10 Homology-Based Modeling of Protein Structure

Zhexin Xiang

10.1 Introduction

10.1.1 Structural Genomics and Homology Modeling

The human genome project has already discovered millions of proteins
(http://www.swissprot.com). The potential of the genome project can only be fully
realized once we can assign, understand, manipulate, and predict the function of
these new proteins (Sanchez and Sali, 1997; Frishman et al., 2000; Domingues
et al., 2000). Predicting protein function generally requires knowledge of protein
three-dimensional structure (Blundell et al., 1978; Weber, 1990), which is ultimately
determined by protein sequence (Anfinsen, 1973). Protein structure determination
using experimental methods such as X-ray crystallography or NMR spectroscopy is
very time consuming (Johnson et al. 1994). To date, fewer than 2% of the known
proteins have had their structures solved experimentally. In 2004, more than half a
million new proteins were sequenced that almost doubled the efforts in the previ-
ous year, but only 5300 structures were solved. Although the rate of experimental
structure determination will continue to increase, the number of newly discovered
sequences grows much faster than the number of structures solved (see Fig. 10.1).
Fortunately, many protein sequences are evolutionarily related, and thus can
be classified into different families. Proteins in the same families frequently have
noticeable similarities and thus share three-dimensional architecture, which allows
a structural description of all proteins in a family even when only the structure of
a single member is known. This evolutionary relationship provides the rationale for
structural genomics, a systematic and large-scale effort toward structural character-
ization of all proteins, where a representative protein in each family is chosen to
be solved experimentally with the rest reliably predicted by a homology modeling
method (Goldsmith-Fischman and Honig, 2003; Al-Lazikani et al., 2001a). Fold
recognition has also become an important tool that supplements sequence-based
methods to detect remote homologues. However, the line between traditional ho-
mology modeling and fold recognition has diminished due to the progress in the
alignment sensitivity and the increase in database size. Ab initio structure methods
have made notable progress in recent years and are extremely important, not only for
what they can accomplish but also for what they can teach us about protein folding
(Bonneau and Baker, 2001). The progress in ab initio prediction makes it possible
in a few cases to refine homology models to the accuracy of low-resolution X-ray
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Fig. 10.1 Number of protein sequences and structures available each year. Blue bar denotes the
number of protein sequences in SWISS-PROT, red bar is the number of protein structures in PDB.

structures. In fact, if we assume that a native protein structure is at the global free-
energy minimum, comparative modeling is a simple scheme to focus the search of
conformation space by minimally disturbing those existing solutions, i.e., the exper-
imentally solved structures. The obvious advantage is that the comparative modeling
technique relaxes the stringent requirements of force field accuracy and prohibitive
conformational searching, because it dispenses with the calculation of a physical
chemistry force field and replaces it, in large part, with the counting of identical
residues between template and target sequences.

Currently there are about 2 million protein sequences in Swiss-Prot and
TrEMBL, but only 7677 protein families have been identified according to the Pfam
database ( http://pfam.wustl.edu/). This number is strongly dependent on the se-
quence similarity cutoffs used to cluster the sequence space. If 30% sequence identity
cutoff is used, which is generally considered as a threshold for successful homology
modeling, statistical estimates place the number somewhere between 10,000 and
30,000 for all proteins in Nature (Liu et al., 2004), but only a fraction of which have
distinct spatial arrangements (Brenner et al., 1997). Ninety percent of protein struc-
tures deposited today share a similar fold to others already in the PDB. Many of these
solved structures are site-directed mutants or inhibitor-bound complexes of previ-
ously deposited proteins, and many are related members of families of proteins with
similar sequences and closely related three-dimensional structures. Even proteins
with no sequence homology can have very similar folds; for example, the sulfate
and phosphate binding proteins, the transferrins, and the porphobilinogen deaminase
have similar bilobal anion binding structures but not significant sequence identities.
Protein topologies such as the four a-helix bundle, the af3-nucleotide binding motif,
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the B-jelly roll, the a3-barrel, and the B-immunoglobulin domain have been found
in a wide range of protein structures (Johnson et al., 1994; Al-Lazikani et al., 1997,
Efimov, 1993). A recent study has found that roughly 33% of all proteins have com-
plete sequence coverage to a protein with known structure (Ekman et al., 2005).
This kind of protein structure redundancy versus protein sequence variability is
the cornerstone of homology modeling algorithms. It is quite likely that homology
modeling will assume an increasingly important role in both biological and chemical
applications with the advent of structural genomics initiatives around the world.

10.1.2 History of Homology Modeling

Homology modeling techniques became important only after 1990 when hundreds of
protein structures had already been deposited in the Protein Data Bank. Early model-
ing studies in the late 1960s and early 1970s frequently relied on the construction of
hand-made wire and plastic models and only later depended on computer software
(Cox and Bonanou, 1969; Tometsko, 1970). The first homology model was built
simply by copying existing coordinates from a homologous protein and those non-
identical residues were then substituted by reassembling corresponding side chains
(Browne et al., 1969). This approach, called rigid-body assembly, is still widely em-
ployed today with considerable success, especially when the proteins have sequence
identity above 40% (Greer, 1980, 1981). The homology modeling method was pio-
neered in two studies by Browne et al. (1969) and Greer (1981). Browne et al. (1969)
published the first homology model using an X-ray-derived structure as a template.
They modeled bovine a-lactalbumin on the three-dimensional structure of hen egg-
white lysozyme, where the pair sequence identity was about 39% and only deletions
were considered as the polypeptide chain was shortened in a-lactalbumin. Their
prediction was proven generally correct later on when the structure of a-lactalbumin
was solved (Acharya et al., 1989).

McLachlan and Shotton (1971) modeled alpha-lytic proteinase of Myxobacter
495 based on the structures of both chymotrypsin and elastase, where the sequence
identity between these two proteinases was only 18% and the alignment was frag-
mented by frequent gaps. When the structure of alpha-lytic proteinase was published
(Brayer et al., 1979), it became clear that misalignment of the sequence with those of
the known 3D structures led to incorrect regions, but portions of both domains were
constructed correctly (Delbaere et al., 1979). This model demonstrated the difficulty
in aligning sequences of limited similarity and in modeling variable, mainly loop
regions.

Greer was the first to demonstrate the importance of modeling variable regions
(1981). By abstracting approximate conformations from a family of homologous
proteins of known structures, he could distinguish structurally conserved regions,
which contain strong sequence homology, and structurally variable regions, which
include all the insertions and deletions. By applying the structural distinction to new
sequences, erroneous alignments of the sequences are greatly minimized. For each
new aligned sequence, the structurally conserved regions can be constructed from
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any of the known structures. The construction of variable regions, however, is not
straightforward. However, the conformations of loops of just one- or two-residue
deletions or insertions can be extrapolated from one of the homologous structures.
This approach was further applied to predict the structure of mammalian serine
proteases based on a number of proteins from this family, including a variety of
blood-serum, intestinal, and pancreatic proteins as well as a closely related bacterial
enzyme (Greer, 1981).

Instead of deriving protein backbone structure from only one of its homologues,
Taylor (1986) developed a method of generating templates for each part of protein
to be modeled based on the conserved patterns observed in the known 3D structures
of a family. The conserved templates were derived from a small number of related
sequences of the known tertiary structures. The templates were then made more rep-
resentative by aligning with other sequences of unknown structures. The specificity
of the templates was demonstrated by their ability to identify the conserved features
in known immunoglobulin and the related sequences but not in other sequences.
However, assembling these conserved patterns into a complete structure requires the
use of a force field and conformation sampling.

Due to the small number of protein structures available before the 1990s, the
comparative modeling technique was not widely successful. The real development of
homology modeling began in the mid-1990s with the progress of genome projects
and the growth of the number of solved structures in the PDB. With the advent
of structural genomics, the importance of homology modeling continues to grow.
Although 25 years have passed since Greer’s pioneering work on comparative model
building of mammalian serine protease in 1981, the basic technique used in today’s
most advanced modeling programs remains almost the same, i.e., finding the closest
homologues as the basis of modeling the query sequence. Recent efforts in com-
parative modeling have been concentrated on the discovery of distant homologues,
the improvement of alignment accuracy, and especially the refinement of models by
optimization of empirical energy functions.

