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Graphical Languages for Specification of

Decision Problems

A Bayesian network serves as a model for a part of the world, and the relations
in the model reflect causal impact between events. The reason for building
these computer models is to use them in taking decisions. In other words,
the probabilities provided by the network are used to support some kind of
decision making. In principle, there are two kinds of decisions, namely test
decisions and action decisions .

A test decision is a decision to look for more evidence to be entered into the
model, and an action decision is a decision to change the state of the world.
In real life, this distinction is not very sharp; tests may have side effects,
and by performing a treatment against a disease, evidence on the diagnosis
may be acquired. In order to be precise, we should say that decisions have
two aspects , namely a test aspect and an action aspect. The two aspects are
handled differently in connection with Bayesian networks, and accordingly we
treat them separately.

Although both observations and actions may change the probability dis-
tributions in the model, they are fundamentally different. To highlight this,
consider the example in Figure 9.1.

A wheat type may be genetically resistant to mildew. If so, there will be
no attack, and this has an impact on the quality of the crop. If you observe
that there is no attack, the probabilities for Resistance and Crop are changed.
If you, on the other hand, prevent an attack through spraying and thereby
fix the state of Attack to no, then it has no impact on your belief about
Resistance. That is, the impact of actions can only follow the direction of the
causal links.

The example stresses the important point already made in Section 3.2.6
concerning the use of Bayesian networks. Using Bayes’ theorem, it is easy to
establish the model in Figure 9.2, which reflects a kind of diagnostic reasoning.

From the point of view of entering evidence and propagating probabilities,
the two Bayesian networks in Figure 9.1 and Figure 9.2 represent the same
joint probability distribution, so why bother emphasizing that the links in the
network should be causal links? The difference becomes apparent when one



280 9 Graphical Languages for Specification of Decision Problems

P

Resistance Attack Crop

T

Fig. 9.1. A simple Bayesian network with an action and a test attached. The
decision (Prevention) can by spraying fix the state of Attack to no. The test T can
determine the state of Attack.

Resistance Attack Crop

Fig. 9.2. A Bayesian network equivalent to the one in Figure 9.1.

sprays. In Figure 9.2, spraying will change the probability of resistance but it
will have no impact on the crop.

In Section 9.1 we show how to extend a Bayesian network to cope with
a single decision, and in Section 9.2 we describe fundamentals of rational
decision making. Sections 9.3–9.5 present various graphical frameworks for
modeling decision problems with several decisions involved, and in Section 9.6
we deal with problems that have an unbounded time horizon.

9.1 One-Shot Decision Problems

A Bayesian network provides a model of the world that can be used in making
decisions. The typical situation is that we have observed some of the variables
in the domain and based on these observations we make an inquiry to the
Bayesian network about some other set of variables (probability updating).
The result of the inquiry is in turn used in the subsequent decision-making
process.

This type of application of Bayesian networks can be taken one step fur-
ther, so that rather than keeping the model separated from the decision-
making process, you could combine these two parts. That is, not only does
the final model reveal the structure of the decision problem, but it can also be
used to give advice about the decisions. In the simple situation in which only
a single decision is to be made, the Bayesian network can readily be extended
to reflect the structure of the decision problem.
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9.1.1 Fold or Call?

Consider the poker example in Section 3.1.4 as extended in Exercise 3.13
with the variables MH (“my hand” having the same states as OH2) and BH
(“best hand” with the states me, opponent, and draw), see Figure 9.3. The
conditional probability distribution for BH is a deterministic function of OH2
and MH.

OH0 OH1 OH2

FC SC

BH

MH

Fig. 9.3. The poker model extended with variables for my hand and best hand.

The reason I am interested in knowing which hand is best is that I shall
take a decision on an action. For this game, the rules are that we both placed
$1 on the table to get the initial hand, and after the rounds of card changing,
my opponent places $1 extra (in this game she is forced to place $1 regardless
of her hand). Now, I may either fold or call. If I fold, my opponent takes the
pot, and if I call, I place $1 on the table, and we compare the hands. The
player with the best hand takes the pot (in case of a draw we share).

My decision problem in deciding to fold or to call can be represented
graphically by extending the Bayesian network with a couple of extra nodes.
The decision options are represented by a rectangular node D with states
fold and call. Another type of node, U, represents the possible outcomes in
dollars. The node U is called a utility node, and the outcomes are called
utilities. The variables determining the outcomes are BH and D, and this is
shown graphically through directed links from BH and D to the diamond-
shaped node U. See Figure 9.4. Note that in this example the utilities also
include the initial $1 that I was forced to put on the table.

When I have extended the Bayesian network to the model in Figure 9.4,
I can use the model to give advice on the decision D. I have observed my
opponent’s change of cards (for example, two cards and one card), and I know
my own hand (for example, a flush). The probability for BH (best hand) is
calculated, and it is used to calculate EU(call), the expected utility of calling:
the sum of the various wins and losses weighted by their probability. The
formula for EU(call) is
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OH0 OH1 OH2

FC SC

BHMH

UD

D
fold call

BH
me −1 2

opponent −1 −2
draw −1 0

Fig. 9.4. Graphical representation of my decision problem of whether to fold or
call. The variable D is a decision variable. The variable U represents the outcome in
$ (shown in the table), and the links into U indicate that the outcomes of the game
(only) depend on D and BH.

EU(call) =
∑
BH

U(BH, call)P (BH | evidence)

= P (BH = me|FC = two,SC = one,MH = flush)U(BH = me, call)

+ P (BH = draw|FC = two,SC = one,MH = flush)

U(BH = draw, call)

+ P (BH = opponent|FC = two,SC = one,MH = flush)

U(BH = opponent, call).

If you use the probabilities found in Section 3.2.3, the expected utility of
calling is

EU(call) = 0.4 · 2 + 0.054 · (−2) + 0.546 · 0 = 0.692,

and since the expected utility of folding is −1, I should call.

9.1.2 Mildew

Two months before the harvest of a wheat field, the farmer observes the state
Q of the crop, and he observes whether it has been attacked by mildew, M. If
there is an attack, he will decide on a treatment with fungicides.

There are five variables:

• Q with states fair (f), not too bad (n), average (a), and good (g);
• M with states no, little (l), moderate (m), and severe (s);
• H (state of the crop at time of harvest) with the states from Q plus rotten

(r), bad (b), and poor (p) (farmers in all countries tend to describe their
harvests in pessimistic terms);

• OQ (observation of Q) with the same states as Q;
• OM (observation of M) with the same states as M.
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Furthermore, there is a decision node A with decision options no, light (l),
moderate (m), and heavy (h) and a variable M′ describing the mildew attack
after the decision. We define a utility function U(H) giving the utility of the
outcome of the harvest for each state of the crop. The cost of the decisions
is modeled as a utility function C attached to A (the values of C are either
negative or zero). The total utility is U + C. Figure 9.5 gives a model.

Q

OQ

H U

M′M

OM A C

Fig. 9.5. A decision model for mildew.

With evidence e (statements on OQ and OM), the farmer wishes to deter-
mine an optimal decision (a decision of maximal expected utility). To do this,
he needs to calculate the expected utility of the various options. That is, for
each state a of A, we first calculate P (H |A = a, e), and then

EU(A | e) = C(A) +
∑
H

U(H)P (H |A, e).

9.1.3 One Decision in General

The general situation with one decision variable is as described in Figure 9.6.
There is a Bayesian network structure with chance nodes and directed links.
The network is extended with a single decision node D that may have an
impact on the variables in the structure. In other words, there may be a link
from D to some chance nodes. Furthermore, there is a set of utility functions,
U1, . . . , Un, over domains X1, . . . ,Xn.

The task is to determine the decision that yields the highest expected
utility. Thus, if none of the utility nodes contain D in the domain, then with
evidence e we calculate

EU(D | e) =
∑
X1

U1(X1)P (X1 | D, e) + · · ·+
∑
Xn

Un(Xn)P (Xn | D, e),
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Fig. 9.6. A graphical representation of a one-action decision scenario.

and a state d maximizing EU(D = d | e) is chosen as an optimal decision. When
D is contained in the domain of a utility node, such as U1 in Figure 9.6, then
we should perform the summation only over X1 \ {D}, and accordingly, we
should use the probability distribution P (X1 \ {D} |D, e).

A requirement of the method described above is that the decision problem
contains only a single decision. When one is working with decision problems
involving several decisions, things become a bit more complicated (we shall
return to this issue in Sections 9.3 and 9.4).

9.2 Utilities

We treat decision problems in the framework of theory. Decisions are made
because they may be of use in some way. Therefore, the various decisions
should be evaluated on the basis of the usefulness of their consequences. We
assume that “usefulness” is measured on a numerical scale called a utility scale,
and if several kinds of utilities are involved in the same decision problem, then
the scales have a common unit.

Management of Effort

In your computer science studies you attend two courses, Graph Al-
gorithms and Machine Intelligence. In the middle of the term, you
realize that you cannot keep pace. You can either reduce your effort
in both courses slightly or you can decide to attend one of the courses
superficially. What is the best decision?
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You have three possible actions:

Gm: Keep pace in Graph Algorithms and follow Machine Intelligence super-
ficially.

SB: Slow down in both courses.
Mg: Keep pace in Machine Intelligence and follow Graph Algorithms super-

ficially.

The results of the actions are your final marks for the courses. The marks
are integers between 0 and 5, where 0 and 1 are failing marks. You have certain
expectations for the marks given your effort in the rest of the term. They are
shown in Table 9.1.

kp sd fs

0 0 0 0.1
1 0.1 0.2 0.1
2 0.1 0.1 0.4
3 0.2 0.4 0.2
4 0.4 0.2 0.2
5 0.2 0.1 0

kp sd fs

0 0 0 0.1
1 0 0.1 0.2
2 0.1 0.2 0.2
3 0.2 0.2 0.3
4 0.4 0.4 0.2
5 0.3 0.1 0

P (GA | effort) P (MI | effort)

Table 9.1. The conditional probabilities of the final marks in Graph Algorithms
(GA) and Machine Intelligence (MI ) given the efforts keep pace (kp), slow down
(sd), and follow superficially (fs).

A way of solving your decision problem would be to say that the numeric
value of the mark is a utility, and you want to maximize the sum of the
expected marks. The calculations would then be

EU(Gm) =
∑

m∈GA

P (m | kp)m +
∑

m∈MI

P (m | fs)m = 3.5 + 2.3 = 5.8,

EU(SB) =
∑

m∈GA

P (m | sd)m +
∑

m∈MI

P (m | sd)m = 2.9 + 3.2 = 6.1,

EU(Mg) =
∑

m∈GA

P (m | fs)m +
∑

m∈MI

P (m | kp)m = 2.3 + 3.9 = 6.2.

From this, you would conclude that you should follow Graph Algorithms su-
perficially but keep pace in Machine Intelligence.

However, do the marks really reflect your utilities? If, for example, you
had the same number of marks but the numeric values were 0, 5, 6, 8, 9, 10,
you would have come to another conclusion. The problem is that you cannot
expect that a difference of 1 in mark number always represents the same
difference in utility. Actually, in this case your subjective utility is probably
not increasing in the numeric value of the mark: the rule at your university
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is that if you fail, you are given another chance, but if you pass, you are not
allowed to try again to get a better mark. Therefore, you find that the worst
mark to get is a 2 rather than a 0!

To overcome this problem, the mark scale is mapped into a utility scale
going from 0 to 1. The best possible mark (5) is given the utility 1, and the
worst possible mark (2) gets the utility 0.

The intermediate marks are given utilities between 0 and 1 by imagining
that you have a choice between two games:

Game 1: You get for certain the mark x;
Game 2: You get mark 5 with probability p, and you get mark 2 with
probability 1− p.

