is actually minimized.

If we assume r∗ap(k) has constant modulus elementwise, the minimization of

‖e∗ap(k)‖2 = ‖r∗ap(k)− XH
ap(k)w(k)‖2

occurs when r∗ap(k) is in the same direction as (is colinear with) XH
ap(k)w(k). In this case the

following choice should be made

r∗ap(k) = sgn[XH
ap(k)w(k)] (13.25)

where for a complex number y, sgn[y] = y
|y| , and whenever y = 0, sgn[y] = 1.

In the update equation (13.24) the convergence factor is unity, and as previously discussed a trade-off
between final misadjustment and convergence speed is achieved by including convergence factor as
follows

w(k + 1) = w(k) + μXap(k)
(
XH

ap(k)Xap(k)
)−1 {

r∗ap(k)− XH
ap(k)w(k)

}
(13.26)

As before, with a convergence factor different from one (smaller than one) a posteriori error is no
longer zero. The reader might question why G2[·] did not appear in the final update expression
of equation (13.22), the reason is the assumption that the constraint in equation (13.16) is satisfied
exactly leading to a zero a posteriori error.

The objective function that equation (13.26) actually minimizes is given by(
1
μ
− 1
)
‖w(k + 1)− w(k)‖2 + ‖rap(k)− XT

ap(k)w∗(k + 1)‖2P =(
1
μ
− 1
)
‖w(k + 1)− w(k)‖2 + ‖sgn[XH

ap(k)w(k)]− XT
ap(k)w∗(k + 1)‖2P (13.27)

where P =
(
XH

ap(k)Xap(k)
)−1

and ‖a‖2P = aHPa.

Proof:

In order to simplify the derivations let’s define

α =
(

1
μ
− 1
)

The objective function to be minimized with respect to the coefficients w∗(k + 1) is given by

ξ(k) = α‖w(k + 1)− w(k)‖2 + ‖rap(k)− XT
ap(k)w∗(k + 1)‖2P
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The derivative of the objective function is then given by

∂ξ(k)
∂w∗(k + 1)

= α[w(k + 1)− w(k)]− Xap(k)P
[
r∗ap(k)− XH

ap(k)w(k + 1)
]

By setting this result to zero it follows that[
αI + Xap(k)PXH

ap(k)
]

w(k + 1) = αw(k) + Xap(k)Pr∗ap(k) (13.28)

By applying the matrix inversion lemma we obtain

[
αI + Xap(k)PXH

ap(k)
]−1

=
1
α

I− 1
α

IXap(k)
[

XH
ap(k)

1
α

IXap(k) + P−1
]−1

XH
ap(k)

1
α

I

=
1
α

I− 1
α

IXap(k)
[

P−1

α
+ P−1

]−1

XH
ap(k)

1
α

I

=
1
α

[
I− Xap(k)

α

1 + α
PXH

ap(k)
1
α

I
]

=
1
α

[
I− Xap(k)PXH

ap(k)
1 + α

]

By replacing the last expression in the updating equation (13.28), we obtain

w(k + 1) =

[
I− Xap(k)PXH

ap(k)
1 + α

]
w(k) +

1
α

[
I− Xap(k)PXH

ap(k)
1 + α

]
Xap(k)Pr∗ap(k)

= w(k)− Xap(k)Py∗ap(k)
1 + α

+
1
α

Xap(k)Pr∗ap(k)− 1
α

Xap(k)Pr∗ap(k)
1 + α

= w(k)− μXap(k)Py∗ap(k) + μXap(k)Pr∗ap(k)

= w(k) + μXap(k)
(
XH

ap(k)Xap(k)
)−1

e∗ap(k)

�

The description of the affine projection CM algorithm is provided in Algorithm 13.4, where as
standard an identity matrix multiplied by a small constant was added to the matrix XH

ap(k)Xap(k) in
order to avoid numerical problems in the matrix inversion.

It is worth mentioning that the update equation (13.22) represents other important application such as
the case where r∗ap(k) = dec[XH

ap(k)w(k)], which corresponds to a decision directed blind algorithm,
where dec[·] represents a hard limiter where each entry of its argument is mapped into the closest
symbol of the constellation used in the transmission [10].

Now let’s consider the special scalar case where the nonlinear operations to be applied to the output
error of the normalized LMS algorithm are as following described. The objective function to be
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Algorithm 13.4

The Affine Projection CM Algorithm

Initialization
x(0) = w(0) = random vectors
choose μ in the range 0 < μ ≤ 2
γ = small constant

Do for k > 0
y∗ap(k) = XH

ap(k)w(k)
r∗ap(k) = sgn[XH

ap(k)w(k)]
e∗ap(k) = r∗ap(k)− y∗ap(k)
w(k + 1) = w(k) + μXap(k)

(
XH

ap(k)Xap(k) + γI
)−1

e∗ap(k)

minimized is

‖w(k + 1)− w(k)‖2
subject to :
|1− |xH(k)w(k + 1)|q|p = 0 (13.29)

The resulting update equation is

w(k + 1) = w(k) + μx(k)
(
xH(k)x(k)

)−1 {
sgn

[
xH(k)w(k)

]− xH(k)w(k)
}

(13.30)

corresponding to a scalar normalized LMS CM algorithm.

Example 13.3

Repeat Example 13.2 for the case of the affine projection CM algorithm, for L = 1 and L = 3 and
compare the result with the CM algorithm with q = 2.

Solution:

Using μ = 0.001 and the CM algorithm, the equalizer took well over 1000 iterations to converge as
depicted in Fig. 13.8. The same figure shows that the affine projection CM algorithm with L = 3 has
the fastest convergence, around 100 iterations, while leading to higher MSE after convergence when
compared with the cases of L = 1 and the CMA. For the affine projection cases the convergence
factor is μ = 0.1. Fig. 13.9 depicts the equalized signals after convergence for the case where L = 3.
All these figures were generated by averaging the outcomes of 50 independent runs.
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13.4 BLIND SIMO EQUALIZERS

The symbol spaced blind CMA equalizer methods described in previous section may converge to
unacceptable local minima induced by the finite-length of the FIR equalizers, despite these minima
being correct whenever the equalizer is a double sided filter with infinite order [1]. This situation
changes favorably in the case a fractionally spaced equalizer is employed as following discussed.
Many of the early blind equalizer methods utilized SISO channel model and relied on high-order
(greater than second-order) statistics which lead to multiple minima and slow convergence. These
equalizers are more sensitive to noise than those using second-order statistics. On the other hand,
the availability of multiple measures of the received signal gives rise to SIMO configuration that in
turn allows for blind channel equalization using second-order statistics. For example, oversampling
the channel output signal by an integer factor l leads to a cyclostationary process with period l, such
that the received discrete signal has cyclic correlation function allowing, under certain conditions,
the identification of the channel modulus and phase [1] blindly. The SIMO configuration can be
obtained by exploring diversity of antennas or by oversampling (also known as fractionally sampling)
the received signal.

It is worth mentioning that the SIMO methods are not only useful to estimate a SIMO channel inverse
filter but can be also used to perform channel identification. Many identification and equalization
approaches can be constructed from the observed data such as subspace methods [11] and prediction
methods [12]-[14] among others. The subspace methods are in general computationally complex.
Furthermore they are sensitive to the channel order uncertainty causing dimension errors in the
constructed signal and noise subspaces. Prediction error methods (PEM) are robust to overmodeling
[15] and lend themselves to adaptive implementations.

These SIMO approaches can be extended in a rather straightforward way to device CDMA receivers
[21] where blind multiuser detections are required [22]-[28], and in the cases semi-blind solutions
are possible [29]. In addition, in multiple transmitter and receiver antennas systems several types of
blind MIMO receivers can be derived [30]-[33]. In this section we briefly introduce the formulation
for SIMO blind equalization [1], [16], and point out how this formulation brings useful solutions to
blind equalization problems.

Let’s consider the single-input I-output linear system model depicted in Fig. 13.10, representing an
oversampling and/or the presence of multiple antenna at the receiver. In this case, the received signal
can be described by

r(k) =
M∑
i=0

x(k − i)h(i) + n(k) (13.31)

where

r(k) = [r1(k) r2(k) · · · rI(k)]T

n(k) = [n1(k) n2(k) · · ·nI(k)]T

h(m) = [h1(m) h2(m) · · ·hI(m)]T
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The elements of vector r(k) represent the I received signals at instant k, n(k) collects the noise
samples from each subchannel at the same instant. The elements of vector h(m), that is hi(m),
represent the mth sample of the ith subchannel model, for m = 0, 1, . . . , M and i = 1, 2, . . . , I .

x k( )

h k1 ( )

h k2 ( )

h kI ( )

n k1 ( )

n k2 ( )

n kI ( )

r k1 ( )

r k2 ( )

r kI ( )

+

+

+

Figure 13.10 Single-input multiple-output model.

Now let’s collect N samples of information vectors and pile them up in long vectors such that the
received signal vector is function of the input signal block as follows

r̄(k) = Hx(k) + n̄(k) (13.32)

where

r̄(k) =
[
rT (k) rT (k − 1) · · · rT (k −N + 1)

]T
n̄(k) =

[
nT (k) nT (k − 1) · · ·nT (k −N + 1)

]T
x̄(k) = [x(k) x(k − 1) · · ·x(k −M −N + 1)]T

H =

⎡
⎢⎢⎢⎣

h(0) · · · h(M) 0 · · · 0
0 h(0) · · · h(M) 0 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 h(0) · · ·h(M)

⎤
⎥⎥⎥⎦
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Vectors r̄(k) and n̄(k) have dimension NI , the input signal vector x̄(k) has dimension N + M
whereas the channel model matrix H has dimension NI ×M + N and is a block Toeplitz matrix.

Applying a linear combiner equalizer to the system of equation (13.32) the following relation results

y(k) = w̄H(k)r̄(k) = w̄H(k)Hx̄(k) + w̄H(k)n̄(k) (13.33)

The coefficient vector w̄(k) is the equalizer vector of length NI described as

w̄(k) =
[
w̃T

0 (k) w̃T
1 (k) · · · w̃T

N−1(k)
]T

(13.34)

where the vector w̃n(k) represents the weights applied to r(k−n), for n = 0, 1, . . . , N − 1. The ith
element of w̃n(k), for i = 1, 2, . . . , I , represents the ith weight applied to the corresponding element
of r(k − n).

In a noiseless environment the zero-forcing equalizer is the desired solution such that

w̄H(k)H = [0 . . . 0 1 0 . . . 0]T (13.35)

However, the possible noise enhancement originated by w̄T (k)n̄(k) makes the zero-forcing solution
not practical in many situations.

13.4.1 Identification Conditions

An FIR channel is identifiable utilizing second-order statistics whenever the block Toeplitz matrix H
in equation (13.32) has full column rank, such that there is a left inverse. Alternatively, we can say
that the system of equation (13.32) can be equalized according to some objective function, if for a
set of subchannels each with order M the following conditions are met

1. rank[H] = M + N .

This means that matrix H has full column rank.

2. NI ≥ N + M , i.e., H is a tall matrix in the case NI > N + M .

In the latter case, this means that matrix H has more rows than columns.

For the case N ≥M , condition 1 is equivalent to say that the transfer functions

Hi(z) =
M∑

m=0

hi(m)z−m (13.36)

for i = 1, 2, . . . , I , have no common zeros [1], that is, the polynomials Hi(z) are coprime. In the
case M

I−1 ≤ N < M , we cannot infer that whenever Hi(z), for i = 1, 2, . . . , I , have no common
zeros, the matrix H will have full column rank. In case the Hi(z) have common zeros there is no left
inverse matrix for H. In addition, it can also be shown that even if the subchannels are coprime, the
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matrix H has its rank reduced if N < M . Condition 2 is equivalent to say that the channel matrix
H has full column rank, making possible the channel equalization as well as identification using
second-order statistics. Several alternative proofs related to the identifiability of a SIMO system are
available in the literature such as in [17]-[19], no proof is included here.

Once satisfied the conditions for identifiability in the SIMO system, the finite-length input signal
included in x̄(k) should contain a large number of modes meaning it should have rich spectral content.
This way, in a noiseless environment the SIMO channel can be perfectly identified, except for a gain
ambiguity6, through several methods available in the literature [1], [11]-[14]. The requirements
on the channel input signal statistics vary from method to method, with some requiring that it is
uncorrelated while others not.

The same type of results applies for the SIMO blind equalizers, that is, a single-input I-output channel
can be equalized whenever:

At least one of the subchannels has length M + 1, i.e., hi(0) �= 0 and hi(M) �= 0, for any
i = 1, 2, . . . , I .

Hi(z) for i = 1, 2, . . . , I , have no common zeros.

N ≥ M .

These conditions are necessary and sufficient for the SIMO channel identifiability or equalization
utilizing second-order statistics of the I outputs.

Many of the available solutions for blind channel identification and equalization based on second-
order statistics are very sensitive to channel order or rank estimation. Some of them rely on singular
value decomposition(s) (SVD) which are very computationally complex and are usually meant for
batch form of implementation. The emphasis here is to present a recursive solution which is more
robust to order estimation errors and is computationally attractive such that it can be applied to track
time-varying channels. An online blind SIMO equalizer is introduced in the following section.

13.5 SIMO-CMA EQUALIZER

This section discusses an important result that suggests that by combining the techniques implicitly
utilizing high-order statistics such as the CMA, with SIMO systems using second-order statistics can
be very beneficial. Let’s start by stating the following result whose proof can be found in [1], [20]:

In a noiseless channel, if the Multiple-Input Single-Output (MISO) FIR equalizer has length N ≥M ,
then the SIMO CMA equalizer is globally convergent if the subchannels Hi(z) for i = 1, 2, . . . , I ,
have no common zeros.

6A constant value multiplying the channel model.
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The reader should notice that a SIMO setup utilizing a CM objective function can be interpreted as
fractionally spaced constant-modulus equalizer.

