
6

Parameter Estimation

Assume that you know the structure of a Bayesian network model over the
variables U , but you do not have any estimates for the conditional proba-
bilities. On the other hand, you have access to a database of cases, i.e., a
set of simultaneous values for some of the variables in U . You can now use
these cases to estimate the parameters of the model, namely the conditional
probabilities. In this chapter we consider two approaches for handling this
problem: First we show how a database of cases can be used to estimate the
parameters once and for all (so-called batch learning). After that, we shall
investigate the situation in which the cases are accumulated sequentially and
we wish to adapt the model as each new case arrives. The reader is expected
to be familiar with Section 1.5.

6.1 Complete Data

Let M = (S, θ) be a Bayesian network with structure S and parameters θ,
and let U be the variables in M . Moreover, let D be a data set of cases, where
each case is a configuration over all the variables in U . Such a case is said to
be complete case. In the learning community, a parameter is typically denoted
by θ (rather than t as we have done previously), and in this chapter we shall
follow the same convention. Moreover, to ensure that the parameters can be
learned independently we shall make the following two assumptions:

• Global independence says that the parameters for the various variables are
independent. This means that we can modify the tables for the variables
independently.

• Local independence says that the uncertainties of the parameters for dif-
ferent parent configurations are independent. To be more precise, let (b, c)
and (b′, c′) be different configurations; then the uncertainty on P (A | b, c)
is independent of the uncertainty on P (A | b′, c′), and the parameters for
the two distributions can be modified independently.

196 6 Parameter Estimation

6.1.1 Maximum Likelihood Estimation

For each case d ∈ D, the probability P (d|M) is called the likelihood of M
given d. If we assume that the cases in D are independent given the model,
then the likelihood of M given D is

L(M | D) =
∏

d ∈ D
P (d|M).

Often the log is taken, and it is then called the log-likelihood:

LL(M | D) =
∑

d ∈ D
log2 P (d|M).

If we have to choose among several models for describing the data, then
the principle of maximum likelihood advises us to choose a model of maximal
likelihood given the data. This means that if we want to estimate the condi-
tional probabilities, then our possible models Mθ agree on the structure but

differ with respect to the parameters θ. So we choose a parameter estimate θ̂

that maximizes the likelihood:

θ̂ = argmax
θ

L(Mθ | D) = arg max
θ

LL(Mθ | D).

In what follows we shall use θ̂ to denote a maximum likelihood estimate for
the parameters θ.

Example 6.1. We have tossed a thumbtack 100 times. It has landed pin up 80
times, and we look for the best estimate of the probability for pin up.

The situation is that we have a family of models, one for each possible value
of θ, the probability of pin up. Let Mθ denote the model with P (pin up) = θ,
then by assuming independent tosses, the likelihood of Mθ given the data is

P (D |Mθ) =
∏

d ∈ D
P (d |Mθ) = μ · θ80(1− θ)20,

where μ is a binomial factor independent of θ. By setting the derivative
d
dθP (D |Mθ) equal to zero it is easy to see that the likelihood is maximal

for θ = 0.8, so θ̂ = 0.8.

In general, you get a maximum likelihood estimate as the fraction of posi-
tive counts over the total number of counts. This also holds for variables with
more than two states. If you want to find a maximum likelihood estimate
for the parameters in a Bayesian network model, then this can be done by
finding maximum likelihood estimates for each conditional probability distri-
bution in the model. That is, for each conditional probability distribution,
e.g., P (A = a |B = b, C = c), you simply calculate

6.1 Complete Data 197

N(A = a, B = b, C = c)

N(B = b, C = c)
,

where N(A = a, B = b, C = c) is the number of cases in the database for
which A = a, B = b, C = c.

The principle of maximal likelihood therefore supports the intuition of
using frequencies as estimates, and to achieve a maximum likelihood estimate
you just count. We did so in Section 3.2.4, where Table 3.10 was the result of
10, 000 words transmitted.

6.1.2 Bayesian Estimation

When you have a sparse database, maximum likelihood estimation has some
drawbacks. Consider Table 6.1, which is the result of collecting 100 trans-
mitted words. If you do maximum likelihood parameter estimation using this
table, the outcomes with zero counts would be given zero probability and they
are thereby doomed impossible, a rather strong assumption based on only 100
cases.

Last three letters
aaa aab aba abb baa bba bab bbb

First
two

letters

aa 2 2 2 2 5 7 5 7
ab 3 4 4 4 1 2 0 2
ba 0 1 0 0 3 5 3 5
bb 5 6 6 6 2 2 2 2

Table 6.1. The table shows the number of five-letter words (T1T2T3T4T5) transmit-
ted over a channel. For example, the word abaab has appeared four times, whereas
bbabb has appeared six times.

An alternative to the principle of maximum likelihood is Bayesian estima-
tion: start with a prior distribution, and use experience to update the distri-
bution. The approach can be illustrated with a Bayesian network, where each
parameter for estimation is made explicit through a node. For the thumbtack
experiment, a model for three tosses would be as in Figure 6.1. The condi-
tional probabilities P (pin up|θ) are θ, and the prior distribution f(θ) is (as
always) up to you. If you have no idea at all, a common approach is to use
the uniform distribution f(θ) = 1, 0 ≤ θ ≤ 1.

Now assume that we have performed one experiment with the result
pin up. Using Bayes’ rule we get

fp(θ|pin up) =
P (pin up|θ)f(θ)

P (1 up)
=

θf(θ)

P (pin up)

for the posterior frequency function fp. If we let f(θ) = 1, we get

198 6 Parameter Estimation

T3

θ

T2T1

Fig. 6.1. A Bayesian network model for estimating the parameter given the outcome
of three tosses.

fp(θ|pin up) =
θ

P (pin up)
.

As usual, P (pin up) is calculated as the normalization factor:∫ 1

0

θ dθ =
1

2
,

so

fp(θ|pin up) = 2θ.

This yields a distribution of the posterior for θ given pin up, and the best
single estimate is the mean value of this distribution:∫ 1

0

θ(2θ) dθ =
2

3
.

Next, assume that we get a toss with pin down. Then we have for the new
posterior distribution

fp2(θ|pin down, pin up) =
P (pin down, pin up|θ)f(θ)

P (pin up, pin down)

= μP (pin down|θ)P (pin up|θ)f(θ)

= μP (pin down|θ)θ · 1 = μ(1 − θ)θ,

where μ is the normalization constant

1

μ
= P (pin down, pin up) =

∫ 1

0

(1− θ)θ dθ =
1

6
.

The posterior distribution fp2(θ|pin down, pin up) can now be written as

fp2(θ|pin down, pin up) = 6(1− θ)θ,

and the single best estimate for θ is∫ 1

0

θ6(1− θ)θ dθ =
1

2
.

6.1 Complete Data 199

Theorem 6.1. Let X be a binary variable (yes, no), and assume that we have
performed a number of independent experiments out of which n turned up yes
and m turned up no. Let θ be the probability for yes. Then, starting with the
even prior distribution for θ, the posterior distribution is

fp(θ) = μθn(1 − θ)m,

where μ is a normalization constant. The Bayesian estimate for θ is n+1
n+m+2 .

Parameters estimated through Bayesian estimation are called maximum a
posteriori parameters.

The theorem can be proved by induction along the lines described above.
Moreover, the theorem can be interpreted so that an even prior distribution
corresponds to adding two virtual experiments to the data (one for yes and
one for no) and then counting frequencies.

This procedure also holds for distributions over more than two states. To
pursue the Bayesian approach, assume for example that you wish to estimate
P (T2 |T1) from Table 6.1. First you marginalize out the other variables to
obtain Table 6.2(a).

T1

a b

T2
a 32 17
b 20 31

T1

a b

T2
a 33 18
b 21 32

(a) (b)

Table 6.2. (a) Counts of the first two letters from Table 6.1. (b) The table obtained
by adding 1 to all counts in (a).

Next, add 1 to all cells (Table 6.2(b)), and you get the conditional proba-
bility table in Table 6.3.

