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Causal and Bayesian Networks

In this chapter we introduce causal networks, which are the basic graphi-
cal feature for (almost) everything in this book. We give rules for reasoning
about relevance in causal networks; is knowledge of A relevant for my belief
about B? These sections deal with reasoning under uncertainty in general.
Next, Bayesian networks are defined as causal networks with the strength of
the causal links represented as conditional probabilities. Finally, the chain
rule for Bayesian networks is presented. The chain rule is the property that
makes Bayesian networks a very powerful tool for representing domains with
inherent uncertainty. The sections on Bayesian networks assume knowledge of
probability calculus as laid out in Sections 1.1–1.4.

2.1 Reasoning Under Uncertainty

2.1.1 Car Start Problem

The following is an example of the type of reasoning that humans do daily.
“In the morning, my car will not start. I can hear the starter turn, but

nothing happens. There may be several reasons for my problem. I can hear
the starter roll, so there must be power from the battery. Therefore, the most-
probable causes are that the fuel has been stolen overnight or that the spark
plugs are dirty. It may also be due to dirt in the carburetor, a loose connection
in the ignition system, or something more serious. To find out, I first look at
the fuel meter. It shows half full, so I decide to clean the spark plugs.”

To have a computer do the same kind of reasoning, we need answers to
questions such as, “What made me conclude that among the probable causes
“stolen fuel”, and “dirty spark plugs” are the two most-probable causes?” or
“What made me decide to look at the fuel meter, and how can an observation
concerning fuel make me conclude on the seemingly unrelated spark plugs?”
To be more precise, we need ways of representing the problem and ways of
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performing inference in this representation such that a computer can simulate
this kind of reasoning and perhaps do it better and faster than humans.

For propositional logic, Boolean logic is the representation framework, and
various derived structures, such as truth tables and binary decision diagrams,
have been invented together with efficient algorithms for inference.

In logical reasoning, we use four kinds of logical connectives: conjunction,
disjunction, implication, and negation. In other words, simple logical state-
ments are of the kind, “if it rains, then the lawn is wet,” “both John and Mary
have caught the flu,” “either they stay at home or they go to the cinema,” or
“the lawn is not wet.” From a set of logical statements, we can deduce new
statements. From the two statements “if it rains, then the lawn is wet” and
“the lawn is not wet,” we can infer that it is not raining.

When we are dealing with uncertain events, it would be nice if we could
use similar connectives with certainties rather than truth values attached, so
we may extend the truth values of propositional logic to “certainties,” which
are numbers between 0 and 1. A certainty 0 means “certainly not true,” and
the higher the number, the higher the certainty. Certainty 1 means “certainly
true.”

We could then work with statements such as, “if I take a cup of coffee
while on break, I will with certainty 0.5 stay awake during the next lecture”or
“if I take a short walk during the break, I will with certainty 0.8 stay awake
during the next lecture.” Now, suppose I take a walk as well as have a cup
of coffee. How certain can I be to stay awake? To answer this, I need a rule
for how to combine certainties. In other words, I need a function that takes
the two certainties 0.5 and 0.8 and returns a number, which should be the
certainty resulting from combining the certainty from the two statements.

The same is needed for chaining: “if a then b with certainty x,” and “if b
then c with certainty y.” I know a, so what is the certainty of c?

It has turned out that any function for combination and chaining will in
some situations lead to wrong conclusions.

Another problem, which is also a problem for logical reasoning, is abduc-
tion: I have the rule “a woman has long hair with certainty 0.7.” I see a
long-haired person. What can I infer about the person’s sex?

2.1.2 A Causal Perspective on the Car Start Problem

A way of structuring a situation for reasoning under uncertainty is to construct
a graph representing causal relations between events.

Example 2.1 (A reduced Car Start Problem).
To simplify the situation, assume that we have the events {yes,no} for

Fuel?, {yes,no} for Clean Spark Plugs?, {full, 1
2 , empty} for Fuel Meter, and

{yes, no} for Start?. In other words, the events are clustered around vari-
ables, each with a set of outcomes, also called states. We know that the
state of Fuel? and the state of Clean Spark Plugs? have a causal impact on
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the state of Start?. Also, the state of Fuel? has an impact on the state of
Fuel Meter Standing. This is represented by the graph in Figure 2.1.

Fuel Meter Standing

Fuel?

Start?

Clean Spark Plugs

Fig. 2.1. A causal network for the reduced Car Start Problem.

If we add a direction from no to yes inside each variable (and from empty to
full), we can also represent directions of the impact. For the present situation,
we can say that all the impacts are positive (with the direction); that is, the
more the certainty of the cause is moved in a positive direction, the more the
certainty of the affected variable will also be moved in a positive direction. To
indicate this, we can label the links with the sign “+” as is done in Figure 2.2.

Fuel Meter Standing

Fuel?

Start?

Clean Spark Plugs
+ + +

Fig. 2.2. A causal network for the reduced Car Start Problem with a sign indicating
direction of impact.

We can use the graph in Figure 2.2 to perform some reasoning. Obviously,
if I know that the spark plugs are not clean, then the certainty for no start
will increase. However, my situation is the opposite. I realize that I have a
start problem. As my certainty on Start? is moved in a negative direction, I
find the possible causes (Clean Spark Plugs? and Fuel?) for such a move more
certain; that is, the sign “+” is valid for both directions. Now, because the
certainty on for Fuel? = no has increased, I will have a higher expectation
that Fuel Meter Standing is in state empty.

The movement of the certainty for Fuel Meter Standing tells me that by
reading the fuel meter I will get information related to the start problem. I
read the fuel meter, it says 1

2 , and reasoning backward yields that the certainty
on Fuel? is moved in a negative direction.

So far, the reasoning has been governed by simple rules that can easily
be formalized. The conclusion is harder: “Lack of fuel does not seem to be
the reason for my start problem, so most probably the spark plugs are not
clean.” Is there a formalized rule that allows this kind of reasoning on a causal
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network to be computerized? We will return to this problem in Section 2.2.

