
4

Belief Updating in Bayesian Networks

In this chapter, we present algorithms for probability updating. An efficient
updating algorithm is fundamental to the applicability of Bayesian networks.
As shown in Chapter 2, access to P (U , e) is sufficient for the calculations.
However, because the joint probability table increases exponentially with the
number of variables, we look for more-efficient methods. Unfortunately, no
method guarantees a tractable calculational task. However, the method pre-
sented here represents a substantial improvement, and it is among the most-
efficient methods known.

We shall use the framework of potentials. A conditional probability table
P (A | pa(A)) is a function φ : pa(A)∪{A} → [0 : 1], and we call it a potential.
For the algebra of probability tables we shall for notational convenience use
functional notation. That is, the product P (A | pa(A)) · P (B | pa(B)) is con-
sidered as a product of two functions φ1(A, pa(A))φ2(B, pa(B)). The reader
is expected to be familiar with Section 1.4.

Sections 4.1–4.6 present the junction tree algorithm, a version of the vari-
able elimination method. Section 4.7 presents an alternative method with
any-space properties, recursive conditioning, and in Sections 4.8 and 4.9 we
outline different approximation methods.

4.1 Introductory Examples

To repeat the fundamentals from Chapter 2 and for pinpointing the issues in
belief updating for Bayesian networks, we consider in this section a simple
example. Consider the Bayesian network in Figure 4.1 over the universe U .
The potentials specified for BN are φ1 = P (A1), φ2 = P (A2 | A1), φ3 =
P (A3 | A1), φ4 = P (A4 | A2), φ5 = P (A5 | A2, A3), and φ6 = P (A6 | A3).

110 4 Belief Updating in Bayesian Networks

A1

A2 A3

A4 A5 A6

Fig. 4.1. A simple Bayesian network, BN .

4.1.1 A Single Marginal

Let us first assume that we wish to calculate P (A4). From the chain rule, we
have

P (U) = φ1φ2φ3φ4φ5φ6 and P (A4) =
∑

A1,A2,A3,A5,A6

φ1φ2φ3φ4φ5φ6.

To avoid calculating P (U), we use the distributive law (Section 1.4):

P (A4) =
∑
A1

φ1(A1)
∑
A2

φ2(A2, A1)φ4(A4, A2)
∑
A3

φ3(A3, A1)

∑
A5

φ5(A5, A2, A3)
∑
A6

φ6(A6, A3).

First, calculate φ′
6(A3) =

∑
A6

φ6(A6, A3), then multiply φ′
6(A3) by

φ5(A5, A2, A3) and calculate φ′
5(A2, A3) =

∑
A5

φ5 (A5, A2, A3) φ′
6(A3); φ

′
5(A2,

A3) is multiplied by φ3(A3, A1), and so forth. Notice that in the calculation
of φ′

5(A2, A3) you can apply the distributive law again; that is, you need not
multiply by φ′

6(A3) before you marginalize A3 out. The calculation is sketched
graphically in Figure 4.2.

The reason for using the distributive law is to reduce the size of the tables
to handle. The full joint, P (U), requires a space incorporating all six vari-
ables. For the process illustrated in Figure 4.2, the largest potential to handle
contains three variables. In Figure 4.3, the structure is repeated, but in each
bucket (drawn as an ellipse) we have indicated the variables to handle, and
the variables in a mailbox (drawn as a rectangle) indicate the domain of the
potential communicated.

In the preceding calculations, we performed the marginalizations in a par-
ticular order, namely A6, A5, A3, A2, A1, and this is reflected in the structure
of Figure 4.2. Because marginalization is commutative (Section 1.4), it can
be done in any order. It is standard to use the term elimination order rather
than marginalization order. If we use the reversed elimination order, we get
the structure in Figure 4.4.

4.1 Introductory Examples 111

φ5(A5, A2, A3)

φ′

6(A3)

P
A3

φ2(A2, A1)
φ4(A4, A2)

P
A2

φ′

2(A1, A4)

P
A1

P (A4) =
P

A1
φ1 · φ′

2

φ6(A6, A3)P
A6

φ′

5(A2, A3)

φ′

3(A1, A2)

φ1(A1)

φ3(A3, A1)

P
A5

Fig. 4.2. An illustration of the process of marginalizing down to A4. The elliptic
nodes are buckets containing potentials. In a bucket, the potentials are multiplied
by the incoming potentials, a variable is marginalized out, and the result is placed
in a mailbox (a rectangular node) for a neighboring bucket.

Figure 4.5 illustrates the domains to handle for the last elimination order.
As can be seen, the domains for the first order are smaller than the domains
for the last order.

Because the size of the domains to handle is a good measure of complexity,
we will address the task of finding an elimination order yielding the smallest
domains to handle.

4.1.2 Different Evidence Scenarios

In the preceding calculations, we assumed that no evidence was entered into
the network. By analyzing the process illustrated in Figure 4.2, we realize
some simplifications. Because φ5 = P (A5 |A2, A3) and φ6 = P (A6 |A3), we
have that φ′

5 =
∑

A5
P (A5 |A2, A3) = 1 and φ′

6 =
∑

A6
P (A6 |A3) = 1, where

1 is the unit potential. Also,

φ′
3 =

∑
A3

φ3φ
′
5φ

′
6 =

∑
A3

φ31 · 1 =
∑
A3

φ3 =
∑
A3

P (A3 |A1) = 1.

112 4 Belief Updating in Bayesian Networks

φ6

A3

A2, A3

A5, A2, A3

φ3

A1, A2, A3

A1, A2, A4

A1, A4

A1, A4

A6, A3

φ5

A1, A2

φ2, φ4

φ1

Fig. 4.3. A structure indicating the domains of the various potentials to handle.

We note that φ′
3 is void, and the entire process is reduced to calculating∑

A1
P (A1)

∑
A2

P (A2 |A1)P (A4 |A2).

The nodes A3, A5, and A6 are examples of so-called barren nodes .1 A node
A is barren if neither A nor any of A’s descendants have received evidence.
The conditional probability potential attached to a barren node has an impact
only on descendant nodes.

If we have the evidence A5 = a5 and A6 = a6, the evidence is represented
as two 0-1 findings, e5 and e6 (Section 2.3.3). The formula is

P (A4, e) =
∑

A1,A2,A3,A5,A6

φ1φ2φ3φ4φ5φ6e5e6,

and we have (Section 2.3.3)

P (A4 | e) =
P (A4, e)∑
A4

P (A4, e)
.

To calculate P (A4, e), the effect on the frame in Figure 4.3 is that the two
evidence potentials are added in the buckets with φ5 and φ6 attached to them
(see Figure 4.6).

1 This term was first used in connection with influence diagrams (Section 9.4),
where barren nodes have no influence on the decisions.

4.1 Introductory Examples 113

P
A6

P
A5

P
A3

φ6(A6, A3)

φ5(A5, A2, A3)

φ2(A2, A1)

φ3(A3, A1)

φ1(A1)

P
A1

φ′

1(A2, A3)

φ4(A4, A2)

P
A2

φ′

2(A3, A4, A5)

P (A4)

Fig. 4.4. The structure resulting from eliminating in an order that is the reverse of
that from Figure 4.2.

φ4, φ5

A2, A3

A1, A2, A3

φ1, φ2, φ3

A3, A4, A5

A2, A3, A4, A5

φ6

A3, A4, A5, A6

Fig. 4.5. The domains for the elimination order A1, A2, A3, A5, A6.

114 4 Belief Updating in Bayesian Networks

φ5, e5

P (A4, e)

P
A6

φ′

6

φ3

P
A3

φ′

5

P
A5

φ′

3

φ2, φ4

φ′

2

P
A1φ1

P
A2

φ6, e6

Fig. 4.6. The frame from Figure 4.2 incorporating the evidence e5 : A5 = a5 and
e6 : A6 = a6.

The effect of e is that the variables A5 and A6 are instantiated in the
potentials φ5 and φ6, and the marginalizations of A5 and A6 are redundant,
that is, φ′

5 = P (A5 = a5 |A2, A3) and φ′
6 = P (A6 = a6 |A3).

The process in Section 4.1.1 is sufficiently general to encompass all types
of evidence scenarios. The task is to supplement this general process with
methods taking advantage of simplifications due to the particular evidence
scenario, such as identification of barren nodes.

4.1.3 All Marginals

Assume that we wish to compute P (Ai, e) for all i. Without taking advantage
of the special evidence scenario, we can for each node use the method from
Section 4.1.1. Assume that we calculate P (A2, e) through the elimination order
A6, A5, A3, A1, A2. Then, the frame of potentials looks as in Figure 4.7.

As can be seen, the frame in Figure 4.7 is very similar to the frame in
Figure 4.3. Only one arrow is reversed, and many calculations from the cal-
culation of P (A4, e) can be reused. In this chapter, we present a systematic
way of exploiting reuse in calculating all marginals. The resulting method has
a complexity equivalent to two single-variable marginalizations.

4.2 Graph-Theoretic Representation 115

A6, A3

A3

A2, A3

A5, A2, A3

A1, A2, A3

A1, A2, A4

A1, A4

φ6

φ5

φ3

A1, A2

φ2, φ4

A1, A4

φ1

Fig. 4.7. A frame for computing P (A2, e) through the elimination order
A6, A5, A3, A1, A2.

4.2 Graph-Theoretic Representation

As illustrated in Section 4.1, belief updating for Bayesian networks consists
basically in calculating sums of products. In this section, we deal system-
atically with this task without explicit reference to Bayesian networks. The
methods presented are general and can be applied to a large variety of tasks.

4.2.1 Task and Notation

We will work with a set of real-valued potentials Φ = {φ1, . . . , φm} over finite
variables from the universe U = {A1, . . . , An}.

Let Ψ be any set of potentials. The product of all potentials ψ in Ψ is de-
noted by

∏
ψ. We will also use the notation

∏k
i=1 ψi for the product ψ1 · · ·ψk,

and if the boundaries are apparent from the context, we write
∏

ψi.
The potential

∑
X φ(X, Y, . . . , Z) is the sum φ(x1, Y, . . . , Z)+· · ·+φ(xk, Y,

. . . , Z), and it is defined over (Y, . . . , Z). We say that X has been marginalized
out of φ(X, Y, . . . , Z). If V is a set of variables, then

∑
V is a notation for

marginalizing out all variables in V . Because marginalization is commutative
(Section 1.4), this notation is unambiguous.

Instead of sum notation, we may also use projection notation. We let
φ↓X(X, Y, . . . , Z) denote the potential resulting from marginalizing out (Y, . . . ,
Z); the potential is projected down to X . If W is a set of variables, then φ↓W

116 4 Belief Updating in Bayesian Networks

denotes the result of marginalizing out all variables except the members ofW .

Task: Compute (
∏

Φ)↓Ai for all Ai.

Definition 4.1. Let Φ be a set of potentials, and let X be a variable. Then X
is eliminated from Φ through the following procedure:

1. Remove all potentials in Φ with X in their domains. Call the set of re-
moved potentials ΦX .

2. Calculate φ−X =
∑

X

∏
ΦX .

3. Add φ−X to Φ. Call the result Φ−X ; Φ−X = {Φ \ ΦX , φ−X}.

Note that elimination of the variable X corresponds to using the distribu-
tive law on the product. Instead of calculating the product, we keep the factors
in a bucket and do not multiply before we are forced to do so.

Proposition 4.1. The task (
∏

Φ)↓X is solved by repeatedly eliminating the
variables except for X.

It remains to establish an elimination order.

4.2.2 Domain Graphs

To get an overview of the consequences of various elimination orders, the task
is represented graphically.

Definition 4.2. Let Φ = {φ1, . . . , φm} be potentials over U = {A1, . . . , An}
with dom (φi) = Di. The domain graph for Φ is the undirected graph with the
variables of U as nodes and with a link between each pair of variables that are
members of the same Di.

For the sake of exposition, we assume throughout the chapter that the
graphs considered are connected.

Example 4.1. In Section 4.1.1, we dealt with a Bayesian network over the
potentials Φ = {φ1(A1), φ2(A2, A1), φ4(A4, A2), φ3(A3, A1), φ5(A5, A2, A3),
φ6(A6, A3)}. The domain graph for Φ is given in Figure 4.8.