Which game would you prefer?
If p = 0, you would prefer Game 1, and for p = 1, Game 2 would be best.

For some p between 0 and 1, you would be indifferent, and this p is the utility
for the mark x. Specifically, if you should find a value for p that would make
you indifferent between games 1 and 2, then it should hold that

EU(Game 1 ) = EU(Game 2 ).

This can be rewritten as 1 ·U(x) = (1− p) ·U(2)+ p ·U(5), and by exploiting
that U(2) = 0 and U(5) = 1 we get U(x) = p.

In Table 9.2, we have performed the utility assessment for you. The utilities
assessed are for only one course. We will now assume that the utility of marks
for several courses is the sum of the individual utilities. Note that this is
not evident (it might, for example, be that you prefer two 2’s to failing both
courses, which would delay your studies considerably), and an alternative
could be to construct a single utility function for both courses.

Mark 0 1 2 3 4 5
Utility 0.05 0.1 0 0.6 0.8 1

Table 9.2. Utilities for the various marks (the same for both courses).

In Figure 9.7, the decision model is illustrated. To find an optimal decision,
the calculations are

EU(action) =
∑

m∈GA

P (m | action)UGA(m) +
∑

m∈MI

P (m | action)UMI (m).

We get EU(Gm) = 1.015, EU(SB) = 1.07, EU(Mg) = 1.045, and the optimal
decision is therefore SB .
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GA
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Fig. 9.7. A decision model for effort.

9.2.1 Instrumental Rationality

Beneath the principle of maximal expected utility there is a normative claim
that rational decision making shall be represented as a task of calculating
expected utilities and to choose an option of maximal expected utility. The
question is whether this claim includes all kinds of human choice (private
decisions, company decisions, political decisions, etc.). Does it cover choosing
the dinner for tomorrow as well as whether to kill your husband or leave him?
Does it include setting of tax rates and building dams for flood protection?

It is not claimed that humans/companies/politicians act in accordance
with the principle of maximal expected utility (which can easily be disproved).
The claim is that if the decision maker takes his time to analyze the situation
to find out which choice seems the best, then it is irrational not to choose one
of maximal expected utility.

In order not to enter into a circular argument, you need to be precise
about the term rational without referring to utilities, and a way of doing so
is to put up a set of rules that characterize rational choice. The rules need
not be exhaustive or independent, but they should have the character that
everybody agrees that it is irrational not to obey them.

Below we present the first such set of rules, presented by von Neuman and
Morgenstern in 1947. The rules have been called axioms of instrumentally
rational choice, and they are formulated in terms of preferences over lotteries.
Formally, a lottery is a probability distribution over a set of outcomes/prices,
denoted by X , where an outcome X = x can be a bundle of commodities,
services, resources, etc. The lottery with a certain outcome of the price x is
denoted by [x]. The decision maker is supposed to rank the lotteries by prefer-
ence. The notation A � B denotes that B is not preferred to lottery A, A � B
denotes that A is (strictly) preferred to B; and A ∼ B denotes that the deci-
sion maker is indifferent between A and B (shorthand for A � B and B � A).
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Construction of mixed lotteries. From two lotteries A and B we can construct
compound lotteries. Let α ∈ [0, 1]. Then αA+ (1−α)B is a new lottery: with
probability α, A is drawn, else B.

Axioms of instrumentally rational choice:

1. Reflexivity. For any lottery A, A � A.
2. Completeness. For any pair (A, B) of lotteries, A � B or B � A.
3. Transitivity. If A � B and B � C, then A � C.
4. Preference increasing with probability. If A � B then αA + (1 − α)B �

βA + (1 − β)B if and only if α ≥ β.
5. Continuity. If A � B � C then there exists α ∈ [0, 1] such that B ∼

αA + (1 − α)C.
6. Independence. If C = αA+(1−α)B and A ∼ D, then C ∼ (αD+(1−α)B).

Theorem 9.1. For an individual who acts according to a preference ordering
satisfying rules 1–6 above, there exists a utility function over the outcomes so
that the expected utility is maximized.

Proof. Since the set of prices X is finite, there is a best price, xB , and a worst
price, xW . Without loss of generality we set U(xB) = 1 and U(xW ) = 0. The
continuity axiom [5] then yields that for any price x there is an α ∈ [0, 1] such
that [x] ∼ α[xB ] + (1− α)[xW ]. We set U(x) = α.

Now let xi denote prices and let ti be probabilities. From standard prob-
ability calculus we have that if A = αB + (1 − α)C, B =

∑
i tBi [xi], and

C =
∑

i tCi [xi], then A =
∑

i(αtBi + (1−α)tCi )[xi]. That is, any lottery A can
be written in the form

A =
∑

i

ti[xi],

and
EU(A) =

∑
i

tiU(xi).

Since [xi] ∼ U(xi)[xB ] + (1 − U(xi))[xW ], we get (axiom [6])

A ∼
∑

i

ti(U(xi)[xB ] + (1− U(xi))[xW ]).

Since U(xi) is independent of ti, we have

A ∼
(∑

i

tiU(xi)

)
[xB ] +

(∑
i

ti(1− U(xi))

)
[xW ].

Hence, for all lotteries A we have (axiom [3])

A ∼ α[xB ] + (1− α)[xW ],
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where α = EU(A). Now let A ∼ α[xB ] + (1− α)[xW ] and B ∼ β[xB ] + (1 −
β)[xW ]. By axiom [4] we have that A � B if and only if α ≥ β if and only if
EU(A) ≥ EU(B).


�
The theorem says that if you agree that rules 1–6 apply for your decision
problem, then you have to choose a decision that maximizes your expected
utility. If you do not wish to follow the recommendation of a perfect max-EU
analysis of your problem, your only way out is to attack the rules.

To illustrate this point, consider the following example (Allais’ paradox).
You have a choice between two lotteries:

• Lottery A = [$1mill.],
• Lottery B = 0.1[$5mill.] + 0.89[$1mill.] + 0.01[$0].

Most probably you would strictly prefer A to B because your life would
be completely changed if you got $1 million, and in B there is a risk of this
not happening. This reasoning is perfectly rational. It reflects only that your
subjective utility of $1 million is very close to your utility of $5 million. This
must also be the case in other situations. Assume that you are faced with a
new choice between two lotteries:

• Lottery C = 0.11[$1mill.] + 0.89[$0],
• Lottery D = 0.1[$5mill.] + 0.9[$0].

In turns out that if you chose D (as many people would do) you would not
maximize expected utility. In other words, if you seriously mean that the
difference in utility between $1 million and $5 million is very small, you must
take the extra 1% chance of winning $1 million.

The following calculations show that choosing D does not maximize your
expected utility. Let U($5mill.) = 1, U(0) = 0, U($1mill.) = u. If you prefer A
to B, you have

u > 0.1 + 0.89u.

Hence

u >
10

11

and now

EU(C) = 0.11u > 0.11
10

11
= 0.1 = EU(D).

The rules presented here cover a simple type of decision problem. There is
an extensive scientific debate about how wide the scope is for the principle of
maximizing expected utilities in a world assigned with subjective probabilities.
Axioms similar to the axioms presented here have been devised, and theorems
similar to Theorem 9.1 have been proved.
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9.3 Decision Trees

A classical way of representing decision problems with several decisions is
with decision trees. A decision tree is a model that encodes the structure of
the decision problem by representing all possible sequences of decisions and
observations explicitly in the model.

The nonleaf nodes in a decision tree are decision nodes (rectangular boxes)
or chance nodes (circles or ellipses), and the leaves are utility nodes (diamond
shaped). The links in the tree have labels. A link from a decision node is
labeled with the action chosen, and a link from a chance node is labeled by a
state.

Example 9.1 (The Two-Test Milk Problem). Consider the infected milk sce-
nario from Figure 3.1 and Section 3.2.1 (to keep things simple, we assume
that the infections and tests are independent between the days). The farmer
has 50 cows, and the milk from each cow is poured into a common container
and transported to the dairy. The value of the milk is $2 per cow. The dairy
checks the milk carefully, and if it is infected it is thrown away. After having
milked a cow, the farmer may perform two different tests of the milk, TA and
TB, before pouring it into the container. The price of the first test is 6 cents
and it has a false positive/negative rate of 0.01, and the price of the second
test is 20 cents and it has a false positive/negative rate of 0.001.

To establish the utilities, let us assume that the farmer has clean milk
from the 49 other cows. If the farmer pours the milk into the container, he
will gain $100 if it is not infected, and he will gain nothing if it is infected. If
he throws the milk away, he will gain $98 regardless of the state of the milk.

The question is whether he should perform the tests and in which order.
Figures 9.8 and 9.9 show the graphical part of a decision tree for the milk
example with two tests.

A decision tree is read from the root downward. When you pass a decision
node, the label tells you what the decision is, and when you pass a chance
node, the label tells you the state of the node. If a decision node follows a
chance node, then the chance node is observed before the decision is made.
Hence the sequence in which we visit the nodes corresponds to the sequence
of observations and decisions. We assume no-forgetting: when a decision is to
be taken, the decision maker knows all the labels on the path from the root
down to the current position in the decision tree. We adopt the shorthand
past for the set of labels from the root to a position in the tree.

Each path from the root to a leaf specifies a complete sequence of obser-
vations and decisions, and we call such a sequence a decision scenario. Fur-
thermore, we require decision trees to be complete: from a chance node there
must be a link for each possible state, and from a decision node there must be
a link for each possible decision option. This also means that a decision tree
specifies all the possible scenarios in the decision problem.
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Fig. 9.8. The graphical part of a decision tree for the milk problem from Exam-
ple 9.1. The tree reflects that no test is performed when the milk has been poured
or discarded. Note that nodes in a decision tree may share names.
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Fig. 9.9. Continuation of diagram in Figure 9.8.

The quantitative part of a decision tree consists of utilities and probabili-
ties. Each leaf has a utility value attached to it. This utility reflects the utility
of the decision scenario identified by the path from the root to the leaf in
question. For the chance nodes, we associate a probability with each of the
links emanating from them. See Figure 9.11 for an example. Let A be a chance
node at a particular position in the tree with past o, and let l be an outgoing
link labeled with a. We then associate P (A = a | o) with this link. Either you
can have the probabilities explicitly attached to the links (which can be rather
impractical to work with), or you can use your Bayesian network model as a
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reference. You can, for example, complement the graphical part in Figures 9.8
and 9.9 with the Bayesian network in Figure 9.10 and then use the Bayesian
network to calculate the required probabilities.

Test1

Inf

Test2

Fig. 9.10. A Bayesian network for calculating the probabilities for the decision tree
in Figures 9.8 and 9.9.

9.3.1 A Couple of Examples

We now give two other examples of decision problems involving a sequence of
decisions.

Example 9.2 (The Car Start Problem). In the morning, my car will not start.
There are three possible faults: the spark plugs may be dirty, with probability
0.3; the ignition system may be malfunctioning, with probability 0.2; or there
is some other cause, with probability 0.5. I can perform two repair actions
myself: SP , which at the cost of 4 minutes always fixes spark plugs; and IS,
which takes 2 minutes and fixes the ignition system with probability 0.5. I
can also perform a test T , namely to check the charge on the spark plugs
when starting. It takes half a minute, and it says ok if and only if the ignition
system is okay. Finally, I can call road service RS, which at the cost of 15
minutes fixes everything. The car was okay yesterday evening, so I assume
that there is at most one fault.

To work with utilities rather than costs, let us say that I have 30 minutes to
fix the car and arrive at work, and I want to find a test−repair sequence that
expectedly gives me as much time as possible for getting to work. Therefore,
the utility of a test−repair sequence is the remaining time for getting to work.

A decision tree for this Car Start Problem is shown in Figure 9.11. The
probabilities for the decision tree are calculated from the model in Figure 9.12,
where the technique from Section 3.3.9 is used.