10.1.3 Accuracy and Applicability of Homology Modeling

Approximately 57% of all known sequences have at least one domain that is related
to at least one protein of known structure (Pieper et al., 2002). The probability of
finding a related known structure for a randomly selected sequence from a genome
ranges from 30% to 65%, since a few genomes have received more research attention
than others (Kelley et al., 2000; Teichmann et al., 1999; Fiser and Sali, 2003). The
percentage is steadily increasing because more distinct folds are discovered each
year, and because the number of different structural folds that proteins adopt is
limited (Irving et al., 2001). Current estimates suggest that there are between 1000
and 5000 folds in the universe of compact globular proteins, with about 200 new folds
realized annually from the structure deposition (Brenner et al., 1997). The number
of known protein sequences is close to 2 million so far. Over 1.1 million proteins can
readily have at least one of their domains reliably predicted with homology modeling
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methods. Given the rate of experimental structure determination, approximately 6000
proteins each year, it is arguable that homology modeling has already saved up to
hundreds of years of human effort, though homology models often have low quality.
In the next 10 years, structural genomics will possibly discover all protein distinct
folds in Nature, making comparative modeling applicable to almost any protein
sequence (Vitkup et al., 2001). The usefulness of comparative modeling is ever
increasing as more proteins can be predicted with higher accuracy. The accuracy of
homology modeling depends primarily on the sequence similarity between the target
sequence and the template structure.

When the sequence identity is above 40%, the alignment is straightforward,
there are not many gaps, and 90% of main-chain atoms can be modeled with an
RMSD error of about 1 A (Sanchez and Sali, 1997). In this range of sequence iden-
tity, the structural difference between proteins mainly arises from loops and side
chains. When the sequence identity is about 30—40%, obtaining correct alignment
becomes difficult, where insertions and deletions are frequent. For sequence simi-
larity in this range, 80% of main-chain backbone atoms can be predicted to RMSD
3.5 A, while the rest of the residues are modeled with larger errors, especially in
the insertion and deletion regions (Harrison et al., 1995; Mosimann et al., 1995;
Yang and Honig, 2000; Sauder et al., 2000). Even in correctly aligned regions, loop
modeling and side-chain placement pose difficulties (Bower et al., 1997; Rapp and
Friesner, 1999). When the sequence similarity is below 30%, the main problem be-
comes the identification of the homologue structures, and alignment becomes much
more difficult. For some sequences where the structures in the family are very con-
served in evolution (e.g., kinase family), homology modeling can make predictions
as accurate as low-resolution X-ray experiments even if the sequence identity is
much less than 30% identity to the template (Yang and Honig, 1999; Petrey et al.,
2003).

Even if homology modeling is generally much less accurate than experimental
methods, it can still be helpful in proposing and testing hypotheses in molecular biol-
ogy, such as predictions of ligand binding sites (Zhou and Johnson, 1999; Francoijs
et al., 2000), substrate specificities (Jung et al., 2000; De Rienzo et al., 2000), func-
tion annotation, protein interaction pathways, and drug design (Nugiel et al., 1995;
Sanchez and Sali, 1997). It can also provide starting models for solving structures
from X-ray crystallography, NMR, and electron microscopy (Talukdar and Wilson,
1999; Ceulemans and Russell, 2004).

10.2 Procedures in Homology Modeling

Given a protein sequence, successful homology modeling usually consists of the
following steps as shown in Fig. 10.2: (1) identify the homologue of known structure
from the Protein Data Bank; (2) align the query sequence to the template structure;
(3) build the model based on the alignment; (4) assess and refine the model. Each
step may involve some errors.
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Fig. 10.2 Basic homology modeling protocol. Homology modeling starts by scanning the PDB
for sequences similar to the target. The hit of highest sequence similarity is chosen as the template.
Model for the target is then built based on the alignment between the target and template sequence,
which will be subjected to further refinement.

10.2.1 Homologue Detection and Alignment

Homology modeling starts from selection of homologues with known structures from
the PDB. Ifthe query sequence has high sequence identity (>30%) to the structure, the
homology detection is quite straightforward which is usually done by comparing the
query sequence with all the sequences of the structures in the PDB. This can often be
achieved simply with the dynamic programming method (Needleman and Wunsch,
1970) and its derivatives (Smith and Waterman, 1981; Gotoh, 1982). The most popu-
lar software is BLAST (Altschul et al., 1997) (_http://www.ncbi.nlm.nih.gov/blast/)
that searches sequence databases for optimal local alignments to the query. The
BLAST program improves the overall speed of searches while retaining good sen-
sitivity by breaking the query and database sequences into fragments, and initially
seeking matches between fragments. The matched fragments are then extended in
either direction in an attempt to generate an alignment with a score exceeding a
particular threshold. The score based on substitution matrices reflects the degree of
similarity between the query and the sequence being compared, capable of ranking
the quality of each pairwise alignment. The BLAST program functions very well
for alignment of sequences with high similarities. But when the sequence identity
is well below 30%, homology hits from BLAST are not reliable. A number of alter-
native strategies have been developed. These include template consensus sequences
(Taylor, 1986; Chappey etal., 1991) and profile analysis (Barton and Sternberg, 1990;
Suyama et al., 1997; Lolkema and Slotboom, 1998). All these approaches, based
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on either multiple sequence or structure alignments, are more sensitive because the
consensus sequences are more representative of the sequence family, and the profile
reflects the conserved structural or functional preferences.

In the past several years, sequence profile methods have emerged as the pri-
mary approach in distant homology detection. Position-specific profile search meth-
ods such as PSI-BLAST (Altschul et al., 1997) and hidden Markov models (HMMs)
(Krogh etal., 1994), as implemented in the SAM (Karplus et al., 1998) and HMMER
(http://hmmer.wustl.edu) packages, have vastly improved the accuracy of sequence
alignments and have extended the boundaries of detectable sequence similarity. Se-
quence profiles methods, e.g., PSI-BLAST, start from performing a pairwise search
of the database. The significant alignments are then used by the program to construct
a position-specific score matrix (PSSM). This matrix replaces the query sequence
in the next round of database searching. The procedure may be iterated until no
new significant alignments are found. The profile method can be further improved
with information from multiple structure alignment, secondary structure prediction,
and solvent accessibility. Since the structural information is more conserved than
sequence, it may represent the crucial requirement, in the process of evolution, of
residues at specific positions with respect to the stability and function of the struc-
ture as a whole. Although a major goal of this effort has been remote homologue
detection, an important side benefit has been significant improvement in alignment
quality, even at levels of sequence identity for which pairwise alignment methods are
known not to work. This, in turn, has had a positive impact on the starting alignments
used in homology modeling, and thus has the potential to extend the applicability
of homology modeling to increasingly lower levels of sequence similarity. Indeed,
perhaps the largest part of recent improvements in homology modeling can be traced
directly to improvement in sequence alignment algorithms.

If multiple homologues from the PDB have been identified, the next step is
to select one or a few templates that are most appropriate for building a model.
Sequence similarity between the query and the template is usually considered as the
primary criterion used to choose the best template. Higher sequence similarity often
suggests a closer relationship in evolution, thus more conservation of structure, and
vice versa. On the other hand, gaps (insertion or deletion) in the alignment have a
severe impact on the quality of the model to be built, since gaps are regions where
no templates are readily available to guide the model building process. Generally,
insertions in the alignment are more difficult to handle than deletions, particularly
for insertions of more than 10 residues, because modeling inserted residues is a
mini ab initio problem. Thus, the second criterion is to choose an alignment that
has fewer gaps and short insertions. Moreover, since sequences in the same family
often share similar structure and function, templates that can be clustered into the
same subfamily as the target are often favored. This can usually be achieved with
construction of a multiple alignment and phylogenetic tree (Felsenstein, 1981; Retief,
2000). Ifthe function of the protein to be modeled (target protein) is known, templates
with similar functions should also be given more consideration. If possible, the
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environment (e.g., ligands, solvent, temperature, pH) at which the template structure
was determined and the native environment of the target protein to be modeled should
also be properly taken into account. A protein, such as calcium binding protein,
can adopt quite different conformations in solvent under different environments
(Mishig-Ochiriin et al., 2005). Thus, structures determined in environments similar
to the physiological environment of the target are generally preferred. In addition,
structures of higher quality are generally used, such as X-ray structures of high
resolution and low R-factor, and NMR structures with sufficient constraints. In the
end, structures that are most representative of the family should be used if all other
criteria are identical. The trait can easily be calculated as the average RMSD of the
structure to all other family members with known structures. The hypothesis is that
the target protein is more likely to be similar to the most “typical” structure. Instead of
relying on a single template, it can be advantageous to select multiple structures from
one or several families. Multiple template structures may be aligned with different
domains of the target, thus a composite model can be built with each domain based
on the best template. It is also useful for modeling variable regions of a structure
family, where the segment, which is not conserved, assumes multiple conformations,
and the “best” model is assumed to have the lowest value of some empirical energy
function. If the sequence identity is too low and there is no clear hit, a better approach
is always to make multiple models with each model based on one template. Thus,
the best model is determined by physical chemistry- or statistics-based energy or a
combination of both (Sippl, 1995; Petrey et al., 2003; also see Chapters 2 and 3).