The expression for the SIMO equalizer output signal as described in equation (13.33) can rewritten
as

y(k) =
I∑

i=1

wH
i (k)ri(k) (13.37)

where the nth element of vector wi(k) corresponds to the (i + n − 1)th element of w̄(k), and the
nth element of vector ri(k) corresponds to ri(k − n), for i = 1, 2, . . . , I , and n = 0, 1, . . . , N − 1.
The equivalent SIMO system is depicted in Fig. 13.11, where it can be observed that the overall
equalization consists of using a separated sub-equalizer for each sub-channel with a global output
signal used in the blind adaptation algorithm.

x k( )
y ( )k

h k1 ( ) w k1 ( )

h k2 ( ) w k2 ( )

h kI ( ) w kI ( )

n k1 ( )

n k2 ( )

n kI ( )

r k1 ( )

r k2 ( )

r kI ( )

+

+

+

ALGORITHM

+

Figure 13.11 SIMO equalizer.
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Algorithm 13.5

SIMO Affine Projection CM Algorithm

Initialization
r̄(0) = w̄(0) = random vectors
choose μ in the range 0 < μ ≤ 2
γ = small constant

Do for k > 0
y∗ap(k) = XH

ap(k)w̄(k)
r∗ap(k) = sgn[XH

ap(k)w̄(k)]
e∗ap(k) = r∗ap(k)− y∗ap(k)
w̄(k + 1) = w̄(k) + μXap(k)

(
XH

ap(k)Xap(k) + γI
)−1

e∗ap(k)

In the case we adopt a CMA objective function along with the affine projection algorithm to derive
a SIMO equalizer, the Xap(k) matrix, assuming we keep the last L + 1 input signal vectors, has the
following form

Xap(k) = [r̄(k) r̄(k − 1) . . . r̄(k − L)] (13.38)

The adaptive-filter output vector is described by

y∗ap(k) = XH
ap(k)w̄(k)

=

⎡
⎢⎢⎢⎣

r̄H(k)
r̄H(k − 1)

...
r̄H(k − L)

⎤
⎥⎥⎥⎦ w̄(k)

=

⎡
⎢⎢⎢⎣

r̄H(k)
r̄H(k − 1)

...
r̄H(k − L)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

w̃0(k)
w̃1(k)

...
w̃N−1(k)

⎤
⎥⎥⎥⎦ (13.39)

where in the last equality we adopted the description of w̄(k) as given by equation (13.34). By
following the same derivations of section 13.3 it is possible to generate the SIMO affine projection
CM algorithm as described inAlgorithm 13.5. The affine projection algorithm is expected to converge
to the global optimum using normalized steps originated by the minimal distance principle utilized
in its derivations, as discussed in Chapter 4.
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Example 13.4

Given the one-input two-output channel whose model is described below. Assume a QAM signal
with four symbols is transmitted through these channels and simulate a blind equalization using the
SIMO affine projection CM algorithm of order 12, for a signal to noise ratio of 20dB measured at
the receiver input.[

hT
1

hT
2

]
=
[

0.1823 −0.7494 −0.4479 0.2423 0.0047 −0.41
0.3761 −0.1612 −0.1466 0.6437 0.5952 −0.2060

]

Solution:

We utilize the affine projection CM algorithm to solve the SIMO equalization problem with μ = 0.1,
L = 2 and γ = 10−6. The symbol error rate is measured by averaging the outcoming results of
50 independent runs, and the initial conditions utilized correspond to the Wiener solution randomly
disturbed. Fig. 13.12 shows the evolution of the errors in the symbols, and as can be observed
minimum symbol error rate occurs after 500 iterations. This result is expected since the conditions
for the correct channel equalization is met in this case, see subsection 13.4.1, and there is some
channel noise. Fig. 13.13 depicts the MSE between the equalized signal and the transmitted symbols
where the convergence of the affine projection CM algorithm takes places in around 1000 iterations.
Fig. 13.14 illustrates the effectiveness of the equalizer through the appropriate combination of
signals measured in each antenna.
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Example 13.5

Repeat the Example 6.3 by measuring through simulations the MSE performance of an equalizer
implemented with the SIMO affine projection CM algorithm, when it is available two received signals
obtained through different antennas. Choose the appropriate parameters and comment on the results.

Solution:

The channels available for the detection of the transmitted symbols correspond to the transfer function
from the transmitter to each antenna. The blind affine projection CM algorithm is employed to update
the sub equalizers of the SIMO system. The parameters chosen after some simulation trials are
μ = 0.3, L = 1, and γ = 10−6. The measures of MSE reflect an average taken from the outcomes
of 50 independent runs, where in the initialization one of the receiver filters is set to the Wiener
solution during the first 350 iterations. Each sub equalizer has order 30. Fig. 13.15 illustrates the
MSE evolution and as can be observed only after a few thousand iterations the curve shows a non
decreasing behavior. In comparison with the results from Example 6.3, the learning process takes
a lot more iterations when compared to the algorithms employing some sort of training. However,
despite of slower convergence the equalization is feasible since the conditions for the correct channel
equalization are met.
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Figure 13.15 Learning curve of the SIMO affine projection CM algorithm, L = 1.

�

The SIMO formulation presented in this chapter can be extended to the Multi-Input Multi-Output
(MIMO) case in rather straightforward way, under some assumptions such as independence of the
sources. There are several communication system setups that can be modeled as MIMO systems
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by properly stacking the transmitted and received information. In some applications the setup is
originally MIMO such as in multiuser communication systems [21]-[28], and in case we use antenna
array at transmitter and receiver in order to increase the communication capacity [30]-[33]. In many
MIMO applications adaptive-filtering algorithms are often utilized with training or in a blind form.

The affine projection CM algorithm presented in this chapter can be extended to include selective
updating using the set-membership approach presented in Chapter 6. In addition, for multiuser
environments such as CDMA systems, it is possible to incorporate some blind measurements related
to the multi-access and additional noise interferences in order to improve the overall performance of
blind receivers based on the set-membership affine projection CM algorithm, as discussed in [34].
The set-membership affine projection algorithm can be very efficient in SIMO as well as in MIMO
setups.

13.6 CONCLUDING REMARKS

This chapter presented some blind adaptive-filtering algorithms mostly aimed at direct blind channel
equalization. The subject of blind signal processing is quite extensive, as a result our emphasis was
to present the related issues and to introduce some useful algorithms. In particular it was introduced
some algorithms utilizing high-order statistics in an implicitly way, since the resulting algorithms
have low computational complexity7 while presenting slow convergence and possible convergence
to local minima. The cases introduced in this class were the constant-modulus, Godard, and Sato
algorithms, respectively. Some issues related to the error surface of the CM algorithm were also
illustrated through a simple example.

In order to improve the convergence speed of the CMA family of algorithms its affine projection
version was presented. This algorithm certainly alleviates the speed limitations of the CM algo-
rithms at the expense of increased computational complexity. In addition, this chapter discussed the
single-input multi-output methods which allow under certain conditions the correct identification and
equalization of unknown channels using only second-order statistics and do not have local minima.
In fact, the combination of the algorithms with implicit high-order statistics, with the affine projec-
tion update equation and the single-input multi-output setup leads to very interesting solutions for
blind channel equalization. The resulting algorithm has rather fast convergence and has only global
solutions under certain conditions.

In specific cases, we can conclude that fractionally spaced equalizers using indirect high-order
statistics such as the CM algorithms are not suitable to equalize channels with zeros in common.
In case this happens an additional equalizer after the SIMO equalizer might help in combating the
remaining intersymbol interference. On the other hand, the SIMO equalizers are suitable to equalize
channels with zeros on the unit circle, a rough situation for symbol spaced equalizers. In this case, the
SIMO equalizer can be used with an implicit high-order statistics objective function or with training
signal, as long as the subchannels do not have common zeros. For situations with common zeros on
the unit circle, or close to it, the standard way out is to employ DFE.

7In comparison with the algorithms using high-order statistics explicitly.
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13.8 PROBLEMS

1. Derive the Godard algorithm for real input signal constellations.

2. Derive equations (13.13) and (13.14).

Hint: Utilize the difference equation that describes x(k).

3. Perform the equalization of a channel with the following impulse response

h(k) = ku(k)− (2k − 9)u(k − 5) + (k − 9)u(k − 10)

using as transmitted signal a binary (-1,1) random signal. An additional Gaussian white noise
with variance 10−2 is present at the channel output.
(a) Apply the Godard algorithm for p = q = 4 with an appropriate μ and find the impulse
response of an equalizer with 15 coefficients.
(b) Plot the detected equalized signal before the decision after the algorithm has converged for
a number of iterations (over 50 samples) and comment on the result.

4. Repeat the problem 3 for the Sato algorithm.

5. Repeat the problem 3 for the CMA.

6. Assume a PAM signal with four symbols is transmitted through an AR channel whose transfer
function is

H(z) =
0.25z

z + 0.5

The equalizer is a first-order FIR adaptive filter. For a signal to noise ratio of 5dB, plot the error
surface and contours for Godard with p = q = 4.

7. Assume a QAM signal with four symbols is transmitted through an AR channel whose transfer
function is

H(z) =
0.25z

z + 0.5

Simulate a blind equalization using a first-order FIR adaptive filter, for a signal to noise ratio of
10dB, using the CMA.

8. Given the channel model below whose input is a binary PAM signal.

H(z) = 0.2816 + 0.5622z−1 + 0.2677z−2 − 0.3260z−3 − 0.4451z−4

+0.3102z−5 − 0.2992z−6 − 0.2004z−7
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Our objective is to equalize this channel with a blind affine projection CM algorithm. The
equalizer has order 10 and its objective is to shorten the effective impulse response of the
equalized signal. That means the channel-equalizer impulse response has most of its energy
concentrated in a few samples. Simulate this experiment for a signal to noise ratio of 15dB, and
comment on the channel shortening process.

9. Derive the set-membership affine projection CM algorithm.

10. (a) Show that recursion of equation (13.30) minimizes the objective function of equation (13.29).

(b) Show that recursion of equation (13.30) also minimizes the objective function

‖w(k + 1)− w(k)‖2
subject to :
|sgn

[
xH(k)w(k + 1)

]− |xH(k)w(k + 1)|q|p = 0

11. Derive a constrained minimum variance (CMV) affine projection algorithm for equalization,
whose objective function is to minimize

1
2
‖w(k + 1)− w(k)‖2

and
1
2

wT (k + 1)r(k)rT (k)w(k + 1)

subject to :
wT (k + 1)c = c

where r(k) is a vector that in the present case represents the received signal vector, c is an
arbitrary constant, and c is a constraint vector.

12. Assume a PAM signal with two symbols is transmitted through a noiseless AR channel whose
transfer function is

H(z) =
0.25z

z + 0.5

Simulate a blind equalization using a first-order FIR adaptive filter, using affine projection CM
algorithm as well as the stochastic gradient version CMA. Plot the convergence trajectories of
w0(k) and w1(k) for 20 distinct initialization points (on the same figure) for w0(0) and w1(0)
corresponding to zeros in the interior of unit circle. Interpret the results.

13. Equalize the one-input two-output channel described below using the SIMO affine projection
CM algorithm. The input signal is a two PAM signal representing a randomly generated bit

stream with the signal to noise ratios
σ2

ri

σ2
n

= 20, for i = 1, 2, at the receiver end, that is, ri(k)
is the received signal without taking into consideration the additional channel noise. Choose
the appropriate equalizer order and the number of reuses such that the bit error rate falls below
0.01.
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[
h1 h2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.345 −0.715
−0.016 0.690
−0.324 0.625
0.209 0.120
0.253 0.388
−0.213 0.132
0.254 −0.120
0.118 −0.388
0.483 0.451
−0.034 −0.204
0.462 0.560
−0.111 −0.675
−0.285 0.147

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

14. Using the complex version of the SIMO affine projection CM algorithm to equalize the one-
input two-output channel with the transfer function given below. The input signal is a four QAM

signal representing a randomly generated bit stream with the signal to noise ratios
σ2

ri

σ2
n

= 10, for
i = 1, 2, at the receiver end, that is, ri(k) is the received signal without taking into consideration
the additional channel noise. The adaptive filter has 5 coefficients.

H1(z) = (0.27− 0.34j) + (0.43 + 0.87j)z−1 + (0.21− 0.34j)z−2

H2(z) = (0.34− 0.27j) + (0.87 + 0.43j)z−1 + (0.34− 0.21j)z−2

(a) Run the algorithm for μ = 0.1, μ = 0.4, and μ = 0.8. Comment on the convergence
behavior in each case.
(b) Plot the real versus imaginary parts of the received signals before equalization and the single
output signal after equalization.

15. Repeat problem 14 for the case the adaptive-filter order is one and comment on the results.
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COMPLEX DIFFERENTIATION

A.1 INTRODUCTION

This appendix briefly describes how to deal with complex signals in adaptive-filtering context in a
simple manner, for further details the reader is encouraged to refer to [1]-[2].

A.2 THE COMPLEX WIENER SOLUTION

Environments with complex signals are typical of some communication applications. In order to
address these cases, this section describes the complex Wiener solution. In the complex case, the
error signal and its complex conjugate are defined as

e(k) = d(k)− wH(k)x(k)
e∗(k) = d∗(k)− wT (k)x∗(k) (A.1)

Their product is then described by

|e(k)|2 = e(k)e∗(k) = [d(k)− wH(k)x(k)][d∗(k)− wT (k)x∗(k)]
= |d(k)|2 − wT (k)x∗(k)d(k)− wH(k)x(k)d∗(k) + wH(k)x(k)xH(k)w(k)
= |d(k)|2 − 2re[wH(k)x(k)d∗(k)] + wH(k)x(k)xH(k)w(k) (A.2)
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The expression of the error squared of equation (A.2) can be written as a function of the real and
imaginary parts of the filter coefficients as

|e(k)|2 = |d(k)|2 − (re[wT (k)] + jim[wT (k)]
)

x∗(k)d(k)

− (re[wT (k)]− jim[wT (k)]
)

x(k)d∗(k)

+
(
re[wT (k)]− jim[wT (k)]

)
x(k)xH(k) (re[w(k)] + jim[w(k)])

= |d(k)|2 − re[wT (k)] (x∗(k)d(k) + x(k)d∗(k))
−jim[wT (k)] (x∗(k)d(k)− x(k)d∗(k))
+re[wT (k)]x(k)xH(k)re[w(k)]− jim[wT (k)]x(k)xH(k)re[w(k)]
+jre[wT (k)]x(k)xH(k)im[w(k)] + im[wT (k)]x(k)xH(k)im[w(k)] (A.3)

where re[·] and im[·] indicate real and imaginary parts of [·], respectively.

For a filter with fixed coefficients, see equation (A.2), the MSE function is given by

ξ = E[|e(k)|2]
= E[|d(k)|2]− 2re{wHE[d∗(k)x(k)]}+ wHE[x(k)xH(k)]w
= E[|d(k)|2]− 2re[wHp] + wHRw (A.4)

where p = E[d∗(k)x(k)] is the cross-correlation vector between the desired and input signals, and
R = E[x(k)xH(k)] is the input signal correlation matrix. As before, the objective function ξ is a
quadratic function of the tap-weight coefficients which would allow a straightforward solution for
w, if vector p and matrix R are known.

The gradient with respect to a complex parameter is defined as

gw{E[|e(k)|2]} =
1
2

{
∂E[|e(k)|2]
∂re[w(k)]

− j
∂E[|e(k)|2]
∂im[w(k)]

}
(A.5)

However, the direction of maximum rate of change of a real-valued scalar function of a complex
vector variable, in this case denoted by w, is given by

gw∗{E[|e(k)|2]} =
1
2

{
∂E[|e(k)|2]
∂re[w(k)]

+ j
∂E[|e(k)|2]
∂im[w(k)]

}
(A.6)

Consult the references [1]-[2] for details1.

