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Methods for Analyzing Decision Problems

The primary issue in dealing with a decision problem is to determine an
optimal strategy, but other issues may be relevant. This chapter deals with
value of information, the relevant past and future for a decision, and the
sensitivity of decisions with respect to parameters.

11.1 Value of Information

As mentioned previously, there is a difference between action decisions and
test decisions; action decisions may result in a state change for some of the
variables, whereas test decisions are decisions to look for more evidence. A
typical situation is that you may choose among some actions, but before de-
ciding on the action you also have the option to perform some tests. The
question is which test to perform, if any.

These types of decision problems can be characterized as asymmetric deci-
sion problems, since they contain at least two types of asymmetry: structural
asymmetry (if you decide not to perform a test, the result is never observed),
and order asymmetry (the sequence of tests may be unspecified). However,
rather than looking at this as a general asymmetric decision problem we shall
in this section deal directly with the problem by considering the actual value
of information.

11.1.1 Test for Infected Milk?

Consider again the infected milk problem described in Example 9.1, where
we assume that the farmer only has one test, which costs 6 cents and has
a false positive/negative frequency of 0.01. The test situation corresponds
to choosing between the two influence diagrams in Figure 11.1, where the
leftmost influence diagram incurs an additional cost of 6 cents.

To establish the utilities, let us assume that the farmer has clean milk
from the 49 other cows. If the farmer pours the milk into the container, he
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Fig. 11.1. The test scenario for infected milk corresponds to choosing between
the influence diagrams, but by choosing the rightmost model you have to pay an
additional 6 cents for the test.

will gain $100 if it is not infected, and he will gain nothing if it is infected. If
he throws the milk away, he will gain $98 regardless of the state of the milk.

If the farmer does not perform a test, the probability of the milk being
infected is 0.0007. The expected utility of pouring the milk into the container
is

EU(pour) = P (Inf = no)U(Inf = no) + P (Inf = yes)U(Inf = yes)

= 0.9993 · 100 + 0.0007 · 0 = 99.93.

Because the expected utility of pouring the milk into the container is larger
than 98, he will do this.

The reason for performing the test is that some outcome will make the
farmer change the decision. To put it in another way, if the decision is the
same regardless of the outcome of the test, then it is not worth the bother to
perform it. Only a positive test result may change the current decision. An
easy calculation yields P (clean | pos) = 0.935. The expected utility of pouring
given a positive test result is

EU(pour |Test = pos) = P (Inf = no |Test = pos)U(Inf = no)

+ P (Inf = yes |Test = pos)U(Inf = yes)

= 0.935 · 100 + 0.065 · 0 = 93.5,

so if the test is positive, the farmer changes his decision. The next concern
is whether the test is worth its price. There are two possibilities: the test
is negative and the milk is poured, or the test is positive and the milk is
thrown away. The probability of the first possibility can be calculated from
the specified probabilities and is 0.9893, and the second possibility has the
probability 0.0107. Hence, the expected benefit of performing the test is

EU(Test) = 0.9893 · 100 + 0.0107 · 98 = 99.98.

The farmer has an increase in expected utility only from 99.93 to 99.98 at
the price of $0.06, so it is not worth while to perform the test.
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11.1.2 Myopic Hypothesis-Driven Data Request

In the preceding example, we attached a value to the various information
scenarios, namely the expected utility of the optimal action. The driving force
for evaluating the information scenario was how the distribution of the variable
Infected? was affected by the test. We call this kind of data request hypothesis-
driven: the distribution of a hypothesis variable H is the target of the analysis.
To formulate it in more general terms, there is a value function V attached
to the distribution P (H). Usually, the value function is a maximal utility for
a decision variable D:

V (P (H)) = max
d∈D

∑
h∈H

U(d, h)P (h | d).

Note that here we use V (P (H)) rather than EU(D) to emphasize that we
are looking at the decision problem in a value-of-information context. If test
T with cost CT yields the outcome t, then the value of the new information
scenario is

V (P (H | t)) = max
d∈D

∑
h∈H

U(d, h)P (h | t, d).

Since the outcome of T is not known, we can calculate only the expected value:

EV (T ) =
∑
t∈T

V (P (H | t)) · P (t | d).

The expected benefit of performing test T is

EB(T ) = EV (T )− V (P (H)).

The expected profit is
EP (T ) = EB(T )− CT .