Note: The reasoning has focused on changes of certainty. In certainty calculus,
if the actual certainty of a specific event must be calculated, then knowledge
of certainties prior to any information is also needed. In particular, prior
certainties are required for the events that are not effects of causes in the
network. If, for example, my car cannot start, the actual certainty that the
fuel has been stolen depends on my neighborhood.

2.2 Causal Networks and d-Separation

A causal network consists of a set of variables and a set of directed links
(also called arcs) between variables. Mathematically, the structure is called a
directed graph. When talking about the relations in a directed graph, we use
the wording of family relations: if there is a link from A to B, we say that B
is a child of A, and A is a parent of B.

The variables represent propositions (or sample spaces), see also Sec-
tion 1.3. A variable can have any number of states (or outcomes). A vari-
able may, for example, be the color of a car (states blue, green, red, brown),
the number of children in a specific family (states 0, 1, 2, 3, 4, 5, 6, > 6), or
a disease (states bronchitis, tuberculosis, lung cancer). Variables may have a
countable or a continuous state set, but we consider only variables with a
finite number of states (we shall return to the issue of continuous state spaces
in Section 3.3.8).

In a causal network, a variable represents a set of possible states of affairs.
A variable is in exactly one of its states; which one may be unknown to us.

As illustrated in Section 2.1.2, causal networks can be used to follow how
a change of certainty in one variable may change the certainty for other vari-
ables. We present in this section a set of rules for that kind of reasoning. The
rules are independent of the particular calculus for uncertainty.

Serial Connections

Consider the situation in Figure 2.3. Here A has an influence on B, which in
turn has an influence on C. Obviously, evidence about A will influence the
certainty of B, which then influences the certainty of C. Similarly, evidence
about C will influence the certainty of A through B. On the other hand, if
the state of B is known, then the channel is blocked, and A and C become
independent; we say that A and C are d-separated given B. When the state
of a variable is known, we say that the variable is instantiated.

We conclude that evidence may be transmitted through a serial connection
unless the state of the variable in the connection is known.
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A B C

Fig. 2.3. Serial connection. When B is instantiated, it blocks communication be-
tween A and C.

Example 2.2. Figure 2.4 shows a causal model for the relations between
Rainfall (no, light, medium, heavy), Water level (low, medium, high), and
Flooding (yes, no). If I have not observed the water level, then knowing that
there has been a flooding will increase my belief that the water level is high,
which in turn will tell me something about the rainfall. The same line of
reasoning holds in the other direction. On the other hand, if I already know
the water level, then knowing that there has been flooding will not tell me
anything new about rainfall.

Rainfall Water level Flooding

Fig. 2.4. A causal model for Rainfall, Water level, and Flooding.

Diverging Connections

The situation in Figure 2.5 is called a diverging connection. Influence can
pass between all the children of A unless the state of A is known. That is,
B, C, . . . , E are d-separated given A.

Evidence may be transmitted through a diverging connection unless it is
instantiated.

...

A

B C E

Fig. 2.5. Diverging connection. If A is instantiated, it blocks communication be-
tween its children.

Example 2.3. Figure 2.6 shows the causal relations between Sex (male, female),
length of hair (long, short), and stature (<168 cm, ≥168 cm).
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Hair length

Sex

Stature

Fig. 2.6. Sex has an impact on length of hair as well as stature.

If we do not know the sex of a person, seeing the length of his/her hair will
tell us more about the sex, and this in turn will focus our belief on his/her
stature. On the other hand, if we know that the person is a man, then the
length of his hair gives us no extra clue on his stature.

Converging Connections

A description of the situation in Figure 2.7 requires a little more care. If
nothing is known about A except what may be inferred from knowledge of
its parents B, . . . , E, then the parents are independent: evidence about one
of them cannot influence the certainties of the others through A. Knowledge
of one possible cause of an event does not tell us anything about the other
possible causes. However, if anything is known about the consequences, then
information on one possible cause may tell us something about the other
causes. This is the explaining away effect illustrated in the car start problem:
the car cannot start, and the potential causes include dirty spark plugs and
an empty fuel tank. If we now get the information that there is fuel in the
tank, then our certainty in the spark plugs being dirty will increase (since this
will explain why the car cannot start). Conversely, if we get the information
that there is no fuel on the car, then our certainty in the spark plugs being
dirty will decrease (since the lack of fuel explains why the car cannot start).
In Figure 2.8, two examples are shown. Observe that in the second example
we observe only A indirectly through information about F ; knowing the state
of F tells us something about the state of E, which in turn tells us something
about A.

A

B C E

Fig. 2.7. Converging connection. If A changes certainty, it opens communication
between its parents.
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B

A

C

A

B

C

FE

e

e

Fig. 2.8. Examples in which the parents of A are dependent. The dotted lines
indicate insertion of evidence.

The conclusion is that evidence may be transmitted through a converging
connection only if either the variable in the connection or one of its descen-
dants has received evidence.

Remark: Evidence about a variable is a statement of the certainties of its
states. If the variable is instantiated, we call it hard evidence; otherwise, it is
called soft. In the example above, we can say that hard evidence about the
variable F provides soft evidence about the variable A. Blocking in the case
of serial and diverging connections requires hard evidence, whereas opening
in the case of converging connections holds for all kinds of evidence.

Example 2.4. Figure 2.9 shows the causal relations among Salmonella infec-
tion, flu, nausea, and pallor.

Salmonella

Nausea

Pallor

Flu

Fig. 2.9. Salmonella and flu may cause nausea, which in turn causes pallor.

If we know nothing of nausea or pallor, then the information on whether
the person has a Salmonella infection will not tell us anything about flu.
However, if we have noticed that the person is pale, then the information
that he/she does not have a Salmonella infection will make us more ready to
believe that he/she has the flu.
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2.2.1 d-separation

The three preceding cases cover all ways in which evidence may be transmitted
through a variable, and following the rules it is possible to decide for any
pair of variables in a causal network whether they are independent given the
evidence entered into the network. The rules are formulated in the following
definition.