Example 9.3 (The Reactor Problem).
An electric utility firm must decide whether to build (B) a reactor of

advanced design (a), a reactor of conventional design (c), or no reactor (n) at
all. If the reactor is successful, an advanced reactor is more profitable, but it
is also more risky.

If the firm builds a conventional reactor, the profits are $8B if it is a
success (cs), and −$4B if there is a failure (cf). If the firm builds an advanced
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Fig. 9.11. A decision tree for the Car Start Problem in Example 9.2.
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T

ISFault

Fault-I

Fig. 9.12. A model for calculating the probabilities for a decision tree for the Car
Start Problem in Example 9.2. Due to the assumption of exactly one fault, the faults
are collected in the node Fault with states is, sp, and other.

reactor, the profits are $12B if it is a success (as), −$6B if there is a limited
accident (al), and −$10B if there is a major accident (am). The firm’s utility is
assumed to be linear in dollars. Before making the decision to build, the firm
has the option to conduct a test (T = t) or not (nt) of the components (Cp)
of the advanced reactor. The test results (R) can be classified as either bad
(b), good (g), or excellent (e). The cost of the test is $1B. If the test results
are bad, then the Nuclear Regulatory Commission (NRC) will not permit the
construction of an advanced reactor.

Figure 9.17 shows a decision tree representation of the problem, where the
probabilities can be found from the Bayesian network in Figure 9.14.

The specification of the quantitative part (Figure 9.14) can be extended
with decision nodes and utility nodes as shown in Figure 9.15, which can also
be considered a model of the relevant world.

9.3.2 Coalesced Decision Trees

The main drawback of decision trees is that they grow exponentially with
the number of decision and chance variables, and – as illustrated in the two
examples – even very small decision problems require a relatively large decision
tree. There are, however, methods for reducing the complexity by exploiting
symmetries in the decision problem.

The idea is that when a decision tree contains identical subtrees, they can
be collapsed. In the milk problem, if both tests are negative, the situations
will be the same regardless of the order in which the tests are performed. The
succeeding parts of the decision tree must therefore be the same, both in terms
of structure and numerical information (probabilities and utilities); hence we
can have the links to these parts meet in a common decision node. Figure 9.16
shows the structure of a coalesced decision tree for the milk problem, and
Figure 9.17 shows the coalesced decision tree for the reactor problem.

The procedure for solving a coalesced decision tree is the same as the
procedure for normal decision trees (see the next section).
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Fig. 9.13. A decision tree for the Reactor Problem. Note that the cost of the test is
attached to the link T = t, indicating that the cost will be the same for all ensuing
scenarios.

9.3.3 Solving Decision Trees

A solution to a decision tree is a strategy that specifies how we should act at the
various decision nodes. An example of a strategy is illustrated in Figure 9.18 by
the boldfaced links. Strategies are compared based on their expected utilities,
and finding an optimal strategy amounts to finding a strategy with highest
expected utility; such a strategy is not necessarily unique.

By assigning to each node in the decision tree a value corresponding to
the maximum expected utility achievable at that node, an optimal strategy
will pick an action leading to a child of maximum value. Looking at the end
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Fig. 9.14. A Bayesian network providing probabilities for the decision tree repre-
sentation of the Reactor Problem shown in Figure 9.13.
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Fig. 9.15. A model of the world relevant for the reactor problem.

of the decision tree, one sees that the value of a leaf node is simply the utility
assigned to that node. If we go one step further up the tree, then the value of
a decision node D is the maximum value associated with its children/leaves,
since D is under our full control. For a chance node, its value corresponds to
the utility you can expect to achieve from that point in the decision tree: the
value is the sum of the utilities of the leaves weighted with the probabilities
of their outcomes. When all children of a node N have been assigned a value,
we can calculate the value to assign to N . If N is a decision node, we assign
it the maximum of the children’s values, and if N is a chance node, we assign
the weighted sum.

These observations form the basis for a procedure known as “average-out
and fold-back” for calculating an optimal strategy and the maximum expected
utility: start with nodes that have only leaves as children. If the node is a
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Fig. 9.17. A coalesced decision tree for the reactor problem. If we decide to build
a conventional reactor the resulting subtrees will be the same regardless of our
previous decisions and observations.

chance node A, the expected utility for A is calculated. Each child of A is
an outcome o and has a utility U(o) attached, and the link has a probability
P (A = a). We calculate the product U(o) · P (A = a) from each child, and
their sum is attached to A. If the node is a decision node D, each child of
D has an (expected) utility attached. Choose a child with maximal expected
utility, highlight the link, and attach the value to D.

This is done repeatedly until the root is reached. The resulting value for the
root is the expected utility if you adhere to the strategy of always maximizing
the expected utility, and the paths from root to leaves following highlighted
links when possible represent an optimal strategy for the decision problem.

Example 9.4 (The Car Start Problem, continued).
Figure 9.18 illustrates the calculations for solving the troubleshooting

problem.



300 9 Graphical Languages for Specification of Decision Problems

T

1
6
.9

6
ok

1
2
.9
6

14.5
RS

SP

16.2

25.5

ok

9
.6
9

¬ok
6
.5
1

10.5
RS

¬ok
4 14.5

RS

IS

20

27.5
ok

13
.7

5

¬ok
6.25

12.5
RS

SP

16
.2

7

26
ok

7.
8

¬ok
8.47

11

R
S

IS

1
1
.1

24

ok

3
.3
6

¬ok
7
.7
4

9
RS

T

1
2
.1

ok

7.
46

10.5
RS

¬ok
4.64

10.5
RS

IS

16

23.5
ok

11
.7

5

¬ok
4.25

8.5
RS

15

RS

IS

1
5
.
4
3

28
ok

2.
8

¬ok
12.63

13

R
S

T

14
.0

3

¬ok

1.
38

12.5
RS

ok
12.66

12.5
RS

SP

14.22

23.5
ok

8.
93

¬ok
5.29

8.5
RS

SP

1
4 24

ok

8
¬ok

6

9
RS

Fig. 9.18. Results when solving the decision tree from Figure 9.11. The boldfaced
links indicate the optimal strategy.
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As can be seen from Figure 9.18, the maximum expected utility is 16.96.
A strategy close to the optimal one (in terms of expected utility) is to start
performing SP and if unsuccessful to follow with T .

More formally, if we use N(X = x) to denote the node following X by
the link labeled x, then the “average-out and fold-back” algorithm can be
specified recursively as follows.

Algorithm 9.1 [Expected-Utility (EU)] Let X be a node in a decision
tree T . To calculate an optimal strategy and the maximum expected utility for
the subtree rooted at X, do:

1. If X is a utility node, then return U(X).
2. If X is a chance node, then return

EU(X) =
∑

x∈sp(X)

P (X = x | past(X)) EU(N(X = x)).

3. If X is a decision node, then return

EU(X) = max
x∈sp(X)

EU(N(X = x)),

and mark the arc labeled:

x′ = arg max
x∈sp(X)

EU(N(X = x)).


�

By unfolding the calculations in the algorithm, we see that the expected
utility of an optimal strategy Δ is the sum of the utilities of the possible
outcomes o (the leaves in the decision tree) weighted by the probability of the
path down to o under the strategy Δ:

EU(Δ) =
∑

o

U(o)P (o |Δ).

The probability P (o |Δ) is the product of the probabilities attached to the
arcs on the path from the root to o, where arcs emanating from decision nodes
contribute 1 if they are part of Δ and 0 otherwise. For example, the strategy
in Figure 9.18 is first to perform the test T, and if it says ok then follow with
SP and possibly RS. If T says ¬ok, then follow with IS and possibly RS. The
strategy has four possible outcomes, and the expected utility is

EU(Δ) = 25.5 · P (T = ok,SP = ok |Δ) + 10.5 · P (T = ok,SP = ¬ok |Δ)+

12.5 · P (T = ¬ok, IS = ¬ok |Δ) + 27.5 · P (T = ¬ok, IS = ok |Δ)

= 25.5 · 0.8 · 0.38 + 10.5 · 0.8 · 0.62 + 12.5 · 0.2 · 0.5 + 27.5 · 0.2 · 0.5

= 16.96.
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In general, this procedure can be used for calculating the expected utility
of any strategy; hence the identification of an optimal strategy could also be
formulated as

Δ = argmax
Δ′

EU(Δ′).

This approach, however, clearly has a complexity problem, since we should
explore all possible strategies. The reason that this problem is not as apparent
in the algorithm above is that it exploits a general principle known as dynamic
programming. The idea is that the contribution from, say, the subtree rooted
at T = ¬ok is independent of the subtree rooted at T = ok; hence a strategy
that is optimal for the subtree at T = ¬ok will be part of an optimal strategy
for the full decision tree.

9.4 Influence Diagrams

Decision trees are very easy to use, but they have a serious drawback: the
number of decisions and observations need not be large before it becomes
an inhuman task to specify the problem. We therefore look for other model-
ing frameworks that in a much more compact way can be used to represent
decision problems with several decisions and observations.

In this section we present the influence diagram framework. It is particu-
larly well suited for so-called symmetric decision problems.

In the decision tree framework, we used two models for describing a deci-
sion problem: a Bayesian network for calculating probabilities and a decision
tree for representing the sequence of decisions and observations. In the influ-
ence diagram framework the approach is different: the Bayesian network is
extended with syntactic features that will allow it to encode the probability
model as well as the structure of the decision problem.

9.4.1 Extended Poker Model

In the poker problem described in Section 3.2.3, the final decision is whether
to call or fold. When taking this decision I have information about my own
hand (MH) as well as the number of cards my opponent has discarded in the
first and in the second round of changing cards. However, before I come that
far I would also have had to decide on my first change of cards (MFC) and my
second change of cards (MSC). In order to make these two decisions explicit
in the representation, you can extend the model in Figure 9.3 with MFC and
MSC as well as two variables representing my initial hand (MH0) and my
hand after the first change of cards (MH1). The resulting model is shown in
Figure 9.19.

Looking at Figure 9.19 we see that even though all relevant variables are
included in the model, it does not convey the order in which the decisions
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OH0 OH1 OH2
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MH2MH0 MH1

MFC MSC

U

D

Fig. 9.19. The poker model in Figure 9.3 extended with variables for my initial
hand (MH0), my first change of cards (MFC), my second hand (MH1), and my
second change of cards (MSC).

are taken; nor does it specify the variables that are observed before a par-
ticular decision: before deciding on the first decision MFC I observe MH0;
then I observe my opponent’s first change of cards OFC as well as my second
hand MH1 before I decide on MSC; and finally, I observe both MH2 and my
opponent’s second change of cards OSC prior to deciding on D.

An immediate way to encode this information directly in the model is to
extend the model with so-called information arcs. An information arc is a
directed arc X → D going into a decision node D from either a chance node
or another decision X . Semantically it specifies that X is either observed (if
it is a chance node) or decided on (if it is a decision node) before we decide
on D. By extending the model in Figure 9.19 with information arcs we get
the model in Figure 9.20, where we can see, for example, that when deciding
on MSC we know the state of OFC, MH0, MFC, and MH1.

Now assume that we adopt the no-forgetting assumption from the decision
tree framework, i.e., the decision maker remembers all previous observations
and decisions. Given this assumption, we see that the model in Figure 9.20
contains redundant information arcs. For example, the arc MFC→ MSC indi-
cates that we decide on MFC before deciding on MSC, and the two arcs from
MH0 into MFC and MSC specify that the state of MH0 is known when we
decide on both MFC and MSC. However, under the no-forgetting assumption
the link from MH0 to MSC is redundant and it can therefore be removed. Sim-
ilarly, MFC has an impact on MH1, which is observed before MSC. Therefore,
MFC must precede MSC, and the link from MFC to MSC can be removed.
By iteratively removing all redundant information arcs we obtain the model
in Figure 9.21.

