
10

Solution Methods for Decision Graphs

In Chapter 9 we presented graphical languages for modeling decision prob-
lems. The languages ease the burden of specifying the problem and transfer
the complexity of the problem to the computer. For problems with a finite time
horizon, the computer may fold out the specification to a decision tree and
determine an optimal strategy by averaging out and folding back as described
in Section 9.3.3. However, the calculations may be intractable, and in this
chapter we present alternative methods exploiting symmetries in the decision
problem. Sections 10.1–10.3 are devoted to solution methods for influence dia-
grams. Section 10.4 presents a method for solving unconstrained influence di-
agrams. In Section 10.5 we consider decision theoretic troubleshooting, which
has next to no temporal ordering, and for which the decision trees tend to be
intractably large. In Section 10.6 we present two methods for solving MDPs,
and a method for solving POMDPs is indicated. The last section presents
LIMIDs, which is a way of approximating influence diagrams by limiting the
memory of the decision maker.

10.1 Solutions to Influence Diagrams

An influence diagram has three types of nodes: chance nodes, decision nodes,
and utility nodes. The set of chance nodes is denoted by UC , the set of decision
nodes is denoted by UD and the set of utility nodes is denoted by UV . The
universe is U = UC ∪ UD. We shall also refer to the members of U as the
variables of the influence diagram.

The decision nodes have a temporal order, D1, . . . , Dn, and the chance
nodes are partitioned according to when they are observed: I0 is the set of
chance nodes observed prior to any decision, . . . , Ii is the set of chance nodes
observed after Di is taken and before the decision Di+1 is taken. Finally, In

is the set of chance nodes never observed or observed after the last decision.
That is, we have a partial temporal ordering I0 ≺ D1 ≺ I1 ≺ . . . ≺ Dn ≺ In.

344 10 Solution Methods for Decision Graphs

Recall that an influence diagram is constructed so that if A ≺ Di, then there
is a directed path from A to Di.

We shall in this chapter use the influence diagram DI in Figure 10.1 as a
standard example, where I0 = ∅, I1 = {T }, and I2 = {A, B, C}. In order not
to make things unnecessarily complicated, all variables in DI are binary.

D1

D2

A B C

T

V1

V2

Fig. 10.1. The example influence diagram, DI.

As in Bayesian networks, the graphical representation of influence dia-
grams supports an analysis of conditional independence. However, d-separation
for influence diagrams is performed slightly differently from the way it is done
for Bayesian networks: ignore the utility nodes, and since the links into deci-
sion nodes encode only information precedence, they shall also be ignored.

For the DI example, we can perform d-separation analysis on Figure 10.1.
We get, for example, that C is d-separated from T given B (note that you
need not condition on D2, since the link from T to D2 is ignored). Also, A
and T are d-separated from D2. This means that if I perform an action from
D2, then this action has no impact on T . Note that this is different from: if
I am told what action from D2 was performed, what can I infer about T ? If,
for example, I know that the decision maker maximizes expected utilities, I
may be able to infer a great deal about T .

Decision variables play a different role from that played by chance vari-
ables. For chance variables you ask the question, may information about node
A change my belief about node B? For decision variables the question is, may
an action from D have consequences for node B? Although the two concepts
are different, they are in the case of influence diagrams not in conflict. In
general, effects of decisions cannot “go back in time”:

Proposition 10.1. Let A ∈ Ii and let Dj be a decision variable with i < j.
Then

(i) A and Dj are d-separated and hence

P (A |Dj) = P (A).

10.1 Solutions to Influence Diagrams 345

(ii) Let W be any set of variables prior to Dj in the temporal ordering. Then
A and Dj are d-separated given W and hence

P (A |Dj , W) = P (A |W).

Proof.

(i) Since Dj has no parents, any impact from Dj must follow the direction of
a link from Dj . The only way the impact can start going in the opposite
direction from that of a link is if it meets a converging connection at
a chance variable B, and then it can do so only if either B or one of
its children C has received evidence. Since Dj is the only variable we
condition on, this cannot happen. Hence if Dj and A are not d-separated,
there must be a directed path from Dj to A. Since A ≺ Dj in the temporal
ordering, there is a directed path from A to Dj , and since the graph is
acyclic, there cannot be a directed path from Dj to A.

(ii) We argue in the same way as for (i). By following directions of links from
Dj , we can only start going opposite to the direction by meeting evidence.
Since all evidence is prior in the temporal ordering, we know from (i) that
we cannot meet it.

�

10.1.1 The Chain Rule for Influence Diagrams

For Bayesian networks we have that P (U) is the product of all probability
potentials attached to the variables in the network. For influence diagrams we
have a similar theorem. Again, decision variables act differently from chance
variables. since a decision variable eventually will come under my control, it
requires no prior probabilities. Also, it has no meaning to attach a probability
distribution to a chance variable A effected by a decision variable D, unless
a decision has been taken and the action performed. So in Figure 10.1 it has
no meaning to consider P (A) or P (A, D). What is meaningful is P (A | d) for
all d ∈ D, and we may lump the probabilities for all decisions of D together
in the expression P (A |D).

Theorem 10.1 (The chain rule for influence diagrams). Let ID be an
influence diagram with universe U = UC ∪ UD. Then

P (UC | UD) =
∏

X∈UC

P (X | pa(X)).

Proof. Let us first look at the influence diagram DI. From the fundamental
rule we have

346 10 Solution Methods for Decision Graphs

P (C, T, B, A |D1, D2) = P (C |T, B, A, D1, D2)P (T, B, A |D1, D2)

= P (C |T, B, A, D1, D2)P (T |B, A, D1, D2)

× P (B |A, D1, D2)P (A |D1, D2). (10.1)

Since C is d-separated from A, T , and D1 given B and D2, we have

P (C |T, B, A, D1, D2) = P (C |B, D2).

We also have

P (T |B, A, D1, D2) = P (T |B, A),

P (B |A, D1, D2) = P (B |A),

P (A |D1, D2) = P (A |D1).

Substituting in equation (10.1) yields

P (C, B, T, A |D1, D2) = P (C |B, D2)P (T |B, A)P (B |A)P (A |D1,),

which is the product of the probability potentials for DI.
A general proof can follow another line of reasoning. Let d be a particular

configuration of decisions. By inserting them in the influence diagram ID,
you get a Bayesian network representing P (UC |d), the joint probability of
UC , under the condition that the decisions d are taken. Using the chain rule
for Bayesian networks, you infer that P (UC |d) is the product of all probabil-
ity potentials attached to the decision variables instantiated to d. Since this
holds for all instantiations of UD, you get the result.
�

10.1.2 Strategies and Expected Utilities

To solve an influence diagram, you may unfold it into a decision tree and solve
it. In Figure 10.2 we have unfolded DI from Figure 10.1.

When solving the decision tree in Figure 10.2, we start at the leaves and
work toward the root (see Section 9.3.3). Consider the path (d1

1, t1). We wish
to compute the expected utility of performing action d2

1 given (d1
1, t1). We

have
EU(d2

1 | d1
1, t1) =

∑
A,C

P (A, C | d1
1, t1, d

2
1)(V1(A, d2

1) + V2(C)).

For the action d2
2, we have

EU(d2
2 | d1

1, t1) =
∑
A,C

P (A, C | d1
1, t1, d

2
2)(V1(A, d2

2) + V2(C)).

Taken together, we write

10.1 Solutions to Influence Diagrams 347

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.D1

V1 + V2

V1 + V2

V1 + V2

V1 + V2

D2

D2

T

d2
1

t1

t2

d2
2

d2
2

a1c2

a2c1

a1c1

a2c2

A × C

A × C

A × C

A × C

d1
2

d2
1

D2

D2

T

t1

t2

d2
1

d2
2

a1c2

d2
2

V1 + V2

V1 + V2

V1 + V2

V1 + V2

a2c1

a1c1

d1
1

a2c2

A × C

A × C

A × C

A × C

d2
1

Fig. 10.2. DI from Figure 10.1 unfolded into a decision tree. Note that to reduce
the size of the decision tree the last chance node in each path is defined as the
Cartesian product of A and C, and that the utilities in the leaves are the sums of
V1 and V2.

348 10 Solution Methods for Decision Graphs

EU(D2 | d1
1, t1) =

∑
A,C

P (A, C | d1
1, t1, D2)(V1(A, D2) + V2(C)).

We choose the action of maximal expected utility, and we get a decision
rule for D2 with D1 = d1

1 and T = t1

δ2(d
1
1, t1) = argmax

D2

EU(D2 | d1
1, t1).

If there are several decisions yielding the maximum, either of them will do.
The maximal expected utility from D2 given (d1

1, t1) is

ρ2(d
1
1, t1) = max

D2

∑
A,C

P (A, C | d1
1, t1, D2)(V1(A, D2) + V2(C)).

Generalizing these two formulas to any path over D1, T , we get a policy
for D2

δ2(D1, T) = argmax
D2

EU(D2 |D1, T)

= argmax
D2

∑
A,C

P (A, C |D1, T, D2)(V1(A, D2) + V2(C)),

and a new utility function

ρ2(D1, T) = max
D2

∑
A,C

P (A, C |D1, T, D2)(V1(A, D2) + V2(C)), (10.2)

which gives the expected utilities when we know the values of (D1, T). The
decision tree in Figure 10.2 can now be reduced to the one in Figure 10.3.

T

D1

t1

t2

t1

t2

d1
1

d2
1

ρ2(d1
1, t1)

ρ2(d1
1, t2)

ρ2(d2
1, t1)

ρ2(d2
1, t2)

T

Fig. 10.3. The decision tree from Figure 10.2 with D2 replaced by a utility function
reflecting that the policy δ2 for D2 is followed.

10.1 Solutions to Influence Diagrams 349

Next, look at the decision D1 as in Figure 10.3. If we take the action d1
1,

we get the expected utility

EU(d1
1) = P (t1 | d1

1)ρ2(d
1
1, t1) + P (t2 | d1

1)ρ2(d
1
1, t2),

which can also be written

EU(D1) =
∑
T

P (T |D1)ρ2(D1, T).

The policy for D1 is

δ1 = arg max
D1

∑
T

P (T |D1)ρ2(D1, T),

and the expected utility of performing optimal decisions is

ρ1 = max
D1

∑
T

P (T |D1)ρ2(D1, T). (10.3)

So far we have written various expressions without really connecting them
to the potentials from the influence diagram. In principle, all probabilities in
the expressions can be calculated from the influence diagram by inserting and
propagating evidence. However, by taking a closer look at equation (10.3) we
can make a much tighter connection between the specification of the influence
diagram and its solution: By combining equation (10.2) and equation (10.3),
we get

ρ1 = max
D1

∑
T

P (T |D1)max
D2

∑
A,C

P (A, C |D1, T, D2)(V1(A, D2) + V2(C))

= max
D1

∑
T

max
D2

∑
A,C

P (T |D1)P (A, C |D1, T, D2)(V1(A, D2) + V2(C))

= max
D1

∑
T

max
D2

∑
A,C

P (T |D1, D2)P (A, C |D1, T, D2)(V1(A, D2) + V2(C))

= max
D1

∑
T

max
D2

∑
A,C

P (A, C, T |D1, D2)(V1(A, D2) + V2(C))

= max
D1

∑
T

max
D2

∑
A,B,C

P (A, B, C, T |D1, D2)(V1(A, D2) + V2(C))

= max
D1

∑
T

max
D2

∑
A,B,C

P (UC | UD)(V1(A, D2) + V2(C)).

The formula for δ1 is

δ1 = argmax
D1

∑
T

max
D2

∑
A,B,C

P (UC | UD)(V1(A, D2) + V2(C)).

For the policy δ2 we have

350 10 Solution Methods for Decision Graphs

δ2(D1, T) = arg max
D2

∑
A,C

P (A, C |D1, T, D2)(V1(A, D2) + V2(C)).

We can multiply inside “argmaxD2” with anything not varying with D2:

δ2(D1, T) = arg max
D2

P (T |D1)
∑
A,C

P (A, C |D1, T, D2)(V1(A, D2) + V2(C))

= arg max
D2

∑
A,C

P (T |D1, D2)P (A, C |D1, T, D2)(V1(A, D2) + V2(C))

= arg max
D2

∑
A,C

P (A, T, C |D1, D2)(V1(A, D2) + V2(C))

= arg max
D2

∑
A,B,C

P (UC | UD)(V1(A, D2) + V2(C)),

and the similarity with the formula for δ1 is transparent. Similar calculations
yield for ρ2,

ρ2(D1, T) =
1

P (T |D1)
max
D2

∑
A,B,C

P (UC | UD)(V1(A, D2) + V2(C)).

Theorem 10.2. Let ID be an influence diagram over U = UC ∪ UD and
UV = {Vi}. Let the temporal order of the variables be described as I0 ≺ D1 ≺
I1 ≺ · · · ≺ Dn ≺ In and let V =

∑
i Vi. Then:

(i) An optimal policy for Di is

δi(I0, D1, . . . , Ii−1) = argmax
Di

∑
Ii

max
Di+1

· · ·max
Dn

∑
In

P (UC | UD)V.

(ii)The expected utility from following the policy δi (and acting optimally in
the future) is

ρi(I0, D1, . . . , Ii−1) =
1

P (I0, . . . , Ii−1 |D1, . . . , Di−1)

max
Di

∑
Ii

max
Di+1

· · ·max
Dn

∑
In

P (UC | UD)V,

and the strategy for ID consisting of an optimal policy for each decision yields
the maximum expected utility:

MEU(ID) =
∑
I0

max
D1

∑
I1

max
D2

· · ·max
Dn

∑
In

P (UC | UD)V.