In homology modeling, one of the most difficult and important tasks is to
improve sequence—template alignment. Although profile methods have significantly
improved alignment accuracy, manual inspection is often required to further improve
the quality if the alignment is well below 30% identity with frequent gaps. This is
because the current alignment software usually seeks an alignment of global opti-
mality with an empirical scoring function that may misalign functionally important
residues. Manual inspection of the alignment does not necessarily need to have the
model actually built, since residue—residue interaction in the target sequence can eas-
ily be identified from their corresponding aligned positions in the template structure.
There are several general rules to guide alignment tuning. First, charged residues
in the target sequence should not be aligned with a buried residue in the template,
unless it will form hydrogen bonds or salt bridges with another residue in the target;
second, fragments of predicted secondary structures (alpha helix and beta sheet)
in the target sequence should be aligned with the fragments of identical secondary
structure characterization from the template; third, residues with known important
functions, either for protein activity or structural stability, should be aligned with
residues of similar functions in the template; fourth, insertions or deletions in the
secondary structure regions should be pushed to the loop regions. Manual editing of
the alignment is the most tedious part in homology modeling. A misalignment by
only one residue position will result in an error of approximately 4 A in the model
because the current homology-modeling algorithms generally cannot recover from
errors in the alignment (Fiser and Sali, 2003).
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Table 10.1 Comparative modeling programs

Programs Availability

NEST http://trantor.bioc.columbia.edu/programs/jackal/
COMPOSER http://www-cryst.bioc.cam.ac.uk/

Tripos (COMPOSER) http://www.tripos.com/

CONGEN http://www.congenomics.com/congen/congen_toc.html
MODELLER http://guitar.rockefeller.edu/modeller/modeller.html
Insightll (MODELLER) http://www.accelrys.com/

SWISS-MODEL http://www.expasy.ch/swissmod/SWISS-MODEL .html
SCHRODINGER http://www.schrodinger.com

WHATIF http://swift.cmbi.kun.nl/whatif/

SEGMOD http://www.bioinformatics.ucla.edu/genemine/
DRAGON rmunro@nimr.mrc.ac.uk

ICM http://www.molsoft.com/

3D-JIGSAW http://www.bmm.icnet.uk/servers/3djigsaw/

Builder koehl@csb.stanford.edu

PrISM http://trantor.bioc.columbia.edu/programs/PrISM/index.html

10.2.2 Model Building

Given the alignment between the query sequence and templates, there are generally
four methods in model building depending on how the information in the known
structures is transferred to the query sequence. In this section we are going to discuss
the first three methods, i.e., rigid body assembly, segment matching, and spatial
restraint, and leave our own approach (artificial evolution model building) to Section
10.3 for more detailed description. Table 10.1 shows the most widely used model
building programs that are publicly available. Most of the programs were based on the
rigid body assembly method, and some have been commercialized, e.g., COMPOSER
(Sutcliffe et al., 1987a,b) in Tripos and MODELLER (Sali and Blundell, 1993) in
InsightIl. In addition to model building protocols, the programs also differ from each
other in model refinement.

10.2.2.1 Model Building by Rigid Body Assembly

The simplest and most widely used method is called rigid body assembly (also called
cut-and-paste method) as shown in Fig. 10.3. This method was initiated by Greer in
1981 and is still widely used, e.g., in the software packages PriSM (Yang and Honig,
1999), Congen (Bruccoleri, 1993), and COMPOSER (Sutcliffe et al., 1987a,b). It
starts from identification of the conserved and variable regions of the templates.
The identification can often be achieved from the superimposed template structures.
Conserved regions are evident from the multiple structure alignment, that is, the
RMSDs (root mean square distance) among the fragments are relatively small, and
variable regions are usually in loops with frequent gaps in the structural alignment. A
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Fig. 10.3 Rigid body assembly with single template. Red and blue denote template and model
structure, respectively. Conformations of aligned segments a, ¢, and e are directly transferred to
the model; segment b is a new conformation inserted between a and ¢, which is obtained from
either ab initio sampling or database searching; segments ¢ and e are fused following the deletion
of segment d.

framework for the superimposed templates can be calculated by averaging the atom
coordinates of the structurally conserved regions. The averaging is often weighted
based on the sequence similarity of the target sequence to the templates, higher
sequence similarity carrying larger weight. The core residues of the target model,
i.e., residues aligned with conserved regions of the templates, obtain their main-
chain coordinates from the closest conserved segment (in terms of RMSD to the
framework) from the template, or from the segment whose template has highest
sequence identity to the target. The model is constructed by fitting the core rigid
bodies onto the framework. The unconserved, or loop, region is then constructed
either with ab initio approach, or by searching a database for structures that fit
the anchor core regions and have a compatible sequence (Topham et al., 1993).
The side chains are modeled based on their intrinsic conformational preferences
and on the conformations of the equivalent side chains in the template structures
(Sutcliffe et al., 1987a,b). If a single template is chosen, the model construction
is straightforward, copying coordinates of aligned residues from the template to
the model, and connecting broken segments with database searching or ab initio
sampling as mentioned earlier. For strong sequence homologues, a single template
is sufficient; but for weakly homologous templates, a framework based on weighted
averaging over multiple templates is often more reliable.

10.2.2.2 Model Building by Segment Matching

Segment matching (Levitt, 1992), which has been adopted in SegMod software, is
based on the finding that most hexapeptide segments of protein structure can be
clustered into only 100 structurally different classes (Unger et al., 1989). Homology
model construction relies on approximate positions of conserved atoms from the
templates as “guiding positions” to calculate the coordinates of other atoms. The
guiding positions usually correspond to the atoms of the segments that are conserved
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in the alignment between the template structures and the target sequence. They can
be calculated by averaging the positions of corresponding atoms in all the template
structures with weights based on their sequence similarity to the target. The averaged
positions are then fitted by all-atom segments that are obtained by scanning databases
of short segments of protein structures, or by a conformation search with restraints
of potential energies or geometry rules. The segment matching method can construct
both side chain and backbone atoms. If the distance between the conserved positions
is too large, there may be no proper segments in the database to cover the missing
atoms (usually only segments of five residues have their accessible conformations
in the databank) (see Fidelis et al., 1994), thus the ab initio method may be the only
approach. Segment matching could be considered as an extension of the rigid body
assembly method since it scans a database of segments not restricted to those in the
template structures. Indeed, segment matching has other applications, such as in side
chain and loop modeling, where database scanning, instead of ab initio conformation
sampling, is employed to identify the best conformers for the prediction.

10.2.2.3 Model Building by Satisfaction of Spatial Restraints

The third group of methods, satisfaction of spatial restraints, was proposed by
Havel and Snow (1991) and Sali and Blundell (1993). The method was adopted
in one of the most widely used homology model building programs, MODELLER
(_http://salilab.org). The method starts by generating many restraints for the target
protein based on its alignment to the template structure. The restraints are generally
obtained by assuming that the distance between two residues in the query model is
similar to the distance between the two corresponding aligned residues in the template
as shown in Fig. 10.4. The restraints are further supplemented with stereochemical
constraints on bond angle, bond length, peptide bond dihedral angle, nonbonded
van der Waals clashes, and so on. For weak homologues, additional constraints from
experiments, if available, should also be used to increase the model accuracy. This
additional information can be obtained from experimental data, for instance, dis-
tances between atoms of protein residues as measured by mass spectroscopy (MS)
(Chapman, 1996), which uses protein cross-linking reagents as molecular rulers, or
by nuclear Overhauser effect (NOE) restraints of NMR spectroscopy. In addition to
the hard constraints, a lower and upper bound for each restraint is often provided, with
a tight bound for stereochemical restraint and a relatively loose bound for longer dis-
tances. The bounds can be best estimated from statistical analysis of the relationships
between similar protein structures. By scanning a set of related structures, various
correlations can be quantified, such as correlations between two corresponding dis-
tances, or between corresponding main-chain dihedral angles. These relationships
are expressed as conditional probability density functions and can be used directly
as spatial restraints. Probabilities for different values of the equivalent distances and
main-chain dihedral angles are calculated from the type of residue considered, from
main-chain conformation of an equivalent residue, and from sequence similarity be-
tween the two proteins. The spatial restraints and the CHARMMZ22 force field terms
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Fig. 10.4 Model building by satisfaction of spatial restraints. Distance restraints to be satisfied
by the model are extracted from the template structure based on the alignment between the target
sequence and the template. For example, distance between residues L and H (residues 2 and 6) for
the model is assumed to be 10 A, equivalent to the distance between residues L and T (residues
2 and 5) in the template structure.

enforcing proper stereochemistry (Brooks and Karplus, 1983) are combined into
an objective function. The model is obtained by optimizing the objective function
in Cartesian space. Thus, a proper model should not violate any of the constraints,
and have low energy of the objective function. The advantage of the spatial restraint
method is that it can use many different types of information about the target se-
quence including Ca—Ca distance and secondary structure preference. However,
for highly homologous sequences, the information is already stored in the template
structures, and introducing information derived from other members of the family
may degrade the model.