A model such as the one shown in Figure 9.21 is also called an influence
diagram, and it encodes information about the probability model as well as the
relevant information about the structure of the decision problem: the directed
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Fig. 9.20. The poker model in Figure 9.19 extended with information arcs into the
decision variables.

OH0 OH1 OH2
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BHMH2MH0 MH1
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Fig. 9.21. The poker model in Figure 9.19, where the redundant information arcs
have been removed.

path going through all the decision variables specifies the sequence in which
the decisions are made, and the chance variables appearing as parents of a
decision variable are the set of chance variables observed immediately before
that decision. For example, since MH2 and OSC are parents of D, they are
observed immediately before D but after the decisions MFC and MSC. Note
that we do not specify the sequence in which MH2 and OSC are revealed, but
their ordering will not affect the solution of the influence diagram (see also
Section 9.3.3 and Section 10.1). In summary, the sequence of observations and
decisions can be described as follows:

{MH0} ≺ MFC ≺ {MH1,OFC} ≺ MSC ≺ {MH2,OSC} ≺ D

≺ {OH0,OH1,OH2,BH}.

For the last set of variables it should be noted that whether a variable will
eventually be observed depends on the semantics of that variable and cannot
be deduced from the syntax of the influence diagram. Finally, we also see that
due to the no-forgetting assumption we can read that at the time of deciding
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on D, I will know the states of the parents MH2 and OSC, and by assuming
that I do not forget my past, I will also know the states of MH0, MFC, MH1,
OFC, and MSC.

9.4.2 Definition of Influence Diagrams

In the previous section we exemplified the influence diagram framework as
an alternative to the decision tree framework. Historically, influence diagrams
were invented as a compact representation of decision trees for symmetric
decision problems (see Section 9.5). Now they are seen more as a decision tool
extending Bayesian networks, and below we formally introduce the influence
diagram framework in this way.

Syntax

An influence diagram consists of a directed acyclic graph over chance nodes,
decision nodes, and utility nodes with the following structural properties:

• there is a directed path comprising all decision nodes;
• the utility nodes have no children;
• the decision nodes and the chance nodes have a finite set of states;
• the utility nodes have no states.

An influence diagram is realized when the following quantities have been spec-
ified:

• a conditional probability table P (A | pa(A)) is attached to each chance
node A;

• a real-valued function over pa(U) is attached to each utility node U .

Unless the context requires a distinction we let the term “influence dia-
gram” include a specification of probabilities and utilities.

Figure 9.22 shows an example of an influence diagram (the states of the
variables are not specified).

Semantics

Links into a decision node yield no quantitative requirements. They are called
information links, and they indicate that the states of the parents are known
prior to taking the decision. On the other hand, links into chance nodes or
utility nodes represent functional relations.

The structural requirement that there be a path comprising all decision
nodes ensures that the influence diagram defines a temporal sequence of de-
cisions. This yields a partitioning of the chance variables into disjoint subsets
according to the time of observation. The set I0 is the set of variables observed
before any decision is taken. The set I1 is the set of variables observed after
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Fig. 9.22. An example of an influence diagram.

the first decision D1 is taken but before the second decision D2, and the set
Ii is the set of chance variables observed after decision Di but before decision
Di+1. If there are n decisions, In is the set of variables that are observed after
Dn or not at all:

I0 ≺ D1 ≺ I1 ≺ . . . ≺ In−1 ≺ Dn ≺ In.

For example, in Figure 9.22 we have I0 = {B}, I1 = {E, F}, I2 is empty,
I3 = {G}, and I4 = {A, C, D, H, I, J, K, L}. The ordering≺ therefore specifies
a partial temporal ordering over the variables in the influence diagram; the
ordering is partial since we do not have an ordering over the variables in each
of the sets Ii.

There is a hidden assumption behind the semantics of influence diagrams,
namely no-forgetting: the decision maker remembers the past observations and
decisions. Thus, at Di we know the state of the variables appearing before Di

under ≺.
In some decision problems, two decisions may be independent in the sense

that they can be taken in any order without changing the expected utilities.
In Figure 9.22, the two decisions D2 and D3 are independent. Therefore, the
link from D2 to D3 puts an unnecessary restriction on the decision maker. It
could be removed and the representation would still be meaningful, although
the first structural requirement would be violated. Unfortunately, it is not
always easy to characterize situations in which decisions are independent, and
we will keep the first structural requirement, which ensures a well-specified
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decision problem. We shall, however, return to this issue in Section 9.5.2 and
Section 11.2.

If there is more than one utility node, then the entire utility can be either
the sum or the product of the individual utilities. Due to the intuitive appeal,
local utilities are usually treated as components in a sum. For instance, in
the mildew example (Section 9.1.2) we have two local utility functions: C,
which represents the cost of the various treatments, and U, which represents
the utility of the harvest for each state of the crops. The total utility is the
sum of C and U, and if we assume that both C and U are the actual costs
and payoffs, then the sum simply encodes the overall monetary value of the
different scenarios as described by the parents of C and U. Should it happen
that the total utility is the product rather than the sum of the local utilities,
then taking the logarithm of the utilities will transform the problem into an
influence diagram in which the total utility is the sum of the transformed
utilities.

Solving an Influence Diagram

An influence diagram provides a description of a decision problem and should
subsequently be used to aid the decision maker in the decision process. This
amounts to prescribing an action for each decision variable conditioned on
the previous observations and decisions. A way of doing the prescription is
to transform the influence diagram into a decision tree and then apply the
“average-out and fold-back” algorithm. The influence diagram’s decision tree
representation has the property that each node representing a decision D has
the same variables in the past. Let past(D) denote the variables in D’s past.
Thus, if in the decision tree we have an action for each such decision node,
these actions will collectively specify an action for each possible configuration
past(D). Such a specification is called a policy (denoted by δ) for D:

δD : sp(past(D)) → sp(D) .

If we have a policy for each decision variable in an influence diagram, we call
it a strategy. For example, a strategy for the influence diagram in Figure 9.21
will consist of three policies:

δMFC : sp(MH0) → sp(MFC);

δMSC : sp(MH0,MFC,MH1,OFC)→ sp(MSC);

δD : sp(MH0,MFC,MH1,OFC,MH2,OSC)→ sp(D) .

If the strategy encodes the solution of the “average-out and fold-back” algo-
rithm (i.e., the strategy maximizes the expected utility), then the strategy is
called an optimal strategy and each of its policies is called an optimal policy.

Definition 9.1. A policy for decision Di is a mapping δi that for any con-
figuration of the past of Di yields a decision for Di. That is,
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δi(I0, D1, . . . , Di−1, Ii−1) ∈ sp(Di) .

A strategy for an influence diagram is a set of policies, one for each deci-
sion. A solution to an influence diagram is a strategy maximizing the expected
utility.

By transforming the influence diagram into a decision tree in order to solve
it, the complexity problem inherent in the decision tree framework is still
present in the solution phase. However, solution methods working directly on
the influence diagram have also been developed (see Chapter 10).

9.4.3 Repetitive Decision Problems

Fishing in the North Sea

Every year, the European Union undertakes very delicate political and bio-
logical negotiations to determine a volume of fishing for most kinds of fish in
the North Sea. Simplified, you can say that each year the EU has a test for
the volume of fish, and based on this test the volume of allowable catch is
decided. This decision has an impact on the volume for next year (note that
the decision on volume does not mean that only this volume is actually caught
– quotas have a status similar to speed limits on highways). Figure 9.23 gives
an influence diagram for a five-year strategy, where each variable is given ten
states.1

FV1 FV2 FV4

U2 U4 U5

V2V1 V3 V4 V5

T2T1 T3 FV3 T4 T5 FV5

U1 U3

Fig. 9.23. An influence diagram for a five-year strategy for fishing volumes of
herring in the North Sea.

The fishing model above has a complexity problem. For the fifth decision,
all the past is relevant. Because there are nine ten-state variables in the past,
the domain of the policy function for FV5 has 109 elements.

1 The model in Figure 9.23 is an example of a partially observable Markov decision
process (POMDP), which we shall consider further in Section 9.6.2.
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This does not mean that whenever the past is intractably large, the com-
puter must give up. It fortunately often happens that not all information from
the past is relevant (see Section 11.2).

Sometimes solving even fairly small influence diagrams represents an in-
tractable task, and then you must use various approximation methods. One
method is blocking. The principle in information blocking is to introduce vari-
ables that when observed, d-separate most of the past from the present deci-
sion.

Fishing Again

The problem with the model in Figure 9.23 is that all information from the
past has an impact on how we will estimate the current volume of fish. We
can make an approximation by allowing only this year’s test and fishing vol-
ume to be used for estimating next year’s volume of fish. In the model, we
delete the arrows Vi → Vi+1 and instead introduce the arrows Ti → Vi+1 (see
Figure 9.24).

U3

FV2 FV4

U2 U4 U5

V2V1 V3 V4 V5

FV1 T2T1 T3 FV3 T4 T5 FV5

U1

Fig. 9.24. The influence diagram from Figure 9.23 approximated through informa-
tion blocking.

To establish the potential P (Vi+1 |Ti, FVi), we can use the model in Fig-
ure 9.23.

P (V2, T1 |FV1) =
∑
V1

P (V1)P (T1 |V1)P (V2 |V1, FV1),

P (T1 |FV1) =
∑
V2

P (V2, T1 |FV1),

P (V2 |T1, FV1) =
P (V2, T1 |FV1)

P (T1 |FV1)
.

This last potential is used for all time slices.
The trick just shown is an example of a general information-blocking tech-

nique whereby you abstract the past into a history variable and allow only
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temporal links from observed variables and from the history variable (see
Figure 9.25 for another example).

A1 A2 An

B1 B2 Bn

C1 C2 Cn

D1 D2 Dn

E1 E2 EnU1 U2 Un

A1 A2 An

B1 B2 Bn

C1 C2 Cn

D1 D2 Dn

E1 E2 En

H2 H3 Hn

U1 U2 Un

Fig. 9.25. In the top figure we have to take the entire past into account when de-
ciding on Dn. In the lower figure, history variables have been introduced to perform
information blocking.

9.5 Asymmetric Decision Problems

From the specification of the syntax for the influence diagram we see that the
sequence in which the nodes are observed and decided on is the same in all
possible scenarios (up to a permutation of the chance nodes in the sets Ii).
For instance, in the poker example we always start by observing MH0, and
regardless of the outcome we then decide on MFC, etc. These types of decision
problems are also called symmetric decision problems, because they can be
represented by a decision tree that is completely symmetric (see Figure 9.26
for an example). If a decision problem is not symmetric we call it asymmetric.

Definition 9.2. A decision problem is said to be symmetric if:

• in all of its decision tree representations, the number of scenarios is the
same as the cardinality of the Cartesian product of the state spaces of all
chance and decision variables, and

• in at least one decision tree representation, the sequence of chance and
decision variables is the same in all scenarios.
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In particular, the first requirement ensures that the possible outcomes and
decision options for a variable do not depend on previous observations and
decisions. Moreover, the reason why the definition deals with several decision
tree representations for a decision problem is that two consecutive observa-
tions (without intermediate decisions) or two consecutive decisions can be
swapped without affecting the solution to the decision problem. For example,
in Figure 9.26 the cardinality of the product of the state spaces of all variables
is 2 ·2 ·2 ·2 = 16. This is also the number of scenarios in the decision tree, and
since the decision tree also adheres to the second condition in the definition
above, the underlying decision problem is symmetric.
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Fig. 9.26. A symmetric decision tree and the associated probability model.