T1

a b

T2
a

`
33
54

´ `
18
50

´
b

`
21
54

´ `
32
50

´
Table 6.3. The result of a Bayesian approach for estimating the conditional prob-
ability table P (T2 |T1)

200 6 Parameter Estimation

6.2 Incomplete Data

In the previous section we saw how the probability parameters in a Bayesian
network can be estimated from a complete data set, i.e., a data set in which
each case specifies a value for each of the variables. In practice, however, we
are often faced with situations in which the data is incomplete. For example,
some values may be accidentally missing (for example due to faulty sensor
readings), some values may have been intentionally removed, and, in the more
extreme case, some variables may simply not be observable (such variables are
also called latent variables or hidden variables). If only some of the cases in
the database contain missing values, then you could be tempted to simply
throw these cases away and estimate the probability parameters using the
remaining (complete) database. This approach, however, may have a serious
drawback: Besides the risk of ending up with a very small database, we may
unintentionally bias the parameter estimates. For example, assume that we
have two binary variables A and B, and we are given a database with 20 cases
over A and B. Assume also that the database contains an equal number of
cases with A = a1 and A = a2, but when A = a2, then the value of B is
missing in 5 of the cases (B is not missing in any of the other cases). Now if
we want to find the maximum likelihood estimate for θ, the probability of a1,
using the entire database, then (recall that P# is the notation for frequency
counts)

P#(a1) = θ̂ =
N(a1)

N(a1) + N(a2)
=

10

10 + 10
=

1

2
.

However, if we throw away the cases that contain missing values, then the
maximum likelihood estimate would be

P#(a1) = θ̂′ =
N ′(a1)

N ′(a1) + N ′(a2)
=

10

10 + 5
=

2

3
.

The difference in the two estimates is caused by A’s influence on B’s “miss-
ingness.” On the other hand, if A does not have an influence on whether the
value of B is missing in the database, then we can (if the database is large
enough) safely throw away the cases with missing values without affecting the
maximum likelihood estimate of A.

The example above illustrates that in order to deal with missing data we
need to take into account how the data is missing. Consider the incomplete
data set as having been produced from a complete data set by a process that
hides some of the data.

• If the probability that a particular value is missing depends only on the
observed values, then the data is said to be missing at random (MAR).

• If this probability is also independent of the observed values, then the data
is said to be missing completely at random (MCAR).

• If the data is neither MAR nor MCAR, then the process that generated
the missing data is said to be nonignorable.

6.2 Incomplete Data 201

In the definitions of MAR and MCAR, the probability that a value is missing is
independent of that specific value. In particular, when we have hidden/latent
variables, then the data is MCAR, since the variables are unobserved regard-
less of the values of any of the variables.

To give a few examples. Consider first an exit poll performed during an
election, where an extreme right-wing party, ER, is running for parliament. If
we expect people who vote for ER to be more likely than others to refuse to
answer how they have voted, then the data is neither MCAR nor MAR. This
also means that when estimating the parameters, we cannot disregard the un-
derlying process causing the missing data. As another example, assume that
we have a database containing the results of two tests. The results of both
tests can be either positive or negative, but whereas the first test is always
performed, the second test is performed only as a “backup test” when the re-
sult of the first test is negative. In this situation the pattern of “missingness”
is dependent only on the observed values, hence the data is MAR. Finally,
consider a monitoring system equipped with sensors whose values are contin-
uously recorded and stored in a database. The recording system, however, is
not completely stable, and sometimes a sensor value is not stored properly
(i.e., it will be missing in the database). In this situation, the process causing
the data to become missing is independent of all the sensor values, and the
data is MCAR.

Today, the majority of the methods used for parameter estimation assume
the data to be MAR, and in the remainder of this chapter we shall make the
same assumption.

One approach to finding the maximum likelihood parameters could be
to simply solve the corresponding likelihood equations. Unfortunately, this
approach is not feasible in practice, since an incomplete case may cause the
parameters to become dependent. The same holds if we were to consider the
maximum a posteriori parameters θ∗:

θ∗ = arg max
θ

P (θ | D). (6.1)

Instead, researchers have focused on approximative methods for doing pa-
rameter estimation.

6.2.1 Approximate Parameter Estimation: The EM Algorithm

One of the most popular algorithms for doing parameter estimation is the
Expectation-Maximization (EM) algorithm. The EM algorithm is a general
algorithm for finding maximum likelihood estimates for a set of parameters θ

when one is faced with an incomplete data set. The algorithm basically alter-
nates between a so-called expectation step and a maximization step: loosely
speaking, in the expectation step we “complete” the data set by using the
current parameter estimates θ̂ to calculate expectations for the missing val-
ues, and in the maximization step we use the “completed” data set to find

202 6 Parameter Estimation

a new maximum likelihood estimate θ̂
′

for the parameters. This estimate is
then used to complete the data set in the next iteration of the algorithm. The
algorithm continues either for a predetermined number of iterations or until
the algorithm has converged.

Example 6.2. Consider the Bayesian network representation M of the simpli-
fied insemination problem described in Section 3.1.3 (page 55), and assume
that we have the database in Table 6.4.

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?

Table 6.4. A database consisting of five cases covering the variables Pr, Bt, and
Ut. The ? indicates that the value of the corresponding variable is missing.

When using the EM algorithm for learning the probability parameters
based on this database, we first specify some initial “guesses” for the prob-
ability distributions for M , i.e., P0(Pr), P0(Bt |Pr) and P0(Ut |Pr). For the
sake of simplicity we let all three probability distributions be even although
you would usually start off with random distributions. Now, had the database
been complete, then in order to find a new estimate for, say, the distribution
P (Pr = yes), we would count the number of cases N(Pr = yes) with Pr = yes:

P#
1 (Pr = yes) =

N(Pr = yes)

N
.

From the database we see that cases 2, 3, and 4 contain Pr = yes, and they
therefore contribute with the value 1 to N(Pr = yes). However, for cases 1
and 5 the value for Pr is missing. So to find the contribution from these two
cases we use the probability of seeing Pr = yes: case 1 therefore contributes
with P0(Pr = y |Bt = Ut = pos) = 0.5 and case 5 contributes with P0(Pr =
y |Bt = neg) = 0.5. What we are actually calculating here is the expected
value for N(Pr = yes), denoted by E[N(Pr = yes)]:

E[N(Pr = y)] =P0(Pr = y |Bt = Ut = pos) + 1 + 1 + 1

+ P0(Pr = y |Bt = neg) =
1

2
+ 1 + 1 + 1 +

1

2
= 4;

E[N(Pr = n)] =P0(Pr = n |Bt = Ut = pos) + 0 + 0 + 0

+ P0(Pr = n |Bt = neg) =
1

2
+ 0 + 0 + 0 +

1

2
= 1.

6.2 Incomplete Data 203

In general, the expected value of N(Pr = yes) is given by

E[N(Pr = yes)] =

N∑
i=1

P0(Pr = yes |di).

We can now use the expected counts to calculate a new estimate for P (Pr),
but before we come that far we should also calculate the counts necessary
for finding new estimates for the remaining probabilities. To estimate, say,
P (Ut = pos |Pr = yes), we need estimates for P (Ut = pos,Pr = yes) and
P (Pr = yes):

P#
1 (Ut = pos |Pr = yes) =

P#(Ut = pos,Pr = yes)

P#(Pr = yes)

=

[
N(Ut = pos,Pr = yes)

N

]
[
N(Pr = yes)

N

]

=
N(Ut = pos,Pr = yes)

N(Pr = yes)
.

Here N(Ut = pos,Pr = yes) denotes the number of cases containing both
Ut = pos and Pr = yes. However, as for Pr, we cannot find N(Ut = pos,Pr =
yes) when there are missing values, so again we use the expected value/count

E[N(Ut = pos,Pr = yes)] =

N∑
i=1

P (Ut = pos,Pr = yes |di).