1Any real valued function of a complex complex vector variable w can be represented by a Taylor series. The first-order
term is given by

Δξ =
[

∂ξ

∂w(k)

]T

Δw +
[

∂ξ

∂w∗(k)

]T

Δw∗(k)

= 2re

{[
∂ξ

∂w(k)

]T

Δw(k)

}
= 2re

{[
∂ξ

∂w∗(k)

]T

Δw∗(k)

}
= 2re

{[
∂ξ

∂w∗(k)

]H

Δw(k)

}

The term within the real part operator is an inner product, as such the maximum change in the objective function occurs when

the change in Δw(k) is in the same direction as
[

∂ξ
∂w∗(k)

]
. Therefore, the maximum change of the objective function ξ

occurs in the direction ∂ξ
∂w∗(k) .
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Note that the partial derivatives are calculated for each element of w(k). With this definition, the
following relations are valid for the complex scalar parameter case

∂wi

∂wi
= 1

∂w∗i
∂wi

= 0

∂E[|e(k)|2]
∂wi

= 0 if and only if
∂E[|e(k)|2]

∂re[wi]
=

∂E[|e(k)|2]
∂im[wi]

= 0

The gradient of the MSE with respect to the vector w∗ is given by

gw∗E{e(k)e∗(k)} = E{−e∗(k)x(k)} (A.7)

Proof:

In order to compute the gradient of the MSE with respect to the coefficients, we need the expressions
for the partial derivatives of the error modulus squared with respect to the real and imaginary parts
of the coefficients. These equations are

∂E[|e(k)|2]
∂re[w(k)]

= −E [x∗(k)d(k) + x(k)d∗(k)] + E
[
x(k)xH(k) + x∗(k)xT (k)

]
re[w(k)]

−E{jx∗(k)xT (k)im[w(k)]}+ E{jx(k)xH(k)im[w(k)]} (A.8)

and

∂E[|e(k)|2]
∂im[w(k)]

= −E{j [x∗(k)d(k)− x(k)d∗(k)]} − E{jx(k)xH(k)re[w(k)]}

+E{jx∗(k)xT (k)re[w(k)]}+ E{[x(k)xH(k) + x∗(k)xT (k)
]
im[w(k)]}

(A.9)

respectively.
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The gradient of the error modulus squared with respect to the complex coefficients can then be
computed as

gw∗E[e(k)e∗(k)] =
∂E[|e(k)|2]

∂w∗(k)

=
1
2
E
{− [x∗(k)d(k) + x(k)d∗(k)] +

[
x(k)xH(k) + x∗(k)xT (k)

]
re[w(k)]

−jx∗(k)xT (k)im[w(k)] + jx(k)xH(k)im[w(k)]
+ [x∗(k)d(k)− x(k)d∗(k)] + x(k)xH(k)re[w(k)]− x∗(k)xT (k)re[w(k)]
+j
[
x(k)xH(k) + x∗(k)xT (k)

]
im[w(k)]

}
=

1
2
E
{−2x(k)d∗(k) + 2x(k)xH(k)re[w(k)] + 2jx(k)xH(k)im[w(k)]

}
= E

{−x(k)d∗(k) + x(k)xH(k)w(k)
}

= E
{

x(k)
[−d∗(k) + xH(k)w(k)

]}
= −E

{[
d∗(k)− wT (k)x∗(k)

]
x(k)

}
= −E {e∗(k)x(k)}

�

The gradient vector of the MSE function related to the filter tap-weight coefficients is then given by

E{gw∗ [e(k)e∗(k)]} = gw∗

=
∂ξ

∂w∗
= E[−e∗(k)x(k)]
= −p + Rw (A.10)

By equating the gradient vector to zero and assuming R is nonsingular, the optimal values for the
tap-weight coefficients that minimize the objective function leads to the Wiener solution for the
complex case given by

wo = R−1p (A.11)

where R = E[x(k)xH(k)] and p = E[d∗(k)x(k)], assuming that d∗(k) and x(k) are jointly wide-
sense stationary.

A.3 DERIVATION OF THE COMPLEX LMS ALGORITHM

The LMS algorithm employs instantaneous estimates of matrix R, denoted by R̂(k), and of vector
p, denoted by p̂(k), given by

R̂(k) = x(k)xH(k)
p̂(k) = d∗(k)x(k) (A.12)
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Using these estimates the objective function actually minimized is the instantaneous square error
|e(k)|2 instead of the MSE. As a result, the expression of the gradient estimate is

ĝw∗{e(k)e∗(k)} =
∂|e(k)|2

∂w∗

=
1
2

{
∂|e(k)|2
∂re[w(k)]

+ j
∂|e(k)|2

∂im[w(k)]

}

=
1
2

[
∂|e(k)|2

∂re[w0(k)]
∂|e(k)|2

∂re[w1(k)]
. . .

∂|e(k)|2
∂re[wN (k)]

]T

+j
1
2

[
∂|e(k)|2

∂im[w0(k)]
∂|e(k)|2

∂im[w1(k)]
. . .

∂|e(k)|2
∂im[wN (k)]

]T

= −e∗(k)x(k) (A.13)

A.4 USEFUL RESULTS

Table A.1 shows some useful complex differentiation of scalar and vector functions f(w) and f(w),
respectively, with respect to variable vectors w and w∗.

Table A.1 Complex Differentiation

Type of Function Function Variable w Variable w∗

f(w) re[wHx] 1
2x∗ 1

2x

f(w) wHx 0 x

f(w) xHw x∗ 0

f(w) wHRw RT w∗ Rw

f(w) H1w + H2w∗ HT
1 HT

2
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B
QUANTIZATION EFFECTS IN THE LMS

ALGORITHM

B.1 INTRODUCTION

In this appendix, several aspects of the finite-wordlength effects in the LMS algorithm are discussed
for the cases of implementations in fixed- and floating-point arithmetics [1]-[3].

B.2 ERROR DESCRIPTION

All scalars and vector elements in the LMS algorithm will deviate from their correct values due
to quantization effects. The error generated in any individual quantization is considered to be a
zero-mean random variable that is independent of any other errors and quantities related to the
adaptive-filter algorithm. The variances of these errors depend on the type of quantization and
arithmetic that will be employed in the algorithm implementation.

The errors in the quantities related to the LMS algorithm are defined by

ne(k) = e(k)− e(k)Q (B.1)

nw(k) = w(k)− w(k)Q (B.2)

ny(k) = y(k)− y(k)Q (B.3)

where the subscript Q denotes the quantized form of the given value or vector.

It is assumed that the input signal and desired signal suffer no quantization, so that only internal
computation quantizations are taken into account. The effects of quantization in the input and desired
signals can be easily taken into consideration separately from other quantization error sources. In
the case of the desired signal, the quantization error can be added to the measurement noise, while
for the input signal the basic effect at the output of the filter is an additional noise as will be discussed
later.
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Algorithm B.1

LMS Algorithm Including Quantization

Initialization

x(0) = w(0) = [0 0 . . . 0]T

Do for k ≥ 0

e(k)Q =
(
d(k)− xT (k)w(k)Q

)
Q

w(k + 1)Q = (w(k)Q + 2μe(k)Qx(k))Q

The following relations describe the computational errors introduced in the LMS algorithm imple-
mented with finite wordlength:

e(k)Q = d(k)− xT (k)w(k)Q − ne(k) (B.4)

w(k + 1)Q = w(k)Q + 2μe(k)Qx(k)− nw(k) (B.5)

where ne(k) is the noise sequence due to quantization in the inner product xT (k)w(k)Q, the additional
measurement noise n(k) is included in d(k), and nw(k) is a noise vector generated by quantization in
the product 2μe(k)Qx(k). The generation of quantization noise as described applies for fixed-point
arithmetic, whereas for floating-point arithmetic the addition also introduces quantization error that
should be included in ne(k) and nw(k).

The objective now is to study the LMS algorithm behavior when internal computations are performed
in finite precision. Algorithm B.1 describes the LMS algorithm including quantization and with
presence of additional noise.

Define
Δw(k)Q = w(k)Q − wo (B.6)

where wo is the optimal coefficient vector, and considering that

d(k) = xT (k)wo + n(k) (B.7)

it then follows that

e(k)Q =
(
d(k)− xT (k)w(k)Q

)
Q

= −xT (k)Δw(k)Q − ne(k) + n(k) (B.8)

and from equation (B.5)

Δw(k + 1)Q = Δw(k)Q + 2μx(k)
[−xT (k)Δw(k)Q − ne(k) + n(k)

]− nw(k) (B.9)
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This equation can be rewritten as

Δw(k + 1)Q =
[
I− 2μx(k)xT (k)

]
Δw(k)Q + n′w(k) (B.10)

where
n′w(k) = 2μx(k)(n(k)− ne(k))− nw(k) (B.11)

For the sake of illustration and completeness, the solution of equation (B.10) is

Δw(k + 1)Q =
k∏

i=0

[
I− 2μx(i)xT (i)

]
Δw(0)Q +

k∑
i=0

⎧⎨
⎩

k∏
j=i+1

[
I− 2μx(j)xT (j)

]
n′w(i)

⎫⎬
⎭

(B.12)

where we define that for j = k + 1 in the second product,
∏k

j=k+1[·] = 1.

B.3 ERROR MODELS FOR FIXED-POINT ARITHMETIC

In the case of fixed-point arithmetic, with rounding assumed for quantization, the error after each
product can be modeled as a zero-mean stochastic process, with variance given by [4]-[6]

σ2 =
2−2b

12
(B.13)

where b is the number of bits after the sign bit. Here it is assumed that the number of bits after the
sign bit for quantities representing signals and filter coefficients are different and given by bd and
bc, respectively. It is also assumed that the internal signals are properly scaled, so that no overflow
occurs during the computations and that the signal values lie between -1 and +1 all the time. The
error signals consisting of the elements of ne(k) and nw(k) are all uncorrelated and independent of
each other. The variance of ne(k) and the covariance of nw(k) are given by

E[n2
e(k)] = σ2

e (B.14)

E[nw(k)nT
w(k)] = σ2

wI (B.15)

respectively. If distinction is made between data and coefficient wordlengths, the above mentioned
variances are given by

σ2
e = σ2

y = γ
2−2bd

12
(B.16)

σ2
w = γ′

2−2bc

12
(B.17)

where γ′ = γ = 1 if the quantization is performed after addition, i.e., products are performed in full
precision and only after all the additions in the inner product are finished, the quantization is applied.
For quantization after each product, γ = N + 1 where N + 1 is the number of partial products, and
γ′ = 1. Those not familiar with the results of the above equations should consult a basic digital
signal processing textbook such as [4], [5], or [6].
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Note that σ2
w depends on how the product 2μe(k)x(k) is performed. In the above equation, it was

assumed that the product was available in full precision, and then a quantization to bc bits in the
fractional part was performed, or equivalently, the product 2μe(k) in full precision was multiplied
by x(k), and only in the last operation quantization was introduced. In case of quantization of partial
results, the variance σ2

w is increased due to the products of partial errors with the remaining product
components.

B.4 COEFFICIENT-ERROR-VECTOR COVARIANCE MATRIX

Obviously, internal quantization noise generated during the operation of the LMS algorithm affects
its convergence behavior. In this section, we discuss the effects of the finite-wordlength computations
on the second-order statistics of the errors in the adaptive-filter coefficients. First, we assume that
the quantization noise ne(k) and the vector nw(k) are all independent of the data, of the filter
coefficients, and of each other. Also, these quantization errors are all considered zero-mean stochastic
processes. With these assumptions, the covariance of the error in the coefficient vector, defined by
E[Δw(k)QΔwT (k)Q], can be easily derived from equations (B.10) and (B.11):

cov[Δw(k + 1)Q] = E[Δw(k + 1)QΔwT (k + 1)Q]
= E

{[
I− 2μx(k)xT (k)

]
Δw(k)QΔwT (k)Q

[
I− 2μx(k)xT (k)

]}
+4μ2E[x(k)xT (k)]E[n2(k)] + 4μ2E[x(k)xT (k)]E[n2

e(k)]
+E[nw(k)nT

w(k)] (B.18)

Each term on the right-hand side of the above equation can be approximated in order to derive the
solution for the overall equation. The only assumption made is the independence between x(k) and
Δw(k)Q that is reasonably accurate in practice.

The first term in equation (B.18) can be expressed as

T1 = cov[Δw(k)Q]− 2μcov[Δw(k)Q]E[x(k)xT (k)]− 2μE[x(k)xT (k)]cov[Δw(k)Q]
+4μ2E

{
x(k)xT (k)cov[Δw(k)Q]x(k)xT (k)

}
(B.19)

The element (i, j) of the last term in the above equation is given by

4μ2E
{

x(k)xT (k)cov[Δw(k)Q]x(k)xT (k)
}

i,j

= 4μ2
N∑

m=0

N∑
l=0

cov[Δw(k)Q]m,lE[xi(k)xm(k)xl(k)xj(k)] (B.20)

where xi(k) represents the ith element of x(k). If it is assumed that the elements of the input signal
vector are jointly Gaussian, the following relation is valid

E[xi(k)xm(k)xl(k)xj(k)] = Ri,mRl,j + Rm,lRi,j + Rm,jRi,l (B.21)
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where Ri,j is the element (i, j) of R. Replacing this expression in equation (B.20), it can be shown
that

N∑
m=0

N∑
l=0

cov[Δw(k)Q]m,lE[xi(k)xm(k)xl(k)xj(k)]

= 2 {Rcov[Δw(k)Q]R}i,j + Ri,jtr {Rcov[Δw(k)Q]} (B.22)

Using this result in the last term of T1, it follows that

T1 = cov[Δw(k)Q]− 2μ {Rcov[Δw(k)Q] + cov[Δw(k)Q]R}
+4μ2 (2Rcov[Δw(k)Q]R + Rtr {Rcov[Δw(k)Q]}) (B.23)

Since the remaining terms in equation (B.18) are straightforward to calculate, replacing equation
(B.23) in (B.18) yields

cov[Δw(k + 1)Q] = (I− 2μR)cov[Δw(k)Q]− 2μcov[Δw(k)Q]R
+4μ2Rtr {Rcov[Δw(k)Q]}+ 8μ2Rcov[Δw(k)Q]R
+4μ2(σ2

n + σ2
e)R + σ2

wI (B.24)

Before reaching the steady state, the covariance of Δw(k + 1)Q presents a transient behavior that
can be analyzed in the same form as equation (3.23). It is worth mentioning that the condition
for convergence of the coefficients given in equation (3.30) also guarantees the convergence of the
above equation. In fact, equation (B.24) is almost the same as equation (3.23) except for the extra
excitation terms σ2

e and σ2
w that account for the quantization effects, and, therefore, the behavior

of the coefficients in the LMS algorithm in finite precision must resemble its behavior in infinite
precision, with the convergence curve shifted up in the finite-precision case.

In most cases, the norm of Rcov[Δw(k)Q]R is much smaller than the norm of
Rtr {Rcov[Δw(k)Q]} so that the former term can be eliminated from equation (B.24). Now, by
considering in equation (B.24) that in the steady state cov[Δw(k)Q] ≈ cov[Δw(k + 1)Q] and
applying the trace operation in both sides, it is possible to conclude that

tr {Rcov[Δw(k)Q]} =
4μ2(σ2

n + σ2
e)tr[R] + (N + 1)σ2

w
4μ− 4μ2tr[R]

(B.25)

This expression will be useful to calculate the excess MSE in the finite-precision implementation of
the LMS algorithm.