The influence diagram corresponding to the decision problem shown in
Figure 9.26 is given in Figure 9.27. From this example we see that the influ-
ence diagram provides a much more compact representation of the decision
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problem than does the decision tree. However, this holds only for symmetric
problems: in the (asymmetric) decision tree shown in Figures 9.8 and 9.9 we
observe only the result of the first test Test1 if we decide to actually perform
the test (D1 = T1 or D2 = T1). That is, the sequence in which we make
observations and decisions may vary in the different scenarios, but the influ-
ence diagram does not provide an immediate mechanism for representing such
types of conditional orderings.

B

D1 D2

A C U

Fig. 9.27. An influence diagram representation corresponding to the decision tree
from Figure 9.26.

The use of test decisions (like the ones in Figure 9.8 and 9.9 and in Exam-
ple 9.1) is a frequent causes of asymmetry in decision problems: if you decide
to perform a test, you will eventually observe the test result, but if you decide
not to perform the test then a result will never be observed. Influence dia-
grams do not contain a special representation of test decisions. However, there
is a general way of representing test decisions as ordinary decision variables.
Assume, in the crop example in Figure 9.1, that I am in the situation that I
can test the severity of the mildew attack before I decide on whether to spray.
The node Attack represents the severity of the attack before spraying, so to
model the impact of spraying we introduce a new chance node, A-Attack, rep-
resenting the attack after the spray decision P. The decision is connected to
the model by inserting a link from P to A-Attack. To model the test decision
we insert a decision node T. This decision is basically a decision on whether
the state of the chance node Attack should be revealed before deciding on
P (we assume the test to be accurate). One way to model this situation is
to introduce an additional node Attack′ with the same states as Attack and
with the additional state, unobserved, for handling the situation in which we
decide not to perform the test. Next we add an arc from T and Attack to
Attack′ and an informational arc from Attack′ to P. The final model is shown
in Figure 9.28.
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PT

Resistance Attack

Attack′

A-Attack Crop

Fig. 9.28. An influence diagram representation (without utility nodes) of the crop
problem: should you investigate the severity of the mildew attack before deciding
on spraying against mildew?

The table for Attack′ given T and Attack is specified so that the state is
unobserved if T is no, and if T is yes, then Attack′ is in the same state as
Attack (see Table 9.3 and 9.4).

Attack
y n

T
y (1, 0, 0) (0, 1, 0)
n (0, 0, 1) (0, 0, 1)

Table 9.3. The probability table P (Attack′ = (y,n, unobserved) |Attack,T) associ-
ated with Attack′ in Figure 9.28.

This construction is general, and it is illustrated in Figure 9.29 and Ta-
ble 9.4. In this way, methods developed for computing decision strategies can
also be used for decision scenarios containing test decisions.

T

A

A′ D

Fig. 9.29. A general way to model a decision on whether to observe A before
deciding on D.

The construction can be made a bit simpler by extending the node A with
the extra state unobserved and thereby avoiding the extra node A′. However,
usually it is preferable not to change the nodes of the initial (causal) model.
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A
a1 . . . an

T
y (1, . . . , 0, 0) . . . (0, . . . , 1, 0)
n (0, . . . , 0, 1) . . . (0, . . . , 0, 1)

Table 9.4. The probability table P (A′ = (a1, . . . , an, unobserved) |A, T ) associated
with A′ in Figure 9.29.

As the modeling technique illustrates, influence diagrams can be used to
model decision problems even when the decision problem is not completely
symmetric. However, this comes at a cost since we need to introduce artificial
states (e.g. the state unobserved) and in some situations it may also be nec-
essary to introduce artificial nodes. In the extreme case in which the decision
problem does not contain any symmetric substructures, the decision tree will
provide a more compact representation than the influence diagram.

9.5.1 Different Sources of Asymmetry

As we have discussed above, influence diagrams are not really suitable for
modeling asymmetric decision problems. However, decision trees are not re-
ally an alternative either when there are many observations and decisions.
Therefore, much research has been directed at finding specification languages
that much more compactly can represent the information needed for describ-
ing the decision problem. The following two examples shed additional light on
some of the problems we face when constructing such languages.

Example 9.5 (The Diagnosis Problem). Consider a two-test problem like the
one in Example 9.1, Page 290; after an initial observation I you have two
tests, TA and TB, and a decision Pour?. The decision on pouring is the last
decision, but the two tests can be performed in any order.

To represent this problem by an influence diagram we have to represent the
unspecified ordering of the tests as a linear ordering of decisions. Introduce two
decision nodes, Test1 and Test2, with options, tA, tB , and no-test; introduce
two chance nodes, O1 and O2, as children of Inf? with states posA, negB, posA,
negB, and no-test. To specify that two consecutive tests of the same type will
give the same results, you introduce a link from O1 to O2 (See Figure 9.30).

Example 9.6 (The Dating Problem). Joe needs to decide whether he should
ask (Ask) Emily for a date for Friday evening. He is not sure whether Emily
likes him (LikesMe). If he decides not to ask Emily or if he decides to ask and
she turns him down, he will then decide whether to go to a nightclub or watch
a movie on TV at home (NClub?). Before making this decision, he will consult
the TV guide to see whether there are any movies he would like to see (TV). If
he decides to go to a nightclub, he will have to pay a cover charge and pay for
drinks. His overall nightclub experience (NCExp) will depend on whether he
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Test1 Test2

Pour?I Inf

O1 O2

C1 C2

CB

U

Fig. 9.30. An influence diagram representation of two tests and a decision on
pouring. The Test nodes have three options, tA, tB , and no-test. The O nodes have
five states, posA, posB ,negA,negB ,no-test. The arc O1 → O2 indicates that repeating
a test will give identical results.

meets his friends (MeetFr), the quality of the live music, etc (Club). If Emily
accepts (Accept), then he will ask her whether she wishes to go to a restaurant
or to a movie (ToDo); Joe cannot afford to do both. If Emily decides on a
movie, Joe will have to decide (Movie) whether to see an action movie he
likes or a romantic movie that he does not really care for, but which may
put Emily in the right mood (mMood) to enhance his post movie experience
with Emily (mExp). If Emily decides on a restaurant, he will have to decide
(Rest) whether to select a cheap restaurant or an expensive restaurant. He
knows that his choice will have an impact on his wallet and on Emily’s mood
(rMood), which in turn will affect his post restaurant experience with Emily
(rExp).

From the examples above we can identify three types of asymmetry:

Functional asymmetry: The possible outcomes or decision options of a
variable may vary depending on the past. We saw this in the reactor
problem, where the options of the build decision are dependent on the
result of a test.

Structural asymmetry: The very occurrence of an observation or a deci-
sion depends on the past. In the Dating Problem, for example, the restau-
rant options exist only if Emily accepts the invitation.

Order asymmetry: The ordering of the decisions and observations is not
settled at the time the model is specified. For instance, in the Diagnosis
Problem the ordering of the two tests is unspecified.



316 9 Graphical Languages for Specification of Decision Problems

9.5.2 Unconstrained Influence Diagrams

In this section we shall look at a particular class of decision problems in which
only order asymmetry is present.

Example

Consider again the two-test problem from Example 9.1 (Page 290) and its
influence diagram representation shown in Figure 9.30. A much more direct
specification would be to use decision nodes representing each test explicitly.
If we knew, for example, that TestA comes before TestB, it can done with an
influence diagram (see Figure 9.31(a)). However, in practice this is rarely the
case.

TestA? TestB?

Pour?Inf

I OA OB

Cα Cβ

U

(a)

TestA? TestB?

Pour?Inf

I OA OB

Cα Cβ

U

(b)

Fig. 9.31. (a) An ID representing the scenario in which you first decide on TestA?
and next on TestB?. (b) An attempt to remove the temporal constraint on the test
decisions.

To relax the temporal constraint on the test decisions, you may remove
the link from OA to TestB? (Figure 9.31(b)). However, now there is no spec-
ification that the result of the first test is known when deciding on the next
test. To specify this we introduce a new type of chance variables, observables.
They are drawn as double circles, and they are observed when all preceding
decision nodes have been decided (Figure 9.32). In that case we say that the
observable is free and that the last preceding decision released the observable.
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TestA? TestB?

Pour?Inf

I OA OB

Cα Cβ

U

Fig. 9.32. A graphical representation of two tests and a decision of pouring. Here
I is observed prior to any decision, OA is observed when TestA? has been decided,
and OB is observed when TestB? has been decided.

Looking at Figure 9.32 it may seem that we have not specified that OA

is actually observed immediately after deciding on TestA?. However, since
the expected utility cannot increase by delaying an observation free of cost,
we can safely introduce the rule that an observable chance node is observed
immediately after it has been released. This means that the decision problem
has been uniquely specified, and the rest can be left to a computer. The spec-
ification in Figure 9.32 yields that solving the decision problem boils down
to solving two influence diagrams (one for each order of the test decisions)
and choosing the order and strategy from the one giving the highest expected
utility. This also means that while the influence diagram encoded the possi-
ble sequences of observations and decisions at the graphical level, this new
framework has postponed it to the solution phase.

Next, consider a more complex situation. A patient may suffer from two
different diseases. After an initial observation OI , there are two possible tests,
TA and TB, and each disease has a specific treatment, Tr1 and Tr2. After each
treatment, the new state of the disease is observed (cost free). In Figure 9.33
the problem is specified graphically.

Even for a simple problem like the one above it is extremely cumbersome to
draw a decision tree, and it is rather tricky to squeeze the scenario into the ID
straightjacket; the problem is that all possible sequences must be represented
explicitly.
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TA

TB

OA

OB

OT

D

Tr1

Tr2

D2

D1

D′

O1

O2

U

Fig. 9.33. A graphical representation of a situation with two tests and two treat-
ments.

Definition of UIDs

As the examples above illustrate, we can meaningfully relax the linear tem-
poral order constraint for influence diagrams without getting an ambiguous
representation.

Definition 9.3. An unconstrained influence diagram (UID) is an acyclic di-
rected graph over decision variables (rectangular shaped), chance variables
(circular shaped), and utility variables (diamond shaped). Utility variables
have no children. There are two types of chance variables, observables (doubly
circled) and nonobservables (singly circled). A nonobservable cannot have a
decision as a child.

Let U be a UID. The set of decision variables is denoted by DU , and the
set of observables is denoted by OU . The partial temporal order induced by U
is denoted by ≺U . When obvious from the context we avoid the subscript.

The quantitative specification required is similar to the specification for
influence diagrams: conditional probabilities and utility functions. We add the
convention that each decision variable D has a cost. If this cost depends only
on D, it is not represented graphically. We say that a UID is realized when
the structure has been extended with the required quantitative specifications.

The semantics of a UID are similar to the semantics of an ID. A link into a
decision variable represents temporal precedence; a link into a chance variable
represents causal influence; a link into a utility variable represents functional
dependence. We assume no-forgetting: at each point of the decision process
the decision maker knows all previous decisions and observations.
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An observable can be observed when all its antecedent decision variables
have been decided on. In that case we say that the observable is free, and we
release an observable when the last decision in its ancestral set is taken.

The structural specification of a UID yields a partial temporal ordering of
the decisions and observations. An extension to a linear ordering is called an
admissible order . Any admissible order yields an influence diagram.

S-DAGs and Strategies

As for decision trees and influence diagrams, the graphical language and its
suitability as a language supporting human modeling are the most important
properties. Having constructed an adequate model, you can hand it over to a
computer, which may then unfold the model to a decision tree and compute
an optimal strategy.

In dealing with UIDs, the concept of strategy is more complex than in the
case of IDs (see Section 9.4.2). In principle we look for a set of rules telling
us what to do given the current information, where “what to do” is to choose
the next action as well as to choose a decision option if the next action is a
decision. That is, a strategy consists of a function prescribing the next step
and a set of functions for choosing decisions. The structure of the step function
can be represented in a graphical structure, called an S-DAG (strategy DAG).