10.2.3 Homology Model Refinement

High-resolution refinement is a difficult task that requires an effective sampling
strategy and an accurate energy function. Homology model refinement is primarily
focused on tuning alignment and modeling loops and side chains (see Fig. 10.5).
Loops are usually the most variable regions of a structure where insertion and deletion
often occur. Correct alignment is the most important task for homology modeling,
since the errors introduced into the model by misalignment are hard to remove in
the later stages of refinement. When the sequence identity is above 40%, errors in
the homology structure mainly come from side chains; when the sequence identity
is between 30 and 40%, loops and side chains become most problematic. Given a
good energy function, loop and side-chain refinement can, in principle, be applied
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Fig. 10.5 Superimposition of the model for CASP (Critical assessment of techniques for protein
structure prediction) Target 113 and its native structure. The root-mean deviation distance is 2.96 A.
The largest RMSDs typically occur in side chains and loops.

repeatedly to relax the backbone closer to native. Refinement on helix and [3-sheet
can be handled with similar methods as for loops, where proper hydrogen bond
constraints should be applied to retain the secondary structure definition (Li et al.,
2004). Recent attempts have been made to use physical chemistry energy to refine
side chains, loops, and secondary structures, sometimes as a step in choosing the
alignment.

10.2.3.1 Loop Prediction

When modeling loops, the basic goal is to predict the conformation of a loop that is
fixed at both ends of its protein backbone. A number of methods have been proposed
for loop prediction, i.e., ab initio methods (Zheng and Kyle, 1996; Rapp and Friesner,
1999; Fiser et al., 2000; Xiang et al., 2002; Jacobson et al., 2004), database-related
methods (Li et al., 1999; Wojcik et al., 1999), or a combination of both (Fidelis et al.,
1994; van Vlijmen and Karplus, 1997). Ab initio methods of loop prediction involve
the generation of a large number of randomly chosen candidate conformations and
their evaluation with energetic or other criteria. Database methods generate trial
conformations based either on sequence relationships to loops of known structure,
or on geometric criteria such as the distance between the amino and carboxyl termini
of the loop in question. Once loops are generated in this way, energetic criteria are
often applied to select the final model.

Clearly, it is important that near-native conformations be present among the trial
conformations generated in the first step of loop modeling. Adequate sampling does
not appear to be a problem if a large enough number of loops are generated randomly.
Indeed, Rapp and Friesner (1999) were able to generate near-native conformations
for even a 12-residue loop. However, database methods generate a much smaller
number of trial conformations and the lack of a large enough template library to
cover the many possible conformations of longer loops (more than five residues not
including the stem, or anchoring, residues that are kept fixed) limits their utility
for these cases (Fidelis et al., 1994). Using a sequence-dependent database method,
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Wojcik et al. (1999) reported an average accuracy of 3.8 A RMSD for the backbone
atoms of an eight-residue loop. Van Vlijmen and Karplus (1997) used CHARMM
to optimize initial conformations that were selected from the protein database. They
reported improved results for longer loops but their optimization procedure, which
involves simulated annealing, effectively extends the range of conformation space
searched beyond that provided by the database conformations. In this sense, their
approach is closer to ab initio loop generation. The accuracy of loop modeling is
highly dependent not only on the number of residues in the loop, but also on the
distance between the loop stems. Generally, when the distance between the loop
stems is shorter, the loop conformation is more like “$2,” and thus has more freedom
to move around; therefore, it is more difficult to predict. A database approach is
usually more reliable, especially for long loops, if the segment identified from the
PDB comes from a protein structure of the same family as the target protein.

Because conformational sampling does not appear to be a problem for loops
of less than 12 residues, the quality of the scoring function used to evaluate loop
conformations is the major determinant of loop-prediction accuracy. Loop accuracy
is usually evaluated in terms of local RMSD (involving the optimal superposition
of the predicted and native loop independent of the rest of the structure) or global
RMSD (where the RMSD is evaluated with the loop stems kept in place). The latter
measure is preferred because the former allows for two loops to be seen as similar,
and to have a small RMSD, even if they have very different orientations in the context
of the native structure. Rapp and Friesner (1999) used the generalized Born solvation
model and the AMBERY4 force field to obtain low RMSD values for the two loops
they studied. Their approach still needs to be tested on a larger sample size. Fiser
et al. (2000) have recently published an extensive ab initio study on a data set of
40 loops and also report low RMSD from known structures. Using global RMSD
as a criterion, Fiser et al. (2000) reported an accuracy of less than 2 A for 8-residue
loops.

The study of Fiser et al. (2000) utilized a scoring function that included the
CHARMM22 force field and statistical preferences taken from protein databases.
Scoring functions based entirely on physical chemistry potentials and an accurate
solvation model have the potential of identifying the native conformation as lowest
in energy, but there are cases where lower energy conformations appear (Smith and
Honig, 1994; Steinbach, 2004). One problem may be that most loop prediction ap-
proaches seek the lowest energy conformation, thus ignoring conformational entropy
effects that will favor broad energy wells. We have recently implemented a procedure
called “colony energy” (for detail, see Section 10.3.2) that takes the shape of the en-
ergy well into account and yields highly accurate loop prediction (e.g., 1.4 A global
RMSD for eight-residue loops) (Xiang et al., 2002). With crystal environments con-
sidered, Jacobson et al. (2004) achieved the best accuracy of 1.0 A RMSD for eight-
residue loops with a computing-intensive approach that combines OPLS all-atom
energy function, efficient methods for loop buildup and side-chain optimization,
and the hierarchical refinement protocol. Fogolari and Tosatto (2005) demonstrated
that molecular mechanics/Poisson—Boltzmann solvent-accessible surface area, if
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Table 10.2 Loop modeling program

Programs Availability

LOOPY http://trantor.bioc.columbia.edu/programs.html

PLOP http://francisco.compbio.ucsf.edu/~jacobson/

plop_manual/plop_overview.htm

COILS http://www.ch.embnet.org/software/COILS _form.html

MODELLER http://guitar.rockefeller.edu/modeller/modeller.html
(loop module)

CODA http://www-cryst.bioc.cam.ac.uk/coda/

combined with the colony energy approach, is very effective in discriminating loop
decoys.

Most methodological tests compare predicted loop conformations to known
structures, with the backbone conformation of anchoring residues identical to that
of the native conformation. This does not properly simulate real modeling condi-
tions under which the backbone of the target protein may not be identical to that of
the template. Not surprisingly, loop prediction accuracy degrades as the constraints
provided by the loop ends are less accurately defined (Lessel and Schomburg, 1999;
Fiser et al., 2000). Table 10.2 shows some loop modeling software that can be easily
obtained from the Web. Other loop modeling software only exists as internal com-
ponents of model building packages listed in Table 10.1. Compared with database
scanning methods, most ab initio loop prediction programs are very slow.

10.2.3.2 Side-Chain Prediction

The greatest success in the prediction of side-chain conformations has been achieved
for core residues where packing constraints significantly simplify the problem. Even
for core residues, the accuracy of side-chain prediction degrades when the structure
of the backbone is itself not known to a high degree of accuracy. Many side-chain
programs are based on rotamer libraries (Ponder and Richard, 1987), which are gen-
erally defined in terms of side-chain torsion angles for preferred conformations of a
particular side chain. The resolution of rotamer libraries has increased over time and
rotamer libraries have been compiled simply by sampling all angles at some given
level of resolution (Maeyer et al., 1997). Since backbone conformation changes the
frequency of the rotamers, a backbone-dependent rotamer library is often used in
side-chain modeling (Dunbrack and Karplus, 1993; Canutescu et al., 2003). The
major advantage is to increase computing efficiency, since bad rotamers, e.g., clash-
ing with the backbone, have been automatically removed during construction of the
rotamer library. Baker and his co-workers have developed a “solvated rotamer” ap-
proach that shows improvement on side-chain packing at protein—protein interfaces
(Jiang et al., 2005). This approach extends current side-chain packing methods by us-
ing a rotamer library including solvated rotamers with one or more water molecules
fixed to polar functional groups in probable hydrogen-bond orientations, together
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with a simple energetic description of water-mediated hydrogen bonds. As the num-
ber of rotamers increases, however, so does the problem of sampling all possible
conformations. There have been a variety of approaches developed to deal with the
combinatorial problem in side-chain prediction (Lee and Subbiah, 1991; Lee, 1994;
Vasquez, 1996; Dahiyat and Mayo, 1997; Gordon and Mayo, 1999; Samudrala et al.,
2000; Kingsford et al., 2005).