If x(k) is considered a Gaussian white noise with variance σ2
x, it is possible to calculate the expected

value of ||Δw(k)Q||2, defined as the trace of cov[Δw(k)Q], from equations (B.24) and (B.25). The
result is

E[||Δw(k)Q||2] =
μ(σ2

n + σ2
e)(N + 1)

1− μ(N + 1)σ2
x

+
(N + 1)σ2

w
4μσ2

x[1− μ(N + 1)σ2
x]

(B.26)

As can be noted, when μ is small, the noise in the calculation of the coefficients plays a major role
in the overall error in the adaptive-filter coefficients.
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B.5 ALGORITHM STOP

The adaptive-filter coefficients may stop updating due to limited wordlength employed in the internal
computation. In particular, for the LMS algorithm, it will occur when

|2μe(k)Qx(k)|i < 2−bc−1 (B.27)

where |(·)|i denotes the modulus of the ith component of (·). The above condition can be stated in
an equivalent form given by

4μ2(σ2
e + σ2

n)σ2
x < 4μ2E[e2(k)Q]E[x2

i (k)] <
2−2bc

4
(B.28)

where in the first inequality it was considered that the variances of all elements of x(k) are the same,
and that σ2

e + σ2
n is a lower bound for E[e2(k)Q] since the effect of misadjustment due to noise in

the gradient is not considered. If μ is chosen such that

μ >
2−bc

4σx

√
σ2

e + σ2
n

(B.29)

the algorithm will not stop before convergence is reached. If μ is small such that the convergence
is not reached, the MSE at the output of the adaptive system will be totally determined by the
quantization error. In this case, the quantization error is usually larger than the expected MSE in the
infinite-precision implementation.

B.6 MEAN-SQUARE ERROR

The mean-square error of the conventional LMS algorithm in the presence of quantization noise is
given by

ξ(k)Q = E[e2(k)Q] (B.30)

By recalling from equation (B.8) that e(k)Q can be expressed as

e(k)Q = −xT (k)Δw(k)Q − ne(k) + n(k)

it then follows that

ξ(k)Q = E[xT (k)Δw(k)QxT (k)Δw(k)Q] + σ2
e + σ2

n

= E
{
tr[x(k)xT (k)Δw(k)QΔwT (k)Q]

}
+ σ2

e + σ2
n

= tr {Rcov[Δw(k)Q]}+ σ2
e + σ2

n (B.31)

If we replace equation (B.25) in (B.31), the MSE of the adaptive system is given by

ξ(k)Q =
μ(σ2

n + σ2
e)tr[R]

1− μtr[R]
+

(N + 1)σ2
w

4μ(1− μtr[R])
+ σ2

e + σ2
n

=
σ2

e + σ2
n

1− μtr[R]
+

(N + 1)σ2
w

4μ(1− μtr[R])
(B.32)
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This formula is valid as long as the algorithm does not stop updating the coefficients. However, the
MSE tends to increase in a form similar to that determined in equation (B.32) when μ does not satisfy
equation (B.29).

In case the input signal is also quantized, a noise with variance σ2
i is generated at the input, causing

an increase in the MSE. The model for the input signal is then,

x(k)Q = x(k)− ni(k) (B.33)

In this case the quantized error can be expressed as

e(k)Q = d(k)−wT (k)Qx(k)Q − ne(k)
= wT

o x(k) + n(k)−wT (k)Q[x(k)− ni(k)]− ne(k)
= wT

o x(k) + n(k)−wT (k)Q[x(k)− ni(k)]− ne(k)
= −ΔwT (k)Qx(k)− [wT

o + ΔwT (k)Q]ni(k)− ne(k) + n(k) (B.34)

The basic difference between the above expression and equation (B.8) is the inclusion of the term
−[wT

o + ΔwT (k)Q]ni(k). By assuming this term is uncorrelated to other terms of the error expres-
sion, the MSE in equation (B.32) includes an extra term given by

E[(wT
o + ΔwT (k)Q)ni(k)(wT

o + ΔwT (k)Q)ni(k)]

that can be simplified as

E[(wT
o + ΔwT (k)Q)ni(k)nT

i (k)(wo + Δw(k)Q)] = wT
o E[ni(k)nT

i (k)]wo

+E[ΔwT
Q(k)E[ni(k)nT

i (k)]ΔwQ(k)]

= σ2
i

{
wT

o wo + tr[cov(ΔwQ(k))]
}

= σ2
i (||wo||2 + tr {cov[Δw(k)Q]})

≈ σ2
i ||wo||2 (B.35)

This additional term due to the input signal quantization leads to an increment in the MSE. As a
result of this term being fedback in the algorithm through the error signal generates an extra term in
the MSE with the same gain as the measurement noise that is approximately given by

μσ2
i tr[R]

1− μtr[R]
||wo||2

Therefore, the total contribution of the input signal quantization is

ξi ≈ ||wo||2σ2
i

1− μtr[R]
(B.36)

where in the above analysis it was considered that the terms with σ2
i · σ2

w, σ2
i · σ2

e , and σ2
i · σ2

n are
small enough to be neglected.
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B.7 FLOATING-POINT ARITHMETIC IMPLEMENTATION

A succinct analysis of the quantization effects in the LMS algorithm when implemented in floating-
point arithmetic is presented in this section. Most of the derivations are given in the section B.8 and
follow closely the procedure of the fixed-point analysis.

In floating-point arithmetic, quantization errors occur after addition and multiplication operations.
These errors are respectively modeled as follows [7]:

fl[a + b] = a + b− (a + b)na (B.37)

fl[a · b] = a · b− (a · b)np (B.38)

where na and np are zero-mean random variables that are independent of any other errors. Their
variances are respectively given by

σ2
np
≈ 0.18 · 2−2b (B.39)

and
σ2

na
< σ2

np
(B.40)

where b is the number of bits in the mantissa representation.

The quantized error and the quantized filter coefficients vector are given by

e(k)Q = d(k)− xT (k)w(k)Q − ne(k) (B.41)

w(k + 1)Q = w(k)Q + 2μx(k)e(k)Q − nw(k) (B.42)

where ne(k) and nw(k) represent computational errors, and their expressions are given in the section
B.8. Since nw(k) is a zero-mean vector, it is shown in the section B.8 that on the average w(k)Q

tends to wo. Also, it can be shown that

Δw(k + 1)Q = [I− 2μx(k)xT (k) + NΔw(k)]Δw(k) + N′a(k)wo + 2μx(k)[n(k)− ne(k)]
(B.43)

where NΔw(k) combines several quantization-noise effects as discussed in the section B.8, and N′a(k)
is a diagonal noise matrix that models the noise generated in the vector addition required to update
w(k+1)Q. The error matrix NΔw(k) can be considered negligible as compared to [I−2μx(k)xT (k)]
and therefore is eliminated in the analysis below.

By following a similar analysis used to derive equation (B.24) in the case of fixed-point arithmetic,
we obtain

tr {Rcov[Δw(k)Q]} =
4μ2(σ2

n + σ2
e)tr[R] + ||wo||2σ2

na
+ tr{cov[Δw(k)]}σ2

na

4μ− 4μ2tr[R]
(B.44)

where it was considered that all noise sources in matrix N′a(k) have the same variance given by σ2
na

.

If x(k) is considered a Gaussian white noise with variance σ2
x, it is straightforward to calculate

E[||w(k)Q||2]. The expression is given by

E[||w(k)Q||2] =
μ(σ2

n + σ2
e)(N + 1)

1− μ(N + 1)σ2
x

+
||wo||2σ2

na

4μσ2
x[1− μ(N + 1)σ2

x]
+

σ2
na

σ2
n(N + 1)

4σ2
x[1− μ(N + 1)σ2

x]2

(B.45)
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where the expression for tr{cov[Δw(k)]} used in the above equation is given in the section B.8,
equation (B.52). For small values of μ, the quantization of addition in the updating of w(k)Q may
be the dominant source of error in the adaptive-filter coefficients.

The MSE in the LMS algorithm implemented with floating-point arithmetic is then given by

ξ(k)Q = tr{Rcov[Δw(k)Q]}+ σ2
e + σ2

n

=
(σ2

n + σ2
e)

1− μtr[R]
+
||wo||2σ2

na
+ tr{cov[Δw(k)]}σ2

na

4μ(1− μtr[R])
(B.46)

For μ � 1
tr[R]

, using equation (B.52), and again considering x(k) a Gaussian white noise with

variance σ2
x, the above equation can be simplified as follows:

ξ(k)Q = σ2
n + σ2

e +
||wo||2σ2

na

4μ
+

(N + 1)σ2
nσ2

na

4
(B.47)

The ith coefficient of the adaptive filter will not be updated in floating-point implementation if

|2μe(k)Qx(k)|i < 2−ba−1|w(k)|i (B.48)

where |(·)|i denotes the modulus of the ith component of (·), and ba is the number of bits in the
fractional part of the addition in the coefficient updating. In the steady state we can assume that
σ2

n + σ2
e is a lower bound for E[e2(k)Q] and equation (B.48) can be equivalently rewritten as

4μ2(σ2
n + σ2

e)σ2
x < 4μ2E[e2(k)Q]E[x2

i (k)] <
2−2ba

4
w2

oi (B.49)

The algorithm will not stop updating before the convergence is achieved, if μ is chosen such that

μ >
2−ba

4

√
w2

oi

(σ2
n + σ2

e)σ2
x

(B.50)

In case μ does not satisfy the above condition, the MSE is determined by the quantization error.

B.8 FLOATING-POINT QUANTIZATION ERRORS IN LMS

ALGORITHM

In this section, we derive the expressions for the quantization errors generated in the implementation
of the LMS algorithm using floating-point arithmetic.
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The error in the output error computation is given by

ne(k) ≈ −na(k)[d(k)− xT (k)w(k)Q]

+xT (k)

⎡
⎢⎢⎢⎣

np0(k) 0 0 · · · 0
0 np1(k) · · · · · · 0
...

. . .
...

...
0 0 npN

(k)

⎤
⎥⎥⎥⎦w(k)Q

−[na1(k) na2(k) · · · naN
(k)]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1∑
i=0

x(k − i)wi(k)Q

2∑
i=0

x(k − i)wi(k)Q

...

N∑
i=0

x(k − i)wi(k)Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −na(k)e(k)Q − xT (k)Np(k)w(k)Q − na(k)si(k)

where npi(k) accounts for the noise generated in the products x(k− i)wi(k)Q and nai(k) accounts
for the noise generated in the additions of the product xT (k)w(k). Note that the error terms of
second- and higher-order have been neglected.

Using similar assumptions one can show that

nw(k) = −2μn′p(k)e(k)Qx(k)− 2μN′′p(k)e(k)Qx(k)− N′a(k)[w(k)Q + 2μe(k)Qx(k)]
(B.51)

where

N ′′
p (k) =

⎡
⎢⎢⎢⎣

n′′p0
(k) 0 · · · 0
0 n′′p1

(k) · · · 0
...

...
. . .

...
0 · · · · · · n′′pN

(k)

⎤
⎥⎥⎥⎦

N ′
a(k) =

⎡
⎢⎢⎢⎣

n′a0
(k) 0 · · · 0
0 n′a1

(k) · · · 0
...

...
. . .

...
0 · · · · · · n′aN

(k)

⎤
⎥⎥⎥⎦

and n′p(k) accounts for the quantization of the product 2μ by e(k)Q, considering that 2μ is already
available. Matrix N′′p(k) models the quantization in the product of 2μe(k)Q by x(k), while N′a(k)
models the error in the vector addition used to generate w(k + 1)Q.
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If we substitute the expression for e(k)Q of equation (B.8) in nw(k) given in equation (B.51), and
use the result in equation (B.11), it can be shown that

Δw(k + 1)Q = [I− 2μx(k)xT (k)]Δw(k)Q + 2μx(k)[n(k)− ne(k)]− nw(k)
≈ [I− 2μx(k)xT (k) + 2μn′p(k)x(k)xT (k)

+2μN′′p(k)x(k)xT (k) + 2μN′a(k)x(k)xT (k)

+N′a(k)]Δw(k)Q + N′a(k)wo + 2μx(k)[n(k)− ne(k)]

where the terms corresponding to products of quantization errors were considered small enough to
be neglected.

Finally, the variance of the error noise can be derived as follows:

σ2
e = σ2

na
ξ(k)Q + σ2

np

N∑
i=0

Ri,icov[w(k + 1)Q]i,i

+σ2
na

{
E[(

1∑
i=0

x(k − i)wi(k)Q)2] + E[(
2∑

i=0

x(k − i)wi(k)Q)2]

+ · · ·+ E[(
N∑

i=0

x(k − i)wi(k)Q)2]

}

where σ
′2
nai

was considered equal to σ2
na

, and [·]i,i means diagonal elements of [·]. The second term
can be further simplified as follows:

tr{Rcov[w(k + 1)Q]} ≈
N∑

i=0

Ri,iw
2
oi + Ri,icov[Δw(k + 1)]i,i

+first- and higher-order terms · · ·

Since this term is multiplied by σ2
np

, any first- and higher-order terms can be neglected. The first
term of σ2

e is also small in the steady state. The last term can be rewritten as

σ2
na

{
E[(

1∑
i=0

x(k − i)woi)2] + E[(
2∑

i=0

x(k − i)woi)2] + · · ·+ E[(
N∑

i=0

x(k − i)woi)2]

}

= σ2
na

⎧⎨
⎩

N∑
j=1

j∑
i=0

Ri,icov[Δw(k + 1)]i,i

⎫⎬
⎭

where terms of order higher than one were neglected, x(k) was considered uncorrelated to Δw(k+1),
and cov[Δw(k + 1)] was considered a diagonal matrix. Actually, if x(k) is considered a zero-mean
Gaussian white noise, from equation (3.23) it can be shown that

cov[Δw(k)] ≈ μσ2
nI +

μ2(N + 1)σ2
xσ2

nI
1− μ(N + 1)σ2

x

=
μσ2

nI
1− μ(N + 1)σ2

x

(B.52)
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Since this term will be multiplied by σ2
na

and σ2
np

, it can also be disregarded. In conclusion,

σ2
e ≈ σ2

na

⎧⎨
⎩E[

N∑
j=1

(
j∑

i=0

x(k − i)woi)2]

⎫⎬
⎭+ σ2

np

N∑
i=0

Ri,iw
2
oi

This equation can be further simplified when x(k) is as above described and σ2
na

= σ2
np

= σ2
d,

leading to

σ2
e ≈ σ2

d

[
N∑

i=1

(N − i + 2)Ri,iw
2
oi − R1,1w

2
o1

]
= σ2

dσ2
x

[
N∑

i=1

(N − i + 2)w2
oi − w2

o1

]
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C
QUANTIZATION EFFECTS IN THE RLS

ALGORITHM

C.1 INTRODUCTION

In this appendix, several aspects of the finite-wordlength effects in the RLS algorithm are discussed
for the cases of implementation with fixed- and floating-point arithmetic [4]-[7], [8]-[11].

C.2 ERROR DESCRIPTION

All the elements of matrices and vectors in the RLS algorithm will deviate from their correct values
due to quantization effects. The error generated in any individual quantization is considered to be
a zero-mean random variable that is independent of any other error and quantities related to the
adaptive-filter algorithm. The variances of these errors depend on the type of quantization and
arithmetic that will be applied in the algorithm implementation.

The errors in the quantities related to the conventional RLS algorithm are defined by

ne(k) = e(k)− e(k)Q (C.1)

nψ(k) = SD(k − 1)Qx(k)− [SD(k − 1)Qx(k)]Q (C.2)

NSD
(k) = SD(k)− SD(k)Q (C.3)

nw(k) = w(k)− w(k)Q (C.4)

ny(k) = y(k)− y(k)Q (C.5)

nε(k) = ε(k)− ε(k)Q (C.6)

where the subscript Q denotes the quantized form of the given matrix, vector, or scalar.

