
 

 

Chapter 3 
 
ENERGY LOSSES IN MEMS AND EQUIVALENT 
VISCOUS DAMPING 
 
 
 
 
 
 
 
 
 
3.1 INTRODUCTION 
 
Energy losses change the behavior of mechanical microsystems and limit their 
performance. The response of a single degree-of-freedom (DOF) mechanical 
system, for instance, is conditioned by a damping term (force in translatory 
motion and torque in rotary motion), which can be formulated as a viscous 
damping agent whose magnitude is proportional to velocity. The damping 
coefficient is the proportionality constant and various forms of energy losses 
can be expressed as viscous damping ones, either naturally or by equivalence 
so that a unitary formulation is obtained. For oscillatory micro/nanoelectro-

the quality factor (Q-factor), which is the ratio of the energy stored to the 
energy lost during one cycle of vibration, and the damping coefficient can be 
expressed in terms of the Q-factor. Energy losses in MEMS/NEMS are the 
result of the interaction between external and internal mechanisms. Fluid–
structure interaction (manifested as squeeze- or slide-film damping), anchor 
(connection to substrate) losses, thermoelastic damping (TED), surface/volume 
losses and phonon-mediated damping are the most common energy loss 
mechanisms discussed in this chapter.   
 

3.2 LUMPED-PARAMETER VISCOUS DAMPING 
 
3.2.1 Viscous Damping Coefficient and Damping Ratio 

 
Viscous damping in a lumped-parameter system that performs linear motion 
is expressed by a resistance force, which is proportional to velocity, namely: 
 
 dF cx=  (3.1) 

mechanical systems (MEMS/NEMS), losses can be quantified by means of 
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where c is the damping coefficient (a similar relationship is obtained for rotary 
motion where a torque is set through damping resistance and that is pro-
portional to the angular velocity).  
 
 
 
 
 
 
 
 
 

Figure 3.1 Mass-dashpot single DOF system 
 
The damped free vibrations of the single DOF system of Figure 3.1 are des-
cribed by the equation: 
 
 0mx cx kx+ + =  (3.2) 
 
For linear systems, the damping coefficient c is constant, as well as the mass m 
and stiffness k coefficients. However, as shown in the following, situations 
may appear in damped MEMS/NEMS system where c depends on the 
vibration frequency (particularly in driven systems). Equation (3.2) in such 
instances becomes nonlinear, and its integration is not pursued in this chapter. 

By using the following notations: 
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where ωr is the resonant frequency and ζ is the damping ratio, Equation (3.2) 
can be rewritten as: 
 
 22 0r rx x xζω ω+ + =  (3.4) 
 
which is the standard form known from vibrations. There are three different 
cases and their corresponding solutions depend on the value of the damping 
ratio ζ. When 0 < ζ < 1, which leads to underdamped free vibrations, the 
solution to Equation (3.4) (e.g., see Thomson [1]) is:  
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where ωd is the damped resonant frequency and is defined as: 
 

 21d rω ζ ω= −  (3.6) 
 
Equation (3.5) can be rewritten as: 
 
  ( )( ) sinrt

dx t Xe tζω ω ϕ−= +  (3.7) 
 
where: 
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 (3.8) 

 
For ζ = 1, the vibrations of the system shown in Figure 3.1 are critically 

damped and the solution to Equation (3.4) is: 
 

( )( ) (0) 1 (0)rt
rx t e x t x tζω ω−= + +⎡ ⎤⎣ ⎦  (3.9) 

The overdamped vibrations occur when ζ > 1, and the solution to Equa-
tion (3.4) is in that case: 
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x t ae be
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= +  (3.10) 
 
with: 
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Figure 3.2 plots the three damped vibration cases under zero initial displace-
ment and non-zero initial velocity. An exponentially decaying envelope is the 
asymptote curve to the underdamped response curve. The overdamped res-
ponse curve is rapidly decaying. The critically damped response shows no 
harmonicity, as well as the overdamped one, and they both rapidly converge 
towards zero. 

 
Figure 3.2 Free damped response of underdamped, overdamped, and critically damped single 
DOF system 
 
3.2.2 Complex Number Representation of Vectors 

 
It is convenient in many situations where harmonic excitation and response 
are in place to use the complex number representation of vectors. Figure 3.3 
shows the one-to-one mapping that connects the classical representation of a 
vector and the one utilizing complex numbers. Considering the rod in Figure 
3.3 rotates at constant angular velocity ω, the projections of point P on the 
Cartesian frame axes are: 
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because the angle that positions the rotating vector is θ = ωt (ω being the 
constant angular speed). 

 
 

 
 

The velocity components are the time derivatives of x and y of Equation (3.12), 
and therefore the total velocity is:  
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Figure 3.3 Classical planar representation of a vector versus complex-number representation 
of the same vector 
  

 
2 2

2 2
x y

dx dyv v v R
dt dt

ω⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.13) 

 
Similarly, the normal acceleration is found by using the x- and y-components 
and its well-known value is: 
 

 2 2 2
n x ya a a Rω= + =  (3.14) 

 
The one-to-one mapping of the rotating vector of Figure 3.3 into the complex 
number representation is warranted by the fact that a complex number is 
defined by a real component and an imaginary one. When the x- and y-
projections of a vector are identical to the real and imaginary parts of a 
complex number, respectively, a vector in a plane is mapped into the image 
of a complex number in the complex plane. The complex number that is the 
map of the rotating vector in Figure 3.3 can be expressed in algebraic form, 
as well as in trigonometric and exponential forms (the latter due to Euler’s 
formula), namely: 
 
 ( ) ( )cos sin j tz x jy R t j t Re ωω ω= + = + =⎡ ⎤⎣ ⎦  (3.15) 

 
The exponential form of a complex number is compact and is used in problems 
involving harmonic amounts. A few properties of exponential-form complex 
numbers are illustrated next. Multiplying two complex numbers, namely: 
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 ( )1 21 2
1 2 1 2 1 2

jj jz z R e R e R R e θ θθ θ += =  (3.16) 
 
indicates the result is another complex number (vector) positioned at θ1 + θ2 
and having a magnitude equal to the product of the two multiplying complex 
numbers. Also, multiplication by the imaginary number j results in: 
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which shows the result is the original complex number z rotated by π/2 clock-
wise. Similarly, division by j rotates a complex number by – π/2 (or counter-
clockwise) because: 
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The velocity and acceleration of point P′ in the complex plane are found by 
taking the first and second time derivative of z, namely: 
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The first Equation (3.19) indicates the velocity vector is rotated π/2 in a clock-
wise direction with respect to the position vector R (Figure 3.3), whereas the 
normal acceleration is parallel to the displacement vector but has an opposite 
direction—both situations being well known properties of the constant 
angular velocity rotation. 
 
3.2.3 Q-Factor 

 
The Q-factor is a figure of merit that takes into consideration the various 
energy losses in a vibrating system. For an oscillator, it is generally defined as: 
 

 2 s

d

UQ
U

π=  (3.20) 

 
where Us is the energy stored (in the absence of losses) and Ud is the energy 
dissipated during one oscillatory cycle. 
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For a single DOF mechanical system, as the one shown in Figure 3.1, the 
energy stored in an oscillatory cycle (when damping the energy loss source is 
disregarded) is due to the elastic spring and is expressed as: 
 

 21
2sU kX=  (3.21) 

 
Considering the work done by the viscous damping force is fully converted 
into energy lost during one oscillatory cycle, and considering a linear system, 
as the one shown in Figure 3.1, the damping energy is computed as: 
 
 d dU F dx c xdx= =∫ ∫  (3.22) 

 
The Q-factor is formulated by considering the interaction between the vibratory 
system and a harmonic (sine or cosine) excitation, and in such a characteri-
zation, the Q-factor is a forced-response one. The damping of a system can 
also be judged based on the free response, which would remove any depend-
ency on excitation. Both ways are briefly discussed next. 
 

 
When a sinusoidal force acts on the mass-dashpot system pictured in Figure 
3.1, the solution is obtained by carrying out the integration of Equation 
(3.22) for one period, and the energy lost through damping during one 
oscillation cycle is: 
 
 2

dU c Xπ ω=  (3.23) 
 
Consequently, the Q-factor defined in Equation (3.20) becomes: 
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where β = ω/ωr. At resonance (ω = ωr and β = 1), the Q-factor reduces to: 
 

  
1

2r
r

kQ
cω ζ

= =  (3.25) 

 
Example 3.1 

Analyze the Q-factor corresponding to the underdamped translational 
vibrations of a micromechanical system modeled as a single DOF system 
under sinusoidal excitation. 

3.2.3.1 Forced-Response Q-Factor  
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Solution: 
Equation (3.41) is used for the plot of Figure 3.4 (a), whereas the plot of 

quency (which amounts to increasing β) and the damping ratio ζ results in 
smaller Q-factors (Figure 3.4 (a)). Similarly, by increasing the damping ratio, 
the Q-factor diminishes (Figure 3.4 (b)). 
 

Figure 3.4 Quality factors: (a) regular quality factor; (b) resonant quality factor 
 
Example 3.2 

Demonstrate that for a freely damped single DOF vibratory system the 
Q-factor can be defined as the number of oscillations required to reduce the 
system’s energy to 1/e2π (approximately 1/535) of its original energy. 
 
Solution: 

According to Equation (3.7), the maximum displacement is obtained as: 
 
 max ( ) rtx t Xe ζω−=   (3.26) 
 

If the energy of the system is the one stored in the spring, namely: 
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1
2

U kx=   (3.27) 

 
and if n was the number of oscillations necessary to reduce the initial energy 
to the proportion mentioned in the problem, it means that: 
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Figure 3.4 (b) is drawn based on Equation (3.25). Increasing the actuation fre-
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where it has been considered that time t is expressed as: 
 
 rt nT=  (3.29) 
 
and the initial time is t0 = 0. The relationship between the resonant period Tr 
and circular resonant frequency has also been considered: 
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The problem’s condition is: 
 

 20U e
U

π=  (3.31) 

 
Comparing Equations (3.28) and (3.31) yields: 
 

 
1

2 rn Q
ς

= =  (3.32) 

 
which demonstrates the problem assertion.  

Free decaying underdamped vibrations can be evaluated by means of the 
logarithmic decrement δ, which is defined as the natural logarithm of the 
ratio of any two successive amplitudes, and, according to Equation (3.7), can 
be calculated as: 
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By taking into account Equation (3.6), which gives the relationship between 
the undamped and damped resonant frequencies, Equation (3.33) changes to: 
 

  
2

2
1
πζδ
ζ

=
−

 (3.34) 

 
When using Equation (3.25), which expresses the resonant Q-factor in terms 
of the damping ratio, in conjunction with Equation (3.34), the resonant  
Q-factor results: 
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Example 3.3  
Determine the resonant Q-factor of a nano cantilever whose amplitude 

decays to 1/en after m free oscillations. Also determine the equivalent viscous 
damping. 
 