Compared to the initial Bayesian network in Figure 4.1, we see that direc-
tions on the links have been dropped and that a new link (A2, A3) has been
inserted. It is often called a moral link because it connects two nodes with a
common child. The domain graph for a Bayesian network is called the moral
graph.

When we eliminate a variable X , we work with the product of all poten-
tials with X in the domain. The domain of this product consists of X and
its neighbors in the domain graph, and when X is eliminated, the resulting
potential has all X ’s neighbors in its domain. This means that in the domain

4.2 Graph-Theoretic Representation 117

A1

A2 A3

A4 A5 A6

Fig. 4.8. The domain graph for Φ = {φ1(A1), φ2(A2, A1), φ3(A3, A1), φ4(A4, A2),
φ5(A5, A2, A3), φ6(A6, A3)}.

A1

A2

A4 A5 A6

Fig. 4.9. The domain graph for Φ−A3 from Figure 4.8.

graph for Φ−X all neighbors of X are pairwise linked. In Figure 4.9, we show
the domain graph for the example in Figure 4.8 with A3 eliminated.

Note that the graph in Figure 4.9 has several new links. These new links
are called fill-ins. The introduction of fill-ins highlights the fact that when
eliminating A3 you work with a potential over a domain that was not present
initially. In order to avoid working with new domains, you try to avoid fill-ins.
To put it another way, an elimination sequence that does not introduce fill-ins
requires less space than an elimination sequence that introduces fill-ins.

In Section 4.1, we considered calculation of P (A4). In the graph-theoretic
framework, it corresponds to constructing an elimination sequence ending with
A4. For the domain graph in Figure 4.8, it is possible to eliminate down to A4

without introducing fill-ins: A6, A5, A3, A1, A2, A4. Such a sequence is called a
perfect elimination sequence. There are several perfect elimination sequences
ending with A4, and an optimal elimination sequence will be found among
them. In Figure 4.8, we see that the sequence A5, A6, A3, A1, A2, A4 as well
as A1, A5, A6, A3, A2, A4 and A6, A1, A3, A5, A2, A4 are perfect elimination se-
quences.

118 4 Belief Updating in Bayesian Networks

Proposition 4.2. Let X1, . . . , Xk be a perfect elimination sequence, and let
Xj be a node with a complete neighbor set.1 Then, the sequence Xj , X1, . . . ,
Xj−1, Xj+1, . . . , Xk is also a perfect elimination sequence.

Proof. If you start by eliminating Xj , you do not introduce fill-ins. Consider
variable Xi. When you eliminate Xi, you look at the uneliminated neighbors,
and if a pair of them is not linked, you introduce a fill-in. Eliminating Xj

before Xi does not give Xi new neighbors, and it will not enforce new fill-ins
when Xi is eliminated.
�

The complexity of using a particular elimination sequence is character-
ized by the set of domains for the potentials used. For the elimination or-
der A6, A5, A3, A1, A2, A4, the set of domains is {{A6, A3}, {A2, A3, A5},
{A1, A2, A3}, {A1, A2}, {A2, A4}}. If a domain is a subset of another do-
main, then it does not require extra space and we need not consider it. For
example, the set {A1, A2} is removed from the preceding domain set.

Definition 4.3. The domain set of an elimination sequence is the set of do-
mains of potentials produced during the elimination in which potentials that
are subsets of other potentials are removed.

Unfortunately, it does not hold that if you eliminate without introducing
fill-ins, then the domain set consists only of domains from the initial set of
potentials. For the preceding perfect elimination sequence, we have that when
A3 is eliminated, you work with a potential with domain {A1, A2, A3}, which
is not one of the initial domains. However, there is no way to avoid this.
No matter which of the three variables you eliminate first, you will produce a
potential with all three variables in the domain. In general, it holds that if the
set V of variables is a complete set in the domain graph, then any elimination
sequence will contain a potential with a domain including V .

Proposition 4.3. All perfect elimination sequences produce the same domain
set, namely the set of cliques of the domain graph; a complete set is a clique
if it is not a subset of another complete set (a maximal complete set).

Proof. First we show that a clique V corresponds to the domain of a potential
produced during the elimination. Let X be the first variable from V to be
eliminated. When X is eliminated, we produce a domain D consisting of X
and all its neighbors. Because all elements of V are neighbors of X , D must
contain V . Let Y be a member of D. After elimination of X , there is a link
between Y and all members of V . The elimination does not produce fill-ins,
so the links must have been present initially, and because V is a maximal
complete set, Y must be a member of V . Hence, the cliques must be members
of the domain set.

1 A set of nodes is complete if all nodes are pairwise linked.

4.3 Triangulated Graphs and Join Trees 119

Finally we show that each member W of the domain set is a clique. Be-
cause the elimination does not produce fill-ins, W must be a complete set in
the domain graph. If W is not maximal, it is a subset of a clique V , and V is
a member of the domain set, so W cannot be a member.
�

From Proposition 4.3, we can conclude that any perfect elimination se-
quence ending with the variable A is optimal with respect to calculating
P (A). The full task is to compute the marginals down to each variable, so
the task can be solved by establishing an optimal elimination sequence for
each variable.

4.3 Triangulated Graphs and Join Trees

Before continuing with the belief-updating task, we deal in detail with some
purely graph-theoretic concepts. They will be used for the belief updating
task in the next section.

Definition 4.4. An undirected graph with a perfect elimination sequence is
called a triangulated graph.

Note that the term “triangulated” may be misleading. The graph (b) in
Figure 4.10 is not triangulated.

A1 A2

A3

A4 A5

(a)

A1 A2

A3

A4 A5

(b)

Fig. 4.10. (a) A triangulated graph; (b) a nontriangulated graph.

Notation: Let X be a node in an undirected graph. The set of neighbors of
X we denote by nb(X), and the set of neighbors plus X we denote by fa(X),
the family of X . If the nodes of the graph are enumerated, we use the index
to write Ni rather than NXi

. Nodes with a complete neighbor set are called
simplicial nodes. A neighbor to a node X is said to be adjacent to X . Note
that X is simplicial if and only if fa(X) is a clique.

Proposition 4.4. Let G be a triangulated graph, and let X be a simplicial
node. Let G′ be the graph resulting from eliminating X from G (see Fig-
ure 4.11). Then G′ is a triangulated graph.

120 4 Belief Updating in Bayesian Networks

X

A D

B

C E

A D

B

C E

G G′

Fig. 4.11. If fa(X) is a complete set, you eliminate X from G by simply removing
X together with its links.

Proof. Follows from Proposition 4.2.
�

Note that a triangulated graph always has at least one simplicial node,
namely the first one in the elimination sequence. Actually, there are at least
two.

Theorem 4.1. A triangulated graph with at least two nodes has at least two
simplicial nodes.

Proof. We prove by induction a slightly stronger statement: let G be an
incomplete triangulated graph with at least three nodes. Then, it has at least
two nonadjacent simplicial nodes.

Certainly, any incomplete triangulated graph with three nodes has two
nonadjacent simplicial nodes (see Figure 4.12).

A B C

Fig. 4.12. A connected incomplete triangulated graph with three nodes.

Assume the statement to be true for all graphs with fewer than n nodes,
and let G be an incomplete triangulated graph with n nodes. The first node,
X , in the elimination sequence is simplicial, and we must find another one
not adjacent to X . Let G′ be the graph resulting from removing X from G.

The graph G′ is triangulated, and any simplicial node in G′ is either sim-
plicial in G or a member of nb(X).

Because G is not complete, it must contain nodes that are not members
of nb(X). If G′ is complete, any of these nodes can do. If G′ is not complete,
we know from the induction hypothesis that it has at least two nonadjacent
simplicial nodes. If both were neighbors of X , they would be adjacent.
�

4.3 Triangulated Graphs and Join Trees 121

Corollary 4.1. In a triangulated graph, each variable A has a perfect elimi-
nation sequence ending with A.

Proof. Let A be any node in the triangulated graph G. Eliminate a simplicial
node X(X �= A); Theorem 4.1 ensures that such a node exists. Proposition 4.4
yields that the resulting graph is triangulated, and you can repeatedly apply
Theorem 4.1 until only A is left.
�

From Corollary 4.1, we see that if you have established one perfect elimi-
nation sequence, then you can easily establish a perfect elimination sequence
down to any variable. In other words, you can for each variable A establish
an optimal sequence of marginalizations for calculating P (A). We give the
details in Section 4.4.

Unfortunately, it does not hold that all domain graphs are triangulated.
The following theorem gives an easy way of checking whether a graph is tri-
angulated, and if it is, it also gives a simple way of establishing an elimination
sequence.

Theorem 4.2. An undirected graph is triangulated if and only if all nodes
can be eliminated by successively eliminating a simplicial node X.

Proof. If all nodes can be eliminated by successively eliminating simpli-
cial nodes, then we produce a perfect elimination sequence, and the graph is
triangulated.

Now assume that the undirected graph is triangulated. Let us eliminate
any simplicial node. Proposition 4.4 yields that the resulting graph is trian-
gulated, and we can continue the procedure.
�

To check whether a graph is triangulated, you repeatedly eliminate sim-
plicial nodes. At some stage, you run into a situation in which you cannot
eliminate more nodes. If the node set is empty, then the graph is triangu-
lated; if not, then the graph is not triangulated.

In general, it is NP-hard to determine the set of cliques in a graph. For
triangulated graphs, Proposition 4.3 and Theorem 4.2 yield an easy procedure.

Algorithm 4.1 To determine the set of cliques in a triangulated graph, you
can do as follows

1. Eliminate a simplicial node X; fa(X) is a clique candidate.
2. If fa(X) does not include all remaining nodes, go to 1.
3. Prune the set of clique candidates by removing sets that are subsets of

other clique candidates.

�

122 4 Belief Updating in Bayesian Networks

4.3.1 Join Trees

Definition 4.5. Let G be the set of cliques from an undirected graph, and let
the cliques of G be organized in a tree T . Then T is a join tree if for any pair
of nodes V , W all nodes on the path between V and W contain the intersection
V ∩W .

BCDE

ABCD

BCDG

CHGJ

BCDE

BCDG

CHGJ

DEFI ABCD DEFI

(a) (b)

Fig. 4.13. (a) A join tree; (b) not a join tree.

Theorem 4.3. If the cliques of an undirected graph G can be organized into
a join tree, then G is triangulated.

Proof. Let the cliques be organized in a join tree, and let V be a leaf clique
with unique neighbor clique W . Any member of V that is a member of an-
other clique must – due to the join tree condition – also be a member of W .
Therefore, V must contain at least one variable X not contained in any other
clique (otherwise V would be a subset of W). Then fa(X) must be complete,
and X can be eliminated without creating fill-ins. We can repeat eliminating
variables that are only members of V , and when all these have been elimi-
nated, we have a graph G′ with the same cliques as G except for V . Then,
the join tree for G with the node V removed is a join tree for G′, and we can
continue by eliminating a variable from a leaf in G′.
�

Theorem 4.4. If the undirected graph G is triangulated, then the cliques of
G can be organized into a join tree.

The proof is a construction of a join tree from a triangulated graph. To
illustrate the construction, we use the graph in Figure 4.14.

Construction: Establish an elimination sequence in the following way. Start
with a simplicial node X . Then fa(X) is a clique. Continue eliminating nodes

4.3 Triangulated Graphs and Join Trees 123

A B E

FDC

H G

J

I

Fig. 4.14. A triangulated graph.

from fa(X) that have neighbors only in fa(X). Give fa(X) an index i according
to the number of nodes eliminated, and denote the set of the remaining nodes
by Si. This set is called a separator . Choose a new clique in the graph G′ with
the eliminated nodes removed, and repeat the process with the index starting
at i. Continue to do so until all cliques have been eliminated. Figure 4.15
shows the result of this process on the graph in Figure 4.14.