Proof. We start with the last decision Dn. We have for the expected utility
given the past

10.1 Solutions to Influence Diagrams 351

EU(Dn | I0, D1, . . . , Dn−1, In−1)

=
∑
In

P (In | I0, D1, . . . , Dn−1, In−1, Dn)V

=
∑
In

1

P (I0, . . . , In−1 |D1, . . . , Dn)
P (In, I0, . . . , In−1 |D1, . . . , Dn)V

=
1

P (I0, . . . , In−1 |D1, . . . , Dn−1)

∑
In

P (UC | UD)V.

In the last expression we used that P (I0, . . . , In−1 |D1, . . . , Dn) = P (I0, . . . ,
In−1 |D1, . . . , Dn−1). We now get

ρn(I0,D1, . . . , In−1)

=
1

P (I0, . . . , Ii−1 |D1, . . . , Dn−1)
max
Dn

∑
In

P (UC | UD)V,

and

δn(I0,D1, . . . , In−1)

= arg max
Dn

1

P (I0, . . . , In−1 |D1, . . . , Dn−1)

∑
In

P (UC | UD)V

= arg max
Dn

∑
In

P (UC | UD)V.

Next, assume the theorem to hold for i + 1, . . . , n and consider decision
Di. We have

EU(Di | I0, D1, . . . , Dn−1, Ii−1)

=
∑
Ii

P (Ii | I0, D1, . . . , Di−1, Ii−1, Di)ρi+1(I0, D1, . . . , Ii)

=
∑
Ii

1

P (I0, . . . , Ii−1 |D1, . . . , Di)
P (Ii, I0, . . . , Ii−1 |D1, . . . , Di)

1

P (I0, . . . , Ii |D1, . . . , Di)
max
Di+1

∑
Ii+1

· · ·max
Dn

∑
In

P (UC | UD)V

=
∑
Ii

1

P (I0, . . . , Ii−1 |D1, . . . , Di)
max
Di+1

∑
Ii+1

· · ·max
Dn

∑
In

P (UC | UD)V

=
1

P (I0, . . . , Ii−1 |D1, . . . , Di−1)

∑
Ii

max
Di+1

∑
Ii+1

· · ·max
Dn

∑
In

P (UC | UD)V,

and we get the formulas in (i) and (ii).
Since we have repeatedly determined a policy maximizing the expected

utility regardless of the past, no other set of policies can give a higher ex-
pected utility. The formula for MEU(ID) is the formula from (ii) for ρ0. It is
calculated by taking ρ1(D1), multiplying by P (I0), and marginalizing I0 out:

352 10 Solution Methods for Decision Graphs

MEU(ID) =
∑
I0

P (I0)ρ1(I0)

=
∑
Io

P (I0)
1

P (I0)
max
D1

∑
I1

max
D2

· · ·max
Dn

∑
In

P (UC | UD)V

=
∑
I0

max
D1

∑
I1

max
D2

· · ·max
Dn

∑
In

P (UC | UD)V.

�

Since P (UC | UD) is the product of all probability distributions attached
to ID, we have a method for calculating ρi as well as δi. The method specifies
that you may start with the product of all probability potentials and then
marginalize out in reverse temporal order where chance variables are sum-
marginalized and decision variables are max-marginalized. Each time an Ii is
marginalized out, the result is used to determine a policy for Di.

The method has the same problem as the method for Bayesian networks,
namely that P (UC | UD) may be an intractably large table, and we therefore
have to look for methods that reduce the size of the domains to deal with. We
shall consider this task in detail in Section 10.2.

10.1.3 An Example

The influence diagram DI in Figure 10.1 has the potentials in Table 10.1.
Using Theorem 10.2 we get δ2(D1, T) and ρ2(D1, T) as listed in Table 10.2.

A \ D1 d1
1 d1

2

y 0.2 0.8
n 0.8 0.2

B \ A y n

y 0.8 0.2
n 0.2 0.8

P (A |D1) P (B |A)

A \ B y n

y (0.9, 0.1) (0.5, 0.5)
n (0.5, 0.5) (0.1, 0.9)

B \ D2 d2
1 d2

2

y (0.9, 0.1) (0.5, 0.5)
n (0.5, 0.5) (0.9, 0.1)

P (T |A, B) P (C |D2, B)

A \ D2 d2
1 d2

2

y 3 0
n 0 2

V (A, D2)

V2(C) = (10, 0)

Table 10.1. Potentials for DI.

10.2 Variable Elimination 353

T \ D1 d1
1 d1

2

y d2
1 d2

1

n d2
2 d2

2

T \ D1 d1
1 d1

2

y 9.51 11.29
n 10.34 8.97

δ2(D1, T) ρ1(D1, T)

Table 10.2. δ2(D1, T) and ρ2(D1, T) for DI.

Finally, we get δ1 = d1
2 and MEU(DI) = 10.58. Note that δ2(D1, T) has

the property that the state of T alone determines the decision to choose, hence
we can remove D1 from the domain of δ2. This phenomenon can sometimes
be determined from the d-separation properties of the influence diagram (see
Figure 10.4 and Section 11.2), and we say that this part of the past is not
required for the decision in question. For DI it cannot be deduced from the
structure; the potentials happened to cause it.

A B C

D1 D2V1 V2

Fig. 10.4. An influence diagram in which D1 is not required for D2.

10.2 Variable Elimination

The method for solving influence diagrams has many similarities with the junc-
tion tree propagation algorithm for Bayesian networks: you start off with a set
of potentials, and you eliminate one variable at a time. There are, however,
differences. First of all, the elimination order is constrained by the temporal
order. Since max-marginalization and sum-marginalization do not commute,
you have to do it in an order whereby you first sum-marginalize In, then
max-marginalize Dn, sum-marginalize Ii−1, etc. This type of elimination or-
der is called a strong elimination order . Furthermore, you have two types of
potentials to deal with. Also, you need to eliminate in only one direction; this
corresponds to CollectEvidence.

We shall first analyze the calculations in eliminating a variable. Let Φ be
a set of probability potentials and Ψ a set of utility potentials. The two sets
represent the expression

∏
Φ(

∑
Ψ), the product of all probability potentials

multiplied by the sum of all utility potentials.

354 10 Solution Methods for Decision Graphs

Now assume that we shall calculate
∑

X

∏
Φ(

∑
Ψ) for some chance vari-

able X . To do that we partition Φ into two sets: ΦX , which is the set of
potentials with X in the domain, and Φ∗ = Φ \ ΦX . The set Ψ is in the
same way divided up in the two sets ΨX and Ψ∗. Set φX =

∑
X

∏
ΦX and

ψX =
∑

X

∏
ΦX(

∑
ΨX). Using the distributive law we get

∑
X

∏
Φ
(∑

Ψ
)

=
∏

Φ∗
∑
X

(∏
ΦX

(∑
Ψ∗ +

∑
ΨX

))

=
∏

Φ∗

((∑
Ψ∗

)∑
X

(∏
ΦX

)
+

∑
X

∏
ΦX

(∑
ΨX

))

=
∏

Φ∗
((∑

Ψ∗
)

φX + ψX

)
=

∏
Φ∗φX

(∑
Ψ∗ +

ψX

φX

)
.

We see that the result of eliminating the chance variable X is that ΦX is
removed from the set of probability potentials and substituted with φX . For
the set of utility potentials, ΨX is removed and ψX

φX
is added.

Let D be a decision variable. We again divide the potentials into ΦD, Φ∗

and ΨD, Ψ∗. Since all variables coming after D in the temporal ordering have
been eliminated when we are about to eliminate D, it follows that

∏
ΦD does

not vary with D (See Exercise 10.3). So taking maxD of
∏

ΦD is an almost
empty operation; it only removes D from the domain. Using the distributive
law for max, setting φD = maxD

∏
ΦD and ψD = maxD

∏
ΦD(

∑
ΨD), and

exploiting that
∏

ΦD(
∑

Ψ∗) does not vary with D, we get

max
D

∏
Φ
(∑

Ψ
)

=
∏

Φ∗ max
D

(∏
ΦD

(∑
Ψ∗ +

∑
ΨD

))
=

∏
Φ∗

(
max

D

∏
ΦD

(∑
Ψ∗

)
+ max

D

∏
ΦD

(∑
ΨD

))
=

∏
Φ∗

(
φD

(∑
Ψ∗

)
+ ψD

)
=

∏
Φ∗φD

(∑
Ψ∗ +

ψD

φD

)
.

The result is similar to the result for sum-elimination. To sum up:

Algorithm 10.1 [Variable elimination for influence diagrams] You
work with two sets of potentials: Φ, the set of probability potentials; Ψ , the
set of utility potentials. When a variable X is eliminated, the potential sets
are modified in the following way:

1.

ΦX : = {φ ∈ Φ |X ∈ dom (φ)};
ψX : = {ψ ∈ Ψ |X ∈ dom (ψ)}.

10.2 Variable Elimination 355

2. If X is a chance variable, then

φX : =
∑
X

∏
ΦX ;

ψX : =
∑
X

∏
ΦX

(∑
ΨX

)
.

If X is a decision variable, then

φX : = max
X

∏
ΦX ;

ψX : = max
X

∏
ΦX

(∑
ΨX

)
.

3.

Φ : = (Φ \ ΦX) ∪ {φX}

Ψ : = (Ψ \ ΨX) ∪
{

ψX

φX

}
.

�

The influence diagram is solved by repeatedly eliminating variables according
to a strong elimination order.

10.2.1 Strong Junction Trees

The considerations on triangulated graphs and junction trees (see Section 4.4)
can be applied when the method above is used for solving influence diagrams.
The considerations shall not be repeated here. Consider now the influence
diagram in Figure 10.5

When solving the influence diagram, you first establish the moral graph:
for each potential you link all variables in the domain. For the graph it means
that you remove information links, add a link for each pair of nodes with
a common child (including a common utility node), and finally remove the
directions and the utility nodes. It is done in Figure 10.6 for the influence
diagram in Figure 10.5.

As opposed to Bayesian networks, we cannot choose any elimination order
for the triangulation. We have to follow a strong elimination order: first elim-
inate In (in any order), then eliminate Dn, then In−1 and so on (if some Ii is
empty, we may permute the elimination of Di+1 and Di). The resulting trian-
gulation is called a strong triangulation. Figure 10.7 shows the strong triangu-
lation resulting from eliminating the nodes in the moral graph in Figure 10.5
through the strong elimination order A, L, I, J, K, H, C, D, D4, G, D3, D2, E,
F, D1, B.

If you use the method for constructing the join trees from Section 4.3.1,
the result of a strong triangulation is called a strong junction tree with the

356 10 Solution Methods for Decision Graphs

L

D1

V1

D2

D3

V3

D4

V4

A

B

D

C

E

F

H

G

V2

K

J

I

Fig. 10.5. The influence diagram from Figure 9.22.

D3

A

B

C

D

E

F

G L

I

H

J

K

D1

D2

D4

Fig. 10.6. The moral graph for the influence diagram in Figure 10.5.

10.2 Variable Elimination 357

A

B

C

D

E

F

G L

I

H

J

K

D1

D2

D4

D3

Fig. 10.7. A strong triangulation of the graph in Figure 10.6.

last clique constructed in the strong elimination order serving as a strong root .
A junction tree with a strong root R has the following property: for any two
neighboring cliques C, C′ with separator S and C′ closest to R, it holds that
the variables in S do not appear after the variables in C \ S in the tempo-
ral order. This property ensures that when CollectEvidence(R) is called,
then whenever a variable is eliminated the appropriate potentials are present.
Figure 10.8 shows a strong junction tree for the graph in Figure 10.7.

Note: Although the influence diagram prescribes a specific order of the de-
cisions, it happens that some decisions are independent such that the order
may be altered without changing the strategy or the MEU. This is sometimes
detected in constructing a strong junction tree. That is, if you follow the
method from Section 4.3.1, you may get a tree in which the decision nodes
are eliminated in two different branches (as is the case in Figure 10.8, where
the elimination of D3 can be done independently of D2 and D4).

From the strong junction tree, you can construct elimination sequences
that do not meet the temporal constraints (the elimination sequence J, K, H,
D3, A, C, L, I, D4, G, D2, D, E, F, D1, B is a perfect elimination sequence end-
ing with B, but it does not follow the temporal order). Since the result of
CollectEvidence(R) is independent of the actual order of messages sent,
all elimination sequences allowed by the strong junction tree give the same
result (as long as the elimination order inside each clique obeys the temporal
constraints). This means that the strong junction tree in Figure 10.8 discloses
that D3 and D4 are independent, and the temporal order can be relaxed to a
partial ordering of the decision nodes.

358 10 Solution Methods for Decision Graphs

BD1EFD

E F BED

FD3H

D2G D3H

ED2G

D2GD4I D3HK

D4I HK

BC

D4IL

BEDC

HKJ

BCA

Fig. 10.8. A strong junction tree for the graph in Figure 10.7.

It may also happen that the strong junction tree does not allow for a strong
elimination sequence when CollectEvidence(R) is called. An example is
given in Figure 10.9, where C and F are the first variables to be eliminated
according to the temporal ordering, but in the strong junction tree, C is
eliminated after D4. However, this is not a problem, since C cannot affect the
policy for D4 (see Section 11.2).