For the database above we get

E[N(Ut = pos,Pr = yes)] = P (Ut = pos,Pr = yes |Bt = pos,Ut = pos) + 1

+ P (Ut = pos,Pr = yes |Bt = pos,Pr = yes)

+ 0 + P (Ut = pos,Pr = yes |Bt = neg)

=
1

2
+ 1 +

1

2
+ 0 +

1

4
= 2.25.

These counts are sufficient for finding new estimates for the probability
parameters in the network (see Section 6.1). For example,

P#
1 (Pr = yes) =

E[N(Pr = yes)]

N
=

4

5
= 0.8,

P#
1 (Ut = pos |Pr = yes) =

E[N(Ut = pos,Pr = yes)]

E[N(Pr = yes)]
=

2.25

4
= 0.5625.

When a new estimate has been found for all the probabilities, the proce-
dure starts over again, but this time you should use the newly found probabil-
ity estimates when calculating the expected counts. The procedure continues

204 6 Parameter Estimation

until the probabilities no longer change or until another termination criterion
is met. In the special case that the database is complete, the algorithm con-
verges after one iteration and returns the maximum likelihood estimates for
the parameters.

Calculation of Family Counts

In the example above, we saw that in order to find a new estimate for a condi-
tional probability distribution P (X | pa(X)) we should calculate the expected
counts for the family {X} ∪ pa(X) of variables. That is, for a specific config-
uration of the family we calculate the expected number of cases that contain
this configuration. Intuitively, we can consider the following three situations:

1. If a case is inconsistent with the configuration (i.e., the case and the
configuration disagrees on at least one value), then it counts as 0.

2. If a case contains the entire configuration, then it counts as 1.
3. If the value for a variable is missing in a case, then it contributes with a

fractional count corresponding to the conditional probability of seeing the
configuration.

The situations 1 and 2 are in fact special cases of situation 3.
From a computational point of view, the calculation of the expected counts

is the main difficulty of the EM-algorithm: when a case does not contain a
value for all the variables in question, then we need to calculate the condi-
tional probability distribution for these variables given that particular case.
We shall consider two situations: First, assume that we are interested in a spe-
cific configuration fa(A) = a for a family of variables, and let d be a case with
a missing value for exactly one variable, X , in fa(A). If a specifies X = x, then
the probability for a given d is equal to the probability P (X = x|d), which
in turn can be calculated by a single propagation in the Bayesian network.
Second, and more generally, assume that d contains missing values for a set of
variables X ⊆ fa(A) in the family. In this situation the probability for a can
be read directly from the joint probability P (X |d), but this is not immedi-
ately provided by the Bayesian network. Fortunately, in order to calculate this
probability we can exploit the junction tree architecture (see Section 4.4). In
particular, the construction of the underlying junction tree ensures that each
family of variables is contained in at least one clique, say V , having variables
V . Hence, after a single propagation of the evidence corresponding to case d,
all the required probabilities can be read directly from the potentials associ-
ated with V and its neighboring separators. Specifically, from Theorem 4.5 we
see that if V is a clique with the set of potentials ΦV and with k neighboring
separators containing the V -directed sets of potentials Φ1, . . . , Φk, then

P (V ,d) =
∏

φV ∈ΦV

φV

∏
φ1∈Φ1

φ1 · · ·
∏

φk∈Φk

φk.

6.2 Incomplete Data 205

From this joint probability we can find the required probability P (X ,d) by
marginalizing out the irrelevant variables:

P (X ,d) =
∑
V\X

P (V , e).

We return to our previous example. In order to calculate all the expected
counts, we use the junction tree structure shown in Figure 6.2.

Pr

Bt,Pr Ut,Pr

{P (Ut |Pr)}{P (Pr), P (Bt |Pr)}

→
←

Fig. 6.2. A junction tree representation of the simplified insemination problem.

In particular, when calculating the contribution from case 5, we perform
a full propagation with the evidence Bt = neg, and we get the annotated
junction tree in Figure 6.3.

{P (Pr), P (Bt = neg |Pr)}

Bt,Pr Ut,Pr

{P (Ut |Pr)}

→
←

Pr

{P (Pr,Bt = neg)}

{1Pr}

Fig. 6.3. A junction tree representation of the simplified insemination problem after
inserting and propagating the evidence Bt = neg.

The required probability, e.g., P (Ut,Pr |Bt = neg), can now be calculated
directly from the potential in the clique containing Ut and the potential in
the separator directed toward that clique:

P (Ut,Pr,Bt = neg) = P (Ut |Pr)P (Pr,Bt = neg),

P (Bt = neg) =
∑
Ut,Pr

P (Ut,Pr,Bt = neg),

P (Ut,Pr |Bt = neg) =
P (Ut,Pr,Bt = neg)

P (Bt = neg)
.

Similarly, if we use the junction tree to calculate the contribution from case
5 to the expected counts for the family {Bt,Pr}, then we need P (Bt,Pr |Bt =
neg) = P (Pr |Bt = neg). This probability can be found using the same method
as above:

206 6 Parameter Estimation

P (Pr,Bt = neg) = P (Bt = neg |Pr)P (Pr)1Pr,

P (Bt = neg) =
∑
Pr

P (Pr,Bt = neg),

P (Pr |Bt = neg) =
P (Pr,Bt = neg)

P (Bt = neg)
.

The EM-Algorithm for Bayesian Networks

We describe the algorithm more formally. Assume that we have a model struc-
ture B over the variables U = {X1, . . . , Xn}, and let θijk denote the param-
eter corresponding to the conditional probability P (Xi = k | pa(Xi) = j),
i.e., the conditional probability for variable Xi being in its kth state given
the jth configuration of the parents of Xi. Using this notation we can find a
maximum likelihood estimate, θ̂ijk , for the parameters θijk given a data set
D = {d1, . . . ,dm} with m cases as follows:

Algorithm 6.1 [The EM algorithm]

1. Choose an ε > 0 to regulate the stopping criterion.
2. Let θ0 = {θijk}, where 1 ≤ i ≤ n, 1 ≤ k ≤ |sp(Xi)| − 1, and

1 ≤ j ≤ |sp(pa(Xi))|, be some initial estimates of the parameters (cho-
sen arbitrarily).

3. Set t := 0.
4. Repeat:

E-step: For each 1 ≤ i ≤ n calculate the table of expected counts:

E

θt
[N(Xi, pa(Xi)) | D] =

∑
d ∈ D

P (Xi, pa(Xi) |d, θt).

M-step: Use the expected counts as if they were actual counts to calculate
a new maximum likelihood estimate for all θijk :

θ̂ijk =
Eθt [N(Xi = k, pa(Xi) = j) | D]∑|sp(Xi)|

h=1 Eθt [N(Xi = h, pa(Xi) = j) | D]
.

Set θt+1 := θ̂ and t := t + 1.
Until | log2 P (D |θt)− log2 P (D |θt−1)| ≤ ε.

�
The EM-algorithm has been generalized for estimating the maximum a poste-
riori parameters (or penalized likelihood) instead of the maximum likelihood
parameters. In this approach, virtual counts are added to both the denomi-
nator and numerator in the M-step, hence the method follows the idea of the
Bayesian estimation method for complete data (see Section 6.1.2). As before,
the virtual values can be interpreted as counts from a virtual database.

6.3 Adaptation 207

6.2.2 *Why We Cannot Perform Exact Parameter Estimation

When we have access to a complete database we can find the exact maximum
likelihood parameters by simply counting frequencies in the database, or we
can express the posterior probability distribution of the parameters in closed
form. However, we are not that lucky when working with incomplete data. For
example, assume that we have a probability distribution P (U |θ) and that we
get a single case d that specifies a configuration x over X ⊂ U ; the variables
Y = U \ X are therefore not observed. In order to find an estimate for the
maximum likelihood parameters we should maximize the following expression
with respect to θ:

P (x |θ) =
∑
Y

P (x | Y, θ)P (Y |θ).

That is, we maximize a sum having one term for each configuration of the
unobserved variables. When performing the maximization we cannot consider
the terms independently, since P (Y |θ) will, in general, depend on all the
parameters involved. Moreover, we have such a weighted sum for each case in
the database; hence the number of terms may become intractably large.