BCDE

DEFI DE

CG

BCD
S1 V3V1 S3

V5 S5 V6

BCD
S6

V10

CGHJ

ABCD

BCDG

Fig. 4.15. The cliques, separators, and indices resulting from the graph in Fig-
ure 4.14. The elimination sequence used is A, F, I,H, J, G, B, C, D, E.

When the parts have been established as indicated in Figure 4.15, each
separator Si is connected to a clique Vj (j > i) such that Si ⊂ Vj (see
Figure 4.16). This is always possible because Si is a complete set, and when
the first node from Si is eliminated, it must be when dealing with a clique of
higher index than i, and it must contain all of Si. For convenience, we talk of
the direction from Vi over Si to Vj as upward, and we call Vj a parent of Vi.

We must prove that the structure constructed is a tree and has the join
tree property. Each clique has at most one parent, so there cannot be multiple
paths, and the structure is a tree.

124 4 Belief Updating in Bayesian Networks

ABCD DEFI DE

CG

BCD
S1 V3V1 S3

V5 S5 V6

BCD
S6

V10

BCDG

BCDE

CGHJ

Fig. 4.16. A join tree (expanded with separators) resulting from the construction
applied to the graph in Figure 4.14.

To prove the join tree condition, consider the cliques Vi and Vj (i < j),
and let X be a member of both. There is a unique path between Vi and Vj ,
and we will prove that X is a member of all cliques on that path. Because X
is not eliminated when dealing with Vi, it must be a member of Si, and from
the construction, X must be a member of Vi’s parent Vk. If k = j, we are
finished; otherwise we continue the argument for the smallest of the two.

Remark: The separators are so called because any separator S divides the
graph into two parts, and all paths connecting the two parts must pass through
S. If the join tree is constructed from a Bayesian network, the two parts are
d-separated given S.

A join tree provides the framework for constructing perfect elimination
sequences. Namely, notice that the simplicial nodes are those with all une-
liminated neighbors in one clique, and two nodes are neighbors if they are
members of the same clique. Hence, all perfect elimination sequences can be
constructed from a join tree by repeatedly eliminating simplicial nodes.

4.4 Propagation in Junction Trees

In the literature you often see the terms “join tree” and “junction tree” used
interchangeably. In this book we introduce a distinction.

Definition 4.6. Let Φ be a set of potentials with a triangulated domain graph,
G. A junction tree for Φ is a join tree for G with the following addition: each
potential φ in Φ is attached to a clique containing dom (φ); each link has the
appropriate separator attached; each separator contains two mailboxes, one for
each direction.

If Φ is a set of conditional probabilities for a Bayesian network BN to-
gether with evidence potentials for the evidence e, we say that the junction

4.4 Propagation in Junction Trees 125

tree represents BN with evidence e.

Notation: The propagation algorithm presented here deals with sets of po-
tentials. A set of potentials is a representation of the product of the member
potentials. Let Φ be a set of potentials whose domains are subsets of V , and
let W be a subset of V . Then, Φ↓W is a set of potentials resulting from suc-
cessively eliminating the variables in V \ W as described in Definition 4.1.
Because the elimination order is arbitrary, this notation seems to introduce
some ambiguity with respect to the functions in the resulting set. Because we
treat the sets as representations of products, and the product is independent
of the elimination order, we will not deal with this apparent ambiguity.

Example 4.2. Consider the set ψ = {φ1(A), φ2(A, B), φ3(A, C), φ4(C,D),
φ5(C)}, and let W = {B, C}. Then, ψ↓W = {∑A φ1(A)φ2(A, B)φ3(A, C),∑

D φ4(C, D), φ5(C)}.

Before giving a general description of the propagation algorithm, we will
go through an example.

Example 4.3. Consider the Bayesian network in Section 4.1 with potentials
φ1 = P (A1), φ2 = P (A2 |A1), φ3 = P (A3 |A1), φ4 = P (A4 |A2), φ5 =
P (A5 |A2, A3), φ6 = P (A6 |A3) and with the domain graph in Figure 4.8. We
know that the elimination sequence A6, A5, A3, A1, A2, A4 is perfect. The do-
main graph has a join tree over the cliques V1 = {A3, A6}, V2 = {A2, A3, A5},
V4 = {A1, A2, A3}, V6 = {A2, A4} and the separators S1 = {A3}, S2 =
{A2, A3}, S4 = {A2}. The junction tree is shown in Figure 4.17.

V4 : A1, A2, A3

↓ ↓

S4 : A2 S2 : A2, A3 S1 : A3

V6 : A2, A4 V2 : A2, A3, A5 V1 : A3, A6

φ1, φ2, φ3

↓

φ4 φ5 φ6

↑ ↑ ↑

Fig. 4.17. A junction tree for the Bayesian network in Figure 4.8.

To calculate P (A4), we find a clique containing A4(V6). It is made a tem-
porary root, and we send messages in the direction of V6 starting from the

126 4 Belief Updating in Bayesian Networks

leaf cliques. The message ψ1 = φ↓A3

6 = φ↓S1

6 is placed in the appropriate S1

mailbox, and the message ψ2 = φ
↓{A2,A3}
5 = φ↓S2

5 is placed in the appropri-
ate S2 mailbox. Next, V4 assembles the incoming messages and the poten-
tials held form the set Φ4 = {ψ1, ψ2, φ1, φ2, φ3}. The variables A1 and A3

are eliminated from Φ4, and the result, ψ4 = (φ1φ2(φ3ψ2ψ1)
↓{A1,A2})↓A2 =∑

A1
φ1φ2

∑
A3

φ3ψ2ψ1, is placed in the appropriate mailbox (see Figure 4.18).

V4 : A1, A2, A3

↓ ↓

S4 : A2 S2 : A2, A3 S1 : A3

V6 : A2, A4 V2 : A2, A3, A5 V1 : A3, A6

φ1, φ2, φ3

↓

φ4 φ5 φ6

↑ ↑ ↑
ψ4

ψ2 = φ
↓S2
5 ψ1 = φ

↓S1
6

Fig. 4.18. The cliques V1 and V2 have sent messages to their separators, and V4

has sent the message
P

A1
φ1φ2

P
A3

φ3ψ2ψ1 to S4.

Now V6 can collect its message, multiply it by φ4, and marginalize A2 out
to get P (A4).

The process just described is called collecting evidence to V6. To calculate
the marginal for another variable X , we can collect to a clique containing X .
If, for example, we wish to calculate P (A6), we can collect to V1. We can also
prepare the junction tree for the calculation of all marginals: send messages
in the direction away from V6. This process is called distributing evidence.
First, V6 sends the message ψ4 = φ↓A2

4 to S4, and V4 sends a message to
S2 as well as S1 (see Figure 4.19). When the message for S2 is calculated,
the set {ψ4, φ1, φ2, φ3, ψ1} is assembled, and A1 is marginalized out. Here, we
multiply only the potentials that have A1 in the domain, and the message
becomes a set of potentials: {ψ4,

∑
A1

φ1φ2φ3, ψ1}.
When both collecting and distributing evidence have been performed, we

have performed a full propagation, and to calculate a marginal P (X) we find
a clique V containing X . Take, for example, A3. The clique V1 contains A3.
The incoming message to V1 is the message for collecting evidence to V1, and
therefore it corresponds to a perfect elimination sequence ending with the
nodes A6 and A3. This means that the product φ6ψ

1 is the projection of the

4.4 Propagation in Junction Trees 127

V4 : A1, A2, A3

↓ ↓

S4 : A2 S2 : A2, A3 S1 : A3

V6 : A2, A4 V2 : A2, A3, A5 V1 : A3, A6

φ1, φ2, φ3

↓

φ4 φ5 φ6

↑ ↑ ↑
ψ2

ψ2

ψ4

ψ4

ψ1

ψ1

Fig. 4.19. The junction tree after a full propagation: ψ2 =
{ψ4,

P
A1

φ1φ2φ3, ψ1}, ψ
1 =

P
A2

ψ2ψ4

P
A1

φ1φ2φ3.

entire product down to {A3, A6}, and we can easily calculate P (A3) as well
as P (A6).

There is a slightly easier way of calculating A3. Consider the separator S1.
It consists of A3 alone. For the product of the two messages of S1, we have

ψ1ψ1 = (
∑
A2

ψ2ψ4

∑
A1

φ1φ2φ3)(
∑
A6

φ6)

=
∑
A2

∑
A5

φ5

∑
A4

φ4

∑
A1

φ1φ2φ3

∑
A6

φ6

= (φ5φ4φ1φ2φ3φ6)
↓A3 = P (A3).

Next, assume that you have the evidence e = {e5 : A5 = a5, e6 : A6 = a6}.
The evidence e is represented as two 0−1 potentials e5 and e6. To calculate
the probabilities P (X, e), you place the two evidence potentials in appropriate
cliques (V2 and V1) and perform a full propagation.

4.4.1 Lazy Propagation in Junction Trees

Each clique V holds a set of potentials denoted by ΦV . Each separator has
two mailboxes, one for each direction of the link. The messages stored in
the mailboxes are sets of potentials. The messages are denoted by ψS or ψS ,
depending on the direction.

The basic operation in the lazy propagation procedure is message passing.

Definition 4.7. Let V be a clique with set of potentials ΦV , and let S be a
neighboring separator. Let S1, . . . , Sk be the other neighboring separators of
V . Assume that each Si has received a message Ψi for V .

128 4 Belief Updating in Bayesian Networks

Then V can pass the message (ΦV ∪Ψ1∪· · ·∪Ψk)↓S to S, and we say that
the direction V to S is triggered.

The propagation method consists in repeatedly passing messages along
triggered directions.

Proposition 4.5. If you repeatedly pass messages along triggered directions
in a junction tree, then you need not stop before a message has been passed in
both directions over each link. In that situation, we say that the junction tree
is full.

Proof. See Exercise 4.27.
�

As shown in Example 5.3, you can start off by directing all messages
toward a chosen temporary root R. In other words, the junction tree is given
a direction from R and outward, and the messages are passed in the opposite
direction from leaves and inward (see Figure 4.20). This procedure is called
CollectEvidence(R).

R

1 11 1

2 1 2

Fig. 4.20. The message passing in CollectEvidence(R).

Notice that the message passing in CollectEvidence(R) corresponds to
a perfect elimination sequence ending with the nodes of R.

To fill the junction tree after a CollectEvidence(R), you need only
to place messages in the opposite directions. First, R passes a message to
its neighbors, they in turn pass messages further outward, and so forth out
to the leaves (see Figure 4.21). This procedure is called DistributeEvi-
dence(R). Note that messages are passed along triggered directions only
if DistributeEvidence(R) is performed after CollectEvidence(R) has
been performed.

4.4 Propagation in Junction Trees 129

R

2 2

1
1

1

2 2

Fig. 4.21. The messages passing in DistributeEvidence(R).

Theorem 4.5. Let the junction tree T represent the Bayesian network BN
over the universe U and with evidence e. Assume that T is full.

1. Let V be a clique with set of potentials ΦV , and let S1, . . . , Sk be V ’s
neighboring separators and with V -directed messages Ψ1, . . . , Ψk. Then

P (V, e) =
∏

ΦV

∏
Ψ1 · . . . ·

∏
Ψk.

2. Let S be a separator with the sets ΨS and ΨS in the mailboxes. Then

P (S, e) =
∏

ΨS

∏
ΨS .

Proof.

1. Consider the messages passed in the direction of V . They correspond to a
CollectEvidence(V), and the message passing corresponds to a perfect
elimination sequence ending with the nodes of V . Therefore,

P (V, e) = P (U, e)↓V =
∏

ΦV

∏
Ψ1 · · ·

∏
Ψk.

2. Consider Sk as before. Because∏
Ψk =

(∏
ΦV

∏
Ψ1 · · ·

∏
Ψk−1

)↓Sk

,

we have

P (Sk, e) = P (V, e)↓Sk =
(∏

ΦV

∏
Ψ1 · · ·

∏
Ψk

)↓Sk

=
(∏

ΦV

∏
Ψ1 · · ·

∏
Ψk−1

)↓Sk ∏
Ψk

=
∏

Ψk
∏

Ψk.
�

130 4 Belief Updating in Bayesian Networks

4.5 Exploiting the Information Scenario

As mentioned at the beginning of this chapter, the actual information scenar-
ios can provide simplifications of the calculations. This is one of the reasons
why we let lazy propagation work with sets of potentials rather than multi-
plied potentials.