Definition 2.1 (d-separation). Two distinct variables A and B in a causal
network are d-separated (“d” for “directed graph”) if for all paths between A
and B, there is an intermediate variable V (distinct from A and B) such that
either

− the connection is serial or diverging and V is instantiated
or

− the connection is converging, and neither V nor any of V ’s descendants
have received evidence.

If A and B are not d-separated, we call them d-connected.

Figure 2.10 gives an example of a larger network. The evidence entered
at B and M represents instantiations. If evidence is entered at A, it may
be transmitted to D. The variable B is blocked, so the evidence cannot pass
through B to E. However, it may be passed to H and K. Since the child M
of K has received evidence, evidence from H may pass to I and further to
E, C, F, J , and L, so the path A−D −H −K − I −E −C − F − J − L is a
d-connecting path. Figure 2.11 gives two other examples.

Note that although A and B are d-connected, changes in the belief in
A will not necessarily change the belief in B. To stress this difference, we
will sometimes say that A and B are structurally independent if they are
d-separated (see also Exercise 2.23).

In connection to d-separation, a special set of nodes for a node A is the
so-called Markov blanket for A:

Definition 2.2. The Markov blanket of a variable A is the set consisting of
the parents of A, the children of A, and the variables sharing a child with A.

The Markov blanket has the property that when instantiated, A is d-
separated from the rest of the network (see Figure 2.12).

You may wonder why we have introduced d-separation as a definition
rather than as a theorem. A theorem should be as follows.

Claim: If A and B are d-separated, then changes in the certainty of A have
no impact on the certainty of B.

However, the claim cannot be established as a theorem without a more-
precise description of the concept of “certainty.” You can take d-separation as
a property of human reasoning and require that any certainty calculus should
comply with the claim.
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A B C

D E F G

H I J

K L

M

e

e

Fig. 2.10. A causal network with M and B instantiated. The node A is d-separated
from G only.

A B

C D

E F

G H

A

B C D

E F G

e e

e e

e

e

e

(a) (b)

Fig. 2.11. Causal networks with hard evidence entered (the variables are instan-
tiated). (a) Although all neighbors of E are instantiated, it is d-connected to F, B,
and A. (b) F is d-separated from the remaining uninstantiated variables.
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A

B

C

D

E

F

G

H I

J K L

M N

Fig. 2.12. The Markov blanket for I is {C, E, H, K, L}. Note that if only I ’s neigh-
bors are instantiated, then J is not d-separated from I .

From the definition of d-separation we see that in order to test whether
two variables, say A and B, are d-separated given hard evidence on a set
of variables C you would have to check whether all paths connecting A and
B are d-separating paths. An easier way of performing this test, without
having to consider the various types of connections, is as follows: First you
construct the so-called ancestral graph consisting of A, B, and C together
with all nodes from which there is a directed path to either A, B, or C (see
Figure 2.13(a)). Next, you insert an undirected link between each pair of nodes
with a common child and then you make all links undirected. The resulting
graph (see Figure 2.13(b)) is known as the moral graph for Figure 2.13(a). The
moral graph can now be used to check whether A and B are d-separated given
C: if all paths connecting A and B intersect C, then A and B are d-separated
given C.

The above procedure generalizes straightforwardly to the case in which we
work with sets of variables rather than single variables: you just construct the
ancestral graph using these sets of variables and perform the same steps as
above: A and B are then d-separated given C if all paths connecting a variable
in A with a variable in B intersect a variable in C.

2.3 Bayesian Networks

2.3.1 Definition of Bayesian Networks

Causal relations also have a quantitative side, namely their strength. This can
be expressed by attaching numbers to the links.
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AA BB CC

DD EE FF

HH II

KK

MM

(a) (b)

Fig. 2.13. To test whether A is d-separated from F given evidence on B and M
in Figure 2.10, we first construct the ancestral graph for {A, B, F, M} (figure (a)).
Next we add an undirected link between pairs of nodes with a common child and
then the direction is dropped on all links (figure (b)). In the resulting graph we have
that the path A−D − H −K − I −E − C − F does not intersect B and M , hence
A and F are d-connected given B and M .

Let A be a parent of B. Using probability calculus, it would be natural to
let P (B |A) be the strength of the link. However, if C is also a parent of B,
then the two conditional probabilities P (B |A) and P (B |C) alone do not give
any clue about how the impacts from A and C interact. They may cooperate
or counteract in various ways, so we need a specification of P (B |A, C).

It may happen that the domain to be modeled contains causal feedback
cycles (see Figure 2.14).

Feedback cycles are difficult to model quantitatively. For causal networks,
no calculus has been developed that can cope with feedback cycles, but certain
noncausal models have been proposed to deal with this issue. For Bayesian
networks we require that the network does not contain cycles.

Definition 2.3. A Bayesian network consists of the following:

− A set of variables1 and a set of directed edges between variables.
− Each variable has a finite set of mutually exclusive states.
− The variables together with the directed edges form an acyclic directed

graph (traditionally abbreviated DAG); a directed graph is acyclic if there
is no directed path A1 → · · · → An so that A1 = An.

1 When we wish to emphasize that this kind of variable represents a sample space
we call it a chance variable.
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A

B

C D

EF G

Fig. 2.14. A directed graph with a feedback cycle. This is not allowed in Bayesian
networks.

− To each variable A with parents B1, . . . , Bn, a conditional probability table
P (A |B1, . . . , Bn) is attached.

Note that if A has no parents, then the table reduces to the unconditional
probability table P (A). For the DAG in Figure 2.15, the prior probabilities
P (A) and P (B) must be specified. It has been claimed that prior probabilities
are an unwanted introduction of bias to the model, and calculi have been
invented in order to avoid it. However, as discussed in Section 2.1.2, prior
probabilities are necessary not for mathematical reasons but because prior
certainty assessments are an integral part of human reasoning about certainty
(see also Exercise 1.12).