Accuracies of about 1 A RMSD have been reported for core residues in known
structures where the backbone has been fixed in the native conformation (Koelh and
Delarue, 1994; Vasquez, 1996; Bower et al., 1997; Samudrala and Moult, 1998). A
number of studies suggest that further improvements may still be possible. Mendes
et al. (1999) found, for example, that the use of an intrinsic torsional potential can
improve prediction accuracy. Lovell et al. (2000) reported a novel rotamer library in
which internal clashes between side chain and backbone are removed. This library
could, in principle, be used to improve prediction accuracy. Xiang and Honig (2001)
have shown that using a very detailed rotamer library, which is based on rotamers
that use Cartesian coordinates taken from known structures rather than idealized
bond lengths and angles, yields RMSD values relative to the native of only 0.62 A
for core residues. This appears to constitute a significant improvement over existing
procedures and demonstrates that the combinatorial problem, usually assumed to
greatly complicate side-chain prediction, may in fact be of little consequence. This
was later confirmed in a more detailed study (Desmet et al., 2002), which showed that
local minima for all side-chain prediction may be almost as accurate as the global
minimum when evaluated against experimentally determined structures. Improve-
ment on side-chain prediction in recent years has mainly come from better energy
functions. Eyal et al. (2004) showed that solvent accessibility and contact surface
area are important with regard to the accuracy of side-chain prediction, particularly
for modeling buried side chains. Liang and Grishin (2002) have developed a new
and simple scoring function for side-chain prediction that consists of the following
energy terms: contact surface, volume overlap, backbone dependency, electrostatic
interactions, and desolvation energy. The weights of these energy terms were op-
timized to achieve the minimal average root-mean-square deviation between the
lowest energy rotamer and the observed side-chain conformation on a training set
of high-resolution protein structures. The derived scoring function combined with
a Monte Carlo search algorithm was used to place all side chains onto a protein
backbone simultaneously. The average prediction accuracy was 87.9 and 73.2% for
the first and second torsion angles correctly predicted to within 40 degrees of native.
As is the case for loop prediction, side-chain prediction accuracy depends sensi-
tively on the accuracy to which the backbone conformation is known (Huang et al.,
1998). This suggests the possibility of developing procedures where side-chain and
backbone conformation can be used iteratively to refine homology models.

Table 10.3 lists some publicly available side-chain prediction programs and
the methods they used. Earlier side chain predictions, e.g., RAMP (Samudrala and
Moult, 1998), SMD (Tuffery et al., 1993), and CONFMAT (Koelh and Delarue,
1994), were usually based on small rotamer libraries; more recent programs use very



10. Homology-Based Modeling of Protein Structure 335

Table 10.3 Side-chain modeling program

Programs Availability

SCAP http://trantor.bioc.columbia.edu/programs/jackal/
SCWRL http://dunbrack.fccec.edu/SCWRL3.php

SMOL Nikolai.Grichine@UTSouthwestern.Edu
SCCOMP http://atlantis.weizmann.ac.il/~¢eyale/

RAMP http://www.ram.org/computing/ramp/ramp.html
SMD http://condor.urbb.jussieu.fr/Smd.php
CONFMAT koehl@csb.stanford.edu

MAXSPROUT http://www.ebi.ac.uk/maxsprout/

detailed rotamer libraries, e.g., SCAP (Xiang and Honig, 2001), SCWRL (Canutescu
et al., 2003), SMOL (Liang and Grishin, 2002). In our recent benchmark study of
SCAP, SMOL, and SCWRL, SCAP excelled in prediction for core and surface
residues (Xiang et al., to be submitted). For partially buried residues, SMOL per-
formed the best, which was due to its more sufficient conformation sampling and
optimized scoring function. SCWRL also performed quite well though not as accu-
rately as the other two, but with much less CPU cost. On a 300-MHz SGI machine,
SCWRL is very fast, 3 seconds for each protein, while SMOL needs 11,700 seconds
and SCAP needs 361 seconds. Since the test was performed on the native protein
backbones, their performance may vary with homology models.

10.2.3.3 Other Improvements to Refinement

Recent improvements to refinement have been mainly achieved by increasing align-
ment accuracy. Almost all alignment software currently in use has to rely on one
of the derivatives of dynamic programming. Although dynamic programming can
obtain the global optimal alignment for a given scoring matrix, it cannot account for
nonlocal residue—residue interactions. For example, double mutant effects can only
be properly estimated if their spatial conformations are both available. As such, a
cumbersome but effective method of refining alignment is to build multiple models
based on the alternative alignments, with the best alignment corresponding to the
model of the lowest physical-chemistry energy. The assumption is that a conforma-
tion of lower energy is more likely close to the native state. The method becomes
possible due to the availability of more discriminatory energy functions and faster
model building tools (Petrey et al., 2003). Tens of thousands of models can be built
in a short time with Linux clusters, each based on one variation of alignment. An
effective scoring energy can be readily applied to the ensemble of models. The en-
ergies of these models can be further minimized with an approach similar to genetic
algorithm, i.e., shuffling segments among different models by fixing other parts
of protein, where the stems of the segment should have identical residues aligned
with the template. Similarly, genetic algorithms are also important tools to increase
model quality based on multiple templates. The multiple models, each based on one
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template, will be superimposed. Variable regions identified are exchanged and then
optimized among different models. In the optimization process, an RMSD restraint
can be applied to restrict sampling to a conformational space close to the averaged
framework of the original templates. This method has been utilized in the NEST
program and produced satisfactory results in CASP6, which will be discussed in
more detail in Section 10.3.

Recent research has attempted to use MD simulation to refine models. Lee et al.
(2001) used MD simulations with an explicit solvent model to refine Rosetta models
followed by scoring with the Poisson—Boltzman/surface area solvation model. Their
results showed that native structures could be distinguished energetically from struc-
turally different low-resolution models. Lu and Skolnick (2003) used a combination
of local restraints, knowledge-based potentials, and MD approaches that showed
promising improvements over previous studies using standard MD methods. Fan
and Mark (2004) used classical MD simulations with explicit water to refine homol-
ogy models. A significant improvement over the model structures has been observed
in a number of cases. The results indicate that homology models could be possibly
refined with MD simulations on a time scale of tens to hundreds of nanoseconds.
Qian et al. (2004) used the principal components of the variation of backbone struc-
tures within a homologous family to define a small number of evolutionarily favored
sampling directions and showed that model quality can be improved by energy-based
optimization along these directions. Li et al. (2004) developed new hierarchical and
multiscale algorithms to sample helices and flanking loops, which were evaluated
with an all-atom protein force field (OPLS) and a generalized Born continuum sol-
vent model. This method, integrated with a loop and side-chain modeling technique,
can potentially be used to refine homology structures iteratively. The next-generation
structure modeling algorithms should be able to refine a protein structure closer to
the native conformation. The most critical part is to obtain an energy function that
is sensitive enough to discriminate near-native conformations from other nonnative
folds. Though conformation sampling is also difficult, computer clusters allow more
thorough sampling of states around the original models.

10.2.4 Model Assessment

All models built by homology will have errors as discussed in the previous section.
Verification of the model, and estimation of the likelihood and magnitude of errors
has become one of the most important steps in advancing the state of the art of
homology modeling. Errors of the model are usually estimated either from the energy
of the model, or from the resemblance of a given characteristic of the model to real
structures. The most critical component is the development of a scoring function
that is capable of distinguishing good from bad models.

Scoring functions used for the evaluation of protein models generally fall into
two broad categories. “Statistical” effective energy functions (Sippl, 1995) are based
on the observed properties of amino acids in known structures, and have been widely
used in fold recognition and homology modeling applications. A variety of statistical
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criteria have been used successfully to discriminate between deliberately misfolded
and native structures. Most of them are directly or indirectly based on the analysis of
contacts, either interresidue contacts, interatom contacts, or contacts with solvent.
For example, preferential distributions of polar and apolar residues inside or outside
of a protein can be used to detect completely misfolded models (Baumann et al.,
1989); solvation potentials can detect local errors as well as complete misfolds (Holm
and Sander, 1992); packing rules have been implemented for structure evaluation
(Gregoret and Cohen, 1990). Residue or atom contacts are discriminative because
they are energetically favored, and many real structures cannot tolerate too many
unfavorable interactions. Thus, for a model to be correct, only a few infrequently
observed atomic contacts are allowed. However, bond angles and bond lengths,
though powerful in checking the quality of experimental structures, are usually
less useful for the evaluation of models because these factors have already been
considered appropriately in the model building stage (Fiser and Sali, 2003).