Solution: 

Considering that: 
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the natural logarithm of this relationship is applied, namely: 
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The problem statement is: 
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m
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or 
 

 1ln
m

x nx =  (3.39) 

 
Comparing Equations (3.37) and (3.39) results in: 
 

 1
n

mδ =
−

 (3.40) 

 
The resonant Q-factor becomes, by means of Equations (3.35) and (3.40): 
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Figure 3.5 is the plot of Qr as a function of m and n. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.5 Resonant quality factor in terms of the number of cycles and amplitude ratio 

 
Example 3.4 

Consider the case in which several loss mechanisms act simultaneously 
on a MEMS, and that their individual Q-factors are known. Determine the 
total equivalent Q-factor, the corresponding equivalent damping ratio, as well 
as the resonant damping ratio, if the individual loss contribution superimpose 
linearly. 
 
Solution: 

The inverse of the Q-factor, as defined in Equation (3.20), is: 
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When several dissipation mechanisms are simultaneously present, the total 
loss energy can be expressed as: 
 
 ,d d i

i
U U=∑  (3.43) 

 
where Ud,i are individual loss energy terms. Combination of Equations (3.42) 
and (3.43) results in: 
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In other words, the inverse of the total Q-factor is the sum of the individual 
Q-factor inverses. An equivalent viscous damping ratio can then be found, 
according to Equation (3.24), which connects the Q-factor and the equivalent 
damping ratio, namely: 
 

 11
2eq i

i

Qζ
β

−= ∑  (3.45) 

 
At resonance (when the frequency ratio β = 1), the equivalent damping ratio is: 
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1
2eq r i

i
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A damped vibratory system can also be characterized in terms of energy effi-
ciency by formulating a Q-factor corresponding to its free response. Unlike 
the customary approach to the Q-factor where a harmonic force is applied to 
the mechanical system, the free-response Q-factor is defined based on the 
initial conditions of free vibrations. In the case in which an initial velocity 
applies to a single DOF underdamped system (the initial displacement being 
assumed zero), the free response of the system, according to Equation (3.5), is: 
 

 ( )(0)( ) sinrt
d

d

xx t e tζω ω
ω

−=  (3.47) 

 
The damping energy lost during one oscillation cycle is of the form: 
 
 d dU F dx c xdx= =∫ ∫  (3.48) 

 
After taking the time derivative of x(t) from Equation (3.47), by also consider-
ing the relationship between the damping coefficient c and the damping ratio ζ  
(Equation (3.3)), the damping energy of Equation (3.48) can be expressed as: 
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As Equation (3.49) suggests, the damping energy is constant for specified 
system parameters and initial conditions, and is not cycle-dependent (as pro-
bably expected). 

3.2.3.2 Free-Response Q-Factor  
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The elastic energy that is stored during one oscillation cycle (when con-
sidering there are no losses) is: 
 

  21 (0)
2dU mx=  (3.50)  

 
By using its definition of Equation (3.20), the free-response damping factor is: 
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Equation (3.51) gives the Q-factor of a freely vibrating system as a function 
of the damping ratio, and this relationship is plotted in Figure 3.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 3.6 Quality factor as a function of damping ratio (underdamped case) in a free response 
 
It can simply be shown that: 
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While the upper limit value is expected (the Q-factor would go to infinity 
when there are no energy losses, according to Equation (3.20)), the lower 
limit (2π) corresponding to the critically damped case shows that the entire 
original kinetic energy of the system is converted to damping energy (the two 
energies are equal, if the factor 2π is ignored). 
 

0 0.2 0.4 0.6 0.8 1

7

8

9

10

11

Q 

ζ 



  Chapter 3 242 

Example 3.5 
Compare the free-response Q-factor of Equation (3.51) to the resonant 

Q-factor corresponding to the forced response (Equation (3.25)). 
 
Solution: 

The two Q-factors can be compared by considering their ratio, which is: 
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This ratio function is plotted in Figure 3.7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3.7 Quality factor ratio (free versus forced response) as a function of damping ratio for 

underdamped vibrations 
 

It can also be shown that: 
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Equation (3.54) indicates the two Q-factors are only equal in the absence of 
any viscous damping (ζ = 0). In the opposite case (critically damped system, 
ζ = 1), the Q-factor of the free response is 4π times larger than the classical, 
forced-response Q-factor. 

As shown in subsequent sections of this chapter, an equivalent damping 
ratio can be formulated that incorporates all the damping sources, and therefore 
 

 

−

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

rQ 

ζ 



MEMS Losses 243 

an equivalent (overall) Q-factor is obtained. Equation (3.51) can be used to 
express the damping ratio that corresponds to a given Q-factor, namely: 
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Example 3.6 

Express the Q-factor corresponding to the free response of a single DOF 
mass-dashpot system when the initial conditions consist of non-zero displace-
ment x (0). The initial velocity is assumed zero. 
 
Solution: 

When an initial displacement is applied to a mass-dashpot system, the 
response to this initial condition is, according to the general solution of 
Equation (3.5):  
 

 ( ) ( )2( ) sin cos (0)
1

rt
d dx t t t x e ζωζ ω ω

ζ
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= +⎢ ⎥−⎣ ⎦
 (3.56) 

 
The velocity function can therefore be determined, together with the damping 
energy lost during one vibration cycle, as shown for the case with non-zero 
initial velocity. By taking into account that the elastically stored energy is: 
 

 21 (0)
2sU kx=  (3.57) 

 
the Q-factor can be expressed as: 
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Figure 3.8 plots the relative error between the Q-factor of Equation (3.58) 
and the one of Equation (3.51) for damping ratios not exceeding 0.1—which 
is a realistic upper limit for underdamped MEMS. 
 
 



  Chapter 3 244 

 
 
  
 
 
 
 
 
 
 
Figure 3.8 Relative errors between free-response quality factors: velocity versus displacement 
initial conditions 
 

As the figure shows, the two models yield results that are in excellent 
agreement for the feasible domain of the damping ratio. 

 

3.3 STRUCTURAL DAMPING  
 

particularly in harmonically driven ones. In metallic materials, for instance, 
the energy dissipated per cycle is independent of frequency for a wide range 
(Thomson [1]), and is proportional to the square of the response amplitude, 
namely: 
 
 2

dU Xα=  (3.59) 
 
Converting different forms of damping into viscous damping is advantageous 
from a computational standpoint because of the velocity dependency of the 
viscous damping. The energy loss through equivalent viscous damping during 
one oscillation cycle (period) is: 
 
 2

,d eq eqU c Xπ ω=  (3.60) 
 
Equations (3.59) and (3.60) yield: 
 

  eqc α
πω=  (3.61) 

 
The motion equation for a structurally damped system is therefore: 
 

 ( )cosmx x k x F tα ωπω+ + =  (3.62) 

It has been shown that materials contribute to energy losses in driven systems, 
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If complex form is used again and when the following relationship is 
considered: 
 
 x j xω=  (3.63) 
 
Equation (3.62) can be rewritten as: 
 

 j tmx k j x Fe ωα
π

⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

 (3.64) 

 
By using the notation (Thomson [1]): 
 
 kα π γ=  (3.65) 
 
Equation (3.62) becomes: 
 
 ( )1 j tmx k j x Fe ωγ+ + =  (3.66) 
 
The quantity k(1 + jγ) is called complex stiffness and the factor γ is the 
structural damping factor. When an exponential-form particular solution is 
sought for Equation (3.66), the real amplitude becomes: 
 

 
( )22 2 2

FX
k m kω γ

=
− +

 (3.67) 

 
At resonance, Equation (3.67) transforms into: 
 

 r
FX
kγ

=  (3.68) 

 
For viscous damping, the resonant amplitude is: 
 

 
2r

r

F FX
c kω ς

= =  (3.69) 

 
Comparison of Equations (3.68) and (3.69) indicates that: 
 
 2γ ζ=  (3.70) 
 
for equal resonant amplitudes. The output-input amplitude ratio (transfer func-
tion, as it will be shown with more detail in Chapter 4) is: 
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 2

1( ) XG j
F k m j k

ω
ω γ

= =
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 (3.71) 

 
whereas the frequency response function (also treated in Chapter 4) is: 
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1 1( )
1 1 1

kXH j j
F j

β γω
β γ β γ β γ

−
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Example 3.7 

The Q-factor is determined experimentally at resonance for a metal micro-
cantilever whose length l, cross-sectional width w, and thickness t are known. 
Determine the structural loss coefficient α by assuming the experimental test 
is conducted in vacuum (such that friction losses can be neglected), at low 
temperature (to discard thermal damping effects), and when support losses 
are disregarded. 
 
Solution: 

By taking into account Equations (3.25) and (3.70), the structural damp-
ing factor γ is expressed as: 
 

 
1

rQ
γ =  (3.73) 

 
which can be transformed by way of Equation (3.65) into: 
 

 
r

k
Q
πα =  (3.74) 

 
As known from elementary beam theory, the lumped-parameter stiffness of 
the cantilever at its free end is: 
 

 
3

34
Ewtk

l
=  (3.75) 

 
Consequently, the structural loss coefficient becomes: 
 

 
3

34 r

Ewt
l Q

πα =  (3.76) 

Equation (3.76) emphasizes that the loss coefficient is inversely proportional 
to the resonant Q-factor. It can also be seen that long (l large) and thin (w and 
t small) microcantilevers produce less structural damping.   
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3.4 SQUEEZE-FILM DAMPING  
 
In squeeze-film damping, a MEMS plate-like member moves against a fixed 
surface and the gas in between generates a viscous damping resistance to 
motion, as sketched in Figure 3.9. Two particular gas regimes will be ana-
lyzed next together with their models, namely: the continuum flow regime and 
the free molecular flow regime. 
 
 
 
 
 
 
 
 
 

Figure 3.9 Squeeze-film damping 
 
3.4.1 Continuum Flow Regime 

 
In cases in which gas pressure is close to the normal (atmospheric) one and 
the gap is considerably larger than the free molecular path of gas molecules, 
the gas behaves as a continuum and approaches/results pertaining to continuum 
gas models are applicable. 

Integration of the Poisson-type equation, which expresses the film pressure 
under isothermal conditions, was performed by Blech [2], for instance, who 
provided the following viscous damping coefficient for a rectangular plate of 
dimensions l and w (l > w): 

 

 

( )

2 2 2

6 22, , 2 2 2 2 2
4

64
m odd n odd

plw m r nc
z

m n m r n

σ
π ω σ

π

+
=

⎡ ⎤
+ +⎢ ⎥

⎣ ⎦

∑ ∑  (3.77) 

 
where r = w/l and: 
 

 
2

2

12 eff w
pz
µ

σ ω=  (3.78) 

 
is the dynamic squeeze-number. In the equations above ω is the frequency of 
the mobile plate, p is the atmospheric pressure, z is the channel gap and µeff is 
the effective dynamic viscosity. The last quantity is a corrected value of a 
regular dynamic viscosity number, when taking into account the relationship 
between the gas channel dimensions and the molecular mean free path, λ, 

fixed substrate 

moving plate

x

y 

zgas particles z0
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(the distance between a molecule’s two consecutive collisions). This is best 
expressed by the Knudsen number: 
 

 Kn z
λ

=  (3.79) 

 

 

 1.1591 9.638eff Kn
µµ =

+
 (3.80) 

 
which is an accurate prediction for the range 0 < Kn < 880. 