A B

C

DE

F G

Fig. 2.15. A directed acyclic graph (DAG). The probabilities to specify are P (A),
P (B), P (C |A, B), P (E |C), P (D |C), P (F |E), and P (G |D, E,F ).

The definition of Bayesian networks does not refer to causality, and there is
no requirement that the links represent causal impact. That is, when building
the structure of a Bayesian network model, we need not insist on having the
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links go in a causal direction. However, we then need to check the model’s
d-separation properties and ensure that they correspond to our perception
of the world’s conditional independence properties. The model should not
include conditional independences that do not hold in the real world.

This also means that if A and B are d-separated given evidence e, then
the probability calculus used for Bayesian networks must yield P (A | e) =
P (A |B, e) (see Section 2.3.2).

Example 2.5 (A Bayesian network for the Car Start Problem).
The Bayesian network for the reduced Car Start Problem is the one in

Figure 2.16.

FM

Fu

St

SP

Fig. 2.16. The causal network for the reduced car start problem. We have used
the abbreviations Fu (Fuel?), SP (Clean Spark Plugs?), St (Start?), and FM (Fuel
Meter Standing).

For the quantitative modeling, we need the probability assessments P (Fu),
P (SP), P (St |Fu,SP), P (FM |Fu). To avoid having to deal with numbers that
are too small, let P (Fu) = (0.98, 0.02) and P (SP) = (0.96, 0.04). The re-
maining tables are given in Table 2.1. Note that the table for P (FM |Fu)
reflects the fact that the fuel meter may be malfunctioning, and the table for
P (St |Fu,SP) leaves room for causes other than no fuel and dirty spark plugs
by assigning P (St = no |Fu = yes,SP = yes) > 0.

2.3.2 The Chain Rule for Bayesian Networks

Let U = {A1, . . . , An} be a universe of variables. If we have access to the joint
probability table P (U) = P (A1, . . . , An), then we can also calculate P (Ai)
as well as P (Ai | e), where e is evidence about some of the variables in the
Bayesian network (see, e.g., Section 1.3.1). However, P (U) grows exponen-
tially with the number of variables, and U need not be very large before the
table becomes intractably large. Therefore, we look for a more compact rep-
resentation of P (U), i.e., a way of storing information from which P (U) can
be calculated if needed.

Let BN be a Bayesian network over U , and let P (U) be a probability dis-
tribution reflecting the properties specified by BN : (i) the conditional prob-
abilities for a variable given its parents in P (U) must be as specified in BN ,
and (ii) if the variables A and B are d-separated in BN given the set C, then
A and B are independent given C in P (U).
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Fu = yes Fu = no

FM = full 0.39 0.001
FM = 1

2
0.60 0.001

FM = empty 0.01 0.998

P (FM |Fu)

Fu = yes Fu = no

Sp = yes (0.99, 0.01) (0,1)
Sp = no (0.01, 0.99) (0,1)

P (St |Fu, Sp)

Table 2.1. Conditional probabilities for the model in Figure 2.16. The numbers
(x, y) in the lower table represent (St = yes, St = no).

Based on these two properties, what other properties can be deduced about
P (U)? If the universe consists of only one variable A, then BN specifies P (A),
and P (U) is uniquely determined. We shall show that this holds in general.

For probability distributions over sets of variables, we have an equation
called the chain rule. For Bayesian networks this equation has a special form.
First we state the general chain rule:

Proposition 2.1 (The general chain rule). Let U = {A1, . . . , An} be a
set of variables. Then for any probability distribution P (U) we have

P (U) = P (An |A1, . . . , An−1)P (An−1 |A1, . . . , An−2) . . . P (A2 |A1)P (A1).

Proof. Iterative use of the fundamental rule:

P (U) = P (An |A1, . . . , An−1)P (A1, . . . , An−1),

P (A1, . . . , An−1) = P (An−1 |A1, . . . , An−2)P (A1, . . . , An−2),

...

P (A1, A2) = P (A2 |A1)P (A1).


�

Theorem 2.1 (The chain rule for Bayesian networks). Let BN be a
Bayesian network over U = {A1, . . . , An}. Then BN specifies a unique joint
probability distribution P (U) given by the product of all conditional probability
tables specified in BN:

P (U) =

n∏
i=1

P (Ai | pa(Ai)),
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where pa(Ai) are the parents of Ai in BN , and P (U) reflects the properties
of BN .

Proof. First we should show that P (U) is indeed a probability distribution.
That is, we need to show that Axioms 1–3 hold. This is left as an exercise (see
Exercise 2.15).

Next we prove that the specification of BN is consistent, so that P (U)
reflects the properties of BN . It is not hard to prove that the probability
distribution specified by the product in the chain rule reflects the conditional
probabilities from BN (see Exercise 2.16). We also need to prove that the
product reflects the d-separation properties. This is done through induction
in the number of variables in BN .

When BN has one variable, it is obvious that the d-separation properties
specified by BN hold for the product of all specified conditional probabilities.

Assume that for any Bayesian network with n− 1 variables and a distri-
bution P (U) specified as the product of all conditional probabilities, it holds
that if A and B are d-separated given C, then P (A |B, C) = P (A | C). Let
BN be a Bayesian network with n variables {A1, . . . , An}. Assume that An

has no children and let BN ′ be the result of removing An from BN . Clearly
BN ′ is a Bayesian network with the same conditional probability distribu-
tions as BN (except for An) and with the same d-separation properties over
{A1, . . . , An−1} as BN . Moreover,

P (U \ {An}) =
∑
An

P (U) =
∑
An

n∏
i=1

P (Ai | pa(Ai))

=
n−1∏
i=1

P (Ai | pa(Ai))
∑
An

P (An | pa(An))

=

n−1∏
i=1

P (Ai | pa(Ai))1 =

n−1∏
i=1

P (Ai | pa(Ai)),

and by the induction hypothesis P (U \ {An}) reflects the properties of BN ′.
Now, if A and B are d-separated given C in BN , then they are also d-separated
in BN ′, and therefore P (A |B, C) = P (A | C). To prove that it also holds for
d-separation properties involving An, we consider the case in which An ∈ C
and the case in which A = An. For the first case we have that since An

participates only in a converging connection, it holds that if A and B are
d-separated given C, then they are also d-separated given C \{An} and we get
the situation above. For the second case, we first note that

P (An |B, C) =
∑

pa(An)

P (An |B, C, pa(An))P (pa(An) |B, C).