Physical effective energy functions (Lazaridis and Karplus, 1999a) are based
on a direct evaluation of the solvation free energy of a protein. It has been demon-
strated that such a direct evaluation of the conformational free energy can be at least
as successful as statistically based scoring functions in distinguishing the native
structure of a protein from an incorrectly folded decoy, although generally at greater
computational cost (Janardhan and Vajda, 1998; Vorobjev et al., 1998; Lazaridis and
Karplus, 1999b; Petrey and Honig, 2000). A distinct advantage of such physically
derived functions is that they are based on well-defined physical interactions, thus
making it easier to learn and to gain insight from their performance. Moreover, the
success in CASP (Critical Assessment of Protein Structure Prediction) of ab initio
methods based on purely physical chemistry methods (Lee et al., 1999) suggests
that our understanding of the forces that drive protein stability may have reached the
point where it can be translated into widely applicable computational tools. One of
the major drawbacks of accurate physical chemical description of the folding free
energy of a protein is that the treatment of solvation required usually comes at a
significant computational expense. Fast solvation models such as the generalized
Born (Still et al., 1990) and SCP-ISM (Hassan et al., 2000), together with a variety
of simplified scoring schemes (Huang et al., 1995; Petrey and Honig, 2000), may
prove to be extremely useful in this regard.

A number of freely available programs can be used to verify homology models
as shown in Table 10.4. They generally belong to one of two categories. The first
category (e.g., PROCHECK and WHATIF) checks for proper protein stereochem-
istry, such as symmetry checks, geometry checks (e.g., chirality, bond lengths, bond
angles, torsion angles), and structural packing quality; the second category (e.g.,
VERIFY3D and PROSAII) checks the fitness of sequence to structure, and assigns a
score for each residue fitting its current environment. A new graphics software called
GRASP2 is also useful in model assessment (Petrey and Honig, 2003). The software
can display alignments and template structures simultaneously for assessment of
the alignment quality. For example, insertions or deletions can be mapped to the
structures to verify that they make sense geometrically. Where residue substitutions
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Table 10.4 Model assessment program

Programs Availability

PROCHECK http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html
WHATCHECK http://www.sander.embl-heidelberg.de/whatcheck/
ProSall http://www.came.sbg.ac.at

VERIFY3D http://www.doe-mbi.ucla.edu/Services/Verify _3D/
ERRAT http://www.doe-mbi.ucla.edu/Services/Errat.html
ANOLEA http://www.fundp.ac.be/pub/ANOLEA .html

AQUA http://www.nmr.chem.uu.nl/users/jurgen/Aqua/server/
Probe http://kinemage.biochem.duke.edu/software/probe.php
SQUID http.//www.ysbl.york.ac.uk/~oldfield/squid/

PROVE http://www.ucmb.ulb.ac.be/UCMB/PROVE

ProQ http://www.sbc.su.se/~bjorn/ProQ

GRASP2 http://trantor.bioc.columbia.edu/programs.html

occur, the user can verify that structural features such as hydrophobic packing are
maintained and that active-site residues and other features of the target identified
from the literature are conserved. The manual inspection should be combined with
existing programs to further identify problems in the model.

10.3 Homology Modeling with JACKAL

A new set of homology modeling tools have been developed that are publicly dis-
tributed in the JACKAL package (http:/trantor.bioc.columbia.edu/programs.html).
JACKAL integrates knowledge-based and physics-based methods for protein struc-
ture prediction and refinement. At the heart of our approach to structure prediction
and refinement is the use of the colony energy concept (see Section 10.3.2). The
purpose of JACKAL is to automate the process of structure prediction, from tem-
plate identification and alignment tuning to model building, refinement and structure
verification. JACKAL contains the following major components: NEST for model
building and refinement; SCAP for side-chain modeling (Xiang and Honig, 2001);
LOOPY for loop prediction (Xiang et al., 2002); AUTOALIGN for alignment tun-
ing; CONREEF for model refinement. The core of JACKAL is the NEST program,
which, based on our newly developed artificial evolution algorithm (Fig. 10.6), at-
tempts to build models by simulating the natural process of structural evolution from
the template structure to the target model. SCAP and LOOPY are used for residue
mutation and insertion/deletion, respectively.

10.3.1 Model Building with Artificial Evolution Algorithm

Given an alignment between the query and template sequence, the alignment can be
broken down into a list of operations such as residue mutation, insertion, or deletion
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template TCPI--DERFWQNMG
target HCSVARDEN--QONLG
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Fig. 10.6 Model building with artificial evolution. m, i, and d denote mutation, insertion, and
deletion, respectively.

(Fig. 10.6 shows an alignment of 9 operations, i.e., 5 mutations, 2 insertions, and
2 deletions). Supposing the template to be the “parent structure,” it would take Nature
billions of years for the template structure to evolve into the target structure. It is
unlikely that Nature would finish the daunting task in one step. Instead, a more
probable scenario is for Nature to evolve into the target structure via multiple steps
with minimal changes to the template structure at each step. Accordingly, building
a target model could be considered a process of evolving the template structure
based on the alignment so that changes are carried out step by step, each step on
one operation. Each operation, i.e., mutation, deletion, or insertion, will disturb the
template structure and thus involve an energy cost, either positive or negative. The
model building starts from the operation with the least energy cost and so on. Each
operation is followed by a slight energy minimization to remove atom clashes. The
final structure is then subjected to more thorough energy minimization. The order for
the first round of operations does not have to be determined by actually calculating the
energy cost for each operation; instead, it can be conveniently estimated empirically.
For example, amino-acid mutation is generally easier in evolution than insertion and
deletion. As such, mutation operations on residues that are on the protein surface are
usually performed first followed by mutation of buried small-sized residues and so on.
The operation is considered successful if it does not cause a significant energy penalty
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(less than 5 kcal/mol) to the structure; otherwise the operation is discarded and will
return to the waiting list. Insertion or deletion of multiple residues is considered
as a group of operations, each operating on one residue. The operation starts from
the middle residue of the segment with deletion preferred over insertion, since the
structural effects of deletion are more reliably predicted. Similarly, operations with
more than 5 kcal/mol energy cost (an empirical cutoff that can easily be modified)
would also be considered unsuccessful and returned to the waiting list for the next
round of operations. The next round of operations actually works on the waiting list,
starting from the operation of the least energy cost that has been calculated from
the previous round, but with a doubled energy cutoff, e.g., operation with energy
penalty more than 10 kcal/mol would be considered unsuccessful for the second
round. A number of rounds (less than five rounds in total) would finally accomplish
the evolution of the template structure to the model, which will be followed by a
series of model refinements.

NEST is heavily dependent on our previous progress in side-chain and loop
modeling, i.e., the SCAP (Xiang and Honig, 2001) and LOOPY (Xiang et al., 2002)
program. Both SCAP and LOOPY have been integrated into the NEST code, though
they also exist independently in the JACKAL package. In the case of mutation, the
residue in the template structure first has its side chain changed to the correspond-
ing one in the target sequence, followed by several steps of minimization of the
new side chain. We have adopted a simple conformational sampling strategy for
side-chain modeling. Side-chain modeling is first carried out with all other parts of
protein fixed. The complete rotamer conformations for the side chain, which has
been compiled from 646 nonredundant high-resolution protein chains, will be as-
sembled onto the backbone. The rotamer with the lowest colony energy (see Section
10.3.2 for a description of the colony energy concept) will be selected as the final
conformation. However, if the rotamer of the lowest conformation energy partic-
ipates in a hydrogen bond, the conformation energy is used instead of the colony
energy because entropic effects generally do not favor hydrogen bonding, and an ac-
curate balance between hydrogen-bonding energy and entropy is difficult to achieve
in a simplified force field. If the best rotamer has positive energy, neighboring side
chains contacting with the rotamer will then be subjected to minimization. For each
of the neighboring side chains including the one that has just been mutated, a simi-
lar strategy, that is, sampling all possible rotamers with evaluation based on colony
energy, will be performed. The minimization procedure starts from the first residue
to the last in the neighboring list until all the side-chain conformations retain the
same rotamer on further iteration. If the energy of the side chain for the mutant
residue is larger than 5 kcal/mol, the mutation will be considered unsuccessful,
thus the mutation operation will be returned to the waiting list, and all other af-
fected residues associated with this operation will be restored to their previous
configurations.