The dynamic squeeze number σ, as indicated by Blech [2], is also an 
indicator of the necessity of considering the spring effect of gas trapped 
between the two plates at values of σ > 3. In such situations, the equivalent 
spring constant of the gas was found to be: 
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Example 3.8 

Compare the viscous damping coefficient of Equation (3.77) when the 
first four terms of the double series are retained with the viscous damping 
coefficient provided by Zhang et al. [4], namely: 
 

 
3 3

4 2 2 3

96 l wc
l w z

µ
π

=
+

 (3.82) 

 
2

1.85 × 10–5 N-s/m2, and use the first level of approximation. 
 
Solution: 

For m = n = 3, Equation (3.77) gives a damping coefficient denoted by c33. 
When the plate’s geometry is of interest, one can select an operating 
frequency and a gap distance, for instance, f = 500,000 Hz and z = 10 µm. By 
also using the other numerical values of this example, the plot of Figure 3.10 
is obtained, which shows the relative errors between c33 and c, calculated as: 
 

 33

33

c ce c
−

=  (3.83) 

 
 

Consider that air pressure is p = 100,000 N/m , dynamic viscosity is µ = 

Veijola et al. [3], for instance, suggest the effective dynamic viscosity: 
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Figure 3.10 Relative errors in damping coefficients in terms of plate geometry in squeeze-film 
damping 
 
For l = 200 µm and w = 50 µm, the plot of Figure 3.11 is obtained, which 
indicates the influence of vibration frequency and gap dimension on the same 
damping coefficient ratio. 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.11 Relative error in damping coefficients in terms of vibration frequency and gap 
dimension in squeeze-film damping 
 
Example 3.9 

Analyze the precision of calculating the squeeze-film damping coefficient 
of Equation (3.77) as a function of the number of n and m terms in the cor-
responding infinite series. 
 
Solution: 

The squeeze number of Equation (3.77) is expressed as a series expan-
sion in m and n. The double sum that defines it is expressed next by taking 
several levels of approximation, namely: 
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Equations (3.84), (3.85), and (3.86) are used to form the following relative 
error numbers: 
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 (3.87) 

 
For a squeeze number σ = 10, the percentage errors defined in Equation (3.87) 
are plotted in Figure 3.12 in terms of the non-dimensional variable r = w/l. 

 
 Figure 3.12 Relative errors in computing the squeeze number 
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As Figure 3.12 shows, the relative errors decrease sharply from the third 
level of approximation (when six terms are retained from the series; Equation 
(3.86)), which is compared to the second level of approximation (when four 
terms are retained from the series, as shown in Equation (3.85)). The relative 
error e11–55 of Equation (3.87) is very similar to the error e33–55 and was not 
plotted here. It is therefore safe, in terms of accuracy, to truncate the series 

 
Example 3.10 

Analyze the squeeze number variation with respect to the width of a 
microplate that moves against a fixed plate and the spacing between the two 
plates in the case of air. Known are the following amounts: molecular free 
mean path λ = 85 µm, dynamic viscosity coefficient µ = 1.85 × 10–5 N-s/m, 
pressure p = 101,325 N/m2, frequency f = 100 MHz.  
 
Solution: 

With the numerical values given in this problem, and by taking into 
account that ω = 2πf, the squeeze number becomes: 
 

 
2

8 1.159

1.375
1 6.15

w
e z zσ − −

⎛ ⎞= ⎜ ⎟+ ⎝ ⎠
 (3.88) 

 
Figure 3.13 shows the variation of the squeeze number in terms of the plate 
width and the spacing. Figure 3.14 gives the squeeze number dependency of 
the gap for a fixed width w = 800 µm. 

Figure 3.13 Squeeze number as a function of plate width w and gap z 
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expansion involved in calculating the viscous damping coefficient corres- 
ponding to the squeeze film phenomenon at m = n = 3. 
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Solving the equation σ = 3, where σ is given in Equation (3.78) results in z = 
541.5 µm. Figures 3.13 and 3.14 indicate that σ decreases with the gap 
increasing and therefore, according to Blech’s prescription, for gaps larger 
than 541.5 µm, air escapes the gap and the additional spring behavior is not 
manifested. 
 
Example 3.11 

Examine the influence of gas entrapping (σ = 10) in a paddle microbridge 
(Figure 3.15) on its bending-related resonant frequency. Assume the out-of-
the-plane motion of the paddle segment is always parallel to the substrate. 
 
 
 
 
 
 
 
 
 
 

Figure 3.15 Top view of paddle bridge with dimensions 
 
Solution: 

When only considering the elasticity of the end segments of a paddle 
microbridge (as the one shown in Figure 3.15), the stiffness corresponding to 
out-of-the-plane bending (about the y-axis) is: 
 

Figure 3.14  Squeeze number as a function of gap z 
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In the case air is entrapped between the out-of-the-plane vibrating middle 
plate and substrate, the corresponding spring effect is expressed by the stiff-
ness given in Equation (3.81) and the total stiffness is the one of a spring 
parallel connection, namely: 
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The mass of the microbridge is considered to be provided by the middle 
segment, which, according to Figure 3.15, is: 
 
 2 2m w l tρ=  (3.91) 
 
When taking a one-term series approximation in Equation (3.90) (m = n = 1), 
the following resonant frequency percentage error can be formulated: 
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Equation (3.92) has been used to draw Figures 3.16 and 3.17. Figure 3.16 is 
plotted for l2 = 200 µm and w2 = 100 µm, whereas Figure 3.17 is plotted for 
l2 = 200 µm and w1 = 50 µm.  
  
 
 
 
 
 
 
 
 

 
 

Figure 3.16 Relative errors in bending resonant frequency of a paddle microcantilever (l2 = 200 
µm, w2 = 100 µm)  
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Figure 3.17 Relative errors in bending resonant frequency of a paddle microcantilever (l1 = 200 
µm, w1 = 50 µm) 
 
As Figure 3.16 indicates, the relative differences between the out-of-the-plane 
bending resonant frequency when air elasticity is taken into account and the 
one in which air elasticity is not considered, increase with the length of the mid- 
segment increasing and the width decreasing up to a maximum of 80% for 
the selected parameter ranges. The effects of length and width of the root 
segment (the flexible ones) on the same resonant frequency differences are 
shown in Figure 3.17, which indicates that differences do increase with both 
length and width, increasing up to a relative maximum of 25% for the 
parameters analyzed in the figure.  
 
3.4.2 Free Molecular Flow Regime 

 
The squeeze-film damping models presented thus far are accurate for situa-
tions in which the gas behaves as a continuum, and this condition is satisfied 
when the pressure is not very low, because in such cases the mean free 
molecular path of gas molecules is less than the plate gap (which amounts to 
the Knudsen number of Equation (3.69) being less than one, Kn < 1). The 
mean free molecular path is defined by the following equation: 
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=  (3.93) 

 
where R is the universal gas constant, T is the absolute temperature, d is the 
gas molecule diameter, NA is Avogadro’s number (which gives the number of 
molecules in a mole of substance), and p is the pressure. For air, R = 8.314 
J/mol-K, NA = 6.022 × 1023, and the molecular diameter is d = 3 × 10–10 m. In 

Equation (3.93) becomes: 
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case of a normal temperature of 300°K, the mean free molecular path of 
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0.01

pλ =  (3.94) 

 
Under normal pressure conditions, such as p = 100,000 N/m2, the mean free 
molecular path is λ = 0.1 µm, whereas for small pressures (almost vacuum), 
such as p = 1 N/m2, the mean free molecular path is λ = 1 cm. Regular gaps 
in MEMS are of the order of micrometers, and therefore, for low (vacuum) 
pressures, the molecular mean free path is much smaller than the gap in a 
squeeze-film situation. Consequently, the continuum laws are no longer applic-
able and models pertaining to the free molecular domain are in place. By 
using notions of the momentum transfer, the Christian model [5], gives the 
following estimate of the Q-factor due to air damping at low pressures: 
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 (3.95) 

 
where ρ is the gas mass density, t is the plate thickness, p is the pressure, and 
Mm is the molar weight of gas. This model assumed an infinitely large volume 
and considered the Maxwell-Boltzmann distribution of gas velocity. The 
results of Christian’s model (which was derived for macroscale applications) 
indicated Q-factors larger than experimental measurements indicated. Kadar 
et al. [6] used a variant of the Maxwell-Boltzmann distribution, namely the 
Maxwell stream distribution, and proposed the following Q-factor:  
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which is essentially π times smaller than Christian’s model prediction. 

Bao et al. [7] propose a similar Q-factor model that accounts for the plate 
dimensions and gap, namely:  
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t z RTQ p l w M
ρ ωπ=
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 (3.97) 

 
where z is the gap and l and w are the dimensions of a rectangular plate. This 
model also considers the energy transfer from the oscillating plate to the gas 
and the reflection wall effects.  
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Example 3.12 
A plate with l = 180 µm, w = 40 µm, and t = 1 µm is suspended by two 

single-wall carbon nanotubes (SWCNTs) 1.4 in diameter and oscillates out-

and at a frequency of f = 1 MHz. Calculate the length of the SWCNT beams 
that will render the continuum-model and molecular-model Q-factors equal. 
Consider the following numerical properties: free gap z = 10 µm, pressure 
p = 1000 N/m2.   
 
Solution: 

For air, the molecular weight is Mm = 0.029 kg/mol and the molecular 
diameter is d = 3 × 10–10 m; the gas constant is R = 83145 J/mol-K and the 
density at sea level and normal temperature is 1.2 kg/m3. With the numerical 
data of the example and with the aid of Equation (3.94), it is found that the 
molecular free path is λ = 10 µm, which is equal to the equilibrium gap, and 
therefore both the continuum and molecular models are likely to be valid. 
The continuum-model Q-factor is obtained from the corresponding damping 
coefficient as: 
 

 c
kQ cω=  (3.98) 

 
It can be seen that this Q-factor depends on the spring stiffness, whereas the 
molecular-model Q-factor does not depend on any stiffness. Anyway, in 
order for the two models’ Q-factors to be equal, the stiffness needs to have a 
specified value. By calculating the two models’ Q-factors, an equation in k 
results, which gives k = 17.27 N/m. At the same time, it is known from 
mechanics of materials that the stiffness of a clamped-guided beam is: 
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3
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d Ek
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π
=  (3.99) 

 
where E is the elastic modulus of the beam. An average value of E = 1012 
N/m2 will be considered, and lb is the unknown beam length. The total stiff-
ness is twice the one given in Equation (3.99) because there are two beams 
supporting the plate, and therefore by equating that stiffness to the number 
found above, the resulting beam length is lb = 11.18 nm. 

Bao’s model assumed constant gas particle velocity, and, in addition, the 
amplitude of oscillations was considered much smaller than the gap dimen-
sion. The time interval when a molecule is located between the resonator and 
the wall was assumed to be much smaller than the plate oscillation period. 
Hutcherson and Ye [8] proposed a Q-factor model that was two times smaller  
 

of-the-plane against the substrate in air at normal temperature T = 300°K 
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than the Q-factor, according to Bao’s model prediction. This model allowed 
for variations in the gas particle velocity and was proved to be valid for 
situations in which the ratio of the gap to the plate length is around 1/200. 

