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Prerequisites on Probability Theory

In this chapter we review some standard results and definitions from probabil-
ity theory. The reader is assumed to have had some contact with probability
theory before, and the purpose of this section is simply to brush up on some
of the basic concepts and to introduce some of the notation used in the later
chapters. Sections 1.1–1.3 are prerequisites for Section 2.3 and thereafter, Sec-
tion 1.4 is a prerequisite for Chapter 4, and Section 1.5 is a prerequisite for
Chapter 6 and Chapter 7.

1.1 Two Perspectives on Probability Theory

In many domains, the probability of seeing a certain outcome of an experiment
can be interpreted as the relative frequency of seeing this particular outcome
in all of the experiments performed. For instance, if you throw a six-sided die,
then you would say that the probability of obtaining a three is 1/6, because
if we throw this die a large number of times we would expect to see a three in
approximately 1/6 of the throws. Along the same line of reasoning, we would
also say that if we randomly draw a card from a deck consisting of 52 cards,
then the probability that it will be a spade is 13/52. This interpretation of
probability rests on the assumption that there is some stochastic process that
can be repeated several times and from which the relative frequencies can be
counted. On the other hand, we often talk about the probability of seeing
a certain event although we cannot specify a frequency for it. For example,
I may estimate that the probability that the Danish soccer team will win
the World Cup in 2010 is p. This probability is my own personal judgment
of how likely it is that the Danish team will actually win, and it is based
on my belief, experience, and current state of information. However, another
person may specify another probability for the same event, and it has no
meaning to look for ways of determining which of us is right, if either. These
probabilities are referred to as subjective probabilities. One way to interpret
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my subjective probability of Denmark winning the world cup in 2010 is to
imagine the following two wagers:

1. If the Danish soccer team wins the world cup in 2010, I will receive $100.
2. I will draw a ball from an urn containing 100 balls out of which n are

white and 100− n are black. If the ball drawn is white then I will receive
$100 in 2010.

If all the balls are white then I will prefer the second wager, and if all the
balls are black then I will prefer the first. However, for a certain n between 0
and 100 I will be indifferent about the two wagers, and for this n, n/100 will
be my subjective probability that the Danish soccer team will win the World
Cup.

1.2 Fundamentals of Probability Theory

For both views on probability described above, we will refer to the set of
possible outcomes of an experiment as the sample space of the experiment.
Here we use the somewhat abstract term “experiment” to refer to any type
of process for which the outcome is uncertain, e.g., the throw of a die and the
winner of the World Cup. We shall also assume that the sample space of an
experiment contains all possible outcomes of the experiment, and that each
pair of outcomes are mutually exclusive. These assumptions ensure that the
experiment is guaranteed to end up in exactly one of the specified outcomes
in the sample space. For instance, for the die example above, the sample space
would be S = {1, 2, 3, 4, 5, 6}, and for the soccer example the sample space
would be S = {yes, no}, assuming that I am interested only in whether the
Danish team will win; both of the sample spaces satisfy the assumptions above.
A subset of a sample space is called an event . For example, the event that
we will get a value of three or higher with a six-sided die corresponds to the
subset {3, 4, 5, 6} ⊆ {1, 2, 3, 4, 5, 6}, and the event will occur if the outcome
of the throw is an element in the set. In general, we say that an event A is
true for an experiment if the outcome of the experiment is an element of A.
When an event contains only one element, we will also refer to the event as
an outcome.

To measure our degree of uncertainty about an experiment we assign a
probability P (A) to each event A ⊆ S. These probabilities must obey the
following three axioms:

The event S that we will get an outcome in the sample space is certain to
occur and is therefore assigned the probability 1.

Axiom 1 P (S) = 1.

Any event A must have a nonnegative probability.

Axiom 2 For all A ⊆ S it holds that P (A) ≥ 0.
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If two events A and B are disjoint (see Figure 1.1(a)), then the probability
of the combined event is the sum of the probabilities for the two individual
events:

Axiom 3 If A ⊆ S, B ⊆ S and A∩ B = ∅, then P (A ∪ B) = P (A) + P (B).

For example, the event that a die will turn up 3, B = {3}, and the event that
the die will have an even number, A = {2, 4, 6}, are two disjoint events, and
the probability that one of these two events will occur is therefore

P (A ∪ B) = P (A) + P (B) =
1

6
+

3

6
=

4

6
.

A

S S
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B AB

Fig. 1.1. In figure (a) the two events A and B are disjoint, whereas in figure (b),
A∩ B �= ∅.

