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PREFACE 

 
 
 

Through its objective, scope, and approach, this book offers a systematic 
view to the dynamics of microelectromechanical systems (MEMS). While pro-
viding an in-depth look at the main problems that involve reliable modeling, 
analysis, and design, the main focus of this book is the mechanical/structural 
micro domain, which is at the core of most MEMS. Although not designed for 
a specific course, the book could be used as a text at the upper-undergraduate/ 
graduate level, and, as such, it contains numerous fully solved examples as 
well as many end-of-the-chapter proposed problems whose comprehensive 
solutions can be accessed/downloaded from the publisher’s website by the 

designing mechanically based MEMS. 
This text is a continuation of the book Mechanics of Microelectro-

mechanical Systems by Lobontiu and Garcia (Kluwer Academic Publishers, 
2004), and therefore it relies on the elements developed in its precursor, such 
as compliance/stiffness formulations for microcantilevers, microhinges, micro-
bridges, and microsuspensions, as well as on the treatment given to means of 
actuation and sensing. However, an effort has been made to ensure that this 
book is self-contained as much as possible. 

The material is structured into four parts (conventionally named chapters), 
which are briefly discussed here. Each chapter contains exposition of the 
theory that is necessary to developing topics specific to that part. Chapter 1 

Rayleigh’s quotient approximate method, which provides means for direct 
derivation of the resonant frequencies. Lumped-parameter modeling, which 
enables calculation of the above-mentioned resonant frequencies via the equi-
valent stiffness and inertia properties, is also used. Several microcantilever 
and microbridge configurations are analyzed, and closed-form equations are 
provided for the bending and torsional resonant (natural) frequencies by taking 
into account the number of profiles that longitudinally define the member, 
the number of layers in a cross-section, and the type of cross-section (either 
constant or variable). Designs that contain circular perforations are also ana-
lyzed together with configurations that contain externally attached matter 
whose quantity and position alter the main resonant frequencies.  

Chapter 2 analyzes the resonant/modal response of more complex micro-
mechanical systems by considering their components are either inertia or 
spring elements. The lumped-parameter modeling approach is applied to derive 

qualified instructor. At the same time, it is hoped that this book might be use-
ful to the researchers, professionals, and academics involved with modeling/ 

and microbridges by employing the distributed-parameter approach and the 
studies the bending and torsion resonant responses of microcantilevers
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the free vibratory response of micromechanical systems that behave as either 
single degree-of-freedom (DOF) ones, or as multiple DOF systems—in case 
they undergo more complex vibratory motion and/or are composed of several 
mass elements. Lagrange’s equations are employed in modeling the free res-
ponse of multiple DOF micromechanical systems. Numerous examples of 
mass-spring microsystems undergoing linear or/and rotary resonant vibrations 
are presented.  

Chapter 3 addresses the main mechanisms responsible for energy losses 
in MEMS. Quality factors and corresponding viscous damping coefficients 
are derived owing to fluid–structure interaction (as in squeeze- and slide-film 
damping), anchor (connection to substrate) losses, thermoelastic damping 
(TED), surface/volume losses and phonon-mediated damping.  

micro has been utilized throughout, with the understanding that both the micro 
and nano domains are covered by the generic denomination of microelectro-
mechanical systems. Particular care has been paid to the accuracy of this text, 
but it is possible that unwanted errors have slipped in, and I would be extremely 
grateful for any related signal. 

In closing, I would like to address my sincere thanks to Alex Greene, 
Springer Editorial Director of Engineering, for all the positive interaction, 
support, and profound comprehension of this project.  
 

Anchorage, Alaska 
 

Chapter 4 discusses MEMS by taking into account the forcing factor and 
therefore the forced response is analyzed. For harmonic (sinusoidal, co-
sinusoidal) excitation, the frequency response is modeled by quantifying the 
amplitude and phase shift over the excitation frequency range. The Laplace 
transform and the cosinusoidal transfer function approach are employed in 
analyzing topics such as transmissibility, coupling, mechanical-electrical ana-
logies, as well as applications such as microgyroscopes and tuning forks. For 
non-harmonic excitation, the time response of MEMS is studied by means  
of the Laplace transform, the state-space approach and time stepping 
schemes. Nonlinear problems, such as those generated by large deformations 

be accessed at http://www.springer.com/west/home/generic/search/results?-
SGWID=4-40109-22-173670220-0 by a qualified instructor. 

 

Although many applications in this text qualify as nano devices, the prefix 

the solutions for the problems that appear at the ends of the chapters can 

are also discussed, and dedicated modeling/solution methods such as time-
stepping schemes or the approximate iteration method are presented. All



Chapter 1 
 
MICROCANTILEVERS AND MICROBRIDGES: 
BENDING AND TORSION RESONANT 
FREQUENCIES  
 
 
 
 
 
 
 
 
 
1.1 INTRODUCTION 
 
Microcantilevers and microbridges are the simplest mechanical devices that 
operate as standalone systems in a variety of microelectromechanical systems 
(MEMS) applications, such as nano-scale reading/writing in topology detection/ 
creation, optical detection, material properties characterization, resonant sens-
ing, mass detection, or micro/nano electronic circuitry components such as 
switches or filters.  

This chapter studies the bending and torsion resonant responses of micro-
cantilevers (fixed-free flexible members) and microbridges (fixed-fixed flexible 
members) by mainly utilizing the distributed-parameter approach and the 
related Rayleigh’s quotient approximate method, which enable direct deriva-
tion of the resonant frequencies. The lumped-parameter modeling, which 
permits separate calculation of equivalent stiffness and inertia properties en 
route of obtaining the above-mentioned resonant frequencies, is also used in 
this chapter for certain configurations. 

Structurally, microcantilevers and microbridges can be identical, it is only 
the boundary conditions that differentiate them, and this is the reason the two 
members are discussed together in this chapter. The configuration of a parti-
cular microcantilever or microbridge is a combination of three features, namely: 
number of profiles that longitudinally define the member (there can be a 
single profile [geometric curve], or multiple profiles [case in which there is a 
series connection between various single-profile segments]), number of layers 
in a cross-section (there can be single-layered, homogeneous members or 
multi-layer [sandwich] ones), and the type of cross-section (either constant or 
variable). These variables are illustrated in Figure 1.1 as a three-dimensional 
(3D) space. Because each of the three variables can take one of two possible 
values, eight different configuration classes are possible by combining all 
possible variants (in Figure 1.1 these categories are represented by the cube’s 
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vertices). The origin of the 3D space, which is one specific design category,
is defined by the parameters SL, SP, and CCS, and represents the subclass of 
microcantilevers/microbridges that is made of a single layer (SL). Their 
geometry (width) is defined by a single profile (one geometric curve—SP), 
and are of constant cross-section. This particular combination results in a
homogeneous, constant cross-section member, one of the simplest and most 
used cantilevers/bridges. The other seven subclasses (corresponding to the 
remaining cube vertices in Figure 1.1) can simply be described in a similar
manner. 

 
Figure 1.1 Three-dimensional space characterizing the geometric and material parameter 
categories that define microcantilevers/microbridges (SL, single layer; ML, multiple layer; SP, 
single profile; MP, multiple profile; CCS, constant cross-section; VCS, variable cross-section) 

Figure 1.2 Constant cross-section microcantilever: dimensions and degrees of freedom 
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micromembers are of constant thickness and of variable width, assumption 
which is consistent with the usual microfabrication procedures. 

both of constant rectangular cross-sections. As shown in Figure 1.2, a micro-
cantilever is a fixed-free member, whose reference frame (which monitors 
the out-of-the-plane bending about the z-axis, and torsion about the x-axis) is 
placed at the free end where both bending and torsion deformations are 
maximum. A microbridge is a fixed-fixed member, as illustrated in Figure 1.3, 
and the reference frame can be located either at one fixed end or at its midpoint. 
The maximum deformations are taking place at the microbridge’s midpoint. 

 
The topic of detecting and evaluating the amount of substance that attaches 

to MEMS structures by monitoring the shift in the bending and torsion reso-

 
1.2 MODAL ANALYTICAL PROCEDURES 
 
Calculating the modal or resonant response of flexible structures can be per-
formed by means of analytical and numerical methods. Numerical procedures, 
of which the finite element method (which is not addressed here) is the most 
popular, are versatile and yield precise solutions for problems that are des-
cribed by partial differential equations with complex boundary conditions 
and geometric shapes. Although the method of choice in both academia 
and industry, for structures with relatively simple geometry and boundary 
conditions, such as microcantilevers and microbridges, the finite element 
method can be supplemented by simpler analytical models that are based on 
closed-form solutions and that offer the advantage of faster processing times. 

 
Figures 1.2 and 1.3 show a microcantilever and a microbridge, respectively, 

The assumption will be used in this chapter that variable cross-section (VCS) 

Figure 1.3 Constant cross-section microbridge: dimensions and degrees of freedom 

nances of microcantilevers and microbridges is approached in Section 1.5.
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Analytical procedures dedicated to evaluating the resonant response of elastic 
members comprise distributed-parameter methods and lumped-parameter 
methods. In a modal analysis, the distributed-parameter approach studies 

tributed over the entire structure. Lumped-parameter approaches, on the other 
hand, consider that the system’s properties are concentrated (lumped) at con-
venient locations and focus on the dynamic behavior at those selected locations. 
Small deformations of the elastic members will be assumed in this chapter, 
which will result in linear models. 
 
1.2.1 Rayleigh’s Quotient Method 
 

distributed-parameter procedure enabling calculation of various resonant 
frequencies of freely vibrating elastic structures. In the case of conservative 
systems, the method starts from the equality between the maximum kinetic 
energy and maximum potential energy: 
 
 max maxT U  (1.1)  
 
The next assumption is the one considering the harmonic motion of a 
vibrating component, according to which the deformation at a given point of 
the structure is a product between a spatial function and a time-dependent 
one: 
 
 ( , ) ( )sin( )u x t u x t  (1.2) 
 
where the deformation can be produced through bending, axial, or torsional 
free vibrations. The next step into Rayleigh’s quotient approach is assuming 
a certain distribution of the elastic deformation u (x). By combining all these 
steps yields the resonant frequency of interest. This method will be discussed 
in the following sections with reference to bending and torsional vibrations 
only.  
 
1.2.1.1 Bending 

 
In out-of-the-plane bending of single-component MEMS, such as the micro-
cantilever and the microbridge illustrated in Figures 1.2 and 1.3, the kinetic 
energy is: 
 

 
2 2( , ) ( , )1 ( )

2 2
z z

V l

u x t u x tT dm A x dx
t t

 (1.3) 

of the structure, and therefore by assuming the system’s properties are dis-
vibrating elastic structures by considering the time response of all points

Rayleigh’s quotient method (Timoshenko [1], Thomson [2], Rao [3]) is a 
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where uz (x,t) is the deflection at an arbitrary point x on the microcantilever 
(microbridge) and time moment t. The member’s length is l, its cross-
sectional area (potentially variable) is denoted by A(x), and the mass density 
is . 

The elastic potential energy stored in a bent member is: 
 

 
22

2

( , )1 ( )
2

z
y

l

u x tU EI x dx
x

 (1.4) 

 
where E is the elasticity (Young’s) modulus and Iy(x) is the cross-sectional 
moment of area with respect to the y-axis (see Figures 1.2 and 1.3). By 
considering the assumption: 
 
 ( , ) ( )sin( )z zu x t u x t  (1.5) 
 
the maximum kinetic energy and maximum elastic potential energy that 
result from Equations (1.3) and (1.4)—corresponding to values of 1 (one) for 
the involved sine and cosine factors—are substituted into Equation (1.1), 
which yields the square of the bending resonant frequency: 
 

 

22

2
2

2

( )( )

( ) ( )

z
y

l
b

z
l

u xEI x dx
x

A x u x dx
 (1.6) 

 
The deflection uz (x), which is measured at an arbitrary point along the beam 
and is positioned at a distance x from the origin (as already mentioned, the 
origin is the free end for a cantilever and either one fixed end or the midpoint 
for a bridge), is related to the maximum deflection uz by means of a bending 
distribution function as: 
 
 ( ) ( )z z bu x u f x  (1.7) 
 
By combining Equations (1.6) and (1.7), the bending resonant frequency can 
be reformulated as: 
 

  

22

2
2

2

( )( )

( ) ( )

b
y

l
b

l

d f xEI x dx
dx

A x f x dx
 (1.8) 
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Equations (1.6) and (1.8) are two forms of Rayleigh’s quotient corresponding 
to bending under the assumption the cross-section is variable. 
 
1.2.1.2 Torsion 
 
Rayleigh’s quotient method can also be applied to torsion problems involv-
ing microcantilevers and microbridges. The kinetic energy of a variable rect-
angular cross-section rod, for instance, is expressed as: 
 

 
2 2 2( ) ( ) ( ) ( ) ( , )1

2 12
x

l

w x t x w x t x x tT dx
t

 (1.9) 

 
where the cross-section’s width w and thickness t are assumed variable 
across the member’s length. The torsion angle x(x,t) is measured at an 
arbitrary abscissa x and time moment t. 