The Q-factor in squeeze-film damping is further affected by gas–surface 
interactions, of which out gassing from surfaces and gas molecule adsorption 
by the plates are the most important. A quantifier of these interactions is the 
normal momentum accommodation coefficient (NMAC), αn, which ranges 
from 0 for no adsorption to 1 for full adsorption. Polikarpov et al. [9] pro-
posed the following damping ratio, which took into account the gas–surface 
adsorption interaction: 
 

 
2 2n mmpt kT

αζ ρ π
−

=  (3.100) 

 
where ρ is the plate’s material mass density, t is the plate thickness (as 
previously mentioned), mm is the molecular mass of the gas, k is Boltzmann’s 
constant, and T is the absolute temperature. By taking Equation (3.24) into 
account, which defines the relationship between the damping ratio and the 
Q-factor, the latter can be expressed by also considering that: 
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as: 
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Equation (3.102) also considered the relationship between the angular fre-
quency ω and the normal one f, namely: ω = 2π f.  
 
3.4.3 Squeeze-Film Damping for Rotary-Motion Plates  

 
Equivalent viscous damping coefficients expressed so far that involved squeeze- 
film damping referred to translation and therefore were related to linear-
motion damping forces. In the case sketched in Figure 3.18, a plate rotates 
about a fixed pivot point and the gas is squeezed between the moving plate 
and the fixed substrate producing a damping torque, which opposes the 
motive angular velocity ω.  
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Figure 3.18 Squeeze-film damping and rotary plate 
 
This topic has usually been approached by linearizing the Reynolds equation 
that expressed the variable pressure about the x-direction under the assump-
tion that the angular motions of the plate are small compared to the static gap 
z0. The linearized equation is subsequently solved, and its solution is used to 
determine the total resistive damping torque (Darling et al. [10], Dotzel et al. 
[11], Pan et al. [12] and Bao et al. [13], to cite just a few of the work dedi-
cated to this topic). Veijola et al. [14] presented a simple model that yielded 
the damping coefficient pertaining to a plate rotating at an angular velocity ω, 
which is connected to the corresponding torque as: 
 
 d rM c ω=  (3.103) 
 
The model starts by considering the linearized, temperature-independent 
Reynolds equation in one dimension (the x-direction): 
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where the linear velocity of the plate at a distance x measured from the central 
pivot point is simply ω × x, and p0 is the ambient (constant) pressure. The solu-
tion to Equation (3.104) is a third-order polynomial and its two integration 
constants are determined by applying the trivial boundary conditions: 
 
 ( ) ( )/ 2 / 2 0p w p w= − =  (3.105) 
 
The pressure is therefore: 
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where: 
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=  (3.107) 

 
The elementary damping force acting on an elementary surface area dA = 
dxdy and opposing the plate rotation can be expressed as: 
 

 ( )ddF p x dxdy=  (3.108) 
 
and this force produces an elementary damping torque: 
 

 ( )d ddM xdF xp x dxdy= =  (3.109) 
 
The total damping torque is found by integrating Equation (3.109) over the 
whole plate area, namely: 
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After integration and consideration of Equation (3.103), which gives the 
relationship between damping torque and angular velocity, the torsional 
damping coefficient is expressed as: 
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Example 3.13 

A plate is suspended at its ends by two serpentine springs that are clamped 
at their opposite ends to the substrate, as sketched in Figure 3.19. Compare 
the squeeze-film damping that is generated when the plate moves out-of-the 
plane parallel to the substrate to the damping corresponding to the small-
angle rotation of the plate about the x-axis. 
 
 
 
 
 
 
 
 
 
 

Figure 3.19 Plate with two end serpentine springs 
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Solution: 

which, according to the definition of Equation (3.25), depend on inertia, damp-
ing, and stiffness. For the translatory motion about the z-axis, the Q-factor is: 
 

 z
z

z

MK
Q c=  (3.112) 

 
where M is the mass of the plate, cz (Equation (3.82)) is the damping 
coefficient of the z-axis translation, and Kz is the stiffness of the spiral 
springs corresponding to the same motion. Similarly, the Q-factor defining 
damping due to squeeze-film effects accompanying the resonant rotary 
vibrations of the plate can be expressed as: 
 

 r x
r

r

K J
Q c=  (3.113) 

 
where Jx is the plate mechanical moment of inertia about the x-axis, cr 
(Equation (3.111)) is the damping coefficient of this motion and Kr is the 
torsional stiffness of the two serpentine springs. The plate’s moment of 
inertia depends on mass as: 
 

 ( )2 2

12x p
MJ w t= +  (3.114) 

 
where tp is the plate thickness. 

The stiffness of a serpentine spring expressing translatory motion about 
the z-axis in Figure 3.19 was given by Lobontiu and Garcia [15], and because 
there are two springs in parallel in this application, the corresponding 
stiffness is twice the one of an original spring, namely: 
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Similarly, Lobontiu and Garcia [15] derived the torsional stiffness of a spiral 
spring that defines rotation about the x-axis of Figure 3.19. The total 
torsional stiffness of this application is twice the one of an original spiral 
spring, namely:  
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 (3.116) 

 

The damping comparison is carried out by means of the resonant Q-factors, 
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In Equations (3.115) and (3.116), E and G are the longitudinal and shear 
modulii of the spring material, whereas l1 is the length of half of a long leg 
defining the spiral spring and l2 is the length of a spring short leg, as also 
shown in a previous example in Chapter 1. Figure 3.20 shows the cross-
section of a spiral spring, which is assumed constant and identical for both 
the long and short legs. 
  
 
 
 
 
 
 
 

Figure 3.20 Cross-sectional dimensions of the spiral spring 
 
Considering the cross-section is thin, the moments of inertia are related as: 
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All the amounts that are necessary to compute the Q-factors of Equations 
(3.112) and (3.113) are now available. The non-dimensional variables c1, c2, 
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cw p p
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 Figure 3.21 Numerical simulation for rotary-to-translatory quality factor ratio for squeeze-film 
damping: (a) c1 = 0.5, c2 = 0.1; (b) cw = 0.2, ct = 0.01 
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× l, t  = c  × l. The plots of Figure 3.21 show the variation of the rotation-
to-translation Q-factor ratio. In Figure 3.21 (a), c  = 0.5 and c  = 0.1, whereas 
in Figure 3.21 (b), c  = 0.2 and c  = 0.01. t

c , and c  are introduced and defined as follows: l  = c  × l, l  = c  × l, w =  
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3.4.4 Squeeze-Film Damping: Translatory Perforated Plates 
 

Proper operation of MEMS/NEMS under squeeze-film damping conditions is 
often times hampered by the relatively high damping coefficients (parti-
cularly for thick plates), which reduce the device Q-factor. An alternative to 
using slide-film damping instead of squeeze-film damping or to packaging 
the device in low-pressure cells is to perforate the plate, which allows air to 
flow through from the gap and therefore reduce damping. Finding the damp-
ing coefficient under the presence of a number of holes in the original plate 
implies modification of the original Reynolds’s pressure equation so that the 

velocity; this procedure yields the damping coefficient. Of the many con-
tributions to this area, Bao et al. [16, 17] proposed the approach of dividing 
the plate into cells with holes at centers, as shown, for instance, in Figure 3.22. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.22 Portion of hole-plate showing actual hole and perforation cell arrangement 
 
They assumed the pressure is a smooth function of position under the entire 
plate and that the fluid actually flowing through the physical hole penetrates 
the whole cell. Another assumption of their model is that flow through the hole 
(about the z-direction) is fully developed Poiseuille flow, which is a pressure- 
driven flow, and has a curvilinear symmetric profile with zero velocity at the 
edges and maximum velocity at the hole center. In doing so, the actual area 
of a rectangular plate, for instance, is transformed into an equivalent smaller 
area where pressure acts uniformly, as indicated in Figure 3.23. 

rrc

p

actual hole 
perforation cell 

puted subsequently, and is of the form: damping coefficient times plate 
perforation region is taken into consideration. The damping force can be com- 
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Figure 3.23 Top view of actual and equivalent damping plate 
 
By applying this procedure, the following damping coefficient is obtained 
under the additional assumption that at least three holes exist across the plate 
in any direction: 
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z
µ= − −  (3.118) 

 
where w and l are the plate in-plane dimensions, z0 is the original (static) gap, 
µ is the dynamic viscosity (which for slip and transition regimes can be 
substituted by µeff [Equation (3.80)], according to Veijola et al. [3]), and la is 
the attenuation length (Bao et al. [16, 17]), which is computed as: 
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In Equation (3.119), teff is the effective thickness of the plate, which takes 
into account additional flow resistance at the perforation ends (particularly 
when the hole radius r compares to the plate thickness t), and is calculated as: 
 

 
3

8eff
rt t π

= +  (3.120) 

 
The coefficient β in Equation (3.119) is the ratio between the hole radius r and 
the perforation cell radius rc, namely: β = r/rc. In the same Equation (3.119): 
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The radius of the perforation cell can be computed based on Figure 3.22 by 
following the procedure developed by Mohite et al. [18], for instance. The 
holes and their perforation cells (circles) can be grouped in the hexagonal 
arrangement shown in the same figure. The area of the hexagon coupling the 
seven circles is approximately equal to the area of the center cell plus six iden-
tical cell areas, each equal to one-third the area of a full cell. Consequently, 
the hexagon area equals a total of three cell areas, namely: 
 

 ( )21 36 3
2 2 cp p rπ

⎛ ⎞
× × × = ×⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.122) 

 
Equation (3.122) gives the radius of the cell as a function of the pitch 
distance p between two adjacent plate holes: 
 

 0.525cr p=  (3.123) 
 

Example 3.14 
Study the influence of the pitch dimension p on the attenuation length 

and of the squeeze-film damping of a rectangular plate with holes in it. The 

= 10 µm and the air’s dynamic viscosity is µ = 1.73 × 10–5 N-s/m2. 
 

Solution: 
By using the given numerical data, Equations (3.118) through (3.123) are 

used to express la and c in terms of only the pitch distance p and the hole 
radius r. Figure 3.24 shows the two functions plotted against p and r. Both 
the attenuation length and the damping coefficient increase with the pitch 
distance in a quasi-linear fashion, as shown in Figure 3.24, whereas the 

smaller compared to the influence of the pitch distance. 
 

  
Figure 3.24 Damping characteristics for a plate with holes: (a) attenuation length; (b) damping 
coefficient 

(a) (b) 

 

z0 
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3.5 SLIDE-FILM DAMPING  
 

When the motion of a plate takes place parallel to another fixed plate (such as 
the substrate in a MEMS device), shearing of the fluid underneath and above 
the moving plate will generate viscous damping resistance through the relative 
fluid-structure sliding. The slide-film damping is sketched in Figure 3.25. 
 
 
 
 
 
 
 
 

Figure 3.25 Slide-film damping 
 
Depending on the Knudsen number, which compares the mean free mole-

cular path to the fluid path, there are normally four different flow types, and 
the damping coefficients are determined by different models. For Knudsen 
numbers smaller than 0.001, which means the free molecular path is at least 
three orders of magnitudes smaller than the fluid gap, the viscous damping 
can be assessed by macro-scale, conventional methods pertaining to continuum 
models. Larger values of the Kn number indicate the mean free molecular 
path and gap dimension become comparable and micro/nano phenomena 
such as gas rarefaction and gas–surface interactions have to considered. As 
such, when 0.001 < Kn < 0.1, the flow is known as slip flow, and slip 
velocity boundary conditions have to be accounted for. To determine the 
damping coefficients, Navier-Stokes equations are solved for both flow 
categories. For 0.1 < Kn < 10, transition flow conditions are set up, while for 
Kn > 10 the flow is free molecular. These cases are discussed next. 
 