4.5.1 Barren Nodes

Barren nodes (see Section 4.1.2) do not contribute to the probabilities of non-
barren nodes, and therefore we need not take their potentials into account
when calculating marginals of nonbarren nodes. This is illustrated in Fig-
ure 4.22.

eG
B

A C

D

E

F

G

Fig. 4.22. The nodes A, B, C, D, and E are barren.

In the calculation of P (F | eG), the part of the network with barren nodes
can be discarded. Figure 4.23 shows a junction tree for the network.

To calculate P (F | eG), you can collect to the clique (F, G). We see that
all marginalizations to perform are of the form

∑
X P (X | pa(X)), and from

the unit potential property (Section 1.4) they are all 1.
Now assume that there is also evidence eA for the variable A. Because

A is d-separated from F , eA does not affect P (F | eG). In the junction
tree propagation, the message ψ(B) from the clique (A, B) is no longer 1.
When the clique (B, C, D) produces a message for (D, F), the calculation is
{P (C |B, D), P (B), P (a |B)}↓D. If we start marginalizing C out, we apply
the unit potential property, and marginalizing B will result in a constant.

The handling of barren nodes can be taken care of using the following rule.

Barren node rule: Let Ψ be a set of potentials, and assume that we calculate
Ψ↓V . If A /∈ V , and the only potential in Ψ with A in the domain is of the
form P (A |W), then A is marginalized by discarding P (A |W).

4.5 Exploiting the Information Scenario 131

BCD

FG

↓

DF

↓

D

D

DE

F

↑

P (D | F)

↑
↓

↑

P (E | D)

↓

↑

B P (A | B)

AB

P (C | B, D)

P (G | F), P (F)

eG

P (B)

Fig. 4.23. A junction tree for the network in Figure 4.22.

4.5.2 d-Separation

When evidence is of the form that it instantiates a variable (hard evidence),
then the domains to handle will be reduced with this variable. There are
other simplifications due to instantiation: new pairs of variables may become
d-separated, reducing the domains of the messages to communicate. We illus-
trate this with the example in Figure 4.24.

A B C D E

F

Fig. 4.24. A Bayesian network.

132 4 Belief Updating in Bayesian Networks

We will be interested in P (E | e), and therefore we only consider collecting
evidence to the clique (D, E). A junction tree for the network is shown in
Figure 4.25.

P (E | D)

DE

↑

D

BBD

P (C | B), P (D | C)

BCD

↑ ↑

P (F | B, D)

BDF

P (B | A), P (A)

AB

Fig. 4.25. A junction tree for the Bayesian network in Figure 4.24. Only the upward
mailboxes are indicated.

First, let A be instantiated to a. The messages are given in Figure 4.26,
and we see that the evidence has an impact on P (E, e) through the message
ψ1(D): P (E | a) =

∑
D P (E |D)P (D | a).

Next, let C be instantiated to c. Then A and E are d-separated. Figure 4.27
shows how this is reflected in the messages: P (E | c) =

∑
D P (E |D) P (D | c).

Finally, let F be instantiated to f . Then A and E are no longer d-separated.
This is shown in Figure 4.28.

Note: In the examples, we have entered evidence on a variable X by instan-
tiating the potentials including X . In general, evidence can be entered by
adding the corresponding evidence potential to a clique containing X , and
the instantiation is effected when X must be marginalized. This means that
the evidence potential is passed to separators containing X .

4.6 Nontriangulated Domain Graphs

So far, we have considered propagation methods only for potentials with a
triangulated graph. For these methods, we know that the junction tree is a

4.6 Nontriangulated Domain Graphs 133

D

↑ {ψ1(D), P (a)}

DE

P (E | D)

P (C | B), P (D | C)

BCD

↑ 1

BD

P (F | B, D)

↑ {P (B | a), P (a)}

P (B | a), P (a)

ABBDF

B

Fig. 4.26. The messages on collecting to (D, E) for A instantiated. Here ψ1 =P
C

P (D |C)
P

B
P (C |B)P (B | a) =

P
C

P (D |C)P (C | a) = P (D | a).

D

↑ {k, P (D | c), P (a)}

DE

P (E | D)

P (c | B), P (D | c)

BCD

1 {P (B | a), P (a)}↑↑

P (F | B, D)

BDF

P (B | a), P (a)

AB

Fig. 4.27. The messages on collecting to (D, E) for A and C instantiated. Here
k =

P
B

P (c |B)P (B | a) = P (c | a).

134 4 Belief Updating in Bayesian Networks

D

↑{ψ2(D), P (D | c), P (a)}

DE

P (E | D)

P (c | B), P (D | c)

BCD

↑ {P (f | B, D)} ↑ {P (B | a), P (a)}

BD B

P (B | a), P (a)

AB

P (f | B, D)

BCF

Fig. 4.28. The messages on collecting to (D, E) for A, C, and F instantiated. Here
ψ2(D) =

P
B

P (f |B, D)(c |B)P (B | a).

propagation framework having the smallest possible domains with which to
work.

If the domain graph is not triangulated, we embed it in a triangulated
graph and use its junction tree. In fact, we did so in Section 4.5.2 when we
handled evidence.

Example 4.4. Consider the Bayesian network in Figure 4.29. After having elim-
inated the variables A, C, H, I, and J , we cannot eliminate any node without
adding fill-ins, and the graph is not triangulated.

The graph in Figure 4.30 is a triangulated graph extending the moral graph
in Figure 4.29. We can use a junction tree for that graph (see Figure 4.31).

4.6.1 Triangulation of Graphs

It is quite easy to find a triangulated graph extending a graph G. You eliminate
the variables in some order, and if you wish to eliminate a node with an incom-
plete neighbor set, you make it complete by adding fill-ins (the graph in Fig-
ure 4.30 is the result of eliminating in the order A, C, H, I, J, B, G, D, E, F).
The resulting graph has a perfect elimination sequence, and it is therefore
triangulated.

There are several different elimination orders, and many of them produce
different triangulated graphs. We aim to work with the one yielding the small-
est domains.

4.6 Nontriangulated Domain Graphs 135

A AB BC C

D DE E

F FG G

H HI IJ J

(a) (b)

Fig. 4.29. A Bayesian network (a) with a nontriangulated moral graph (b).

A B C

D E

F G

H I J

Fig. 4.30. A triangulated graph extending the moral graph in Figure 4.29.

Definition 4.8. Let V be a set of variables. For X ∈ V, |sp(X)| denotes the
number of states of X. The size of V, sz(V), is the product

∏
X∈V |sp(X)|.

Let BN be a Bayesian network, let G be a triangulated graph extending BN ’s
moral graph, and let V1, . . . , Vn be the cliques of G. The size of G is the sum
size(G) =

∑
i sz(Vi).

Unfortunately, it is NP-hard to determine an elimination sequence yielding
a triangulation of minimal size. However, there are heuristic algorithms that
have proven to give fairly good results. One example is the following:

Heuristic: Repeatedly eliminate a simplicial node, and if this is not possible,
eliminate a node X of minimal sz(fa(X)).

Example 4.5. Let the number of states for the variables in Figure 4.29 be
as follows: A, B, C, H, I, and J have two states, D has four states, E has
five states, F has six states, and G has seven states. After having elimi-
nated the variables A, C, H, I, and J , we eliminate a nonsimplicial node. We
have sz(fa(B)) = 40, sz(fa(D)) = 48, sz(fa(E)) = 70, sz(fa(F)) = 168, and

136 4 Belief Updating in Bayesian Networks

GJ

F G

EFG

FG

EF

DEF

DE

BDE

BD BE

ABD BCE

FH FGI

φJφH

↑ ↑ ↑

↑

↑

↑ ↑

φI

↓ ↓ ↓

φG

↓

φF

↓

↓ ↓

φA, φB , φD φC , φE

Fig. 4.31. A junction tree with potentials from the Bayesian network in Figure 4.29.
Notation: φX = P (X | pa(X)).

4.6 Nontriangulated Domain Graphs 137

sz(fa(G)) = 210. We choose to eliminate B, creating the fill-in (D, E). With
this new link, we have new sizes sz(fa(D)) = 120 and sz(fa(E)) = 140. We
eliminate D and add the fill-in (E, F). Now the graph is triangulated. How-
ever, in this case the triangulation is not optimal (see Exercise 4.32).

For later use, we establish the following proposition.

Proposition 4.6. Let A1, . . . , An be an elimination sequence triangulating
the graph G, and let Ai and Aj be two nonneighbors in G(i < j). Then
the elimination sequence introduces the fill-in (Ai, Aj) if and only if there is a
path Ai −X − · · · −Aj such that all intermediate nodes are eliminated before
Ai.

Proof. Assume that fill-ins may be introduced that violate the proposition,
and let (Ai, Aj) be such a fill-in with i as small as possible. Let the link
be introduced on eliminating the node Ak. Because new fill-ins cannot be
attached to Ai when it has been eliminated, we must have k < i. One of the
links (Ak, Aj) and (Ai, Ak) on eliminating Ak must be a fill-in (if not, the
(Ai, Aj) fill-in does not violate the proposition). Let it be (Ai, Ak). Due to
the choice of (Ai, Aj) the proposition holds for (Ai, Ak), hence there is a path
Ak −X − · · · −Ai such that all intermediate nodes are eliminated before Ak

(see Figure 4.32). If also (Ak, Aj) is a fill-in, the same must hold. Connecting
these two paths yields a path Ai − X − · · · − Aj such that all intermediate
nodes are eliminated before Ai, a contradiction.

Ak

Ai

AjX

Fig. 4.32. A path connecting Ai and Aj through nodes eliminated before Ai.

Next, assume that we have a path Ai −X − . . .− Aj such that all inter-
mediate nodes are eliminated before Ai. Let Ak be any node on the path to
be eliminated, and let Y and Z be the neighbors on the path. After the elimi-
nation of Ak, there is a link (Y, Z), and there is still a path Ai−X − . . .−Aj

such that all intermediate nodes are eliminated before Ai, so the property is
invariant under elimination. When all the nodes before Ai are eliminated, the
path must be the link (Ai, Aj).
�

4.6.2 Triangulation of Dynamic Bayesian Networks

Return to Exercise 3.25 and consider the model in Figure 3.52. In Figure 4.33,
we have folded it out to three time slices.

138 4 Belief Updating in Bayesian Networks

B1 D1

C1

E1 F1 G1

A1 A2

B2 D2

C2

E2 F2 G2

A3

B3 D3

C3

E3 F3 G3

Fig. 4.33. Three time slices of the model in Figure 3.52.

As you have probably experienced when solving Exercise 3.25, your com-
puter ran out of memory when you tried to compile the model folded out to
four or five time slices. The reason is that the cliques become too large.

A conceptually simple way of considering propagation in dynamic Bayesian
network models is that information is transmitted from one time slice to the
next (if the task is forecasting) or to the previous time slice (if the task is to
find out what happened in the past). In other words, probability potentials
describing time slice i are transmitted from time slice i to time slice i + 1 or
to time slice i− 1.

Let us consider forward passing from time slice i to time slice i+1, and let
W be the set of variables with a child in slice i+1. We wish to pass potentials
representing the joint probability of W . For the model in Figure 4.33, we pass
the information from slice 1 to slice 2 by eliminating all nodes in slice 1 before
any node from slice 2 is eliminated. Now consider any pair of nodes (X2, Y2).
If there is a path in slice 1 connecting them, then they will be linked after the
elimination of slice 1 (Proposition 4.6). Because the moral graph for slice 1 is
connected, and all nodes in slice 2 have a parent in slice 1, the entire slice 2
will be a subset of a clique if slice 1 is eliminated before any node from slice
2. If you process only two time slices, you may avoid this clique explosion by
using another elimination sequence. However, it will inevitably arrive when
you extend the number of time slices to process. Some cliques will contain
all variables with a child in the next slice or will contain all variables with a
parent in the previous slice.