Now, if An and B are d-separated given C, then pa(An) and B are also d-
separated given C, and since An is not involved, we have P (pa(An) |B, C) =
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P (pa(An) | C). So we need to prove only that P (An |B, C, pa(An)) = P (An |
pa(An)). Using the fundamental rule and the chain rule, we get

P (An |B, C, pa(An)) =
P (An, B, C, pa(An))

P (B, C, pa(An))
=

∑
U\{An,B,C,pa(An)} P (U)∑
U\{B,C,pa(An)} P (U)

=

∑
U\{An,B,C,pa(An)}

∏n
i=1 P (Ai | pa(Ai))∑

U\{B,C,pa(An)}

∏n
i=1 P (Ai | pa(Ai))

=
P (An | pa(An))

∑
U\{An,B,C,pa(An)}

∏n−1
i=1 P (Ai | pa(Ai))∑

U\{An,B,C,pa(An)}

∏n−1
i=1 P (Ai | pa(Ai))

∑
An

P (An | pa(An))

=
P (An | pa(An))

∑
U\{An,B,C,pa(An)}

∏n−1
i=1 P (Ai | pa(Ai))∑

U\{An,B,C,pa(An)}

∏n−1
i=1 P (Ai | pa(Ai))1

= P (An | pa(An)).

To prove uniqueness, let {A1, . . . , An} be a topological ordering of the
variables. Then, for each variable Ai with parents pa(Ai) we have that Ai

is d-separated from {A1, . . . , Ai−1} \ pa(Ai) given pa(Ai) (see Exercise 2.11).
This means that for any distribution P reflecting the specifications by BN
we must have P (Ai |A1, . . . , Ai−1) = P (Ai | pa(Ai). Substituting this in the
general chain rule yields that any distribution reflecting the specifications by
BN must be the product of the conditional probabilities specified in BN . 
�

The chain rule yields that a Bayesian network is a compact representation
of a joint probability distribution. The following example illustrates how to
exploit that for reasoning under uncertainty.

Example 2.6 (The Car Start Problem revisited).
In this example, we apply the rules of probability calculus to the Car

Start Problem. This is done to illustrate that probability calculus can be used
to perform the reasoning in the example, in particular, explaining away. In
Chapter 4, we give general algorithms for probability updating in Bayesian
networks. We will use the Bayesian network from Example 2.5 to perform the
reasoning in Section 2.1.1.

We will use the joint probability table for the reasoning. The joint proba-
bility table is calculated from the chain rule for Bayesian networks,

P (Fu,FM,SP,St) = P (Fu)P (SP)P (FM |Fu)P (St |Fu,SP).

The result is given in Tables 2.2 and 2.3.
The evidence St = no tells us that we are in the context of Table 2.3. By

marginalizing FM and Fu out of Table 2.3 (summing each row), we get

P (SP,St = no) = (0.02864, 0.03965).
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FM = full FM = 1
2

FM = empty

Sp = yes (0.363, 0) (0.559, 0) (0.0093, 0)
Sp = no (0.00015, 0) (0.00024, 0) (3.9 · 10−6, 0)

Table 2.2. The joint probability table for P (Fu,FM,SP,St = yes).

FM = full FM = 1
2

FM = empty

Sp = yes (0.00367, 1.9 · 10−5) (0.00564, 1.9 · 10−5) (9.4 · 10−5, 0.0192)
Sp = no (0.01514, 8 · 10−7) (0.0233, 8 · 10−7) (0.000388, 0.000798)

Table 2.3. The joint probability table for P (Fu,FM,SP,St = no). The numbers
(x, y) in the table represent (Fu = yes, Fu = no).

We get the conditional probability P (SP |St = no) by dividing by P (St =
no). This is easy, since P (St = no) = P (SP = yes,St = no)+P (SP = no,St =
no) = 0.02864 + 0.03965 = 0.06829, and we get

P (SP |St = no) =

(
0.02864

0.06829
,
0.03965

0.06829

)
= (0.42, 0.58).

Another way of saying this is that the distribution we end up with will be a
set of numbers that sum to 1. If they do not, normalize by dividing by the
sum.

In the same way, we get P (Fu |St = no) = (0.71, 0.29).
Next, we get the information that FM = 1

2 , and the context for calculation
is limited to the part with FM = 1

2 and St = no. The numbers are given in
Table 2.4.

Fu = yes Fu = no

Sp = yes 0.00564 1.9 · 10−5

Sp = no 0.0233 8 · 10−7

Table 2.4. P (Fu,SP,St = no,FM = 1
2
).

By marginalizing Sp out and normalizing, we get P (Fu|St = no,FM =
1
2 ) = (0.999, 0.001), and by marginalizing Fu out and normalizing we get
P (SP|St = no,FM = 1

2 ) = (0.196, 0.804). The probability of SP = yes in-
creased by observing FM = 1

2 , so the calculus did catch the explaining away
effect.