10.2.2 Required Past

As noted previously, the domain of a policy for a decision variable D1 is in
general (I0, D1, . . . , Ii−1), but a strong elimination order can reveal reductions
of the domain: whenever Di is eliminated, you consider only the potentials
with Di in the domain. The required past must therefore be a subset of the
union of these domains, and thus part of the clique closest to the strong root
containing Di.

With the strong elimination ordering A, L, I, J, K, H, C, D, D4, G, D3, D2,
E, F, D1, B for the influence diagram in Figure 10.5, we get the following
policies for the decision variables: δ4(G, D2), δ3(F), δ2(E), and δ1(B). Here
we see that the policy for D4, say, contains only two variables as opposed to
the seven variables that constitute the past for D4.

10.2 Variable Elimination 359

A

B

C

E

F

V

BD1A

B

CED3D2B

E

FD4E

D1

D2

D3

D4

(a) (b)

Fig. 10.9. An influence diagram (a) with a strong junction tree (b) for which
CollectEvidence(R) does not initiate a strong elimination sequence meeting the
temporal constraints: C should be eliminated before D4.

This analysis does not guarantee minimal policy domains, as can be seen
from the influence diagram in Figure 10.10. We shall return to this issue in
Section 11.2.

A E

B C

D1 D2V2

V3

V2

Fig. 10.10. The minimal domain of the policy for D1 contains only the variable E,
but a strong elimination ordering would produce a policy over E and B.

360 10 Solution Methods for Decision Graphs

10.2.3 Policy Networks

When a strategy for an influence diagram has been determined, we have a
policy δi for each decision node Di. The domain of δi is (I0, D1, . . . , Ii−1),
but as shown above (and explained in Section 11.2) we may be able to reduce
it so that it contains only the required variables, denoted by req(Di).

A decision variable can together with its policy be represented in a
Bayesian network.

Definition 10.1. Let D be a decision variable with policy δD. The chance-
variable representation of D is the result of the following construction: Sub-
stitute D with a chance variable D∗ having parents req(D), and assign D∗ the
conditional probability distribution P (D∗ | req(D)):

P (d|r) =

{
1 if δD(r) = d,

0 otherwise.

If all decision variables are substituted with their chance-variable repre-
sentations, we obtain a so-called policy network for the influence diagram.

Definition 10.2. Let I be an influence diagram over U = UC ∪UD. A policy
network for ID (denoted by I∗) is a Bayesian network over U = UC ∪ U∗

D in
which all decision variables Di have been substituted with their chance-variable
representations. The probability potentials from I are kept (with Djs replaced
by D∗

j).

Figure 10.11 shows the policy network for the influence diagram in Fig-
ure 10.5 with the policy domains determined in Section 10.2.2.

Example 10.1. A farmer has a wheat field. Twice during the season, he ob-
serves the state of the field and decides on a possible treatment with fungicides.
Later, he observes the state of the field to decide on the booking of machin-
ery for the harvest. Figure 10.12 shows an influence diagram for his decision
problem.

To make an advance booking of machinery and for booking plane tickets
for his summer vacation, he wishes to know the time of harvest on which he
may eventually decide.

Based on the influence diagram an optimal strategy is determined, and
the policy network is constructed (see Figure 10.13).

From the policy network he can read the probabilities of his future decision
as to the time of harvest. After the first observation and decision, he may enter
this as evidence and now get a new probability distribution for the optimal
time of harvesting.

Policy networks can be used in other ways. Assume that you know the
farmer’s influence diagram and observe some of his actions. Then the policy
network can give you estimates on what he may have observed or done in

10.2 Variable Elimination 361

D∗

1

A

C

B

D

E

F

G

I

L

H

L

JD∗

2

D∗

3

D∗

4

Fig. 10.11. A policy network for the influence diagram in Figure 10.5.

S4S1 S2

V3

V1 V2

T1 T2 H

S3

Fig. 10.12. An influence diagram for treatment and time of harvest.

H∗

S1 S2 S3 S4

T∗

1 T∗

2

Fig. 10.13. A policy network for the influence diagram in Figure 10.12.

362 10 Solution Methods for Decision Graphs

the past. Furthermore, policy networks can be used for analyzing the strategy
proposed by the system: risk profile (what is the probability of losing $X or
going bankrupt?), probability of success (winning at least $X), variance of the
expected utility, etc.

10.3 Node Removal and Arc Reversal

In this section we present a method for solving influence diagrams by succes-
sively removing the nodes from the diagram. That is, the influence diagram
is solved through the construction of a sequence of simpler and simpler influ-
ence diagrams. Actually, this method was historically the first, which worked
directly on the influence diagram rather than unfolding it to a decision tree.

10.3.1 Node Removal

The method has four operations: removal of barren nodes, removal of chance
nodes, removal of decision nodes, and arc reversal. The first three operations
are rather straightforward.

Removal of barren nodes: A chance or decision node is barren if it has no
children or if all its children are barren. Since a barren node plays no role for
any decision, it can safely be removed.

Removal of chance nodes: Let the only children of the chance node C be
the utility nodes U1, . . . , Uk. Then C and the utility nodes can be removed
by integrating them into one utility node (see Figure 10.14) with the utility
potential

U∗ =
∑
C

P (C| pa(C))

[
k∑

i=1

Ui

]
.

Removal of decision nodes: Let the only children of the decision node D be
the utility nodes U1, . . . , Uk. Assume that all parents of U1, . . . , Uk are known
at the time of deciding on D. Then the optimal policy for D is

δD = arg max
D

(
k∑

i=1

Ui

)
,

and D and U1, . . . , Uk can be removed by substituting them with a new utility
node having the potential

U∗ = max
D

(
k∑

i=1

Ui

)
.

10.3 Node Removal and Arc Reversal 363

... pa(C)pa(C) C

U1

Uk

U∗

(a) (b)

Fig. 10.14. (a) C has only utilities as children. (b) The result of removing C.

10.3.2 Arc Reversal

Consider now the influence diagram in Figure 10.15 (a). None of the removal
operations can be applied. However, by applying Bayes’ rule we can reverse
the arrow from A to B, and now A can be removed.

A A

B B

D D

U U

(a) (b)

Fig. 10.15. (a) An influence diagram, where no nodes can be removed. (b) The arc
has been reversed, and A can now be removed.

To generalize this operation, consider the node A with parents C, . . . , D,
and B with parents A and E, . . . , F (see Figure 10.16 (a)). Assume further
that there is no other directed path between A and B.

Now, if the arc from A to B is reversed and the two nodes are given the
same parents (see Figure 10.16 (b)), then all d-separation properties in the
resulting Bayesian network also hold in the initial network (see Exercise 10.12).

Therefore, the resulting network can represent the probability distri-
bution from the initial network. It is just a question of determining the
new conditional probabilities. We substitute the potentials P (A |C, . . . , D)
and P (B |A, E, . . . , F) with the potentials P (A |B, C, . . . , D, E, . . . , F) and
P (B |C, . . . , D, E, . . . , F), and if the product of the new potentials is equal to
the product of the old potentials, then the chain rule for Bayesian networks

364 10 Solution Methods for Decision Graphs

...

AA BB

CC DD EE FF

(a) (b)

Fig. 10.16. (a) A part of a Bayesian network. (b) The arc from A to B has been
reversed, and the two variables are given the same parents.

grants that the two networks represent the same probability distribution. Fur-
thermore, we wish to use only the old potentials for the computation of the
new. For this purpose we first establish the following proposition.

Proposition 10.2. Let A be a node with parents pa(A) in a Bayesian net-
work, and let X be a nonparent ancestor of A. Then X and A are d-separated
given pa(A).

Proof. An active path from A to X not containing parents of A must go
from A to a child of A. Since there cannot be converging connections on this
path, the path must be a directed path from A to X . Since X is an ances-
tor of A, this would create a directed cycle; hence the path cannot be active.
�

To establish the new potentials we look at P (A, B |C, . . . , D, E, . . . , F).
From the fundamental rule we have

P (A, B |C, . . . , D, E, . . . , F) =P (B |A, C, . . . , D, E, . . . , F)

P (A |C, . . . , D, E, . . . , F).

The proposition yields that B is independent of C, . . . , D given A, E, . . . , F .
Since there is no directed path between A and B (other than the directed
link), A is independent of E, . . . , F given C, . . . , D. Hence

P (A, B |C, . . . , D, E, . . . , F) = P (B |A, E, . . . , F)P (A |C, . . . , D),

and this can be calculated from the potentials in the Bayesian network. Then

P (B |C, . . . , D, E, . . . , F) =
∑
A

P (A, B |C, . . . , D, E, . . . , F),

and

P (A |B, C, . . . , D, E, . . . , F) =
P (A, B |C, . . . , D, E, . . . , F)

P (B |C, . . . , D, E, . . . , F)
.

Note that the product of the new potentials is equal to the product of the old
potentials.

10.3 Node Removal and Arc Reversal 365

Arc reversal: Let A and B be chance nodes so that A is a parent of B and
there are no other directed path from A to B. Let C, . . . , D be the parents of
A and let A, E, . . . , F be the parents of B. Then the arc from A to B can be
reversed by assigning A and B the conditional probability distributions

P (B |C, . . . , D, E, . . . , F) =
∑
A

P (B |A, E, . . . , F)P (A |C, . . . , D),

P (A |B, C, . . . , D, E, . . . , F) =
P (B |A, E, . . . , F)P (A |C, . . . , D)

P (B |C, . . . , D, E, . . . , F)
,

respectively.

10.3.3 An Example

Consider the influence diagram in Figure 10.17(a). First we remove the barren
node E, and we get the influence diagram in Figure 10.17(b).

A A

B B

C C

E

D1 D1

D2 D2

U U

(a) (b)

Fig. 10.17. (a) An example influence diagram. (b) The same influence diagram
without barren nodes.

Next we can remove C, which has only the utility node as a child, and we
get the new potential

U1(D2, B) =
∑
C

U(C)P (C |D2, B).

The resulting influence diagram is shown in Figure 10.18(a). Next, no node
can be removed, and we look for an application of arc reversal. The node B
cannot be removed since it has a chance variable as a child, and we fix this
by arc reversal. The result is shown in Figure 10.18(b).
The new potentials are

P (A |D1) =
∑
B

P (A |B, D1)P (B),

P (B |D1, A) = P (A |B, D1)P (B)/P (A |D1).

366 10 Solution Methods for Decision Graphs

AA

BB

U1U1

D1D1

D2D2

(a) (b)

Fig. 10.18. (a) C has been removed from Figure 10.17(a). (b) The arc from B to
A has been reversed.

Now we can remove B, and we get the new utility (see Figure 10.19(a))

U2(D1, A, D2) =
∑
B

U1(B, D2)P (B |A, D1).

D1 D1

D2

A A

U2 U3

(a) (b)

Fig. 10.19. (a) B has been removed from Figure 10.18(b). (b) D2 has been removed.

In the influence diagram in Figure 10.19(a) we can determine the policy
for D2. We have a potential, which directly gives us the utility for each con-
figuration of the relevant past and for each decision option. Hence the policy
is achieved by determining the max-value

δ2(D1, A) = arg max
D2

U2(D1, A, D2),

and the maximum expected utility is

U3(D1, A) = max
D2

U2(D1, A, D2).

The result is the influence diagram in Figure 10.19(b). A chance-node
removal followed by a decision-node removal does the rest.

Finally, we need to show that the four rules above are complete: all influ-
ence diagrams can be solved by successive application of the four rules. What

10.4 Solutions to Unconstrained Influence Diagrams 367

we need to show is that if no variables can be removed, then arc reversal will
bring us further. See Exercise 10.9.

10.4 Solutions to Unconstrained Influence Diagrams

A solution to an unconstrained influence diagram is an S-DAG together with
optimal policies. An S-DAG containing all admissible orderings and all pos-
sible branchings after each observation can support all policies, and it could
therefore be a candidate for a computational structure for the solution algo-
rithm. However, this full S-DAG grows exponentially in the number of “holes”
in the ordering, and there is a risk that it will become intractably large. Also,
some nodes in the full S-DAG may never be visited by an optimal strategy, and
the corresponding policy is superfluous. Therefore it is worthwhile to reduce
the S-DAG under investigation.

Before presenting an algorithm for calculating optimal policies, we shall
illustrate various ways of reducing the full S-DAG, while keeping it an S-DAG
for an optimal strategy.

10.4.1 Minimizing the S-DAG

Consider the UID in Figure 10.20 with the full S-DAG shown in Figure 10.21;
since nothing is gained by delaying a cost-free observation the observables are
placed immediately after they have been released.

A

B

O1

O2

O3

D1

D2 D3

U1

U2

U3

Fig. 10.20. An example UID.

In order to reduce the size of the S-DAG, you can merge paths at points
where they have the same history. For example, the upper path in Figure 10.21
D1−O1−D2 · · · shares history with the path D2−D1−O1 · · · , and from that

368 10 Solution Methods for Decision Graphs

Source Sink

D1

D1

D1

D1

D1

D2

D2

D2

D2

D2

D3

D3

D3

D3

D3

O1

O1

O1

O1

O1

O2

O2

O2

O2

O2

O2

O3

O3

O3

O3

O3

O3

Fig. 10.21. The full S-DAG for the UID in Figure 10.20.