This situation is not reserved for models with connected time slices. Con-
sider the model in Figure 4.34. If the model is folded out to four time slices,
and the first three slices are eliminated before any node from slice four, then
slice four becomes a complete set. Figure 4.35 shows the moral graph for four

4.6 Nontriangulated Domain Graphs 139

slices of the model. The reader can check that all pairs of nodes in slice four
have a connecting path through the past slices.

A B C D E

n

Fig. 4.34. A dynamic Bayesian network model with very sparse connection inside
the time slices.

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

E1 E2 E3 E4

Fig. 4.35. The moral graph for four time slices of the model in Figure 4.34.

As indicated above, you may think of propagation in dynamic Bayesian
networks as a way of passing probabilities of output nodes forward in time.
The problem is that most often, the required probability distribution is the
joint distribution over all output variables. If this is intractable, you can ap-
proximate the joint distribution by partitioning the set of output variables.
If O is partitioned into {O1,O2,O3}, then instead of passing P (O) you pass
{P (O1), P (O2), P (O3)}. It has been proven that the error introduced does
not accumulate over time, but converges to a finite error (in Kullback-Leibler
divergence; see Definition 6.2).

140 4 Belief Updating in Bayesian Networks

4.7 Exact Propagation with Bounded Space

One of the biggest problems with exact propagation algorithms such as the
junction tree based approach described in Section 4.4 is that the probability
tables can become intractably large. In this section we will investigate an
exact propagation algorithm in which space can be traded for time. For this
particular propagation algorithm, we will consider calculation of probabilities
only of the form P (x, e), since P (x | e) can subsequently be found by P (x | e) =
P (x, e)/(

∑
x P (x, e)).

4.7.1 Recursive Conditioning

Consider the Bayesian network in Figure 4.36 and assume that we are inter-
ested in the probability P (f).

A

B

C

D E

F

Fig. 4.36. A Bayesian network.

By calculating P (f) using, for example, variable elimination (Section 2.3.4)
or lazy propagation (Section 4.4.1), we basically first establish an elimination
sequence and then use the distributive law. For example, by using the elimi-
nation sequence F , E, D, C, B, A we would get

P (f)

=
∑
A

∑
B

∑
C

∑
D

∑
E

P (A, B, C, D, E, f)

=
∑
A

P (A)
∑
B

P (B |A)
∑
C

P (C |B)
∑
D

P (D |C)
∑
E

P (E |D)P (f |D, E).

(4.1)

4.7 Exact Propagation with Bounded Space 141

The sequence in which the calculations are performed can be encoded
in a computation tree. The leaf nodes represent the conditional probability
distributions in the model, and for each internal node the potentials defined
by the two subtrees are multiplied and the variables indicated by the label of
the node are marginalized out (see Figure 4.37).

P (A)

P (B |A)

P (C |B)

P (D |B)

P (E |C) P (F |D, E)

P
A

P
B

P
C

P
D

P
E

Fig. 4.37. The computation tree for the calculation of P (f) in Figure 4.36 using
the elimination sequence E, D, C, B, A.

Based on the computation tree in Figure 4.37 we can easily specify an
algorithm that calculates P (f) and performs the same operations as in equa-
tion (4.1): evaluate the computation tree from the leaves toward the root.
When an internal node is reached, multiply the two potentials calculated in
the two subtrees for that node and marginalize out the appropriate variables.

Another way of doing the calculations would be to start at the root
∑

A

and recursively evaluate the subtrees for each state of A; when the recursive
calls return, the results are added up. Assuming that A is binary, for the
calculations in equation (4.1) this would correspond to

P (f) = P (a1)
∑
B

P (B | a1)
∑
C

P (C |B)
∑
D

P (D |C)
∑
E

P (E |D)P (f |D, E)

+ P (a2)
∑
B

P (B | a2)
∑
C

P (C |B)
∑
D

P (D |C)
∑
E

P (E |D)P (f |D, E),

(4.2)

where, for example, the first term is the result of the recursive calls made at
node

∑
B:

142 4 Belief Updating in Bayesian Networks∑
B

P (B | a1)
∑
C

P (C |B)
∑
D

P (D |C)
∑
E

P (E |D)P (f |D, E)

=P (b1 | a1)
∑
C

P (C | b1)
∑
D

P (D |C)
∑
E

P (E |D)P (f |D, E)

+ P (b2 | a1)
∑
C

P (C | b2)
∑
D

P (D |C)
∑
E

P (E |D)P (f |D, E).

Compared to equation (4.1) we can say that when the computation tree is
“read” from the root toward the leaves, we condition in the internal nodes,
and when it is “read” from the leaves towards the root, we marginalize out in
the internal nodes.

By continuing the “recursive conditioning” above, we see that the storage
requirements are considerably reduced. Specifically, for handling the interme-
diate results we have to store only the initial conditional probability distribu-
tions together with a single number for each internal node in the computation
tree, i.e., the space complexity is linear in the number of nodes. Unfortu-
nately, this reduction in space comes at a price. In this particular example,
the number of recursive calls corresponds to the size of the state space of
all the variables involved. Assuming that the variables are binary, this would
amount to 32 recursive calls. Note, however, that the size of the call stack is
proportional to the depth of the tree.

In general, the number of recursive calls increases exponentially with the
height of the computation tree, so to reduce the time complexity we should aim
for a more balanced tree structure. For example, consider again the Bayesian
network in Figure 4.36, but assume now that we have the elimination ordering
B, A, E, C, D:

P (f) =
∑
B

∑
A

∑
E

∑
C

∑
D

P (A, B, C, D, E, f)

=
∑
B

[∑
A

P (A)P (B |A)

]

×
[∑

E

[∑
C

P (C |B)P (E |C)

] [∑
D

P (D |B)P (f |D, E)

]]
.

(4.3)

The corresponding computation tree is shown in Figure 4.38. In this tree
the calculation of P (f) requires only 2 · (2 + 2 · (2 + 2)) = 20 recursive calls.

In the two examples above, we condition on only one variable at a time. The
reason is that both elimination sequences ensure that each time we condition
on a variable, the remaining variables can be partitioned into two d-separated
sets. This, however, is not the case in general. For example, for the elimination
sequence D, C, E, B, A, neither D nor C can alone partition the variables into
independent sets; hence a node in the tree is labeled with both variables (see
Figure 4.39):

4.7 Exact Propagation with Bounded Space 143

P (A) P (B |A) P (C |B) P (D |B)P (E |C) P (f |D, E)

P
A

P
B

P
C

P
D

P
E

Fig. 4.38. The computation tree for the calculation of P (f) in Figure 4.36 using
the elimination sequence B, A,E, C, A.

P (f) =
∑
D

∑
C

∑
E

∑
B

∑
A

P (A, B, C, D, E, f)

=
∑
D

∑
C

[∑
E

P (E |C)P (f |D, E)

]

×
[∑

B

P (C |B)P (D |B)

[∑
A

P (A)P (B |A)

]]
.

It should also be noted that the computation graph is not required to be
binary; for example, if conditioning on a variable partitions the remaining
variables into three or more d-separated sets, then the corresponding node
may have more than two children in the computation tree.

P (A) P (B |A)P (C |B)P (D |B)

P (E |C) P (f |D, E)

P
A

P
B

P
C,D

P
E

Fig. 4.39. The computation tree for the calculation of P (f) in Figure 4.36 using
the elimination sequence D, C, E, B, A.

In general, the set of variables attached to a node T corresponds to the
set of noninstantiated variables shared by its two subtrees Tl and Tr. This set
is also called the cutset for the node:

144 4 Belief Updating in Bayesian Networks

cutset(T) = (dom(Tl) ∩ dom (Tr)) \ a-cutset(T),

where dom(Ti) are the variables that appear in the conditional probability
tables in the subtree Ti and a-cutset(T) is the union of the cutsets associ-
ated with the ancestral nodes for T in the tree (if T is the root node, then
a-cutset(T) = ∅). Thus, the a-cutset is the set of nodes already instantiated.
For example, in the tree in Figure 4.39, the cutset for the root node is {C, D}
and the a-cutset for the node labeled

∑
A is {B, C, A}. In particular, the a-

cutset for the unlabeled node is {B, C, D}, which covers all variables in the
subtree, hence this node is given the empty cutset.

Before we present a more-formal specification of the algorithm it should be
noted that in the above examples we incorporated the evidence f directly in
the computation tree, indicating that a new computation tree is constructed
for each piece of evidence. A more-efficient approach would be to first con-
struct a single computation tree with no evidence inserted. Then, when ev-
idence arrives we simply “record” the variables that should be instantiated
such that no summations are performed for these variables.

Algorithm 4.2 reflects this approach for calculating the probability of a
configuration e based on a computation tree for a Bayesian network. Observe
that at each recursive call we record the corresponding instantiation and un-
record it when the call returns.

Algorithm 4.2 [RecursiveConditioning] In order to calculate P (e) using
recursive conditioning on the tree T , do:

1. If T is the root, then record instantiation e.
2. If T is a leaf, then:

a) Return LookUp(T).
3. Else

a) Set p := 0.
b) For each noninstantiated configuration c of cutset(T) do:

i. Record instantiation c.
ii. Set

p := p +

m∏
i=1

RecursiveConditioning(Ti),

where T1, . . . , Tm are the children of T .
iii. Unrecord instantiation c.

c) Return p.

�

Algorithm 4.3 [LookUp] To find the value of the leaf node T under the
recorded instantiations, do:

1. Let X be the variable associated with T and let P (X | pa(X)) be the con-
ditional probability table assigned to X.

2. If X is instantiated, then:

4.8 Stochastic Simulation in Bayesian Networks 145

a) Let x be the recorded instantiation for X and let π be the recorded
instantiation for pa(X).

b) Return P (x |π).
3. else

a) Return 1.

�

Clearly, this algorithm requires only as much space as is needed to store
the computation tree, and this is linear in the number of variables (hence for
this aspect the shape of the tree is of no importance). However, the situation
is different if we consider the time complexity. The time complexity can be
estimated by counting the number of recursive calls, and it can be shown (see
Exercise 4.38) that for a balanced tree it is O(nw+1) and for an unbalanced
tree it is O(n · exp(w · n))), where w is the size of the largest cutset.

This also indicates that it is important to find a good computation tree
representation of the Bayesian network, and as we also indicated above this is
closely connected with finding a good elimination sequence (see Section 4.6.1).
In fact, given an elimination sequence that produces a maximum clique size
of w, there are algorithms that will return a computation tree in which the
cutset is not larger than w. The idea is to build the tree from the leaves to
the root, where appropriate subtrees are joined according to the sequence in
which the variables are marginalized out.

As for the tree in Figure 4.37, the algorithm above may perform redun-
dant recursive calls to a subtree. This may happen when the a-cutset for
a node/subtree includes a variable that is not in the domain of any of the
probability tables associated with the subtree in question; we shall call all
nonredundant nodes in a-cutset(T) the context for T . A way of controlling
the number of redundant recursive calls is to cache previous calculations.
Since we assume that we do not have enough memory to cache all values,
the trick is therefore to find a good strategy for selecting the values to cache.
If cache?T (x) is a function that determines whether to cache the value for
subtree T evaluated in the context x, we can directly control how much mem-
ory the algorithm is allowed to use. Algorithm 4.2 can easily be modified to
support such a caching strategy: before a recursive call is made in context x
we check whether a value for that context is already stored in the cache; if
this is the case we simply return that value; otherwise, the call is completed
and the result is cached if this is in accordance with cache?T (x).

4.8 Stochastic Simulation in Bayesian Networks

The junction tree based propagation methods described in the beginning of
this chapter require tables for the cliques in the triangulated graph. These
cliques may be very large, and it may happen that the space requirements of
the tables cannot be met by the hardware available. When this is the case

146 4 Belief Updating in Bayesian Networks

either you can make a tradeoff between time and space (using, for example,
recursive conditioning as described in Section 4.7) or you can trade space for
accuracy by using an approximate inference method.