3.5.1 Continuum Flow Regime 
 
In the case of Knudsen numbers that are less than 0.001, the flow is governed 
by macro-scale laws and the viscous damping coefficient is determined as 
follows. The boundary conditions are considered fixed, namely: 
 

 
0

(0) 0
( )

x

x

v
v z v

=⎧
⎨ =⎩

 (3.124) 

 
The shearing stresses present between two adjacent fluid layers in one-

dimensional flow are expressed (e.g., see Landau and Lifschitz [19]) as: 
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( )xdv z

dz
τ µ=  (3.125) 

 
One model that enables predicting the damping coefficient is the Couette 

model, according to which the velocity profile of the fluid between the two 
plates varies linearly from 0 (at the fixed plate) to the mobile plate velocity at 
the interface with it. The fluid above the moving plate is assumed to displace 
with a velocity equal to that of the plate, as sketched in Figure 3.26 below. 
As a direct consequence, damping is only generated by the fluid between the 
two plates.  
 
 
 
 
 
 
 
 
 
 

 
Figure 3.26 Velocities in Couette slide-film damping 

 
For Couette-type flow, the linear velocity profile of Figure 3.26 is expressed as: 
 

 
0

( )x x
zv z vz=  (3.126) 

 
By combining Equations (3.125) and (3.126), the shearing stress becomes: 
 

 
0

xv
zτ µ=  (3.127) 

 
which indicates the stress is constant over the two plates gap. The damping 
force produced at the plate–fluid interface can be calculated by multiplying 
the shear stress to the mobile plate area, namely: 
 

 
0

d x
AF A vz

µτ= =  (3.128) 

 
A linear damping force is the product of a damping coefficient to the velocity, 
and therefore Equation (3.128) yields the following viscous damping 
coefficient owing to Couette-type slide-film effects: 

vx

x
y

zz0vx (z) z
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0

C
Ac z

µ
=  (3.129) 

 
The corresponding Q-factor of Equation (3.24) can be calculated by means of 
cC from Equation (3.129) as: 
 

 0
C

kzQ
Aµ ω

=  (3.130) 

 
where k is the spring stiffness associated with the mobile plate (which is 
elastically supported over the substrate) and ω is the frequency of the sinu-
soidal force that drives the mobile plate. At resonance, when the driving 
force frequency equals the plate-spring resonant frequency, the Couette-type 
Q-factor becomes: 
 

  0
,C r

zQ km
Aµ

=  (3.131)  

 
where m is usually the mass of the moving plate. Equation (3.130) indicates 
that the Q-factor increases by reducing the dynamic viscosity of the gas, as 
well as the plate area, and by increasing the gap, together with the mass and 
stiffness of the plate-spring system. 
 
Example 3.15 

A plate microresonator, as the one sketched in Figure 3.27, is driven at 
resonance by a comb-drive actuator. The plate is elastically supported by two 
spiral springs. Design a plate-spring system that will have a specified Q-
factor at resonance for given air viscosity and plate gap. Assume also that the 
plate area is known and that the plate-to-spring thickness ratio and the spring’s 
leg length ratio (the spring is shown in Figure 3.28) are specified as well. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.27 Electrostatically actuated and sensed microplate resonator with spiral springs (top view) 
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Solution: 
Equation (3.131) can be rewritten as: 

 

 0
,C r

z ktQ
A
ρ

µ
=  (3.132) 

 
where ρ is the plate’s mass density and t is its thickness. The total stiffness of 
this microresonator is twice the stiffness of a single spring because there are 
two springs here acting in parallel. The stiffness of a spiral spring can be 
found as the inverse of the compliance given by Lobontiu and Garcia [15] as: 
 

 
( )2

1 1 2

3
2 2 3

zEIk
l l l

=
+

 (3.133) 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.28 Geometry of spiral spring unit 
 
The geometry of a spiral spring unit is shown in Figure 3.28, but each of the 
springs shown in Figure 2.27 is formed of two serially connected spiral spring 
units, and the total stiffness is therefore the equivalent stiffness of the spring 
arrangement shown in Figure 3.29. 
 
 
 
 
 
 
 
 
 

Figure 3.29 Spring arrangement for the microresonator of Figure 3.28 
 
By serially combining two identical spiral units to form one full spiral spring, 
the resulting stiffness becomes half the one of Equation (3.133). By further 
combining the two resulting springs in parallel, the final equivalent stiffness 
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is twice the one of a serial chain, and therefore equal to the one of the 
original spring unit of Equation (3.133). By considering the spring cross-
section is square with a thickness ts, the Q-factor of Equation (3.132) 
becomes: 
 

 
5/ 2

, 3/ 2
2

C r
tQ c
l

=  (3.134) 

 
where: 
 

 
( )

2
0

2 2 3 2
t

l l

z c Ec
c A c

ρ
µ

=
+

 (3.135) 

 
has the dimension of length to the – (2/5) power and with: l1 = cl l2, and ts = 

t
increasing the plate and spring thickness and by shortening the legs of the 
spiral spring. By selecting one parameter, for instance l2, the other unknown 
can be computed as: 
 

 
2 /5

, 3/5
2

C rQ
t lc

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (3.136) 

 
3.5.2 Slip Flow Regime 

 

when the mean free molecular path-to-gap ratio increases and when the gas 
velocity is not zero at the gas-fixed surface interface due to some gas mole-
cular motion. The flow velocity is still linear (the Couette flow). For relatively 
slow motion of the plate (when gas inertia is not accounted for), as well as 
for fast vibrating plates (where inertia of gas is a factor), different damping 
coefficients can be obtained analytically by solving the Navier-Stokes equation 
in conjunction with using slip velocity boundary conditions, as shown in the 
following. 
 

  

 

 
0

x
eff

v
zτ µ=  (3.137) 

 Slip flow regimes are set up for Knudsen numbers 0.001 < Kn < 0.1,

3.5.2.1 Frequency-Independent Damping 

One modality of deriving the damping coefficient is expressing the maximum
fluid shear stress, which occurs at the fluid–plate boundary:  

c t. E quation (3.134) suggests that the Q-factor can be improved  by
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where µeff is the effective dynamic viscosity and is determined according to 
various assumptions and contains corrections (mainly in terms of the Knudsen 
number) that will be discussed a bit later in this section. From Equation 
(3.137) one can calculate the damping force as: 
 

 
0

eff
d x

A
F A vz

µ
τ= =  (3.138) 

 
Because this force is equal to the damping coefficient multiplied by velocity, 
it follows that the damping coefficient is, according to Equation (3.138): 
 

  
0

eff A
c z

µ
=  (3.139) 

 

 
For large Reynolds numbers, where inertia effects are larger than viscosity 
effects, damping is dependent on frequency because gas velocity distribution 
becomes dependent on time, and different models are in place (Veijola and 
Turowski [20]). The Navier-Stokes equation, which describes the diffusion 
problem with no pressure gradient in one dimension, is: 
 

 
2

2

( , ) ( , )x xv z t v z t
t z

υ∂ ∂
=

∂ ∂
 (3.140) 

 
where υ is the kinematic viscosity. The generic solution to this partial-
derivative differential equation can be obtained in the frequency domain, 
when the velocity of the plate is: 
 
 ( )( , ) ( )sinx xv z t V z tω=  (3.141) 
 
It can be shown that the generic amplitude of Equation (3.141) is of the form: 
 

 1 2( cos hx
j jV z z C zω ω
υ υ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.142) 

 
For fixed boundary conditions, Equation (3.142) reduces to: 
 

3.5.2.2 Frequency-Dependent Damping: Stokes Model 

) = +C sin h
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0

sin h
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j z
V z V

j z

ω
υ

ω
υ

⎛ ⎞
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⎝ ⎠=
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 (3.143) 

 
3.5.2.2.1 Above-the-plate model  

 

plate and the unbounded fluid (gas) can be determined by integrating the 
same Navier-Stokes equation, Equation (3.140). The integration can be 
performed for fixed boundary conditions (according to the continuum model) 
or by considering various order slip at the boundaries. 

 

For fixed boundary conditions (no velocity slip at the plate interface; see Kundu 
[21]) the following equations apply: 
 

 
( )(0, ) cos

( , )
x x

x

v t V t
v t bounded

ω=⎧⎪
⎨

∞ =⎪⎩
 (3.144) 

 
Solutions of the type are sought: 
 
 ( , ) ( )j t

x xv z t e V zω=  (3.145) 
 
where all the involved functions are complex functions. (It should be men-
tioned that z is measured from the plate towards the fluid.) By substituting 
Equation (3.145) into Navier-Stokes Equation (3.140) and by using the two 
boundary conditions of Equation (3.144), the fluid velocity (which is a real 
quantity) can be expressed as: 
 

 
( )1

2 2 2( , ) Re cos
2

z j z zj t
x x xv z t v e e e v e t z

ω ω ω
ωυ υ υ ωω

υ
− − + −⎛ ⎞ ⎛ ⎞

= = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
(3.146) 

 
Equation (3.146) resembles the solution to a wave propagation problem, but 
in actuality there are no restoring forces participating in this motion, and 
therefore, it represents a diffusion problem (derived from solving the Navier-
Stokes original diffusion equation). The amplitude of the fluid motion 
indicated in Equation (3.146) is: 
 

 The viscous damping coefficient of the motion between an oscillating

Fixed boundary conditions (continuum model) 



  Chapter 3 272 

 2( )
z

x xV z v e
ω
υ

−
=  (3.147) 

 
and varies with z as shown in Figure 3.30. As z increases the influence of the 
boundary condition-generated vibration diminishes. For a value of: 
 

 4d
υδ
ω

=  (3.148) 

 
which is known as the diffusion length or parameter, the amplitude is: 
 

 
4
2( ) (0) 0.05x d x xV V e vδ

−
= =  (3.149) 

 
which is 5% of the wall velocity. A parameter similar to the diffusion length 
is the penetration depth, δ, which is the distance where the motion amplitude 
reduces by a factor of e, which means that: 
 

 12
x xv e v e

ω δ
υ

−
−=  (3.150) 

 
and therefore: 
 

 
2υδ
ω

=  (3.151) 

 
The diffusion length and penetration depth are related as: 
 
 2 2dδ δ=  (3.152) 
 
The viscous damping coefficient at the moving plate–fluid interface is found 
by first determining the shear stress at that interface through application of 
Newton’s law of viscosity (Equation (3.125)). The velocity amplitude 
derivative at the interface is: 
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= −  (3.153) 
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Figure 3.30 Velocities in Stokes slide-film damping 

 
By ignoring the minus sign in Equation (3.153), the shear stress of Equation 
(3.125) can be expressed, and therefore the corresponding shear force 
corresponding to the plate surface’s A is: 
 

 
2d xF Avωµ
υ

=  (3.154) 

 
A typical viscous damping force is equal to damping coefficient times 
velocity and, consequently, the damping coefficient is: 
 

 
2 2 2dc A A Aω υω ρωµµ ρ
υ

= = =  (3.155) 

 

 
For rarefied gas, the continuum-model boundary condition at the moving plate 
needs to be amended, as the gas velocity will differ from the plate’s velocity. 
First-order slip boundary condition (e.g., see Kundu [21]) are expressed as: 
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vv t V
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 (3.156) 

 
where λ is the free molecular path. By carrying out the procedure that has 
been detailed for the continuum model, the following gas velocity is found at 
the moving plate boundary: 
 

First-order slip boundary conditions 
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The shear stress at the interface is: 
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 (3.158) 

 
The total force at the gas–plate interface is determined by multiplying the 
stress of Equation (3.158) by the plate’s area. Because the resulting force is 
the product of plate velocity amplitude Vx by a coefficient, this being the 
standard form of a damping force, the corresponding damping coefficient is:  
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ωµ
υ

ωλ
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=
−

 (3.159) 

 
By taking into account that the dynamic viscosity is mass density times 
kinematic viscosity, the damping coefficient of Equation (3.159) can also be 
written as: 
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The penetration depth in this situation is found from its definition equation, 
namely: 
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 (3.161) 

 
which results in: 
 

 
2υδ λ
ω

= −  (3.162) 
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3.5.2.2.2 Between-the-plates model 
 

Again, fixed boundary conditions, as well as slip boundary ones will be con-
sidered here. 
 