On the other hand, if A and B are not disjoint (see Figure 1.1(b)), then
it can easily be shown that

P (A ∪ B) = P (A) + P (B)− P (A ∩ B),

where A ∩ B is the intersection between A and B and it represents the event
that both A and B will occur. Consider again a deck with 52 cards. The event
A that I will draw a spade and the event B that I will draw a king are clearly
not disjoint events; their intersection specifies the event that I will draw the
king of spades, A ∩ B = {king of spades}. Thus, the probability that I will
draw either a king or a spade is

P (A ∪ B) = P (A) + P (B)− P (A ∩ B) =
13

52
+

4

52
− 1

52
=

16

52
.

Notation: Sometimes we will emphasize that a probability is based on a
frequency (rather than being a subjective probability), in which case we will
use the notation P#. If the event A contains only one outcome a, we write
P (a) rather than P ({a}).
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1.2.1 Conditional Probabilities

Whenever a statement about the probability P (A) of an event A is given,
then it is implicitly given conditioned on other known factors. For example, a
statement such as “the probability of the die turning up 6 is 1

6” usually has
the unsaid prerequisite that it is a fair die, or rather, as long as I know nothing
further, I assume it to be a fair die. This means that the statement should be
“given that it is a fair die, the probability . . . .” In this way, any statement on
probabilities is a statement conditioned on what else is known. These types of
probabilities are called conditional probabilities and are generally statements
of the following kind:

“Given the event B, the probability of the event A is p.”

The notation for the preceding statement is P (A|B) = p. It should be
stressed that P (A|B) = p does not mean that whenever B is true, then the
probability ofA is p. It means that if B is true, and everything else is irrelevant
for A, then the probability of A is p.

Assume that we have assigned probabilities to all subsets of the sample
space S, and let A and B be subsets of S (Figure 1.1(b)). The question is
whether the probability assignment for S can be used to calculate P (A|B). If
we know the event B, then all possible outcomes are elements of B, and the
outcomes for which A can be true are A ∩ B. So, we look for the probability
assignment for A∩ B given that we know B. Knowing B does not change the
proportion between the probabilities of A ∩ B and another set C ∩ B (if, for
example, I will bet twice as much on A ∩ B as on C ∩ B, then after knowing
B, I will still bet twice as much on A∩B as on C ∩ B). We can conclude that
the proportions P (A ∩ B)/P (C ∩ B) and P (A|B)/P (C|B) must be the same.
Setting C = B, and since we know from Axiom 1 that P (B|B) = 1, we have
justified the following property, which should be considered an axiom.

Property 1.1 (Conditional probability). For two events A and B, with P (B) >
0, the conditional probability for A given B is

P (A |B) =
P (A ∩ B)

P (B)
.

For example, the conditional probability that a die will come up 4 given
that we get an even number is P (A = {4} | B = {2, 4, 6}) = P ({4})/P ({2, 4,

6}), and by assuming that the die is fair we get 1/6
3/6 = 1

3 .

Obviously, when working with conditional probabilities we can also con-
dition on more than one event, in which case the definition of a conditional
probability generalizes as

P (A |B ∩ C) =
P (A ∩ B ∩ C)

P (B ∩ C) .
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1.2.2 Probability Calculus

The expression in Property 1.1 can be rewritten so that we obtain the so-called
fundamental rule for probability calculus:

Theorem 1.1 (The fundamental rule).

P (A |B)P (B) = P (A ∩ B). (1.1)

That is, the fundamental rule tells us how to calculate the probability of
seeing both A and B when we know the probability of A given B and the
probability of B.

By conditioning on another event C, the fundamental rule can also be
written as

P (A |B ∩ C)P (B | C) = P (A∩ B | C).
Since P (A∩B) = P (B∩A) (and also P (A∩B | C) = P (B∩A | C)), we get

that P (A |B)P (B) = P (A ∩ B) = P (B |A)P (A) from the fundamental rule.
This yields the well-known Bayes’ rule:

Theorem 1.2 (Bayes’ rule).

P (A |B) =
P (B |A)P (A)

P (B)
.

Bayes’ rule provides us with a method for updating our beliefs about an
event A given that we get information about another event B. For this reason
P (A) is usually called the prior probability of A, whereas P (A |B) is called
the posterior probability of A given B; the probability P (B |A) is called the
likelihood of A given B. For an explanation of this strange use of the term,
see Example 1.1.

Finally, as for the fundamental rule, we can also state Bayes’ rule in a
context C:

P (A |B, C) =
P (B |A, C)P (A | C)

P (B | C) .