Source Sink

D1

D1

D1

D1

D2

D2

D2

D2

D3

D3

D3

D3

O1

O1

O1

O1

O2

O2

O2

O3

O3

O3

Fig. 10.22. The result of merging paths in the S-DAG from Figure 10.21.

point on, they follow the same routes. The result of merging paths according
to this principle is shown in Figure 10.22.

Next, consider the path D2 − D1 − O1 · · · . Since the two decisions D2

and D1 can be swapped without changing the expected utilities, the path
D1 − D2 − O1 · · · will have the same expected utility as D2 − D1 − O1 · · · .
However, on this path, the observation O1 is not taken as soon as it has been
released, and we say that O1 is misplaced. Moving O1 to the other side of D2

10.4 Solutions to Unconstrained Influence Diagrams 369

cannot decrease the expected utilities, and we get the path D1−O1−D2 · · · .
The conclusion is that the path D2 − D1 − O1 · · · can never be better than
D1 −O1 −D2 · · · , and it can therefore be removed from the S-DAG. We say
that the path D1 −O1 −D2 · · · dominates the path D2 −D1 −O1 · · · .

For the same reasons D1 − O1 − D3 · · · dominates D3 − D1 − O1 · · · ,
D2−D3−O2 · · · is the same as D3−D2−O2 · · · , D1−O1−D2−O3−D3 · · ·
dominates D1 − O1 − D3 − D2 − O3 · · · . We end up with the S-DAG in
Figure 10.23, and for this particular example the job is reduced to solving
two different influence diagrams. The solution for the UID is then the optimal
strategy of the one with highest expected utility.

Source Sink

D1

D1 D2

D2

D3

D3 O1

O1

O2

O2

O3

O3

Fig. 10.23. The result of removing dominated paths from the S-DAG in Fig-
ure 10.22.

The reduction of the full S-DAG as performed above has the drawback
that you start out with the full S-DAG, which may be intractably large. To
avoid that, you can start from behind and build up a reduced S-DAG. The
procedure is like a breadth-first search in which you go stepwise backward
over the “cross section” of the S-DAG constructed so far. For the UID in
Figure 10.20 you start with the sink, add all decisions that may come last,
and finally add the observables released by each last decision (see Figure 10.24
(a)).

Consider the path with D2 as the last decision. Then D3 must be placed at
some stage before (see Figure 10.24(b)). If the child of D3 is a decision node,
you can swap until you reach an observable, O. If O is not released by D3, O
is misplaced and it can be swapped with D3. Since O2 is the only observable
released by D3, you can move D3 until it meets O2, and then D3 has passed
D2. To conclude, you can avoid D2 as the last decision.

In general you have the following:

Proposition 10.3. Let D be a decision node (or Sink) in an S-DAG, and let
D1 and D2 be parents of D. If the set of observables released by D1 is a subset
of the set of observables released by D2, then the path with D2 as a parent of
D can be removed without reducing the maximal expected utility.

The proof goes along the same lines as the reasoning above in removing
the path with D2 as a parent of Sink.

To continue the construction of the reduced S-DAG, expand backward
from D1 and D3. The result is shown Figure 10.25.

370 10 Solution Methods for Decision Graphs

......

Sink

Sink

D1

D1

D2

D2

D3

D3

D3

O1

O1

O2

O2

O2

O2

O3

O3

O3

O3

D O

(a)

(b)

Fig. 10.24. (a) The first step in a roll-back construction of a reduced S-DAG. (b)
An illustration showing why D2 can be avoided as the last decision.

Sink

D1

D1

D2

D2

D3

D3

O1

O1

O2

O2

O2

O3

O3

O3

Fig. 10.25. The nodes D1 and D3 in Figure 10.24 are expanded backward.

10.4 Solutions to Unconstrained Influence Diagrams 371

Due to the proposition above, we can remove D2 as a parent of D1 as well
as D1 as a parent of D3. The last expansions yield the S-DAG in Figure 10.23.

10.4.2 Determining Policies and Step Functions

A solution for a reduced S-DAG is determined in almost the same manner
as for influence diagrams. We eliminate variables in reverse order; when a
branching point is met, the elimination is branched out; when several paths
meet, the probability potentials are the same, and the utility potentials are
unified through maximization. To illustrate the method we use the UID in
Figure 10.26 with the reduced S-DAG in Figure 10.27.

A

B

C

E

FD1

D2

D3

D4

U2

U4

Fig. 10.26. A UID. Recall that each decision node has a hidden utility function.

B

C

C E

E

D1

D2

D2D3

D3

D4

Fig. 10.27. A reduced S-DAG for the UID in Figure 10.26 (Sink and Source are
ignored).

We start off with the two sets:

Φ = {P (A |D1), P (B |A), P (C |D2), P (E |D3), P (F |C, E)},
Ψ = {U1(D1), U2(A, D2), U3(D3), U4(F, D4)}.

372 10 Solution Methods for Decision Graphs

First the nonobservables are eliminated. The actual variable elimination fol-
lows the same procedure as for influence diagrams (see Section 10.2). When
A and F are eliminated, we get the sets

Φ′ = {P (B |D1), P (C |D2), P (E |D3)},
Ψ ′ = {U1(D1), U

′
2(B, D1, D2), U3(D3), U

′
4(C, E, D4)},

where

P (B |D1) =
∑
A

P (A |D1)P (B |A);

U ′
2(B, D1, D2) =

1

P (B |D1)

∑
A

P (A |D1)P (B |A)U2(A, D2);

U ′
4(C, E, D4) =

∑
F

P (F |C, E)U4(F, D4).

Note that
∑

F P (F |C, E) = 1. When D4 has been eliminated we have

Ψ4 = {U1(D1), U
′
2(B, D1, D2), U3(D3), U

′′
4 (C, E)},

where

U ′′
4 (C, E) = max

D4

U ′
4(C, E, D4),

δD4(C, E) = argmax
D4

U ′
4(C, E, D4).

Next we branch and produce one set of potentials after elimination of C and
another set after eliminating E:

ΦC = {P (B |D1), P (E |D3)},
ΨC = {U1(D1), U

′
2(B, D1, D2), U3(D3), U

C
4 (E, D2)},

where UC
4 (E, D2) =

∑
C P (C |D2)U

′′
4 (C, E), and

ΦE = {P (B |D1), P (C |D2)},
ΨE = {U1(D1), U

′
2(B, D1, D2), U3(D3), U

E
4 (C, D3)},

where UE
4 (C, D3) =

∑
E P (E |D3)U

′′
4 (C, E).

When eventually D3 has been eliminated in the C-branch, and D2 is elim-
inated in the E-branch, we have the two potential sets

ΦCe = {P (B |D1)},
ΨCe = {U1(D1), U

C(B, D1)};
ΦEc = {P (B |D1)},
ΨEc = {U1(D1), U

E(B, D1)}.

10.5 Decision Problems Without a Temporal Ordering: Troubleshooting 373

It is no coincidence that the two probability potential sets are identical.
They are both the result of sum-marginalizing the same set of variables from
the same set of potentials. Since sum-marginalizations can be commuted, the
two branches must give the same result. Before marginalizing B we unify the
utility function sets by taking the max for each entry in the utility functions:

Ψ = {U1(D1), max(UC(B, D1), U
E(B, D1))}.

The step function is

σ(b, d1) =

{
D3 if UC(b, d1) ≥ UE(b, d1),
D2 otherwise.

Finally, the eliminations of B and D1 are standard.

10.5 Decision Problems Without a Temporal Ordering:

Troubleshooting

A special subclass of decision problems is that of decision problems with no
temporal ordering imposed on the decisions (an extreme type of order asym-
metry). An important example is troubleshooting, whereby a fault causing a
device to malfunction should be identified and eliminated through a sequence
of troubleshooting steps. Some steps are repair steps , which may or may not
fix the problem; some steps are observation steps , which cannot fix the prob-
lem but may give indications of the causes of the problem; and some steps
have repair aspects as well as observation aspects. The task is to find the
cheapest strategy for sequencing the troubleshooting steps. As a first attempt
you might try to model the decision problem using the unconstrained influ-
ence diagram framework, but the lack of temporal constraints will quickly
cause the S-DAG to become intractably large, thereby making inference pro-
hibitive. The car start problems of Sections 2.1.1 and 9.3.1 are examples of
troubleshooting tasks.

In this section, we shall consider a solution method for decision problems
with no temporal ordering by focusing solely on troubleshooting problems. In
addition we will deal with pure repair steps and pure observation steps only,
and we will call them actions and questions, respectively.

10.5.1 Action Sequences

First we consider a set of steps consisting of actions only. An action Ai has two
possible outcomes, namely “Ai = yes” (the problem was fixed) and “Ai = no”
(the action failed to fix the problem). Each action Ai has a cost CAi

(e), which
may depend on evidence e. We sometimes use Ci(e) (or Ci) as shorthand
for CAi

(e). Because there are no questions, a troubleshooting strategy is a

374 10 Solution Methods for Decision Graphs

sequence of actions s = 〈A1, . . . , An〉 prescribing the process of repeatedly
performing the next action until an action fixes the problem or the last action
has been performed.

When solving a troubleshooting problem, we have some initial evidence e
and in the course of executing actions in the troubleshooting sequence s =
〈A1, . . . , An〉 we collect further evidence, namely that the previous actions
have failed. We let ei denote the evidence that the first i actions have failed,
and we refer to a set of failed actions as simple evidence. In the following, we
will not mention the initial evidence explicitly.

Definition 10.3. The expected cost of repair (ECR) of a troubleshooting se-
quence s = 〈A1, . . . , An〉 with costs Ci is the mean of the costs until an action
succeeds or all actions have been performed:

ECR(s) ≡
∑

i

ECR
i

(s),

where
ECR

i
(s) = Ci(e

i−1)P (ei−1).

Note that the term “expected cost of repair” may be misleading because
we allow a situation in which all actions have been performed without having
fixed the problem. If this happens, it will happen with the same probability
regardless of the sequence, and therefore we need not estimate a cost for it.
We may also extend the set of actions with a call service action, CS, that will
fix the problem for sure. We return to this in Section 10.5.3.

Now consider two neighboring actions Ai and Ai+1 in s, and let s′ be
obtained from s by swapping the two actions. The contribution to ECR(s)
from the two actions is

Ci(e
i−1)P (ei−1) + Ci+1(e

i)P (Ai = no, ei−1), (10.4)

and the contribution to ECR(s′) from the two actions is

Ci+1(e
i−1)P (ei−1) + Ci(e

i−1, Ai+1 = no)P (Ai+1 = no, ei−1). (10.5)

The difference between (10.5) and (10.4) equals ECR(s′)−ECR(s), so we get

ECR(s′)− ECR(s) = P (ei−1) ·
[
Ci+1(e

i−1)− Ci(e
i−1)

+Ci(e
i−1, Ai+1 = no) P (Ai+1 = no | ei−1)− Ci+1(e

i) P (Ai = no | ei−1)
]
.

If s is an optimal troubleshooting sequence, we must have ECR(s) ≤
ECR(s′), and therefore

Ci(e
i−1)+Ci+1(e

i)P (Ai = no | ei−1) (10.6)

≤ Ci+1(e
i−1) + Ci(e

i−1, Ai+1 = no)P (Ai+1 = no | ei−1).

10.5 Decision Problems Without a Temporal Ordering: Troubleshooting 375

If it holds that the costs are independent of the actions taken previously, (10.6)
can be rewritten as

P (Ai = yes | ei−1)

Ci
≥ P (Ai+1 = yes | ei−1)

Ci+1
. (10.7)

Definition 10.4. Let A be a repair action and e be the evidence collected so
far. The efficiency of A is defined as

ef(A | e) =
P (A = yes | e)

CA(e)
.

The considerations above yield the following result:

Proposition 10.4. Let s be an optimal sequence of actions for which the costs
are independent of the actions taken previously. Then it must hold that

ef(Ai | ei−1) ≥ ef(Ai+1 | ei−1), for all i.

10.5.2 A Greedy Approach

As remarked initially, it is not feasible to solve the troubleshooting problem
using, for example, the decision tree framework or the unconstrained influence
diagram framework. Alternatively, you might try to solve the troubleshooting
problem by doing the sequencing in a greedy fashion: always choose an action
with the highest efficiency. However, Proposition 10.4 does not guarantee that
this approach will yield an optimal troubleshooting sequence.

As an example, consider Figure 10.28, where there are four possible causes,
C1, C2, C3, and C4, for a malfunctioning device; we assume that exactly one
of the causes is present, and that the prior probabilities are 0.2, 0.25, 0.40,
and 0.15, respectively. Assume that all actions are perfect and have cost 1.
Then, action A2 has the highest efficiency, and if A2 fails, then A1 has higher
efficiency than A3. The sequence 〈A2, A1, A3〉 has ECR = 1.50. However, the
sequence 〈A3, A1〉 has ECR = 1.45.

To analyze why the decreasing-efficiency approach does not guarantee an
optimal sequence, let 〈A1, . . . , An〉 be a sequence ordered by decreasing effi-
ciency. If the sequence is not optimal, there must be two actions Ai and Aj ,
i < j, that in the optimal sequence are taken in reverse order. At the time at
which Ai is chosen, we have

P (Ai = yes | e)
Ci

≥ P (Aj = yes | e)
Cj

.