It is assumed that the input signal and desired signal suffer no quantization, so only quantizations
of internal computations are taken into account. With the above definitions, the following relations
describe the computational error in some quantities of interest related to the RLS algorithm:

e(k)Q = d(k)− xT (k)w(k − 1)Q − ne(k) (C.7)

w(k)Q = w(k − 1)Q + SD(k)Qx(k)e(k)Q − nw(k) (C.8)
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where ne(k) is the noise sequence due to quantization in the inner product xT (k)w(k − 1)Q and
nw(k) is a noise vector due to quantization in the product SD(k)Qx(k)e(k)Q.

The development here is intended to study the algorithm behavior when the internal signals, vectors,
and matrices are available in quantized form as happens in a practical implementation. This means
that, for example inAlgorithm 5.2, all the informations needed from the previous time interval (k−1)
to update the adaptive filter at instant k are available in quantized form.

Now we can proceed with the analysis of the deviation in the coefficient vector generated by the
quantization error. By defining

Δw(k)Q = w(k)Q − wo (C.9)

and considering that

d(k) = xT (k)wo + n(k)

then it follows that
e(k)Q = −xT (k)Δw(k − 1)Q − ne(k) + n(k) (C.10)

and

Δw(k)Q = Δw(k − 1)Q + SD(k)Qx(k)[−xT (k)Δw(k − 1)Q − ne(k) + n(k)]− nw(k)
(C.11)

Equation (C.11) can be rewritten as follows:

Δw(k)Q = [I− SD(k)Qx(k)xT (k)]Δw(k − 1)Q + n′w(k) (C.12)

where
n′w(k) = SD(k)Qx(k)[n(k)− ne(k)]− nw(k) (C.13)

The solution of equation (C.12) can be calculated as

Δw(k)Q =
k∏

i=0

[
I− SD(i)Qx(i)xT (i)

]
Δw(−1)Q

+
k∑

i=0

⎧⎨
⎩

k∏
j=i+1

[I− SD(j)Qx(j)xT (j)]

⎫⎬
⎭n′w(i) (C.14)

where in the last term of the above equation for i = k, we consider that

k∏
j=k+1

[·] = 1

Now, if we rewrite Algorithm 5.2 taking into account that any calculation in the present updating
generates quantization noise, we obtain Algorithm C.1 that describes the RLS algorithm with quan-
tization and additional noise taken into account. Notice that Algorithm C.1 is not a new algorithm.
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Algorithm C.1

RLS Algorithm Including Quantization

Initialization
SD(−1) = δI
where δ can be the inverse of an estimate of the input signal power.
x(−1) = w(−1) = [0 0 . . . 0]T

Do for k ≥ 0
e(k)Q = d′(k)− xT (k)w(k − 1)Q − ne(k) + n(k)
ψ(k)Q = SD(k − 1)Qx(k)− nψ(k)

SD(k)Q = 1
λ

[
SD(k − 1)Q − ψ(k)QψT

(k)Q

λ+ψT
(k)Qx(k)

]
− NSD

(k)

w(k)Q = w(k − 1)Q + e(k)QSD(k)Qx(k)− nw(k)
If necessary compute
y(k)Q = wT (k)Qx(k)− ny(k)
ε(k)Q = d(k)− yQ(k)

C.3 ERROR MODELS FOR FIXED-POINT ARITHMETIC

In the case of fixed-point arithmetic, with rounding assumed for quantization, the error after each
product can be modeled as a zero-mean stochastic process, with variance given by [1]-[2]

σ2 =
2−2b

12
(C.15)

where b is the number of bits after the sign bit. Here it is assumed that the number of bits after the
sign bit for quantities representing signals and filter coefficients are different, and given by bd and
bc, respectively. It is also assumed that the internal signals are properly scaled, so that no overflow
occurs during the computations, and that the signal values are between −1 and +1. If in addition
independence between errors is assumed, each element in equations (C.1) to (C.6) is on average zero.
The respective covariance matrices are given by

E[n2
e(k)] = E[n2

ε(k)] = σ2
e (C.16)

E[NSD
(k)NT

SD
(k)] = σ2

SD
I (C.17)

E[nw(k)nT
w(k)] = σ2

wI (C.18)

E[nψ(k)nT
ψ(k)] = σ2

ψI (C.19)

E[n2
y(k)] = σ2

y (C.20)
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If distinction is made between data and coefficient wordlengths, the noise variances of data and
coefficients are respectively given by

σ2
e = σ2

y = γ
2−2bd

12
(C.21)

σ2
w = γ′

2−2bc

12
(C.22)

where γ′ = γ = 1 if the quantization is performed after addition, i.e., the products are performed
in full precision and the quantization is applied only after all the additions in the inner product
are finished. For quantization after each product, then γ = N + 1 and γ′ = N + 2, since each
quantization in the partial product generates an independent noise, and the number of products in the
error computation is N + 1 whereas in the coefficient computation it is N + 2.

As an illustration, it is shown how to calculate the value of the variance σ2
SD

when making some

simplifying assumptions. The value of σ2
SD

depends on how the computations to generate SD(k) are
performed. Assume the multiplications and divisions are performed with the same wordlength and
that the needed divisions are performed once, followed by the corresponding scalar matrix product.
Also, assuming the inner product quantizations are performed after the addition, each element of
the matrix SD(k)Q requires five multiplications1 considering that 1/λ is prestored. The diagonal
elements of equation (C.17) consist of N + 1 noise autocorrelations, each with variance 5σ2

ψ . The
desired result is then given by

σ2
SD

= 5(N + 1)σ2
ψ (C.23)

where σ2
ψ is the variance of each multiplication error.

C.4 COEFFICIENT-ERROR-VECTOR COVARIANCE MATRIX

Assume that the quantization signals ne(k), n(k), and the vector nw(k) are all independent of the
data, filter coefficients, and of each other. Also, assuming that these errors are all zero-mean stochastic
processes, the covariance matrix of the coefficient-error vector given by E[Δw(k)QΔwT (k)Q] can
be derived from equations (C.12) and (C.13)

cov[Δw(k)Q] = E[Δw(k)QΔwT (k)Q]
= E

{
[I− SD(k)Qx(k)xT (k)]Δw(k − 1)QΔwT (k − 1)Q

[I− x(k)xT (k)SD(k)Q]
}

+E[SD(k)Qx(k)xT (k)SD(k)Q]E[n2(k)]
+E[SD(k)Qx(k)xT (k)SD(k)Q]E[n2

e(k)]
+E[nw(k)nT

w(k)] (C.24)

1One is due to the inner product at the denominator; one is due to the division; one is due to the product of the division
result by 1/λ; one is to calculate the elements of the outer product of the numerator; the other is the result of quantization of
the product of the last two terms.
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The above equation can be approximated in the steady state, where each term on the right-hand side
will be considered separately. It should be noted that during the derivations it is implicitly assumed
that the algorithm follows closely the behavior of its infinite-precision counterpart. This assumption
can always be considered as true if the wordlengths used are sufficiently long. However, under
short-wordlength implementation this assumption might not be true as will be discussed later on.

Term 1:

The elements of Δw(k − 1)Q can be considered independent of SD(k)Q and x(k). In this case, the
first term in equation (C.24) can be expressed as

T1 = cov[Δw(k − 1)Q]− cov[Δw(k − 1)Q]E[x(k)xT (k)SD(k)Q]
−E[SD(k)Qx(k)xT (k)]cov[Δw(k − 1)Q]
+E

{
SD(k)Qx(k)xT (k)cov[Δw(k − 1)Q]x(k)xT (k)SD(k)Q

}
(C.25)

If it is recalled that SD(k)Q is the unquantized SD(k) matrix disturbed by a noise matrix that is
uncorrelated to the input signal vector, then in order to compute the second and third terms of T1 it
suffices to calculate

E[SD(k)x(k)xT (k)] ≈ E [SD(k)]E
[
x(k)xT (k)

]
(C.26)

where the approximation is justified by the fact that SD(k) is slowly varying as compared to x(k)
when λ → 1. Using equation (5.55) it follows that

E
[
SD(k)x(k)xT (k)

] ≈ 1− λ

1− λk+1 I (C.27)

Now we need to use stronger assumptions for SD(k) than those considered in the above equation.
If the matrix E[SD(k)Q] is assumed to be approximately constant for large k (see the discussions
around equation (5.54)), the last term in T1 can be approximated by

E
{

SD(k)Qx(k)xT (k)cov[Δw(k − 1)Q]x(k)xT (k)SD(k)Q

}
≈ E[SD(k)Q]E

{
x(k)xT (k)cov[Δw(k − 1)Q]x(k)xT (k)

}
E[SD(k)Q]

(C.28)

If it is further assumed that the elements of the input signal vector are jointly Gaussian, then each
element of the middle term in the last equation can be given by

E
{

x(k)xT (k)cov[Δw(k − 1)Q]x(k)xT (k)
}

i,j

=
N∑

m=0

N∑
l=0

cov[Δw(k − 1)Q]mlE[xi(k)xm(k)xl(k)xj(k)]

= 2{Rcov[Δw(k − 1)Q]R}i,j + [R]i,jtr{Rcov[Δw(k − 1)Q]}
(C.29)

where [·]i,j denotes the ith, jth element of the matrix [·]. It then follows that

E
{

x(k)xT (k)cov[Δw(k − 1)Q]x(k)xT (k)
}

= 2Rcov[Δw(k − 1)Q]R
+Rtr {Rcov[Δw(k − 1)Q]} (C.30)
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The last term of T1 in equation (C.25), after simplified, yields

2
(

1− λ

1− λk+1

)2

cov[Δw(k − 1)Q] +
(

1− λ

1− λk+1

)2

tr {Rcov[Δw(k − 1)Q]}R−1

+E
{

NSD
(k)x(k)xT (k)cov[Δw(k − 1)Q]x(k)xT (k)NSD

(k)
}

(C.31)

After a few manipulations, it can be shown that the third term in the above equation is nondiagonal
with NSD

(k) being symmetric for the RLS algorithm described in Algorithm C.1. On the other hand,
if the matrix R is diagonal dominant, that is in general the case, the third term of (C.31) becomes
approximately diagonal and given by2

TS(k) ≈ σ2
SD

σ4
xtr{cov[Δw(k − 1)Q]}I (C.32)

where σ2
x is the variance of the input signal. This term, which is proportional to a quantization noise

variance, can actually be neglected in the analysis, since it has in general much smaller norm then
the remaining terms in T1.

Terms 2 and 3:

Using the same arguments applied before, such as SD(k) is almost fixed as λ → 1, then the main
result required to calculate the terms 2 and 3 of equation (C.24) is approximately given by

E[SD(k)Qx(k)xT (k)SD(k)Q] ≈ E[SD(k)]RE[SD(k)] + E[NSD
(k)RNSD

(k)]

≈
(

1− λ

1− λk+1

)2

R−1 (C.33)

where the term E[NSD
(k)RNSD

(k)] can be neglected because it is in general much smaller than
the remaining term. In addition, it will be multiplied by a small variance when equation (C.33) is
replaced back in equation (C.24). From equations (C.24), (C.28), (C.33), (C.16), (C.18), and (C.22)
it follows that

cov[Δw(k)Q] =

[
1− 2

(
1− λ

1− λk+1

)
+ 2

(
1− λ

1− λk+1

)2
]

cov[Δw(k − 1)Q]

+
(

1− λ

1− λk+1

)2

tr{Rcov[Δw(k − 1)Q]}R−1

+
(

1− λ

1− λk+1

)2

(σ2
n + σ2

e)R−1 + σ2
wI (C.34)

Now, by considering in equation (C.34) that in the steady state cov[Δw(k)Q] ≈ cov[Δw(k − 1)Q],
multiplying the resulting expression by R, and calculating the trace of the final equation, it can be
shown that

tr{Rcov[Δw(k − 1)Q]} ≈ (1− λ)2(N + 1)(σ2
n + σ2

e) + σ2
wtr(R)

(1− λ)[2λ− (1− λ)(N + 1)]
(C.35)

2The proof is not relevant but following the lines of equation (C.30) and considering that its last term is the most relevant,
the result follows.
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where it was considered that λk+1 → 0. Replacing the equation (C.35) in (C.34), and computing
the steady-state solution the following equation results

cov[Δw(k)Q] ≈ (1− λ)(σ2
n + σ2

e)
2λ− (1− λ)(N + 1)

R−1 +
(1− λ)tr(R)R−1 + [2λ− (1− λ)(N + 1)]I

2(1− λ)λ[2λ− (1− λ)(N + 1)]
σ2

w

(C.36)

Finally, if the trace of the above equation is calculated considering that x(k) is a Gaussian white
noise with variance σ2

x, and that 2λ � (1 − λ)(N + 1) for λ → 1, the resulting expected value of
||Δw(k)Q||2 is

E[||Δw(k)Q||2] ≈ (1− λ)(N + 1)
2λ

σ2
n + σ2

e

σ2
x

+
(N + 1)σ2

w
2λ(1− λ)

(C.37)

As can be noted if the value of λ is very close to one, the square errors in the tap coefficients tend
to increase and to become more dependent of the tap coefficient wordlengths. On the other hand,
if λ is not close to one, in general for fast tracking purposes, the effects of the additive noise and
data wordlength become more disturbing to the coefficient square errors. The optimum value for λ
close to 1, as far as quantization effects are concerned, can be derived by calculating the derivative
of E||Δw(k)Q||2] with respect to λ and setting the result to zero

λopt ≈ 1− σwσx√
σ2

n + σ2
e

(C.38)

where it was assumed that (2λ− 1) ≈ 1.

By noting that 1−λ
1−λk+1 should be replaced by 1

k+1 when λ = 1, it can be shown from equation (C.34)
that the algorithm tends to diverge when λ = 1, since in this case ||cov[Δw(k)Q]|| is growing with k.

C.5 ALGORITHM STOP

In some cases the adaptive-filter tap coefficients may stop adapting due to quantization effects. In
particular, the conventional RLS algorithm will freeze when the coefficient updating term is not
representable with the available wordlength. This occurs when its modulus is smaller than half the
value of the least significant bit, i.e.,

|e(k)QSD(k)Qx(k)|i < 2−bc−1 (C.39)

where | |i denotes the modulus of the ith component. Equivalently it can be concluded that updating
will be stopped if

E[e(k)2Q]E[|SD(k)Qx(k)xT (k)SD(k)Q|ii] ≈
(

1− λ

1− λk+1

)2
σ2

e + σ2
n

σ2
x

< 2−2bc−2 (C.40)

where x(k) was considered a Gaussian white noise with variance σ2
x, and the following approximation

was made E[e(k)2Q] ≈ σ2
e + σ2

n.
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For a given coefficient wordlength bc, the algorithm can always be kept updating if

λ < 1− 2−bc−1 σx√
σ2

e + σ2
n

(C.41)

On the other hand, if the above condition is not satisfied, it can be expected that the algorithm will
stop updating in

k ≈
√

σ2
e + σ2

n

σx
2bc+1 − 1 (C.42)

iterations for λ = 1, and

k ≈ ln[(λ− 1)
√

σ2
e+σ2

n

σx
2bc+1 + 1]

lnλ
− 1 (C.43)

iterations for λ < 1.

In the case λ = 1 the algorithm always stops updating. If σ2
n and bc are not large, any steady-state

analysis for the RLS algorithm when λ = 1 does not apply, since the algorithm stops prematurely.
Because of that, the norm of the covariance of Δw(k)Q does not become unbounded.