The elastic potential energy is: 
 

 
2( , )1 ( )

2
x

t
l

x tU GI x dx
x

 (1.10) 

 
where It (x) is the torsion moment of area of the member’s cross-section. By 
considering the torsional angle is defined as: 
 
 ( , ) ( )sinx xx t x t  (1.11) 
 
and by also equalizing the maximum kinetic energy to the maximum potential 
energy the torsion resonant frequency is calculated as: 
 

 

2

2
2 2 2

( )12 ( )

( ) ( ) ( ) ( ) ( )

x
t

l
t

x
l

d xGI x dx
dx

w x t x w x t x x dx
 (1.12) 

 
The following relationship is considered relating the torsion angle at an 
arbitrary abscissa, x (x) and the maximum (reference) torsion angle x: 
 
 )()( xfx txx  (1.13) 
 
where ft (x) is the torsion distribution function. By substituting Equation 
(1.13) into Equation (1.12), the torsion resonant frequency becomes: 



Microcantilevers and Microbridges 7 

 

2

2
2 2 2

( )12 ( )

( ) ( ) ( ) ( ) ( )

t
t

l
t

t
l

df xGI x dx
dx

w x t x w x t x f x dx
 (1.14) 

 
Again, Equations (1.12) and (1.14) express Rayleigh’s quotients for torsion. 

It should be mentioned that Rayleigh’s quotient equations for bending 
and torsion give the respective resonant frequency of a non-homogeneous, 
variable cross-section member, irrespective of boundary conditions. The 
boundary conditions decide the form of the bending and torsion distribution 
functions, fb (x) and ft (x) over the member’s length. For microcantilevers and 
microbridges the boundary conditions are different, and therefore the dis-
tribution functions are different as well. The distribution functions are also 
dependent on the abscissa origin in the case of microbridges. 
 
1.2.2 Lumped-Parameter Method 
 
Rayleigh’s quotient method, as seen in the previous section, directly yields 
the resonant frequency of interest, which is sufficient when this type of res-
ponse is solely needed. However, there are situations where the static or 
quasi-static behavior of an elastic member is also of interest, and in such 
cases the stiffness of that member at a specific location is necessary to use it 
as a connector between the applied loads and resulting deformations.  

An alternative to Rayleigh’s quotient distributed-parameter method to eva-
luating the resonant frequencies of flexible members is the lumped-parameter 
method, which transforms the real, distributed-parameter properties—elastic 
(stiffness) and inertial (mass or moment of inertia)—into equivalent, lumped-
parameter ones—ke (equivalent stiffness), me (equivalent mass), or Je 
(equivalent mechanical moment of inertia)—which are computed separately. 
In doing so, one can use just the stiffness (for static applications) or both the 
stiffness and inertia fractions (for modal calculations), because the resonant 
frequency of interest is expressed as: 
 

 
e

e
e m

k2  (1.15) 

 
In Equation (1.15), which is written for an elastic body whose equivalent 
counterpart undergoes translational motion, me is the mass of that body. In 
case the equivalent lumped body undergoes rotation, the mass of Equation 
(1.15) is replaced by a mechanical moment of inertia Je. The specifics of 
determining the resonant frequencies corresponding to bending and torsion of 
microcantilevers/microbridges by the lumped-parameter approach will be 
discussed next.  
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1.2.2.1 Bending 

In out-of-the-plane bending of single-component MEMS, such as micro-
cantilevers or microbridges, the lumped-parameter approach substitutes the 
distributed-parameter flexible component by an equivalent, lumped-parameter 
one.  

Figure 1.4 Cantilever vibrating out-of-plane: (a) real distributed-parameter system; (b) equivalent 
lumped-parameter, mass-spring system 

 
Figure 1.5 Bridge vibrating out-of-plane: (a) real distributed-parameter system; (b) equivalent 
lumped-parameter, mass-spring system 
 

Figure 1.4 illustrates the lumping process for a cantilever where a mass 
and a linear spring are placed at the free end of a massless beam. A similar 
equivalence is shown in Figure 1.5 for a microbridge, where the equivalent 
mass and spring are placed at the midpoint. The maximum deflection is 
recorded at the microcantilever’s free end, whereas for a microbridge the 
maximum deflection takes place at its midpoint. This is the reason for 
locating the lumped-parameter stiffness and inertia fractions at the respective 
points, as illustrated in Figures 1.4 and 1.5. 
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1.2.2.1.1 Equivalent stiffness 
 

The stiffness of the linear spring of either Figure 1.4 or 1.5 can be found in 
several ways, by applying a force Fz at the point of interest (the free endpoint 
for the microcantilever of Figure 1.4 or the midpoint for the microbridge of 
Figure 1.5) and by relating it to the static deflection uz at the same position. It 
is known that for linear systems, as the ones discussed here, force is pro-
portional to deflection and the proportionality constant is the stiffness, namely: 
 
 zebz ukF ,  (1.16) 

 
One possibility of finding a relationship as the one of Equation (1.16) is to 
apply Castigliano’s first theorem, according to which the force is expressed as: 
 

 
z

b
z u

UF  (1.17) 

 
where Ub is the bending strain energy. The out-of-the-plane bending of canti-
levers and bridges (which are beams) produces the following strain energy: 
 

 
22

2

( )1 ( )
2

z
b y

l

d u xU EI x dx
dx

 (1.18) 

 
The deflection uz (x) is connected to the maximum deflection uz by means of 
a distribution function according to Equation (1.7). Using this equation in 
Equation (1.17), together with Equation (1.18), results in: 
 

 
22

2

( )( ) b
z y z

l

d f xF EI x dx u
dx

  (1.19) 

 
Comparing Equation (1.19) to Equation (1.16) indicates that the equivalent, 
lumped-parameter stiffness is: 
 

 
22

, 2

( )( ) b
b e y

l

d f xk EI x dx
dx

 (1.20) 
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to the one of deflections. By also using the assumption that the kinetic energy 
of the distributed-parameter system is equal to the kinetic energy of the equi-
valent lumped-parameter mass, an equation that expresses mb,e can be obtained. 
The kinetic energy of the distributed-parameter beam is expressed by means 
of Equation (1.3), as it was shown in the section discussing Rayleigh’s 
quotient method. The kinetic energy of the equivalent mass is simply: 
 

 
2

,
)(

2
1

dt
tdumT z

ebe  (1.21) 

 
By equating Te of Equation (1.21) to T of Equation (1.3), via Equation (1.7), 
the equivalent mass is obtained as: 
 
 2

, ( ) ( )b e b
l

m A x f x dx  (1.22) 

 
On substituting the lumped-parameter mass of Equation (1.22) and stiffness 
of Equation (1.20) into Equation (1.15), Equation (1.8) is obtained, which is 
the bending resonant frequency that has been obtained by using a distributed-
parameter model and the Rayleigh quotient. This demonstrates that the 
lumped-parameter method and Rayleigh’s quotient method yield identical 
results in bending. 
 
1.2.2.2 Torsion

 

 
A similar approach can be followed in studying the torsion of microcantilevers 
and microbridges by using the lumped-parameter approach, and substitute the 
distributed parameters of a torsionally vibrating member by corresponding 
lumped-parameter ones, as illustrated in Figures 1.6 and 1.7. 
 
 
 
 
 

1.2.2.1.2 Equivalent mass 
 

The equivalent mass mb,e can be found by applying Rayleigh’s principle, 
according to which the velocity distribution over a vibrating beam is identical 

Figure 1.6 Free-fixed bar vibrating torsionally: (a) real distributed-parameter system; (b) equi- 
valent lumped-parameter, mass-spring system 
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Figure 1.7 Fixed-fixed bar vibrating torsionally: (a) real distributed-parameter system; (b) equi-
valent lumped-parameter, mass-spring system 
 
1.2.2.2.1 Equivalent stiffness 
 
The torsional stiffness at the point of interest (free endpoint for the cantilever 
of Figure 1.6 and midpoint for the bridge of Figure 1.7) is found by means of 
Castigliano’s first theorem as: 
 

 
x

t
x

UM   (1.23) 

 
where x is the maximum rotation angle and Ut is the strain energy stored in 
the elastic member through torsion, which is expressed as: 
 

 
2( )1 ( )

2
x

t t
l

d xU GI x dx
dx

 (1.24) 

 
where the rotation angle at an arbitrary position on the member, x(x), is 
expressed in terms of the maximum rotation angle x and the distribution 
function ft (x) is given in Equation (1.13). By employing Equations (1.24) 
and (1.13) in Equation (1.23), the latter equation becomes: 
 

 
2( )( ) t

x x t
l

df xM GI x dx
dx

 (1.25) 

 
The torsion moment is connected to the rotation angle by means of a rotary 
stiffness as: 
 

 ,x t e xM k  (1.26) 
 
Comparison of Equations (1.25) and (1.26) yields the following lumped-
parameter stiffness in torsion: 
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2

,
( )( ) t

t e t
l

df xk GI x dx
dx

 (1.27) 

 
It should be noted that in Figure 1.7 (b) the stiffness of one end spring is half 
the total stiffness of Equation (1.27). 
 
1.2.2.2.2 Equivalent mechanical moment of inertia 
 
Rayleigh’s principle is applied again (as detailed for bending), and the 
kinetic energy of the distributed-parameter system, which is given in 
Equation (1.9), is made equal to the kinetic energy of the mass undergoing 
torsional vibrations, which is: 
 

 
2

,2
1

dt
dJT x

ete  (1.28) 

 
Equating the two energy forms—Equations (1.9) and (1.28)—results in the 
following lumped-parameter mechanical moment of inertia: 
 
 2

, ( ) ( )t e x t
l

J J x f x dx  (1.29) 

 
Equations (1.27) and (1.29) can now be used to obtain the torsional resonant 
frequency, which is identical to the one of Equation (1.14). The proof was 
obtained that the distributed-parameter approach via Rayleigh’s quotient 
procedure and the lumped-parameter method yield identical results in torsion.   
 

1.3 MICROCANTILEVERS 
 
A microcantilever, as the one shown in Figure 1.2, is a fixed-free beam and 
its cross-section can be variable in generally one dimension (either width or 
thickness). Cantilevers in which the width (cross-sectional dimension in a 
plane parallel to the substrate) is variable and the thickness (cross-sectional 
dimension that is perpendicular to the substrate) is constant are most common 
in MEMS. In this category, single-profile microcantilevers have their width 
defined by one curve only that can be expressed analytically, whereas 
multiple-profile microcantilevers are composed of several portions, serially 
connected, each segment having its width defined by a single analytical 
curve. Both categories will be studied in this subsection in terms of their out-
of-the-plane bending and torsional resonant frequencies. 
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1.3.1 Single-Profile Microcantilevers 
 
Single-profile microcantilevers have their cross-sectional dimensions (width 
and/or thickness for rectangular shapes, which are common configurations in 
MEMS) defined by a single geometric/analytic curve. As a result, the cross-
section can be constant or variable, both categories being discussed next. 

Constant cross-section microcantilevers, as the one sketched in Figure 
1.2, are the simplest designs and regular cross-sectional shapes are rectangles 
and circles (e.g., the case of carbon nanotube members) that can be obtained 
by standard surface or bulk microfabrication procedures. 

Single-profile variable cross-section microcantilevers, as mentioned 
previously, usually have constant thickness and their width varies following a 
geometric curve that is relatively simple analytically, such as a line, a circle 
or an ellipse segment. A generic formulation is first given in this subsection 
for bending as well as torsion, and then two specific configurations, the trape-
zoid and the circularly filleted designs, are analyzed. 
 