The hard part in the calculations is the calculation of P (H |T, D). This
will usually require one propagation per state of T and D. Very often, the
action has no impact on the hypothesis, and this reduces the work.

If there are several possible tests to perform, we are faced with a new
problem. We may calculate the expected profit of each test, but we cannot be
sure that the best choice is the one with the highest expected positive profit.
A proper analysis of the data-request situation should consist in an analysis of
all possible sequences of tests (including the empty sequence). To avoid such
an intractable analysis, the so-called myopic approximation is often used: If
you are allowed to perform at most one test, which one will you choose? The
answer is the one with the highest expected profit if it is positive.

The myopic approach does not guarantee an optimal sequence (see also
Section 10.5.4 in a troubleshooting context). Sometimes a single test does not
yield anything by itself, whereas its outcome may be crucial for selecting a
second very informative test.
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Now, assume you have the tests T1, . . . , Tm, let H be the hypothesis vari-
able, and assume that the action has no impact on H . To calculate the ex-
pected profit for all tests, you need P (H |Ti) for each Ti. This can be achieved
by propagating each possible outcome of each possible test. It can also be
achieved in a simpler way. By propagating the states of H rather than the
states of the tests, we get P (Ti |H) for all Ti. Bayes’ rule yields

P (H |Ti) = P (Ti |H)
P (H)

P (Ti)
.

Because P (Ti) and P (H) are available initially, we do not need more propa-
gations than there are states in H .

The junction tree framework can also be used to perform some types of
value of information analysis. For example, consider the influence diagram in
Figure 11.2, where the variable C is observed prior to D3.

A B C D E

D1 D2 D3 D4

V

Fig. 11.2. An influence diagram.

The observation may improve the decision D3 and yield a higher expected
utility. The observation has a cost, though, but since it does not affect the
strategy, it is not part of the model. Assume now that we wish to analyze how
much the observation actually improves the expected utility. The situation in
which C is not observed is reflected in the influence diagram in Figure 11.3.
If the difference in MEU between the two influence diagrams is smaller than
the cost of observing, then it does not pay to perform the test.

A B C D E

D1 D2 D3 D4

V

Fig. 11.3. An influence diagram for the scenario from Figure 11.2 but with C not
observed.
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If we assume that the cost of observing is not dependent on the timing,
the MEU cannot get higher by delaying an observation that must eventually
be performed. Therefore, the only option we have is either to observe as soon
as possible or never to observe.

Using a method similar to propagation of variables as described in Sec-
tion 5.2, the calculation of the various MEUs can be joined in one strong
junction tree. Perform a strong triangulation for the influence diagram mod-
eling that the observations have not been performed (that is, with the chance
variables under analysis as members of In) and construct the strong junction
tree. When solving the influence diagram corresponding to an observation
of the chance node C just before deciding on Di, you use the same strong
junction tree. However, you defer the elimination of C until Di has been elim-
inated. Figure 11.4 shows the influence diagram from Figure 10.5, where an
observation is optional for several variables as indicated by the dashed arrows.
The reader may check that you can solve all influence diagrams correspond-
ing to all combinations of possible observations through delayed elimination
in the strong junction tree in Figure 10.8.
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Fig. 11.4. An influence diagram with the option of not observing A, H , and I .

11.1.3 Non-Utility-Based Value Functions

If there is no proper model for actions and utilities, the reason for acquiring
more information is to decrease the uncertainty of the hypothesis. This means
that you will give high values to probabilities close to zero and one, while
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probabilities in the middle area should have low values. A classical function
with this property is entropy (see Section 8.4).

The formula for the entropy of a distribution over H is in Section 8.4
defined as

Ent(P (H)) = −
∑
h∈H

P (h) log2(P (h)),

where p log2 p = 0 if p = 0.
Because we want the value function to increase with preference, we let an

entropy-based value function be

V (P (H)) = −Ent(P (H)) =
∑
h∈H

P (h) log2(P (h)).

Variance

If the states of H are numeric, another classical measure can be used, namely
the variance. Again, since small variances are preferred, the value function
becomes

V (P (H)) = −
∑
h∈H

(h− μ)2P (h),

where μ =
∑

h∈H hP (h).
It is up to the modeler to specify the value function. If decisions with

known utilities are attached to the hypothesis variable, then the utility value
function should be preferred. If this is not the case, the user will mainly be
interested in the precision of a diagnosis.