Example 1.1. We have two diseases a1 and a2, both of which can cause the
symptom b. Let P (b | a1) = 0.9 and P (b | a2) = 0.3. Assume that the prior
probabilities for a1 and a2 are the same (P (a1) = P (a2)). Now, if b occurs,
Bayes’ rule gives

P (a1 | b) =
P (b | a1)P (a1)

P (b)
= 0.9 · P (a1)

P (b)
;

P (a2 | b) =
P (b | a2)P (a2)

P (b)
= 0.3 · P (a2)

P (b)
.

Even though we cannot calculate the posterior probabilities, we can conclude
that a1 is three times as likely as a2 given the symptom b.
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If we furthermore know that a1 and a2 are the only possible causes of b,
we can go even further (assuming that the probability of having both diseases
is 0). Then P (a1 | b) + P (a2 | b) = 1, and we get

P (a1)

P (b)
=

P (a2)

P (b)
=

1

0.9 + 0.3
=

1

1.2
,

P (a1 | b) = 0.9/1.2 = 0.75, and P (a2 | b) = 0.3/1.2 = 0.25.

1.2.3 Conditional Independence

Sometimes information on one event B does not change our belief about the
occurrence of another event A, and in this case we say that A and B are
independent.

Definition 1.1 (Independence). The events A and B are independent if

P (A |B) = P (A).

For example, if we throw two fair dice, then seeing that the first die turns
up 2 will not change our beliefs about the outcome of the second die.

This notion of independence is symmetric, so that if A is independent of
B, then B is independent of A:

P (B |A) =
P (A∩ B)

P (A)
=

P (A |B)P (B)

P (A)
=

P (A)P (B)

P (A)
= P (B).

The proof requires that P (A) > 0, so if P (A) = 0, the calculations are not
valid. However, for our considerations it does not matter; if A is impossible
why bother considering it?

When two events are independent, then the fundamental rule can be
rewritten as

P (A ∩ B) = P (A |B)P (B) = P (A) · P (B).

That is, we can calculate the probability that both events will occur by mul-
tiplying the probabilities for the individual events.

The concept of independence also appears when we are conditioning on
several events. Specifically, if information about the event B does not change
our belief about the event A when we already know the event C, then we say
that A and B are conditionally independent given C.

Definition 1.2 (Conditional independence). The events A and B are
conditionally independent given the event C if

P (A |B ∩ C) = P (A | C).
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Similar to the situation above, the conditional independence statement is
symmetric. If A is conditionally independent of B given C, then B is condi-
tionally independent of A given C:

P (B |A ∩ C) =
P (A ∩ B |C)P (C)

P (A | C)P (C) =
P (A |B ∩ C)P (B | C)

P (A | C) =
P (A | C)P (B | C)

P (A | C)
= P (B | C).

Furthermore, when two events are conditionally independent, then we can
use a multiplication rule similar to the one above when calculating the prob-
ability that both of the events will occur:

P (A ∩ B | C) = P (A | C) · P (B | C).

Note that when two events are independent it is actually a special case of
conditional independence but with C = ∅.

1.3 Probability Calculus for Variables

So far we have talked about probabilities of simple events and outcomes with
respect to a certain sample space. In this book, however, we will be working
with a collection of sample spaces, also called variables, and we will now extend
the concepts above to probabilities over variables. A variable can be considered
an experiment, and for each outcome of the experiment the variable has a
corresponding state. The set of states associated with a variable A is denoted
by sp(A) = (a1, a2, . . . , an), and similar to the sample space these states
should be mutually exclusive and exhaustive. The last assumption ensures that
the variable is in one of its states (although we may not know which one), and
the first assumption ensures that the variable is in only one state. For example,
if we let D be a variable representing the outcome of rolling a die, then its
state space would be sp(D) = (1, 2, 3, 4, 5, 6). We will use uppercase letters
for variables and lowercase letters for states, and unless otherwise stated, a
variable has a finite number of states.

For a variable A with states a1, . . . , an, we express our uncertainty about
its state through a probability distribution P (A) over these states:

P (A) = (x1, . . . , xn); xi ≥ 0;
n∑

i=1

xi = x1 + · · ·+ xn = 1,

where xi is the probability of A being in state ai. A distribution is called
uniform (or even) if all probabilities are equal.