1.3.1.1 Bending Distribution Functions 
 
By using several compliances terms (in general, the compliance is the inverse 
of stiffness, see Lobontiu [4] and Lobontiu and Garcia [5] for more details) 
and the Euler–Bernoulli model for a relatively long beam (with the length at 
least five times larger than the largest cross-sectional dimension), the 
deflection at an arbitrary abscissa, uz(x), is expressed in terms of the free-end 
deflection uz by means of a distribution function, as in Equation (1.7). It can 
be shown (see Lobontiu [4] for more information) that in case a point force F 
is applied at microcantilever’s free end, the distribution function at the 
abscissa x is: 
 

 ,

( ) ( )
( ) uz Fz uz My

b F
uz Fz

C x xC x
f x

C
 (1.30) 

 
where the compliances are calculated as: 
 

 

2

2

0

( )
( )

( )
( )

( )

l

uz Fz
yx

l

uz My
yx

l

uz Fz
y

xC x dx
EI x

xC x dx
EI x

xC dx
EI x

 (1.31) 
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In this case, Rayleigh’s quotient of Equation (1.8) can formally be written as: 
 

  

22
,

2
02

,
2

,
0

( )
( )

( ) ( )

l
b F

y

b F l

b F

d f x
EI x dx

dx

A x f x dx
 (1.32) 

 
Another loading case, mentioned by Timoshenko [1], for instance, 

consists of a load that is distributed along the entire length of the 
microcantilever, case where the distribution function connecting the two 
deflections of Equation (1.7) can be expressed as: 
 

  ,

( ) ( )
( ) uz q uz Fz

b q
uz q

C x xC x
f x

C
 (1.33) 

 
where the newly introduced compliances are calculated as: 
 

 

3

3

0

( )
( )

( )

l

uz q
yx

l

uz q
y

xC x dx
EI x

xC dx
EI x

 (1.34) 

 
In this case, the resonant frequency is given by:  
 

 

22
,

2
02

,
2

,
0

( )
( )

( ) ( )

l
b q

y

b q l

b q

d f x
EI x dx

dx

A x f x dx
 (1.35) 

 
Example 1.1 

Derive the bending distribution functions corresponding to an endpoint 
load and distributed load, respectively, for a constant cross-section micro-
cantilever of length l. 
 
Solution: 

The compliances of Equation (1.31) that are needed to calculate fb, F (x) 
are: 
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3 3

2 2

3

( )
3

( )
2

3

uz Fz
y

uz My
y

uz Fz
y

l xC x
EI

l xC x
EI

lC
EI

 (1.36) 

 
The force-related bending distribution is obtained by substituting Equation 
(1.36) into Equation (1.30) as: 
 

 
3

, 3

3 1( ) 1
2 2b F

x xf x
l l

 (1.37) 

 
For a constant cross-section microcantilever, the compliances of Equation 
(1.34) are: 
 

 

4 4

4

( )
4

4

uz q
y

uz q
y

l xC x
EI

lC
EI

 (1.38) 

 
By substituting Equation (1.38) into Equation (1.33), the bending distribution 
function corresponding to a distributed load becomes: 
 

 
4

, 4

4 1( ) 1
3 3b q

x xf x
l l

 (1.39) 

 
The following ratio can also be formulated: 
 

 ,

,

( ) 3 2
( ) 2 3 2

b q
b

b F

f x c
rf

f x c c
 (1.40) 

 
with c = x/l. This ratio is plotted in Figure 1.8. 
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Figure 1.8 Ratio of distribution functions in terms of relative abscissa 
 
As Figure 1.8 indicates, the two distribution functions, fb, F and fb, q, are closer 
for smaller values of c (at locations closer to the free end) and start diverging 
more markedly as the relative abscissa c approaches 1 (close to the fixed end). 
  
Example 1.2 

Calculate the bending resonant frequencies for a constant rectangular 
cross-section microcantilever by using the two functions fb,F and fb,q 
(Equations (1.37) and (1.39)). 
 
Solution: 

In this case the cross-sectional area and moment of area are simply:  
 

 3

12y

A wt
wtI

 (1.41) 

 
By using these values into Equations (1.32) and (1.35), the following resonant 
frequencies are obtained: 

 
, 3

, 3

3.567

3.53

y
b F

y
b q

EI
ml

EI
ml

 (1.42) 

 
It should be noticed that the exact value of the bending-related resonant 
frequency is: 
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1
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rfb 

c 
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 33.52 y
b

EI
ml

 (1.43) 

 
which is almost the same as the prediction by the Rayleigh’s quotient method 
when using the distribution function produced by a uniformly distributed 
load q. It should also be remarked that the prediction by using a point load at 
the free end results in a resonant frequency higher than the real one. 

When the microcantilever is short (with the length less than five times 
the largest cross-sectional dimension), Timoshenko’s model applies, and the 
two distribution functions dealt with in this section become: 
 

 
,

,

( ) ( )

( ) ( )

sh
uz Fz uz Mysh

b F sh
uz Fz

sh
uz q uz Fzsh

b q
uz q

C x xC x
f

C

C x xC x
f

C

 (1.44) 

 
where the shear-related compliances are: 
 

 
( ) ( ) ( )sh

uz Fz uz Fz ux Fx

sh
uz Fz uz Fz ux Fx

EC x C x C x
G

EC C C
G

 (1.45) 

 

dependent on the cross-sectional shape (it is equal to 5/6 for a rectangular 
cross-section, see Young and Budynas [6]). The axial compliances of 
Equation (1.45) are defined (see Lobontiu [4] for more details) as: 
 

 

0

( )
( )

( )

l

ux Fx
x

l

ux Fx

dxC x
EA x

dxC
EA x

 (1.46) 

 
Example 1.3 

Compare the bending resonant frequencies of a constant rectangular 
cross-section microcantilever when using the long- and short-length beam 

b,F and fb,q.  
 
 

models. Also analyze the contribution of the distribution functions f

as demonstrated in Lobontiu [4]. The factor  in the equations (1.45) is 
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Solution: 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 1.9 Bending frequency ratio for short-length rectangular constant cross-section cantilever 

 

the following bending resonant frequency is produced: 
 

 , 2 4 2 2 2 2 4
20.494

396 231 35
sh
b F

EGt
G l GE l t E t

 (1.47) 

 
whereas the bending resonant frequency predicted by the distributed-force 
distribution function is: 
 

 
2 4 2 2 2 2 4

, 2 2 4 2 2 2 2 4

36 20 5
6.481

1456 240 21
sh
b q

E G l GE l t E tt
l G l GE l t E t

 (1.48) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.10 Bending frequency ratio for point force distribution function: short-length versus 
long-length rectangular constant cross-section cantilever 

By using the distribution function corresponding to the point force loading, 
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Figure 1.11 Bending frequency ratio for distributed force distribution function: short-length 
versus long-length rectangular constant cross-section cantilever 
 
Figures 1.9, 1.10, and 1.11 show various ratios of the bending resonant fre-
quencies calculated according to the long- and short-beam models, as well as 
in terms of the two distribution functions. As Figure 1.9 indicates, the bending 
resonant frequency predictions by the point load and distributed load dis-
tribution functions are quite close for a length-to-thickness ratio ranging from 
10 to 100. Figures 1.10 and 1.11 show that taking the shearing effects into 
consideration results in small errors to the long-length (Euler-Bernoulli) 
model of the bending resonant frequency for a constant rectangular cross-
section cantilever. 

 
1.3.1.2 Torsion Distribution Functions 

 
In the case of microcantilevers, as shown previously, the torsion angle x(x) 
is related to the free end torsion angle x according to Equation (1.13) where 
the torsion-related distribution function can be calculated as: 

 
( )( ) x Mx

t
x Mx

C xf x
C

 (1.49) 

 
with the torsion compliances being defined as: 
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( )
( )

( )

l

x Mx
tx

l

x Mx
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dxC x
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 (1.50) 
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The particular distribution function pertaining to a variable rectangular cross-
section cantilever needs to be used into Equation (1.14). For a constant rect-
angular cross-section, the distribution function becomes: 
 

 ( ) 1t
xf x
l

 (1.51) 

and the torsion resonant frequency is expressed as: 
 

 3 t
t

t

GI
lJ

 (1.52) 

 
where: 
 

 
2 2 2 2

12 12t

m w t lwt w t
J  (1.53) 

 
The torsional moment of inertia, It, depends on whether the rectangular cross-
section is very thin (t << w) or thin (t < w). For a very thin cross-section, the 
torsional moment of inertia is: 
 

 
3

3t
wtI  (1.54) 

 
whereas for thin cross-sections the torsion moment of inertia is: 
 

 3 0.33 0.21t
tI wt
w

 (1.55) 

 
In the case of constant circular cross-section cantilevers, such as those 

consisting of carbon nanotubes, the following relationship exists between the 
torsional mass moment of inertia and the geometric moment of inertia: 
 

 t tJ I l  (1.56) 
 
and the torsional resonant frequency becomes: 
 

 
3

t
G

l
 (1.57) 

 
Because many MEMS cantilevers/bridges are of rectangular cross-section, 
the focus in this book will fall on this particular type of cross-section.   
 
 



Microcantilevers and Microbridges 21 

1.3.1.3 Solid Trapezoid Microcantilever 
 

The solid trapezoid microcantilever (its top view is shown in Figure 1.12) has 
been analyzed in terms of relevant stiffnesses/compliances by Lobontiu and 
Garcia [5] and in terms of its resonant behavior during free bending, torsion 
and axial vibrations by Lobontiu [7] with the aid of the lumped-parameter 
approach. Rayleigh’s quotient method is used here to derive the fundamental 
frequencies that are related to bending and torsion. The variable width w(x) is 
calculated as: 
 

 1 2 1( ) xw x w w w
l

 (1.58) 

 
 
 
  
 
 
 
 
 
 
Figure 1.12 Top view of constant-thickness solid trapezoid microcantilever with defining 
geometry 
 
By using the bending distribution function corresponding to a point load and 
a constant cross-section member, Equation (1.37), which represents a simpli-
fication because the actual bending distribution function for a variable cross-
section is calculated by means of Equation (1.30), a simplified bending 
resonant frequency is obtained, namely:  

 2 1
, 2

2 1

3
8.367

49 215b s

E w wt
l w w

 (1.59) 

 
When considering the limit w2  w1, Equation (1.59) reduces to: 
 

 *
, 2 31.03 3.567 y

b s

EIt E
l ml

 (1.60) 

 
which is the known expression of the bending resonant frequency for a constant 
cross-section cantilever. 
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Example 1.4 
Compare the simplified bending resonant frequency, Equation (1.59), to 

the precise one that uses the actual distribution function of Equation (1.30). 
 
Solution:  
 
 
 
 
 
 
 
 
 
 
 
  
Figure 1.13 Exact-to-simplified bending resonant frequency ratio of a solid trapeze microcantilever 
 

A more complex bending resonant frequency equation, b, which is not 
given here, is obtained when using the distribution function describing the 
particular geometry of this trapezoid microcantilever, Equation (1.30), 
instead of the simplified one given in Equation (1.37). The real (actual) 
bending-related distribution function is: 
 

 

1
1 1 1

1
,

2
1 1

1

22 ln 2
2( )

2 ln 1
b F

cl ww w cx c l x c l x w
cx wf x

clcl cl w w
w

 (1.61) 

where c = w2/w1. The ratio of the real bending resonant frequency b to the 
simplified one b,s is plotted in Figure 1.13, which indicates the differences 
between the two models predictions are minimal. 

When torsion is considered, the simplified distribution function of 
Equation (1.51), which corresponds to a constant cross-section cantilever, 
can be used to determine the resonant frequency. By following the standard 
procedure of Rayleigh’s quotient approach, the torsional resonant frequency 
for a very thin cross-section (with It given in Equation (1.54)) is: 
 

. . 1 2
, 3 2 2 3 2

1 1 2 1 2 2 1 2
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v th
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 (1.62) 
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Example 1.5 

Compare its torsion resonant frequency when the structure is considered a 
very thin structure with the one of a thin structure by using the simplified 
distribution function. 
 
Solution:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

microcantilever: very thin (v.th.) versus thin (th.) configurations 
 
For a thin cross-section (where It is provided in Equation (1.55)), the 

torsional resonant frequency of a solid trapeze microcantilever changes to: 
 

 1 2.
, 3 2 2 3 2

1 1 2 1 2 2 1 2

0.165( ) 0.21
26.833

10 6 3 5
th
t s

G w w tt
l w w w w w w t w w

 (1.63) 

 
Figure 1.14 is the 3D plot of the ratio of the two torsion-related resonant 
frequencies (Equations (1.62) and (1.63)). As Figure 1.14 indicates, when the 
defining width parameters w1 and w2 are relatively large compared to the 
thickness t, the predictions by the two models are very similar. On the other 
hand, when these relationships reverse, the very thin model predicts higher 
values than the thin model. 
 
1.3.1.4 Circularly Filleted Microcantilever 

 

relevant stiffnesses in Lobontiu and Garcia [5]. Figure 1.15 shows the picture 
of such a microcantilever, which is the macroscale counterpart of a micro-
scale cantilever and has been produced by wire electro-discharge machining 
(WEDM). The geometry of a constant thickness circularly filleted design is 

Figure 1.14 Comparison between the torsional resonant frequencies for a solid trapezoid

The circularly filleted microcantilever has been presented in terms of its 

Consider a trapezoid microcantilever of the type shown in Figure 1.12. 
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Lobontiu and Garcia [5], is: 
 

 2 2( ) 2w x w r r x  (1.64) 
 
where the parameters w, r and x are indicated in Figure 1.16. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.15 Top photograph of macro-scale circularly filleted cantilever 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.16 Top view of circularly filleted microcantilever with geometry 
 
The bending resonant frequency is calculated by using Rayleigh’s quotient 

method, and its equation is: 
 

 2

6.575 8
1.481

16.556b

E r wt
r r w

 (1.65) 

a single circular profile, and the variable width w(x), also mentioned by 
shown in the top view of Figure 1.16. This microcantilever is defined by
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By considering the structure is very thin, its torsion resonant frequency is: 
 

3 2 2 2 2 2

0.43
2

0.007 0.038 0.333 0.036 3
t

G r wt
r r r w w w t r w t

(1.66) 

 
 
Example 1.6 

Compare the bending and torsional resonant frequencies of a circularly 
filleted microcantilever in terms of the defining geometry parameters r, w 
and t. Also establish whether the possibility exists that the two frequencies be 
equal. 
 