In this section, we give a flavor of a class of approximate methods that are
based on a technique called stochastic simulation. To illustrate the methods,
consider the Bayesian network in Figure 4.40, with the conditional probabili-
ties specified in Table 4.1, and assume that we want to estimate the probabil-
ity of E = y. Now suppose also that we have access to a database containing
configurations over the five variables and for which the distribution of the
configurations follows the probability distribution specified by the Bayesian
network. Given such a database, we can estimate the probability of E = y by
counting the number of cases that contain E = y and divide it by the total
number of cases:

P (E) ≈ N(E = y)

N
.

Since we (usually) do not have access to such a database, stochastic simulation
instead tries to simulate such an access. This is done by drawing a large num-
ber of random configurations over (A, B, C, D, E) using the Bayesian network.
There are several different algorithms for performing this type of sampling,
and their main differences lie in how the samples are generated and how the
probabilities are estimated from the sampled configurations.

A

B C

D E

Fig. 4.40. An example network. All variables have the states y and n.

4.8.1 Probabilistic Logic Sampling

Probabilistic logic sampling is one of the simplest sampling procedures. To il-
lustrate the approach, consider again the Bayesian network in Figure 4.40 and
assume for simplicity that we have not received any evidence. A configuration
can now be sampled by iteratively sampling a state of each of the variables.
First a state of variable A is sampled. A random generator (with an even
distribution) is asked to give a real number between 0 and 1. If the number
is less than 0.4 (the prior probability of A = y), the state is y; otherwise, the

4.8 Stochastic Simulation in Bayesian Networks 147

A
B y n

y 0.3 0.8
n 0.7 0.2

A
C y n

y 0.7 0.4
n 0.3 0.6

B
D y n

y 0.5 0.1
n 0.5 0.9

P (B |A) P (C |A) P (D |B)

C
D y n

y (0.9, 0.1) (0.999, 0.001)
n (0.999, 0.001) (0.999, 0.001)

P (E |C, D)

Table 4.1. The conditional probabilities for the example network. P (A) = (0.4, 0.6).

state is n. Assume that the result is y. From the conditional probability table
P (B |A), we have that P (B | y) = (0.3, 0.7). The random generator is asked
again, and if the number is less than 0.3, the state of B is y. This procedure
continues until we also have a state for C, D, and E. Observe that the se-
quence in which we generate the sample follows the topological ordering of
the nodes in the network: we start at the nodes without parents and work
ourselves toward the nodes without children; when visiting a variable we sam-
ple a state for that variable using its associated probability table conditioned
on the configuration of the parent variables that have already been sampled.

The next configuration is sampled through the same procedure, and this is
repeated until N configurations have been sampled. In Table 4.2, an example
set of configurations is given.

CDE
AB yyy yyn yny ynn nyy nyn nny nnn

yy 4 0 5 0 1 0 2 0
yn 2 0 16 0 1 0 8 0
ny 9 1 10 0 14 0 16 0
nn 0 0 4 0 0 0 7 0

Table 4.2. A set of 100 configurations of (A, B, C, D, E) sampled from the network
in Figure 4.40 and Table 4.1.

The probability distributions for the variables can now be calculated by
counting in the sample set (see Exercise 4.39). For example, for 99 of the sam-
ples in Table 4.2, the state of E is y, and this gives an estimated probability:

P (E) ≈
(

N(E = y)

N
,
N(E = n)

N

)
=

(
99

100
,

1

100

)
= (0.99, 0.01).

148 4 Belief Updating in Bayesian Networks

So far, only marginal probabilities have been calculated. However, a
straightforward approach to handle evidence is simply to discard the config-
urations that do not conform to it. In other words, a new series of stochastic
simulations is started, and whenever a state of an observed variable is drawn,
you stop simulating if the state drawn is not the one observed. In general,
if we have evidence e and we are interested in estimating P (Xk | e) using N
samples, then probabilistic logic sampling can be performed as follows:

1. Let (X1, . . . , Xn) be a topological ordering of the variables.
2. For j = 1 to N :

a) For i = 1 to n:
- Sample a state xi for Xi using P (Xi | pa(Xi) = π), where π is the

configuration already sampled for pa(Xi).
b) If x = (x1, . . . , xn) is consistent with e, then

N(Xk = xk) := N(Xk = xk) + 1,

where xk is the state that was sampled for Xk.
3. Return:

P (Xk = xk | e) ≈ N(Xk = xk)∑
x∈sp(Xk) N(Xk = x)

.

The preceding method does not require a triangulation of the network, nor
is it necessary to store the sampled configurations (as we did in Table 4.2).
It is enough to store the counts for each variable of interest. Whenever a
sampled configuration has been determined, the counts of all variables are
updated, and the sample can be discarded. The method therefore saves much
space, and each configuration is determined in time linear in the number of
variables. These benefits, however, come at the expense of accuracy and time.
In particular, this method has a serious drawback when the probability of
the evidence is small. For instance, assume that for the preceding example we
have the observations B = n and E = n. The probability for (B = n, E = n)
is 0.00282, which means that in order to get 100 configurations, you should for
this tiny example expect to perform more than 35,000 stochastic simulations.
In general, since the probability of the evidence drops off exponentially fast,
this method can be hopelessly time-consuming even when we have only a few
pieces of evidence.

4.8.2 Likelihood Weighting

You might be tempted to overcome the shortcoming of probabilistic logic
sampling by simply fixing the evidence variables E to their observed states
and sample only from the nonevidence variables; in this way no samples need
to be discarded. However, since a sample is generated by going from the root
nodes down to the leaves, this naive procedure would result in a sample in
which the value for a given variable takes only the evidence from its ancestors

4.8 Stochastic Simulation in Bayesian Networks 149

into account and not the evidence pertaining to the variables further down in
the network. For example, if we should try to estimate P (A |B = n, E = n)
using this modified sampling procedure we would actually estimate P (A). The
problem is that instead of sampling from the distribution P (U , e) specified
by the evidence and the Bayesian network, we are in fact sampling from a
probability distribution somewhere in between the prior distribution P (U)
and the posterior distribution P (U | e). To be more precise, if pa(X)′′ are the
parents of X that have received evidence (pa(X) = pa(X)′∪pa(X)′′), then the
joint distribution P (U , e) that we would like to sample from can be expressed
as

P (U , e) =
∏

X∈U\E

P (X | pa(X)′, pa(X)′′ = e)

︸ ︷︷ ︸
Part 1

×
∏
X∈E

P (X = e | pa(X)′, pa(X)′′ = e)

︸ ︷︷ ︸
Part 2

.
(4.4)

However, the distribution that we are actually sampling from is

Sampling distribution =
∏

X∈U\E

P (X | pa(X)′, pa(X)′′ = e),

which corresponds only to Part 1 of equation (4.4).
Fortunately, this also points to a simple way of compensating for the esti-

mation problem above: weigh each of the generated samples x with a weight
corresponding to Part 2 of equation (4.4). That is, instead of adding 1 to
the count N(Xi) (as we did for probabilistic logic sampling) we add a weight
w(x, e):

w(x, e) =
∏
E∈E

P (E = e | pa(X) = π),

where π is the configuration of pa(X) specified by x and e.
This updating approach, called likelihood weighting, ensures that we get

the correct counts for estimating the probabilities. This can also be seen by
combining the weight calculation and the sampling distribution, which to-
gether correspond to the distribution P (U , e).

Now consider again the example network above and assume that we want
to estimate P (A |B = n, E = n). As before, we start by sampling a state of A
using a random generator (let the resulting state be y). Since B has received
the evidence B = n, no state is sampled, and instead we continue to C and
sample a state using P (C |A = y) = (0.7, 0.3); assume that the sampled state
is n. Next we sample a state for D using P (D |B = n) = (0.5, 0.5) (assume
that we get D = y). Since E has received evidence, E = n, we now have a
complete configuration over all five variables and the sampling stops. Next we
calculate the weight associated with the sampled configuration:

150 4 Belief Updating in Bayesian Networks

w((A = y, B = n, C = n, D = y, E = n), (B = n, E = n))

= P (B = n |A = y)P (E = n |C = n, D = y) = 0.7 · 0.001 = 0.0007.

This value is then added to N(A = y) (and to N(C = n) and N(D = y)
as well if we are also interested in the probabilities for these two variables).
We then continue to generate samples (and weights) as above, and when
a sufficient number of samples has been generated we return the estimate
P (A |B = n, E = n) ≈ N(A = y)/(N(A = y) + N(A = n)).

In general, if we are interested in estimating P (Xk | E = e) using N sam-
ples, then the likelihood weighting algorithm can be summarized as follows:

1. Let (X1, . . . , Xn) be a topological ordering of the variables.
2. For j = 1 to N :

a) w:=1.
b) For i = 1 to n:
- Let x′ be the configuration of (X1, . . . , Xi−1) specified by e and the

previous samples.
- If Xi �∈ E , then:

- Sample a state xi for Xi using P (Xi | pa(Xi) = π), where
pa(Xi) = π is consistent with x′.

- else
w := w · P (Xi = ei | pa(Xi) = π), where pa(Xi) = π is consistent
with x′.

c) N(Xk = xk) := N(Xk = xk) + w, where xk is the sampled state for
Xk.

3. Return:

P (Xk = xk | e) ≈ N(Xk = xk)∑
x∈sp(Xk) N(Xk = x)

.

Although likelihood sampling is an improvement over probabilistic logic
sampling it may still require a large number of samples. This is typically the
case when there is a large difference between the sampling distribution and
P (U , e) and, again, this is often the case when the evidence is unlikely.

4.8.3 Gibbs Sampling

Other methods have been constructed for dealing with this problem. A widely
used method is Gibbs sampling. In Gibbs sampling, you start with some config-
uration consistent with the evidence (for example determined by probabilistic
logic sampling), and then you randomly change the state of the variables in
topological order. In one sweep through the variables, you determine a new
configuration, and then you use this configuration for a new sweep, and so on.
From this perspective, Gibbs sampling differs from the above two procedures
by generating a new sample based on the current one.

Consider again the example above and let the evidence be B = n and
E = n. Assume also that we are given the starting configuration ynyyn. Now,

4.8 Stochastic Simulation in Bayesian Networks 151

to generate a sample we first calculate the probability of A given the other
states of that configuration, that is, P (A |B = n, C = y, D = y, E = n). From
the network, we see that the Markov boundary for A includes only B and C;
hence it is sufficient to calculate P (A |B = n, C = y). It is easily done by
Bayes’ rule, which gives (0.8, 0.2). We then draw a number from the random
generator, and let us assume that the number is 0.456, resulting in A = y.
The next free variable is C. We calculate

P (C |A = y, B = n, D = y, E = n) = P (C |A = y, D = y, E = n)

= (0.996, 0.04),

and draw a number from the random generator; assume that it results in
C = y.

In general, the calculation proceeds as follows. Let A be a variable in a
Bayesian network BN , let B1, . . . , Bn be the remaining variables, and let b =
(b1, . . . , bn) be a configuration of (B1, . . . , Bn). Then, P (A,b) is the product
of all conditional probabilities in BN with Bi instantiated to bi. Therefore,
P (A,b) is proportional to the product of the potentials involving A, and
P (A |b) is the result of normalizing this product. Note that the calculation
of P (A |b) is a local task.

To return to the example, the next variable is D, and we follow the same
procedure. Assume that the result is D = n. Then the configuration from the
first sweep is ynynn. The next sweep follows the same procedure. Assume that
the state of A changes to n. Then we calculate P (C |A = n, D = n, E = n)
and so forth.

In this way, a large sample of configurations consistent with the observa-
tions is produced. The question is whether the sample is representative of the
probability distribution. It is not always so. It may be that the initial config-
uration is rather improbable, and therefore the first samples likewise are out
of the mainstream. For this reason you usually discard the first 5-10% of the
samples. It is called the burn-in. A related problem is the dependence among
the samples: two successive samples will in general not be independent, since
the second sample is generated by altering the first sample. In this way, these
samples are also not representative of the probability distribution, and you
therefore typically try to compensate for this by recording samples only at
certain intervals.

Another problem is that you may be stuck in certain “areas” of the con-
figurations. Perhaps there is a set of very likely configurations, but in order to
reach them from the one you are in, a variable should change to a state that
is highly improbable given the remaining configuration (see Exercise 4.43).