C.6 MEAN-SQUARE ERROR

The MSE in the conventional RLS algorithm in the presence of quantization noise is given by

ξ(k)Q = E[ε2(k)Q] (C.44)

By recalling that ε(k)Q can be expressed as

ε(k)Q = −xT (k)Δw(k)Q − ne(k) + n(k) (C.45)

it then follows that

ξ(k)Q = E[xT (k)Δw(k)QxT (k)Δw(k)Q] + σ2
e + ξmin

= E
{
tr[x(k)xT (k)Δw(k)QΔwT (k)Q]

}
+ σ2

e + ξmin

= tr {Rcov[Δw(k)Q]}+ σ2
e + ξmin (C.46)

By replacing equation (C.35) in (C.46), it can be concluded that

ξ(k)Q =
(1− λ)2(N + 1)(σ2

n + σ2
e) + σ2

wtrR
(1− λ)[2λ− (1− λ)(N + 1)]

+ ξmin + σ2
e (C.47)

If it is again assumed that x(k) is a Gaussian white noise with variance σ2
x and that 2λ � (1 −

λ)(N + 1) for λ → 1, the MSE expression can be simplified to

ξ(k)Q ≈ ξmin + σ2
e +

(N + 1)σ2
wσ2

x

2λ(1− λ)
(C.48)



597

C.7 FIXED-POINT IMPLEMENTATION ISSUES

The implementation of the conventional RLS algorithm in fixed-point arithmetic must consider the
possibility of occurrence of overflow and underflow during the computations. In general, some
scaling must be performed in certain quantities of the RLS algorithm to avoid undesired behavior
due to overflow and underflow. The scaling procedure must be applied in almost all computations
required in the conventional RLS algorithm [7], increasing the computational complexity and/or
the implementation control by a large amount. A possible solution is to leave enough room in the
integer and fractional parts of the number representation, in order to avoid frequent overflows and
underflows and also avoid the use of cumbersome scaling strategies. In other words, a fixed-point
implementation does require a reasonable number of bits to represent each quantity.

The error propagation analysis can be performed by studying the behavior of the difference between
each quantity of the algorithm calculated in infinite precision and finite precision. This analysis
allows the detection of divergence of the algorithm due to quantization error accumulation. The
error propagation analysis for the conventional RLS algorithm reveals divergence behavior linked
to the fact that SD(k) loses the positive definiteness property [7]. The main factors contributing to
divergence are:

– Large maximum eigenvalue in the matrix R that amplifies some terms in propagation error
of the SD(k) matrix. In this case, SD(k) might have a small minimum eigenvalue, being as
consequence “almost” singular.

– A small number of bits used in the calculations increases the roundoff noise contributing to
divergence.

– The forgetting factor when small, turns the memory of the algorithm short, making the ma-
trix SD(k) deviate from its expected steady-state value and more likely to lose the positive
definiteness property.

Despite these facts, the conventional RLS algorithm can be implemented without possibility of
divergence if some special quantization strategies for the internal computations are used [7]. These
quantization strategies, along with adaptive scaling strategies, must be used when implementing the
conventional RLS algorithm in fixed-point arithmetic with short wordlength.

C.8 FLOATING-POINT ARITHMETIC IMPLEMENTATION

In this section, a succinct analysis of the quantization effects in the conventional RLS algorithm when
implemented in floating-point arithmetic is presented. Most of the derivations are given in section
C.9 and follow closely the procedure of the fixed-point analysis.

C.8 Floating-Point Arithmetic Implementation
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In floating-point arithmetic, quantization errors are injected after multiplication and addition opera-
tions, and are modeled as follows [3]:

fl[a + b] = a + b− (a + b)na (C.49)

fl[a · b] = a · b− a · b · np (C.50)

where na and np are zero-mean random variables that are independent of any other errors. Their
variances are given by

σ2
np
≈ 0.18 2−2b (C.51)

and
σ2

na
< σ2

np
(C.52)

where b is the number of bits in the mantissa representation.

The quantized error and the quantized coefficient vector are given by

e(k)Q = d′(k)− xT (k)w(k − 1)Q − ne(k) + n(k) (C.53)

w(k)Q = w(k − 1)Q + SD(k)Qx(k)e(k)Q − nw(k) (C.54)

where ne(k) and nw(k) represent computational errors and their expressions are given in section
C.9. Since nw(k) is a zero-mean vector, it is shown in section C.9 that on average w(k)Q tends to
wo. Also, it can be shown that

Δw(k)Q = [I− SD(k)Qx(k)xT (k) + NΔw(k)]Δw(k − 1)
+N′a(k)wo + SD(k)Qx(k)[n(k)− ne(k)] (C.55)

where NΔw(k) combines several quantization noise effects as discussed in section C.9 and N′a(k)
is a diagonal noise matrix that models the noise generated in the vector addition required to update
w(k)Q.

The covariance matrix of Δw(k)Q can be calculated through the same procedure previously used in
the fixed-point case, resulting in

cov[Δw(k)Q] ≈ (1− λ)(σ2
n + σ2

e)R−1

2λ− (1− λ)(N + 1)

+
(1− λ)R−1tr

{
Rdiag[w2

oi]
}

+ [2λ− (1− λ)(N + 1)]diag[w2
oi]

2(1− λ)λ[2λ− (1− λ)(N + 1)]
σ2

n′a
(C.56)

where NSD
(k) of equation (C.3) and NΔw(k) were considered negligible as compared to the re-

maining matrices multiplying Δw(k − 1) in equation (C.55). The expression of σ2
n′a

is given by
equation (C.52). The term diag[w2

oi] represents a diagonal matrix formed with the squared elements
of wo.

The expected value of ||Δw(k)Q||2 in the floating-point case is approximately given by

E[||Δw(k)Q||2] ≈ (1− λ)(N + 1)
2λ

σ2
n + σ2

e

σ2
x

+
1

2λ(1− λ)
||wo||2σ2

n′a
(C.57)
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where it was considered that x(k) is a Gaussian white noise with variance σ2
x and that 2λ �

(1 − λ)(N + 1) for λ → 1. If the value of λ is very close to one, the squared errors in the tap
coefficients tend to increase. Notice that the second term on the right-hand side of the above equation
turns these errors more dependent on the precision of the vector addition of the taps updating. For λ
not very close to one, the effects of the additive noise and data wordlength become more pronounced.
In floating-point implementation, the optimal value of λ as far as quantization effects are concerned
is given by

λopt = 1− σn′aσx√
σ2

n + σ2
e

||wo|| (C.58)

where this relation was obtained by calculating the derivative of equation (C.57) with respect to λ,
and equalizing the result to zero in order to reach the value of λ that minimizes the E[||Δw(k)Q||2].
For λ = 1, like in the fixed-point case, ||cov[Δw(k)Q]|| is also a growing function that can make the
conventional RLS algorithm diverge.

The algorithm may stop updating if

|e(k)QSD(k)x(k)|i < 2−bc−1wi(k) (C.59)

where | |i is the modulus of the ith component and bc is the number of bits in the mantissa of the
coefficients representation. Following the same procedure to derive equation (C.40), we can infer
that the updating will be stopped if(

1− λ

1− λk+1

)2
σ2

e + σ2
n

σ2
x

< 2−2bc−2|woi|2 (C.60)

where woi is the ith element of wo.

The updating can be continued indefinitely if

λ < 1− 2−bc−1 σx|woi|√
σ2

e + σ2
n

(C.61)

In the case λ does not satisfy the above condition, the algorithm will stop updating the ith tap in
approximately

k =

√
σ2

e + σ2
n

σx|woi| − 1 (C.62)

iterations for λ = 1, and

k ≈
ln[(λ− 1)

√
σ2

e+σ2
n

σx|woi| 2−bc−1 + 1]

lnλ
− 1 (C.63)

iterations for λ < 1.

Following the same procedure as in the fixed-point implementation, it can be shown that the MSE in
the floating-point case is given by

ξ(k)Q = tr{Rcov[Δw(k)Q]}+ σ2
e + ξmin

≈ (1− λ)2(N + 1)(σ2
n + σ2

e) + σ2
n′a

tr
{

Rdiag[w2
oi]
}

(1− λ)[2λ− (1− λ)(N + 1)]
+ σ2

e + ξmin (C.64)
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where σ2
ε was considered equal to σ2

e . If x(k) is a Gaussian white noise with variance σ2
x and

2λ � (1− λ)(N + 1) for λ → 1, the MSE can be approximated by

ξ(k)Q ≈ ξmin + σ2
e +

||wo||2σ2
n′a

σ2
x

2λ(1− λ)
(C.65)

Note that σ2
e has a somewhat complicated expression that is given in section C.9.

Finally, it should be mentioned that in floating-point implementations the matrix SD(k) can also lose
its positive definite property [10]. In [7], it was mentioned that if no interactions between errors
is considered, preserving the symmetry of SD(k) is enough to keep it positive definite. However,
interactions between errors do exist in practice, so the conventional RLS algorithm can become
unstable in floating-point implementations unless some special quantization procedures are employed
in the actual implementation. An alternative is to use numerically stable RLS algorithms discussed
in Chapters 7, 8, and 9.

C.9 FLOATING-POINT QUANTIZATION ERRORS IN RLS

ALGORITHM

The error in the a priori output error computation is given by

ne(k) ≈ −na(k)[d(k)− xT (k)w(k − 1)Q]

−xT (k)

⎡
⎢⎢⎢⎣

npo
(k) 0 0 · · · 0
0 np1(k) · · · · · · 0
...

. . .
0 0 · · · · · · npN

(k)

⎤
⎥⎥⎥⎦w(k − 1)Q

−[na1(k) na2(k) . . . naN
(k)]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1∑
i=0

x(k − i)wi(k − 1)Q

2∑
i=0

x(k − i)wi(k − 1)Q

...
N∑

i=0

x(k − i)wi(k − 1)Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −na(k)e(k)Q − xT (k)Np(k)w(k − 1)Q − na(k)si(k)

where npi
(k) accounts for the noise generated in the products x(k − i)wi(k − 1)Q and nai

(k)
accounts for the noise generated in the additions of the product xT (k)w(k− 1). Please note that the
error terms of second- and higher-order have been neglected.



601C.9 Floating-Point Quantization Errors in RLS Algorithm

Using similar assumptions one can show that

nw(k) = −{nSx(k)e(k)Q + SD(k)QN′p(k)x(k)e(k)Q

+N′′p(k)SD(k)Qx(k)e(k)Q + N′a(k)[w(k − 1) + SD(k)Qx(k)e(k)Q]
}

where

nSx(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
j=1

n′a1,j
(k)

j∑
i=0

SD1,i
(k)Qx(k − i)

...
N∑

j=1

n′aN+1,j
(k)

j∑
i=0

SDN+1,i
(k)Qx(k − i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

N′a(k) =

⎡
⎢⎢⎢⎢⎣

n′ao
(k) 0 · · · 0

0 n′a1
(k)

...
...

. . .
...

0 · · · · · · n′aN
(k)

⎤
⎥⎥⎥⎥⎦

N′p(k) =

⎡
⎢⎢⎢⎢⎣

n′po
(k) 0 · · · 0

0 n′p1
(k)

...
...

. . .
...

0 · · · · · · n′pN
(k)

⎤
⎥⎥⎥⎥⎦

N′′p(k) =

⎡
⎢⎢⎢⎢⎣

n′′p1,1
(k) n′′p1,2

(k) · · · n′′p1,N+1
(k)

n′′p2,1
(k) n′′p2,2

(k)
...

...
. . .

...
n′′pN+1,1

(k) · · · · · · n′′pN+1,N+1
(k)

⎤
⎥⎥⎥⎥⎦

The vector nSx(k) is due to the quantization of additions in the matrix product SD(k)x(k), while
the matrix N′′p(k) accounts for product quantizations in the same operation. The matrix N′a(k)
models the error in the vector addition to generate w(k)Q, while N′p(k) models the quantization in
the product of e(k) by SD(k)Qx(k).

By replacing d′(k) by xT (k)wo in the expression of e(k)Q given in equation (C.7), it follows that

e(k)Q = −xT (k)Δw(k − 1)Q − n′e(k) + n(k)

By using in the above equation the expression of w(k)Q of equation (C.8) (after subtracting wo in each
side of the equation), and neglecting the second- and higher-order errors, after some manipulations
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the following equality results

Δw(k)Q = [I− SD(k)Qx(k)xT (k) + nSxxT (k) + SD(k)QN′p(k)x(k)xT (k)

+N′′p(k)SD(k)Qx(k)xT (k) + N′a(k)SD(k)Qx(k)xT (k) + N′a(k)]Δw(k − 1)Q

+N′a(k)wo + SD(k)Qx(k)[n(k)− n′e(k)]

Since all the noise components in the above equation have zero mean, on average the tap coefficients
will converge to their optimal values because the same dynamic equation describes the evolution of
Δw(k) and Δw(k)Q.

Finally, the variance of the a priori error noise can be derived as follows:

σ2
e = σ2

ε = σ2
na

ξ(k)Q + σ2
np

N∑
i=0

Ri,icov[w(k)Q]i,i + σ2
na

⎧⎨
⎩E

⎡
⎣( 1∑

i=0

x(k − i)wi(k − 1)Q

)2
⎤
⎦

+E

⎡
⎣( 2∑

i=0

x(k − i)wi(k − 1)Q

)2
⎤
⎦ + · · ·+ E

⎡
⎣( N∑

i=0

x(k − i)wi(k − 1)Q

)2
⎤
⎦
⎫⎬
⎭

where σ2
n′ai

= σ2
na

was used and [ ]i,i means diagonal elements of [ ]. The second term in the above
equation can be further simplified as follows:

tr{Rcov[w(k)Q]} ≈
N∑

i=0

Ri,iw
2
oi +

N∑
i=0

Ri,icov[Δw(k)]i,i

+first− and higher− order terms · · ·
Since this term is multiplied by σ2

np
, any first- and higher-order terms can be neglected. The first

term of σ2
e is also small in the steady state. The last term can be rewritten as

σ2
na

⎧⎨
⎩E

⎡
⎣( 1∑

i=0

x(k − i)woi

)2
⎤
⎦+ E

⎡
⎣( 2∑

i=0

x(k − i)woi

)2
⎤
⎦+ · · ·

+E

⎡
⎣( N∑

i=0

x(k − i)woi

)2
⎤
⎦
⎫⎬
⎭ = σ2

na

⎧⎨
⎩

N∑
j=1

j∑
i=0

Ri,i[cov(Δw(k))]i,i

⎫⎬
⎭

where terms of order higher than one were neglected, x(k) was considered uncorrelated to Δw(k),
and cov[Δw(k)] was considered a diagonal matrix. Actually, if x(k) is considered a zero-mean
Gaussian white noise from the proof of equation (5.36) and equation (5.55), it can be shown that

cov[Δw(k)] ≈ σ2
n

σ2
x

I

Since this term will be multiplied by σ2
na

and σ2
np

, it can also be disregarded. In conclusion

σ2
e ≈ σ2

na

⎧⎨
⎩E[

N∑
j=1

(
j∑

i=0

x(k − i)woi)2]

⎫⎬
⎭+ σ2

np

N∑
i=0

Ri,iw
2
oi
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This equation can be simplified further when x(k) is as above described and σ2
na = σ2

np
= σ2

d

σ2
e ≈ σ2

d

[
N∑

i=1

(N − i + 2)Ri,iw
2
oi − R1,1w

2
o1

]

= σ2
dσ2

x

[
N∑

i=1

(N − i + 2)w2
oi − w2

o1

]
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D
KALMAN FILTERS

D.1 INTRODUCTION

This section provides a brief description of Kalman filter that can be considered an extension of the
Wiener filtering concept [1]. The Kalman filter has as objective the minimization of the estimation
square error of a nonstationary signal buried in noise. The estimated signal itself is modeled utilizing
the state-space formulation [2] describing its dynamical behavior. In summary, Kalman filtering
deals with random processes described using state-space modeling which generate signals that can
be measured and processed utilizing time recursive estimation formulas. The presentation here
is brief and addresses the case of signals and noises represented in vector form, for more details
in this subject the reader can consult many books available presenting Kalman filtering, including
[3], [4]. There are many different ways to describe the Kalman filtering problem and to derive its
corresponding relations, here we follow the presentations of [5]-[6].