Solution: 

One convenient way to compare the two relevant resonant frequencies of 
the circularly filleted microcantilever of Figure 1.16 is to analyze the torsion-
to-bending resonant frequency ratio that is formed by using Equations (1.66) 
and (1.65); this ratio can be expressed in terms of only two non-dimensional 
variables, for instance r/t and w/t, and Figure 1.17 is a 3D plot illustrating 
this functional relationship. Figure 1.17 suggests that the frequency ratio 
possibly decreases towards 1 (and therefore the bending and torsion resonant 
frequencies are equal) when r/t assumes large values. When r/t = 500, for 
instance, by solving the equation t / b = 1 results in w/t = 902.66, which 
means a design which is defined by the following geometric parameters: t = 1 
μm, w = 902.66 μm, and r = 500 μm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.17 Torsional-to-bending resonant frequency ratio in terms of non-dimensional geometry 
parameters 
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1.3.2 Multiple-Profile Microcantilevers 
 

Microcantilevers can be built up of segments having different profiles that 
connect continuously or stepwise. As thus, the segments can be of constant 
cross-section (more often rectangular) or of variable cross-section. Normally, 
multi-profile members are homogeneous, as they are fabricated out of a 
single material. In the case of layered (sandwiched) members in which the 
layers have different lengths, the equivalence process being applied results in 
multi-profile non-homogeneous members consisting of serially connected seg-
ments that have different material properties. Both cases, namely homogeneous 
and non-homogeneous multi-profile microcantilevers, will be studied in this 
section. Generic formulations are developed for both categories, where the 
bending and torsional resonant frequencies are derived, together with the 
corresponding distribution functions. Particular designs pertaining to the homo-
geneous category are further discussed, such as the paddle, the circularly 
notched configurations, as well as designs with perforations. 
 
1.3.2.1 Homogeneous Configurations 
 
Homogeneous multi-profile microcantilevers are configurations obtained by 
serially connecting several segments, each being defined as a single-profile 
(of either constant or variable cross-section, defined by a single geometric 
curve/profile), all segments being made of the same material, and by anchor-
ing one end to the substrate (the other one being free). Generic formulations 
giving the transfer functions as well as the bending and torsion resonant 
frequencies are first developed, followed by applications to paddle configura-
tions, circularly notched configurations and designs with holes. 
 
1.3.2.1.1 Generic formulation  
 
The distribution functions together with the bending and the torsional resonant 
frequencies are formulated here for generic multiple-profile microcantilevers. 

 
 

By assuming that several constant cross-section segments are serially 
connected, the compound microcantilever, which is schematically shown
in Figure 1.18, is obtained. In bending, the resonant frequency of such a 

Figure 1.18 Serially compounded microcantilever 
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cantilever will simply be a summation of the single-profile distributed 
stiffness and mass properties of the individual segments, namely:  
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 (1.67) 

 
At the same time, as it will be shown in a few subsequent examples, the 
deflection over a particular interval can be written as a function of the free 
end deflection and a distribution function corresponding to that interval as: 
 
 , ,( ) ( )z i b i zu x f x u  (1.68) 
 
Substituting Equation (1.68) into Equation (1.67) yields: 
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 (1.69) 

  
A similar reasoning can be applied to the torsion free vibrations of a 

serially compounded microcantilever, and the corresponding resonant fre-
quency can be expressed as: 
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 (1.70) 

 
The angular deformation on any interval can be expressed in terms of the free 

x
 
 , ,( ) ( )x i t i xx f x  (1.71) 
 

end torsion angle  by means of individual distribution functions as: 
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Substituting Equation (1.71) into Equation (1.70) yields: 
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 (1.72) 

 
Example 1.7 

Find the bending distribution functions of a microcantilever composed of 
two different segments, each of constant cross-section, by considering the 
two segments are microfabricated of the same isotropic material. 
 
Solution: 

The distribution functions are connected to deflections as: 
 

 ,1 ,1

,2 ,2

( ) ( )
( ) ( )

z b z

z b z

u x f x u
u x f x u

 (1.73) 

 
 
 
 
 
 
 
 
 
 
 
 

 
where uz,1(x) is the deflection at an abscissa x1 on the 1–2 segment, uz,2(x) is 
the deflection at an abscissa x2 on the 2–3 segment, uz is the deflection at the 
free tip, and fb,1(x) and fb,2(x) are the distribution functions on the two 
segments (see Figure 1.19). The tip deflection can be found by applying 
Castigliano’s displacement theorem (e.g., see Lobontiu [4]), namely: 
 

 
1 1 2

1

1 1 2 2

1 20

1 l l l
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 (1.74) 

 

Figure 1.19 Two-segment microcantilever with point force at free end 



Microcantilevers and Microbridges 29 

where: 
 
 1 2M M Fx  (1.75) 
 
To determine the deflection on a generic point on the first segment 1–2, a 
dummy load F1 is applied at that point in addition to the point load F, and the 
corresponding deflection is calculated as: 
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 (1.76) 

 
where: 
 
 1 2 1 1M M Fx F x x  (1.77) 
 
In doing so, a relationship between uz,1 and uz can be found of the type shown 
in Equation (1.7), where the distribution function corresponding to the 
segment 1–2 is expressed as: 
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 (1.79) 

 
A similar relationship can be determined between uz,2 and uz by calculating 
the deflection on the 2–3 segment as produced by the tip force F and the 
dummy force F2. The distribution function connecting these two deflections 
is: 
 
 3

2 2 2 2( )bf x a b x c x  (1.80) 
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with: 
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 (1.81) 

 

Equations (1.78) and (1.80) simplify to: 
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Example 1.8 

Following the derivation of the previous Example 1.7, determine the 
torsion-related distribution functions of a homogeneous two-segment micro-
cantilever, when each segment is of constant cross-section. 
 
Solution: 

An approach similar to the one applied in the case of bending in Example 
1.7 is used to determine the two torsion-related distribution functions. The 
distribution functions are connected to deflections as: 
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x f x

 (1.83) 

 
where x,1(x) is the rotation at an abscissa x1 on the 1–2 segment, x,2 is the 
rotation at an abscissa x2 on the 2–3 segment, x is the maximum rotation at 
the free end, and ft,1(x) and ft,2(x) are the distribution functions on the two 
segments shown in Figure 1.20. The free end rotation is determined by 
means of Castigliano’s displacement theorem as: 
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For the particular case in which the two segments have identical cross-sections, 
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where the torsion moments on the two intervals are equal, namely: 
 
 1 2t tM M M  (1.85) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.20 Two-segment microcantilever with point moment at free end 
 
A dummy moment M1 is applied at a position x1 in addition to the point 
moment M to find the rotation at that point as: 
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where: 
 
 1 2 1t tM M M M  (1.87) 
 
The ratio of x,1 to x, is the torsion distribution function corresponding to the 
segment 1–2 and is expressed as: 
 

 2
1
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t

t t
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 (1.88) 

 
By following a similar procedure (with the application of the dummy 
moment M2 at a generic abscissa x2 on the second interval), the distribution 
function for the second interval is: 
 

 1 1 2 1
2
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( ) t t
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 (1.89) 

 
When the two segments are also geometrically identical (It1 = It2), Equations 
(1.88) and (1.89) simplify to: 
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1 2

( ) 1t
xf x

l l
 (1.90) 

  
1.3.2.1.2 Paddle microcantilever 
 
The bending- and torsion-related resonant frequencies of a paddle micro-
cantilever, as the one whose top view is sketched in Figure 1.21, are derived 
next from the generic formulation discussed previously. By using the generic 
bending formulation (Equation (1.69)) the following bending resonant 
frequency is obtained for the two-segment microcantilever of Figure 1.21: 
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where: 
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 (1.92) 

 
 
 
 
 
 
 
 
 

 
In calculating the bending resonant frequency by means of Equations 

(1.91) and (1.92), the distribution functions fb1(x) of Equation (1.78) and 
fb2(x) of Equation (1.80) have been used, which are the exact distribution 
functions. It is interesting to check how the bending resonant frequency 
changes when using the single approximate distribution function of Equation 
(1.82). By substituting Equation (1.82) into Equation (1.69) another bending 
resonant frequency, denoted by b  and which is not given here (but which 
has been derived in Lobontiu [7]), is obtained and the ratio of these 
frequencies is plotted in Figure 1.22. 
 

Figure 1.21 Top view of a paddle microcantilever with geometry 
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Figure 1.22 Bending resonant frequency ratio for a paddle microcantilever: exact versus app-
roximate distribution functions 
 

By also following the generic formulation, the torsional resonant 
frequency of the paddle microbridge is obtained as: 
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(1.93) 
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Figure 1.23 Torsion resonant frequency ratio for a paddle microcantilever: exact versus approxi- 
mate distribution functions 
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If instead of using the exact distribution functions (Equations (1.88) and 
(1.89)), one uses the simplified distribution function of Equation (1.90), 
another torsion resonant frequency is obtained, which is not given here, but is 
derived in Lobontiu [7]. The ratio of the frequency given in Equation (1.93) 
to the one yielded when the distribution function of Equation (1.90) is 
employed is plotted in Figure 1.23, which indicates that the differences 
between the two models’ predictions can amount to 15% for designs where 
the widths of the two segments are comparable. 
 
Example 1.9 

Find the bending and torsion distribution functions of a microcantilever 
composed of two different segments, each of variable cross-section, by con-
sidering the two segments are microfabricated of the same isotropic material. 
 
Solution: 

By following the procedure used in Example 1.7, it can be shown that the 
bending distribution function of the 1–2 segment in Figure 1.19 is: 
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whereas the distribution function for the 2–3 segment is: 
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The compliances in both Equations (1.94) and (1.95) bear the superscripts 1 
and 2 indicating the two different segments, 1–2 and 2–3, respectively. They 
are calculated according to local coordinates for each segment, and the ones 
that depend on x are calculated as: 
 

 

1

1

2
(1)

1

(1)

1

1( )
( )

1( )
( )

l

uz Fz
yx

l

uz My
yx

xC x dx
E I x

xC x dx
E I x

 (1.96) 

 
for the 1–2 segment, whereas for the 2–3 segment they are: 
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 (1.97) 

 
When each of the two segments has a constant cross-section, Equations 

(1.94) and (1.95), together with the compliances of Equations (1.96) and 
(1.97) reduce to Equations (1.78) and (1.80), which define a two-segment 
cantilever of constant cross-section over each interval.  

In torsion, the distribution function corresponding to the 1–2 segment is: 
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whereas the distribution function of the 2–3 segment is: 
 

  
(2)

2 (1) (2)

( )( ) x Mx
t

x Mx x Mx

C xf x
C C

 (1.99) 

 
The x-dependent torsional compliances are calculated as: 
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 (1.100) 

 
The constant compliances of Equations (1.94), (1.95), (1.98), and (1.99) are 
calculated from their counterpart equations by taking a lower limit of 0 
instead of x.  