In the case of a Boolean hypothesis with states 0 and 1, the entropy func-
tion is log pp(1 − p)1−p, and the variance function is −p(1 − p). These two
functions reflect that the value of p increases as it approaches its bounds 0
and 1. The entropy function is rather drastic in the way that the slope is
infinite for 0 and 1. Therefore, small changes of p close to 0 and 1 will be
highly valued. On the other hand, the variance is of polynomial degree 2, and
the slope close to the bounds is 1 and −1, giving changes almost even value
no matter how close they are to the bound.

Other Value Functions

In principle, any value function may be used. However, a particular class of
functions called convex functions are best suited for the purpose.

Definition 11.1. A function f : Rn → R is convex if for any two points
P1, P2 on the graph of f , the line segment P1P2 lies above the graph (see
Figure 11.5). Mathematically, the property is expressed as follows:

∀t ∈ [0, 1], ∀x,y ∈ Rn : tf(x) + (1− t)f(y) ≥ f(tx + (1− t)y).

The reason why a convex function is well suited is due to the following
theorem, which we will not prove.
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Theorem 11.1. If the value function is a convex function, then the expected
benefit of performing a test is never negative.

P1

P2

f(tx + (1 − t)y)

tf(x) + (1 − t)f(y)

x ytx + (1 − t)y

Fig. 11.5. A convex function. The line segment between two points of the graph
lies above the graph.

Utility based functions are convex and so are entropy and variance.

11.2 Finding the Relevant Past and Future of a Decision

Problem

When solving a decision problem we look for an optimal policy for each of
the decisions. The optimal policy for a decision is in principle a function that
for each possible configuration of the past, prescribes how to act in order
to maximize the expected utility. Thus, for the poker domain modeled in
Figure 11.6, a policy for the decision node D is a function over the entire past
of D:

δD : sp(MH0,MFC,MH1,OFC,MSC,OSC)→ sp(D) .

In general, if we represent such a policy function as a table, then the size
of the policy increases exponentially in the number of variables in the past,
and the policy can therefore quickly become intractable to handle.

However, when analyzing the decision problem above, we find that not
all variables can provide information influencing decision D. For example,
if I know my current hand MH2, then knowledge about how many cards I
discarded in the second round, MSC, will not affect my decision at D: at D
I will try to maximize my profit represented by the utility function U . This
utility function depends only on D and BH, and with knowledge of the state
of MH2, the decision MSC becomes d-separated from BH. Hence MSC cannot
tell me anything about BH (and therefore U), and it can therefore not affect
my decision at D. By performing this type of analysis for the remainder of
the variables in the past of D, we find that the only variables that can have
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OH0 OH1 OH2

OFC OSC

BHMH2MH0 MH1

MFC MSC UD

Fig. 11.6. An influence diagram representation of the poker domain described in
Section 9.4.1. An optimal policy for decision D is a function over the past of D,
namely MH0, MFC, MH1, OFC, MSC, and OSC.

an impact on D are OFC, OSC, and MH2. Hence, the optimal policy for D
reduces to

δD : sp(OFC,OSC,MH2) → sp(D) .

This policy contains only 96 configurations, as opposed to the full policy
function containing 165888 configurations. By doing the same exercise for the
two remaining decisions we find that only MH1 and OFC are relevant for
MSC, and MH0 is relevant for MFC.

Definition 11.2 (Required variables). Let I be an influence diagram and
let D be a decision variable in I. The variable X ∈ past(D) is said to be
required for D if there exist a realization R of I, a configuration ȳ over
dom (δD) \ {X}, and states x1 and x2 of X such that δD(x1, ȳ) �= δD(x2, ȳ),
where δD is an optimal policy for D with respect to R. The set of variables
required for D is denoted by req(D).

To take another example, consider the influence diagram in Figure 11.7,
which specifies the partial ordering

{B} ≺ D1 ≺ {E, F} ≺ D2 ≺ D3 ≺ {G} ≺ D4 ≺ C4;

C4 denotes the variables not observed before the last decision.
When looking for an optimal policy for D4 we should in principle consider

all the variables in the past of D4, i.e., B, D1, E, F, D2, D3, and G. However,
when analyzing the influence diagram, we see that deciding on D4 has an
impact only on V4, and from the d-separation properties of the model we have
that by conditioning on G and D2, all the other variables in the past of D4

become d-separated from V4. Hence, only G and D2 are required for D4.
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Fig. 11.7. The figure illustrates an influence diagram that specifies the partial order
{B} ≺ D1 ≺ {E, F} ≺ D2 ≺ D3 ≺ {G} ≺ D4 ≺ C4 (C4 denotes the chance variables
observed after deciding on all the decisions.