Notation: In general, the probability of A being in state ai is denoted by
P (A = ai), and denoted by P (ai) if the variable is obvious from the context.
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As we talked about conditional probabilities for events, we can also talk
about conditional probabilities for variables: If the variable B has states
b1, . . . , bm, then P (A |B) contains n · m conditional probabilities P (ai | bj)
that specify the probability of seeing ai given bj. That is, the conditional
probability for a variable given another variable is a set of probabilities (usu-
ally organized in an n×m table) with one probability for each configuration of
the states of the variables involved (see Table 1.1 for an example). Moreover,
since P (A |B) specifies a probability distribution for each event B = bj, we
know from Axiom 1 that the probabilities over A should sum to 1 for each
state of B:

n∑
i=1

P (A = ai |B = bj) = 1 for each bj .

b1 b2 b3

a1 0.4 0.3 0.6
a2 0.6 0.7 0.4

Table 1.1. An example of a conditional probability table P (A |B) for the binary
variable A given the ternary variable B. Note that for each state of B the probabil-
ities of A sum up to 1.

The probability of seeing joint outcomes for different experiments can be
expressed by the joint probability for two or more variables: For each config-
uration (ai, bj) of the variables A and B, P (A, B) specifies the probability of
seeing both A = ai and B = bj . Hence, P (A, B) consists of n ·m numbers,
and, similar to P (A |B), P (A, B) is usually represented in an n×m table (see
Table 1.2 for an example). Note that since the state spaces of both A and B
are mutually exclusive and exhaustive, it follows that all combinations of their
states (the Cartesian product) are also mutually exclusive and exhaustive, and
they can therefore be considered a sample space. Hence, by Axiom 1,

P (A, B) =

n∑
i=1

m∑
j=1

P (A = ai, B = bj) = 1.

b1 b2 b3

a1 0.16 0.12 0.12
a2 0.24 0.28 0.08

Table 1.2. An example of a joint probability table P (A,B) for the binary variable
A and the ternary variable B. Note that the sum of all entries is 1.
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When the fundamental rule (equation (1.1)) is used on variables A and B,
the procedure is to apply the rule to each of the n ·m configurations (ai, bj)
of the two variables:

P (ai | bj)P (bj) = P (ai, bj).

This means that in the table P (A |B), each probability in P (A | bj) is multi-
plied by P (bj) to obtain the table P (A, bj), and by doing this for each bj we
get P (A, B). If P (B) = (0.4, 0.4, 0.2), then Table 1.2 is the result of using the
fundamental rule on Table 1.1 (see also Table 1.3).

P (A, B) =
b1 b2 b3

a1 0.4 · 0.4 0.3 · 0.4 0.6 · 0.2
a2 0.6 · 0.4 0.7 · 0.4 0.4 · 0.2

=
b1 b2 b3

a1 0.16 0.12 0.12
a2 0.24 0.28 0.08

Table 1.3. The joint probability table P (A,B) in Table 1.2 can be found by mul-
tiplying P (B) = (0.4, 0.4, 0.2) by P (A |B) in Table 1.1.

When applied to variables, the fundamental rule is expressed as follows:

Theorem 1.3 (The fundamental rule for variables).

P (A, B) = P (A |B)P (B),

and conditioned on another variable C we have

P (A, B |C) = P (A |B, C)P (B |C).

From a joint probability table P (A, B), the probability distribution P (A)
can be calculated by considering the outcomes of B that can occur together
with each state ai of A. There are exactly m different outcomes for which A
is in state ai, namely the mutually exclusive outcomes (ai, b1), . . . , (ai, bm).
Therefore, by Axiom 3,

P (ai) =
m∑

j=1

P (ai, bj).

This calculation is called marginalization, and we say that the variable B is
marginalized out of P (A, B) (resulting in P (A)). The notation is

P (A) =
∑
B

P (A, B).

By marginalizing B out of Table 1.2, we get

P (A) = (0.16 + 0.12 + 0.12, 0.24 + 0.28 + 0.08) = (0.4, 0.6),
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and by marginalizing out A we get

P (B) = (0.16 + 0.24, 0.12 + 0.28, 0.12 + 0.08) = (0.4, 0.4, 0.2).

That is, the marginalization operation allows us to remove variables from a
joint probability distribution.

Bayes’ rule for events (Theorem 1.2) can also be extended to variables, by
treating the division in the same way as we treated multiplication above.

Theorem 1.4 (Bayes’ rule for variables).

P (B |A) =
P (A |B)P (B)

P (A)
=

P (A, B)∑
B P (A, B)

,

and conditioned on another variable C we have

P (B |A, C) =
P (A |B, C)P (B |C)

P (A |C)
=

P (A, B |C)∑
B P (A, B |C)

.

Note that the two equalities in the equations follow from (1) the fundamental
rule and (2) the marginalization operator described above.

By applying Bayes’ rule using P (A), P (B), and P (A |B) as specified
above, we get P (B |A) shown in Table 1.4.