6.3 Adaptation

When constructing a Bayesian network, you will almost always be uncertain
of the correctness of the conditional probabilities specified, whether they are
specified manually or learned from data. Usually you would allow each proba-
bility to range within an interval, and a number in this interval is then chosen.
This type of uncertainty is called second-order uncertainty.

Second-order uncertainty raises two questions:

• Does the second-order uncertainty have an impact on the conclusions from
the model?

• Are there systematic ways of reducing the second-order uncertainty?

The first question was discussed in Section 3.4 and was addressed in Sec-
tion 5.6. In this section, we address the second question. We will look at a
situation in which certain parameters are open for modification.

When a system is at work, you repeatedly get new cases, and you would
like to learn from these cases. The situation may be that you are fairly certain
of the structure of the network. However, the conditional probabilities are
dependent on a context that varies from place to place, and you want to build
a system that automatically adapts to the particular context in which it is
placed.

In Figure 6.4(a), the variable A is directly influenced by B and C, and the
strength is modeled by P (A |B, C). The uncertainty in P (A |B, C) may be

208 6 Parameter Estimation

modeled explicitly by introducing an extra parent, T , for A (Figure 6.4(b)).
The variable T can be considered as a type variable. To reflect the frequencies
of the context types, a prior distribution P (T) is given.

B

A

C

T

B C

A
Case n

B

C T

B

C

A A

Case 1

(a) (b) (c)

Fig. 6.4. Adaptation through a type variable T . The distribution of T is updated
by Case 1 and used in the next case.

When a case, e, is entered into the network, the propagation will yield a
new distribution P ∗(T) = P (T | e), and we may say that the change of the
distribution for T reflects what has been learned from the case. Now P ∗(T)
can be used as a new prior distribution when we get the next case. All vari-
ables whose tables are dependent on the context will be children of T . The
way P (T) is updated can also be made explicit in the network structure as
shown in Figure 6.4(c). The network contains a copy of the variables for each
case that will be considered, and when the ith case arrives, the correspond-
ing variables are instantiated and P ∗(T) = P (T | e1, . . . , ei−1) is updated to
P (T | e1, . . . , ei).

Example 6.3. Consider again the milk test problem described in Section 3.2.1,
and assume that the farmer is not always as careful as he ought to be when
performing the test. When this is the case, the risk of getting a false positive
or a false negative is ten times as high as it otherwise would have been. Let
us initially assume that there is an 80% chance that the farmer performs the
test carefully.

One way of modeling this situation is to introduce a type variable Type
(with states careful and careless) representing how the farmer performs the
test (see Figure 6.5).

The probability P (Inf) is as before, and the conditional probability distri-
bution P (Test | Inf,Type = careful) is as specified in Section 3.2.1. The proba-
bility distributions P (Test | Inf,Type = careless) and P (Type) can be derived
from the description above, i.e., P (Type) = (0.8, 0.2) and P (Test | Inf,Type =
careless) are as specified in Table 6.5.

Now assume that a test is performed and the result is negative. When
updating the probabilities with this piece of evidence you get P ∗(Type) =
P (Type |Test = neg) = (0.815, 0.185). This probability distribution represents
our updated belief in how the farmer performs the test. That is, the next time

6.3 Adaptation 209

Inf

Test

Type

Fig. 6.5. The type variable Type models whether the farmer performs the milk test
properly.

Inf = yes Inf = no

Test = pos 0.9 0.1
Test = neg 0.1 0.9

Table 6.5. The table shows the conditional probability distribution
P (Test | Inf,Type = careless).

you get new evidence you should use this conditional probability distribution
(i.e., P ∗(Type)) as the prior distribution for the variable Type.

Finally, it should be noted that you have to be a bit careful when working
with several type variables. To illustrate the problem, assume that we get the
case A = a for the Bayesian network shown in Figure 6.6. When inserting this
piece of evidence, we see, from d-separation, that S and T become dependent.
Hence we cannot use their updated marginal distributions as prior distribu-
tions for the next case (by doing so we would have to assume that they are
independent, which we have just seen is not the case). That is, in order for the
above procedure to work correctly with several type variables, the evidence
from a case should d-separate the type variables.

T

A

B

S

Fig. 6.6. A Bayesian network augmented with two type variables, S and T .

210 6 Parameter Estimation

6.3.1 Fractional Updating

If the uncertainty of the conditional probabilities cannot be modeled explic-
itly through type variables, statistical methods can be used. The statistical
task is first to specify a prior probability distribution over the parameters,
and then iteratively update this distribution as new cases are entered. The
correct approach for updating this distribution is basically the same as the
task of learning exact parameter estimates from a database, but as we also
saw in Section 6.2.2, this is infeasible in practice when we have missing values.
Instead, approximative techniques are usually applied.

Consider P (A |B, C), and let all variables be ternary. Under the assump-
tions of global and local independence, we may now think of P (A | bi, cj) =
(x1, x2, x3) as a distribution established through a number of past cases in
which (B, C) was in state (bi, cj). We can then express our certainty of the
distribution by a fictitious sample size s. The larger the sample size, the
smaller the second-order uncertainty, so we work with a sample size s, a set
of counts (n1, n2, n3) such that s = n1 + n2 + n3, and

P (A | bi, cj) =
(n1

s
,
n2

s
,
n3

s

)
.

That is, s represents the number of cases with (bi, cj), and n1 is the number
of these cases that also include a1.

Let us first consider a couple of simple cases before we take the general
case.

1. We get a new case e with B = bi and C = cj and with A = a1. Then
n1 := n1 + 1 and s := s + 1, and the probabilities are updated as follows:

x1 :=
(n1 + 1)

(s + 1)
; x2 :=

n2

(s + 1)
; x3 :=

n3

(s + 1)
.

2. We get a new case e with B = bi and C = cj , but for A we have only
a distribution P (A | e) = P (A | bi, cj , e) = (y1, y2, y3). Then we cannot
work with integer counts, and we update nk := nk + yk and s := s + 1.
Accordingly, we get

x1 :=
(n1 + y1)

(s + 1)
; x2 :=

(n2 + y2)

(s + 1)
; x3 :=

(n3 + y3)

(s + 1)
.

3. We get a new case e with A = a1, but for B and C we have only P (B =
bi, C = cj | e) = z. As before, we cannot work with integer counts, so
instead we update with a fractional count:

x1 :=
(n1 + z)

(s + z)
; x2 :=

n2

(s + z)
; x3 :=

n3

(s + z)
.

6.3 Adaptation 211

In general, we may get a case with P (bi, cj | e) = z and P (A | bi, cj, e) =
(y1, y2, y3). To update the counts, we use these distributions; because the
sample size is increased only with z we take nk := nk + zyk, and we get

xk :=
(nk + zyk)

(s + z)
=

nk + P (ak, bi, cj | e)

s + P (bi, cj | e)
.

This scheme is known as fractional updating. Unfortunately, the scheme
has a serious drawback, namely that it tends to overestimate the count of s,
thereby overestimating our certainty of the distribution. Assume for example
that e = {B = bi, C = cj}. Then the case tells us nothing about P (A | bi, cj),
but nevertheless fractional updating will add a count of 1 to s and take it as
a confirmation of the present distribution:

xk :=
nk + P (ak | bi, cj)

s + 1
=

nk + nk

s

s + 1
=

nk

s
.

In Section 6.3.6 we shall return to this issue and consider another approxima-
tive updating method, which does not have the same drawback as mentioned
above.

6.3.2 Fading

It is often a problem for fractional updating that the initial counts are kept
when the system is trying to adapt to the environment. Particularly, when the
conditional probabilities in the environment change over time, the accumu-
lated counts will prevent the system from following the changes. Also, because
fractional updating has a tendency to overestimate counts, vacuous counts will
build up and make the parameters too resistant to change. Therefore, to keep
the flexibility of parameters, it may be a good policy to prevent the sample
size from growing unbounded.