D.2 STATE-SPACE MODEL

A convenient form of representing some dynamic systems is through what is called the state-space
representation [2]. In such description, the outputs of the memory elements are considered as the
system states. The state signals are collected in a vector denoted as x(k) which are in turn generated
from its previous state x(k − 1) and from an external signal vector denoted as n(k). The observed
or measured signals are collected in another vector denoted as y(k) whose elements originate from
linear combinations of the current state variables and of external signals represented in n1(k). If we
know the values of the external signals n(k) and n1(k), we can determine the current values of the
system states, which will be the delay inputs, and the system observation vector as follows:{

x(k) = A(k − 1)x(k − 1) + B(k)n(k)
y(k) = CT (k)x(k) + D(k)n1(k)

(D.1)
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where x(k) is the (N + 1) × 1 vector of the state variables. If M is the number of system inputs
and L is the number of system outputs, we then have that A(k − 1) is (N + 1)× (N + 1), B(k) is
(N + 1)×M , C(k) is (N + 1)× L, and D(k) is L× L1.

Fig. D.1 shows the state-space system which generates the observation vector y(k) having as in-
puts the noise vectors n(k) and n1(k), where the state variables x(k) are processes generated with
excitation noise n(k).

B k( ) z
-1

I C
T

k( )

A k( -1)

n1 k( )

n k( ) y k( )

x k( -1)x k( )

+ +

Figure D.1 State-space model for Kalman filtering formulation.

The recursive solution of equation (D.1) can be described as

x(k) =
k−1∏
l=0

A(l)x(0) +
k∑

i=1

[
k−1∏
l=i

A(l)

]
B(i)n(i) (D.2)

where
∏k−1

l=k A(l) = 1.

D.2.1 Simple Example

Let’s describe a particular example where we assume the signal x(k) is a sample of an autoregressive
process generated from the output of a system described by a linear difference equation given by

x(k) =
N∑

i=1

−ai(k − 1)x(k − i) + n(k) (D.3)

where n(k) is a white noise. The coefficients ai(k − 1), for i = 1, 2 . . . , N , are the time-varying
parameters of the AR process. As part of the Kalman filtering procedure is the estimation of x(k)
from noisy measurements denoted as yl(k) for l = 1, 2, . . . , L.

1In standard state-space formulation the matrix D(k) represents a feedforward connection between the input and the output
of the dynamic system, in this discussion this matrix in not a feedforward matrix and is considered to be identity.
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We can collect a sequence of signals to be estimated and noise measurements in vector forms as

x(k) =

⎡
⎢⎢⎢⎣

x(k)
x(k − 1)

...
x(k −N)

⎤
⎥⎥⎥⎦

y(k) =

⎡
⎢⎢⎢⎣

y1(k)
y2(k)

...
yL(k)

⎤
⎥⎥⎥⎦ (D.4)

where L represents the number of observations collected in y(k).

Each entry of the observation vector is considered to be generated through the following model

yl(k) = cT
l (k)x(k) + n1,l(k) (D.5)

where n1,l(k) for l = 1, 2, . . . , L are also white noises uncorrelated with each other and with n(k).

Applying the state-space formulation to the particular set of equations (D.3) and (D.5) leads to a
block of state variables originating from an autoregressive process described by

x(k) =

⎡
⎢⎢⎢⎣

x(k)
x(k − 1)

...
x(k −N)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
−a1(k − 1) −a2(k − 1) · · · −aN−1(k − 1) −aN (k − 1)

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x(k − 1)
x(k − 2)

...
x(k −N − 1)

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦n(k)

y(k) =

⎡
⎢⎢⎢⎣

cT
1 (k)

cT
2 (k)

...
cT
L(k)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x(k − 1)
x(k − 2)

...
x(k −N)

⎤
⎥⎥⎥⎦+ n1(k) (D.6)

where for this case of single-input and multiple-output system B(k) is (N + 1) ×M whose only
nonzero element is the entry (1, 1) that equals one, C(k) is (N + 1) × L, and D(k) is just an
identity matrix since the measurement noise contributes to the elements of the observation vector in
an uncoupled form.
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D.3 KALMAN FILTERING

In the following discussion we derive the Kalman filter for the general state-space description of
equation (D.1). For that its assumed we know

Rn1(k) = E[n1(k)nT
1 (k)] (D.7)

Rn(k) = E[n(k)nT (k)] (D.8)

A(k−1) and C(k), and that n(k) and n1(k) are zero-mean white processes and uncorrelated to each
other.

By assuming that we have the measurements y(k) available and that we employ all the data available
up to a given iteration, we seek the optimal estimate of the state vector x(k), denoted by x̂(k|k). As
justified along the Kalman filtering derivation, the optimal solution has the following general form

x̂(k|k) = A(k − 1)x̂(k − 1|k − 1) + K(k)
[
y(k)− CT (k)A(k − 1)x̂(k − 1|k − 1)

]
(D.9)

where K(k) is the (N + 1)× L matrix called Kalman gain. The reader can notice that:

The term A(k − 1)x̂(k − 1|k − 1) tries to bring the contribution of the previous estimation of
the state variable to the current one, as suggests the state-space equation (D.1).

The term
[
y(k)− CT (k)A(k − 1)x̂(k − 1|k − 1)

]
is a correction term consisting of the differ-

ence between the observation vector and its estimate given by CT (k)A(k − 1)x̂(k − 1|k − 1),
which in turn is a function the previous state-variable estimate.

The Kalman gain aims at filtering out estimation errors and noise so that the state variable gets
the best possible correction term, which minimizes the MSE.

In order to derive the optimal solution for the Kalman gain let’s first consider two cases where the
estimate of x(k) is computed using observation data available until iteration k and another until
iteration k−1, denoted by x̂(k|k) and x̂(k|k−1), respectively. The estimation error vectors in these
cases are defined by

e(k|k) = x(k)− x̂(k|k) (D.10)

e(k|k − 1) = x(k)− x̂(k|k − 1) (D.11)

These errors have covariance matrices defined as

Re(k|k) = E[e(k|k)eT (k|k)] (D.12)

Re(k|k − 1) = E[e(k|k − 1)eT (k|k − 1)] (D.13)

Given an instant k − 1 when the informations x̂(k − 1|k − 1) and Re(k − 1|k − 1) are available,
we first try to estimate x̂(k|k − 1) which does not require the current observation. Whenever a new
observation y(k) is available, x̂(k|k) is estimated.
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According to equation (D.1), at a given iteration the actual state-space vector evolves as

x(k) = A(k − 1)x(k − 1) + B(k)n(k) (D.14)

Since the elements of n(k) are zero mean, a possible unbiased MSE estimate for x(k) is provided by

x̂(k|k − 1) = A(k − 1)x̂(k − 1|k − 1) (D.15)

since the previous estimate x̂(k − 1|k − 1) is available and A(k − 1) is assumed known.

As a result, the state-variable estimation error when the last available observation is related to iteration
k − 1 is given by

e(k|k − 1) = x(k)− x̂(k|k − 1)
= A(k − 1)x(k − 1) + B(k)n(k)−A(k − 1)x̂(k − 1|k − 1)
= A(k − 1)e(k − 1|k − 1) + B(k)n(k) (D.16)

Assuming that E[e(k − 1|k − 1)] = 0, meaning that x̂(k − 1|k − 1) is an unbiased estimate of
x(k − 1), and recalling that the elements of n(k) are white noise with zero mean, then it is possible
to conclude that

E[e(k|k − 1)] = 0 (D.17)

so that x̂(k|k − 1) is also an unbiased estimate of x(k).

The covariance matrix of e(k|k − 1) can be expressed as follows

Re(k|k − 1) = E[e(k|k − 1)eT (k|k − 1)]
= A(k − 1)E[e(k − 1|k − 1)eT (k − 1|k − 1)]AT (k − 1)

+B(k)E[n(k)nT (k)]BT (k)
= A(k − 1)Re(k − 1|k − 1)AT (k − 1) + B(k)Rn(k)BT (k) (D.18)

The next step is to estimate x̂(k|k) from x̂(k|k − 1). In this case we use a linear filtering of the
most recent estimate of the state variable x̂(k|k − 1) properly combined with another linear filtered
contribution of the most recent measurement vector y(k). The resulting estimation expression for
x̂(k|k) has the following form

x̂(k|k) = K̃(k)x̂(k|k − 1) + K(k)y(k) (D.19)

The challenge now is to compute the optimal expressions for the linear filtering matrices K̃(k) and
K(k).

The state-variable estimation error e(k|k) that includes the last available observation can then be
described as

e(k|k) = x(k)− K̃(k)x̂(k|k − 1)−K(k)y(k) (D.20)



610 Chapter D Kalman Filters

This expression can be rewritten in a more convenient form by replacing x̂(k|k − 1) using the first
relation of equation (D.16) and replacing y(k) by its state-space formulation of equation (D.6). The
resulting relation is

e(k|k) = x(k) + K̃(k) [e(k|k − 1)− x(k)]−K(k)
[
CT (k)x(k) + n1(k)

]
=
[
I− K̃(k)−K(k)CT (k)

]
x(k) + K̃(k)e(k|k − 1)−K(k)n1(k) (D.21)

We know that E[n1(k)] = 0 and that E[e(k|k − 1)] = 0 since x̂(k|k − 1) is an unbiased estimate
of x(k). However, x̂(k|k) should also be an unbiased estimate of x(k), that is, E[e(k|k)] = 0. The
latter relation is true if we choose

K̃(k) = I−K(k)CT (k) (D.22)

so that the first term in the last expression of equation (D.21) becomes zero.

By replacing equation (D.22) in (D.19), the estimate of the state variable using the current measure-
ments becomes

x̂(k|k) =
[
I−K(k)CT (k)

]
x̂(k|k − 1) + K(k)y(k)

= x̂(k|k − 1) + K(k)
[
y(k)− CT (k)x̂(k|k − 1)

]
(D.23)

where according to equations (D.21) and (D.22) the corresponding estimation error vector is described
by

e(k|k) =
[
I−K(k)CT (k)

]
e(k|k − 1)−K(k)n1(k)

= K̃(k)e(k|k − 1)−K(k)n1(k) (D.24)

where the last equality highlights the connection with equation (D.19).

The covariance matrix of e(k|k) can then be expressed as

Re(k|k) = E[e(k|k)eT (k|k)]

=
[
I−K(k)CT (k)

]
Re(k|k − 1)

[
I−K(k)CT (k)

]T
+ K(k)Rn1(k)KT (k)

=
[
I−K(k)CT (k)

]
Re(k|k − 1)

−{[I−K(k)CT (k)
]

Re(k|k − 1)C(k)−K(k)Rn1(k)
}

KT (k) (D.25)

The trace of this covariance matrix determines how good is the estimate of the state variables at a
given iteration. As a result, the Kalman gain should be designed in order to minimize the trace of
Re(k|k) as following shown, since it corresponds to the estimation error variance. Defining

ξK = tr[Re(k|k)] (D.26)

it then follows that2

∂ξK

∂K(k)
= −2

[
I−K(k)CT (k)

]
Re(k|k − 1)C(k) + 2K(k)Rn1(k) (D.27)

2It was used the facts that ∂tr[AB]
∂A = BT and ∂tr[ABAT ]

∂A = 2AB, and that Re(k|k − 1) and Rn1 (k) are symmetric

matrices.
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By equating this derivative with zero it is possible to simplify equation (D.25) since its last term
becomes zero, allowing the update to the covariance matrix to have a rather simple form given by

Re(k|k) =
[
I−K(k)CT (k)

]
Re(k|k − 1) (D.28)

The main purpose of equation (D.27) is of course to calculate the Kalman gain whose expression is
given by

K(k) = Re(k|k − 1)C(k)
[
CT (k)Re(k|k − 1)C(k) + Rn1(k)

]−1
(D.29)

We have now available all the expressions required to describe the Kalman filtering algorithm. First
we should initialize x̂(0|0) with x(0) if available, otherwise generate a zero-mean white Gaussian
noise vector. Then initialize the error covariance matrix as Re(0|0) = x(0)xT (0). After initialization
the algorithm computes x̂(k|k − 1) as per equation (D.15) then the error covariance Re(k|k − 1)
using equation (D.18). Next we calculate the Kalman gain as in equation (D.29) and update the
estimate x̂(k|k) using (D.23) which now takes the form

x̂(k|k) = x̂(k|k − 1) + K(k)
[
y(k)− CT (k)x̂(k|k − 1)

]
= x̂(k|k − 1) + K(k) [y(k)− ŷ(k|k − 1)] (D.30)

where in the first expression we used equation (D.15), and in the second expression we observe
that the term CT (k)x̂(k|k − 1) represents an unbiased estimate of y(k) denoted as ŷ(k|k − 1).
Finally equation (D.28) updates the error covariance Re(k|k) to include the current measurement
contribution. Algorithm D.1 describes the Kalman filtering procedure. Fig. D.2 illustrates how the
building blocks of the Kalman filtering algorithm interact among themselves. As can be observed,
from the measurement signal y(k) we perform the best possible estimate of the state variable x̂(k|k).
The Kalman filter solution corresponds to the optimal minimum MSE estimator whenever the noise
and the state signal are jointly Gaussian, otherwise it is the optimal linear minimum MSE solution,
see [3] for details.
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Figure D.2 Kalman filtering structure.

The complex version of the Kalman filter algorithm is almost identical to Algorithm D.1 and can be
derived by replacing xT (0) by xH(0), CT (k) by CH(k), and AT (k − 1) by AH(k − 1).
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Algorithm D.1

Kalman Filter

Initialization
x̂(0|0) = x(0) Re(0|0) = x(0)xT (0)

Do for k ≥ 1
x̂(k|k − 1) = A(k − 1)x̂(k − 1|k − 1)
Re(k|k − 1) = A(k − 1)Re(k − 1|k − 1)AT (k − 1) + B(k)Rn(k)BT (k)
K(k) = Re(k|k − 1)C(k)

[
CT (k)Re(k|k − 1)C(k) + Rn1(k)

]−1

x̂(k|k) = x̂(k|k − 1) + K(k)
(
y(k)− CT (k)x̂(k|k − 1)

)
Re(k|k) =

[
I−K(k)CT (k)

]
Re(k|k − 1)

Example D.1

In a nonstationary environment the optimal coefficient vector is described by

wo(k) = 0.9wo(k − 1)− 0.81wo(k − 2) + nw(k)

for k ≥ 1, where nw(k) is a zero-mean Gaussian white processes with variance 0.64. Assume
wo(0) = wo(−1) = 0.