P (B |A) = P (A | B)P (B)
P (A)

=

a1 a2

b1
0.4·0.4

0.4
0.6·0.4

0.6

b2
0.3·0.4

0.4
0.7·0.4

0.6

b3
0.6·0.2

0.4
0.4·0.2

0.6

=

a1 a2

b1 0.4 0.4
b2 0.3 0.47
b3 0.3 0.13

Table 1.4. The conditional probability P (B |A) obtained by applying Bayes’ rule
to P (A |B) in Table 1.1, P (A) = (0.4, 0.6), and P (B) = (0.4, 0.4, 0.2). Note that the
probabilities over B sum to 1 for each state of A.

The concept of (conditional) independence is also defined for variables.

Definition 1.3 (Conditional independence for variables). Two vari-
ables A and C are said to be conditionally independent given the variable
B if

P (ai | ck, bj) = P (ai | bj)

for each ai ∈ sp(A), bj ∈ sp(B), and ck ∈ sp(C).

As a shorthand notation we will sometimes write P (A |C, B) = P (A |B).
This means that when the state of B is known, then no knowledge of

C will alter the probability of A. Observe that we require the independence
statement to hold for each state of B; if the conditioning set is empty then we
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say that A and C are marginally independent or just independent (written as
P (A |C) = P (A)).

When two variables A and C are conditionally independent given B, then
the fundamental rule (Theorem 1.3) can be simplified:

P (A, C |B) = P (A |B, C)P (C |B) = P (A |B)P (C |B).

In the expression above, we multiply two conditional probability tables over
different domains. Fortunately, the method for doing this multiplication is a
straightforward extension of what we have done so far:

P (ai, ck | bj) = P (ai | bj)P (ck | bj).

For example, by multiplying P (A |B) and P (C |B) (specified in Table 1.1 and
Table 1.5, respectively) we get the joint probability P (A, C |B) in Table 1.6.

b1 b2 b3

c1 0.2 0.9 0.3
c2 0.05 0.05 0.2
c3 0.75 0.05 0.5

Table 1.5. The conditional probability table P (C |B) for the ternary variable C
given the ternary variable B.

P (A,C |B) = P (A |B)P (C |B)

=

b1 b2 b3

c1 (0.2 · 0.4, 0.2 · 0.6) (0.9 · 0.3, 0.9 · 0.7) (0.3 · 0.6, 0.3 · 0.4)
c2 (0.05 · 0.4, 0.05 · 0.6) (0.05 · 0.3, 0.05 · 0.7) (0.2 · 0.6, 0.2 · 0.4)
c3 (0.75 · 0.4, 0.75 · 0.6) (0.05 · 0.3, 0.05 · 0.7) (0.5 · 0.6, 0.5 · 0.4)

=

b1 b2 b3

c1 (0.08, 0.12) (0.27, 0.63) (0.18, 0.12)
c2 (0.02, 0.03) (0.015, 0.035) (0.12, 0.08)
c3 (0.3, 0.45) (0.015, 0.035) (0.3, 0.2)

Table 1.6. If A and C are conditionally independent given B, then P (A,C |B)
can be found by multiplying P (A |B) and P (C |B) as specified in Table 1.1 and
Table 1.5, respectively.

1.3.1 Calculations with Probability Tables: An Example

To illustrate the theorems above, assume that we have three variables, A, B,
and C, with the probabilities as in Table 1.7. We receive evidence A = a2 and
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C = c1 and we would now like to calculate the conditional probability table
P (B | a2, c1).

b1 b2 b3

a1 (0, 0.05, 0.05) (0.05, 0.05, 0) (0.05, 0.05, 0.05)
a2 (0.1, 0.1, 0) (0.1, 0, 0.1) (0.2, 0, 0.05)

Table 1.7. A joint probability table for the variables A, B, and C. The three
numbers in each entry correspond to the states c1, c2, and c3.

First, we focus on the part of the table corresponding to A = a2 and
C = c1, and we get

P (a2, B, c1) = (0.1, 0.1, 0.2). (1.2)

To calculate P (B | a2, c1), we can use Theorem 1.4:

P (B | a2, c1) =
P (a2, B, c1)

P (a2, c1)
=

P (a2, B, c1)∑
B P (a2, B, c1)

. (1.3)

By marginalizing B out of equation (1.2) we get

P (a2, c1) = 0.1 + 0.1 + 0.2 = 0.4.

Finally, by performing the division in equation (1.3) we get

P (B | a2, c1) =

(
0.1

0.4
,
0.1

0.4
,
0.2

0.4

)
= (0.25, 0.25, 0.5).