11.2.1 Identifying the Required Past

In the examples above we informally characterized a variable as being re-
quired for D if it can provide information about the utility functions that we
are trying to maximize when deciding on D. To test whether a variable X can
provide information about these utility functions, we used the d-separation
criterion. The question is then how to identify the utility functions that can
influence D. To be on the safe side you might simply include all utility func-
tions, but this may result in variables that are falsely identified as required
for D. So we would like to identify the minimal set of utility functions to take
into account when deciding on a particular decision.

Definition 11.3 (Relevant utility nodes). The utility function U is rele-
vant for decision D if there exists two realizations R1 and R2 of I that differ
only on U such that the optimal policies for D are different in R1 and R2.

Luckily, it turns out that this semantic definition also supports a simple
syntactic characterization. For the last decision we have the following specifi-
cation:

Proposition 11.1. Let Dn be the last decision variable in the influence dia-
gram I, and let U be a utility node in I. Then U is relevant for Dn if and
only if there is a directed path from Dn to U .
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Proof. For the last decision Dn we know that the optimal policy is

δDn
(past(Dn)) = arg max

Dn

∑
Cn

P (Cn | past(Dn), Dn)

[
U(pa(U))

+

m∑
i=1

Ui(pa(Ui))

]

= arg max
Dn

[∑
Cn

P (Cn | past(Dn), Dn)U(pa(U))

+
∑
Cn

P (Cn | past(Dn), Dn)

m∑
i=1

Ui(pa(Ui))

]
.

Since ∑
Cn

P (Cn | past(Dn), Dn)U(pa(U))

=
∑

Cn∩pa(U)

P (Cn ∩ pa(U) | past(Dn), Dn)U(pa(U)),

we have that U is relevant for Dn if and only if Dn is either a parent of U
or Dn is d-connected to a variable in Cn ∩ pa(U) given past(Dn); otherwise,
the above expression would be independent of Dn. In order for Dn to be d-
connected to a variable X ∈ Cn ∩ pa(U) given past(Dn), there must be an
active path between pa(U) and Dn. Since a converging connection on such a
path cannot be opened by evidence (a descendant of Dn cannot be observed),
the path must be directed from Dn to a node in pa(U). 
�

Based on this proposition, we now have a full syntactic characterization
of the variables required for the last decision.

Proposition 11.2. Let D be the last decision variable in the influence dia-
gram I and let X be a variable in past(D). Then X is required for D if and
only if X is d-connected to a utility node relevant for D given past(D) \ {X}.

Proof. Follows the proof above. 
�

For example, if we go back to the influence diagram shown in Figure 11.7,
we see that V4 is the only utility node to which there exists a directed path
from D4; hence V4 is the only utility node relevant for D4. Moreover, using
Proposition 11.2 we find that only G and D2 are required for D4, req(D4) =
{G, D2}.

Suppose now that we also want to identify the required variables for D3.
This can be done by substituting D4 with its chance-variable representation
(actually, we need not calculate the policy). This is done in Figure 11.8.
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Fig. 11.8. The influence diagram obtained from the influence diagram in Figure 11.7
by substituting D4 with its chance-variable representation. Since D3 is the last
decision, we see from Proposition 11.2 that F is the only variable required for D3.

In this transformed influence diagram, D3 appears as the last decision,
and by applying the propositions we find that V2 and V3 are relevant for D3

and that F is the only variable required for D3.
By replacing D3 in Figure 11.8 with its chance-variable representation we

obtain the influence diagram in Figure 11.9, where D2 is the last decision.
From this model we find that V4 is the only utility function relevant for D2,
and E is therefore the only variable required for D2.

Finally, we can find the required variables for D1 by substituting D2 with
its chance-variable representation . The resulting model is shown in Fig-
ure 11.10, where we see that all four utility functions are relevant for D1,
and since B is d-connected to V2, V3, V4 we have that B is required for D1.

More generally, we can specify an algorithm for finding the required vari-
ables for the decisions in an influence diagram as follows.