Finally, the method relies on an initial starting configuration. Unfortu-
nately, it may be very hard to find such a configuration, and in fact this
problem is NP-hard (see Exercise 4.44).

152 4 Belief Updating in Bayesian Networks

4.9 Loopy Belief Propagation

There is a popular approximate method that is not a version of sampling. It
is called loopy belief propagation (LBP). LPB has been extremely successful
in a setting not directly connected to Bayesian networks, namely in error-
correcting codes; the so-called turbo codes.

LBP is a message passing algorithm similar to the junction tree algorithm
in Section 4.4. However, instead of having cliques in a junction tree for passing
messages, it uses the nodes in the Bayesian network directly.

The message passing structure consists of one node for each variable in the
Bayesian network. A node representing the variable A holds the conditional
probability table P (A | pa(A)), and it can process potentials over fa(A) (the
variables involved in the table). The neighbors of a node representing A are the
neighbors of A in the Bayesian network, and the messages being passed over
the links are potentials over the shared variables. We shall stick to the term
separator for the domains of the potentials being passed over links, though
these domains need not separate any variables from others. The structure is
illustrated in Figure 4.41.

(a) (b)

A

A

A

B B

B

B

C

C

C

D

D

D

E
E

P (A)

P (B |A)

P (C |B) P (D |B)

P (E |C, D)

Fig. 4.41. (a) A Bayesian network. (b) The corresponding message-passing struc-
ture for LPB. Each node holds the corresponding variable’s conditional probability
table; the domain of a node is the variable’s family. The square box on a link indi-
cates the separator (the domain for the potentials to be passed over that link).

Note that all separators consist of one variable. If B is a child of A then
the separator is A.

The processing of messages is similar to the one for junction trees: a mes-
sage is sent to a neighbor by multiplying the incoming messages from all other

4.9 Loopy Belief Propagation 153

neighbors to the potential it holds and marginalizing the result down to the
separator. This is illustrated in Figure 4.42.

A

A

B

B

C

C C

D E

P (C |A, B)

φA φB

φD φE

λC(A)

πE(C)

λC(A) =
P

B,C P (C |A, B)φBφDφE

πE(C) = φD

P
A,B

P (C |A, B)φAφB

Fig. 4.42. The node C holding P (C |A, B) has received all messages (the φs). It
sends a λ-message to its parent A and a π-message to its child E.

A message from a parent variable to a child variable is called a π-message
(because it is in fact a probability distribution), and a message from a child
to a parent is called a λ-message (for likelihood).

Since the structure may not be a tree, you cannot use the rule that a
node can send to a neighbor when it has received a message from all its other
neighbors. In Figure 4.41, only the node A can send a message. All other nodes
wait for a message that never comes. Instead, you have a marching regime; at
each step all nodes send messages to each neighbor using the messages they
have received so far from the other neighbors. After each step, any node A
can calculate an estimate of its own probability distribution: take the product
of P (A| pa(A)) and all incoming messages, marginalize it down to A, and
normalize.

Now you let the method march step by step, monitor the development
of the probability distributions, and use some stopping criterion. There is
no guarantee that the method will converge, nor is there any guarantee that
in case of convergence it will converge to the correct posterior distributions.
On the other hand, very much experience has been gained, and the method
converges to the correct posteriors surprisingly often.

However, sometimes the method is guaranteed to converge correctly, for
example, if the network is singly connected (there are no multiple paths in the
network). In that case, the junction tree will be exactly the structure for LBP
(see Exercise 4.23), and when the method has marched twice the number of
links in the network, the messages will be the same as the messages in the
junction tree algorithm.

154 4 Belief Updating in Bayesian Networks

Unfortunately, this result is not of any use. If the Bayesian network is
singly connected, the cliques are small, and exact junction tree propagation
is no problem. As mentioned above, LBP does very often give good results,
and much research is now directed at understanding why and characterizing
situations in which you are guaranteed a result within a reasonable margin of
tolerance.

4.10 Summary

Exact Belief Updating

Exact belief updating can be performed by message passing in a junction tree
representation of the Bayesian network. The junction tree is obtained after
triangulating the moral graph of the Bayesian network.

Moral graph: The moral graph of a Bayesian network is obtained by inserting
a link between all pairs of variables with a common child, and dropping the
direction on all arcs.

Triangulated graph: An undirected graph with a perfect elimination sequence
is called a triangulated graph. If a graph is not triangulated, you can insert
additional links (determined by, for example, node elimination), making it
triangulated.

Node elimination: A node is eliminated by inserting a link between each pair
of its noneliminated neighboring nodes.

Perfect elimination sequence: An elimination sequence is perfect if all nodes
can be eliminated according to that sequence without inserting a link between
a pair of noneliminated variables.

Clique: A complete set is a clique if it is not a subset of another complete set
(a maximal complete set).

Join tree: Let G be the set of cliques from an undirected graph, and let the
cliques of G be organized in a tree T . Then T is a join tree if for any pair of
nodes V , W all nodes on the path between V and W contain the intersection
V ∩W .

Junction tree: Let Φ be a set of potentials with a triangulated domain graph,
G. A junction tree for Φ is a join tree for G with the following addition: each
potential φ in Φ is attached to a clique containing dom(φ); each link has the
appropriate separator attached; each separator contains two mailboxes, one

4.10 Summary 155

for each direction.

Message passing: Let V be a clique with set of potentials ΦV , and let S be a
neighboring separator. Let S1, . . . , Sk be the other neighboring separators of
V . Assume that each Si has received a message Ψi for V . Then V can pass
the message (ΦV ∪ Ψ1 ∪ · · · ∪ Ψk)↓S to S.

Belief updating (calculating marginals): Let the junction tree T represent the
Bayesian network BN over the universe U and with evidence e. Assume that
each mailbox contains a message.

1. Let V be a clique with set of potentials ΦV , and let S1, . . . , Sk be V ’s
neighboring separators and with V -directed messages Ψ1, . . . , Ψk. Then,

P (V, e) =
∏

ΦV

∏
Ψ1 · · ·

∏
Ψk.

2. Let S be a separator with the sets ΨS and ΨS in the mailboxes. Then,

P (S, e) =
∏

ΨS

∏
ΨS .

Belief Updating with Bounded Space

If there is not enough space to perform junction tree propagation, you may
reduce the space complexity by applying a divide-and-conquer strategy: re-
cursively condition on a variable (or subset of the variables) to be eliminated,
solve the new smaller problems, and add up the results. A cache may be
introduced to trade space for time.

Approximate Belief Updating

Stochastic simulation: Estimate P (X | e) by sampling a large number of ran-
dom configuration over the variables in the Bayesian network. Throw away
the configurations that are inconsistent with e, and let N ′ be the resulting
number of cases. Then

P (X | e) ≈ N ′(X)

N ′
.

Likelihood weighting: Estimate P (X | e) by sampling a large number of random
configurations over the noninstantiated variables in the Bayesian network.
Weigh each configuration (x, e) with

w(x, e) =
∏
E∈E

P (E = e | pa(X) = π),

where E are the evidence variables, and π is the configuration of pa(X) spec-
ified by x and e.

156 4 Belief Updating in Bayesian Networks

Gibbs sampling: Estimate P (X | e) by sampling a large number of random
configurations over the noninstantiated variables in the Bayesian network. A
sample is generated by starting with a configuration consistent with the evi-
dence, and randomly changing the state of a variable by following the topo-
logical order.

Loopy belief updating (LBP): LBP is a message-passing algorithm that works
directly on the Bayesian network. Messages are similar to those in junction
trees, but in LBP they are passed between the families of variables in the
Bayesian network.

4.11 Bibliographical Notes

Loopy belief propagation is rooted in a version of probability updating for
singly connected DAGs through message passing presented by Kim and Pearl
(1983). In (Pearl, 1986), cutset-conditioning was used to reduce propagation
in multiply connected networks to propagation in singly connected networks.
Shachter (1986) introduced arc reversal and uses it for a probability updating
procedure in the bucket elimination style. Two versions of join tree propa-
gation were presented in the late 1980s. Shafer and Shenoy (1990) proposed
the method presented in this book. They did not exploit lazy evaluation but
worked with multiplied potentials. Lauritzen and Spiegelhalter (1988) and
Jensen et al. (1990b) proposed what is now called the Hugin method. It also
works with multiplied potentials, but the potentials in the cliques are changed
dynamically. This, together with a division operation in the separators, re-
duced the calculation substantially for join trees with branching higher than
three. A detailed study of the similarities and differences of the two methods
is reported in (Shafer, 1996). Lazy propagation (Madsen and Jensen, 1999b)
dissolves the difference between Shafer-Shenoy and Hugin propagation.

The concepts of triangulated graphs and join trees have been discovered
and rediscovered with various names. In (Bertele and Brioschi, 1972), they
are used for dynamic programming, and Beeri et al. (1983) uses them for
database management. A good reference on triangulated graphs is (Golumbic,
1980). The heuristic for triangulating nontriangulated domain graphs given
in this chapter is due to Kjærulff (1990), and more can be found in (Cano
and Moral, 1995). The problem of inference in dynamic Bayesian networks
has been treated in (Boyen and Koller, 1998).

Recursive conditioning was introduced in (Darwiche, 2001). Probabilis-
tic logic sampling was proposed by Henrion (1988), and Fung and Chang
(1990) and Shachter and Peot (1990) introduced likelihood-weighted sampling
for Bayesian networks. Gibbs sampling was originally introduced for image
restoration by Geman and Geman (1984). Gilks et al. (1994) have developed
a system, BUGS, for Gibbs sampling in Bayesian networks.

Exercises 157

4.12 Exercises

Exercise 4.1. BN has the potentials in Table 4.3.

A
B y n

y 0.2 0.6
n 0.8 0.4

B
C y n

y 0.3 0.2
n 0.7 0.8

C
D y n

y 0.9 0.6
n 0.1 0.4

P (B |A) P (C |B) P (D |C)

Table 4.3. Potentials for Exercise 4.1. P (A) = (0.2, 0.8).

(i) Calculate P (A |D = y).
(ii) Calculate P (C |D = y).

Exercise 4.2. BN has the potentials in Table 4.4.

A
B y n

y 0.2 0.6
n 0.8 0.4

B
C y n

y 0.1 0.5
n 0.9 0.5

B
D y n

y 0.7 0.4
n 0.3 0.6

P (B |A) P (C |B) P (D |B)

Table 4.4. Potentials for Exercise 4.2. P (A) = (0.2, 0.8).

(i) Calculate P (A |C = y, D = y).
(ii) Calculate P (A |D = y).

Exercise 4.3. BN has the potentials in Table 4.5.

A
B y n

y 0.2 0.6
n 0.8 0.4

A
C y n

y 0.1 0.5
n 0.9 0.5

B
C y n

y (0.3, 0.7) (0.2, 0.8)
n (0.9, 0.1) (0.6, 0.4)

P (B |A) P (C |A) P (D |B,C)

Table 4.5. Potentials for Exercise 4.3. P (A) = (0.2, 0.8).

(i) Calculate P (A |D = y), P (B |D = y), P (C |D = y).

158 4 Belief Updating in Bayesian Networks

(ii) Calculate P (B |C = y).

Exercise 4.4. Consider the Bayesian network in Figure 4.43. All variables
have three states.

A

B

C

D

E

F

G

H

Fig. 4.43. The network for Exercise 4.4.

(i) Calculate the size of the table P (A, B, C, D, E, F, G = g1, H = h1).
(ii) In the calculation of P (A |G = g1, H = h1), the variables have been

marginalized in the following order: B, F, D, E, C. Calculate the size of
each table produced in the process, and compare the sum with the result
of (i).

(iii) Determine an elimination order yielding a sum smaller than the one from
(ii).

Exercise 4.5. We have the potentials φ1(A1, A2, A3), φ2(A2, A3, A5), φ3(A1,
A3, A4), φ4(A5, A6) over the universe {A1, A2, A3, A4, A5, A6}.