 
To determine the damping coefficient at the moving plate–fluid interface for 
the space enclosed between the moving and the fixed plates, a solution to the 
Navier-Stokes equation is the one suggested by Landau and Lifshitz [19]: 
 
 [ ]( , ) sin( ) cos( ) j t

xv z t A z B z e ωβ β −= +  (3.163) 
 
where: 
 

 ( )1
2

j ωβ
υ

= +  (3.164) 

 
and z is the variable length parameter that ranges within the [0, z0] interval, and 
is measured from the mobile plate (when z = 0), as suggested in Figure 3.30. 
By using the continuum-model (no-slip) boundary conditions of this problem: 
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 (3.165) 

 
where the first boundary condition used the complex-number notation to 
denote the mobile plate velocity, the space-dependent portion of Equation 
(3.163) becomes:   
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z z
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The shear stress at the moving plate–fluid interface is found by using Newton’s 
law as: 
 

 ( )0
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dv z V z
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τ µ µβ β
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= =  (3.167) 

 
 
 

Fixed boundary conditions (continuum model) 
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Equation (3.167) gives the complex number form of the shear stress, but only 
its real part accounts for the actual shear stress, which is: 
 

 
( ) ( )
( ) ( )

1 0 1 0

1 0 1 0

2 sin 2
2 cos 2x

z z
V

z z
β β

τ µβ
β β

+
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−
 (3.168) 

 
with: 
 

 1 2
ωβ
υ

=  (3.169) 

 
Because, again, the damping force is shear stress times area but is also damp-
ing coefficient times velocity, the damping coefficient can be computed from 
Equation (3.167) as: 
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1 0 1 0
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cos h 2 cos 2

z z
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z z
β β
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+
=

−
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Example 3.16 

Evaluate the total damping coefficient generated due to air friction above 
plate that undergoes vibrations parallel to the substrate, as well as between 
the plate and the substrate, by considering the continuum model does apply 
(with fixed boundary conditions). 
 
Solution: 

Equations (3.155) and (3.170) give the damping coefficients outside the 
plate and between the plate and the substrate, respectively. The total loss in 
case several independent effects superimpose can be evaluated by means of 
the inverse of an equivalent Q-factor, which is obtained by adding up the 
inverses of the individual Q-factors, as shown by Equation (3.44). At the same 
time, according to Equation (3.24), the Q-factor is proportional to the inverse 
of the damping coefficient. Consequently, the total damping coefficient is 
the sum of individual contributions from above-the-plate and between-the-
plates damping coefficients, namely: 
 
 a bc c c= +  (3.171) 
 
where ca is given in Equation (3.155) and cb in Equation (3.170). The plot of 
Figure 3.31 shows the variation of the ca/c ratio.  
 
 
 

sin h
cos h1
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Figure 3.31 Above-the-plate damping coefficient as a fraction of the total damping coefficient 
 
For relatively small gaps and driving frequencies, the damping produced 
above the plate is less significant in the overall damping coefficient, as shown 
in the figure, cases in which the damping owing to fluid–structure interaction 
predominates. For higher gaps and frequencies, the fraction of damping pro-
duced above the plate increases and approaches the one generated between 
the plates. 
 

 
The model described in the previous subsection together with its corresponding 
damping coefficient equation account for fixed boundary conditions, accord-
ing to the continuum model. When slip boundary conditions are assumed 
(which account for flows in the slip and/or transition flow regimes), a different 
coefficient is produced, as shown next. 

The slip boundary conditions account for gas rarefaction at low pressures 
and very small gaps that result in a gas velocity that is non-zero at the fixed 
wall (the slip velocity) and is different from the oscillating wall velocity at 
that interface. These changes in fluid velocity distribution alter the damping 
coefficient resulting from the rarefied fluid-moving plate interaction. The first- 
order slip boundary conditions (Burgdorfer [22]), also known as Maxwell’s 
boundary conditions, are: 
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 (3.172) 

 
where vx is the gas slip velocity (at either the fixed plate or the oscillating 
one), Vx is the plate velocity amplitude, λ is the mean free molecular path, 

First-order slip boundary conditions 
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and z is measured starting from the fixed plate. This model considers the 
velocity distribution near the surface as being linear. 

If the solution of Equation (3.142) to the Navier-Stokes equation 
(Equation (3.140)) is used, the two constants involved are determined by using 
the slip boundary conditions of Equation (3.172). By then using the normal 
procedure of expressing the real part of the complex velocity distribution, 
followed by calculation of its z-dependent first derivative and calculation of 
the shear stress at the moving plate–fluid interface, the damping force is 
obtained by multiplying the shear stress by the plate’s surface area. This last 
step enables identifying the viscous damping coefficient as the multiplier of 
the plate’s velocity amplitude. The viscous damping coefficient, as shown by 
Veijola and Turowski [20], for instance, is: 
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where the two terms, c1 and c2, are the additions to the damping coefficient 
corresponding to non-slip boundary conditions (Equation (3.170)) and are, 
according to Veijola and Turowski [20]: 
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 (3.174) 

 

 
The first-order boundary slip model captures the linear velocity distribution 
at boundaries for vibration frequencies that are not so high. In the case of 
higher frequencies, the linear character of velocity distribution near the oscil-
lating plate needs to be replaced by a higher-order distribution. A second-
order slip boundary condition, as shown by Beskok and Karniadakis [23], 
Beskok et al. [24], Bahukudumbi et al. [25], Park et al. [26] or Veijola and 
Turowski [20], requires: 
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Higher-order Slip Boundary Conditions 
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where the higher-order factor, according to Beskok and Karniadakis [23], is 
computed as: 
 

 0

0
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z z
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z z
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 (3.176) 

 
where vx was selected to be the velocity distribution according to the 
continuum model (Equation (3.146)). For b = 0, Equation (3.175) is identical 
to Equation (3.172), which describes the first-order slip model. By applying 
the same procedure indicated to the first-order slip model, the damping 
coefficient can be obtained. Veijola and Turowski [20] propose the following 
complex number form damping coefficient: 
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where β2 = (2jβ1)1/2. A variant of modeling higher-order slip velocity 
boundary conditions at the moving wall is proposed by Bahukudumbi et al. 
[25], who propose the following boundary condition: 
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 (3.178) 

 
where α is the slip coefficient, which is expressed, according to the same 
reference, as: 
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 (3.179) 

 
For a slip coefficient of α = 1, the classical Maxwell, first-order slip velocity 
boundary condition is retrieved.  
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3.5.3 Free Molecular Flow Regime and Unifying Theories  
 

For very large Knudsen numbers, Kn, the free molecular path exceeds by far 
the gap dimensions, and the flow is in the free regime. The shear stress on a 
plate that displaces at a velocity Vx can be expressed, according to Kogan 
[27], for instance, as: 
 

 0
2

x
RTVτ ρ
π∞ =  (3.180) 

 
where R is the universal gas constant and T is the temperature of the mobile 
plate. The damping coefficient corresponding to the free molecular flow 
regime is therefore: 
 

 0
2RTc Aρ
π∞ =  (3.181) 

 
Attempts have been made by researchers in this domain to generate 

closed-form analytical equations that would be applicable for the whole 
range of Knudsen numbers, covering the domain from continuum to free 
molecular. Corrections expressing slip-wall effects can be incorporated in 
effective values of either the shear stress or the dynamic viscosity, and there-
fore the simple linear Couette model can be used to generate damping co-
efficients by means of Equations (3.129), (3.130), and (3.131) at the beginning 
of this section treating the slide-film damping.    

Veijola and Turowski [20], for instance, suggest using the following 
effective damping coefficient: 
 

 

0

1 2
eff

z

µµ λ=
+

 (3.182) 

 
where µ is the actual dynamic viscosity and λ is the free mean molecular path. 
The same reference proposes as an alternative a different effective dynamic 
viscosity, which is derived from normalizing the shear stress by the free 
molecular path as: 
 

 0.10.7881 2 0.2 neff K
n nK K e

µµ −=
+ +

 (3.183) 

 
which represents a curve fit obtained from numerical results of an integro-
differential equation derived by Cercignani and Pagani [28] based on a 
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linearized Boltzmann equation. First-order slip boundary conditions have 
been taken into account in these models. Having the effective dynamic 
viscosity enables calculation of the shear stress by means of Newton’s law 
(Equation (3.125)). Similarly, Bahukudumbi et al. [25] propose the following 
shear stress ratio obtained from curve fitting of numerical results: 
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+
=
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 (3.184) 

 
where a = 0.530, b = 0.603, c = 1.628 (values rounded to three decimal 
points). Equation (3.184) enables expressing the shear stress for any value of 
the Knudsen number, from 0 (continuum model) to infinity (free molecular 
regime). The damping force is obtained by multiplying the shear stress by the 
moving plate area, which enables determining the damping coefficient. 

 
3.6 THERMOELASTIC DAMPING  

 
The coupling between a strain/deformation field in an elastic body and the 
temperature field is best illustrated by the equation connecting the elongation 
of a bar, ∆l, to the temperature variation, ∆T as: 
 
 l l Tα∆ = ∆  (3.185) 
 
by means of the linear coefficient of thermal expansion α. An oscillating 
elastic body is out of equilibrium state, but local variations of its strain field 
interact with the thermal variations, according to Equation (3.185). This 
connection provides a mechanism for energy dissipation towards regain of 
equilibrium. This is actually a relaxation process consisting of an irreversible 
heat flow. For a vibrating beam, for instance, where the upper fibers contract 
and the lower fibers extend at a given moment in time, a heat flow loss 
occurs from the heated fibers (the extended ones) to the cooled fibers (the 
ones that contract). This energy loss phenomenon is known as TED. 

Roszhart [29] derived a model for cantilever beams which predicts the 
following Q-factor: 
 

 
2 4 2 2 2
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16
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t ET

ω ρ κ
ω α κ

+
=  (3.186) 

 
where c is the specific heat, κ is the heat capacity, E is Young’s modulus, ρ is 
the mass density, T is the temperature, t is the thickness, and ω is the 
vibration frequency. 