An algorithm similar to LOOPY is used to minimize regions affected by in-
sertion or deletion. A segment of five to eight residues that covers the residue under
consideration is used in the minimization process. In order not to introduce large
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disturbance to the conserved region, the segment window usually slides to one par-
ticular direction depending on the location where the residue has to be handled. For
example, a larger part of the segment should be assigned to one side of the residue
under consideration if it has lower sequence alignment similarity than the other side;
it is advisable for the segment to avoid the helix or B-sheet region in order to keep
the regular secondary structure intact. If the insertion or deletion is in the helix or
[B-sheet, the segment will try to cover as many residues as possible in loops. The
segment should overlap with at least one residue on either side of the operation. A
shorter segment should be used if the loop has fewer than five residues. The segment
is refined by sampling alternative conformations. If the operation is in a loop, random
conformations would be generated; otherwise, 50% of the conformations would be
generated randomly, and the other 50% would be generated that equivalently ex-
tends or shortens the regular secondary structures. In other words, conformational
sampling is performed with insertion or deletion pushed to the nearest loop region.
The backbone of each conformation is minimized using “direct tweak,” a novel en-
ergy minimization algorithm that minimizes all torsion angle freedoms of a segment
without dislodging the end residues. The “direct tweak”™ algorithm was achieved by
combining conventional energy minimization in torsion-angle space with a set of
chain-closure constraints that were based on the random tweak algorithm (Shenkin
et al., 1987). Pairs of segments with RMSD greater than 2 A are then combined
(i.e., for an eight-residue segment, the first four residues in one segment joined with
the last four in another to form a new segment which is fused in the middle with a
segment closure procedure) to generate new segments. This results in a set of the
original segments plus all the newly fused segments. Side chains are then assembled
onto each of the segments, and the colony energy for each segment is calculated. The
lowest 30% survive and the procedure is repeated until a single segment remains.
In all of the above steps, no more than 200 segments are retained. The operation is
successful only when the energy increase of the segment is less than 5 kcal/mol.

10.3.2 Physical-Chemical Energy and Colony Energy Method

The energy function used in NEST can be expressed as the following terms (for
more detailed discussion of energy functions, see Chapters 2 and 3):

AE = AEyy + AEgsion + A Enbond + A Enydros (10.1)

AEyy = 61.66m exp(—2r?) * (1/r — 1.12/r%3), (10.2)

AEppond = min (0, [—16 + 122] cos(Bpua) cos (1.5 0ac)/dis),  (10.3)
if2A < dga <3A, 0pga > 90°, and Oyac > 60°;

else AEhbond =0.

AEvyw, AFEtorsions AEnbond, and A Eyygr, are van der Waals, torsion, hydrogen bond,
and hydrophobic energy, respectively. The van der Waals energy is evaluated with a
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Fig. 10.7 Hydrogen bond. D, A is hydrogen bond donor and acceptor, respectively. H is the
proton, and C is carbon atom.

modified expression that fits the CHARMM van der Waals curve but with repulsive
term softened to reduce sensitivity to small changes in atomic positions. In Eq. (10.2),
misthe energy at the minimum of'the potential function and is chosen to correspond to
the minimum in the van der Waals potential of the CHARMM?22 force field between
the two interacting atoms, and r is the ratio of the interatomic distance and the sum
of the van der Waals radii of two interacting atoms. The hydrophobic energy is
calculated based on the solvent-accessible surface area with the coefficient of 0.025
kcal/mol/A2. Here hydrogen-bond energy Eppong Was calculated using Eq. (10.3)
(see Fig. 10.7), where 2 is the ratio of the solvent-accessible surface area (SASA)
of the residue in the protein and the SASA of the same conformation for the residue
isolated in solution. D is the hydrogen donor, H is the polar hydrogen, A is the
hydrogen acceptor, and C is the carbon atom bonded to A. Opgaand Byac are the
angles defined by the coordinates of the respective atoms, and dyy is the distance
between atoms H and A. Although the value of Oyac depends on whether the atomic
orbital of the acceptor is sp2 or sp3, the Oyac angle is nevertheless close to 120°.
Since the rotamer library is discretized, we relaxed the standard requirement that
Brac should be larger than 90° (McDonald and Thornton, 1994). Eppeng is defined
to assume its minimum value when dj is 2 A and 6ppya is 180°. The minimum
Enpong values for completely buried and completely exposed side chains are —2 and
—0.5 kecal/mol, respectively, representative of experimental data for hydrogen bonds
(Efimov and Brazhnikov, 2003).

For each operation (mutation, deletion, and insertion), sufficient conformation
sampling is usually performed. The mechanical energy for each sampled conforma-
tion is evaluated with Eq. (10.1). NEST does not assume the best prediction to be that
of lowest mechanical energy; instead, a new energy term called “colony energy” is
used to evaluate all candidates (see Fig. 10.8), and the conformation with the lowest
colony energy will be chosen as the prediction (Xiang et al., 2002). For an operation
with N sampled conformations, the colony energy of rotamer i, AG;, is calculated
as

AG; = —RT *In [Z exp(—E,/(RT) — B(RMSDy; /RMSDan)V)], (10.4)
J
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ABisug

Conformation State

Fig. 10.8 One-dimensional schematic of the sampled conformations. Although conformation a
is the global minimum of the mechanical energy, conformation b is structurally similar to many
conformations at local minimum, and may possess lower colony energy than conformation a
depending on the values of 3 and y.

where R is the gas constant, T is absolute temperature, and E; is the mechanical
energy [Eq. (10).1] of the conformation i in the ensemble that has been sampled for
the operation. The sum is for all conformations in the ensemble, i.e., j ranges from
1 to N including i. RMSD;; is the root-mean-square distance between conformations
i and j. RMSD,y, is the average of RMSD between any two conformations in the
ensemble for a given operation. The parameter 8 is set to —In(1/2). The ranges of
conformational energies and three-dimensional structures sampled in a particular
application call for the use of y values that balance the conformational-energy
and RMSD-based factors appropriately. Results obtained with the training data set
suggested an optimal value for y would be 1 and 3 for side-chain and loop modeling,
respectively, (Xiang et al., 2002). Equation (10.4) approximates entropic effects by
favoring those conformations found in regions of configuration space that are visited
most frequently.

10.3.3 Model Refinement with JACKAL

Model refinement in JACKAL is performed in two steps. The first step is to increase
alignment quality, and the second step is to directly refine the model itself. A meta
server is usually used (http://bioinfo.pl/meta/) to identify as many prospective tem-
plates as possible. In the absence of a unanimous template identified by all servers,
all possible hits will be considered. For example, if multiple templates are identified
but all servers point to the same structural family, all structures in the PDB from
that family should be used as possible templates. For each template identified, a
number of alignments are obtained either from different servers or from alternative
alignments based on a particular alignment protocol. Because model building can be
done rapidly using NEST, the ensemble of sequence alignments is readily converted
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to an ensemble of 3D model structures. AUTOALIGN can be used on the ensemble
of models to repeatedly improve model quality using genetic algorithms. Specifi-
cally, all the models are superimposed based on sequence alignment and the regions
of high variability are identified. For each model, AUTOALIGN tries all possible
conformations on variable regions with corresponding segments from other models.
The resultant candidates are then clustered and ranked using the colony energy. The
conformation of the lowest colony energy is chosen as the best choice. The process
can be repeated until a stable model is derived.

For each model, unaligned regions corresponding to gaps in the sequence align-
ment are modeled using the independent LOOPY program with a similar approach
discussed above but at a more sufficient conformation sampling and energy min-
imization. Specifically, 2000 initial conformations are randomly sampled and fil-
tered against the consensus secondary-structure predictions from the meta server.
The 2000 conformations are then energy-minimized using our fast “direct tweak”
method, and the 300 conformations of lowest energy are kept. An additional 300 are
obtained from a fragment database using sequence similarity, secondary structure,
and end-point geometry. The 600 conformations are subjected to additional energy
minimization, and the conformation of lowest colony energy is selected. Side chains
are modeled with the independent SCAP program, where the initial conformation
starts from the NEST output. The final model will be further optimized using the
CONREF module that refines the model with restraints. The restraints include back-
bone hydrogen bonds and main-chain framework of the template structure, i.e., an
energy penalty would be applied if the sampled structure breaks an existing hydrogen
bond or deviates significantly (more than 2 A) from the original model. This is to
guarantee that sampling only visits conformations close to the templates.

10.3.4 Comparison with Other Homology Modeling Software

Homology modeling has been widely used in structure prediction, and many ho-
mology modeling tools are available (Table 10.1). Given the same alignment and
template, it was generally believed there were no major differences between the best
modeling programs. However, a recent study by Wallner and Elofsson (2005) has
shown that some programs performed better than others. In their study, a benchmark
of six different homology modeling programs—MODELLER, SEGMOD/ENCAD
(Levitt, 1992), SWISS-MODEL (Schwede et al., 2003), 3D-JIGSAW (Bates et al.,
2001), NEST, and BUILDER (Koehl and Delarue, 1996)—is presented. Their study
concluded that no single modeling program consistently outperformed the others in
all tests. However, it is quite clear that three modeling programs, MODELLER,
NEST, and SEGMOD/ENCAD, perform better than the others. Detailed analy-
sis of these homology modeling programs revealed some interesting differences.
For example, using a 1.4-GHz AMD XP processor, NEST needs 17 s on aver-
age to build a model, while SEGMOD needs 6 s, and MODELLER needs 43 to
430 s in MODELLER6v2 and MODELLER6v2-10, respectively; MODELLER,



10. Homology-Based Modeling of Protein Structure 345

SWISS-MODEL, and BUILDER produce more models that do not converge com-
pared to the other programs; in terms of stereochemistry (bond lengths, bond angles,
and side-chain planarity), 3D-JIGSAW, BUILDER, and SWISS-MODEL created
more residues with bad chemistry for difficult targets, while the other modeling pro-
grams showed a fairly constant number of bad residues at all sequence identities. For
sequence identities below 40%, all modeling programs manage to bridge some gaps
and build some loops correctly or incorrectly; therefore, accordingly, some models
are better or worse than the template. In this region the MODELLER programs,
NEST, SEGMOD/ENCAD, and SWISS-MODEL, improved 20% of the models.
Only NEST rarely made the models worse, while all other programs deteriorated at
least 5% of the models. The authors also found that NEST had more of its models
“among best” than the other programs; thus, selecting a model from NEST is almost
always a good choice.