Algorithm 11.1 [Identify required variables] Let I be an influence dia-
gram and let D1, D2, . . . , Dn be the decision variables in I ordered by index.
To determine req(Di), the variables required for Di (∀1 ≤ i ≤ n), do:

1. Set i := n.
2. For each decision variable Di not considered (i > 0)

a) Let Vi be the set of utility nodes to which there exists a directed path
from Di in I.

b) Let req(Di) be the set of nodes X such that X ∈ past(Di) and X is
d-connected to a node in Vi given past(Di) \ {X}.
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Fig. 11.9. The influence diagram obtained form the influence diagram in Figure 11.8
by substituting D3 with its chance-variable representation.
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Fig. 11.10. The influence diagram obtained from Figure 11.9 by replacing D2 with
its chance variable policy.



11.2 Finding the Relevant Past and Future of a Decision Problem 419

c) Replace Di with a chance-variable representation of the policy for Di,
and let I be the resulting model.

d) Set i := i− 1. 
�

Identifying the Relevant Future

Analogously to the idea of identifying the required variables in the past of a
decision, we can also identify the future variables that are relevant for that
decision. By relevant variables we mean the variables whose probability distri-
butions (or policies) should be taken into account when deciding on D. Having
such a characterization will not reduce the complexity of the policies, but it
may provide insight into the overall structure of the decision problem. For
example, if some decision variable is of particular interest, then the relevant
variables may pinpoint the part of the model that we should focus on when
specifying the probabilities.

Definition 11.4. Let I be an ID and let D be a decision variable in I. The
future variable X is said to be relevant for D if either:

• X is a chance node and there exist two realizations R1 and R2 of I that
differ only on the probability distribution associated with X such that the
optimal policies for D are different in R1 and R2, or

• X is a decision variable and there exist a realization of I and two different
policies δ1

X and δ2
X for X such that the optimal policies for D are different

with respect to δ1
X and δ2

X .

Together with the required past, the relevant variables describe the part of a
decision problem that is sufficient to take into account when one is focusing
on a particular decision.

To complete the characterization, we need an algorithm for identifying the
variables that are relevant for a decision D. The first thing to notice is that
by using the chance-variable representation of a decision node, we again need
to consider only the situation in which D is the last decision variable in the
influence diagram. Hence we can identify the relevant future decisions as the
decision variables whose chance-variable representations are relevant for D.
This also means that in order to identify all the relevant variables we just
need a method for identifying the relevant chance variables.

Theorem 11.2. Let I be an ID and let D be the last decision variable in I.
Then the future chance variable X is relevant for D if and only if

• X is not barren in the ID formed from I by removing all utility nodes that
are not relevant for D, and1

• there exists a utility node U relevant for D such that X is d-connected to
U in I given {D} ∪ past(D).

1 If X is barren, then it does not affect any decisions and it can simply be removed.
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By going back to the influence diagram in Figure 11.7, we see that I and
L are the only future variables d-connected to the relevant utility function,
V4, for D4. Hence, no other future chance variables are relevant, and the
decision problem for D4 can therefore be described by the utility node V4, the
required variables G and D2, and the relevant chance variables I and L, see
Figure 11.11(a). To determine the relevant variables for D3 we substitute D4

with a chance variable and apply the same procedure as above. That is, from
Figure 11.8 we see that H , I, and K are relevant for D3, and together with the
relevant utility nodes and the required variables we can identify the part of the
decision problem relevant for D3. See Figure 11.11(b). By continuing to D2,
we use the influence digram in Figure 11.9. When performing the analysis,
we identify the variable D′

4 as relevant for D2, which in turn means that
the decision node D4 is relevant for D2 (the identification of the remaining
variables is left as an exercise).

(a)

D3

V2

D4

D2

LG

I

V4

F

H

K

J

V3

(b)

Fig. 11.11. The figures illustrate the parts of the influence diagram in Figure 11.7
relevant for D4 and D3, respectively.

11.3 Sensitivity Analysis

One of the main difficulties in modeling a decision problem is the elicitation of
utilities and probabilities. This makes it desirable to be able to investigate how
sensitive the solution is to variations in some utility or probability parameter,
and how robust the solution is to joint variations over a set of parameters.

We distinguish between value sensitivity and decision sensitivity. Value
sensitivity concerns variations in the maximum expected utility when a set
of parameters is changed, and decision sensitivity refers to changes in the
optimal strategy.
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11.3.1 Example

Consider the following simplified binary version of the Oil Wildcatter Problem
from Exercise 9.11. The influence diagram is shown in Figure 11.12. The hole
can be good or bad. If the hole is good, the gain is $260,000, and if the hole is
bad, the gain is $0. The test has no false negatives, and the probability of a
false positive is 0.05. The prior probability for the hole being good is 0.2. The
cost of drilling is $60,000, and the cost of the test is $5,000.