In the optimal sequence, in which Aj is chosen before Ai, we have

P (Ai = yes | e′)
Ci

<
P (Aj = yes | e′)

Cj
,

376 10 Solution Methods for Decision Graphs

A1

0.25

0.20

C3

A2

A3

0.15

0.40

C4

C2

C1

Fig. 10.28. An example of dependent actions. The C’s are causes for the device
failing. The A variables represent actions. An action will repair a parent if faulty. A
single fault is assumed.

where e and e′ are simple evidence (not involving Ai and Aj). From this we
can infer that an action sequence 〈A1, . . . , An〉 is optimal if for all i < j it
holds that

ef(Aj | e) ≤ ef(Ai | e),
where e is simple evidence (not involving Ai and Aj).

Proposition 10.5. Consider the following assumptions:

• The device has n different faults F1, . . . , Fn and n different repair actions
A1, . . . , An.

• Exactly one of the faults is present.
• Each action has a specific probability of repair, pi = P (Ai = yes |Fi), and

P (Ai = yes |Fj) = 0 for i �= j.
• The cost Ci of a repair action does not depend on the performance of any

previous actions.

If these assumptions hold, then ef(Aj) ≤ ef(Ai) implies that ef(Aj | e) ≤
ef(Ai | e), where e is simple evidence (not involving Ai and Aj).

Note that we do not assume the repair actions to be perfect. They may
fail to fix a fault that they are supposed to fix.

Proof. Let Am be an action that has failed. We calculate P (Ai = yes |Am =
no) (for notational convenience, we omit mention of the current evidence e).
Due to the single-fault assumption, we have P (Am = no |Ai = yes) = 1.
Using Bayes’ rule, we get

P (Ai = yes |Am = no) =
P (Am = no |Ai = yes)P (Ai = yes)

P (Am = no)

=
P (Ai = yes)

P (Am = no)
.

10.5 Decision Problems Without a Temporal Ordering: Troubleshooting 377

In other words, P (Am = no) is a normalizing constant for the remaining ac-
tions, and the relative order of efficiencies is preserved.
�

Example 10.2 (Expansion of Example 9.2). On a cold and wet morning, my
car will not start. Moisture may have affected the ignition system or the
carburetor, the spark plugs may be dirty, there may be a lack of fuel, or there
may be some other fault that I cannot fix myself.

Table 10.3 gives the initial probabilities and costs for the various causes.
Because my car started yesterday evening, I assume that exactly one of the
causes is present. I have one repair action for each possible cause, but the
actions may not be perfect. The measure of precision is the probability of
success given that the cause is present. Table 10.3 gives the precision and
time requirement of the various actions.

SP IS Carb Fu Other

Cost 4 min. 2 min. 3 min. 1 min. n.a.
Prob. 0.3 0.1 0.1 0.1 0.4
Prec. 0.8 0.7 0.6 0.95 n.a.

Table 10.3. Initial probabilities of the causes, precision, and cost in terms of minutes
for the various repair actions.

The efficiencies are calculated as

ef(SP) =
0.3 · 0.8

4
= 0.060,

ef(IS) =
0.1 · 0.7

2
= 0.035,

ef(Carb) =
0.1 · 0.6

3
= 0.02,

ef(Fu) =
0.1 · 0.95

1
= 0.095;

hence I should start with Fu. Assume now that Fu did not solve the problem.
By updating the efficiencies of the remaining repair actions (as in the proof
above), we get

ef(SP) =
0.3 · 0.8

(1− 0.1 · 0.95) · 4 = 0.066;

ef(IS) =
0.1 · 0.7

(1− 0.1 · 0.95) · 2 = 0.039;

ef(Carb) =
0.1 · 0.6

(1− 0.1 · 0.95) · 3 = 0.022,

which specify the same sequence of the remaining actions as before the update.

378 10 Solution Methods for Decision Graphs

The following theorem concludes the considerations.

Theorem 10.3. Let s = 〈A1, . . . , An〉 be an action sequence for a trou-
bleshooting problem fulfilling the conditions in Proposition 10.5. Assume that
s is ordered according to decreasing initial efficiencies. Then s is an optimal
action sequence and

ECR(s) =

n∑
i=1

Ci

⎛
⎝1−

i−1∑
j=1

pj

⎞
⎠ . (10.8)

Proof. From the proof of Proposition 10.5, we have that the relative order of
the efficiencies of the actions is preserved. For any action sequence s′ that is
not ordered according to ef(Ai), there will be a j such that ef(Aj) < ef(Aj+1)
and therefore ef(Aj | ej−1) < ef(Aj+1 | ej−1). Hence, s′ can be improved by
swapping Aj and Aj+1. From the definition, we have

ECR(s) =

n∑
i=1

CiP (ei−1).

Due to the single fault assumption, we have P (ei−1) = 1−∑i−1
j=1 pj .
�

10.5.3 Call Service

The action call service (CS) will always solve the problem. The cost of CS is
not the unknown price of fixing the device but the possible overhead of having
outsiders fixing a problem you could have fixed yourself. The efficiency of CS
is 1/CCS no matter what set of actions has been performed so far.

Let s = 〈A1, . . . , An〉 be an optimal action sequence resulting from a situa-
tion meeting the assumptions in Proposition 10.5. It may be that the sequence
should be broken before An and service called. According to Proposition 10.4,
CS should be performed only after an action of higher efficiency. It is a good
idea to perform the CS action as soon as it has maximal efficiency. However,
this is not guaranteed to be optimal. The question of finding an optimal action
sequence including CS is of higher combinatorial complexity: instead of look-
ing for a sequencing of actions each of which must eventually be performed if
the other actions fail, we now look for a subset of actions and a sequencing of
them. We will not go further into this problem.

10.5.4 Questions

The outcome of a question may shed light on any of the possible faults, or it
may be focused on a particular fault.

10.5 Decision Problems Without a Temporal Ordering: Troubleshooting 379

The troubleshooting task is to interleave actions and questions such that
the expected cost is minimal. To do so, we must analyze the value of answers
to questions.

Imagine that we are in the middle of a troubleshooting sequence; we have
so far gained the evidence e, and now we have the option to ask the question
Q with cost CQ. For simplicity, we assume that Q has only two outcomes,
“yes” and “no.” Assume that regardless of the outcome of Q, we are able
to calculate the minimal expected cost of repair for the remaining sequence.
Therefore, let ECR be the minimal expected cost if Q is not performed, and
let ECRQ=yes and ECRQ=no denote the same for the outcomes “yes” and
“no,” respectively.

Then, the value of observing Q is

V (Q) = ECR−
(

P (Q = yes | e) ECR
Q=yes

+P (Q = no | e) ECR
Q=no

)
, (10.9)

and Q is performed if and only if V (Q) > CQ.
In order to determine whether to ask a question prior to an action, we must

analyze all possible succeeding sequences, and if there are several actions and
questions, it is in general intractable. In the future, we will also have question
options to interleave.

A workable approximation is the myopic strategy, where it is assumed at
any stage of troubleshooting that we allow questions to be asked, but in the
future we allow only repair actions. In that case, the task reduces to calculating
expected costs given the various outcomes of the possible questions, and the
approaches from the previous sections can be used.

The Myopic Repair–Observation Strategy

The following strategy is a workable approximation to the general trou-
bleshooting task.

Algorithm 10.2 [Myopic repair–observation strategy] To find a my-
opic repair-observation strategy, do:

1. Let e := “the device is not working properly”.
2. While the device is not working properly do

a) Calculate EGC (the expected cost of the greedy observationless repair
sequence).

b) For all O do
i. For all states s of O do

A. Calculate P (O = s | e).
B. For all a do

- Calculate ps
a = P (a solves the problem |O = s, e).

C. Calculate EGCs, the expected cost of the greedy observation-
less repair given O = s.

380 10 Solution Methods for Decision Graphs

ii. Calculate

EGCO = cO +
∑

s

P (O = s | e)EGCs.

c) Choose the observation or action with lowest expected greedy cost; up-
date e according to the choice and result.

�

10.6 Solutions to Decision Problems with Unbounded

Time Horizon

When solving a decision problem with an unbounded time horizon, we are
looking for an optimal strategy for the decisions involved. However, as opposed
to optimal strategies for bounded decision problems, an optimal strategy for
an unbounded decision problem will specify the same optimal policy for all
the decisions (see also Section 9.6.1). In what follows we will look at solution
methods for unbounded decision problems. To keep things simple we will
focus on the discounted reward model, and to simplify the exposition we shall
assume that the reward received in a state is independent of the chosen action.

10.6.1 A Basic Solution

As described in Section 9.6.1 we look for a utility function U∗ that specifies
the value of any state s assuming that all subsequent actions maximize the
expected discounted reward:

U∗(s) = max
Δ

U∗(s, Δ) = max
Δ

E

[
∞∑

i=0

γiR(si)

∣∣∣∣∣ Δ, s

]
.

Instead of calculating U∗(s, Δ) directly, it can be determined from its “step
wise” specification: According to the principle of maximum expected utility
we should always choose the action δ(s) that maximizes the expected utility
of the subsequent states:

δ(s) = arg max
a

∑
s′∈sp(S)

P (s′ | s, a)U∗(s′). (10.10)

Hence, the value U∗ of the current state s is the immediate reward collected
at that state plus the maximum expected discounted reward of the subsequent
states:

U∗(s) = R(s) + γ max
a

∑
s′∈sp(S)

P (s′ | s, a)U∗(s′). (10.11)

10.6 Solutions to Decision Problems with Unbounded Time Horizon 381

From equation (10.10) we see that if we can calculate the maximum ex-
pected utility U∗ for each state, then we can also find the optimal policy. A
way of calculating U∗ is to consider the equations defined by equation (10.11)
as a system of |sp(S)| nonlinear equations with |sp(S)| unknowns (correspond-
ing to the utility of each state); the nonlinearity is due to the max operator.
A solution to these equations then corresponds to the utility function U∗.
Unfortunately, solving such a set of equations can be a very difficult task,
and instead, iterative methods are usually applied. The two most commonly
applied iterative methods are called value iteration and policy iteration.

10.6.2 Value Iteration

The idea of value iteration is to start out with an initial guess at the utility
U∗ for each state s, and then iteratively refine this guess. How this refinement
could be done is suggested by equation (10.11): the utility of a state is de-
termined by the immediate reward received at that state plus the maximum
expected utility of all the neighboring states according to our current best
guess at the utility function. To be more precise, if we let U j denote our esti-
mate of the utility function at step j, then we can define an updating function
as

U j+1(s) = R(s) + max
a

∑
s′

P (s′ | a, s)U j(s′). (10.12)

The process of updating the utilities is continued for perhaps a fixed number
of iterations or until the largest change is below a certain threshold value.

Example 10.3. In the robot navigation problem in Section 9.6.1, we may set
the initial guess U0 to 0. Then the first iteration sets the utilities U1 equal to
the rewards at the corresponding positions (see Figure 10.29(a)). During the
next iteration we update, say position (2, 1), as

U2(2, 1) = R(2, 1) + γ max

{∑
s

P (s |north, (2, 1))U1(s) ,

∑
s

P (s | east, (2, 1))U1(s),

∑
s

P (s | south, (2, 1))U1(s),

∑
s

P (s |west, (2, 1))U1(s)

}
.

By setting the discount factor γ to 0.9 we get

382 10 Solution Methods for Decision Graphs

U2(2, 1) =− 0.1 + 0.9 ·max{0.7 · −0.1 + 0.1 · 10 + 0.1 · −5 + 0.1 · −0.1,

0.7 · 10 + 0.1 · −5 + 0.1 · −0.1 + 0.1 · −0.1,

0.7 · −5 + 0.1 · −0.1 + 0.1 · −0.1 + 0.1 · 10,

0.7 · 0.1 + 0.1 · −0.1 + 0.1 · 10 + 0.1 · −5}
=− 0.1 + 0.9 ·max{0.42,6.48,−2.52, 0.56}
= 5.73,

and the maximal value corresponds to going east. Similarly, for position (2, 2)
we get

U2(2, 2) =− 5 + 0.9 ·max{0.7 · −0.1 + 0.1 · −1 + 0.1 · −0.1 + 0.1 · −0.1,

0.7 · −1 + 0.1 · −0.1 + 0.1 · −0.1 + 0.1 · −0.1,

0.7 · −0.1 + 0.1 · −0.1 + 0.1 · −0.1 + 0.1 · −1,

0.1 · 0.1 + 0.1 · −1 + 0.1 · −0.1 + 0.1 · −0.1}
=− 5 + 0.9 ·max{−0.19,−0.73,−0.19,−0.19}
=− 5.171,

and the optimal action is then either north, south, or west (ties are resolved
according to the sequence west, south, east, and north).

By updating the remaining utilities in this fashion we get the utility func-
tion U2 shown in Figure 10.29(b). Based on this utility function we can con-
tinue with the third iteration (the result is shown in Figure 10.29(c)) and so
forth; the optimal strategies corresponding to U2 and U3 (according to equa-
tion (10.10)) are shown in Figures 10.29(d)–(e); the optimal policy for U1 is
completely random.

If we continue updating the utilities according to the procedure above, the
method will eventually converge to the utility function and the strategy shown
in Figure 10.30(a) and Figure 10.30(c), respectively. To see the effect of the
discounting factor, Figures 10.30(b) and 10.30(d) show the utility function
and the optimal strategy obtained for γ = 0.1. Observe that when the value
of the discounting factor is reduced (the future becomes less significant) the
robot cares less about the goal state and instead focuses on avoiding the
immediate obstacles. Finally, Figure 10.31 shows the maximum log2-difference
in the utilities after each iteration (using γ = 0.9), which indicates that the
procedure converges exponentially fast.

