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Bayesian Networks as Classifiers

You receive an email and wish to determine whether it is spam; you see a
bird and wish to determine its species; you examine a patient and wish to
diagnose him. These are only a few examples of the very common human task
of classification.

Formally, you have a set of variables, {F1, . . . , Fn}, called features (or at-
tributes) and a class variable, C, where the states of C correspond to the
possible classes. For the bird example above, the feature variables would en-
code various characteristics of the bird, and the class variable would represent
the possible species. Since it often happens that some feature values are not
known, feature variables are often extended with state “?” for unknown (or
“missing value”). A case is said to be complete if there are no missing values.
A case set is said to be consistent if two complete cases with the same values
on the features are of the same class.

A classifier is a function from F1× · · · ×Fn to C. We shall deal only with
classification tasks over a finite set of classes and with discrete features.

If you have a Bayesian network model, it can be used for classification.
In fact, if there is only one hypothesis variable, the network is a model for
classification. In the pregnancy model (Section 3.1.3), for example, test infor-
mation is used to classify the state of the cow, the class being the state of
highest probability.

In this chapter we consider learning of classifiers. Let D be a data set
of cases over features {F1, . . . , Fm} and class variable C; we do not require
the data set to be consistent. We wish to use the data set for constructing
a classifier. If the space of feature configurations is small and the amount of
data is relatively large, you may use the data set to establish a look-up table:
given a complete case f of features, look up f in the data set. If there are cases
in D with feature values f , then return the majority class value. If f is not
present in D, then return the most frequent class value in D. However, this
method is tractable only for small configuration sets; even with a moderate
number of feature variables you will need a more compact representation of
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the classification function. Any other method for learning classifiers should
predominantly produce better classifiers.

8.1 Naive Bayes Classifiers

Consider the poker game model introduced in Section 3.2.3, and extend the
model with a variable for my hand (MH) and for best hand (BH) (see Exer-
cise 3.14). A Bayesian network model would be like the one in Figure 8.1.

OH0 OH1 OH2

FC SC
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Fig. 8.1. A Bayesian network for the poker game extended with a node for my hand
and best hand.

Assume that you have a set of cases over the observable features MH,
opponent’s change of cards, FC, SC), and the class (BH). Exploiting structural
learning will most likely result in the model in Figure 8.2. The reader may
test this by a manual run of the PC algorithm on Figure 8.1 with the variables
(OHi) hidden.
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Fig. 8.2. A Bayesian network learned from a case set of poker games.

The model in Figure 8.2 does not provide a compact representation of the
classification function, since the class variable has all features as parents, and
therefore the conditional probability table for the class variable is as large as
a look-up table for the classification problem. Unfortunately, it is often seen
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in connection to Bayesian network classifiers that in the correct model, the
class variable has (almost) all feature variables as parents, and the network
therefore becomes intractably large. Instead, you can insist on working with
a class of simpler structures and search for the model that best approximates
the correct structure.

One such class of models could be naive Bayes networks (see Section 3.1.5),
and for the poker game, the structure will be the one in Figure 8.3.

FC SC
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MH

Fig. 8.3. Naive Bayes structure for the poker game.

In general, in a naive Bayes classifier (NBC) each feature variable has the
class variable as its only parent. This means that the structure is fixed, and
the only task involved in learning is to estimate the parameters.

The parameters for an NBC are easily determined by the methods pre-
sented in Chapter 6. If the cases are complete, you can determine a maximal
likelihood model through simple counting. If a case contains missing values,
the EM algorithm can be used; equivalently, disregard that case for the at-
tributes that are missing.

All methods for learning classifiers from data have a problem with very rare
cases, which may not be represented in the data set. Assume, for example,
that the data set for learning a poker classifier does not contain a case in
which I have lost with a hand with 3v. If one is not careful, the classifier
would deem this impossible regardless of the pattern of card changes. For a
Bayesian network classifier, this problem corresponds to incorrectly setting
a parameter to zero. To avoid zero values for parameters, you may simulate
Bayesian learning by introducing virtual cases. An easy way of handling this
is initially to give all parameters a small positive count.

Since NBCs are easy to learn, and easy to use as classifiers, and since they
are very flexible with respect to missing values, they are very widespread.
As mentioned in Section 3.1.5, NBCs assume the features to be independent
given the class, and even though this is rarely the case, NBCs have proved
surprisingly precise. A reason for this is that when doing classification we
are interested only in the class of maximal probability and not in the exact
probability distribution over the classes.
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8.2 Evaluation of Classifiers

Assume that you have a classifier, Clsf, and a data set of cases covering the
feature variables and the class variable. We wish to characterize the quality
of Clsf. A way of characterizing Clsf is to calculate its classification accuracy:
the fraction of correctly classified cases.