Definition 9.4. Let U be a UID. An S-DAG is a directed acyclic graph G.
The nodes are labeled with variables from DU ∪ OU such that each maximal
directed path in G represents an admissible ordering of DU ∪ OU . For nota-
tional convenience we add two unary nodes Source, and Sink. Source is the
only node with no parents and Sink is the only node with no children.

Note that an S-DAG need not contain all admissible orderings. Figure 9.34
gives an example of an S-DAG for the two-tests-two-treatments problem.

Source OI

TA

TA

TA

OA

OA

OATr1

Tr1

Tr1

Tr1

D1

D1

D1

D1Tr2

Tr2

Tr2

D2

D2

D2TB

TB

TB

OB

OB

OB

Sink

Fig. 9.34. An example of an S-DAG for the UID in Figure 9.33.

For a node N in an S-DAG G, the history of N is defined as the union of
the labels of N and its ancestors, denoted by hstG(N). When the S-DAG is
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obvious from the context we drop the subscript. For example, the OB-node at
the bottom path in Figure 9.34 has the history {OI , TB, OB} and the children
{TA, T r1}; the set of labels of N ’s children is denoted by ch(N). A step policy
for node N is now defined as a function

σ : sp(hst(N)) → ch(N).

Recall that sp(hst(N)) denotes all possible configurations of the variables in
hst(N).

A step strategy for a UID U is a pair (G,S), where G is an S-DAG for U
and S is a set of step policies, one for each node in G (except for Sink); when
a node has only one child, the step policy is trivial. For a decision node N a
decision policy is a function

δ : sp(past(N)) → sp(N) .

A strategy for U is a step strategy together with a decision policy for each
decision node.

Example

Consider the UID in Figure 9.35. A strategy may have the structure illustrated
by the S-DAG and the simple policy rules in Figure 9.36. Note that the policies
combine step policies and decision policies.

D1 A

B

U1

D2

D3

C

E

F

U2

D4

Fig. 9.35. An example UID.

The strategy represented in Figure 9.36 can be unfolded to the strategy
tree in Figure 9.37. The expected utility from following the strategy can be
calculated in the same way as for decision trees, where the UID is used for
calculating the probabilities.
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∅ : choose option d1
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D1, B : choose

(
d3
2 if B = b1,

d2
1 if B = b2.

D1, B, D3, E : choose

(
d2
2 if E = e1,

d2
1 if E = e2.

D1, B, D2, C : choose

(
d3
1 if C = c1,

d3
2 if C = c2.

Fig. 9.36. The structure of a strategy for the UID in Figure 9.35.
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Fig. 9.37. The strategy from Figure 9.36 unfolded to a strategy tree.
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Definition 9.5. Let Δ be a strategy for the UID U . The expected utility of
Δ is the expected utility of the corresponding unfolded strategy tree for Δ with
respect to U . A solution to U is a strategy of maximal expected utility. Such
a strategy is called an optimal strategy. The S-DAG for an optimal strategy
is called optimal, and the step policies as well as the decision policies are also
called optimal.

Rather than trying out all possible strategy trees in looking for an op-
timal strategy, there are efficient solution algorithms that exploit dynamic
programming and work on a (single) S-DAG representation of the UID (see
Section 10.4).

9.5.3 Sequential Influence Diagrams

There is no widely recognized graphical language that compactly can cope
with all types of asymmetry. Here we shall indicate only one attempt, called
sequential influence diagrams (SIDs). The SID framework has its source in a
(causal) world model like the one in Figure 9.15. To extend this world model
to also represent the structure of the decision problem we need to specify the
order of the decisions and observations as well as any asymmetry constraints.
There are various ways of doing so. In the case of influence diagrams, the
order is specified in the same graph through information links, but you may
also have a separate specification (as in decision trees).

The SID framework takes the former approach by extending the world
model with features specifying order and asymmetry constraints. This is done
in Figure 9.38. The world model is extended with dashed arrows (structural
links) indicating informational precedence. A label on a link is a guard re-
flecting asymmetry constraints. A guard consists of two parts. The first part
takes care of structural asymmetry, and the second part describes functional
asymmetry. That is, the first part describes the condition for following the
link. If the condition is satisfied we say that the link is open. For example, if
we decide to perform the test T = t in Figure 9.38, then the next node will
be R. If there are constraints on the choices at a decision node, then this is
specified in the second part of the guard (this part is empty when there are
no constraints). In Figure 9.38 the choice a in B can be taken only if a test is
not performed or a test is performed and the result is either good or excellent
(i.e., the scenario satisfies (T = nt) ∨ (T = t ∧ (R = e ∨ R = g))).

The specification can be unfolded to a decision tree by iteratively following
the open arcs from a source node (a node with no incoming structural arcs)
until a node is reached with no open outgoing arcs.

An SID specification of the Dating Problem is shown in Figure 9.39. The
framework partly adopts the UID method of representing order asymmetry
by introducing clusters of nodes (encapsulated in a dashed ellipse). In terms
of information precedence, we can think of a cluster C of nodes as a single
node in the sense that a structural arc going into C from a node X indicates
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Fig. 9.38. A graphical representation of the Reactor Problem; the ∗ denotes that
the choice B = a is allowed only in scenarios that satisfy (T = nt) ∨ (T = t ∧ (R =
e ∨ R = g)).
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Fig. 9.39. An SID representation of the Dating Problem.
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that when X has been observed or decided on, the next node is a node in
C. A structural arc from C to a node Y indicates that Y will be the next
node in the ordering on leaving C. Figure 9.39 illustrates the use of clusters
for representing the partial temporal ordering over the chance nodes Club and
MeetFr. From the model we see that these two nodes will be observed only
after a decision on NClub? but before NCExp is observed.

A sequential influence diagram can be solved by unfolding it into a deci-
sion tree. There are, however, more efficient ways, which identify symmetric
subtrees and solve them as influence diagrams, but that is outside the scope
of this book.

9.6 Decision Problems with Unbounded Time Horizons

Consider a problem of robot navigation in which a robot is placed in some
environment and its task is to find a path from its current position to a certain
goal position. Each time the robot moves from one position to another it incurs
a loss (fuel expenditure), but when it reaches the goal state it receives a reward
and the navigation task ends. The aim is now to find a sequence of moves that
will maximize the robot’s expected reward (and minimize its expected loss):

The problem above is an example of a general type of problem called
planning under uncertainty:

• at each step we are faced with the same type of decision,
• at each step we are given a certain reward (possibly negative) determined

by the chosen decision and the state of the world,
• the outcome of a decision may be uncertain,
• the time horizon of the decision problem is unbounded.

Examples of other problems of this type include factory process control and
transportation logistics.

In Section 9.4.3 we discussed a related type of decision problem, namely
repetitive decision problems with a bounded time horizon. In what follows we
extend this discussion to unbounded time horizons.

9.6.1 Markov Decision Processes

In the robot navigation problem above, the robot’s process can roughly be
described as an unbounded loop over the following events:

1. observe the state of the world (for example the robot’s position in the
world),

2. decide on the next action and collect the reward (possibly negative),
3. perform the action.
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Using the influence diagram modeling language, we can represent the qual-
itative part of this problem by the structure in Figure 9.40. The node Si rep-
resents the state of the world at step i; Di is the ith decision of the robot;
and Ri is the reward received when action Di is performed in state Si. The
dashed arcs indicate that the future time horizon may be unbounded.

S0 Si−1 Si Si+1

D0 Di−1 Di Di+1

R0 Ri−1 Ri Ri+1

Fig. 9.40. A snapshot of a model of a Markov decision process. Si represents the
state at step i; Di represents the ith decision; and Ri represents the reward of taking
decision Di in state Si.

In order to specify the quantitative part of the model we need some ad-
ditional information about the problem domain. Specifically, we shall assume
that the robot is placed in the 3× 3 grid environment shown in Figure 9.41.
The robot can move north, east, south, and west, and for each move it incurs a
loss of 0.1. If the robot decides to move, say, north, then this move will succeed
with probability 0.7, and with probability 0.3 the robot will “slip” and move
in one of the other three directions with equal probability; if the robot moves
into a wall it will remain at its current position. At any point in time the robot
can observe its exact position, and the aim is now to find a sequence of moves
that will take it to the goal state at position (3, 1) in the upper right corner.
At the goal state it will receive a reward of 10, and from this state it cannot
exit. Such a state is called a terminal state. At positions (2, 2) and (3, 2) two
obstacles are placed that will incur a loss of 5 and 1, respectively. Although
the environment is bounded, the decision problem is in principle unbounded.
The robot may, for example, cycle between two positions an indefinite number
of times before entering the goal state.

Returning to the model in Figure 9.40, we see that the variable Si has
a state for each possible position of the robot (a total of nine), and based
on the description above, the associated transition function can (for Di =
north) be specified as in Table 9.5; the structure of the transition function is
similar for the other actions. For this particular example, the reward function
is independent of the chosen decision, and R(Si, D) (= R(Si)) specifies a value
for each position.
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Fig. 9.41. A 3 × 3 grid world.

Si

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

Si+1

(1, 1) 0, 8 0, 7 0 0, 1 0 0 0 0 0
(1, 2) 0, 1 0, 1 0, 7 0 0, 1 0 0 0 0
(1, 3) 0 0.1 0.2 0 0 0.1 0 0 0
(2, 1) 0.1 0 0 0.7 0.7 0 0 0 0
(2, 2) 0 0.1 0 0.1 0 0.7 0 0.1 0
(2, 3) 0 0 0.1 0 0.1 0.1 0 0 0.1
(3, 1) 0 0 0 0.1 0 0 1 0.7 0
(3, 2) 0 0 0 0 0.1 0 0 0.1 0.7
(3, 3) 0 0 0 0 0 0.1 0 0.1 0.2

Table 9.5. The transition function P (Si+1 |north, Si) for the robot navigation prob-
lem.

The robot navigation problem is an example of a Markov decision process
(MDP). In general, in a Markov decision process:

• the world is fully observable, i.e., the agent can observe the true state of
the world at any point in time,

• the uncertainty in the system is a result of the consequences of the ac-
tions being nondeterministic (when performing an action we make a state
transition with a certain probability), and

• for each decision we get a reward (which may be negative) that may depend
on the current world state.

More formally:

Definition 9.6 (Markov decision Processes). An MDP consists of an
unbounded set of identical time steps. Each time step i consists of:

1. A finite set of states of the world represented by the chance variable Si.
2. A finite set of actions represented by the decision variable Di.
3. A transition function P (Si+1 = s′ |Si = s, Di = a) specifying the proba-

bility that the next state is s′ when action a is taken in state s.
4. A reward function R(Si = s, Di = a) specifying the reward of taking action

a in state s, for each a ∈ sp(Di) and s ∈ sp(Si).
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5. An initial state s0 ∈ S0.

The transition function and the reward function are the same for all time
steps.

In the definition above, we require that at any given point in time the world
state be represented by a single variable. This means that when specifying
the transition function we need to elicit |sp(S)× sp(S)| probabilities for each
decision. In order to make this elicitation task easier, you may exploit the
internal structure of the world and represent S as a Bayesian network.

Types of Strategies

A policy for a decision variable is in general a function that returns a decision
option for each possible configuration of the variables previously observed and
decided on. In dealing with MDPs, however, the past is irrelevant in deter-
mining the optimal decision. More precisely, from the d-separation properties
of the MDP model in Figure 9.40 we see that the future is independent of the
past given the current state of the world Si (this is also called the Markov
property). Hence, instead of considering the past for decision Di, it is sufficient
to include only Si:

δDi
: sp(Si)→ sp(Di) .