The fact that value iteration converged to a solution for this particular
problem is no coincidence. It can be shown that value iteration is guaranteed
to converge, and the utility function that it converges to is the maximum
expected discounted reward. Before we give an indication as to why value
iteration exhibits these properties, we shall first state the algorithm in its
general form.

Algorithm 10.3 [Value Iteration] Let γ be the discounting factor, R the
reward function, and P the transition function:

10.6 Solutions to Decision Problems with Unbounded Time Horizon 383

1

1

2

2

3

3

−0.1 −0.1 10

−0.1 −5 −1

−0.1 −0.1 −0.1

1

1

2

2

3

3

−0.19 5.73 10

−0.63 −5.17 4.75

−0.19 −0.63 −0.27

1

1

2

2

3

3

3.42 6.23 10

−0.76 −1.07 5.24

−0.35 −0.77 2.79

(a) (b) (c)

1

1

2

2

3

3

← →

← ← ↑

← ← ←

1

1

2

2

3

3

→ →

↓ ↑ ↑

← ← ↑

(d) (e)

Fig. 10.29. Figures (a), (b), and (c) show the utility functions produced during the
first three updates. Figures (d) and (e) show the corresponding optimal strategies;
the arrows point in the direction of maximum expected discounted reward.

1. Choose an ε > 0 to regulate the stopping criterion.
2. Let U0 be an initial estimate of the utility function (for example, initialized

to zero for all states).
3. Set i := 0.
4. Repeat

a) Let i := i + 1.
b) For each s ∈ sp(S),

U i(s) := R(s) + γ ·max
a

∑
s′∈sp(S)

P (s′ | a, s)U i−1(s′).

5. Until U i(s)− U i−1(s) < ε, for all s ∈ sp(S).

�

It can be shown that the updating step of the algorithm ensures that the
difference between any two utility functions is guaranteed to get smaller after
each update. To be more specific, if we measure the difference between two
utility functions as the maximum distance between two components in the
functions

384 10 Solution Methods for Decision Graphs

1

1

2

2

3

3

6.18 7.53 10

4.66 1.11 6.46

3.90 4.04 5.28

1

1

2

2

3

3

−0.06 0.56 10

−0.16 −4.97 −0.35

−0.11 −0.16 −0.11

(a) (b)

1

1

2

2

3

3

→ →

↑ ↑ ↑

↑ → ↑

1

1

2

2

3

3

→ →

↑ ↑ ↑

← ← ↓

(c) (d)

Fig. 10.30. Figures (a) and (c) show the utility function and the optimal strat-
egy obtained upon convergence with discounting factor γ = 0.9. Convergence was
achieved after 75 iterations. Figures (b) and (d) show the situation for γ = 0.1,
where convergence was achieved after 18 iterations.

dist (U1, U2)max = max
s∈sp(S)

|U1(s)− U2(s)|,

then for two utility function U1 and U2 we have1

dist
(
U i+1

1 , U i+1
2

)
max

≤ γ · dist
(
U i

1, U
i
2

)
max

.

In particular, if we set U1 equal to the true utility function U∗ (the solution
to equation (10.11), which does not change during updates), we have

dist
(
U∗, U i+1

)
max

≤ γ · dist
(
U∗, U i

)
max

.

This behavior allows us to derive two important properties of the updating
function:

• There is only one true utility function (see Exercise 10.19).
• The value iteration algorithm is guaranteed to converge to the true utility

function.

1 The updating function is a contraction of a metric space with contraction constant
γ.

10.6 Solutions to Decision Problems with Unbounded Time Horizon 385

-50

-40

-30

-20

-10

 0

 10

 0 10 20 30 40 50 60 70

Iterations

lo
g
2

o
f
th

e
la

rg
es

t
ch

a
n
g
e

in
u
ti
li
ty

va
lu

e

Fig. 10.31. The greatest (log2) difference in the utility values produced by a value
iteration in the robot navigation problem. The solid line corresponds to the dis-
counting factor γ = 0.9 and the dashed line corresponds to γ = 0.1.

In addition to these properties we can also find an upper bound on the
number of iterations required for the distance between the true utility func-
tion and a candidate utility function to be less than ε. First of all, from
equation (9.1) (page 329) we see that the utility of any state is bounded by
Rmax/(1−γ) (Rmax is maximum absolute reward, Rmax = maxs |R(s)|). Thus,
for the initial iteration we have dist

(
U∗, U0

)
max

≤ 2Rmax/(1 − γ), and for
the mth iteration we have dist (U∗, Um)max ≤ γm · 2Rmax/(1− γ). From the
latter inequality we get

dist (U∗, Um)max ≤ γm · 2Rmax/(1− γ) ≤ ε.

By taking the logarithm and isolating m we have m = log(ε(1 − γ)/2Rmax)/
log(γ), which specifies an upper bound on the number of iterations required
to achieve an error less than or equal to ε. In practice, however, this upper
bound has a tendency to be overly conservative, and other methods have been
devised to provide tighter bounds. Finally, from the equation above we can
also see that the error fades away exponentially fast, but at the same time i
will also quickly increase as γ approaches 1. These effects are demonstrated
in Figures 10.30 and 10.31.

10.6.3 Policy Iteration

In value iteration you might say that we look for the true utility function as
a means of finding an optimal policy. Another (more direct) approach, called
policy iteration, is to perform an iterative refinement of the current best guess

386 10 Solution Methods for Decision Graphs

at an optimal policy. This method basically consists of two parts: calculate
the utility function UΔi

corresponding to the current best guess Δi at an
optimal policy [policy evaluation], and update Δi according to UΔi

, thereby
producing an updated policy Δi+1 [policy improvement]. See Figure 10.32.

Δ0 Δ1 ΔmUΔ0 UΔ1

Policy
evaluation

Policy
evaluation

Policy
im

provem
ent

Policy
im

provem
ent

Policy
im

provem
ent

Fig. 10.32. Policy iteration alternates between two steps: policy evaluation and
policy improvement.

The idea of policy improvement is to improve our current best guess at
the optimal policy Δi by beginning in a single state s and finding the action
that maximizes the expected utility for that state assuming that the current
policy is optimal for all the other states:

Δi+1(s) := argmax
a

∑
s′∈sp(S)

P (s′ | a, s)UΔi
(s′).

That is, we can think of policy improvement as an updating procedure for Δi

based on a one step look-a-head according to the utility function for Δi:
The utility function UΔi

used in policy improvement is found during policy
evaluation, where the basic task is to calculate the expected discounted reward
of following the strategy Δi for each state s:

UΔi
(s) = R(s) + γ

∑
s′∈sp(S)

P (s′ |Δi(s), s)UΔi
(s′).

Since we are working with a fixed strategy, this equation does not involve a
max-operator (as opposed to our initial specification of the problem in equa-
tion (10.11)) and the expression is therefore linear in the utilities. This also
means that we can calculate the utility function for a specific strategy by
treating it as a linear programming problem:

10.6 Solutions to Decision Problems with Unbounded Time Horizon 387

UΔ(s1) = R(s1) + γ
n∑

j=1

P (sj |Δ(s1), s1)U(sj),

UΔ(s2) = R(s2) + γ
n∑

j=1

P (sj |Δ(s2), s2)U(sj),

...

UΔ(sn) = R(sn) + γ

n∑
j=1

P (sj |Δ(sn), sn)U(sj),

consisting of n linear equations and n unknowns. For our robot navigation
problem, n corresponds to the number of possible world positions. When the
state space is small, this programming problem does not introduce any dif-
ficulties, but for larger state spaces it may be too time-consuming. Instead,
we can go for an approximate solution to this problem using value iteration.
In this case the time complexity can be controlled by specifying a suitable
termination criterion (a value for ε) and then using the upper bound on the
number of value iterations required to reach ε.

In general, the policy iteration method can be stated as follows:

Algorithm 10.4 [Policy iteration]

1. Let Δ0 be an initial randomly chosen policy.
2. Set i := 0.
3. Repeat

a) Find the utility function UΔi
corresponding to the policy Δi [policy

evaluation].
b) Let i := i + 1.
c) For each s ∈ sp(S)

Δi(s) := argmax
a

∑
s′∈sp(S)

P (s′ | a, s)UΔi−1(s
′) [policy improvement].

4. Until Δi = Δi−1.

�

The algorithm terminates when the current policy is not changed during
an iteration. This also implies that the utility function UΔm

for the final
policy Δm is the same as the utility function for the policy Δm−1 found in
the previous iteration, since they are both solutions to the same system of
linear equations. Hence, UΔm

is a solution to equation (10.11):

388 10 Solution Methods for Decision Graphs

UΔm
(S) = R(S) + γ

∑
S′

P (S′ |Δm(S), s0)UΔm
(S′)

= R(S) + γ
∑
S′

P (S′ |Δm(S), s0)UΔm−1(S
′)

= R(S) + γ max
a

∑
S′

P (S′ | a, s0)UΔm−1(S
′)

= R(S) + γ max
a

∑
S′

P (S′ | a, s0)UΔm
(S′).

Since this solution is unique (see Section 10.6.2), we know that the policy
returned by policy iteration is also an optimal policy.

10.6.4 Solving Partially Observable Markov Decision Processes*

As stated in Section 9.6.2, there is a fundamental difference between an op-
timal policy for an MDP and an optimal policy for a POMDP: an optimal
policy for an MDP specifies an action for each possible state of the world, but
an optimal policy for a POMDP specifies an action for each possible belief
that we may have about the state of the world. A belief at step i corresponds
to a probability distribution P (Si | d1, o1, . . . , di−1, oi), which summarizes the
relevant information from the past (lowercase letters are used to denote spe-
cific observations and decisions). This means that P (Si | d1, o1, . . . , di−1, oi),
our belief at step i, plays the same role as a state in an MDP, and this is
also the reason why P (Si | d1, o1, . . . , di−1, oi) is called the belief state at time
i (denoted by b(Si) or just bi). Thus, if Bi denotes the set of all possible belief
states (of which there are infinitely many), then an optimal policy for decision
Di is a function

δDi
: Bi → sp(Di) .

Since both value iteration and policy iteration for MDPs require a finite
number of states, we cannot directly adopt these methods when working with
POMDPs. Instead you might try to transform the POMDP into an “equiva-
lent” MDP (see Figure 10.34), so that by solving the MDP we also obtain a
solution to the original POMDP.

One possibility might be to simply construct a new finite belief space B′

representing the original belief space B. For example, in a POMDP with two
world states, sp(S) = {s1, s2}, we have a belief state for each probability of
s1; see Figure 10.33(a). This belief space can be partitioned into, for example,
10 equally wide intervals, B′ = {[0, 0.1), [0.1, 0.2), . . . , [0.9, 1]}, which can be
used as the world states in an MDP representation. To complete the spec-
ification you also need P (B′

i | B′
i−1, Di−1) and U(Di,B′

i), both of which can
be derived from the original POMDP specification. An approximate solution
to the POMDP can now be found by solving the MDP representation using
either value iteration or policy iteration.

10.6 Solutions to Decision Problems with Unbounded Time Horizon 389

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P (s1 | ·)

P
(s

2
|·

)

1 − P (s1 | ·) + P (s2 | ·)

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

P (s3 | ·)

P (s1 | ·)

P (s2 | ·)

1 − P (s1 | ·) + P (s2 | ·) + P (s3 | ·)

(a) (b)

Fig. 10.33. The belief space for a POMDP with two and three world states, re-
spectively.

Unfortunately, this partitioning/discretization procedure is infeasible for
all but the smallest POMDPs, since the number of states in the MDP repre-
sentation grows exponentially in the number of world states in the POMDP.
Figure 10.33(b) shows a partitioning of the belief space for a POMDP with
three states; with four states the belief space would be a hypercube in 4-
dimensional space.

Rather than discretizing the belief space, a more common approach is to
extend the MDP algorithms to infinite state spaces (see Figure 10.34). To give
an idea of the procedure, let us first look at how a POMDP can be transformed
into an MDP without dwelling on the potential complications of infinite state
spaces.

Bi−1 Bi Bi+1

Di−1 Di Di+1

R′
i−1 R′

i R′
i+1

Fig. 10.34. The MDP representation of a POMDP. The state variable Bi contains
one state for each possible belief state at step i (of which there are infinitely many).

390 10 Solution Methods for Decision Graphs

First of all, let us start by establishing the fact that the belief state at step
i− 1 summarizes all the relevant information about the previous observations
and decisions. This will also help us establish the conditional probabilities
used in the MDP representation. Thus, we look for an independence relation
formed by conditioning on a continuous variable. This type of conditioning
is not an issue we have touched upon previously, but for the purpose of the
subsequent derivations you may treat it as conditioning on a discrete variable.
That is,

bi = P (Si | di−1, oi, past(Di−1)) = P (Si | di−1, oi, bi−1),

where past(Di−1) = (o1, d1, . . . , di−2, oi−1) denotes all observations and deci-
sions prior to decision Di−1. By Bayes’ rule we have that

P (Si | di−1, oi, past(Di−1))

=
P (oi |Si, di−1, past(Di−1))P (Si | di−1, past(Di−1))

P (oi | di−1, past(Di−1))
,

(10.13)

and since P (oi | di−1, past(Di−1)) is just a normalization constant, we get

P (Si | di−1, oi, past(Di−1))

∝ P (oi |Si, di−1, past(Di−1))P (Si | di−1, past(Di−1)).