When the two segments are of constant cross-sections, Equation (1.98) 
and (1.99) change to Equations (1.88) and (1.89), respectively, of the pre-
vious Example 1.8. Furthermore, when the two segments have identical cross- 
sections, the two distribution functions simplify to the form given in Equation 
(1.90) of the same example.  
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1.3.2.1.3 Circularly notched microcantilever 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 1.24 Photograph of circularly notched cantilever 
 
The circularly notched microcantilever, a macro counterpart of it shown 

in Figure 1.24, is actually a paddle configuration whose thin/flexible portion 
is a circularly notched neck, formed of two semicircular cutouts, each or 
radius r. This microcantilever (also studied by Lobontiu and Garcia [5] and 
Lobontiu [7]) is formed of two segments, one of constant cross-section and 
the other one of variable width, and therefore variable cross-section. The 
geometry of a constant-thickness circularly notched microcantilever is shown 
in a top view in Figure 1.25. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.25 Top view of circularly notched microcantilever with geometry 
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The simplified bending-related distribution is considered here, namely: 
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 (1.101) 

 
The bending resonant frequency can be expressed as: 
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where: 
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To find the torsional resonant frequency, the following simplified distribution 
function is used: 
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 (1.105) 

 
The torsional resonant frequency is: 
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with: 
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1.3.2.1.4 Constant rectangular cross-section cantilever with hole   
 

The example of a constant cross-section cantilever with a hole in it is dis-
cussed now, and the top view of this configuration is sketched in Figure 1.26. 
The purpose of perforating holes in beams and plates of MEMS is twofold: 
one objective addresses the problem of reducing the squeeze-film damping 
effects in members that vibrate against the substrate, whereby holes offer the 
otherwise-entrapped fluid (mainly gas) an escape way, which further con-
tributes to reducing damping; another reason consists in the possibility of 
modifying the stiffness and mass properties of a resonator having a prescribed 
shape by means of holes of various dimensions and locations. The simplest 
case is analyzed here, namely where a hole is perforated along the longitudinal 
symmetry axis of a constant rectangular cross-section microcantilever, as 
shown in Figure 1.26. The hole is offset by l1 from the free edge, and the hole 
modifies both the mass and stiffness properties of the original constant 
rectangular cross-section cantilever, and therefore its bending resonant fre-
quency. In bending, modification of the moment of inertia (which is variable 
along a length equal to the hole’s diameter) will generate the alteration of the 
bending stiffness, such that the equivalent cantilever beam is made up of 
three different segments, as indicated in Figure 1.27. Consequently, this canti-

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.26 Top and section views of a rectangular cantilever with hole 

lever is a serially compounded one, and the general equation, Equation (1.69), 
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which gives the bending resonant frequency, is valid. The bending-related 
distribution functions of the three intervals of Figure 1.27 are determined 
according to the methodology presented in a previous example, and is not 
retaken here in detail. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.27 Equivalent three-segment cantilever 
 

The hole detail of Figure 1.26 indicates that the chord that is set at a distance 
x can be expressed as: 
 
 ( ) sinr x r  (1.108) 
 
whereas x is: 
 
 1 1 cosx l r  (1.109) 
 
and therefore: 
 
 sindx r d  (1.110) 
 
The moment of inertia of the cantilever cross-section that is located at a 
distance x is: 
 

 
33 2 sin( )( )

12 12y

w r tw x tI x  (1.111) 

 
whereas the cross-sectional area is: 
 
 ( ) ( ) 2 sinA x w x t w r t  (1.112) 
 
All these relationships serve at calculating the bending distribution functions 
and the corresponding resonant frequencies in terms of the angular variable . 
They are quite complex, and the simpler approach in which the distribution 
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function of a constant cross-section is used here. The distribution function 
corresponding to the two constant cross-section segments is the one of 
Equation (1.37), whereas the distribution function of the perforation segment 
is determined by using x of Equation (1.109). The second derivative of this 
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 (1.113) 

 
These equations are needed to carry out the integrations implied by the general 
formula giving the bending resonant frequency, and whereby the polar co-
ordinate  is used over the second segment (the one with the hole). In doing 
so, the resonant frequency becomes: 
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(1.115) 

It can be checked that Equation (1.114), together with Equation (1.115), 
reduce to the first Equation (1.42), which formulates the bending resonant 

r  0. 
 
Example 1.10 

 

last distribution function is found by following the chain rule of differen- 
tiation, namely: 

frequency of a constant cross-section cantilever (with no hole in it) when 

Compare the bending resonant frequencies of two similar rectangular 
cross-section microcantilevers, one with a hole in it and the other without a 
hole Consider l = 100 μm and w = 10 μm. 
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Solution: 
By using the first Equation (1.42) in conjunction with Equations (1.114) 

and (1.115), the ratio of the bending resonant frequency of a constant rect-
angular cross-section microcantilever to the frequency of a similar design with 
a hole in it can be formed (the asterisk denotes the cantilever without a hole in 
it). Figure 1.28 plots this resonant frequency ratio as a function of two non-
dimensional parameters that refer to the hole radius and longitudinal position. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 1.28 Comparison between the constant cross-section cantilever without a hole and the 
similar cantilever with a hole 
 
Figure 1.28 indicates that increasing the hole radius increases the resonant 
frequency when the hole is placed relatively close to the free tip, whereas the 
opposite can be noticed when the hole is closer to the root. For the same hole 
radius, the bending resonant frequency is higher when the hole moves closer 
to the free end. Another numerical simulation looked directly at the influence 
of the radius dimension and hole position, as illustrated by the plot of Figure 
1.29, in which the trends highlighted previously are noticed. 

 
 
 
 
 
 
 
 
 
 
 
Figure 1.29 Influence of hole position and radius on the bending resonant frequency of a canti-
lever with a hole in it 
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The following numerical parameters have been used for the simulation 
shown in Figure 1.29: E = 165 GPa,  = 2300 kg/m3 (values corresponding to 
polysilicon), l = 100 μm, w = 10 μm, and t = 0.5 μm.  
 
Example 1.11 

Calculate the bending resonant frequency of a rectangular cross-section 
cantilever with a hole in it, as the one of Figure 1.26 when ignoring the 
change in stiffness. Compare this resonant frequency to the one obtained when 
both the stiffness and inertia are considered altered by the hole. 
 
Solution: 

In the case in which stiffness is considered constant, the bending resonant 
frequency is calculated by means of the equation: 
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 (1.116) 

 
After carrying out the calculations of Equation (1.116), the new resonant fre-
quency becomes: 
 

 ' 47.33b
b

lwlt
B

 (1.117) 

 
with Bb defined in Equation (1.115). Becaue the stiffness decrease through 
the very existence of the hole has been neglected, it is clear that Equation 
(1.117) yields a resonant frequency that is higher than the one produced by 
Equation (1.114) where both stiffness and inertia variations have been taken 
into account. By taking the ratio of the two frequencies, the following function 
is obtained: 
 

 
'

3 2 2 2
1 1

2
4 3 4 8 5

b

b

lwl
l w r l l r r

 (1.118) 

 
Alternatively, Equation (1.118) can be arranged in terms of non-dimensional 
parameters as: 
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 Figure 1.30 Bending resonant frequency comparison between prediction with stiffness neglected 
and considered for a rectangular cross-section cantilever with hole: (a) c3 = 0.25; (b) c1 = 0.5 
 
where c1 = l1/l, c2 = r/l, and c3 = w/l. Figure 1.30 (a) shows the 3D plots of 
this ratio when c3 = 0.25, and Figure 1.30 (b) plots the same ratio for c1 = 0.5. 
As the figures indicate, the errors between the two models’ predictions are 
quite negligible when the hole is placed close to the free tip, and the width-
to-length ratio is larger. For the other parameter range extremities, however, 
the predictions can differ by as much as 30%. 
 
1.3.2.1.5 Paddle microcantilever with hole 
 
A paddle microcantilever with a circular perforation in the paddle region is 
now analyzed, by following the procedure exposed previously, and Figure 
1.31 is the top view of such a paddle microcantilever. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.31 Top view of microcantilever with a hole in it and geometry 
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Because only bending is addressed, it is again assumed that the hole is placed 
along the longitudinal axis of the cantilever. This time, the equivalent cantilever 
is formed of four different segments, three of constant rectangular cross- 
sections, and one (where the hole resides) of variable width (its length is 2r). 
The corresponding sketch is shown in Figure 1.32. 
 
 
 
 
 
 
 
 
 
 

Figure 1.32 Equivalent four-segment cantilever 
 
The resonant frequency in this case is calculated as: 
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The final expression of b is quite complex, even when the distribution func-
tion of a constant cross-section cantilever is used instead of the exact one, 
and therefore the explicit b is not included here. When taking r  0 (and 
therefore when the structure changes to a regular paddle cantilever without a 
hole in it), the resulting bending frequency becomes: 
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a regular paddle cantilever. It should be remembered, however, that Equa-
tions (1.91) and (1.92) have been derived by using a distribution function that 
varies on the two segments, whereas Equations (1.121) and (1.122) correspond 
to a unique distribution function; consequently, differences between the two 
formulations should be expected. 
 
Example 1.12 

Compare the bending resonant frequency of a paddle microcantilever 
with perforation with that of a similar paddle cantilever without a hole in it. 
Consider the particular case where l1 = l2 and w2 = w1/2. 
 
Solution:  

For the given particular conditions, the bending resonant frequency becomes: 
 

 1 2 32
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where f (c1, c2, c3), which is not explicitly given here, depends on the follow-
ing non-dimensional parameters: 
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When there is no hole in the microcantilever c2 = 0, and therefore Equation 
(1.123) simplifies to: 
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 (1.125) 

 
Two 3D plots are drawn, one for the case where c3 = 0.25, and the other one 
for c1 = 0.5 (illustrated in Figure 1.33). 
 
 
 
 
 

Equations (1.121) and (1.122) are slightly different from Equations (1.91) 
and (1.92), respectively, which expressed the bending resonant frequency of 
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Figure 1.33 Bending resonant frequency comparison between paddle microcantilevers with 
and without a hole: (a) c3 = 0.25; (b) c1 = 0.5 
 
It can be seen again that, relative to a paddle cantilever without a hole in it, 
the bending resonant frequency of a similar structure with perforation is 
sensitive to the hole location (better sensed are holes placed towards the free 
tip) and dimensions (obviously, larger holes generate larger changes in the 
resonant frequency; see Figure 1.33). At the same time, relatively narrower 
tip segments (small width-to-length ratio c3) are capable of better sensing the 
presence of a perforation of specified position and dimension, as Figure 1.33 
(b) indicates. 
 
1.3.2.1.6 Hole-array microcantilever  
 
To diminish the effect of air (fluid) damping in the case of plates that vibrate 
(move) about a direction perpendicular to the substrate, several holes are per-
forated into the moving member to enable the air, otherwise highly compressed 
between the plate and substrate, to escape and thus reduce the squeeze-film 
damping. In the majority of cases, the plates can be considered solid, the holes 
not altering the rigidity significantly. However, in cases in which the member 
thickness is relatively small, the array of holes can substantially modify the 
structural rigidity. At the same time, the mass is reduced by perforation, and 
therefore the relevant resonant frequencies are expected to modify. The 
example of a rectangular microcantilever with an array of identical holes per-
forated in it is studied here, and the bending and torsional resonant frequencies 
are calculated for a generic case. The assumption is made that the holes are 
regularly distributed over the microcantilever’s area, as shown in Figure 1.34, 
with a constant pitch distance p between them and spaced from all the edges 
at a distance a. 
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There are two different strips along the x-direction (indicated in Figure 

1.34). One contains the full width (when a line parallel to the w dimension is 
drawn) and there are m + 1 such areas (taking into account there are m hole 
columns). The other strip encompasses the hole zones, there are m such 
zones, and the width varies across them because the hole width varies, as also 
discussed in the microcantilever with one hole topic. Figure 1.35 shows the 
sequence of the 2m + 1 segments. As a series-connection resultant, the micro-
cantilever of Figure 1.34 can be symbolized as in Figure 1.35, with 2m + 1 
segments (m segments correspond to the hole regions, and m + 1 segments 
represent full-width regions). 

Figure 1.35 Equivalent cantilever with 2m + 1 segments (black, solid segment; grey, hole 
segment) 
 
 

Figure 1.34 Front view of a hole-array microcantilever with geometry 
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Figure 1.36  Detail of hole-array microcantilever with geometry in an arbitrary cross-section 
in the first hole column 
 
In both bending (about the y-axis, which is parallel to the w dimension of 
Figure 1.34) and torsion, the widths w1(x) and w2(x) are important, which are 
indicated in Figure 1.36, because they add up to the total width w(x), which is 
the sum of all the widths along a line parallel to w taken at a distance x from 
the free end through the hole strip. The aim here, as the case was with the 
one-hole microcantilever studied previously, is to use the polar variable instead 
of the Cartesian one x. The variable radius r (x) is expressed in Equation (1.108). 
Figure 1.36 shows that: 
 

 1

2

( ) sin
( ) 2 sin

w x a r r
w x p r

 (1.126) 

 
The total width is: 
 

 1 2( ) 2 ( ) 1 ( ) 2 1 2 sin
( )

w x w x n w x a r n p nr
w

(1.127) 

 
The variable x, together with its differential, enter the various equations 

defining the lumped-parameter stiffness and inertia fractions, and they need to 
be expressed for each distinct interval as the cantilever is covered from x = 0 
to x = l. As mentioned previously, there are m intervals corresponding to hole 
regions and m + 1 intervals for between-holes regions, overall there are 2 m + 1 
intervals. For the hole intervals, the polar coordinate needs to be used, whereas 
for the between-holes regions, the Cartesian x coordinate can be used. For the 
j-th hole interval, the abscissa x and its differential are: 

w1 (x) 
r (x)

w2 (x) p 

x 

a 

r



Microcantilevers and Microbridges 49 

 
1 cos
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x a r j p r
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 (1.128) 

 
In bending, the following distribution function needs to be used over the 

j-th interval that belongs to a hole region: 
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  (1.129) 

 
whereas for a non-hole area, the distribution is the regular, simplified one of 
Equation (1.37). 