2.3.3 Inserting Evidence

Bayesian networks are used for calculating new probabilities when you get new
information. The information so far has been of the type “A = a,” where A is
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a variable and a is a state of A. Let A have n states with P (A) = (x1, . . . , xn),
and assume that we get the information e that A can be only in state i or j.
This statement expresses that all states except i and j are impossible, and we
have the probability distribution P (A, e) = (0, . . . , 0, xi, 0, . . . , 0, xj , 0, . . . , 0).
Note that P (e), the prior probability of e, is obtained by marginalizing A
out of P (A, e). Note also that P (A, e) is the result of multiplying P (A) by
(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0), where the 1’s are at the i’th and j’th places.

Definition 2.4. Let A be a variable with n states. A finding on A is an n-
dimensional table of zeros and ones.

To distinguish between the statement e, “A is in either state i or j,” and
the corresponding 0/1-finding vector, we sometimes use the boldface notation
e for the finding. Semantically, a finding is a statement that certain states of
A are impossible.

Now, assume that you have a joint probability table, P (U), and let e be
the preceding finding. The joint probability table P (U , e) is the table obtained
from P (U) by replacing all entries with A not in state i or j by the value zero
and leaving the other entries unchanged. This is the same as multiplying P (U)
by e,

P (U , e) = P (U) · e.

Note that P (e) =
∑

U P (U , e) =
∑

U (P (U) · e). Using the chain rule for
Bayesian networks, we have the following theorem.

Theorem 2.2. Let BN be a Bayesian network over the universe U , and let
e1, . . . , em be findings. Then

P (U , e) =
∏
A∈U

P (A | pa(A)) ·
m∏

i=1

ei,

and for A ∈ U we have

P (A | e) =

∑
U\{A} P (U , e)

P (e)
.

Some types of evidence cannot be represented as findings. You may, for
example, receive a statement from someone that the chance of A being in
state a1 is twice as high as for a2. This type of evidence is called likelihood
evidence. It is possible to treat this kind of evidence in Bayesian networks.
The preceding statement is then represented by the distribution (0.67, 0.33),
and Theorem 2.2 still holds. However, because it is unclear what it means that
a likelihood statement is true, P (e) cannot be interpreted as the probability
of the evidence, and P (U , e) therefore has an unclear semantics. We will not
deal further with likelihood evidence.
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2.3.4 Calculating Probabilities in Practice

As described in Section 2.3.3 and illustrated in Example 2.6, probability up-
dating in Bayesian networks can be performed using the chain rule to calculate
P (U), the joint probability table of the universe. However, U need not be large
before P (U) becomes intractably large. In this section, we illustrate how the
calculations can be performed without having to deal with the full joint ta-
ble. In Chapter 4, we give a detailed treatment of algorithms for probability
updating.

Consider the Bayesian network in Figure 2.17, and assume that all vari-
ables have ten states. Assume that we have the evidence e = {D = d, F = f},
and we wish to calculate P (A | e).

A

B C

D F G

H

Fig. 2.17. A Bayesian network.

From the chain rule we have

P (U , e) = P (A, B, C, d, f, G, H)

= P (A)P (H)P (B |A, H)P (C |A)P (d |B, H)P (f |B, C)P (G |C),

where for example P (d |B, H) denotes the table over B and H resulting from
fixing the D-entry to the state d. We say that the conditional probability table
has been instantiated to D = d. Notice that we need not calculate the full
table P (U) with 107 entries. If we wait until evidence is entered, we will in
this case need to work with a table with only 105 entries. Later, we see that
we need not work with tables larger than 1000 entries.

To calculate P (A, e), we marginalize the variables B, C, G, and H out of
P (A, B, C, d, f, G, H). The order in which we marginalize does not affect the
result (Section 1.4), so let us start with G; that is, we wish to calculate

∑
G

P (A, B, C, d, f, G, H)

=
∑
G

P (A)P (H)P (B |A, H)P (C |A)P (d |B, H)P (f |B, C)P (G |C).
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In the right-hand product, only the last table contains G in its domain,
and due to the distributive law (Section 1.4) we have

∑
G

P (A, B, C, d, f, G, H)

= P (A)P (H)P (B |A, H)P (C |A)P (d |B, H)P (f |B, C)
∑
G

P (G |C),

and we need only calculate
∑

G P (G |C). Actually, for each state c of C, we
have

∑
G P (G | c) = 1; hence no calculations are necessary. We therefore get

P (A, B, C, d, f, H) =
∑
G

P (A, B, C, d, f, G, H)

= P (A)P (H)P (B |A, H)P (C |A)P (d |B, H)P (f |B, C).

Next, we marginalize H out. Using the distributive law again, we get

∑
H

P (A, B, C,d, f, H)

= P (A)P (C |A)P (f |B, C)
∑
H

P (H)P (B |A, H)P (d |B, H).

We multiply the three tables P (H), P (B |A, H), and P (d |B, H), and we
marginalize H out of the product. The result is a table T (d, B, A), and we
have

P (A, B, C, d, f) = P (A)P (C |A)P (f |B, C)T (d, B, A).

Finally, we calculate this product and marginalize B and C out of it.
Notice that we never work with a table of more than three variables (the

table produced by multiplying P (H), P (B |A, H), and P (d |B, H)) compared
to the five variables in P (A, B, C, d, f, G, H).

The method we just used is called variable elimination and can be de-
scribed in the following way: we start with a set T of tables, and whenever we
wish to marginalize a variable X , we take from T all tables with X in their
domains, calculate the product of them, marginalize X out of it, and place
the resulting table in T .

2.4 Graphical Models – Formal Languages for Model

Specification

From a mathematical point of view, the basic property of Bayesian networks
is the chain rule: a Bayesian network is a compact representation of the joint
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probability table over its universe. In this respect, a Bayesian network is one
type of compact representation among many others. However, there is more to
it than this: From a knowledge engineering point of view, a Bayesian network
is a type of graphical model. The structure of the network is formulated in
a graphical communication language for which the language features have a
very simple semantics, namely causality. This does not mean that “causality”
is an easy concept. It may be very difficult to experience causality, and philo-
sophically the concept is not fully understood. However, most often humans
can communicate sensibly about causal relations in a knowledge domain. Fur-
thermore, the graphical specification also specifies the requirements for the
quantitative part of the model (the conditional probabilities). In Chapter 3,
we extend the modeling language, and in Part II we present other types of
graphical models.