 



  Chapter 3 282 

In the 1930s, Zener [30] proposed an approximation to the Q-factor 
pertaining to thermoelastic losses, which is still considered operationally 

considers that damping can be approximated by a relaxation process in which 
thermal diffusion occurs across the thickness of a vibrating beam. The 
standard model has at its core a generalization of Hooke’s law, which is 
expressed as: 
 

 r
d dE
dt dtε σ
σ εσ τ ε τ⎛ ⎞+ = +⎜ ⎟

⎝ ⎠
 (3.187) 

 
where Er is the relaxed modulus of elasticity, whereas τε and τσ are the 
constant-strain relaxation time and constant-stress time, respectively. By 
assuming that the stress and strains vary harmonically, which in complex 
notation is: 
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Equation (3.187) becomes: 
 
 0 , 0r cEσ ε=  (3.189) 
 
which is similar to the normal Hooke’s law and where Er,c is a complex 
modulus, expressed as: 
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1
1r c r
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j
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+
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The inverse of the Q-factor can be defined as the ratio of the imaginary part 
to the real part of the complex modulus, and after transforming the complex 
modulus of Equation (3.190) in its standard, complex-number form: 
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the inverse of the Q-factors can be expressed as: 
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valid. Zener’s model, also known as the standard model of the anelastic solid, 
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Eu is the unrelaxed modulus and is defined as: 
 

 u rE Eσ

ε

τ
τ

=  (3.193) 

 
where the thermal relaxation time is: 
 

 
2

2th
t c

k
ρτ

π
=  (3.194) 

 
with c being the specific heat (at either constant pressure or constant volume 
[the differences are small between the two conditions]), ωr being the canti-
lever resonant frequency, T being the temperature, t being the cantilever 
cross-sectional thickness, ρ being the mass density, and k being the thermal 
conductivity. 

The Q-factor accounting for thermal damping losses, according to Zener’s 
model and when considering the following approximation (Lifshitz and 
Roukes [31]): 
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2
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is: 
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+
= ×  (3.196) 

 
In Equation (3.195), Ead is the adiabatic (unrelaxed) modulus of elasticity, 
whereas E is the regular, isothermal (relaxed) modulus of elasticity. 
 
Example 3.17 

Analyze the Q-factor due to thermal damping in terms of the relaxation 
constant ωr τth. 
 
Solution: 

The inverse of the Q-factor, Q–1, which is proportional to the losses 
incurred by a system, is plotted in a non-dimensional form, as shown in 
Figure 3.32, based on Equation (3.196). As Figure 3.32 shows, the non-
dimensional damping has a maximum for ωrτth = 1, which indicates that the 
resonant frequency and the relaxation rate (the inverse of the relaxation time) 
should be approximately equal for the maximum peak damping to occur. 
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When ωr >> 1/τth, the material does not have the necessary time to relax 
because the vibration is too fast. When, on the contrary, ωr << 1/τth, the 
vibration is very slow and the system is in equilibrium technically, with little 
energy being lost. 

thermoelasticity: 
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with:   
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ω ρξ =  (3.198) 

 

 
Figure 3.32 Non-dimensional thermal damping as a function of the relaxation parameter 
 

3.7 OTHER INTRINSIC LOSSES 
 

Other intrinsic losses are phonon-mediated and they include the ones pro-
duced by phonon–electron interactions as well as those generated by the 
interaction between phonons and the mechanical vibration of a microdevice. 
The first category of losses is a viscous drag exerted by the free electrons on 

Q-factor corresponding to a thin cantilever by using the equations of lin ear
Lifshitz and Roukes [31] derived the exact closed-form solution to the 
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oscillating ions and is mostly significant in metallic MEMS because it is 
based on material high electrical conductivity (Czaplewski et al. [32]). 

The latter loss category is defined by the propagating mechanical 
vibration in a MEMS device, which causes the phonons to thermally readjust 
and reach a different equilibrium state, this state alteration being the channel 
for energy losses. The Q-factor in this case (Czaplewski et al. [32]) is of the 
Zener type, namely: 
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1 r phl
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vQ
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ω τρ
γ ω τ

+
= ×  (3.199) 

 
where C is the heat capacity per unit volume, vl is the longitudinal wave 
(sound) velocity and the phonon relaxation time is: 
 

 2

3
ph

p DC v
κτ

ρ
=  (3.200) 

 
κ being the material thermal conductivity, Cp being the constant-pressure 
heat capacity, and vD being the Debye sound velocity defined as: 
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  (3.201) 

 
It is known that the longitudinal velocity is: 
 

 l
Ev
ρ

=  (3.202) 

 
whereas the transverse wave velocity (or the group velocity) is: 
 

 
2tv

T
λ λω

π
= =  (3.203) 

 
The constant γ in Equation (3.199) is the Gruneisen’s constant (e.g., see 
Braginski et al. [33] and Burakowsky and Preston [34]), whose definition is: 
 

 
v

E
C
αγ
ρ

=  (3.204) 

 
Burakowsky and Preston [34] propose the following equation to determining 
γ, which depends only on material density: 
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 31/3
1 2

1
2

cc cγ ρ ρ= +  (3.205) 

 
where c1, c2, and c3 are constants that can be evaluated individually for 
various materials, and the same reference gives those values for 20 metallic 
materials. 

Another internal dissipation mechanism is due to defects or disorder in a 
material, and relaxation (damping) is provided by reconfiguration/reordering 
between equilibrium states that usually occurs through motion by atoms, 
vacancies, impurities, or dislocations. The Q-factor of a MEMS oscillator 
subjected to this particular type of loss is of the generic Zener-type, namely: 
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ω τ
ω τ

+
=  (3.206) 

 
where the constant c depends on the type of defect and its intensity. The 
relaxation time (Czaplewski et al. [32]) can be expressed for these processes 
as an Arrhenius-type equation: 
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1 1 aE
RTe

τ τ
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=  (3.207) 

 
where R is the universal gas constant (R = 8.31 J/(mol K)), τ0 is the 
characteristic atomic vibration period and is of the order of 10–13 s, and Ea is 
the activation energy of the relaxation process. Usually this energy is equal to 

 
Example 3.18 

Evaluate the relaxation time involved in the losses due to defect motion 
if the characteristic atomic vibration period is τ0 = 2.5 × 10–13 s and the acti-
vation energy is Ea = 1.5 eV. Considering a microresonator whose resonant 
frequency is 10,000 Hz is defined by a Q-factor Q = 1000, which is solely 
due to defect motion losses, determine the constant c of Equation (3.206). 
 
Solution: 

By taking into account that 1 eV = 1.6 × 10–9 J and by considering the 
numerical data of this problem, the relaxation time can be expressed as a 
function of temperature, and Figure 3.33 plots this relationship. As Figure 
3.33 indicates, the relaxation time decreases when the temperature increases, 
as expected, but is largely determined by the value of the characteristic 
atomic vibration period τ0. The constant c is simply found from Equation 
(3.206) as: 

the self-diffusion energy and is of the order of 1–2 eV per mol. 
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( )2
2

1 2
rfc Q
f

π τ
π τ

=
+

 (3.208)  

and its numerical value is c = 6.28 × 10–6. 

 
Figure 3.33 Relaxation time as a function of temperature 

 

3.8 SUBSTRATE (ANCHOR) LOSSES 
 

Vibration of micro/nano mechanical devices, particularly the resonant ones, 
is transmitted to the substrate and dissipates into it; the corresponding losses 
are known as support (or substrate, or anchor) losses. Reduction of these 
losses, as indicated by Mihailovich and MacDonald [35], for instance, can be 
achieved by either utilizing symmetry in designing resonant structures such 
that zero (desirably) forces/moments are transmitted to the support or by 
interposing a mass between the oscillating structure and the substrate such 
that the energy of the mass is small compared to the energy of the original 
structure. 

Modeling and quantifying losses to the substrate by a micro/nano 
oscillator is generally performed by assessing the vibration energy, which is 
transmitted through the anchor regions by the shearing forces and bending or 
torsional moments generated locally by the vibrating structures. Park and 
Park [36] developed a methodology enabling evaluation of the anchor losses 
by means of a modified Fourier semi-analytic technique involving numeric 
solutions. Osaka et al. [37] considered cantilever beams of infinite width that 
are attached to a semi-infinite substrate and gave the following Q-factor 
corresponding to anchor losses: 
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where l is the beam length and t is its thickness. Hao et al. [38] derived a 
very similar Q-factor, namely: 
 

 
3

32.09 lQ
t

≈  (3.210) 

 
value corresponding to the first vibration mode and to a material with 
Poisson’s ratio µ = 0.3. The same reference developed an equation requiring 
numeric integration, which gives the Q-factor of cantilevers for various 
modes as a function of modal amounts and the Poisson’s ratio. The res-
pective equation indicates the Q-factor decreases with the mode number 
increasing and is proportional to the cube of the length-to-thickness ratio. 
A similar result is provided by the same referenced paper for bridges 
(clamped-clamped beams). 

Photiadis and Judge [39] proposed a model with closed-form Q-factor of 
cantilevers by taking into account all the dimensions of the beam together 
with the substrate thickness. For the case in which the substrate thickness ts is 
smaller than the wavelength of the wave transmitted to the substrate, they 
derived the following Q-factor equation: 
 

 
2

21.05 stlQ
w t

= ×  (3.211) 

 
where, in addition to the parameters already introduced here, w is the beam 
cross-sectional width. Equation (3.211) is a simplification of a more generic 
equation derived in the same reference—the equation mentioned here cor-
responds to cantilever designs with thicknesses far smaller than the substrate 
thickness and was shown valid for cases when λs/3 < ts < λs. Figure 3.34 
shows the dependency of the Q-factor on the l/w and ts/t ratios. 
  
 
 
 
 
 
 
 
 
 
 
 
  

Figure 3.34 Quality factor due to anchor losses in terms of geometry 
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Example 3.19 
Design a cantilever that would be able to produce an anchor loss-related 

Q-factor of Q = 10,000 when the substrate has a thickness ts = 500 µm. 
 
Solution: 

Equation (3.211) enables expression of the cantilever thickness as: 
 

 
11.025 s

lt t
Q w

= ×  (3.212) 

 
For the numerical data of the problem, the solution is: t = 5.125 (l/w)1/2. The 
thickness is plotted in terms of the cantilever length and cross-sectional width 
in Figure 3.35. As Figure 3.35 shows it, the thickness increases with the 
length-to-width ratio for the specified values of the Q-factor and substrate 
thickness. For l/w = 5, the cantilever thickness becomes: t = 11.6 µm. 

Photiadis and Judge [39] also analyzed designs for which the substrate 
thickness is larger compared to the wavelength of the transmitted vibration, 
and proposed the following Q-factor: 
 

 
4

43.226 l lQ
w t

= ×  (3.213) 

 
Both Equations (3.211) and (3.213) were derived for a material with µ = 3 
(steel-type). It can be seen from Equation (3.213) that the substrate thickness 
does not affect the Q-factor for relatively thick substrates. There are also 
marked differences between the predictions of Equation (3.209) by Osaka et al. 
[37], Equation (3.210) by Hao et al. [38], on one side, and Equation (3.213) 
by Photiadis and Judge [39]. 
 