By considering the hole array microcantilever is formed of 2m + 1 inter-
vals, as explained previously, the lumped-parameter stiffness and mass can 
be determined. The equivalent stiffness is expressed as: 
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where: 
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and: 
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   (1.132) 

 
The derivative of Equation (1.131) is calculated by means of Equation 
(1.113), which gives the coordinate transformation relationship. The variable 
moment of inertia of Equation (1.131) is: 
 

 
3( )( )

12y
w tI  (1.133) 

with w( ) given in Equation (1.127). 
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Similarly, the lumped-parameter, equivalent mass is expressed as: 
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where: 
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and: 
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The distribution function in torsion being employed over the j-th interval 

and corresponding to a hole region is: 
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For a non-hole area, the distribution given in Equation (1.51) is used. Similar 
to bending, the torsion resonant frequency is expressed by means of the equi-
valent, lumped-parameter stiffness and mechanical moment of inertia. The 
equivalent stiffness is: 
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where: 
 

 
2

( )
1

1 0

( )
( ) sin

m
tjk

t t
j

df
S r I d

dx
 (1.139) 

 
and: 
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Again, the derivative of Equation (1.139) is determined by means of Equa-
tion (1.113), which provides the x-  coordinate transformation. For a very 
thin microcantilever, the variable mechanical moment of inertia of Equation 
(1.139) is: 
 

 
3( )( )

3t
w tI  (1.141) 

 
with w( ) given in Equation (1.127). 

The lumped-parameter, equivalent moment of inertia corresponding to 
torsion is: 
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where: 
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and: 
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Example 1.13 

A rectangular cross-section microcantilever 2 μm thick has m × n holes 
(m = 4, n = 2) each 2 μm in diameter, with a pitch p = 4 μm and an edge 
spacing a = 5 μm. 

(a) Determine the length l and width w of this microcantilever. 

μ = 0.25, and  = 2400 kg/m3. 

Solution: 

 

(a) For a configuration as that of Figure 1.34, with regular disposition of 
the holes in a rectangular array, the length and width of the microcantilever 
are generically expressed as: 

ones corresponding to a similar blank microcantilever. Consider E = 155 GPa, 
(b) Find its bending and resonant frequencies and compare them to the
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2 2 1

2 2 1

l r a m p

w r a n p
 (1.145) 

  
For the numerical values of this example, l = 24 μm and w = 16 μm. 
 

cantilever (with no holes in it) and the one perforated with 4 × 2 = 8 holes. 
 

Table 1.1 Lumped-parameter model characteristics of original and hole microcantilever 

In Table 1.1, all amounts are in SI units, and the resonant frequencies are in 
Hertz (Hz). It can be seen that torsion is more sensitive to the perforations as 
its resonant frequency increases by 3.2% compared to the bending resonant 
frequency, which only increases by 0.7%. 
 
1.3.2.2 Non-Homogeneous Configurations 
 
Non-homogeneous multi-profile microcantilevers consist of two or more seg-
ments, each being defined as a single-profile (of either constant or variable 
cross-section, defined by a unique geometric curve/profile), and each having 
its own material properties. For microcantilevers, one end is fixed to the sub-
strate while the other one is free. A generic formulation giving the transfer 
functions as well as the bending and torsion resonant frequencies is developed 
here, as well as its application to a paddle configuration. Designs are possible 
in this category where the cross-sections of the component segments are 
identical, and, definitely, cases in which the segments have different cross-
sections can be considered. 

 
1.3.2.2.1 Generic formulation 
 
By following the procedure that has been applied for homogeneous multi- 
profile microcantilevers, the bending resonant frequency of a series micro-
cantilever which is formed of n segments of different geometries and material 
properties is: 
 
 

  
 Bending Torsion 
 Original Altered % Change Original Altered % Change 
Stiffness 358.80 338.71 5.6 1.1 × 10–7 1.03 × 10–7 6.4 
Inertia 4.3 × 10–13 4.15 × 10–13 3.5 1.33 × 10–23 1.15 × 10–23 13.5 
Resonant 
Frequency 2.83 × 107 2.85 × 107 0.7 9.1 × 107 9.4 × 107 3.2 

 

(b) Table 1.1 contains the numerical data for both the original micro-
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Determining the distribution function for each of the n intervals is done by 
taking the ratio of the deflection at an arbitrary point on a given interval to 
the maximum deflection (recorded at the free end). It can be shown by using 
basic mechanics o materials that the bending distribution function on an 
interval i is of the form: 
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with: 
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where uz and Fz are the free end deflection and force and: 
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It can also be shown that: 
 
 '

1z bu a  (1. 151) 
 
The torsion resonant frequency of a non-homogeneous rectangular cross-
section microcantilever is: 
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 (1. 152) 

 
By following a reasoning similar to the one applied to bending, it can be 

shown that for a generic interval i, the torsion-related distribution function is 
a first degree polynomial of the form: 
 
 ( )ti ti tif x a b x  (1. 153) 
 
where: 
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with: 
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Mx represents the x-axis torsional moment applied at the cantilever’s free end, 
and x is the resulting rotation at the same location. It can also be shown that: 
 
 '

1x ta  (1.156) 
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The bending- and torsion-related distribution functions are interval-
dependent, as shown previously, but a single distribution function can be used 
under a simplifying assumption, which is the one corresponding to a homo-
geneous, constant cross-section microcantilever having its length the sum of 
all components lengths. 

In bending, formulating the individual distribution functions can be quite 
involved, as illustrated in the next example, which considers a two-segment 
microcantilever. 
 
Example 1.14 

Determine the bending distribution functions for a two-segment non-
homogeneous microcantilever. Consider the case in which the segments have 
different cross-sections, as well as the case in which the cross-sections are 
geometrically identical. Compare the distribution functions with the simplified 
form of the distribution function corresponding to a single-segment, constant 
cross-section microcantilever. 
 
Solution: 

This example is similar to Example 1.7, which analyzed the homogeneous 
counterpart to this case, and therefore the procedure that has been fully ex-
plained in Example 1.7 is applied here. In doing so, the ratio of the deflection 
at an arbitrary location on the first segment (the one at the free end) and the tip 
(maximum) deflection is obtained, which is actually the distribution function 
corresponding to this segment (1–2, as shown in Figure 1.19), namely: 
 
 ' ' ' 3

1 1 11bf b x c x  (1.157) 
 
with: 
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 (1.158) 

 
For a homogeneous two-segment microcantilever, when E1 = E2, Equation 
(1.158) simplifies to Equation (1.79) in Example 1.7, which gave the bending 
distribution function for a homogeneous two-segment cantilever. 

Similarly, the following distribution function is obtained for the second 
(root) segment: 
 
 ' ' ' ' 3

2 2 2 2bf a b x c x  (1.159) 
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with: 
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Figure 1.37 Comparison between simplified bending distribution function and actual bending 
distribution functions for the first (free end) component of a two-segment non-homogeneous 
microcantilever 

Figure 1.38 Comparison between simplified bending distribution function and actual bending 
distribution functions for the second (root) component of a two-segment non-homogeneous 
microcantilever 

When E1 = E2, Equation (1.160) simplifies to Equation (1.81) of Example 1.7, 
as expected. For the particular case in which the two segments have identical 
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cross-sections, and are made up of the same material, Equations (1.157) 
through (1.160) yield, for l = l1 + l2, the distribution function of Equation 
(1.37), as expected. The following bending distribution functions ratios are 
analyzed next: 
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 (1.161) 

 
where the numerators in Equation (1.161) are expressed in Equations (1.157) 
through (1.160), and fb (x), the distribution function of a homogeneous, 
constant cross-section microcantilever of length l1 + l2, is given in Equation 
(1.37). Figures 1.37 and 1.38 show the variation of the two ratios defined in 
Equation (1.61). Figures 1.37 (a) and 1.38 (a) have been drawn for Iy2/Iy1 = 2 
and x/l = 0.5, while Figures 1.37 (b) and 1.38 (b) are plotted for E2/E1 = 1.5 
and x/l = 0.5. As all four figures indicate, the predictions by the simplified 
bending distribution function are always larger than the ones by the actual 
distribution functions. The differences between the two models are quite 
large—up to a factor of 2.75, as shown in Figure 1.38 (b). 

The next example will attempt to elucidate whether these differences are 
equally substantial when assessing the bending resonant frequency of the 
same structure. 
 
Example 1.15 

For the structure of Example 1.14, calculate the bending resonant fre-
quency by using the actual distribution functions and also by using the simpli-
fied distribution function. Compare the two results. 
 
Solution: 

When using the simplified distribution function (Equation (1.37)), the 
bending resonant frequency is expressed as: 
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where the subscript letter s indicates the simplified model. 

The bending resonant frequency can also be expressed in terms of the 
actual distribution functions (Equations (1.157) through (1.160)) as: 
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 (1.163) 

Equations (1.162) and (1.163) enable formulating the bending resonant 
frequency ratio b,s/ b in terms of the following non-dimensional parameters 
only: E2/E1, 2/ 1, l2/l1, and w2/w1. Figure 1.39 plots the frequency ratio as a 
function of the elasticity modulii and mass density ratios considering l2 = l1 
and w2 = w1, whereas Figure 1.40 plots the frequency ratio in terms of length 

2 1 2 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.39 Bending resonant frequency ratio as a function of elastic modulus and mass density 
ratios 
 
 
 
 
 
 
 
 
 
 
 
 

  

Figure 1.40 Bending resonant frequency ratio as a function of length and width ratios 
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and width ratios when E  = 1.5 E  and  = . As Figures 1.39 and 1.40 show, 
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large parameter ranges. Larger differences are recorded when the root seg-
ment is considerably shorter and wider than the free one, as well as when the 
root segment is much stiffer and less dense than the tip (free) segment. 

As this example demonstrates, using the simplified bending distribution 
function of a homogeneous, constant cross-section microcantilever, instead 
of the individual distribution functions corresponding to each segment, is 
sufficiently accurate. 
 
1.3.2.2.2 Paddle microcantilever 
 

sketched in Figure 1.21, and let us assume the two segments are made up of 
different materials. When using the approach with actual distribution func-
tions, two such functions are needed for both bending and torsion, because 
the series cantilever is made up of two segments. 

By applying the generic equations (Equations (1.146) through (1.151)), 
the resulting bending resonant frequency is expressed as: 
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with: 
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 (1.165) 

 
When E1 = E2 and 1 = 2, Equations (1.164) and (1.165) reduce to Equations 
(1.91) and (1.92), which were derived for a homogeneous paddle micro-
cantilever. 

By using the actual torsion-related distribution functions that result from 
the generic Equations (1.152) through (1.156), the following resonant frequency 
is obtained: 
 

 1 2 2 1 2 1 2 1 22 3t

G G w G l w G l w
t

B
 (1.166) 

 

 

the differences between the two models’ predictions are less than 6% for 

A paddle microcantilever is now considered as the one whose top view is 
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with: 
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Example 1.16 

For a non-homogeneous paddle microcantilever, compare the torsional 
resonant frequency obtained by using the actual distribution functions of 
Equations (1.152) through (1.156) to the one obtained by using the simplified 
distribution function corresponding to a homogeneous, constant cross-section 
member. Consider t = 1 μm and w1 = 50 μm. 
 
Solution: 

When the simplified distribution function of Equation (1.90) is used, the 
torsion resonant frequency can be expressed as: 
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(1.170) 

 
For a homogeneous paddle bridge, Equation (1.170) further simplifies to: 
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Equation (1.170) is now compared to Equation (1.166), which gives the 
torsion resonant frequency by means of the actual distribution functions 
through their ratio. The non-dimensional variables G2/G1, 2/ 1, l2/l1 and 
w2/w1 are employed to draw the 3D plots of Figure 1.41. Figure 1.41 (a) has 
been plotted for l2 = l1 and w2 = 0.5 w1, whereas Figure 1.41 (b) corresponds 
to G2 = 1.5 G1 and 2 = 2 1. 

with: 

For a homogeneous paddle cantilever, Equations (1.166) and (1.167) simplify to: 
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As Figure 1.41 (a) indicates, the errors between the two models’ 
predictions are larger in the case where the shear modulus of the root 
segment is considerably smaller than the one of the paddle segment; the 
differences in density do not appear to be so influential though. Similarly, as 
indicated by Figure 1.41 (b), notable differences between the two models are 
in place for designs with narrow roots (small w2 compared to w1). 
 