In decision problems with a bounded time horizon we have previously
defined an optimal strategy as a collection of optimal polices, one for each de-
cision. However, in dealing with unbounded time horizons the situation is a bit
different. To illustrate the difference, consider again the model in Figure 9.24
approximating the fishing in the North Sea decision problem (described in
Section 9.4.3). Strictly speaking, according to Definition 9.6, this model is not
an MDP, but by marginalizing out the unobserved variables we obtain the
equivalent MDP structure in Figure 9.42.

In looking for an optimal strategy for this model it is obvious that the
optimal policy for FV1, say, is not necessarily the same as the optimal policy
for FV5 (δFV1(T1) �= δFV5(T5)); even though the tests conducted at year 1 and
year 5 produce the same results, the decisions at these two points in time will
in general be different. For example, at year 1 the optimal policy may set the
allowable catch to a conservative number to ensure that there will be enough
fish in the forthcoming years. On the other hand, at year 5 these concerns are
irrelevant, since the time horizon stops at that year, and the optimal policy
may set the allowable catch to a higher volume. To take another example,
in the robot navigation problem we look for a strategy for arriving at the
goal state from some starting position, say (2, 3). Suppose now that we have
a finite time horizon and require that the robot should reach the goal state
within 4 steps. With this constraint we do not have time to follow the route
left around the center state (2, 2) corresponding to the relative sequence of
positions (west,north,north, east, east). Instead we would have to pass either
(2, 2) or (3, 2), both of which incur a loss.
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T1 T2 T3 T4 T5

FV1 FV2 FV3 FV4 FV5

U1 U2 U3 U4 U5

Fig. 9.42. The approximated model for fishing in the North Sea obtained from the
original model in Figure 9.24 by marginalizing out the unobserved state variables
Vi.

In general, we can say that optimal decisions at the end will be different
from the ones at the beginning. For these situations we say that the optimal
strategy is a nonstationary strategy.

Consider now the case in which we have an unbounded time horizon. At
any time step, the optimal decision can depend only on the current state and
what may happen in the future. If two time steps are in the same state, then
they also have the same possibilities in the future, and therefore the optimal
decision must be the same.

In the fishing in the North Sea example with unbounded time horizon, the
optimal policy for deciding on the allowable catch at year 1 will not be any
different from the policy at year 5. Similarly, in the robot example the optimal
policy at state (2, 3) does not depend on the point in time at which the robot
entered that state. That is, when there is no fixed time horizon there is no
reason to change the optimal policy for a given state at different points in
time. For the robot example, this allows us to represent the optimal policy as
in Figure 9.43.

More formally, an optimal strategy Δ consists of a set of identical policies,
which are functions of only the current state. Such a strategy is called sta-
tionary, since it can be completely described by a single policy. We will not
distinguish between a stationary strategy and a policy, and these terms will
also be used interchangeably.

Optimality in Markov Decision Process

When evaluating a strategy for a decision problem with an unbounded
time horizon, you might be tempted to simply consider the expected utili-
ties/rewards for each time step and sum them up over time. However, if the
process never stops, the sum may not be bounded, and you cannot compare
two strategies with an expected reward of +∞. This is not a problem for the
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Fig. 9.43. A strategy for the robot in the 3 × 3 grid world.

robot example, since it has a terminal state in which the robot will eventually
end up. However, in the fishing example, any catching policy that at each
time step gives a positive reward will have an infinite sum. An immediate
approach for handling this problem could be to specify some fixed horizon k
so that the utility of a state sequence s0, s1, s2, . . . is simply the sum of the
rewards obtained at the first k states. For notational convenience we shall in
this section assume that the reward is independent of the chosen action:

U(s0, s1, s2, . . .) = R(s0) + R(s1) + · · ·+ R(sk).

However, this raises the question of how to choose k, and, more importantly,
it has the effect of postponing unpleasant decisions to after the horizon; in
the extreme case in which k = 0 we care only about the immediate reward.
The bounded fishing model in Figure 9.42 illustrates this point. With a fixed
time horizon, you will be very greedy, in the end not caring about the volume
of fish in later years.

Another approach is to weigh rewards in the immediate future higher than
rewards in the distant future. This can be done by introducing a discounting
factor γ, 0 ≤ γ ≤ 1, so that the utility of a state sequence s0, s1, s2, . . . is the
accumulated discounted reward of each of the states:

U(s0, s1, s2, . . .) = R(s0) + γR(s1) + γ2R(s2) + · · · .

In the extreme case that γ = 0, the agent considers all future rewards as
being insignificant (corresponding to k = 0 above), and if γ = 1 then the
discounted utility corresponds to having additive rewards as in the robot
navigation problem. When γ < 1 the utility of an infinite sequence is always
finite:

U(s0, s1, s2, . . .) =

∞∑
i=0

γiR(si) ≤
∞∑

i=0

γimaxR =
maxR

1− γ
, (9.1)

where maxR is the maximum reward we can achieve in any state. A problem
domain in which the discounted reward model has been applied is economics;
here the discounting factor has been used, for example, to represent inflation or
an interest rate. Discounted rewards have also been used to model unbounded
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decision problems, in which the decision process may terminate at any point
in time with probability (1 − γ). This could, for example, be used to model
that there is a risk of (1 − γ) that the robot will break down after it has
performed a move.

Some decision problems cannot naturally be modeled using discounted
rewards. The robot navigation problem with no terminal state is an example of
such a decision problem: the navigation task is not only to reach the goal state
but also to avoid the obstacles, and if we disregard the potential problem of the
robot breaking down, then there is no real justification for using discounted
rewards (why should it be worse to hit an obstacle now than in the future?).
In this situation, the average reward may be a more appropriate model:

U(s0, s1, s2, . . .) = lim
N→∞

1

N

N−1∑
i=0

R(si) ≤ maxR.

No matter whether we use discounted reward or average reward, we should
take into account that each strategy Δ corresponds to a set of different state
sequences due to the actions being nondeterministic. For example, if the robot
starts at (1, 3), then a performed action sequence (north,north, east, east)
will result in the state sequence [(1, 2), (1, 1), (2, 1), (3, 1)] with probability
0.74 = 0.2401. Thus, we evaluate strategies based on their expected reward.
Let P (Si |Δ, s0) be the probability distribution for Si given that we start in
s0 and follow the strategy Δ. Then∑

Si

R(Si)P (Si |Δ, s0)

is the expected reward at step i, and γi
∑

Si
R(Si)P (Si |Δ, s0) is the dis-

counted expected reward. The expected reward of Δ is defined as

U∗(s, Δ) = lim
N→∞

N∑
i=0

γi

(∑
Si

R(Si)P (Si |Δ, s0)

)
.

A standard notation for U∗(s0, Δ) is also

E

[
∞∑

i=0

γiR(si)

∣∣∣∣∣ Δ, s

]
.

In Section 10.6 we shall return to the actual calculation of these expecta-
tions.

9.6.2 Partially Observable Markov Decision Processes

In many decision problems, the assumption that the environment is fully ob-
servable is not realistic. For example, the sensors used by a robot for position-
ing may be inaccurate, and they will therefore provide only a blurred picture
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of the state of the world. We call such an environment partially observable,
and in the Bayesian framework we can encode this uncertainty with a prob-
ability distribution over the possible world states. For bounded horizons, we
have actually encountered such a decision problem before, namely in the form
of the more exact model for the fishing in the North Sea decision problem
specified in Figure 9.23.

In general, we can model that type of decision problem as a so-called par-
tially observable Markov decision process (POMDP) illustrated in Figure 9.44.
In the POMDP model the node Oi represents the observation at step i, and
the conditional probability distribution attached to this node encodes the
uncertainty associated with the observation; the information arc from Oi to
Di specifies that only Oi is observed immediately before decision Di. More
formally, a POMDP consists of:

1. A set of states and actions as in the MDP framework.
2. A transition function and a reward function as specified for the MDP.
3. A set of possible observations represented by the chance variable Oi at

time step i.
4. An observation function P (Oi |Si, Di−1) that specifies the probability of

the possible observations conditioned on the current state of the world
and the last decision.

Observe that as for the MDP we use a single variable to represent the
observation and the state at the ith time step. However, as for the MDP, we
can consider these variables as being the products of several variables, so that
both the transition function and the observation function can be specified
more compactly using a Bayesian network. To simplify the model, we will
stick to the single-variable representations.

Si−1 Si Si+1

Di−1 Di Di+1Oi−1 Oi Oi+1

Ri−1 Ri Ri+1

Fig. 9.44. A snapshot of a model of a partially observable Markov decision process.
The state of the world Si is observed only indirectly through the observation node
Oi.
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When the world is only partially observable we can no longer execute
an action based on the current state of the world. In fact, based on the d-
separation properties of the model in Figure 9.44, we see that when decision
Di is taken, all previous observations and decisions are d-connected to the
current and future state variables, hence the entire past is relevant when the
decision is taken. Another way of interpreting this situation is that all our
previous observations and decisions have an impact on our current beliefs
about the state of the world, and our ensuing action is based on these beliefs.
This also means that while for MDPs we specified a policy conditionally on
the observed state of the world, we should now specify a policy conditionally
on our belief of the state of the world. Since the actual state of the world is
not observed, our belief will in general not point to any specific state but will
rather be a probability distribution over the possible states. That is, our belief
can be expressed as a probability distribution P (Si |D1, O1, . . . , Di−1, Oi),
and an optimal policy for step i will therefore specify an action for each
possible probability distribution over Si. This implies that if P (Si|pasti) =
P (Sj |pastj), then the optimal decisions for Di and Dj are the same.

9.7 Summary

One Action

Decision D, utility functions U1, . . . , Un over domains X1, . . . , Xn, evidence e.
The expected utility is

EU(D | e) =
∑
X1

U1(X1)P (X1 |D, e) + · · ·+
∑
Xn

Un(Xn)P (Xn |D, e),

and a state d maximizing EU(D | e) is chosen as an optimal action.

Instrumental Rationality

For an individual who acts according to a preference ordering satisfying the
rules below, there exists a utility function so that the individual maximizes
the expected utility.

1. Reflexivity. For any lottery A, A � A.
2. Completeness. For any pair (A, B) of lotteries, A � B or B � A.
3. Transitivity. If A � B and B � C, then A � C.
4. Preference increasing with probability. If A � B then αA + (1 − α)B �

βA + (1 − β)B if and only if α ≥ β.
5. Continuity. If A � B � C then there exists α ∈ [0, 1] such that B ∼

αA + (1 − α)C.
6. Independence. If C = αA+(1−α)B and A ∼ D, then C ∼ (αD+(1−α)B).
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Fig. 9.45. An example of a decision tree. The probabilities may be taken from a
Bayesian network. The bold links indicate an optimal strategy.
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Decision Trees

An example is shown in Figure 9.45.
To calculate an optimal strategy and the maximum expected utility for the
subtree rooted at node X , do:

1. If X is a utility node, then return U(X).
2. If X is a chance node, then return

EU(X) =
∑

x∈sp(X)

P (X = x | past(X)) EU(N(X = x)).

3. If X is a decision node, then return

EU(X) = max
x∈sp(X)

EU(N(X = x)),

and mark the arc labeled

x′ = arg max
x∈sp(X)

EU(N(X = x)).

Influence Diagrams

An influence diagram consists of a directed acyclic graph over chance nodes,
decision nodes, and utility nodes with the following structural properties:

− there is a directed path comprising all decision nodes;
− the utility nodes have no children.

For the quantitative specification, we require that:

− the decision nodes and the chance nodes have a finite set of mutually
exclusive states;

− the utility nodes have no states;
− to each chance node A there be attached a conditional probability table

P (A | pa(A));
− to each utility node V there be attached a real-valued function over pa(V ).

Figure 9.46 gives an example of the structural part of an influence diagram.

A policy for decision Di is a mapping δi that for any configuration of the past
of Di yields a decision for Di. That is

δi(I0, D1, . . . , Di−1, Ii−1) ∈ sp(Di) .