The third probability can also be expressed as

P (Si | di−1, past(Di−1))

=
∑
Si−1

P (Si | di−1, past(Di−1), Si−1)P (Si−1 | di−1, past(Di−1)).

Since Si−1 is independent of di−1, and Si is independent of past(Di−1) given
Si−1 (check the d-separation properties in the model) the above expression
simplifies to

P (Si | di−1, past(Di−1)) =
∑
Si−1

P (Si | di−1, Si−1)P (Si−1 | past(Di−1)).

By also exploiting that P (oi |Si, di−1, past(Di−1)) = P (oi |Si, di−1), equa-
tion (10.13) can now be expressed as

P (Si | di−1, oi, past(Di−1))

∝ P (oi |Si, di−1)
∑
Si−1

P (Si | di−1, Si−1)P (Si−1 | past(Di−1)).

Since P (Si−1 | past(Di−1)) is the belief state, bi−1, for step i − 1 we end up
with

10.6 Solutions to Decision Problems with Unbounded Time Horizon 391

bi = P (Si | di−1, oi, past(Di−1))

∝ P (oi |Si, di−1)
∑
Si−1

P (Si | di−1, Si−1)b(Si−1), (10.14)

where the right-hand side of the expression does not depend on the past
observations and decisions given the previous belief state b(Si−1). We can
therefore write

b(Si) = P (Si | di−1, oi, past(Di−1)) = P (Si | di−1, oi, b(Si−1)).

It should also be noted that in equation (10.14) we have that P (oi |Si, di−1)
is the observation function and P (Si | di−1, Si−1) is the transition function.
Hence, equation (10.14) also provides a way to update our belief state based on
the prior belief state, the decision di−1, and the observation oi. This updated
belief state corresponds to the observation of bi.

Now, going back to our initial goal of describing the transformation of the
POMDP model to the MDP model in Figure 10.34, we need to specify the
transition function P (bi | bi−1, di−1) and the reward function R′

i(bi, Di). The
specification should ensure that the two models become equivalent, meaning
that an optimal solution for one of the models is also an optimal solution for
the other model.

The transition function P (bi | di−1, bi−1) can be expressed as

P (bi | di−1, bi−1) =
∑
Oi

P (bi | di−1, bi−1, Oi)P (Oi | di−1, bi−1), (10.15)

where the probability P (Oi | di−1, bi−1) corresponds to the normalization con-
stant in equation (10.13) and can be calculated as

P (Oi | di−1, bi−1) =
∑
Si

P (Oi |Si, di−1)
∑
Si−1

P (Si | di−1, Si−1)b(Si−1).

Again, the expression depends only on the observation function, the transition
function, and the previous belief state. The function P (bi | di−1, bi−1, oi) is
simply an indicator function defined as

P (bi | di−1, bi−1, oi) =

{
1 if b(Si) = P (Si | di−1, oi, bi−1),

0 otherwise.

Next, we also have to specify the reward function R′(b(Si, di). Fortunately,
this function can simply be calculated as

R′(bi, Di) =
∑
Si

R(Si, di)b(Si). (10.16)

Thus, equation (10.15) together with equation (10.16) provides a complete
specification of the transformed POMDP, and equation (10.14) describes how
to find the observed belief state at each time step.

392 10 Solution Methods for Decision Graphs

The final part is now to solve the MDP. However, we cannot immediately
apply the algorithms described in the previous sections, since they work only
on MDPs with finite state spaces. Instead these algorithms have to be modified
to work with continuous MDPs. The overall approach is to partition the space
of belief functions into regions, where each region is associated with a par-
ticular strategy and a corresponding linear utility function. A more thorough
description of the algorithm is outside the scope of the present book.

10.7 Limited Memory Influence Diagrams

The major complexity problem for influence diagrams is that the relevant
past for a policy may be intractably large. A way of addressing this problem
is to restrict memory. This restriction can be introduced in the form of history
variables or information blocking as described in Section 10.1. Another way is
to pinpoint explicitly what is remembered when a decision is taken. That is,
the no-forgetting assumption in interpreting an influence diagram is dropped,
and instead memory is represented directly by information links.

Assume that for the fishing example in Figure 9.23 we add the restriction
that we (the EU politicians) remember only last year’s decision, but we can
recall the T -observations up to two years back. This can be represented by
the model in Figure 10.35.

V1

T1

FV1

U1

V2

T2

FV2

U2

V3

T3

FV3

U3

V4

T4

FV4

U4

V5

T5

FV5

U5

Fig. 10.35. Figure 9.23 modified to represent limited memory. Absent information
arcs mean that the information is not remembered.

An influence diagram with direct representation of memory is called a lim-
ited memory influence diagram (LIMID). To stress the difference, influence
diagrams can be called perfect recall influence diagrams. The advantage of
LIMIDs is that they allow you to work with decision policies with small do-
mains. If the domain of a policy does not include all the variables relevant for
the associated decision, then the solution to the LIMID is an approximation
to a solution for the corresponding perfect recall influence diagram.

10.7 Limited Memory Influence Diagrams 393

The strong junction tree method automatically constructs cliques contain-
ing domains for perfect recall policies, and it is therefore not well suited for
taking advantage of the space reduction offered by LIMIDs. Instead, a policy
network can be used (see Section 10.2.3): substitute each decision variable D
with a chance variable D∗ having the same parents and children as D (we
ignore that some informational parents may turn up nonrequired; see Sec-
tion 11.2). A policy network representation of the LIMID in Figure 10.35 is
shown in Figure 10.36.

V1

T1

FV ∗
1

V2

T2

FV ∗
2

V3

T3

FV ∗
3

V4

T4

FV ∗
4

V5

T5

FV ∗
5

Fig. 10.36. The policy network for the LIMID in Figure 10.35.

We attach a set of initial conditional probability distributions P0(D
∗ |

pa(D∗)) to the D∗ variables. These distributions represent our initial guess
at the optimal policies of the decisions. The distributions need not be deter-
ministic and could be chosen at random. Next, you change the policy network
to a series of one-action networks and solve them as described in Section 9.1.
It is natural to start with the last decision. The single-action network for the
last decision in the fishing network is shown in Figure 10.37.

V1

T1

FV ∗
1

U1

V2

T2

FV ∗
2

U2

V3

T3

FV ∗
3

U3

V4

T4

FV ∗
4

U4

V5

T5

FV5

U5

Fig. 10.37. The single-action network for the last decision in Figure 10.36.

394 10 Solution Methods for Decision Graphs

To establish an optimal policy for FV5 you need P (V5 |FV ∗
4 , T5, T4, T3).

To find this probability you can use any inference method for the underlying
Bayesian network; there are no constraints on the elimination order.

Next, having found a new policy δFV5(FV ∗
4 , T5, T4, T3) for FV5 you substi-

tute the initially specified potential P0(FV ∗
5 |FV ∗

4 , T5, T4, T3) with a chance
variable representation of δFV5 :

P1(FV ∗
5 = v |FV ∗

4 , T5, T4, T3) =

{
1 if δFV5(FV ∗

4 , T5, T4, T3) = v,

0 otherwise,

and construct the single-action network for FV4. See Figure 10.38.

V1

T1

FV ∗
1

U1

V2

T2

FV ∗
2

U2

V3

T3

FV ∗
3

U3

V4

T4

FV4

U4

V5

T5

FV ∗
5

U5

Fig. 10.38. A single-action network for FV4.

To find a new policy for FV4 we look for EU(FV4 |FV3, T4, T3, T2), which
is the sum of the expectations for U4 and U5. This requires the calculation of
P (FV ∗

5 , V5 |FV4, FV ∗
3 , T4, T3, T2) and P (V4 |FV4, FV ∗

3 , T4, T3, T2), where the
former joint probability can be found using, for example, variable propagation
(see Section 5.2). Continue to FV3 and down to FV1.

Now, the initial policies for FV1, FV2, FV3, and FV4 were used in de-
termining a new policy for FV5. These initial policies also had an impact
on P (FV ∗

5 , V5 |FV4, FV ∗
3 , T4, T3, T2) and P (V4 |FV4, FV ∗

3 , T4, T3, T2), and you
need to repeat the process based on the new policies. That is, the procedure,
called single policy updating, is iterative, and from the description above we
see that it is closely related to policy iteration for MDPs. It can be shown that
the procedure converges, and that it converges to an optimal strategy for the
LIMID. However, this need not be an optimal strategy for the perfect recall
influence diagram, and it is an issue of research to establish bounds on the
distance between the LIMID optimal strategy and the perfect recall optimal
strategy.

Algorithm 10.5 [Single policy updating] Let I be a LIMID with decision
variables D1, . . . , Dn, and let I ′ be a policy network for I, where the decision
variables are represented by the chance variables D∗

1 , . . . , D
∗
n.

10.8 Summary 395

1. Let P0(D
∗
j | pa(D∗

j)) be a randomly chosen initial probability distribution
for D∗

j , 1 ≤ j ≤ n, in I ′.
2. Let i := 1.
3. Repeat

a) For j := n to 1
i. Let UDj

be the utility descendants of Dj.
2

ii. Calculate a policy for Dj:

δDj
(pa(Dj))

i = argmax
Dj

∑
U∈UDj∑

pa(U)\fa(Dj)

P (pa(U) \ fa(Dj) | fa(Dj))U(pa(U)).

iii. Replace Pi−1(D
∗
j | pa(D∗

j)) in I ′ with

Pi(D
∗
j = d | pa(D∗

j)) =

{
1 if δi

Dj
(pa(D∗

j)) = d,

0 otherwise.

b) Set i := i + 1.
4. Until convergence.

�
The repeated construction of single-action networks and variable propa-

gation can be performed in a unified framework saving a large number of
repetitions of the same calculations. We shall not treat this further but refer
the interested reader to the literature.

10.8 Summary

The Chain Rule for Influence Diagrams

Let ID be an influence diagram with universe U = UC ∪ UD. Then

P (UC | UD) =
∏

X∈UC

P (X | pa(X)).

The Expected Utility and an Optimal Strategy

Let the temporal order of the variables in U be described as I0 ≺ D1 ≺ I1 ≺
· · · ≺ Dn ≺ In and let V =

∑
i Vi. Then

(i) an optimal policy for Di is

δi(I0, D1, . . . , Ii−1) = argmax
Di

∑
Ii

max
Di+1

. . .max
Dn

∑
In

P (UC | UD)V,

2 No other utility nodes can influence the policy for Dj . See Section 11.2.

396 10 Solution Methods for Decision Graphs

(ii)the expected utility from following the policy δi (and acting optimally in
the future) is

ρi(I0, D1, . . . , Ii−1) =
1

P (I0, . . . , Ii−1 |D1, . . . , Di−1)

max
Di

∑
Ii

max
Di+1

· · ·max
Dn

∑
In

P (UC | UD)V,

and the strategy for ID consisting of an optimal policy for each decision yields
the maximum expected utility

MEU(ID) =
∑
I0

max
D1

∑
I1

max
D2

· · ·max
Dn

∑
In

P (UC | UD)V.

Variable Elimination for Influence Diagrams

The influence diagram is solved by repeatedly eliminating the variables in re-
verse temporal order. When eliminating a variable, you work with two sets
of potentials: Φ, the set of probability potentials; Ψ , the set of utility poten-
tials. When a variable X is eliminated, the potential sets are modified in the
following way:

1.

ΦX : = {φ ∈ Φ |X ∈ dom (φ)};
ψX : = {φ ∈ Ψ |X ∈ dom(φ)}.

2. If X is a chance variable, then

φX : =
∑
X

∏
ΦX ;

ψX : =
∑
X

∏
ΦX

(∑
ΨX

)
.

If X is a decision variable, then3

φX : = max
X

∏
ΦX ;

ψX : = max
X

∏
ΦX

(∑
ΨX

)
.

3.

Φ : =
(
Φ \ ΦX

)
∪ {φX},

Ψ : =
(
Ψ \ ΨX

)
∪

{
ψX

φX

}
.

These calculations can also be organized in a strong junction tree for the influ-
ence diagram. A strong junction tree is produced by eliminating the variables
in reverse temporal order.

3 When X is a decision variable, Φx is a constant function over X.

10.8 Summary 397

Policy Networks

Let D be a decision variable with policy δD(req(D)). The chance-variable
representation of D is the result of the following construction: Substitute D
with a chance variable D∗ with parents req(D). The conditional probability
potential P (D∗ | req(D)) is

P (d|r̄) =

{
1 if δD(r̄) = d,

0 otherwise.

Let ID be an influence diagram over U = UC ∪ UD. A policy network for ID
(denoted by ID∗) is a Bayesian network over U = UC∪U∗

D in which all decision
variables Di have been substituted with their chance-variable representations.
The probability potentials from ID are kept (with Djs replaced by D∗

j).

Node Removal and Arc Reversal

The influence diagram is solved by iteratively removing nodes and reversing
arcs according to the following rules:

Removal of barren nodes: A chance or decision node is barren if it has no
children or all its children are barren. Since a barren node plays no role for
any decision, it can safely be removed.

Removal of chance nodes: Let the only children of the chance node C be the
utility nodes U1, . . . , Uk. Then C and the utility nodes can be removed by
integrating them into one utility node with the utility potential

U∗ =
∑
C

P (C| pa(C))

[
k∑

i=1

Ui

]
.