Assume this time-varying coefficient is observed through a noisy measurement described by

y(k) = 0.9wo(k) + n1(k)

where n1(k) is another zero-mean Gaussian white processes with variance 0.16.

Run the Kalman filter algorithm to estimate wo(k) from y(k). Plot wo(k), its estimate ŵo(k) and
y(k).

Solution:

The results presented corresponds to the average of 200 independent runs of the Kalman filter algo-
rithm. Fig. D.3 shows the signal wo(k) being tracked by its estimate ŵo(k) from iteration 900 to
1000, whereas Fig. D.4 illustrates the measurement signal y(k) from where ŵo(k) was computed.
As can be observed, the Kalman filter algorithm is able to track quite closely the signal wo(k) from
noisy measurements given by y(k).

�
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Figure D.3 Tracking performance of the Kalman filter.
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D.4 KALMAN FILTER AND RLS

As observed in the previous section, the Kalman filtering formulation requires the knowledge of the
state-space model generating the observation vector. Such information is not available in a number
of adaptive-filtering setups but is quite common in problems related to tracking targets, positioning
of dynamic systems, and prediction and estimation of time-varying phenomena, just to mention a
few. However, a proper analysis of the Kalman filtering setup allows us to disclose some links with
the RLS algorithms. These links are the subject of this section.

Let’s start by observing that in the RLS context one tries to estimate the unknown system parameters
denoted as wo(k) through the adaptive-filtering coefficients w(k). The equivalent operation in
Kalman filtering is the estimation of x(k) given by x̂(k|k). The reference signal in the RLS case is
d(k) corresponding to the scalar version of y(k) denoted as y(k) in the Kalman case. The estimate
of y(k) is given by ŷ(k|k − 1) = cT (k)x̂(k|k − 1) since matrix CT (k) is a row vector in the single
output case. As such, it is easy to infer that ŷ(k|k − 1) corresponds to the adaptive-filter output
denoted as y(k) in the RLS case.

The equation (5.9) repeated here for convenience

w(k) = w(k − 1) + e(k)SD(k)x(k) (D.31)

is meant for coefficient update in the RLS algorithms. This equation is equivalent to

x̂(k|k) = x̂(k|k − 1) + k(k)
(
y(k)− cT (k)x̂(k|k − 1)

)
= x̂(k|k − 1) + k(k) (y(k)− ŷ(k|k − 1))
= x̂(k|k − 1) + k(k)ey(k) (D.32)

where ey(k) is an a priori error in the estimate of y(k). It can be observed that the Kalman gain
matrix K(k) becomes a vector denoted as k(k). By comparing equation (D.32) with equation (D.31)
we can infer that k(k) is equivalent to SD(k)x(k).

The updating of the Kalman gain in the scalar output case is given by

k(k) = Re(k|k − 1)c(k)
[
cT (k)Re(k|k − 1)c(k) + rn1(k)

]−1
(D.33)

rn1(k) is the additional noise variance. Again by comparing equation (D.32) with equation (5.5), we
can infer that k(k) is equivalent to

SD(k)x(k) =
1
λ

[
SD(k − 1)− SD(k − 1)x(k)xT (k)SD(k − 1)

λ + xT (k)SD(k − 1)x(k)

]
x(k)

=
SD(k − 1)x(k)

λ + xT (k)SD(k − 1)x(k)

=
1
λSD(k − 1)x(k)

1 + 1
λxT (k)SD(k − 1)x(k)

(D.34)

Now if we assume that the measurement noise in equation (D.33) has unit variance its straightforward
to observe by comparing equations (D.33) and (D.34) that Re(k|k−1) plays the role of 1

λSD(k−1)
in the RLS algorithm.
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The related quantities in the specialized Kalman filter and the RLS algorithm disclosed so far are

x(k) ⇐⇒ wo(k)
y(k) ⇐⇒ d(k)

ŷ(k|k − 1) ⇐⇒ y(k)
x̂(k|k) ⇐⇒ w(k)
ey(k) ⇐⇒ e(k)
k(k) ⇐⇒ SD(k)x(k)

Re(k|k − 1) ⇐⇒ 1
λ

SD(k − 1) (D.35)

These relations show that given that x(k) in the Kalman filter algorithm follows the pattern of wo(k)
and rn1(k) has unit variance (compare equations (D.33) and (D.34)), the Kalman filter and the RLS
algorithms should lead to similar solutions.

As happens with the conventional RLS algorithm, the Kalman filter algorithm faces stability problems
when implemented in finite precision mainly related to the ill-conditioning of the estimation error
covariance matrix Re(k|k). In practical implementations this matrix could be updated in a factorized
form such as Ue(k|k)De(k|k)UT

e (k|k) where Ue(k|k) is upper triangular with ones on the diagonal
and De(k|k) is a diagonal matrix.
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multiple-input single-output equalizer, 558
MLSD

maximum likelihood sequence detector,
538

Modulation-matrix representation
M-band case, 495
two-band case, 494

Momentum LMS Algorithm, 127
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Moving average process (MA), 18
MSE surface

influence of the filter structure, 432
mean-square error surface, 13

MSE
for IIR filters, 426
mean-square error, 7

Multidelay adaptive filter (MDF), 521
Multidelay frequency-domain adaptive

filtering, 521
Multidelay Frequency-domain adaptive

filtering, 523, 526–527, 535
Multilayer perceptron algorithm, 469, 472,

484
Multimodality of the MSE surface, 428
Multipath components, 272
Multirate systems, 485–486, 494

N

Narrowband beamformer, 39
Narrowband signal, 57
Neural networks, 469, 472–473, 475
Newton’s method, 5
Newton-based algorithms, 13
Newton-like search algorithm, 48
Newton algorithm, 47
Noble identity, 491–492
Noise cancelling, 3
Noncritically decimated filter banks, 490
Nondiagonalizable matrix, 26
Nonlinear adaptive filtering, 451
Nonquadratic function, 36
Normal density function, 16
Normalized lattice RLS algorithm

based on a posteriori errors, 313, 316
quantization effects, 323
realization, 316

Normalized LMS algorithm, 131, 145–146,
159, 161

Notch filters
direct-form structure, 411
IIR filters, 411
lattice structure, 411
multiple sinusoid identification, 412

Nth-order stationary, 17

Nth-order statistics, 17

O

Objective function, 3–5, 36, 572
definition, 6
deterministic, 196, 219
for IIR filters, 426

Open-loop structure
for subband adaptive filters, 499–500, 505

Optimal coefficient vector, 49
Optimization theory, 5
Orthogonal triangularization

based on Givens rotations, 354
Orthogonality principle, 200
Orthonormal eigenvectors, 28
Output-error IIR filters, 395
Output signal, 2
Oversampled filter banks, 490, 496, 498

P

Parallel-to-serial converter, 488, 508
implementation, 488

Parallel form
for IIR filters, 412

Partial-update adaptive filtering, 254
Perfect-reconstruction filter banks, 492–496,

530
Periodically shift-invariant operation, 486
Persistence of excitation, 24
Persistently exciting, 24
Polyphase representation

of a transfer function, 490–492, 496,
509–512, 515–517, 520, 523, 525–526

Positive definite, 23
Positive semidefinite, 23
Power-of-two algorithm, 141
Power spectral density, 19
Prediction, 8

based on upper triangularization, 373
Price theorem, 135
Probability density function (pdf), 15–16
Proportionate adaptive algorithms, 285
Pseudo-QMF

quadrature-mirror filter banks, 497
Pseudocirculant matrix, 497, 508, 515
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Q

QMF
quadrature-mirror filter banks, 497

QR-RLS algorithm
conventional algorithm, 360, 363
conventional algorithm

system identification simulations, 363
implementation issues, 372
systolic array implementation, 365–366

QR-RLS algorithms
QR decomposition recursive least-squares

algorithms, 351
QR decomposition recursive least-squares

(QR-RLS) algorithms, 351
Quadrature-mirror filter banks

QMF, 497
Quantized-error algorithms, 131–132
Quasi-Newton algorithm, 192
Quasi-Newton methods, 5–6

R

Radial basis function algorithm, 473, 475,
484

Random signals, 15
Random variable, 15
Rayleigh’s quotient, 29
Receiver

near-end, 65
Recursive least-squares (RLS) algorithm

conventional form, 195
RLS algorithm, 195

alternative conventional form, 199
behavior in nonstationary environments,

215
behavior of the error signal, 207
coefficient-error-vector covariance matrix,

205
conventional form, 198
deterministic correlation matrix, 197

inverse of, 198
deterministic cross-correlation vector, 197
excess MSE due to lag, 217
excess MSE

due to error in the coefficient estimation,
211, 214

finite-wordlength effects, 589
algorithm stop, 595
coefficient-error-vector covariance

matrix, 592, 595
error descriptions, 589–590
error models for fixed-point arithmetic,

591
floating-point arithmetic, 597
MSE in the floating-point case, 599
optimum value of the forgetting factor,

595
overall MSE, 596

for IIR filters, 402, 404
including quantization, 590
lag-error vector, 216–217
minimum excess MSE, 218
minimum MSE, 207
misadjustment, 215
optimal coefficient vector, 197, 219
optimum value of the forgetting factor, 218
order-update equations, 295
overall excess MSE, 218
signal enhancement simulations, 223
steady-state behavior

of the coefficient vector, 203
system identification simulations, 221
time-update equations, 300–301
transient behavior, 217
Volterra filter, 457

RLS algorithms
based on QR decomposition, 351

RLS predictor, 290
Rotated parameters, 47

S

Sato algorithm, 540–541, 567
Second-order statistics, 15
Serial-to-parallel converter, 488, 508

implementation, 488, 508
Set-membership affine projection algorithm

SM-AP algorithm, 241
complex, 284
echo cancellation, 268
equalization, 274
learning curves, 260, 268, 274
simplified SM-AP algorithm, 243
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SM-AP algorithm, 231, 237
system identification simulations, 260

Set-membership affine projection CM
algorithm, 568

Set-membership binormalized LMS
algorithm 1, 247, 249

Set-membership binormalized LMS
algorithm 2, 249–250

Set-membership binormalized LMS
algorithms

SM-BNLMS algorithms, 245–246
Set-membership filtering, 232
Set-membership normalized LMS algorithm

SM-NLMS algorithm, 231, 234, 237
Set-membership partial-update affine

projection algorithm
SM-PUAP algorithm, 254

Set-membership partial-update NLMS
algorithm

SM-PUNLMS algorithm, 256
SFTRLS algorithm

stabilized fast transversal RLS algorithm
(SFTRLS), 342

Sign-data algorithm, 142
Sign-error adaptive FIR filter, 133
Sign-error algorithm, 133

coefficient-error-vector covariance matrix,
136

coefficient-error vector, 134
excess MSE, 137, 139
misadjustment, 138
steady-state behavior

of the coefficient vector, 134
transient behavior, 139

Signal enhancement, 3, 7, 55
Signal prediction, 56
Similarity transformation, 81
SIMO-CMA equalizer

single-input multiple-output
constant-modulus algorithm equalizer,
558

SIMO affine projection CM algorithm
single-input multiple-output affine

projection constant-modulus
algorithm, 560–561

SIMO equalizer

single-input multiple-output equalizer, 555
Simplified set-membership affine projection

algorithm, 243
reduced complexity, 243

Simplified set-membership partial-update
affine projection algorithm, 256

Singular value decomposition, 558
Sinusoid identification

notch filters, 411
SM-AP algorithm

set-membership affine projection
algorithm, 232

set-membership affine projection algorithm
SM-AP algorithm, 241
SM-AP algorithm, 237

SM-BNLMS algorithm 1, 247, 249
SM-BNLMS algorithm 2, 249–250
SM-BNLMS algorithms, 246

set-membership binormalized LMS
algorithms, 232, 245

SM-NLMS algorithm
set-membership normalized LMS

algorithm, 231, 234, 237
SM-PUAP algorithms

partial-update adaptive filtering, 254
simplified SM-PUAP algorithm, 256

SM-PUNLMS algorithm
set-membership partial-update NLMS

algorithm, 256
Smart antenna, 39
Spectral decomposition, 28
Speed of convergence, 5
Stabilized fast transversal RLS algorithm

(SFTRLS), 341
Stabilized fast transversal RLS algorithm,

339
State-space example, 606
State-space formulation, 606
State-space model, 605
State variables, 606
Stationary in strict sense, 17
Steady-state behavior

of the steepest-descent algorithm, 51
Steepest-descent algorithm, 13, 48–49
Steepest-descent method, 6, 49
Steiglitz-McBride (SM) method, 439
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Steiglitz-McBride algorithm
LMS version, 440
RLS version, 449

Steiglitz-McBride error formulation, 439
Steiglitz-McBride method

objective function, 439
Stochastic process, 15
Structures

for IIR filters, 407
Sub-sampled signal

spectrum, 486
Subband adaptive filters, 485, 496–500,

502–505, 510, 512, 515–517, 530,
534–535

Subband adaptive filters using fractional
delays, 512

Subband adaptive filters
computational complexity, 517, 521

Subband decomposition, 485, 488–489, 494,
498–499, 501, 505, 512

Subband filtering
spectrum split, 498

Subband Identification, 501
Subband signals, 485, 488–489, 494,

498–499, 501, 505
Subsampling, 485
Subscriber line, 65
SVD

singular value decomposition, 558
Synthesis filters

filter banks, 489, 491, 493–496, 510
System identification, 343
System identification application, 3, 7, 54

T

Tap-weight coefficients, 36, 572
Tap-weight vector, 34
Telephone line, 65
Time-dispersive channel, 59
Time-invariant linear filters, 1
Time-varying channel model, 272
Time-varying matrices, 215
Time-varying system, 91
Time-varying threshold

γ̄, 252
Toeplitz matrix, 24

Trace of a matrix, 28
Transform-domain LMS algorithm, 131,

147, 154
system identification simulations, 175

Transform domain algorithm
complex, 192

Transient period
of the steepest-descent algorithm, 51

Translated coefficient vector, 45
Triangular waveform, 9
Two-band analysis filter banks, 494
Two-band filter banks

analysis, 494, 502
Two-band perfect reconstruction filter banks,

493–494

U

UMTS
universal mobile telecommunications

system, 273
Uncoupled form, 47
Undermodeling, 85
Universal mobile telecommunications

system, 273
Up-sampled signal

spectrum, 486
Up-sampling, 486

V

Variable convergence factor, 146
Variance, 16
Very large scale integration (VLSI), 2
Volterra LMS algorithm, 456, 484
Volterra normalized LMS algorithm, 460
Volterra RLS algorithm, 458–460, 484
Volterra series algorithm

nonlinear adaptive filtering, 452

W

Weighted least squares (WLS), 6, 196, 219
Wide-sense stationary (WSS), 17
Wideband signal, 54, 57
Wiener filter, 33, 36

linearly constrained, 13, 39
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Wiener solution, 13, 36, 72
complex case, 571

Wireless channel environment, 272
WLS

weighted least squares, 7
Wold decomposition, 19
WSS process, 19

X

XDSL, 67

Z

Z-transform, 14
of the autocorrelation function, 20
of the cross-correlation function, 20