Hole Gain

Test? T-Res Drill?

Cost

Fig. 11.12. An influence diagram for the Oil Wildcatter Problem.

The optimal strategy, Δ, is to test and then to drill if and only if the test is
positive. However, although the oil wildcatter is quite certain of the specifics
of the test, he is rather uncertain of the gain of a good hole as well as of the
prior probability for this particular hole being good. If the gain and the prior
for a good hole are large, he need not test, because he will drill regardless of
the result of the test, and if the prior and the gain for a good hole are low, he
will just leave the hole.

To be precise, the optimal strategy consists of two optimal policies,
δTest? = y for Test?, and δDrill?(Test?, T ′) for Drill?, where δDrill?(y, pos) = y,
δDrill?(y,neg) = n, δDrill?(n,no-test) = n, and the values for other configura-
tions are of no importance, since they will never be realized.

Let t denote P (Hole = good) and let s denote Gain(Hole = good)− 60000.
Then δDrill? is optimal for (t, s) = (0.2, 200000), and the wildcatter would
like to know which parameter values support this policy. To determine the
support, we calculate the expected utilities of the various options. The relevant
utilities are only the utilities on which Drill? has an impact, namely Gain;
the descendant of Drill?. We now get
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EU(Drill? |n,no-test) = (P (good |no-test)s− P (bad |no-test)60000, 0)

= (ts− (1− t)6000, 0),

EU(Drill? | y, pos) = (P (good | pos)s− P (bad | pos)60000, 0)

=

(
ts− 0.05(1− t)60000

0.95t + 0.05
, 0

)
,

EU(Drill? | y,neg) = (P (good |neg)s− P (bad |neg)60000, 0)

= (−60000, 0).

The policy δDrill? is optimal if

EU(Drill? = n |n,no-test) ≥ EU(Drill? = y |n,no-test),

EU(Drill? = y | y, pos) ≥ EU(Drill? = n | y, pos),

EU(Drill? = n | y,neg) ≥ EU(Drill? = y | y,neg).

This gives the following inequalities:

0 ≥ ts− (1− t)60000,

0 ≤ ts− 0.05(1− t)60000,

0 ≥ −6000.

That is,
ts + 3000t− 3000 ≥ 0 ≥ ts + 60000t− 60000. (11.1)

For s = 200000 we get that δDrill? is optimal for 3
203 ≤ t ≤ 3

13 , and for t = 0.2
it is optimal for 12000 ≤ s ≤ 240000. These intervals are called the admissible
domains for the parameters in δDrill?.

Next we analyze the first decision. The decision node Drill? is substituted
with the chance node D (Figure 11.13), and P (D |T ′) reflects the optimal
policy (see Section 10.2.3).

Using the model in Figure 11.13 we calculate

EU(Test? = y) = −5000 + P (pos)(EU(Drill? = y | pos)

= −5000 + (0.95t + 0.05)
ts− 0.05(1− t)60000

0.95t + 0.05

= −5000 + ts− 0.05(1− t)60000

= ts + 3000t− 8000,

EU(Test? = n) = 0.

This yields that testing is optimal if

ts + 3000t− 8000 ≥ 0. (11.2)
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Hole Gain

Test? T-Res Drill?

Cost

Fig. 11.13. The decision node Drill? is substituted by its chance-node representa-
tion.

For s = 200000 it holds for t ≥ 8
203 and for t = 0.2 it holds for s ≥ 37000.

The strategy is optimal in the intersection of the admissible domains of the
two policies. That is, for s = 200000 the admissible domain for t is [ 8

203 , 3
13 ].

For t = 0.2, the admissible domain for s is [37000, 240000].

11.3.2 One-Way Sensitivity Analysis in General

Let t be a parameter with initial value t0 in an influence diagram, and let Δ
be an optimal strategy for the value t0. We wish to determine the admissible
interval for t. The method starts determining the admissible interval for the
policy δDrill? for the last decision D. Then D is substituted by its chance-
variable representation, and the admissible interval for t is determined for
the last decision in this influence diagram. The procedure is repeated until
the first decision has been analyzed. The admissible interval for t in Δ is the
intersection of the admissible intervals for all the policies. Since t0 is a member
of all intervals, we know that the intersection is nonempty.