10.4 Application of Homology Modeling

Homology modeling is often an efficient way to obtain information about proteins
of interest. Compared with ab initio protein folding, homology modeling is more
accurate and reliable. The quality of a homology model is directly correlated with the
sequence similarity between target and template. Though a homology model is not
perfect, it is still very useful in a wide spectrum of applications where information
about 3D conformation of a protein is required.

Highly homologous models with sequence identity above 50% to the templates
often have RMSD from the crystal structure around 2 A, which is roughly comparable
to a medium-resolution X-ray structure except for some gapped regions. Models at
this level of accuracy can often be used to study a wide range of biological activities
that require the knowledge of conformations of individual residues, such as studying
catalytic mechanism (Zhou and Johnson, 1999; Francoijs et al., 2000; Xu et al., 2005;
Fischer et al., 2005; Kim et al., 2005), designing and improving ligands (Wang
and Hampson, 2005; Niv and Weinstein, 2005), predicting protein partners (Orban
et al., 2005), solving X-ray structures with molecular replacement (Cupp-Vickery
etal., 2003; Schwarzenbacher et al., 2004), refining NMR structures (Skolnick et al.,
1997 and Kim et al., 2004) and defining antibody epitopes (Oakhill et al., 2005).
In the middle of the accuracy level are the models based on approximately 35%
sequence identity, corresponding to 85% of Ca atoms modeled within 3.5 A of their
crystal positions. Though conformations for most side chains have significant errors,
fortunately, the active and binding sites are frequently more conserved and are thus
modeled more accurately (Sanchez and Sali, 1998; Hassan et al., 2005). Medium-
resolution models can be used to improve protein function prediction based on
sequence alone (Burley and Bonanno, 2002; Shakhnovich et al., 2003), because
ligand binding is more determined by the 3D configurations of active-site residues
than by sequence. They can also be used to construct site-directed mutants with
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altered or destroyed binding capacity, or design proteins with added disulfide bonds
for extra stability, which in turn could test hypotheses about the sequence—structure—
function relationships (Ivanenkov et al., 2005; Campillo et al., 2005). For models of
low accuracy with sequence identity less than 25%, they sometimes have less than
50% of their Ca atoms within 3.5 A of their correct positions (Fiser and Sali, 2003).
Nevertheless, such models still have the correct fold and even knowing only the fold
of a protein is frequently sufficient to predict its approximate biochemical function
(Al-Lazikani et al., 2001b). Evaluation of models in this low range of accuracy can be
used for confirming or rejecting a match between remotely related proteins (Sanchez
and Sali, 1998).

Xu et al. (2005) recently used homology modeling to study HSP90 and kinase
Erbb1 interaction. The molecular chaperone Hsp90 modulates the function of spe-
cific cell signaling proteins. Although targeting Hsp90 with the antibiotic inhibitor
geldanamycin (GA) may be a promising approach for cancer treatment, little is
known about the determinants of Hsp90 interaction with its client proteins. Previous
studies have shown that Erbb1 binds with HSP90 while Erbb2, having 82% sequence
identity to Erbbl, does not. The crystal structure of Erbb1 has been solved to a res-
olution of 2.6 A, which was used as the template structure to build the homology
model for Erbb2. By superimposing the 3D conformations of Erbb1l and Erbb2, a
loop within the N lobe of the kinase domain of Erbb2 was identified that determines
Hsp90 binding. Further detailed analysis of the Erbbl crystal structure and Erbb2
model identified a single residue difference (Gly745 on Erbbl versus Asp778 on
Erbb2) that may account for their different interaction with HSP90. The analysis
implied that the amino acid sequence of the loop determines the electrostatic and
hydrophobic character of the protein’s surface, which in turn governs interaction
with Hsp90. The hypothesis was later confirmed by a number of carefully designed
mutagenesis experiments.

Another study used low-resolution comparative models to annotate protein
functions (Al-Lazikani etal.,2001). Janus kinases (JAKs) are a family of nonreceptor
protein tyrosine kinases involved in signaling cascades initiated by various cytokines,
interferons, and growth factors (Schindler and Darnell, 1995). There are four human
JAK proteins: JAK1-3 and TYK2. JAKs share seven main regions of homology,
termed JAK-homology domains JH1-7, numbered from the C to the N terminus.
JH1 is the C-terminal protein kinase domain, and JH2 is a kinaselike domain whose
precise function remains unclear. JH3—7 play arole in receptor interactions. There has
been considerable uncertainty as to whether JAKs contain SH2 domains. Application
of homology modeling and other sequence profile analysis method strongly indicates
that the Janus family of nonreceptor protein tyrosine kinases contains SH2 domains.
One of the Janus kinases, human TYK2, has an SH2 domain that contains a histidine
instead of the conserved arginine at the key phosphotyrosine-binding position, 3B5.
Calculations of the pK, values of the BBS5 arginines in a number of SH2 domains
and of the 3BS5 histidine in a homology model of TYK2 suggest that this histidine
is likely to be neutral around pH 7, thus indicating that it may have lost the ability
to bind phosphotyrosine.
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10.5 Summary

Protein-structure prediction has fascinated the scientific community for decades; it
is a problem simple to define but difficult to solve. The dream seems more and more
attainable with the explosion of sequence and structural information and because
of computational advances in many different areas. These include pure sequence
analysis, structure-based sequence analysis, conformational analysis of proteins,
and the understanding of the energetic determinants of protein stability. Homology
modeling has become a widely used tool, and fold recognition has been shown to
extend the limits of detection of sequence search methods. The advent of structural
genomic initiatives is certain to spur the development of a host of new computational
methods aimed at detecting new relationships between sequence, structure, and
function. Continued progress in ab initio modeling, combined with ever-increasing
databases, makes it possible to further refine homology models to higher accuracy.
Such models will provide the basis for a more detailed analysis of structure and
function relationships than has been available in the past and will provide powerful
tools for the analysis of experimental data and for the design of new experiments.
Despite past progress, much remains to be done. A major problem that still
plagues structure prediction by homology is that the structure of the target protein
may differ significantly from the closest available template. Unlike the rapid advances
made in experimental structure determination, progress in homology structure pre-
diction has been incremental as illustrated at the recent CASP (Critical Assessment
of Methods for Structure Prediction of Proteins, http://www.forcasp.org) competi-
tions. Reliability of these homology modeling methods depends critically on the
level of sequence identity between the modeling target and the template. When se-
quence identity is 30% or higher, backbone atoms are usually correctly modeled.
The majority of the errors come from side-chain and loop placement during refine-
ment with roughly 3-4 A RMSD compared to high-resolution crystal structures.
When the sequence identity drops below 30%, misalignment happens frequently
and model quality suffers dramatically. To increase the utilization and value of the
computational models in biomedical research, and to reduce the need for still costly
experimental structure determination, significant improvement in the reliability and
accuracy of modeling techniques is needed by the research community. There are
two immediate goals that have to be addressed in the homology modeling commu-
nity. The first scientific goal is to expand the modeling coverage to more distantly
related proteins that exhibit as low as 10% identity to any known structures. The
quality of these models should be close to X-ray structures or high-resolution NMR
structures with less than 2 A RMSD for backbone and side-chain atoms. Signifi-
cant improvement of modeling methods is needed to push the modeling coverage
to remote homologues of existing structures without much compromise on quality.
This is both an alignment problem and a refinement problem. Future progress on this
issue will depend on advances in the energetic evaluation of structures and the evo-
lutionary analysis of sequences, and the integration of these two fields. The second
goal is to achieve the standard of high-resolution X-ray crystal structure quality for
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comparative models that are based on known structures with higher homology (30%
sequence identity) to the modeling targets. This is predominantly a high-accuracy
refinement problem, although substantial improvement of alignment methods is also
required. The aim is to acquire the ability to reliably produce computational mod-
els with highly accurate placement of both backbone and side-chain atoms, and to
significantly reduce the need for experimental structure determinations for close
homologues of known structures.
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