As mentioned, graphical models are communication languages. They con-
sist of a qualitative part, where features from graph theory are used, and a
quantitative part consisting of potentials, which are real-valued functions over
sets of nodes from the graph; in Bayesian networks the potentials are condi-
tional probability tables. The graphical part specifies the kind of potentials
and their domains.

Graphical models can be used for interpersonal communication: The
graphical specification is easy for humans to read, and it helps focus attention,
for example in a group working jointly on building a model. For interpersonal
communication, the semantics of the various graph-theoretic features must be
rather welldefined if misunderstandings are to be avoided.

The next step in the use of graphical models has to do with communication
to a computer. You wish to communicate a graphical model to a computer,
and the computer should be able to process the model and give answers to
various queries. In order to achieve this, the specification language must be
formally defined with a well-defined syntax and semantics.

The first concern in constructing a graphical modeling language is to en-
sure that it is sufficiently welldefined so that it can be communicated to a
computer. This covers the graphical part as well as the specification of po-
tentials. The next concern is the scope of the language: what is the range of
domains and tasks that you will be able to model with this language? The
final concern is tractability: do you have algorithms such that in reasonable
time the computer can process a model and query to provide answers?

The Bayesian network is a sufficiently welldefined language, and behind
the graphical specification in the user interface, the computer systems for
processing Bayesian networks have an alphanumeric specification language,
which for some systems is open to the user. Actually, the language for Bayesian
networks is a context-free language with a single context-sensitive aspect (no
directed cycles).

The scope of the Bayesian network language is hard to define, but the
examples in the next chapter show that it has a very broad scope.
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Tractability is not a yes or no issue. As described in Chapter 4, there are
algorithms for probability updating in Bayesian networks, but basically prob-
ability updating is NP-hard. This means that some models have an updating
time exponential in the number of nodes.

On the other hand, the running times of the algorithms can be easily
calculated without actually running them. In Chapter 4 and Part II, we treat
complexity issues for the various graphical languages presented.

2.5 Summary

d-Separation in Causal Networks

Two distinct variables A and B in a causal network are d-separated if for all
paths between A and B, there is an intermediate variable V (distinct from A
and B) such that either

• the connection is serial or diverging, and V is instantiated, or
• the connection is converging, and neither V nor any of V ’s descendants

have received evidence.

Definition of Bayesian Networks

A Bayesian network consists of the following:

• There is a set of variables and a set of directed edges between variables.
• Each variable has a finite set of mutually exclusive states.
• The variables together with the directed edges form an acyclic directed

graph (DAG).
• To each variable A with parents B1, . . . , Bn there is attached a conditional

probability table P (A |B1, . . . , Bn).

The Chain Rule for Bayesian Networks

Let BN be a Bayesian network over U = {A1, . . . , An}. Then BN specifies a
unique joint probability distribution P (U) given by the product of all condi-
tional probability tables specified in BN :

P (U) =

n∏
i=1

P (Ai | pa(Ai)),

where pa(Ai) are the parents of Ai in BN , and P (U) reflects the properties
of BN .

Admittance of d-Separation in Bayesian Networks

If A and B are d-separated in a Bayesian network with evidence e entered,
then P (A |B, e) = P (A | e).
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Inserting Evidence

Let e1, . . . , em be findings, and then

P (U , e) =
n∏

i=1

P (Ai | pa(Ai))
m∏

j=1

ej

and

P (A | e) =

∑
U\{A} P (U , e)

P (e)
.

2.6 Bibliographical Notes

The connection between causation and conditional independence was studied
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definition in Section 2.2.1 are due to Pearl (1986) and Verma (1987). A proof
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in (Lauritzen, 1996). Geiger and Pearl (1988) proved that d-separation is the
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a probability distribution can be found for which the d-separation criterion is
sound and complete. Meek (1995) furthermore proved that for a given DAG,
the set of discrete probability distributions for which the d-separation cri-
terion is not complete has measure zero. That is, given a random Bayesian
network, there is almost no chance that it contains conditionally independent
variables that cannot be read off the graph by d-separation. The method for
discovering d-separation properties using ancestral graphs was first presented
in (Lauritzen et al., 1990).
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back at least to the work in (Minsky, 1963). In the first half of the 1980s
they were introduced to the field of expert systems through work by Pearl
(1982) and Spiegelhalter and Knill-Jones (1984). Some of the first real-world
applications of Bayesian networks were Munin (Andreassen et al., 1989, 1992)
and Pathfinder (Heckerman et al., 1992). The basis for the inference method
presented in Section 2.3.4 originates from (D’Ambrosio, 1991) and was mod-
ified to the presented variable elimination in (Dechter, 1996). The fact that
inference is NP-hard was proved in (Cooper, 1987).

2.7 Exercises

Exercise 2.1. To illustrate that simple rules cannot cope with uncertainty
reasoning, consider the following two cases:
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(i) I have an urn with a red ball and a white ball in it. If I add a red ball
and shake it, what is the certainty of drawing a red ball in one draw? If I
add a white ball instead, what is the certainty of drawing a red ball? If I
combine the two actions, what is the certainty of drawing a red ball?

(ii) When shooting, I am more certain to hit the target if I close the left eye.
I am also more certain to hit the target if I close the right eye. What is
the combined certainty if I do both?

Exercise 2.2. Construct a causal network and follow the reasoning in the
following story. Mr. Holmes is working in his office when he receives a phone
call from his neighbor, who tells him that Holmes’ burglar alarm has gone off.
Convinced that a burglar has broken into his house, Holmes rushes to his car
and heads for home. On his way, he listens to the radio, and in the news it
is reported that there has been a small earthquake in the area. Knowing that
earthquakes have a tendency to turn on burglar alarms, he returns to work.