A more detailed description of a classifier would be to calculate the confu-
sion matrix , P#(Classified value, Correct value). In addition to the confusion
matrix you can also introduce a value for how bad a misclassification is, and
thereby establish a loss matrix, describing a punishment for the various kinds
of misclassification.

To illustrate this, consider again the poker game. Assume that you have
established a classifier Pcl, and you have the set of cases in Table 8.1. Since
12 out of 20 cases are classified correctly, the classification accuracy is 0.6.

Case number: BH MH FC SC Pcl

1 op no 3 1 op
2 op 1a 2 1 op
3 draw 2 v 1 1 op
4 me 2 a 1 1 me
5 draw fl 1 1 me
6 me st 3 2 me
7 me 3 v 1 1 me
8 me sfl 1 0 me
9 op no 0 0 op
10 op 1 a 3 2 me
11 draw 2 v 2 1 op
12 me 2 v 3 2 draw
13 op 2 v 1 1 draw
14 op 2 v 3 0 op
15 me 2 v 3 2 me
16 draw no 3 2 draw
17 draw 2 v 1 1 draw
18 op fl 1 1 me
19 op no 3 2 op
20 me 1 a 3 2 op

Table 8.1. Test cases for a poker classifier. The entry Pcl is the class value provided
by the classifier.

The confusion matrix is given in Table 8.2, but it does not consider the
stakes involved in the poker game. Let the situation be that both players ini-
tially have bet a euro, and you have to decide whether to fold (your opponent
takes the pot) or to call. To simplify, assume that you place a euro when you
call, and your opponent is forced to place a euro. The winner takes the pot,
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BH
me draw op

Plc
me 0.25 0.05 0.1

draw 0.05 0.1 0.05
op 0.05 0.1 0.25

Table 8.2. Confusion matrix for the poker classifier. The sum of the diagonal ele-
ments is the classification accuracy.

and in the case of a draw you share the pot. The wins and losses in the various
situations are given in Table 8.3.

BH
me draw op

Action
fold 0 0 0
call 3 1 −1

Table 8.3. Wins and losses in the poker game.

Based on Table 8.3, you decide on the strategy to call if and only if the
classifier says m or draw. The loss matrix tells you what you lose by following
the classifier compared to a situation with certainty on BH. It is given in
Table 8.4.

BH
me draw op

Plc
me 0 0 −1

draw 0 0 −1
op −3 −1 0

Table 8.4. Loss matrix for the poker classifier.

The confusion matrix and the cost matrix can now be used to calculate
the expected loss of a strategy following the classifier (based on the data set
D):
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Expected loss

=
∑

Classified,Correct

P#(Classified |Correct)P#(Correct)

× Loss(Classified, Correct)

=
∑

Classified,Correct

P#(Classified, Correct)Loss(Classified, Correct).

That is, you first multiply the confusion matrix and the loss matrix term
by term, and then you take the sum of all these elements.

The expected loss for the poker classifier is∑
Plc,BH

P#(Plc,BH)Loss(Plc,BH) = −3.0.05− 1.0.1− 1.0.1− 1.0.05 = −0.4.

A general problem in connection to machine learning is overfitting. What
we are looking for is a classifier that can classify not-yet-seen cases. However,
it may happen that the learned classifier is very accurate on the training
data, but it is very poor when confronted with cases not represented there.
To monitor overfitting, you usually divide the set data into training and test
data, and you measure the classification accuracy on the test data set rather
than on the training data set. A way of addressing overfitting in the choice of
model is to reserve a part of the training set for validation and comparison of
models only and not for establishing the models.

8.3 Extensions of Naive Bayes Classifiers

NBCs assume that the feature variables are independent given the class. Even
though this assumption seldom holds, NBCs are surprisingly good with re-
spect to classification accuracy. However, as described in the previous section,
classification accuracy does not tell the full story. Often you are particularly
interested in detecting a rare class. The class being rare also means that clas-
sification accuracy does not drop significantly if your classifier never identifies
these cases.

A rare class is often identified through a set of feature values appearing
together, where each value by itself does not point in that direction. NBCs
cannot cope with that, since they assume the features to be independent given
the class. Therefore, you may wish to extend NBCs to allow more elaborate
dependency structure among feature variables. A simple extension of this kind
is the tree augmented naive Bayes classifier (TAN): each feature variable has
at most one feature variable as parent.

As opposed to the situation for NBCs, the structure is not given, and we
have to look for a structure that with optimal parameter setting has maximal
likelihood: out of the possible links between feature nodes we have to choose
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a set forming a tree. This is similar to the situation described in Section 7.3.3,
and not surprisingly, the problem is solved through a slight modification of
the Chow–Liu algorithm using conditional mutual information rather than
mutual information (see equation (7.2), Page 237).