Removal of decision nodes. Let the only children of the decision node D be
the utility nodes U1, . . . , Uk. Assume that all parents of U1, . . . , Uk are known
at the time of deciding on D. Then the optimal policy for D is

δD = arg max
D

(
k∑

i=1

Ui

)
,

and D and U1, . . . , Uk can be removed by substituting them with a new utility
node having the potential

U∗ = max
D

(
k∑

i=1

Ui

)
.

If no nodes can be removed, then arc reversals can be performed to obtain
another (EU-equivalent) influence diagram in which one of the rules above

398 10 Solution Methods for Decision Graphs

can be applied.

Arc reversal: Let A and B be chance nodes such that A is a parent of B and
there are no other directed paths from A to B. Let C, . . . , D be the parents
of A and let A, E, . . . , F be the parents of B. Then the arc from A to B can
be reversed by assigning A and B the conditional probability distributions

P (B |C, . . . , D, E, . . . , F) =
∑
A

P (B |A, E, . . . , F)P (A |C, . . . , D),

P (A |B, C, . . . , D, E, . . . , F) =
P (B |A, E, . . . , F)P (A |C, . . . , D)

P (B |C, . . . , D, E, . . . , F)
,

respectively.

Unconstrained Influence Diagrams

An S-DAG can be constructed from a breadth-first procedure starting at the
sink: add all the decisions that may come last, and after that you add the ob-
servables released by the decisions. By exploiting the following rule we need
not construct the full S-DAG:

Let D be a decision node (or Sink) in an S-DAG, and let D1 and D2 be par-
ents of D. If the set of observables released by D1 is a subset of the set of
observables released by D2, then the path with D2 as a parent of D can be
removed without reducing the maximal expected utility.

A solution to the UID is found using variable elimination based on the S-DAG
structure.

Troubleshooting

The expected cost of repair of a troubleshooting sequence s = 〈A1, . . . , An〉 of
repair actions is

ECR(s) =
∑

i

Ci(e
i−1)P (ei−1),

where ej denotes the statement that the first j actions have failed.
For an optimal repair sequence, it holds that

Ci(e
i−1)+Ci+1(e

i)P (Ai = n | ei−1)

≤ Ci+1(e
i−1) + Ci(e

i−1, Ai+1 = n)P (Ai+1 = n | ei−1).

The efficiency of a repair action is

ef(A | e) =
P (A = y | e)

CA(e)
.

10.8 Summary 399

If costs are independent of evidence, then for an optimal repair sequence it
must hold that

ef(Ai | ei−1) ≥ ef(Ai+1 | ei−1),

and if for all i < j it holds that

ef(Aj | e) ≤ ef(Ai | e)

for all simple evidence e (not involving Ai and Aj) of the type “actions
A, . . . , B have failed,” then the repair sequence 〈A1, . . . , An〉 is optimal (this
does not necessarily hold when call service is an option).

Questions: The value of getting an answer of Q is

V (Q) = ECR−
∑
s∈Q

P (Q = s | e) ECR
s

,

where ECRs is the expected cost of repair for an optimal sequence given
evidence e and “Q = s,” and ECR is the expected cost of repair for an optimal
sequence not starting with Q. Because neither ECR nor ECRs is tractable, a
myopic approach is often used.

Unbounded Decision Problems

Let γ be the discounting factor, R the reward function, and P the transition
function.

Value iteration:

1. Choose an ε > 0 to regulate the stopping criterion.
2. Let U0 be an initial estimate of the utility function (for example, initialized

to zero for all states).
3. Set i := 0.
4. Repeat

a) Let i := i + 1.
b) For each s ∈ sp(S)

U i(s) := R(s) + γ ·max
a

∑
s′ sp(S)

P (s′ | a, s)U i−1(s′).

5. Until U i(s)− U i−1(s) < ε, for all s ∈ sp(S).

Policy iteration:

1. Let Δ0 be some initial (randomly chosen) policy.
2. Set i := 0.
3. Repeat

a) Find the utility function UΔi
corresponding to the policy Δi [policy

evaluation].

400 10 Solution Methods for Decision Graphs

b) Let i := i + 1.
c) For each s ∈ sp(S)

Δi(s) := argmax
a

∑
s′∈sp(S)

P (s′ | a, s)UΔi−1(s
′) [policy improvement].

4. Until Δi = Δi−1.

Limited Memory Influence Diagrams (LIMIDs)

The no-forgetting assumption is dropped and instead, the informational arcs
specify the variables observed before a particular decision (thereby control-
ling the size of the policy functions). A solution can be found using the single
policy updating algorithm:

Single policy updating: Let I be a LIMID with decision variables D1, . . . , Dn,
and let I ′ be a policy network for I in which the decision variables are repre-
sented by the chance variables D∗

1 , . . . , D
∗
n.

1. Let P0(D
∗
j | pa(D∗

j)) be an initial probability distribution (chosen at ran-
dom) for D∗

j , 1 ≤ j ≤ n, in I ′.
2. Let i := 1.
3. Repeat

a) For j := n to 1
i. Let UDj

be the utility descendants of Dj.
ii. Calculate a policy for Dj :

δDj
(pa(Dj))

i = argmax
Dj

∑
U∈UDj∑

pa(U)\fa(Dj)

P (pa(U) \ fa(Dj) | fa(Dj))U(pa(U)).

iii. Replace Pi−1(D
∗
j | pa(D∗

j)) in I ′ with

Pi(D
∗
j = d | pa(D∗

j)) =

{
1 if δi

Dj
(pa(D∗

j)) = d,

0 otherwise.

b) Set i := i + 1.
4. Until convergence.

10.9 Bibliographical Notes

Various methods for solving influence diagrams have been constructed. Olm-
sted (1983) and Shachter (1986) introduced arc-reversal, and Shenoy (1992),
Jensen et al. (1994), Cowell (1994), Ndilikilikesha (1994), and Madsen and

10.10 Exercises 401

Jensen (1999a) used elimination and direct manipulation of potentials. Cooper
(1988) presents a method that works well for scenarios with one decision
variable. It substitutes the decision variable and the utility variables with
chance variables and uses Bayesian network propagation. Zhang (1998) ex-
ploits Cooper’s method to full influence diagrams.

The solution strategy for unconstrained influence diagrams was proposed
in (Jensen and Vomlelova, 2002). A solution algorithm for sequential influence
diagrams can be found in (Jensen et al., 2006).

Troubleshooting based on decision theory was introduced by Kalagnanam
and Henrion (1990), and it was further analyzed by Heckerman et al. (1995a).
Section 10.5 is an extension of this work. Proofs that various versions of trou-
bleshooting are NP-complete can be found in (Vomlelová, 2003).

The main ideas involved with solving Markov decision processes through
value iteration originates with Shapley (1953). Policy iteration originates with
Howard (1960).

LIMIDs were proposed in (Nilsson and Lauritzen, 2000).

10.10 Exercises

Exercise 10.1. Consider the influence diagram in Figure 9.22. Is L d-separa-
ted from E given I? Find a minimal set of nodes that d-separate A from
D3.

Exercise 10.2. Consider the influence diagram DI from Figure 10.1 but
without the utility node V1. Derive the formulas for an optimal strategy.

Exercise 10.3. Prove that during variable elimination, the potential
∏

ΦD

is constant over D if all the variables following D in the partial ordering have
already been eliminated.

Exercise 10.4. Construct a strong junction tree for the influence diagram in
Figure 9.21 and determine the domains of the policies.

Exercise 10.5. Construct strong junction trees for the influence diagrams
in Figures 9.23 and 9.24. Compare the clique sizes and the domains of the
policies.

Exercise 10.6. Show that any strong triangulation of the influence diagram
in Figure 10.10 will place E and B in the clique where D1 is eliminated.

Exercise 10.7. Construct a strong junction tree for the influence diagram in
Figure 10.39

(i) Is D2 required for D3?
(ii) Is B required for D3?

402 10 Solution Methods for Decision Graphs

A B C EF

G H I

D1 D2 D3

U1 U2

U3

Fig. 10.39. Figure for Exercise 10.7.

(iii) Construct a join tree for the policy network and compare the size with
the size of the strong junction tree.

Exercise 10.8. (i) Let {aij} be an n×m matrix of reals. Prove that

maxi

∑
j

aij ≤
∑

j

maxiaij .

(ii) Use (i) to show that the MEU of an influence diagram will not increase
by delaying an observation. (Hint: Look at the formulas for the two elim-
ination orders.)

Exercise 10.9. Consider the arc-reversal solution method for influence dia-
grams, and a point where no node can be removed (because the only nodes
with only utility nodes as children are decision nodes and these utility nodes
have nonobservables as parents as well). To show that we can always find an
arc to reverse, prove that there is at least one pair of chance nodes A and B
such that A is a parent of B and there is no other directed path from A to B.

Exercise 10.10. Consider the simple influence diagram in Figure 10.40,
where all variables are binary, and the probabilities for C1 are given in Ta-
ble 10.4, the probability of C2 = c2 is 0.8, and the utility functions U1 and
U2 are given in Tables 10.5 and 10.6. Solve the influence diagram using node
removal and arc reversal.

D1 \ C2 c2 ¬c2

d1 0.2 0.7
¬d1 0.5 0.5

Table 10.4. P (C1 = c1 |D1, C2).

10.10 Exercises 403

D1

D2

U1

U2

C1 C2

Fig. 10.40. A simple influence diagram.

D1 \ C1 c1 ¬c1

d1 5 −2
¬d1 3 −10

Table 10.5. U1(D1, C1).

D1 \ C2 c2 ¬c2

d1 (0, 0) (8,−5)
¬d1 (5,−1) (1, 12)

Table 10.6. U2(D1, C2, D2). Entries should be interpreted as (d2,¬d2).

Exercise 10.11. Which steps would be carried out if the influence diagram in
Figure 9.22 were solved using node removal and arc reversal? Assuming that
each node has two states, what is the largest potential constructed during the
solution process?

Exercise 10.12. Let I be an influence diagram, and I ′ be the influence dia-
gram obtained by reversing an arc in I. Prove that if X and Y are variables
d-separated by a set of variables Z in I ′, then X and Y are also d-separated
given Z in I.

Exercise 10.13. Prove that when the node removal and arc reversal solution
method is applied to an influence diagram, it eliminates the decision variables
in an order consistent with the partial temporal ordering of the nodes in the
diagram.

Exercise 10.14. Consider the UID in Figure 9.48. Construct the full S-DAG
for the UID, and then reduce it as much as possible. Is the result the same
when you do a roll-back construction of the S-DAG?

Exercise 10.15. Use the algorithm in Section 10.5.4 to solve the start prob-
lem in Example 9.2 (Page 293).

404 10 Solution Methods for Decision Graphs

Exercise 10.16. E You are experiencing irregularities using your computer.
There are several reasons why this can be: first, one of the programs you are
running can be malfunctioning and interfering with your operating system;
second, you can have attracted a virus; and third, you can have a hardware
problem. Assuming that only one problem exists, the probabilities of the three
problems are 0.8, 0.15, and 0.05, respectively. Your possible actions for fixing
the problem are

1. Reboot the computer.
2. Run a virus removal tool.
3. Reformat your hard disk and reinstall your operating system.
4. Buy a new computer.

The costs of each option as an overall index of frustration, time usage, and
money spent are 1, 2, 25, and 500, respectively. The probability of action 4
solving the problem is 1 no matter what the problem is and which other
attempts to solve the problem have failed so far. Action 3 has a probability
of 0.99 of fixing the problem if it is a nonhardware problem, and 0 if it is a
hardware problem, no matter which other solutions that have failed previously.
Action 2 solves the problem with probability 0.95 if it is a virus problem,
and with probability 0 otherwise, again no matter what other solutions have
unsuccessfully been tried. Finally, action 1 solves the problem with probability
1 if it is due to a malfunctioning program, and 0 otherwise, no matter what
previous unsuccessful attempts at solving the problem were tried.

Formulate the above setting as a troubleshooting problem, and give an
optimal sequence of repair actions. What is the expected cost of repair for the
sequence?

Exercise 10.17. E Consider again the computer problem in Exercise 10.16,
and assume further that you are given the option of buying a computer pro-
gram that can scan the computer for hardware errors. The overall effort in-
volved in doing this is 4. If there is a hardware error, the program has a
0.999 chance of discovering it, and there is no risk of false positives. More-
over, you are given the choice of having your computer scanned remotely on
the Internet by some company for a price of 0.25. The scanning discovers a
virus with a probability of 0.99 if there is one, but the scanner cannot remove
it. For that you are given the option of downloading a special virus-removal
program, which has a cost of 2 and which removes the identified virus with a
probability of 1. Are the two offers individually worth the asking price? Are
they worth the price in combination?

Exercise 10.18. Continue Example 10.3 and perform one more iteration of
value iteration starting with the utility function shown in Figure 10.29(c).

Exercise 10.19. Show that there is only one true utility function representing
the maximum expected discounted reward of a Markov decision process with
an unbounded time horizon.

10.10 Exercises 405

Exercise 10.20. E Consider the influence diagram in Example 10.10, but
interpreted as a LIMID. Using the policies D1 = ¬d1 and D2 = d2, regardless
of the state of C1, run two iterations of policy updating.

Exercise 10.21. E Consider the LIMID in Figure 10.41, with its realization
specified as in Example 10.10. Using the policies D1 = ¬d1 and D2 = d2,
regardless of the states of C1 and D1, run two iterations of policy updating.

D1

D2

U1

U2

C1 C2

Fig. 10.41. A LIMID for Exercise 10.21.