(i) Determine the domain graph.
(ii) Eliminate A3.
(iii) Determine the domain graph for the resulting set of potentials.

Exercise 4.6. We have the potentials φ1(A1, A2, A3), φ2(A2, A4, A5), φ3

(A4, A6, A7), φ4(A1, A6, A8) over the universe {A1, A2, A3, A4, A5, A6,
A7, A8}.

(i) Determine the domain graph.
(ii) Eliminate A1.
(iii) Determine the domain graph for the resulting set of potentials.

Exercises 159

Exercise 4.7. Write a short algorithm that takes as input a Bayesian network
over nodes X1, . . . , Xn and an elimination sequence for all nodes but Xi, and
which outputs the maximum table size that would be used during computation
of P (Xi) using this elimination sequence.

Exercise 4.8. Consider the Bayesian network given in Figure 4.44. What
would the elimination trees (such as those in Figures 4.2 to 4.7) look like for
the two elimination orders C, F, G, B, E, D and F, E, G, D, C, B?

A

B

C

D

E

F G

Fig. 4.44. A Bayesian network.

Exercise 4.9. Prove Proposition 4.1.

Exercise 4.10. What is (
∏

φ)↓A for the Bayesian network in Figure 4.44?

Exercise 4.11. What are the domains encoded by the domain graph in Fig-
ure 4.45? Give an example of an elimination sequence ending with C. What
do the intermediate domain graphs look like as you apply the elimination
sequence? Is the sequence perfect?

Exercise 4.12. Consider the domain graph for the potentials in Exercise 4.5.
Determine a perfect elimination sequence ending with A1.

Exercise 4.13. Consider the domain graph for the potentials in Exercise 4.6.
Does the graph have a perfect elimination sequence?

Exercise 4.14. Consider the Bayesian network in Figure 4.43.

(i) Determine the domain graph.
(ii) Does the domain graph have a perfect elimination sequence?

160 4 Belief Updating in Bayesian Networks

A

B

CD

EF

G

Fig. 4.45. A domain graph.

GA

B

C

D

F

E

Fig. 4.46. The graph for Exercise 4.15.

Exercise 4.15. Consider the graph in Figure 4.46.

(i) Determine the simplicial nodes.
(ii) Is the graph triangulated?

Exercise 4.16. Consider the graph in Figure 4.47.

FA

B

C

D

E

Fig. 4.47. The graph for Exercise 4.16.

(i) Determine the simplicial nodes.
(ii) Is the graph triangulated?

Exercises 161

Exercise 4.17. Definition Let G be an undirected graph with node set U .
A path in G is a sequence A1, . . . , An of distinct nodes; where Ai and Ai+1 are
neighbors. A cycle is a path except A1 = An, and all other nodes are distinct.
A chord in a cycle A1, . . . , An is a link between two nodes Ai and Aj that
are not neighbors on the path. The graph G is chord-saturated if any cycle of
length > 3 has a chord.

(i) Prove that any triangulated graph is chord-saturated. (Hint: Use induction
and the fact that any cycle through a simplicial node must have a chord.)

(ii) Prove the following decomposition lemma. Let G be a incomplete chord-
saturated graph with at least three nodes and with node set U . Then
there is a complete subset S of U such that G \ S is disconnected. (Hint:
Let A and B be two nonadjacent nodes, and let S be a minimal set of
nodes such that any path connecting A and B contains a node from S.
Use chord saturation and minimality of S to prove that S is complete.)

(iii) Prove that any chord-saturated graph is triangulated. (Hint: Use (ii) to
prove that any incomplete chord-saturated graph with at least two nodes
has at least two simplicial nodes.)

Exercise 4.18. Prove that the moral graph of the graph in Figure 4.48 is
triangulated. Give an example of a join tree for the graph.

A

B

CDE

F G

Fig. 4.48. A Bayesian network.

Exercise 4.19. Consider the domain graph from Exercise 4.5.

(i) Determine the cliques.
(ii) Construct a join tree for the graph.

Exercise 4.20. Consider the graph in Figure 4.47.

(i) Determine the cliques.

162 4 Belief Updating in Bayesian Networks

(ii) Construct a join tree for the graph.

Exercise 4.21. Consider the Bayesian network in Figure 4.49. Construct a
join tree.

A B C

D EF G

H I J K

Fig. 4.49. The Bayesian network for Exercise 4.21.

Exercise 4.22. Let A and B be any two adjacent nodes in a join tree for a
Bayesian network M with separator S = A ∩ B. Furthermore, let UA be the
variables in the nodes found in the part of the join tree on A’s side of the link,
and UB those found in nodes on B’s side of the link. Prove that for any two
nodes A ∈ UA \ S and B ∈ UB \ S, we have that A and B are d-separated by
S.

Exercise 4.23. A directed acyclic graph is singly connected if the graph you
get by dropping the directions of the links is a tree (the graph in Figure 4.49
is singly connected).

(i) Prove that the moral graph of a singly connected graph is triangulated.
(Hint: If you successively eliminate a node with exactly one parent and
no children or with no parents and exactly one child, then the result is a
moral graph for a singly connected graph.)

(ii) Prove that the separators in a join tree for a singly connected graph consist
of exactly one node. (Hint: If the neighbors A and B share the neighbors
C and D, then C and D are neighbors.)

Exercise 4.24. Consider the Bayesian network in Exercise 4.21.
Indicate the potentials to communicate in a full lazy propagation with

evidence F = f , I = i, E = e.

Exercise 4.25. Expand the join tree in Figure 4.16 to a junction tree, and
add the potentials defined by the domain graph in Figure 4.14 to suitable
cliques. Which messages are sent if evidence is collected to node CG?

Exercise 4.26. Consider the Bayesian network in Figure 4.50.

Exercises 163

A B

C

D E F

G H

Fig. 4.50. The Bayesian network for Exercise 4.26.

(i) Construct a junction tree.
(ii) Indicate the potentials to communicate in a full lazy propagation without

evidence.
(iii) Indicate the potentials to communicate with evidence D = d and H = h.

Exercise 4.27. Prove Proposition 4.5. (Hint: Assume a deadlock (no trig-
gered nodes).)

Exercise 4.28. Show that any asynchronous full order of message pass-
ing corresponds to a CollectEvidence(R) followed by a DistributeEvi-
dence(R) for some node R. (Hint: Look at the first node that receives all its
messages.)

Exercise 4.29. Triangulate the domain graph from Exercise 4.6.

Exercise 4.30.

(i) Construct a junction tree for the Bayesian network in Figure 4.51 by using
the elimination order F, J, B, A, I, K, E.

(ii) The numbers inside the nodes indicate the number of states. Use the
heuristics from Section 4.6.1 to construct a junction tree.

Exercise 4.31. What is the moral graph of the Bayesian network in Fig-
ure 4.44? Assuming that each node has 10 states, use the heuristics following
Definition 4.8 to triangulate the graph. Would the result be the same if each
node had 2 states instead?

Exercise 4.32. Consider the Bayesian network in Figure 4.29, and let the
number of states be as listed in Section 4.6.1. Find a better triangulation
than the one obtained by using the heuristics from Section 4.6.1.

164 4 Belief Updating in Bayesian Networks

A 2

B 2 C 2

D 3 E 3

F 5

G 2

H 3

I 2

J 5

K 4

Fig. 4.51. The Bayesian network for Exercise 4.30.

Exercise 4.33. (Conditioning) Propagation methods for DAGs without mul-
tiple paths have existed for a long time. A propagation method for multiply
connected DAGs consists in reducing a DAG to a set of singly connected
DAGs.

(i) Consider the DAG (a) in Figure 4.52 with P (A), P (B |A), P (C |A), and
P (D |B, C) given. Assume that A = a. Show that the DAG is reduced to
the DAG (b) with P (B, a), P (C, a), and P (D |B, C) given. (Hint: Use the
chain rule.. Calculate P (B, a) and P (C, a).

A

B C

D

(a)

B C

D

(b)

A

C

D

(c)

Fig. 4.52. Figures for Exercise 4.33(i)–(v).

(ii) Show that P (D, a) =
∑

B,C P (D |B, C)P (B, a)P (C, a).
(iii) Assume that for all states a of A we have a reduced DAG as in (i). Let

evidence e be entered and propagated in all the reduced DAGs, yielding
P (B, a, e), P (C, a, e), P (D, a, e) for all a. Calculate P (B, e) and P (A, e).
This procedure is called conditioning on A.

Exercises 165

(iv) Reduce the DAG by conditioning on B. Show that the tables are P (A, b),
P (C |A), and P (D |C, b).

(v) Show that conditioning on D does not result in a singly connected DAG.
Conditioning over several variables can be performed stepwise.

(vi) Determine a minimal set of conditioning variables for the DAG in Fig-
ure 4.53 to reduce it to singly connected DAGs.

A 2 B 2 C 4

D 3 E 5 F 2

G 2

Fig. 4.53. Figure for Exercise 4.33 (vi)–(vii).

(vii) The numbers attached to the variables indicate the number of states. De-
termine a conditioning resulting in a minimal number of singly connected
DAGs.

Exercise 4.34. Let C be the set of cliques from a triangulated graph. A pre-
J -tree is a tree over C with separators S = V ∩W for adjacent cliques V, W .
The weight of a pre-J -tree is the sum of the number of variables in the
separators.

(i) Prove that a join tree is a pre-J -tree of maximal weight.
(ii) Prove that any pre-J -tree of maximal weight is a join tree.

Exercise 4.35. (i) Consider the graph in Figure 4.35. Determine a triangu-
lation such that no clique contains more than four nodes.

(ii) Expand the model in Figure 4.34 to six time slices. Can this model be
triangulated such that no clique contains more than four nodes?

Exercise 4.36. Consider the Bayesian network in Figure 4.54, where each
variable is binary, with probabilities defined as P (A = a1) = 0.1, P (B =
b1 | a1) = 0.1, P (B = b1 | a2) = 0.9, P (C = c1 | b1) = 0.1, P (C = c1 | b2) = 0.9,
P (D = d1 | c1) = 0.1, and P (D = d1 | c2) = 0.9. Using recursive conditioning,
calculate P (a1 | d1).

Exercise 4.37. Construct two time slices of the model in Figure 3.52. Using
recursive conditioning, what would a computation tree for calculating P (C2)
look like?

166 4 Belief Updating in Bayesian Networks

A B C D

Fig. 4.54. A simple Bayesian network.

Exercise 4.38. Show that the worst case complexity of Algorithm 4.2 is O(n·
exp (wn)), and that the complexity for a balanced tree is O(nw+1).

Exercise 4.39. Calculate the marginals from the sample in Table 4.2 and
compare the result with the exact marginals.

Exercise 4.40. From the configurations in Table 4.2, estimate the following
probability distributions: P (A), P (A |D = n), and P (C, D |B = y, E = n).

Exercise 4.41. Does your software tool allow for sampling from a Bayesian
network model? Which kind of sampling technique is used?

Exercise 4.42. Using the sequence of random numbers in Table 4.41 generate
as many full samples as you can for the Bayesian network model given in
Figure 4.46, with conditional probabilities as defined in Table 4.1 and evidence
B = n, using first probabilistic logic sampling, then likelihood weighting,
then Gibbs sampling using sampling sequence A, C, D, E, and finally Gibbs
sampling using sampling sequence A, D, E, C.

1 0.80 5 0.33 9 0.55 13 0.14
2 0.19 6 0.08 10 0.71 14 0.42
3 0.85 7 0.52 11 0.06 15 0.32
4 0.28 8 0.65 12 0.78 16 0.11

Table 4.6. A sequence of random numbers in the interval [0, 1].

Exercise 4.43. The binary variables A and B are parents of the binary vari-
able C. We have P (A) = P (B) = (0.5, 0.5), and the conditional probability
table is an exclusive OR table (C = y if and only if exactly one of A and B
is in the state y). Show that Gibbs sampling on this structure will give either
P (C = y) = 1 or P (C = n) = 1.

Exercise 4.44. Given a Bayesian network over U with evidence e entered,
show that it is NP-hard to find a configuration U∗ such that P (U∗, e) > 0.
(Hint: Look at Exercise 3.27.)