An idea for solving this problem is the following: For example, let a ternary
variable X have sample size s and counts (n1, n2, n3), and assume that we get
a count of 1 for x1. Now, instead of increasing n1 by one, we first multiply
the counts by a fading factor, q ∈ (0, 1). Hence, we get

s := sq + 1; n1 := n1q + 1; n2 := n2q; n3 := n3q.

If we assume that all counts are of value 1, the influence from the past will
fade away exponentially. In the limit where s → ∞, we get a sample size s∗,
where

s∗ =
1

(1 − q)
.

The number s∗ is called the effective sample size, and it represents a steady-
state situation. If s = s∗ and we get a new count, we have

s := s∗q + 1 =
q

(1− q)
+ 1 =

1

(1− q)
= s∗.

212 6 Parameter Estimation

Instead of declaring a fading factor, you may declare an effective sample
size s∗, and the fading factor is then

q∗ =
(s∗ − 1)

s∗
.

This idea can be used for each distribution P (X | pa(X) = π) that we
wish to adapt to the evidence. The effective sample size need not be the same
for all distributions. The effective sample size to declare is dependent on how
resistant to change you wish the distribution to be. The higher the resistance,
the higher the effective sample size.

Fading can be implemented such that the effective sample size is preserved.
In other words, if the sample size for a distribution is equal to the declared
effective sample size s∗, then it will not be changed in adapting to a new case.

Let P (X |π) be declared with an effective sample size s∗, and assume we
have P (π | e) = y for a case. Then fractional updating yields a new count of
y. To preserve the sample size in the steady-state situation we have to adapt
the fading factor q to the count y:

s∗q + y = s∗.

Hence

q =
(s∗ − y)

s∗
.

Note that if P (π | e) = 1, then q = q∗, and if P (π | e) = 0, then q = 1.

6.3.3 *Specification of an Initial Sample Size

Frequently, the uncertainty of a parameter is expressed as an interval [x, y]. To
exploit the technique for adaptation, the second-order uncertainty expressed
by this interval will be translated to an initial sample size and a set of counts.
The specification of the interval [x, y] for t = P (A = a) can be interpreted as,
“I expect the value of t to be somewhere in the middle of the interval, and
I am 90% sure that the value is in the interval.” In other words, you have
a distribution of t with mean close to 1

2 (x + y) and with 90% of the density
mass inside [x, y].

As an example, take the interval [0.3, 0.4] for the state a of the binary vari-
able A. We interpret the interval as before, and assume that the distribution
is the result of s samples out of which n were in state a. The distribution for
t is a beta distribution, Beta(n1, n2), with mean μ = n1

s and with variance

σ2 = μ(1−μ)
(s+1) , where s = n1 + n2 (see Figure 6.7 for examples). It holds that

at least 90% of the probability mass lies in the interval [μ − 3σ, μ + 3σ], so
we seek values for s and n such that μ ≈ 0.35 and σ ≈ 0.0167, and we get
n1 = 285.16 and s = 814.73.

6.3 Adaptation 213

2

0.6

1.5

1

0.4

0.5

0
0.20

x

10.8 0.60.40.20

1.4

1.2

1

0.8

0.6

0.4

0.2

0

x

10.8 0.60.4 0.80.20
0

1

2.5

x

2

1.5

1

0.5

Fig. 6.7. The figure shows the density functions for the three beta distributions
Beta(1, 1), Beta(2, 2), and Beta(2, 5).

6.3.4 Example: Strings of Symbols

Consider the transmission of symbols example from Section 3.2.4 with the
model from Figure 3.18. Assume that every tenth word is sent through an
error-correcting code, so that you know for certain the word transmitted. You
wish to adapt the parameters of the model to the words actually transmitted
and received.

First, you can use the coded words to adapt the distribution of the error
rates: P (Ri |Ti). Choose the effective sample size 100 for all parameters. This
gives the fading factor 0.99. Also, let the initial sample be 100. The counts
are given in Table 6.6.

T = a T = b

R = a 80 15
R = b 10 80
R = c 10 5

Table 6.6. Initial counts for P (R | T).

Whenever a coded word is received, you have five cases (excluding the
redundancy bits in the code). Assume that baaba was sent but baaca re-
ceived. This means that the distribution P (R | a) is modified three times and
the distribution P (R | b) is changed twice. For P (R | a) we get the faded counts
((80 ·0.99+1) ·0.99+1) ·0.99+1, 10 ·0.993, 10 ·0.993) = (80.6, 9.7, 9.7), and for
P (R | b) we get the faded counts (15 ·0.992, (80 ·0.99+1) ·0.99, 5 ·0.992+1) =
(14.7, 79.4, 5.9).

The noncoded words cannot be used for adaptation of P (R |T), but they
can be used for modifying P (T1) as well as P (Ti+1 |Ti). Assume that we
receive the word e = baaca. Let us concentrate on modifying P (T2 |T1). Let
the initial sample size be 50 for T1 = a and 150 for T1 = b. From Table 3.11,
we infer the count table as given in Table 6.7.

214 6 Parameter Estimation

T1 = a T1 = b

T2 = a 30 60
T2 = b 20 90

Table 6.7. Initial counts for P (T2 |T1).

The model from Exercise 3.13 yields P (T1 | e) = (0.13, 0.87), P (T2 |T1 =
a, e) = (0.81, 0.19), and P (T2 |T1 = b, e) = (0.66, 0.34). The fading factors are
(100−0.13)/100 = 0.9987 and (100−0.87)/100 = 0.9913. We get for P (T2 | a)
the counts (30·0.9987+0.13·0.81, 20·0.9987+0.13·0.19) = (30.07, 20.00) and for
P (T2 | b) we get (60 ·0.9913+0.87 ·0.66, 90 ·0.9913+0.87 ·0.34) = (60.05, 89.5).

Note that the sample size increases for the part with initial sample size
smaller than the effective sample size and decreases for the part with initial
sample size larger than the effective sample size.

6.3.5 Adaptation to Structure

As for the parameters in a model, it may happen that the structure of the
model does not fit the cases you meet. If you use incremental adaptation of
parameters, you will often experience that the changes in parameter values to
a large degree will compensate for a slightly incorrect structure. Anyway, the
structural inaccuracy may be so substantial that parameter adjustments can-
not compensate. Unfortunately, no handy method for incremental adaptation
of structure has been constructed. The reason is that structural changes are
performed in jumps, and the justification for a jump is based on accumulated
experience rather than a single case.

Basically, there are two ways out: you can accumulate the cases and run
a batch learning algorithm (see Chapter 7) now and then, or you can work
concurrently with several models. The second way is similar to the “expert
disagreement approach.”

Assume that you have three alternative models M1, M2, M3 with initial
normalized weights w1, w2, w3; these weights can be interpreted as the prob-
abilities for the models, P (M1), P (M2), and P (M3). A case with evidence
e is entered into all models, and propagation yields P (A |Mi, e) as well as
P (e |Mi), where A is any variable. Then we can calculate new weights for the
models

wi := P (Mi | e) =
P (e |Mi)P (Mi)

P (e)
=

P (e |Mi)wi∑
j wjP (e |Mj)

,

as well as the probability for the variable A:

P (A | e) = w1P (A |M1, e) + w2P2(A |M2, e) + w3P3(A |M3, e).

6.3 Adaptation 215

6.3.6 *Fractional Updating as an Approximation

As we saw in Section 6.3.1, fractional updating has a serious drawback, namely
that it tends to overestimate the sample size. To overcome this problem an
alternative updating method (called incremental updating) has been proposed.
Both fractional updating and incremental updating have their origins in the
same problem: exact updating of the probability parameters is intractable,
since it requires us to keep track of a mixture of Dirichlet distributions, where
the number of mixture components may grow exponentially in the number
of cases. More specifically, given evidence e, both updating methods look for
an approximation of the posterior distribution P (θ|e), which determines the
conditional probability distributions in the network.

In order to illustrate the updating method, we will first revisit the initial
problem and show some of the derivations that underlie both fractional up-
dating and incremental updating. Based on this, we will consider where the
two updating methods differ.