In the example above it turned out that the expected utilities were simple
expressions in the parameters. This holds in general.

Theorem 11.3. Let s be a utility parameter in the influence diagram ID, let
D be the last decision in ID, and let π be any configuration of the required
past of D. Then for any d in D, the expected utility of d given π is a linear
function in s.

Let t be probability parameter in the influence diagram ID, let D be the
last decision in ID, and let π be any configuration of the required past of D.
Then for any d in D, the expected utility of d given π is a fraction of two
linear functions in t.

Proof. [Sketch] The expected utility is calculated as
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Parents

P (Parents | past)U(Parents).

For utility parameters, this expression is linear. A probability parameter
has an effect on P (Parents | past), and from Corollary 5.2, it can be expressed
as a fraction of two linear functions. 
�

As for sensitivity analysis for Bayesian networks, this theorem can be
exploited to establish a functional expression for the expected utilities. Assume
that we analyze a utility parameter s with initial value s0. We have a solution
for ID with value s0. That is, we have a value of the expected utility for the
last decision Dn for each configuration of the required past. Next, substitute
s0 with s1 and solve the influence digram. Again, we get the expected utility
for each option and any configuration of the required past. Now, for each
option and for each parent configuration we have two values of the expected
utility, and the two coefficients in the linear expression can be determined.

The next step is to establish a new influence diagram, and do the same
with Dn−1 as the last decision. However, if the value s1 lies in the admissible
interval for the policy for Dn, the solution from before can be reused. The
optimal policy for Dn is guaranteed, also for the value s1, to be the same as
the conditional probability for its chance-node representation. This holds for
the next decisions too, so by careful choice of the new value, one extra solution
of the influence diagram is sufficient for the calculation of all the expected
utilities required for determining the admissible domain for the parameter. In
the case of probability parameters, three extra solutions are sufficient.

We shall illustrate the method for the parameter s in the oil wildcatter
example above.

Solving the influence diagram with s = 200000 we get the following ex-
pected utilities:

EU(Drill? | pos) = (156666, 0),

EU(Drill? |neg) = (−60000, 0),

EU(Drill? |no-test) = (−8000, 0),

EU(Test?) = (32600, 0).

Changing s to 150000 we get

EU(Drill? | pos) = (115000, 0),

EU(Drill? |neg) = (−60000, 0),

EU(Drill? |no-test) = (−18000, 0),

EU(Test?) = (22600, 0).

This yields the following expressions:
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EU(Drill? = y | pos) = 0.833s + 10000,

EU(Drill? = y |neg) = −60000,

EU(Drill? = y |no-test) = 0.2s− 48000,

EU(Test? = y) = 0.2s− 7400,

which are the same as the result of the expressions in Section 11.3.1.
If you wish to find out how stable the strategy is to joint variations of

several the parameters, one-way sensitivity analysis for each parameter may
not provide the full picture and you may need to resort to n-way sensitivity
analysis. However, the work becomes much harder. For example, in the case
of a probability parameter t and a utility parameter s, the expected utilities
have the form αs + β, where α and β are fractions of linear expressions over
t. This means that there are eight coefficients to determine. For illustration,
the admissible area for (t, s) in the strategy from Section 11.3.1 is shown in
Figure 11.14.
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Fig. 11.14. The admissible area for (t, s) in the strategy for the the oil wildcatter.
The y-axis is scaled by a factor of 1000.

If all parameters are utility parameters, s1, . . . , sn, then the situation is
much simpler. Since utilities are never multiplied, the expected utilities are
linear expressions over s1, . . . , sn. Therefore, there are only n + 1 coefficients
to determine, and n extra solutions are sufficient.
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11.4 Summary

Value of Information

Value function (one utility function U , one decision D):

V (P (H)) = max
d∈D

∑
h∈H

U(d, h)P (h | d).

Expected value of performing test T :

EV (T ) =
∑
t∈T

P (t)max
d∈D

∑
h∈H

U(d, h)P (h | t, d).

Expected profit:

EP (T ) = EV (T )− V (P (H))− CT .

The value EV (T ) can be calculated for all tests T by entering the states
of h as evidence and using Bayes’ rule.

Myopic approach: Choose repeatedly a test with the highest positive expected
profit, if any.