  
 
 
 
 
 
 
 
 
 
 
  
 
Figure 1.41 Torsion resonant frequency ratio: simplified versus actual distribution function 
models as a function of: (a) shear modulus and mass density ratios; (b) length and width ratios 
 

 
Microcantilevers consisting of several layers are often times used in MEMS, 
the simplest construction being the bimorph, which is formed of a structural 
layer (usually thicker) and a transduction layer (thinner than the structural 
layer) employed for actuation or sensing. Another application, the detection 
of matter that deposits in a layer-like manner on homogeneous cantilevers, 
which results in bimorph configurations, is another important application. 
Although variable cross-section multi-layer cantilevers can be designed, only 
the constant rectangular cross-section microcantilevers will be studied in this 
section. It will be assumed that all layers have the same width, but two 
subcases will be analyzed: the simplest one, where all layers have the same 
length, as well as the situation in which the layers have different lengths. 
Again, the bending and torsion resonant frequencies will be addressed. 
 
1.3.3.1 Equal-Length Multilayer Microcantilevers 

 
Figure 1.42 shows two side views of a cantilever consisting of two layers 
only, but more than two layers can be superimposed to form a composite cross- 
section where all the layers are of equal lengths, in addition to having equal 
widths. 
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1.3.3 Multi-Layer (Sandwich) Microcantilevers 
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The equivalent rigidity of a compound cross-section formed of m layers 
can be found (e.g., see Lobontiu and Garcia [5]) as: 
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As illustrated in Figure 1.42 (b), zj is the distance from the y-axis to the 
central axis of cross-section j, and zN is the distance to the neutral axis (the 
axis where bending strains and stresses are 0). Iyj is the geometrical moment 
of inertia of cross-section with respect to its central axis yj (not shown in 

j

 

 1

1

m

j j j
j

N m

j j
j

z E A
z

E A
 (1.173) 

Figure 1.42 Equal-length bimorph microcantilever: (a) side view; (b) enlarged section view 
 
The equivalent stiffness identifying the force-deflection relationship at the 
free end of the microcantilever is therefore: 
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The lumped-parameter equivalent mass that is placed at the microcantilever’s 
free end and is dynamically equivalent to the distributed-parameter system 
can be determined by equating the kinetic energies of the two systems, and is 
of the form: 
 

material. The position of the neutral axis is found as: 
Figure 1.42 (b)) and E  is the longitudinal modulus of elasticity of layer’s j 
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where m is the total mass of the compound beam. By combining Equations 
(1.174) and (1.175), the bending resonant frequency is expressed as: 
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The torsion rigidity of the compound cross-section, as shown by 
Lobontiu and Garcia [5], for instance, is determined as: 
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and therefore the torsion stiffness is: 
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It can also be shown that for thin cross-sections (see Lobontiu [7]) the 
mechanical moment of inertia of the compound cross-section can accurately 
be approximated as: 
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where the torsion distribution function of Equation (1.51) has been used. 
By combining Equations (1.178) and (1.179), the torsion resonant frequency 
yields: 
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which resembles Equation (1.52) giving the resonant frequency of a homo-
geneous cantilever.  

which is very similar to the first Equation (1.42) giving the bending resonant fre-
quency of a homogeneous, constant rectangular cross-section microcantilever. 
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Example 1.17 
An active layer is deposited uniformly over the surface of a micro-

cantilever. Known are l, w, ts (thickness of structural layer), ta (active layer 
thickness, ta = ts/2), Es, μs, s, and a. Evaluate the elastic properties of the 
active layer (its modulus of elasticity Ea and Poisson’s ratio μa) by monitoring 
the bending and resonant frequencies: 

 
(a) Symbolically (algebraically) 
(b) Numerically (when l = 250 μm, w = 25 μm, ts = 1 μm, Es = 160 GPa, 

μs = 0.25, s = 2300 kg/m3, a = 3500 kg/m3, b,e = 1.5 × 105 rad/s, 
t,e = 2.25 × 106 rad/s)  

 
Solution: 

(a) The compound cantilever is a bimorph that is formed of two layers, 
and from Equations (1.176) and (1.180) that express the bending and resonant 
frequencies, the unknown elasticity modulii Ea and Ga can be found as follows: 
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with: 
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involves Poisson’s ratio μ, the latter one is determined as: 
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a
10 N/m2 

and μa = 0.3.  
 
1.3.3.2 Dissimilar-Length Multilayer Microcantilevers 

 
A multi-layer microcantilever with dissimilar-length strata is sketched in 
Figure 1.43, where a bimorph is shown with the top layer (which can act as 

From the relationship between longitudinal (E) and shear (G) modulii, which 

obtained by using Equations (1.181) through (1.184): E  = 5.9 × 10
(b) For the numerical values of this problem, the following solution is 
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transducer) shorter than the structural layer. In such instances, the micro-
cantilever can be divided in several pieces, each segment having a composite 
thickness.  

Figure 1.43 Side view of dissimilar-length bimorph 
 

geneous, remain unaltered, whereas the mid-segment, which is composed of 
materials 1 (transducer patch) and 2 (structure), preserves its length lp but 
gets a bending rigidity according to Equation (1.172). In doing so, the ori-
ginal sandwich cantilever is equivalently transformed into a similar structure 
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profile cantilevers. The process can be applied to potentially n segments, and
it can simply be shown that the bending resonant frequency is expressed as: 

parts, as indicated in Figure 1.43 (b). The tip and root segments, being homo-

serially composed of three homogeneous segments; this topic has been 
treated in Section 1.3.2.2 while dealing with non-homogeneous multi-

The configuration of Figure 1.43 (a), for instance, is segmented in three 
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with: 
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Equation (1.186) indicates that any segment i of the series connection can be 
formed of mi layers that are sandwiched over the length li. Similarly, the 
torsion resonant frequency is calculated as: 
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with: 
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A segment i is formed of mi layers and the corresponding distribution 
functions are given in Equations (1.153) through (1.156). 
 
Example 1.18 

Determine the position of a patch of given length on a base micro-
cantilever structure that would maximize the bending resonant frequency. 
Consider all other physical parameters defining the system are specified, 
namely: l = 300 μm, lp = 100 μm, t1 = 1 μm, t2 = 2 μm, E1 = 130 GPa, E2 = 
165 GPa, 1 = 3000 kg/m3, 2 = 2400 kg/m3.    

Solution: 
By using the numerical data of this example, and the generic Equation 

(1.185) which gives the bending resonance of a non-homogeneous multi-
profile cantilever, the bending resonant frequency is a function of only l1, 
which positions the patch on the base structure. Figure 1.44 is the plot of this 
relationship. As shown in Figure 1.44 and as expected, moving the patch 
towards the cantilever root increases the stiffness and reduces the equivalent 
mass, the net result being an increase in the bending resonant frequency. To 
maximize this frequency for a given base microcantilever and patch, it is 
necessary to position the patch at the fixed base of the microcantilever. 
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Figure 1.44 Bending resonant frequency of a patch microcantilever in terms of patch position 
 
1.4 MICROBRIDGES 
 
Microbridges are mechanical line-type members that are clamped at both 
ends to the substrate. Geometrically, a microbridge can be identical to a micro-
cantilever, the only difference consisting in the change in one boundary con-
dition between the two configurations (free end for the microcantilever 
versus fixed end for the microbridge). As a result of the geometric similarity 
between microcantilevers and microbridges, single- and multiple-profile micro-
bridges will be studied in terms of defining their bending and torsional resonant 
frequencies. 

  
1.4.1 Single-Profile Microbridges 

 
For a microbridge consisting of a single profile (segment)—in which the cross- 
section dimensions are described by a single curve—the bending resonant 
frequency is still defined by Equation (1.8), whereas the torsion resonant fre-
quency is calculated by means of Equation (1.14). The only difference consists 
in the distribution functions fb(x)—in bending—and ft(x)—in torsion—which 
will be derived in this subsection for constant and variable cross-section 
microbridge designs. 
 
1.4.1.1 Constant Cross-Section 

 
When the cross-section is constant (this is the simplest case), one can define 
the bending-related distribution function by relating the deflection at a 
generic point, uz (x), to the maximum deflection, which, in the case the load 
consists of a point load applied at the midpoint, will occur at the midpoint. 
The distribution function can be determined by seeking the out-of-the-plane 
deflection in the form of a four-degree polynomial, as shown by Lobontiu [7], 
for instance: 
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 2 3 4( )zu x a bx cx dx ex  (1.189) 
 
The corresponding slope, y (x), is the x-derivative of the slope, namely: 
 

 2 3( )( ) 2 3 4z
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du xx b cx dx ex
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 (1.190) 

 
By enforcing five boundary conditions, namely: 0 slope and deflection at the 
fixed points, as well as maximum deflection, uz, at the midpoint, the 
coefficients a, b, c, d and e can be determined, together with the deflection 
ratio, which is the bending distribution function: 
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It can be checked that this particular form of the distribution function also 
ensures that the slope is 0 at the midpoint. 

Analyzing just half-length microcantilever instead of the full-length one, 
can simplify the calculations, and this is also valid for variable cross-section 
or multiple-profile microbridges that are symmetric with respect to their 
midpoint. In such cases, the midpoint needs to be guided to ensure com-
patibility between the full- and half-length microbridge. When x is measured 
from the fixed point, the distribution function can be determined by con-
sidering the following forms for deflections and slopes: 
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By using four boundary conditions, namely: 0 slope and deflection at the 
fixed end, 0 slope at the guided end and maximum deflection at the same 
guided end, the four coefficients defining the deflection of Equation (1.192) 
can be determined, as well as the distribution function: 
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For a half-length microbridge, the distribution function can be found similarly 
by measuring the abscissa from the guided end, namely: 
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Example 1.19 
Compare the out-of-plane and in-plane bending resonant frequencies of a 

constant rectangular cross-section microbridge whose length is l, cross-
sectional dimensions are w (width) and t (thickness). The material is defined 
by Young’s modulus E and mass density . 
 
Solution:  

By using the generic method presented in this section, it can be shown 
that the out-of-plane (the one implying vibrations along the z-axis and 
bending about the y-axis) bending resonant frequency for the case in which 
the full-length structure is considered is: 
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 (1.195) 

 
whereas the in-plane (vibrations are parallel to the x-y plane) bending 
resonant frequency is: 
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It can be seen that the ratio of the two frequencies varies proportionally with 
the width-to-thickness ratio: 
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When the half-length model and corresponding distribution function (Equa-
tion (1.193)) are used, the out-of-plane bending resonant frequency is: 
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which is slightly higher than the prediction by Equation (1.195). Obviously, the 
in-plane bending resonant frequency, according to the half-length model, is: 
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 (1.199) 

and Equation (1.197) is also valid in this case. 
Similarly to bending, the torsion distribution function is determined by 

relating the rotation angle at a generic abscissa x to the maximum torsional 
angle (which occurs at the midpoint during free vibrations). When the full-
length constant cross-section microbridge is analyzed, three rotation angles 
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can be specified, namely: zero rotations at the fixed ends and maximum rota-
tion at the midpoint. It is thus sufficient to seek a distribution function in the 
form of a second-degree polynomial, namely: 

 

 2( )x x a bx cx  (1.200) 
 
By utilizing the boundary conditions previously mentioned, the torsion 
distribution function is expressed as: 
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As the case was with bending, it can be useful at times to express the 

the resulting member can be considered as fixed-free in terms of torsion. 
Under these circumstances, the distribution function is sought as a first-degree 
polynomial because only two boundary conditions can be specified (zero 
rotation at the fixed point and maximum rotation angle at the free one). It can 
simply be shown that when the abscissa x is measured from the free end, the 
corresponding distribution function is: 
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whereas when x is measured from the fixed end, the distribution function 
becomes: 
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Example 1.20 

Calculate the torsion resonant frequencies for a very thin, constant 
rectangular cross-section microbridge by using both the full-length and half-
length models. Compare the torsion resonant frequencies with those cor-
responding to bending for both models, respectively. 
 
Solution: 

With the distribution function given in Equation (1.201), the generic 
Equation (1.14) gives the following torsional resonant frequency for the full-
length constant rectangular cross-section microbridge: 
 

 
2 2

6.32f l
t

t G
l t w

 (1.204) 

 

torsion distribution function for only half-length the microbridge. In doing so, 
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and w are cross-sectional thickness and width, respectively whereas l is the 

superscript), together with either the distribution function of Equation (1.202) 
or the one of Equation (1.203), the torsional resonant frequency is: 
 

 
2 2

6.93h l
t

t G
l t w

 (1.205) 

 
The full- and half-length models produce an 8.8% relative error, as Equations 
(1.204) and (1.205) indicate. 

Comparison of the torsion and bending resonant frequencies of the 
constant rectangular cross-section microbridge can be performed by studying 
their ratio (Equations (1.204) and (1.195)), which can be set as: 
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where the known relationship between the elastic modulii E and G and 
Poisson’s ratio has been taken into account, namely: G = E/[2(1 + μ)]. Figure 
1.45 is the 3D plot of the ratio of Equation (1.206) when the material is 
polysilicon (μ = 0.25). For a large range of geometric parameter values, the 
torsional resonant frequency is higher than the bending one (a ratio larger 
than one is produced), but the ratio becomes less than one when, according to 
Equation (1.206): 
 
 1.62l w  (1.207) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.45 Ratio of resonant frequencies for a constant rectangular cross-section microbridge: 
torsion versus bending with full-length models 
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This is quite a severe condition, where a plate model is more likely to des-
cribe the structural behavior rather than the beam model. 
 