Another way of doing the same is to say that we wish to transform P (a2, B, c1)
into a probability distribution. Because the numbers do not add up to one,
we normalize the distribution by dividing each number by the sum of all the
numbers.

Suppose now that we were given only the evidence A = a2, and we want
to calculate P (B | a2, C). The calculation of this probability table follows the
same steps as above, except that we now work with tables during the calcula-
tions. As before, we start by focusing on the part of P (A, B, C) corresponding
to A = a2 and we get the result in Table 1.8.

To calculate P (B | a2, C) we use

P (B | a2, C) =
P (a2, B, C)

P (a2, C)
=

P (a2, B, C)∑
B P (a2, B, C)

. (1.4)

The probability P (a2, C) is found by marginalizing B out of Table 1.8:

P (a2, C) = (0.1+0.1+0.2, 0.1+0+0, 0+0.1+0.05) = (0.4, 0.1, 0.15), (1.5)

and by inserting this in equation (1.4) we get the result shown in Table 1.2.
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b1 b2 b3

c1 0.1 0.1 0.2
c2 0.1 0 0
c2 0 0.1 0.05

Table 1.8. The probability table P (a2, B, C) that corresponds to the part of the
probability table in Table 1.8 restricted to A = a2.

P (B | a2, C) =

b1 b2 b3

c1
0.1
0.4

0.1
0.4

0.2
0.4

c2
0.1
0.1

0
0.1

0
0.1

c2
0

0.15
0.1
0.15

0.05
0.15

=

b1 b2 b3

c1 0.25 0.25 0.5
c2 1 0 0
c2 0 2/3 1/3

Table 1.9. The calculation of P (B | a2, C) using P (a2, B, C) (Table 1.1) and
P (a2, C) (equation (1.5)).

1.4 An Algebra of Potentials

Below we list some properties of the algebra of multiplication and marginal-
ization of tables. The tables need not be (conditional) probabilities, and they
are generally called potentials.

A potential φ is a real-valued function over a domain of finite variables X :

φ : sp(X ) → R

The domain of a potential is denoted by dom (φ). For example, the domain
of the potential P (A, B |C) is dom (P (A, B |C)) = {A, B, C}.

Two potentials can be multiplied, denoted by an (often suppressed) dot.
Multiplication has the following properties:

1. dom(φ1φ2) = dom (φ1) ∪ dom (φ2).
2. The commutative law: φ1φ2 = φ2φ1.
3. The associative law: (φ1φ2)φ3 = φ1(φ2φ3).
4. Existence of unit: The unit potential 1 is a potential that contains only

1’s and is defined over any domain such that 1 ·φ = φ, for all potentials φ.

The marginalization operator defined in Section 1.3 can be generalized to po-
tentials so that

∑
A φ is a potential over dom(φ)\{A}. Furthermore, marginal-

ization is commutative: ∑
A

∑
B

φ =
∑
B

∑
A

φ.

For potentials of the form P (A | V), where V is a set of variables, we have

5. The unit potential property:
∑

A P (A | V) = 1.
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For marginalization of a product, the following holds

6. The distributive law: If A /∈ dom(φ1), then
∑

A φ1φ2 = φ1

∑
A φ2.

The distributive law is usually known as ab + ac = a(b + c), and the
preceding formula is actually the same law applied to tables. To verify it,
consider the calculations in Tables 1.10–1.14. Here we see that Table 1.12 and
Table 1.14 are equal and correspond to the left-hand and right-hand sides of
the distributive law.

B \ A a1 a2

b1 x1 x2

b2 x3 x4

B \ C c1 c2

b1 y1 y2

b2 y3 y4

Table 1.10. φ1(A, B) and φ2(C, B).

B \ A a1 a2

b1 (x1y1, x1y2) (x2y1, x2y2)
b2 (x3y3, x3y4) (x4y3, x4y4)

Table 1.11. φ1(A,B) · φ2(C, B). The two numbers in each entry correspond to the
states c1 and c2.

B \ A a1 a2

b1 x1y1 + x1y2 x2y1 + x2y2

b2 x3y3 + x3y4 x4y3 + x4y4

Table 1.12.
P

C
φ1(A,B) · φ2(C, B).

B

b1 y1 + y2

b2 y3 + y4

Table 1.13.
P

C
φ2(C, B).

We also use the term projection for marginalization. For example, if A
and B are marginalized out of φ(A, B, C), we may say that φ is projected
down to C, and we use the notation φ↓C . With this notation, the properties
of marginalization look as follows (V and W denote sets of variables):
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B \ A a1 a2

b1 x1(y1 + y2) x2(y1 + y2)
b2 x3(y3 + y4) x4(y3 + y4)

Table 1.14. φ1(A,B)
P

C φ2(C, B).