Nonutility value functions:

− Entropy: V (P (H)) =
∑

h∈H P (h) log2(P (h));
− Variance: V (P (H) = −∑

h∈H(h− μ)2P (h), where μ =
∑

h∈H hP (h).

The Required Past for a Decision

Let I be an influence diagram and let D be a decision variable in I. The
variable X ∈ past(D) is said to be required for D if there exist a realization
of I, a configuration ȳ over dom (δD) \ {X}, and states x1 and x2 of X such
that δD(x1, ȳ) �= δD(x2, ȳ). The set of variables required for D is denoted by
req(D).

To determine req(Di) (∀1 ≤ i ≤ n) do:

1. Set i := n.
2. For each decision variable not considered (i > 0)

a) Let Vi be the set of value nodes to which there exists a directed path
from Di in I.

b) Let req(Di) be the set of nodes X such that X ∈ past(Di) and X is
d-connected to a node in Vi given past(Di) \ {X}.

c) Replace Di with a chance-variable representation of the policy for Di,
and let I be the resulting model.

d) Set i := i− 1.
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Sensitivity Analysis

Value sensitivity: How much can the utility and probability parameters be
varied without changing the optimal strategy? This question can be answered
by performing an analysis of the expected utility as a function of these pa-
rameters.

Utility parameters: Let s be a utility parameter in the influence diagram ID,
let D be the last decision in ID, and let π be any configuration of the required
past of D. Then for any d in D, the expected utility of d given π is a linear
function in s.

Probability parameters: Let t be probability parameter in the influence dia-
gram ID, let D be the last decision in ID, and let π be any configuration of
the required past of D. Then for any d in D, the expected utility of d given π
is a fraction of two linear functions in t.

Calculating the coefficients: If there are only utility parameters to investigate,
then all coefficients can be found by performing only one extra propagation for
each parameter. This will also give all the information necessary for performing
n-way sensitivity analysis (that is, sensitivity analysis in which you consider
joint variations of the parameters).

11.5 Bibliographical Notes

Value of information is formally treated in (Howard, 1966) and (Lindley, 1971),
where utilities are guiding the test selection. The myopic approximation was
introduced by Gorry and Barnett (1968). In (Ben-Bassat, 1978), entropy and
variance are used. Value of information for influence diagrams has been treated
by Dittmer and Jensen (1997) and Shachter (1999). The required past of deci-
sions in influence diagrams was introduced independently by Shachter (1999)
and Nielsen and Jensen (1999). The relevant future of decisions was described
in (Nielsen, 2002). Sensitivity analysis for multiple parameters in decision
problems was investigated in (Felli and Hazen, 1999a). A method using value
of information was given in (Felli and Hazen, 1999b). Sensitivity analysis for
influence diagrams in particular was treated in (Nielsen and Jensen, 2003b).

The oil wildcatter’s problem is due to Raiffa (1968). The used car buyer’s
problem is due to Howard (1962).

11.6 Exercises

Exercise 11.1. E Consider the insemination model from Exercise 3.8. As-
sume that you have the options to repeat the insemination or to wait another
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six-week period. The cost of repeating the insemination is 65 regardless of the
pregnancy state of the cow. If the cow is pregnant and you wait, it will cost
you nothing, but if the cow is not pregnant and you wait, it will cost you
further 30 (that makes a total of 95 for waiting plus the eventual repeated
insemination). The cost of BT is 1 and the cost of UT is 2. Perform a myopic
value of information analysis.

Exercise 11.2. Solve the problem in Exercise 9.11 as a value of information
problem.

Exercise 11.3. E Consider the influence diagram obtained by adding arcs
from FC, SC, and MH to D in the network in Figure 9.3, using the probabilities
found in Section 3.2.3 and the utilities found in Section 9.1.1. Assume that
prior to the game, a shady-looking person at the table next to me offers to
tell me the first hand of my opponent (OH0) for the price of $0.1. Ignoring
ethical issues, should I take the offer?

Exercise 11.4. Consider the influence diagrams in Figures 9.23 and 9.24.
What is the required past of decision FV4 in the two diagrams?

Exercise 11.5. What are the relevant futures of decisions D1 and D2 in the
influence diagram in Figure 11.7?

Exercise 11.6. Consider again the influence diagram in Example 10.10 and
the strategy Δ, stating that one should always choose d1 and d2 if and only
if C1 is in state c1. Denoting by t the utility parameter U(d1, c2,¬d2), what
is the support of Δ?