A strategy for an influence diagram is a set of policies, one for each decision. A
solution to an influence diagram is a strategy maximizing the expected utility.

Methods for determining optimal strategies from influence diagrams are
given in Chapter 10.
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Fig. 9.46. An example of the structure of an influence diagram. We have I0 =
{B}, I1 = {E, F}, I2 is empty, I3 = {G}, I4 = {A, C, D, H, I, J, K, L}.

Asymmetric Decision Problems

A decision problem is said to be symmetric if:

• in all of its decision tree representations, the number of scenarios is the
same as the cardinality of the Cartesian product of the state spaces of all
chance and decision variables, and

• in at least one decision tree representation, the sequence of chance and
decision variables is the same in all scenarios.

There are three types of asymmetry:

Functional asymmetry: The possible outcomes or decision options of a vari-
able may vary depending on the past.

Structural asymmetry: The very occurrence of an observation or a decision
depends on the past.

Order asymmetry: The ordering of the decisions and observations is not set-
tled at the time the model is specified.

Unconstrained Influence Diagrams

Unconstrained influence diagrams are used to model order asymmetry. Com-
pared to influence diagrams there need not be a total ordering of the decisions,
and the chance variables are partitioned into two sets: observable chance vari-
ables and nonobservable chance variables. An observable chance variable is
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released (for observation) when all its antecedent decision variables have been
decided on.

Solving an unconstrained influence diagram involves finding the next ac-
tion as well as finding an optimal policy if the next action is a decision (that
is, finding the conditional sequence of action and observations maximizing the
expected utility). The solution is specified in terms of an S-DAG:

An S-DAG is a directed acyclic graph G. The nodes are labeled with variables
from DU ∪ OU such that each maximal directed path in G represents an ad-
missible ordering of DU ∪ OU .

A step policy for a node N in an S-DAG G is a function

σ : sp(hst(N)) → ch(N).

A step strategy for U is a pair (G,S), where G is an S-DAG for U and S is a
set of step policies, one for each node in G (except for Sink). A policy for N
is a function

δ : sp(past(N))→ ch(N).

A strategy for U is a step strategy together with a policy for each node.

Decision Problems with an Unbounded Time Horizon

An MDP consists of an unbounded set of identical time steps. Each time step
i consists of:

1. A finite set of states of the world (represented by the chance variable Si).
2. A finite set of actions (represented by the decision variable Di).
3. A transition function P (Si+1 = s′ |Si = s, Di = a) specifying the proba-

bility that the next state is s′ when taking action a in state s.
4. A reward function R(Si = s, Di = a) specifying the reward of taking

action a in state s, for each a ∈ sp(Di) and s ∈ sp(Si).
5. An initial state s0 ∈ S0.

The transition function and the reward function are the same for all time
steps.

There are three standard ways to ensure that the utility of an unbounded
state sequence s0, s1, s2, . . . is bounded:

Fixed time horizon: The sum of the rewards obtained at the first k states:

U(s0, s1, s2, . . .) = R(s0) + R(s1) + · · ·+ R(sk).

Discounted reward: The accumulated discounted reward of each of the states:

U(s0, s1, s2, . . .) = R(s0) + γR(s1) + γ2R(s2) + · · · ,

where 0 ≥ γ < 1.
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Average expected reward: The accumulated average reward at each of the
states:

U(s0, s1, s2, . . .) = lim
N→∞

1

N

N−1∑
i=0

R(si).

A POMDP consists of:

1. A set of states and actions as in the MDP framework.
2. A transition function and a reward function as specified for the MDP.
3. A set of possible observations (represented by the chance variable Oi at

time step i).
4. An observation function P (Oi |Si, Di−1) that specifies the probability of

the possible observations conditioned on the current state of the world
and the last decision.

9.8 Bibliographical Notes

Decision theory has a long history but achieved a breakthrough in the work
of von Neumann and Morgenstern (1944), who laid down the axioms for in-
strumental rationality. Decision trees were introduced by Raiffa and Schlaifer
(1961). Influence diagrams were proposed by Howard and Matheson (1981),
and were adapted to allow for additive decompositions of utility functions
in (Tatman and Shachter, 1990). Unconstrained influence diagrams were in-
troduced in (Jensen and Vomlelova, 2002), and sequential influence diagrams
in (Jensen et al., 2006). The latter is a fusion of the valuation networks of
Shenoy (1996) and the asymmetric influence diagrams of Nielsen and Jensen
(2003a). The study of Markov decision processes can be traced back at least to
Howard (1960). A good starting point for further reading is (Puterman, 1994).
Partially observed Markov decision processes originate with Drake (1962) and
Åström (1965). The reactor problem, as presented here, is due to Covaliu and
Oliver (1995).

9.9 Exercises

Exercise 9.1. Consider the management of effort example in Section 9.2.

(i) Let the marks be 0, 5, 6, 8, 9, 10. What is the optimal decision if the nu-
merical values are used as utilities?

(ii) Consider the approach in which the marks are given subjective utilities.
Show that action Gd can be optimal only if the mark 0 is given higher
utility than mark 3.

Exercise 9.2. Prove that if U is a utility function for a decision maker and if
a (a > 0) and b are real numbers, then aU +b is an equivalent utility function.
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Exercise 9.3. E Extend the model from Exercise 3.14 to a model for folding
or calling.

Exercise 9.4. E Extend Exercise 3.18 with the following:

In golf, the task is to use as few strokes as possible at each hole. I am
driving at a hole 260 m long. If the drive is 265 m, I will on average
use 1.8 strokes to finish the hole. If the drive is 240 m, on average
2 extra strokes are needed; 220 m requires 2.5 extra strokes; 200 m
requires 2.7; 180 m 2.9 extra strokes; 160 m 3.1; 145 m 3.3; a drive of
290 m will carry the ball into a sand trap, requiring 3.5 extra strokes;
if the drive is misshit, the ball will drop into a lake, and it will require
4.5 extra strokes to finish the hole.

Construct a system that helps me decide whether to use the 3-wood or the
driver in the drive.

Exercise 9.5. E Consider the stud farm example from Section 3.2.2. Extend
the model to be an aid for deciding for each horse whether it should be taken
out of breeding. Table 9.6 gives the utilities.

Carrier Pure

Out −10 −10
In −40 100

Carrier Pure

Out −3 −3
In −10 40

Stallions Mares

Table 9.6. Tables for Exercise 9.5.

Exercise 9.6. Let the hypothesis variable H have n states. Introduce an ac-
tion variable A with the same states as H ; let the utility table be as follows:

U(h, a) =

{
1 if h and a are the same,
0 otherwise.

Show that a value function based on U corresponds to selecting a hypoth-
esis state of highest probability.

Exercise 9.7. Construct a decision tree for the mildew decision problem in
Section 9.1.2. How many numbers would you need to specify to render it
complete?

Exercise 9.8. Solve the decision tree in Figure 9.47.

Exercise 9.9. Consider an altered version of the poker decision problem in
which each player is now allowed three rounds of changing hands. What would
an influence diagram look like for this altered problem? What is the past for
each decision variable in the diagram?
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Fig. 9.47. Figure for Exercise 9.8.

Exercise 9.10. What is the partial temporal ordering of observations and
decisions in the influence diagrams in Figures 9.23 and 9.24?

Exercise 9.11. E (The oil wildcatter’s problem)

An oil wildcatter must decide whether to drill or not to drill. The cost
of drilling is $70,000. If he decides to drill, the hole may be soaking
(with a return of $270,000), wet (with a return of $120,000), or dry
(with a return of $0). The prior probabilities for soaking, wet, and
dry are (0.2, 0.3, 0.5). At the cost of $10,000, the oil wildcatter could
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decide to take seismic soundings of the geological structure at the site.
The specifics of the test are given in Table 9.7.

T \ S dr wt so

n 0.6 0.3 0.1
o 0.3 0.4 0.4
c 0.1 0.3 0.5

P (Test |Structure)

Table 9.7. Table for Exercise 9.11. The states n, o, and c are the outcomes of the
test.

(i) Solve the problem with a decision tree.
(ii) Solve the problem with an influence diagram.

Exercise 9.12. (The used car buyer’s problem)

Joe is considering buying a used car from a dealer for $1,000. The
market price of similar cars with no defects is $1,100. Joe is uncertain
whether the particular car he is considering is a “peach” or a “lemon.”
Of the ten major subsystems in the car, a peach has a serious defect
in only one subsystem, whereas a lemon has a serious defect in six
subsystems. The probability that the used car under consideration is
a lemon is 0.2. The cost of repairing one defect is $40, and the cost of
repairing six defects is $200.
For an additional $60, Joe can buy the car from the dealer with an
“antilemon guarantee.” The antilemon guarantee will normally pay for
50% of the repair cost, but if the car is a lemon, then the guarantee
will pay 100% of the repair cost.
Before buying the car, Joe has the option of having the car examined
by a mechanic for an hour. In this period, the mechanic offers three
alternatives t1, t2, t3 as follows:
t1: test the steering subsystem alone at a cost of $9,
t2: test the fuel and electrical subsystems for a total cost of $13,
t3: do a two-test sequence in which Joe can authorize a second test

after the result of the first test is known. In this alternative, the
mechanic will first test the transmission subsystem at a cost of $10
and report the results to Joe. If Joe approves, the mechanic will
then proceed to test the differential subsystem at an additional
cost of $4.

All tests are guaranteed to find a defect in the subsystem if a defect
exists. We assume that Joe’s utility for profit is linear in dollars.
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(i) Solve the problem with a decision tree.
(ii) Consider how to represent the problem as an influence diagram (you may

add dummy states and variables as you wish).

Exercise 9.13. Draw an influence diagram for the decision problem in Sec-
tion 9.1.2.

Exercise 9.14. Solve the decision tree in Figures 9.8 and 9.9 (the probabili-
ties can be taken from the model in Figure 9.10).

Exercise 9.15. Complete the reduced decision tree from Figure 9.16 and
solve it.

Exercise 9.16. E Solve Exercise 3.16 as a decision problem.

Exercise 9.17. E Solve the example in Section 11.1.1 as an influence dia-
gram.

Exercise 9.18. E Extend the poker model from Exercise 9.3 to the influence
diagram in Figure 9.21.

Exercise 9.19. E Represent the Car Start Problem in Section 9.3.1 as an
influence diagram. (What are the decision options at each step?)

Exercise 9.20. Unfold the sequential influence diagram in Figure 9.38 with
the following probabilities: A conventional reactor (C) has probability 0.980
of being successful (cs), and a probability 0.020 of a failure (cf). An advanced
reactor (A) has probability 0.660 of being successful (as), probability 0.244 of
a limited accident (al), and probability 0.096 of a major accident (am).

Exercise 9.21. Consider the Dating Problem in Example 9.6. What are the
asymmetries in the decision problem? Which of them are functional asymme-
tries/structural asymmetries/order asymmetries?

Exercise 9.22. Construct an S-DAG for the UID in Figure 9.48.

Exercise 9.23. Consider the two-player turn-taking game of tic-tac-toe in
which each player has three game pieces, and the objective is to place all your
pieces in a straight line on a 3 × 3 board. The players take turns placing a
piece in one of the free slots on the board, and when a player has no more
pieces off the board, he must take one of his pieces already on the board and
place it somewhere else. Formalize the game as a Markov decision process,
seen from the point of view of one of the players.

Exercise 9.24. Consider the example of the possibly infected milk from a
single cow introduced in Sections 3.1.1 and 3.2.1. Add to that the daily deci-
sion of throwing the milk out or pouring it into the tank, and associate the
utility of
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Fig. 9.48. A UID.

• 0 with pouring infected milk into the tank,
• 98 with throwing the milk out, and
• 100 with pouring noninfected milk into the tank.

Formalize the setting as a POMDP.