Exercise 2.3. Consider the Car Start Problem in Section 2.1.1 with the
causal network in Figure 2.1, and the following twist on the story: “I dis-
tinctly remember visiting the pump last night, so the fuel meter should be
reading full. Since this is not the case, either there must be a leak in the tank,
someone has stolen gasoline during the night, or the fuel meter is malfunc-
tioning. Sniffing the air I smell no gasoline, so I conclude that a thief has been
visiting last night or that the fuel meter is malfunctioning.” Alter the causal
network in Figure 2.1 to incorporate the above twist on the story.

Exercise 2.4. In the graphs in Figures 2.18 and 2.19, determine which vari-
ables are d-separated from A.

A

B C

D

E

F

G H

I

e

Fig. 2.18. Figure for Exercise 2.4.

Exercise 2.5. For each pair of variables in the causal network in Figure 2.1,
state whether the variables can be d-separated, and if so which set(s) of vari-
ables that allow this.
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A

B C

D E F

G H I

Je

Fig. 2.19. Figure for Exercise 2.4.

Exercise 2.6. Consider the network in Figure 2.20. What are the minimal
set(s) of variables required to d-separate C and E (that is, sets of variables
for which no proper subset d-separates C and E)? What are the minimal
set(s) of variables required to d-separate A and B? What are the maximal
set(s) of variables that d-separate C and E (that is, sets of variables for which
no proper superset d-separates C and E)? What are the maximal set(s) of
variables that d-separate A and B?

A

B

C D

E

F

Fig. 2.20. A causal network for Exercise 2.6.

Exercise 2.7. Consider the network in Figure 2.20. What is the Markov blan-
ket of each variable?

Exercise 2.8. Let A be a variable in a DAG. Assume that all variables in
A’s Markov blanket are instantiated. Show that A is d-separated from the
remaining uninstantiated variables.

Exercise 2.9. Apply the procedure using the ancestral graph given in Sec-
tion 2.2.1 to determine whether A is d-separated from C given B in the
network in Figure 2.19.
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Exercise 2.10. Let D1 and D2 be DAGs over the same variables. The graph
D1 is an I-submap of D2 if all d-separation properties of D1 also hold for D2.
If D2 is also an I-submap of D1, they are said to be I-equivalent. Which of
the four DAGs in Figure 2.21 are I-equivalent?

AAAA

BBBB

CCC C

Fig. 2.21. Figure for Exercise 2.10.

Exercise 2.11. Let {A1, . . . , An} be a topological ordering of the variables
in a Bayesian network, and consider variable Ai with parents pa(Ai). Prove
that Ai is d-separated from {A1, . . . , Ai−1} \ pa(Ai) given pa(Ai).

Exercise 2.12. Consider the network in Figure 2.20. Which conditional prob-
ability tables must be specified to turn the graph into a Bayesian network?

Exercise 2.13. In Figure 2.22 the structure of a simple Bayesian network
is shown. The accompanying conditional probability tables are shown in Ta-
bles 2.5 and 2.6, and the prior probabilities for A are 0.9 and 0.1. Are A and
C d-separated given B? Are A and C conditionally independent given B?

A B

C

Fig. 2.22. A simple Bayesian network for Exercise 2.13.

A = a1 A = a2

B = b1 0.3 0.6
B = b2 0.7 0.4

Table 2.5. P (B |A).
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A = a1 A = a2

B = b1 (0.1 ; 0.9) (0.1 ; 0.9)
B = b2 (0.2 ; 0.8) (0.2 ; 0.8)

Table 2.6. P (C |A,B).

Exercise 2.14. Consider the network in Figure 2.20. Using the chain rule, es-
tablish an expression for the joint distribution over the universe {A, B, C, D, E,
F}. Use this expression to show that B and D are conditionally independent
given A and C.

Exercise 2.15. Prove that the probability distribution P (U) defined by the
chain rule for Bayesian networks is indeed a probability distribution.

Exercise 2.16. Prove that the probability distribution P (U) defined by the
chain rule for a Bayesian network BN reflects the conditional probabilities
specified in BN .

Exercise 2.17. Consider the Bayesian network from Exercise 2.13 and the
finding e = (0, 1) over A. What is P (B, C, e)?

Exercise 2.18. What steps would be taken if variable elimination were used
to calculate the probability table P (F |C = c1) for the network in Figure 2.20?
Assuming that each variable has ten states, what is the maximum size of a
table during the procedure?

Exercise 2.19. Consider the DAG (a) in Exercise 2.10.

• Show that P (B |A, C) = P (B |A).
• We have P (A) = (0.1, 0.9) and the conditional probability tables in Ta-

ble 2.7. Calculate P (A, B, C).

a1 a2

b1 0.2 0.3
b2 0.8 0.7

a1 a2

c1 0.5 0.6
c2 0.5 0.4

P (B |A) P (C |A)

Table 2.7. Conditional probability tables for Exercise 2.19.

Exercise 2.20. E Install an editor for Bayesian networks (a reference to a
list of systems can be found in the preface).

Exercise 2.21. E Construct a Bayesian network for Exercise 1.12.

Exercise 2.22. E Construct a Bayesian network to follow the reasoning from
Exercise 2.2. Use your own estimates of probabilities for the network.
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Exercise 2.23. E Consider the Bayesian network in Figure 2.23 with condi-
tional probabilities given in Table 2.8. Use your system to investigate whether
A and C are independent.

A B C

Fig. 2.23. Figure for Exercise 2.23.

A = yes A = no

b1 0.6 0.2
b2 0.1 0.5
b3 0.2 0.1
b4 0.1 0.2

b1 b2 b3 b4

C = yes 0.8 0.8 0.2 0.2
C = no 0.2 0.2 0.8 0.8

P (B |A) P (C |B)

Table 2.8. Tables for Exercise 2.23.

Exercise 2.24. E Use your system and Section 2.5 to perform the reasoning
in Section 2.1.2.