We give the construction without proof.

Theorem 8.1 (Learning TANs). Let D be a data set over the variables
{F1, . . . , Fm, C}. A TAN of maximal likelihood can be constructed as follows:

1. Calculate the conditional mutual information MI(Fi, Fj |C) for each pair
(Fi, Fj).

2. Consider the complete MI-weighted graph: the complete undirected graph
over {F1, . . . , Fn}, where the links Fi−Fj have the weight MI(Fi, Fj |C).

3. Build a maximal-weight spanning tree for the complete MI-weighted graph.
4. Direct the resulting tree by choosing any variable as a root and setting the

directions of the links to be outward from it.
5. Add the node C and a directed link from C to each feature node.
6. Learn the parameters.

Running the TAN algorithm on the data for the poker domain resulted in
the TAN in Figure 8.4.

FC SC

BH

MH

Fig. 8.4. A TAN for classifying poker.

Another extension is to introduce intermediate variables. For the poker
example, the dependence between FC and SC can be mediated through a
hidden variable C, as illustrated in Figure 8.5.

A problem with hidden variables is that even if you know how to connect
the hidden variables introduced, you have to determine the number of states
of the hidden variables. Let H be a hidden variable with n states and with
children ch(H). If n is equal to the product of the number of states of the
children, then H can represent any configuration of ch(H), and you cannot
hope for a better fit. On the other hand, in that case, you should represent the
product of ch(H) directly without a hidden variable. For the poker example
it means that the number of states of C should be between 2 and 11. Now use
the EM algorithm for these ten possible numbers of states. Since the likelihood
increases with the number of states of C, the model of maximal likelihood has
eleven hidden states, and that is not really what you are after. Therefore, you
have to balance likelihood with size as described in Section 7.3.1.
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C
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Fig. 8.5. The dependence between FC and SC is mediated by the hidden variable
C.

8.4 Classification Trees

For the sake of completeness we shall in this section present a very popular
method for doing classification. In the data mining literature the method is
called a decision tree. However, since in this book we use this term differently
(see Section 9.3), we shall call it a classification tree.

A classification tree is a directed tree whose internal nodes are feature
variables. The links are labeled with values of the feature in question, and the
leaves are labeled with class values (see Figure 8.6).
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Fig. 8.6. A classification tree for poker

The tree in Figure 8.6 can be used to classify the situation with respect
to BH. Classification is performed through processing the tree from the root
toward the leaves. First you branch out based on the value of MH. Depending
on the answer, you branch out according to the value of either FC or SC,
and sometimes you also ask for the value of the other card change. When you
reach a leaf, you read the classification.



8.4 Classification Trees 273

To learn a classification tree, you first determine which feature variable to
use as the root. Let C be the class variable with states {c1, . . . , cn}, and let
F be a feature variable with states {f1, . . . , fk}. We wish to characterize how
good a classifier F alone would be. That is, if we know the state of F , how
close will we be at knowing the class value?

The values of F partitions D into the data sets D1
1, . . . ,D1

k, and for each
data set D1

i we have a distribution P#(C|fi). One way of measuring how close
we are to knowing C in the data set D1

i is to calculate the entropy for C. In
general, for a variable X with distribution P (X) (or P#(X)), the entropy is
defined as

Ent(P (X)) = −
∑

x∈sp(X)

P (x) log2(P (x)), (8.1)

where we let 0 log2(0) = 0. If the probability of X being in a particular state
approaches 1, then the entropy goes toward 0. On the other hand, the more
dispersed the probability mass, the higher the entropy; in case we have a
uniform distribution, the entropy attains its maximum value, log2(|sp(X)|).

Now, if the entropy of each distribution P#(C|fi) is small, then knowing
F brings us close to knowing C, but if the entropies are large, then knowing F
does not give us much information about C. There are various ways of using
the entropies as a score for ranking the variables. A method called ID3 uses
the expected entropy as a measure of how good a feature is at predicting the
class:

E[Ent(F )] =
∑
F

P#(F ) Ent(P#(C |F )).

Actually, the algorithm uses information gain,

Ent(P#(C))− E[Ent(F )],

but since Ent(P#(C)) is independent of F , you look for a variable giving the
lowest expected entropy.

Having chosen the feature F as the root, you continue recursively on the
data sets D1

1 , . . . ,D1
k.