Figure 3.35 Cantilever thickness in terms of length and width 
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3.9 SURFACE LOSSES 
 

The generic Zener model can also stand for dissipative processes different 
from the TED since by taking into account a complex modulus of the type: 
 
 1 2cE E jE= +  (3.214) 
 
where E1 can be the real, conventional elastic modulus of a specific material, 
and E2 stands for the dissipative part of that material (generated by lattice 
defects motion, for instance), the Q-factor is simply: 
 

 1

2

Re( )
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c

c

E EQ
E E

= =  (3.215) 

 
Equation (3.215) can actually be derived for the case of internal bulk (through 
the volume) dissipation (e.g., as shown by Yasumura et al. [40]) by express-
ing the Q-factor according to its definition, which takes into account the 
energy stored and the energy lost during one oscillation cycle. According to 
Equation (3.215), the Q-factor related to bulk internal losses strictly depends 
on elastic and dissipative material properties. 

Surface loss mechanisms can also occur in situations such as disruption 
of the atomic lattice produced by microfabrication defects, for instance, or in 
cases of surface contamination (such as adsorbates on the surface). Yasumura 
et al. [40] derived the following Q-factor owing to surface losses for a 
cantilever having the cross-sectional width w and thickness t: 
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EwtQ Q
w t Eδ
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 (3.216) 

 
where δ is the thickness of a thin dissipative layer for which the following 
complex modulus is used: 
 
 , 1 2s c s sE E jE= +  (3.217) 
 
defined by a Q-factor: 
 

 1

2

s
s

s

EQ
E

=  (3.218) 

 
For cantilevers with large widths compared to their thickness, w >> t, Equa-
tion (3.216) simplifies to: 
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 1

,16 s
s

EtQ Q
Eδ

= ×  (3.219) 

 
As indicated by Equations (3.216) and (3.219), the surface losses are affected 
by the cross-sectional dimensions, in addition to elastic and dissipative 
material properties, and are not influenced by the cantilever length, as one 
would expect by taking into account that length defines the longitudinal area, 
w × l.  
 
Problems 
 
Problem 3.1 

The differential equation expressing the free damped vibrations of a 
20x x+ . Determine the 

mass m, damping coefficient c, and stiffness k, as well as the damped 
resonant frequency ωd of this lumped-parameter system. 
 
Problem 3.2 

Repeat Problem 3.2 in the case of the following differential equation: 
500 6, 250,000 0x x x+ + = . 

 
Problem 3.3 

The free damped vibrations of a two DOF mechanical microsystem are 
characterized by the following mass, damping and stiffness matrices: 

[ ] [ ] [ ] 2

2

1

0 0
; ;

0 0
a b d d

M C K
a b d d

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, where the real co-

efficients a, b,  d1, and d2 are specified. Identify a mechanical microsystem 
that possesses these properties by drawing a schematic of the microsystem and 
by also calculating its individual physical parameters. 
 
Problem 3.4   

Repeat Problem 3.3 in the case the microsystem’s matrices are: 

[ ] [ ] [ ] 2

2

0 0
; ;

0 0
d da b

M C K
d da b

−⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

 
Problem 3.5 

+ =1,000,000x 0single DOF microresonator is:  

The free damped response of the mechanical microfilter of Figure 3.36 is 
1 2

and the two damped resonant frequencies ωd1 and ωd2. By also knowing the 
mass m of the two rigid oscillators, evaluate the stiffnesses k1 and k2. 

determined experimentally, consisting of the logarithmic decrements δ  and δ , 

1

1

1
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Figure 3.36 Two DOF microfilter with damping 

Problem 3.6 

 
Problem 3.7 

Problem 3.8 

Problem 3.9 

out-of-the-plane response. The resonant Q-factor Qr and the damped resonant 
frequency ωd are determined experimentally. By knowing all geometric and 
inertia parameters of the microbridge, use a lumped-parameter model (with 
the paddle rigid and the root massless and compliant) to evaluate the 
elasticity (Young’s) modulus E of the microbridge material. 
 
Problem 3.10 

A paddle microcantilever is tested at resonance by monitoring its damped, 

Calculate the bending resonant frequency ωr of a resonator for which the 
logarithmic decrement δ and damped frequency ωd are known. 

A paddle microcantilever is tested at resonance by using out-of-the-plane 
bending and torsion. It is determined the torsion-to-bending damped resonant 
frequency ratio is r. By using a lumped-parameter model, evaluate the overall 
losses corresponding to these motions. By using a lumped-parameter model, 
evaluate the loss corresponding to torsion as a function of the loss produced 
through bending. 

Solve Problem 3.7 by considering a paddle microbridge instead of a 
paddle microcantilever. 

Solve Problem 3.9 by considering a paddle microbridge instead of a 
paddle microcantilever. 
 
Problem 3.11 

Establish a relationship between the resonant (forced) Q-factor and the 
free-response Q-factor (with non-zero initial velocity) for a single DOF 
damped microresonator when the logarithmic decrement δ is known.  
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Problem 3.12 

 
Problem 3.13 

 
Problem 3.14 

 

Problem 3.15 

 
Problem 3.16  

A 300 µm × 50 µm × 2 µm plate vibrates normal to the substrate at 10 
kHz. The plate is supported by two end rectangular cross-section beams, each 
50 µm long, 10 µm wide, and 1 µm thick. The initial gap is 12 µm, the gas 
pressure is 0.001 atm, and the dynamic viscosity is 1.8 × 10–5 N-s/m2. 
Calculate the squeeze-film damping coefficient.  
 
Problem 3.17 

A plate 200 µm long and 40 µm wide is used to determine the nature of 
an unknown gas by monitoring the plate’s vibratory response against a 
substrate (the initial gap is 8 µm). The plate vibrates at 8,000 Hz at normal 
temperature and pressure. Considering the Q-factor corresponding to squeeze- 
film damping is 7,600, calculate the molecular mass of the gas.  

A paddle microcantilever with both segments contributing to compliance 
and inertia is vibrated in out-of-the-plane bending in a vacuum environment 

experimentally. By ignoring other losses of this microsystem, and by 
considering all geometric and material parameters of the microbridge are 
known, calculate the structural loss coefficient . 

A Q-factor of 7,800 is experimentally determined for a trapezoid canti-

represents 80% of the total losses. Determine the elastic modulus of this 
cantilever’s material. It is also known that α = 0.0005. 

A constant rectangular cross-section microbridge with E = 155 GPa,  
ρ = 2300 kg/m3  and length l = 100 µm is displaced by 5 µm at its midpoint 
and then let to freely vibrate. After t = 50 s, its midpoint vibration amplitude 
is 30 nm. Evaluate the Q-factor corresponding to the overall losses.  

A microbridge formed of a central plate of 90 µm length, 10 µm width, 
and 1 µm thickness, and two side CNTs, each 20 µm long and 50 nm in 
diameter, vibrates normally to the substrate. Knowing the bridge–substrate 
initial gap is 3 µm and that the Q-factor owing to squeeze-film damping is 
9,300, calculate the dynamic viscosity. Known are also ω = 6000 rad/s and  
E = 50 GPa. Use Zhang’s continuum-gas model. 

α

lever whose minimum width, maximum width, thickness, and length are

to evaluate structural losses, and the corresponding Q-factor is determined 

20 µm, 80 µm, 1 µm, and 300 µm, respectively. The structural damping roughly 
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Problem 3.18 

Figure 3.37 Bridge suspended on two carbon nanotube beams 

Problem 3.19 
A microresonator consists of a central square plate (of known mass m 

and dimensions L × L), which is supported symmetrically on the midpoints 
of its sides by four identical CNT beams of known length l, diameter d, and 
modulus of elasticity E. At a very small pressure p, this microsystem can be 
used as a thermal sensor. The out-of-plane vibrations of the plate are moni-
tored experimentally and the Q-factor Q is determined at ω = ωr. By using 
Bao’s molecular-flow model, and by also knowing the gas molecular mass 
Mm and the gas constant R, determine the gas temperature T.     
 
Problem 3.20 

A torsional micromirror is formed of a rectangular plate and two end 
beams. The inertia and geometric properties of the plate and beams are 
known. Compute the equivalent viscous damping ratio when the Q-factor 
corresponding to torsional vibrations of the micromirror is known. Consider 
only the losses produced through squeeze-film damping. 
 
Problem 3.21 

The plate shown in Figure 3.37 is supported by two CNT beams and can 
vibrate in out-of-the-plane translation and rotary motion. Knowing that l = 400 
µm, w = 70 µm, lb = 300 µm, d = 60 nm (d is the CNT diameter), and also 
that the Q-factors owing to squeeze-film damping are Qt = 6,500 for tran-
slation and Qr = 6,800 for rotation, find the plate-substrate gap z0 and the 
dynamic viscosity µ. Known is also that ft = fr = 100 Hz. 

A paddle microbridge with the paddle rigid and the root segments 
massless and compliant (of constant rectangular cross-section) is used as a 
torsional oscillator to assess the dynamic viscosity coefficient µ of an 
unknown gas. All design and material properties being known, as well as the 
damped resonant frequency ωd and resonant quality factor Qr, devise an 
algorithm to determine µ. Known is also that ft = fr = 100 Hz. 
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Problem 3.22 

 
 
 
 

 
 
 
 
 
 

 
Problem 3.23 

 
Problem 3.24 

Problem 3.25 

 Problem 3.26 

w p 

p

l

Figure 3.38  Plate with holes 

Find the damped resonant frequency of the plate with 10 holes, as shown 
in Figure 3.38, by considering the squeezed-film stiffness. The plate is 
suspended by two end springs, each of 2 N/m stiffness. Known are the hole 
radius r = 3 µm, l = 80 µm, w = 20 µm, p = 15 µm, and µ = 1.7 × 10–5 N-s/m2, 
z0 = 8 µm, t = 2 µm and ρ = 2300 kg/m3. 

Study the variation of c in Problem 3.22 as a function of the number of 
holes n. 
 

A plate vibrates parallel to the substrate by maintaining a constant gap  
of 10 µm. The air density is ρ = 1.1 kg/m3 and the dynamic viscosity is  

–5 N-s/m2. By using the continuum model, determine the frequency 
at which the damping coefficient corresponding to the above-the-plate fluid–
structure interaction is equal to the one between the moving plate and the 
substrate. Known are also l = 200 µm and w = 100 µm. 
 

A plate is supported by two identical end springs and vibrates at 50,000 
Hz parallel to the substrate. The area of the plate is 40,000 µm2. Knowing the 
penetration depth is 80 µm, the Q-factor owing to above-the-plate fluid–
structure interaction is 5,000, find the stiffness of the spring. 

The losses due to friction with the fluid above the plate are 0.8 of the 
losses generated by air friction between the plate and the substrate. Con-
sidering the first-order slip boundary conditions, find the dynamic viscosity 
knowing the constant gap z0 = 15 µm, vibration frequency f = 65,000 Hz, free 
molecular path λ = 20 µm, and plate area A = 20,000 µm2. 

µ = 1.7 × 10
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Problem 3.27 

 
Problem 3.28 

Problem 3.29 
The Q-factor of a silicon trapezoid microresonator corresponding to 

defect motion is 8,000. Knowing the relaxation period is 2 × 10–13 s and the 
activation energy is 2 eV, as well as the microresonator’s dimensions (length 

the equivalent viscous damping ratio. 
 
Problem 3.30 
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