7. The commutative law: (φ↓V)↓W = (φ↓W )↓V .

8. The distributive law: If dom(φ1) ⊆ V , then (φ1φ2)
↓V = φ1(φ

↓V
2 ).

1.5 Random Variables

Let S be a sample space. A random variable is a real-valued function on S;
V : S → R. If, for example, you throw a die, and you win $1 if you get 4 or
above, and you lose $1 if you get 3 or below, then the corresponding random
variable is a function with value −1 on {1, 2, 3} and 1 on {4, 5, 6}.

The mean value of a random variable V on S is defined as

μ(V ) =
∑
s∈S

V (s)P (s). (1.6)

For the example above, the mean value is −1 1
6 +−1 1

6 +−1 1
6 + 1

6 + 1
6 + 1

6 = 0
(provided that the die is fair). The mean value is also called the expected value.

A measure of how much a random variable varies between its values is the
variance, σ2. It is defined as the mean of the square of the difference between
value and mean:

σ2(V ) =
∑
s∈S

(V (s)− μ(V ))2P (s). (1.7)

For the example above we have

σ2 = 3(−1− 0)2
1

6
+ 3(1− 0)2

1

6
= 1.

1.5.1 Continuous Distributions

Consider an experiment, where an arrow is thrown at the [0, 1]× [0, 1] square.
The possible outcomes are the points (x, y) in the unit square. Since the
probability is zero for any particular outcome, the probability distribution
is assigned to subsets of the unit square. We may think of this assignment
as a process of distributing a probability mass of 1 over the sample space.
We may, for example, assign a probability for landing in the small square
[x, x+ε]×[y, y+ε]. To be more systematic, let n be a natural number, then the
unit square can be partitioned into small squares of the type [ i

n , i+1
n ]×[ j

n , j+1
n ],

and we can assign probabilities P ([ i
n , i+1

n ]×[ j
n , j+1

n ]) to these squares with area
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1
n2 . Now, if P ([ i

n , i+1
n ]× [ j

n , j+1
n ]) = x, then you can say that the probability

mass x is distributed over the small square with an average density of n2x,
and we define the density function (also called the frequency function) f(x, y)
as

f(x, y) = lim
n→∞

n2P

([
x, x +

1

n

]
×

[
y, y +

1

n

])
.

In general, if S is a continuous sample space, the density function is a
nonnegative real-valued function f on S, for which it holds that for any subset
A of S, ∫

A

f(s)ds = P (A).

In particular, ∫
S

f(s)ds = 1.

When S is an interval [a, b] (possibly infinite), the outcomes are real num-
bers (such as height or weight), and you may be interested in the mean (height
or weight). It is defined as

μ =

∫ b

a

xf(x)dx,

and the variance is given by

σ2 =

∫ b

a

(μ− x)2f(x)dx.

Mathematically, the mean and variance are the mean and variance of the
identity function I(x) = x, but we use the term “mean and variance of the
distribution.”

1.6 Exercises

Exercise 1.1. Given Axioms 1 to 3, prove that

P (A ∪ B) = P (A) + P (B)− P (A ∩ B) .

Exercise 1.2. Consider the experiment of rolling a red and a blue fair six-
sided die. Give an example of a sample space for the experiment along with
probabilities for each outcome. Suppose then that we are interested only in
the sum of the dice (that is, the experiment consists in rolling the dice and
adding up the numbers). Give another example of a sample space for this
experiment and probabilities for the outcomes.
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Exercise 1.3. Consider the experiment of flipping a fair coin, and if it lands
heads, rolling a fair four-sided die, and if it lands tails, rolling a fair six-sided
die. Suppose that we are interested only in the number rolled by the die,
and a sample space SA for the experiment could thus be the numbers from
1 to 6. Another sample space could be SB = {t1, . . . , t6, h1, . . . , h4}, with for
example t2 meaning “tails and a roll of 2” and h4 meaning “heads and a roll
of 4.” Choose either SA or SB and associate probabilities with it. According
to your sample space and probability distribution, what is the probability of
rolling either 3 or 5.

Exercise 1.4. Draw a Venn diagram (like that in Figure 1.1) over SB defined
in Exercise 1.3. The diagram should show the events corresponding to “rolling
a 3,” “flipping tails,” and “flipping tails and rolling a 3.”