As an illustration, the ID3 algorithm applied to the data set in Table 8.1
would first partition the data set for each variable. For the variable SC we
have the sets {8, 9, 14}, {1, 2, 3, 4, 5, 7, 11, 13, 17, 18}, and {6, 10, 12, 15, 16, 19,
20} corresponding to the states 0, 1, and 2, respectively. The set for state 0
has two cases with state op, and one with state m. This distribution has the
entropy

−1

3
log2

(
1

3

)
− 2

3
log2

(
2

3

)
= −1

3
(2− 2 log2 3− log2 3) = 0.918,

yielding a contribution of 3/20 · 0.918 = 0.138 to the expected entropy.
The following expected entropies are calculated (note that the maximal

entropy for a distribution over three states is log2 3 = 1.585):
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E[Ent(MH)] = 0.735, E[Ent(FC)] = 1.351, E[Ent(SC)] = 1.403.

Since MH has the lowest expected entropy, it is chosen as root. For each
value of MH you now have a small data set, and you choose the best root for
each. For MH = no you have four cases, and since SC separates these cases
better than FC, SC is chosen. The full tree is given in Figure 8.7; the ? indi-
cates that no case covers the specified configuration, and for these situations
you may take the majority class.
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Fig. 8.7. The result of applying the ID3 algorithm on the data set in Table 8.1.

8.5 Summary

The Naive Bayes Classifier

In a naive Bayes classifier, each feature variable has the class variable as its
only parent. This means that the structure is fixed, and learning a classifier
therefore amounts to estimating the parameters.

Evaluating Classifiers

Two approaches for evaluating a classifier:

Classification accuracy: the fraction of correctly classified cases.

Expected loss:

Expected loss

=
∑

Classified,Correct

P#(Classified, Correct)Loss(Classified, Correct).
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The Tree-Augmented Naive Bayes Classifier

In the tree-augmented naive Bayes classifier (TAN classifier), each feature
variable has at most one other feature variable as parent in addition to the
class variable.

Learning TANs: Let D be a dataset over the variables {F1, . . . , Fm, C}. A
TAN of maximal likelihood can be constructed as follows:

1. Calculate the conditional mutual information MI(Fi, Fj |C) for each pair
(Fi, Fj).

2. Consider the complete MI-weighted graph: the complete undirected graph
over {F1, . . . , Fn}, where the links Fi−Fj have the weight MI(Fi, Fj |C).

3. Build a maximal-weight spanning tree for the complete MI-weighted
graph.

4. Direct the resulting tree by choosing any variable as a root and setting
the directions of the links to be outward from it.

5. Add the node C and a directed link from C to each feature node.
6. Learn the parameters.

Classification Trees

A classification tree is a directed tree whose internal nodes are feature vari-
ables. The links are labeled with values of the feature in question, and the
leaves are labeled with class values.

To learn a classification tree, you start with the empty tree and iteratively
insert the node X that tells you the most about the class variable C. One
possible measure is the expected entropy:

E[Ent(X)] =
∑
X

P#(X) Ent(P#(C |X)),

where
Ent(P (X)) = −

∑
x∈sp(X)

P (x) log2(P (x)).

8.6 Bibliographical Notes

As mentioned, naive Bayes was used by de Dombal et al. (1972) and can be
traced back at least to Minsky (1963). It was introduced to classification by
Duda and Hart (1973). Its role in classification has been thoroughly studied in
the last decade or so, with Domingos and Pazzani (1997) providing theoretical
results on concepts that naive Bayes can classify better than any other classi-
fier, and with empirical results that show how violations of the independence
assumptions of the model are often of no consequence. Jaeger (2003) further
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clarifies the distinction between the concepts they can recognize, and the theo-
retical limits on the concepts that can be learned from data. Tree-augmented
naive Bayes classifiers were introduced by Friedman et al. (1997). The ID3
algorithm for inferring classification trees was introduced by Quinlan (1979)
and later improved in (Quinlan, 1986). For a general overview over classifiers,
see (Mitchell, 1997).

8.7 Exercises

Exercise 8.1. Verify that the PC-algorithm results in the network in Fig-
ure 8.2 (or one of its equivalents) when run with an oracle based on the
d-separation properties of the network in Figure 8.1, and with the variables
OH1 and OH2 hidden.

Exercise 8.2. Learn the maximum likelihood parameters for the classifier in
Figure 8.3 from the cases in Table 8.1. What class does your classifier assign
to a case with MH=1a, FC=1, and SC=1?

Exercise 8.3. Verify that the TAN-algorithm constructs the classifier in Fig-
ure 8.4 and complete the classifier by learning the maximum likelihood param-
eters. What class does the classifier assign to the case with MH=1a, FC=1,
and SC=1? What would the result be if you instead of maximum likelihood
estimates used Bayesian parameter estimates?

Exercise 8.4. Consider the classification tree in Figure 8.6. How would this
classifier classify the case with MH=1a, FC=1, and SC=1?

Exercise 8.5. Using the data in Table 7.4, construct a classification tree for
classifying A. What class is assigned to (B = 1, C = 2)?