Consider again the conditional probability distribution P (A |B, C), where
all variables are ternary. We set P (A = ak |B = bi, C = cj , θ) = θijk (see
Figure 6.8 for a graphical representation) such that θ = {θijk} and 1 ≤ i ≤ 3,
1 ≤ j ≤ 3, and 2 ≤ k ≤ 3; the parameter θij1 is given by 1 − (θij2 + θij3).
We will sometimes use the shorthand notation θij = {θij1, θij2, θij3}, and we
also assume that the prior distribution for θij follows a Dirichlet distribution
with hyperparameters (n1, n2, n3), denoted by Dir[θij |n1, n2, n3].

θ

A

B C

Fig. 6.8. An explicit representation of the parameter θ, which determines the con-
ditional probability distribution P (A = ak |B = bi, C = cj).

Now assume that we have the simple case with evidence e = {A = a2, B =
bi, C = cj} ∪ e′. Since A, B, and C constitute the Markov blanket for θ,
we can disregard e′ when updating the distribution for the parameters θij ,
i.e., f(θij |a2, bi, cj , e

′) = f(θij |a2, bi, cj). Moreover, due to the choice of prior
distribution for θ, we have

f(θij |a2, bi, cj) = Dir[θij |n1, n2 + 1, n3].

As we did in the thumbtack problem (Section 6.1.2), we can similarly find
a single point estimate for P (A = ak |B = bi, C = cj) by calculating the
expectation of θijk given e = {A = a2, B = bi, C = cj} ∪ e′:

216 6 Parameter Estimation

P ′(A = ak |B = bi, C = cj) =

∫
θij

θijkDir[θij |n1, n2 + 1, n3]dθij

=

{
nk+1

n1+n2+n3+1 for k = 2,
nk

n1+n2+n3+1 otherwise.

These updating rules are identical to those for fractional updating.
Consider now the more general situation in which the evidence does not

necessarily include A, B, and C. In this case, we first express the posterior
distribution f(θij | e) as follows (recall that f(θ |A, B, C) = f(θ |A, B, C, e)):

f(θ | e) =
∑
A

∑
B

∑
C

f(θ |A, B, C)P (A, B, C | e).

From the assumption of local parameter independence (see Section 6.3.1) we
can derive that f(θij) = f(θij |A, B = bi′ , C = cj′), for i′ �= i or j′ �= j. This
allows us to decompose the above expression into two parts, one with j′ = j
and i′ = i and the other with j′ �= j and i′ �= i:

f(θij | e) =
∑
A

f(θij |A, B = bi, C = cj)P (A, B = bi, C = cj | e)

+
∑
j′ �=j

∑
i′ �=i

∑
A

f(θij)P (A, B = bi′ , C = cj′ | e)

=
∑
A

f(θij |A, B = bi, C = cj)P (A, B = bi, C = cj | e)

+ f(θij)(1 − P (B = bi, C = cj | e)).

As we also used above, we have that, for example,f(θij |A = a2, B = bi, C =
cj) = Dir[θij |n1, n2 + 1, n3]; hence the above expression can be rewritten as

f(θij | e) = Dir[θij |n1 + 1, n2, n3]P (A = a1, B = bi, C = cj | e)

+ Dir[θij |n1, n2 + 1, n3]P (A = a2, B = bi, C = cj | e)

+ Dir[θij |n1, n2, n3 + 1]P (A = a3, B = bi, C = cj | e)

+ Dir[θij |n1, n2, n3](1 − P (B = bi, C = cj | e)).

(6.2)

Note that the last term models the situation in which the specified parent
configuration is not observed, and if it is observed then the term contributes
with zero.

This equation readily generalizes to a variable A with r states and parent
configuration π:

f(θπ | e) =

r∑
k=1

Dir[θπ|n1, . . . , nk + 1, . . . , nr]P (A = ak, pa(A) = π | e)

+ Dir[θπ|n1, . . . , nr](1 − P (pa(A) = π | e)).

(6.3)

6.3 Adaptation 217

Unfortunately, there is a computational problem with this expression, namely
that the number of mixture components may grow exponentially in the num-
ber of cases that we process. This problem has led to the development of
approximate updating methods such as fractional updating and incremental
updating. Both of these methods approximate the mixture above using a sin-
gle Dirichlet distribution, but there is a difference in how they estimate the
parameters.

Fractional Updating Revisited

In fractional updating, equation (6.3) is approximated with a single Dirich-
let distribution. The hyperparameters for this approximate distribution are
formed by taking the linear combination (as defined by the mixture) of the
corresponding hyperparameters in the mixture (disregarding the last term).
For example, for the first hyperparameter n′

1 in equation (6.2) we get

n′
1 = (n1 + 1)P (A = a1, B = bi, C = cj |e)

+ n1P (A = a2, B = bi, C = cj |e)

+ n1P (A = a3, B = bi, C = cj |e)

= n1 + P (A = a1, B = bi, C = cj |e).

That is, the mixture in equation (6.2) is approximated by

f ′(θij | e) = Dir[n1 + P (A = a1, B = bi, C = cj | e),

n2 + P (A = a2, B = bi, C = cj | e),

n3 + P (A = a3, B = bi, C = cj | e)],

and the new estimate for P (A = ak | , B = bi, C = cj) is then given by the
mean value of θijk :

P ′(A = ak | , B = bi, C = cj) =

∫
ij

θijkDir[n1 + P (A = a1, , B = bi, C = cj | e),

n2 + P (A = a2, , B = bi, C = cj | e),

n3 + P (A = a3, , B = bi, C = cj | e)]dθij .

Hence

P ′(A = ak | , B = bi, C = cj) =
nk + P (A = ak, , B = bi, C = cj | e)

n1 + n2 + n3 + P (B = bi, C = cj | e)

=
nk + P (A = ak, , B = bi, C = cj | e)

s + P (B = bi, C = cj | e)
,

and by comparing this result with the updating rule presented in Section 6.3.1
we see that they are identical. Thus, the intuitive appeal of fractional updating
that we saw in Section 6.3.1 rests on a mathematical foundation.

218 6 Parameter Estimation

The Incremental Updating Rule

Analogously to fractional updating, when doing incremental updating we also
estimate the mixture of Dirichlet distributions in equation (6.3) with a sin-
gle Dirichlet distribution. However, the hyperparameters for the approximate
Dirichlet distribution are determined by equating the means and average vari-
ance of the mixture to the means and the average variance of the approximat-
ing distribution. To be more specific, let θ∗ik denote the mean of θ··k in the ith
component in equation (6.3). The mean for the kth parameter in the mixture
is then (θ∗0k denotes the mean of θ··k in the last term)

θ∗k =

r∑
i=1

θ∗ikP (A = ai, π | e) + θ∗0k(1− P (B = bj , C = cj |e)).

Thus estimating the mixture with a single Dirichlet distribution having the
parameters (sθ∗1 , . . . , sθ

∗
r) will provide the correct means for the parameters θk.

The value for s is found by setting the average variance of the approximating
distribution

ṽ =

r∑
i=1

θ∗i
θ∗i (1− θ∗i)

s + 1
,

equal to the average-mean-weighted variance of the mixture. This gives the
following updating value for s:

s =

∑r
k=1 θ∗k

2(1− θ∗k)∑r
k=1 θ∗kvk

− 1,

where vk is the variance of θ∗k in the mixture. Although this updating rule does
not have the same intuitive appeal as fractional updating, it has the property
that the sample size will not increase when no relevant evidence is entered.
In fact, it is actually possible for the sample size to decrease if the evidence
does not reflect an event with high prior probability.

6.4 Tuning

We have a Bayesian network BN . For this network, we have some evidence
e, and for a particular variable A we have x = P (A | e) = (x1, . . . , xn). We
may have a prior request y = (y1, . . . , yn) for P (A | e), so we want to tune the
network such that P (A | e) = y. Assume that the structure of BN is fixed,
but for the conditional probabilities we have some freedom described by a set
of modifiable parameters t = (t1, . . . , tm) with an initial set of values t0; to
emphasize that we consider a subset of the parameters we use ti to represent
a parameter rather than θijk as we previously have used. We want to set the
parameters so that P (A | e) is sufficiently close to y. One way to measure how
close the two distributions are would be to use the Euclidean distance:

6.4 Tuning 219

Definition 6.1. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two probability
distributions. Then the Euclidean distance between x and y is (although we
do not take the square root):

dist (x,y) =

n∑
i=1

(xi − yi)
2.