Exercise 1.5. Let SB be defined as in Exercise 1.3, but with a loaded coin
and loaded dice. A probability distribution is given in Table 1.15. What is
the probability that the loaded coin lands “tails”? What is the conditional
probability of rolling a 4, given that the coin lands tails? Which of the loaded
dice has the highest chance of rolling 4 or more?

t1 5
18

t6 1
18

t2 1
9

h1 1
24

t3 1
9

h2 1
24

t4 1
18

h3 1
8

t5 1
18

h4 1
8

Table 1.15. Probabilities for SB in Exercise 1.5.

Exercise 1.6. Prove that

P (A |B ∪ C)P (B | C) = P (A ∩ B | C) .

Exercise 1.7. A farmer has a cow, which he suspects is pregnant. He admin-
isters a test to the urine of the cow to determine whether it is pregnant. There
are four outcomes in this experiment:

1. The cow is pregnant and the test is positive.
2. The cow is pregnant, but the test is negative.
3. The cow is not pregnant, but the test is positive.
4. The cow is not pregnant, and the test is negative.

The prior probability of the event that the cow is pregnant is 0.05, the prob-
ability of the event that the test is positive, when the cow indeed is pregnant,
is 0.98 and the probability that the test is negative, when the cow is not
pregnant, is 0.999. The test turns out to be positive. What is the posterior
probability of the cow being pregnant?
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Exercise 1.8. Consider the following two experiments: One consists in throw-
ing a red six-sided die, and one consists in throwing a blue six-sided die.
We let R be a variable representing the roll of the red die, having a set of
states {r1, r2, r3, r4, r5, r6}, and B be a variable representing the roll of the
blue die (states {b1, b2, b3, b4, b5, b6}). Assume that the red die is fair so that
P (R = r1) = · · · = P (R = r6) = 1

6 , and that the variable for the blue
die has probabilities P (B = b1) = P (B = b2) = P (B = b3) = 1

12 and
P (B = b4) = P (B = b5) = P (B = b6) = 1

4 . Give an example of a sample
space for an experiment consisting of throwing both the red and the blue die.
Using P (R) and P (B), what is the probability distribution for your sample
space?

Exercise 1.9. Consider the sample space SB from Exercise 1.3, with probabil-
ity distribution as defined in Table 1.15. Recast the sample space as variables.
What is the probability distribution for each variable?

Exercise 1.10. Prove the fundamental rule for variables:

P (A, B) = P (A |B)P (B) .

Exercise 1.11. Calculate P (A), P (B), P (A |B), and P (B |A) from the table
for P (A, B) (Table 1.16).

b1 b2 b3

a1 0.05 0.10 0.05
a2 0.15 0.00 0.25
a3 0.10 0.20 0.10

Table 1.16. P (A,B) for Exercise 1.11.

Exercise 1.12. Table 1.17 describes a test T for an event A. The number
0.01 is the frequency of false negatives, and the number 0.001 is the frequency
of false positives.

(i) The police can order a blood test on drivers under the suspicion of having
consumed too much alcohol. The test has the above characteristics. Expe-
rience says that 20% of the drivers under suspicion do in fact drive with
too much alcohol in their blood. A suspicious driver has a positive blood
test. What is the probability that the driver is guilty of driving under the
influence of alcohol?

(ii)The police block a road, take blood samples of all drivers, and use the same
test. It is estimated that one out of 1,000 drivers have too much alcohol
in their blood. A driver has a positive test result. What is the probability
that the driver is guilty of driving under the influence of alcohol?
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A = yes A = no

T = yes 0.99 0.001
T = no 0.01 0.999

Table 1.17. Table for Exercise 1.12. Conditional probabilities P (T |A) character-
izing test T for A.

Exercise 1.13. In Table 1.18, a joint probability table for the binary variables
A, B, and C is given.

• Calculate P (B, C) and P (B).
• Are A and C independent given B?

b1 b2

a1 (0.006, 0.054) (0.048, 0.432)
a2 (0.014, 0.126) (0.032, 0.288)

Table 1.18. P (A, B, C) for Exercise 1.13.

Exercise 1.14. Write a short algorithm that given an n×m potential φ(A, B)
calculates

∑
A φ. Use your algorithm on the joint probability table P (A, B)

in Table 1.2 and on the conditional probability table P (A|B) in Table 1.1.

Exercise 1.15. Prove that the associative, commutative, and distributive
laws hold for potentials.

Exercise 1.16. Let φ(x) = ax be a distribution on [0, 1]. Determine a. What
are the mean and the variance of φ?

Exercise 1.17. Let φ(x) = a sin(x) be a distribution on [0, π]. Determine a
and the mean of φ.