The Euclidean distance measure is a metric, meaning that:

1. dist(x,y) = 0 if and only if x = y.
2. dist(x,y) ≤ dist(x, z) + dist(z,y).
3. dist(x,y) = dist(y,x).

Another distance measure frequently used is the Kullback-Leibler diver-
gence:

Definition 6.2. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two probability
distributions. Then the Kullback-Leibler divergence between x and y is:

KL(x,y) =

n∑
i=1

xi log2

(
xi

yi

)
,

where 0 log2(0/yi) = 0 and xi log2(xi/0) =∞.

Note that the Kullback-Leibler divergence does not satisfy property 3 above
so it is not a metric. In the remainder of this section we shall consider only
the Euclidean distance.

If (t1, . . . , tn) are parameters in the Bayesian network BN (parameters are
entries in conditional probability tables, see also Section 5.7) over the universe
U , then P (U) is a function of (t1, . . . , tn), as are also P (A | e) and P (e). In
the following, we assume proportional scaling, and we also assume that there
is at most one parameter per distribution.

The task is to set the parameters such that the distance is as small as
possible. If the parameters cannot be set in such a way that the distance is
close to zero, then it is an indication of an incorrect structure.

If it is possible to determine dist(x,y) as a function of t, you might be
so fortunate that the problem can be solved directly. However, usually the
problem cannot be solved directly even when the function is known, and a
gradient descent method can be used:

1. Calculate grad dist(x,y) with respect to the parameters t.
2. Give t0 a displacement �t in the direction opposite to the direction of

the gradient grad dist (x,y) (t0); that is, choose a step size α > 0 and let
�t = −αgrad dist (x,y) (t0).

3. Iterate this procedure until the gradient is close to 0.

220 6 Parameter Estimation

From the definition of the Euclidean distance measure, we see that

∂

∂t
dist (x,y) =

∑
i

2(xi − yi)
∂xi

∂t
.

The yi’s are known, and the xi’s are available through updating in BN ,
so what we need are grad xi(t) for all i. If the variable A is binary, we have
x = (x, 1 − x), y = (y, 1− y), and

dist (x,y) = 2(x− y)2

and

grad dist (x,y) = 4(x− y)gradx,

From these formulas, we see that the gradient is 0 if and only if either x
is independent of all the parameters or x = y.

6.4.1 Example

Let BN be the Bayesian network in Figure 6.9 with initial probabilities from
Table 6.8. Let C be the information variable and A the variable of interest.
Assume also that the parameters are t = P (¬a) and s = P (¬c | ¬b). Initially,
we have t0 = (0.5, 0.4).

CA B

Fig. 6.9. A small Bayesian network for illustration.

B \ A a ¬a

b 1 0.3
¬b 0 0.7

C \ B b ¬b

c 1 0.6
¬c 0 0.4

Table 6.8. Parameters for the network in Figure 6.9, P (A) = (0.5, 0.5).

Assume that we require P (A | c) = (0.4, 0.6) = (y, 1 − y). Through up-
dating, we get x = P (a | c) = 0.58. We calculate P (a | c) as a function of
t:

6.4 Tuning 221

P (A, c) =
∑
B

P (A)P (B |A)P (c |B) = (1− t, t− 0.7ts),

P (a | c) =
P (a, c)∑
A P (A, c)

.

We get

P (a | c) = x(t, s) =
(1− t)

(1− 0.7ts)
.

The request is
1− t

1− 0.7ts
= 0.4,

which yields

s =
t− 0.6

0.28t
=

25

7
− 15

7t
.

The set of parameters t meeting the request is shown in Figure 6.10.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

t

s

to = (0.5, 0.4)

s(t)

Fig. 6.10. The graph of s(t) consists of the parameter pairs (t, s) meeting the
request P (a | c) = 0.4.

Out of the infinite number of parameter pairs (t, s(t)), we choose one. If
we do not wish to choose either of the extremes (0.6, 0) and (5

6 , 1), it would be
natural to choose the point closest to t0 = (0.5, 0.4). This point is character-
ized by the property that the normal contains t0 (see Figure 6.10). Through
standard calculations, we get the following equation in t:

t4 − 1

2
t3 +

666

98
t− 225

49
= 0.

A root is t = 0.668, and we get s = 0.364. For this very simple example,
it was possible to calculate the closest parameter setting meeting the request.

222 6 Parameter Estimation

The situation need not be much more complex before a direct calculation
becomes intractable.

The gradient descent method will in this example go as follows:

gradx(t) =
1

(1− 0.7ts)2
(0.7s− 1, (1− t)0.7t),

gradx(t0) = (−0.97, 0.24).

Formula (6.4) yields

grad dist (x,y) = 4(0.58− 0.4)(−0.97, 0.24) = (−0.70, 0.18).

Using a step size of 0.2, we get

�t = (0.14,−0.036)

and
t1 = (0.640, 0.364); P 1(a | c) = 0.43.

The process is repeated:

gradx(t1) = (−1.06, 0.23),

grad dist (x, y) = (−0.13, 0.03),

t2 = (0.686, 0.358); P 2(a | c) = 0.380.

Repeating once more yields

t3 = (0.672, 0.361); P 3(a | c) = 0.395.

6.4.2 Determining grad dist(x, y) as a Function of t

The gradient descent method seems to require that we be able to calculate x
and gradx as a function of the parameters t. It was possible for the preceding
small example, but the method used will in general be intractable.

Instead, the results form Section 5.7 can be used. By using proportional
scaling we have

x =
αt + β

at + b
.

This yields
∂x

∂t
=

α(at + b)− a(αt + β)

(at + b)2
=

αb− aβ

(at + b)2
,

where the constants can be found as described in Section 5.7.

6.5 Summary 223

6.5 Summary

Maximum Likelihood Estimation

For each case d ∈ D, the probability P (d|M) is called the likelihood of M
given d. If we assume that the cases in D are independent given the model,
then the likelihood of M given D is

L(M | D) =
∏

d ∈ D
P (d|M).

The parameters θ maximizing the likelihood are called the maximum like-
lihood parameters (and denoted by θ̂):

θ̂ = argmax
θ

L(Mθ | D) = arg max
θ

LL(Mθ | D),

where
LL(M | D) =

∑
d ∈ D

log2 P (d|M).

If the database does not contain missing values, then the likelihood of a
Bayesian network is maximized by the (local) maximum likelihood estimates
for the conditional probability tables, say P (A | pa(A)), in the network:

N(A, pa(A))

N(pa(A))
.

Bayesian Estimation

Let X be a binary variable (yes,no), and assume that we have performed
a number of independent experiments out of which n turned up yes and m
turned up no. Let θ be the probability for yes. Then, starting with the even
prior distribution for θ, the posterior distribution is

fp(θ) = μθn(1 − θ)m,

where μ is a normalization constant. The Bayesian estimate for θ is n+1
n+m+2 .

This result can be interpreted so that an even prior distribution corre-
sponds to adding two virtual experiments to the data (one for yes and one for
no) and then counting frequencies. The procedure generalizes to distributions
over variables with more than two states.

Incomplete Data

• If the probability that a particular value is missing depends only on the
observed values, then the data is said to be missing at random (MAR).

• If this probability is also independent of the observed values, then the data
is said to be missing completely at random (MCAR).

• If the data is neither MAR nor MCAR, then the process that generated
the missing data is said to be nonignorable.

224 6 Parameter Estimation

The EM algorithm

To find an estimate for the maximum likelihood parameters when the data
is incomplete, you may run the EM algorithm; note that you are guaranteed
only to find a local maximum likelihood estimate.

1. Choose an ε > 0 to regulate the stopping criterion.
2. Let θ0 = {θijk}, where 1 ≤ i ≤ n, 1 ≤ k ≤ |sp(Xi)| − 1, and

1 ≤ j ≤ |sp(pa(Xi))|, be some initial estimates of the parameters (chosen
arbitrarily).

3. Set t := 0.
4. Repeat:

E-step: For each 1 ≤ i ≤ n calculate the table of expected counts:

E

θt
[N(Xi, pa(Xi)) | D] =

∑
d ∈ D

P (Xi, pa(Xi) |d, θt).

M-step: Use the expected counts as if they were actual counts to calculate
a new maximum likelihood estimate for all θijk:

θ̂ijk =
Eθt [N(Xi = k, pa(Xi) = j) | D]∑|sp(Xi)|

h=1 Eθt [N(Xi = h, pa(Xi) = j) | D]
.

Set θt+1 := θ̂ and t := t + 1.
Until | log2 P (D |θt)− log2 P (D |θt−1)| ≤ ε.

The probabilities required in the E-step are easily calculated using junction
tree propagation.

Adaptation

Adaptation through type variables: The second-order uncertainty can be char-
acterized as uncertainty about which table out of t1, . . . , tm is the correct one
for P (A | pa(A)).

Add a type variable T with states t1, . . . , tm and with A as child. The
prior probability P (t1, . . . , tm) reflects your belief in the various tables. Put
P (A | pa(A), ti) = ti.

Whenever a case e has been processed, the probability P (t1, . . . , tn | e) is
used as the new prior for the next case.

Fractional updating: Assume that the second-order uncertainty obeys both the
global and local independence requirements. For each parent configuration π,
choose a fictitious sample size n expressing the present certainty of P (A |π).
This yields a fictitious sample size na = nP (a |π) for the configuration (a, π).

When a case has been processed, it yields P (a, π | e). Add P (a, π | e) to na.
Thereby the sample is increased by P (π | e).

6.6 Bibliographical Notes 225

Warning: fractional updating reduces the second-order uncertainty too
quickly.

Fading: Instead of counting up with na, first multiply the counts for π by a
fading factor. A fading factor q can be established from an effective sample
size s∗

q =
(s∗ − P (π | e))

s∗
.

The alternative model approach: If there is explicit uncertainty in the model
– that is, if there are alternative models M1, . . . , Mm – they can be weighted
initially and run in parallel. After each case, the weights are modified.

Tuning

The set of parameters t open for modification; x(t) the current distribution
in the model; y the target distribution.

1. Calculate grad dist(x,y) with respect to the parameters t.
2. Give t0 a displacement �t in the direction opposite to the direction of

the gradient grad dist (x,y) (t0); that is, choose a step size α > 0 and let
�t = −αgrad dist (x,y) (t0).

3. Iterate this procedure until the gradient is close to 0.

We have
∂

∂t
dist (x,y) =

∑
i

2(xi − yi)
∂xi

∂t
.

Because P (e)(t) = αt + β, we know that xi(t) is the ratio of two linear
functions, and the partial derivatives can be calculated for all parameters
through two propagations (Chapter 4).

6.6 Bibliographical Notes

The characterization of the different ways in which data may be miss-
ing/incomplete was suggested by Rubin (1976). With outset in incomplete
data, the EM algorithm was proposed by Dempster et al. (1977) for learning
maximum likelihood parameter estimates. Green (1990) described how the
EM-algorithm can be used to find penalized maximum likelihood estimates,
and Lauritzen (1995) showed how the junction tree architecture can be ex-
ploited in calculating the expected counts in the E-step of the algorithm.

When data arrives sequentially, the probability parameters can be adapted
using fractional updating (Titterington, 1976). In some cases, however, frac-
tional updating may overestimate the sample size and an improved version of
the algorithm (known as incremental updating) was proposed by Spiegelhal-
ter and Lauritzen (1990). Later this algorithm was extended by Olesen et al.
(1992) to also allow for fading.

226 6 Parameter Estimation

The tuning method was proposed by Jensen (1999), based on work by
Russell et al. (1995) and Castillo et al. (1996).

6.7 Exercises

Exercise 6.1. Consider Example 6.1. Prove that the maximum likelihood
estimate for the model given the data is θ = 0.8.

Exercise 6.2. In the thumbtack experiment, let the nonnormalized prior dis-
tribution for θ be

f(θ) =

{
θ if θ ≤ 1/2

(1− θ) if 1/2 ≤ θ ≤ 1

(i) What is the normalization constant?

We have performed one experiment resulting in up.

(ii) What is the functional part of fp, the posterior distribution for θ?
(iii) What is normalization constant for fp?
(iv) What is the posterior Bayesian estimate?

Exercise 6.3. Consider the data in Table 6.1 and a Bayesian network con-
sisting of two nodes T1 and T2, with T1 being a parent of T2. What are the
maximum likelihood parameter estimates for the model given the data? What
are the Bayesian parameter estimates for the model given the data?

Exercise 6.4. Prove the distribution part of Theorem 6.1.

Exercise 6.5. Establish a Bayesian estimate of the conditional probability
P (a|b) from the counts in Table 6.1.

Exercise 6.6. Characterize the type (MAR, MCAR, or nonignorable) of
missingness that underlies the database for the variables A and B described
in the beginning of Section 6.2.

Exercise 6.7. Without taking the size of the database into account, when
would it be safe to throw away cases with missing values, i.e., should the data
be MAR, MCAR, or neither of the two?

Exercise 6.8. E

(i) Update the remaining probabilities in Example 6.2.
(ii) Use the updated probabilities to perform another iteration of the EM-

algorithm.

6.7 Exercises 227

Exercise 6.9. Refer back to the example of EM parameter estimation in Ex-
ample 6.2. What are the estimated parameters after a full iteration? And after
two full iterations? What are the maximum likelihood parameter estimates us-
ing only the complete cases? What are the Bayesian parameter estimates using
only the complete cases?

Exercise 6.10. E Consider the model in Exercise 3.28.

(i) What happens when you adapt to the following sequence of (A, B) states:
〈(n, y)(n, y)(y, n)〉?

(ii) Process a sequence of cases with A = y in which the states of B are

(n, y, n, y, y, n, n, y, y, y).

What are your beliefs in the experts now, and what is P (B |A)?

Exercise 6.11. You have the same model as in Exercise 6.10, but P (B |A)
is the one in Table 6.9.

B \ A y n

y 0.75 0.4
n 0.25 0.6

Table 6.9. Table for Exercise 6.11.

For P (B |A = y), you have an initial sample size of 12.

(i) Perform fractional updating from the sequence in Exercise 6.10 (iii).
(ii) Perform fractional updating on the same sequence but with fading factor

0.9.

Exercise 6.12. The network from Example 6.4.1 in its initial state has sample
sizes st = 25, ss = 10, and su = 25 for the three parameters. It now receives
20 cases with C = c out of which 10 have A = a (the rest have A = ¬a). For
the cases with A = a, all cases have B = b, and in the rest, 4 had B = ¬b.

1. Adapt the network without fading.
2. Adapt the network with effective sample sizes 25, 10, and 25 for t, s, and

u, respectively.
3. Adapt the network to the same cases but without the information on B.

Exercise 6.13. Perform the calculations of Example 6.4.1 by use of a direct
representation of the parameters t, s.

Exercise 6.14. Assume that in Example 6.4.1 we require P (A | c) = (0.5, 0.5),
and assume that t = 0.6 is fixed. Use the technique from Example 6.4.1 to
tune the parameters s and u.

228 6 Parameter Estimation

Exercise 6.15. Let D be a child of C, and let C have parents A and B, all
variables being binary. P (A) and P (B) have even distributions; P (D | c) =
(0.1, 0.9), P (D | ¬c) = (0.6, 0.4), and P (c |A, B) are as specified in Table 6.10.
Tune the parameters t, s to the prescribed behavior P (a | d) = 0.8.

B \ A a ¬a

b 1 − ts 1 − s
¬b 1 − t 0

Table 6.10. The conditional probability table P (C = c |A, B) for Exercise 6.15.