1.4.1.2 Variable Cross-Section 

 
Single-profile microbridges of constant thickness and variable width (and 
therefore variable cross-sections) are studied here, following a path similar to 
the one taken when characterizing single-profile microcantilevers. A generic 
formulation is first given in terms of bending and torsion followed by appli-
cation to elliptically filleted and trapezoid designs. 
 
1.4.1.2.1 Bending distribution functions 

 
For a single-profile variable cross-section microbridge, which displays sym-
metry with respect to the midpoint, the bending distribution function is more 
convenient to be calculated for half-length microbridge by considering the 
midpoint is guided. The procedure follows the one depicted for a constant cross- 
section member, and it can be shown that when the abscissa is measured 
from the fixed point, the distribution function is: 
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When x is measured from the guided point, the distribution function is: 
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When the single-profile microbridge is of constant cross-section, Equation 
(1.208) simplifies to Equation (1.193), whereas Equation (1.209) reduces to 
Equation (1.194), as expected. In the case the microbridge is relatively short, 
the direct linear compliances that appear in Equations (1.208) and (1.209), 
Cuz–Fz (x) and Cuz–Fz change into the shearing-related ones that were defined in 
Equation (1.45). 
 
1.4.1.2.2 Torsion distribution function 

 
In torsion, the distribution function corresponding to half-length of the sym-
metric microbridge is calculated as: 
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where the torsion compliances are defined as: 
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and the torsional moment of inertia is determined depending on the cross-
sectional thickness, as discussed in a previous section in this book. It should 
be mentioned that Equations (1.210) and (1.211) are valid irrespective of 
whether x is measured from the fixed or the free end of the half-length 
member because the compliances will change accordingly. It can also be 
checked that for a constant cross-section microbridge, Equations (1.210) and 
(1.211) simplify to Equation (1.202) when x is measured from the free 
(guided) end and to Equation (1.203) when x is measured from the fixed end. 
 
1.4.1.2.3 Elliptically filleted microbridge 

 
A right elliptically filleted microbridge, of the type introduced by Lobontiu 
and Garcia [5], is sketched in Figure 1.46 together with the defining geo-
metry. It is assumed that the thickness t is constant. The out-of-the-plane 
bending and torsion resonant frequencies will be determined next. The full-
length model is considered for bending, whereas for torsion, the half-length 
model is utilized.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.46 Top view of right elliptically filleted microbridge 
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According to Figure 1.46, the Cartesian dimensions of interest, which are the 
abscissa x and the variable width w(x), can be expressed in terms of the polar 
angle  as: 
 

 1 cos
( ) 2 1 sin

x a x a a
w x w b

 (1.212) 

 
It therefore becomes possible to use the polar variable  instead of the Cartesian 
one x, by also taking into account that: 
 
 sindx a d  (1.213) 
 
and by noticing that the limits of integration for  are 0 and .  

To keep the derivation manageable, the simplified bending distribution 
function (Equation (1.191)) is used. When calculating the second derivative 
of this distribution function, the chain rule of differentiation is used, namely: 
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where the derivative d /dx can be calculated from Equation (1.213). The bend-
ing resonant frequency is: 
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In torsion, one can derive the resonant frequency by using the half-length 

model and the distribution function of a constant cross-section member—
Equation (1.202), with x measured from the free end—to get a simplified 
prediction. It can be shown that the distribution function in this case is: 
 
 , ( ) cost sf  (1.216) 
 
With this distribution function, the corresponding torsional resonant frequency 
becomes: 
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When the exact formulation is used (the generic Equations (1.210) and 
(1.211)), the resulting distribution function becomes: 
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with: 
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The ratio of the torsional distribution functions given in Equations (1.218) 
and (1.216) is plotted in Figure 1.47, which indicates that the two functions 
can differ by a factor as large as 4 when the angle  spans the /2 to  range. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 1.47 Ratio of torsional distribution functions: actual versus simplified right-elliptically 
filleted microbridge 
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However, these differences should be taken in a relative sense, because, as 
mentioned previously, the distribution function and its derivative are used in 
an averaged manner, which is achieved through the two integrations required 
by the equation of the resonant frequency, according to Rayleigh’s procedure. 
However, using the distribution function of Equation (1.218) is quite difficult, 
and numeric integration has to be applied to determine the corresponding 
resonant frequencies. Table 1.2 contains the resonant frequency predictions 
obtained by using the simplified and exact distribution functions (Equations 
(1.216) and (1.218), respectively).  
 

Table 1.2 Resonant frequencies with precise and simplified distribution functions 

It can be noticed that in bending the predictions by simplified and precise dis-
tribution function models are very close, whereas in torsion the predictions 
by the simplified distribution function model underestimates the results 
yielded by the precise distribution function model. 
 
1.4.1.2.4 Solid trapezoid microbridge 

 
The microbridge shown in Figure 1.48 is formed of two identical trapezoid 
portions and has double symmetry. This configuration has been introduced 
by Lobontiu [7] as a particular case of a more general design having an 
additional constant-width portion interposed between the two mirrored trape-
zoid ones. In designs like this one, it becomes easy to only analyze half the 
length of the microstructure by considering the middle frontier line of half 
the member is guided. In doing so, the procedure coincides with the one that 
has been treated in connection to microbridges formed of a single geometric 
profile enjoying symmetry with respect to the middle line. Figure 1.49 shows 
the left half of the original full-length microbridge. 

 
 
 
 

 

 
Case 
# 

t 
[μm] 

a 
[μm] 

b 
[μm] 

w 
[μm] 

t,s 
[MHz] 

t 
[MHz] 

b,s 
[MHz] 

b 
[MHz] 

1 1 100 20 10 13.54 16.93 1.52 1.52 
2 1.5 100 20 10 20.25 25.29 2.29 2.29 
3 0.5 100 20 10 6.79 8.48 0.76 0.76 
4 1 150 20 10 9.03 11.29 0.68 0.68 
5 1 50 20 10 27.09 33.86 6.1 6.1 
6 1 100 40 10 10.58 16.32 1.76 1.73 
7 1 100 10 10 14.81 16.61 1.36 1.37 
8 1 100 20 20 7.42 8.33 1.36 1.37 
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Figure 1.48 Top view of constant-thickness solid trapezoid microbridge with defining geometry 
 
  
 
 
 
 
 
 
 
  

Figure 1.49 Top view of half-length solid trapezoid microbridge with guided end at middle line 
 
The variable width w(x) is calculated as: 
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A simplified version of the bending resonant frequency is obtained when the 
distribution function corresponding to a constant cross-section half-length, 
fixed-guided beam. Equation (1.193) is used, and this frequency for the member 
of Figure 1.49 is: 
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In the case where w2 = w1, Equation (1.221) reduces to Equation (1.198), 
which gives the bending resonant frequency of a constant cross-section member. 
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The exact distribution function for a variable cross-section fixed-free 
member is given generically (in terms of compliances) in Equation (1.208). 
For the particular configuration of Figure 1.49, this equation yields: 
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 (1.222) 

 
When w2 = w1, Equation (1.222) reduces to Equation (1.193), which gives 
the bending-related distribution function of a constant cross-section member. 
The variable-to-constant cross-section distribution functions ratio is plotted 
in Figure 1.50 in terms of non-dimensional geometric variables. The largest 
differences between the two distribution functions occur for large width 
ratios and for the points located towards the fixed points. However, when 
calculating the bending resonant frequency by using the exact distribution 
function of Equation (1.222) the differences between this model’s predictions 
and the ones yielded by Equation (1.193), in which the simplified bending 
distribution function was used, are less prominent, as illustrated in Figure 1.51. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
Figure 1.50 Ratio of bending distribution functions: trapezoid profile versus constant rect-
angular cross-section 
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Figure 1.51 Ratio of bending resonant frequencies: trapezoid profile versus constant rectangular 
cross-section distribution functions 
 
The difference between the two models results diminishes considerably, as 
the combined effect of having the distribution functions of each model averaged 
through the integration implied by elastic and inertia contributions and of 
deriving one particular resonant frequency as a ratio where the same dis-
tribution function enters both the numerator and denominator. 

A similar procedure is applied to calculate the torsional resonant fre-
quency by using the half-length model. When the distribution function of a 
constant cross-section member is used (Equation (1.203)), the torsional reso-
nant frequency of the half-length micromember is: 
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The exact distribution function, which is calculated by means of the 

generic Equation (1.210), becomes for the half-length doubly trapezoid 
microbridge: 
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Figure 1.52 Ratio of torsional resonant frequencies: trapezoid profile versus constant rectangular 
cross-section distribution functions 
 

With the aid of this function, the following torsional resonant frequency is 
obtained: 
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where: 
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The 3D plot of Figure 1.52 shows the ratio of the two torsional resonant fre-
quencies derived in Equations (1.223) and (1.225) and it can be seen that there 
are substantial differences between the two models’ predictions. 
 
1.4.2 Multiple-Profile Microbridges 

 
Microbridges can be designed by combining several geometric curves, simi-
larly to microcantilevers. Again, the particular situation in which the micro-
bridge has double symmetry will be studied. This case comprises designs that 
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are formed of at least three segments: two identical end segments and a 
middle one, all segments being symmetric with respect to the axial direction 
and to the direction perpendicular to it and passing to the midpoint. Both 
homogeneous and non-homogeneous bridge configurations will be analyzed. 
Bending and torsion resonant frequencies will be derived for constant, as 
well as variable cross-section microbridges. 
 
1.4.2.1 Homogeneous Configurations 
 
Homogeneous multi-profile microbridges are fabricated of the same material, 
and therefore have constant material and elastic properties for all the com-
ponent segments. Constant and variable cross-section designs will be discussed 
next in terms of their bending and torsion resonant responses. 
 
1.4.2.1.1 Constant cross-section segments 
 
When a serially compound microbridge is formed of several constant cross-
section segments, a generic model can be formulated to express the bending 
and torsion resonant frequencies, as shown in the following and similar to the 
derivation that has been presented for microcantilevers. 

 
A serially compounded microbridge, which is formed of potentially n different 
segments, is sketched in Figure 1.53. 

model; (b) half-length model 

 Generic Formulation 

Figure 1.53 Serially compounded microbridge 

Figure 1.54 Side view of three-segment serially compounded microbridge: (a) full-length 
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Equations (1.69) and (1.72), which gave the bending and torsional resonant 
frequencies for microcantilevers, are also valid for microbridges with dif-
erent distribution functions. As mentioned here, only the particular case is 
analyzed of microbridges that are formed of three segments: two identical 
end segments (that are mirrored) and a middle one. The entire structure has 
two symmetry lines, as sketched in Figure 1.54 (a), and this enables the 
analysis of half the structure. In doing so, the midpoint is guided when bend-
ing is studied and is free when torsion is discussed. 

To calculate the bending resonant frequency, the half-length model of 
Figure 1.54 (b) is employed. Finding the distribution functions corresponding 
to the two intervals, 1–2 and 2–3, has been described in detail in the 
subsection dedicated to microcantilevers. A similar approach is needed for 
microbridges and therefore only the main steps that have to be applied to 
derive the bending distribution functions are mentioned here, namely: 
 

 Apply a force at the guided end and find the corresponding reaction 
moment at the same point. 

 Express the deflection at a generic point on the 1–2 interval as 
produced by the tip force, as well as the maximum deflection at the 
guided end and determine the distribution function of the 1–2 
interval as the ratio of the two deflections. 

 Apply a similar procedure and determine the distribution function of 
the 2–3 interval. 

 
Consequently, the distribution function corresponding to the 1–2 interval, 

when x is measured from the guided end in Figure 1.54 (b), is of the form: 
 

 2 3
1 1 1 1( )bf x a b x c x  (1.227) 

 
with: 
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 (1.228) 

 
If one considers that l2  0, l1  l/2, and Iy1 = Iy2, then Equations (1.227) and 
(1.228) reduce to Equation (1.194), which expresses the distribution function 
of a constant cross-section half-length microbridge. 
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The distribution function of the second segment 2–3 is of a similar form, 
namely: 
 
 2 3

2 2 2 2 2( )bf x a b x c x d x  (1.229) 
 
where: 
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 (1.230) 

 
For the same limit conditions as above, namely l2  0, l1  l/2, and Iy1 = Iy2, 
Equations (1.229) and (1.230) simplify to Equation (1.194), which gives the 
distribution function of a constant cross-section half-length microbridge. 

In torsion, when the half-length model is used, the middle point (which 
became an endpoint) is considered free, and therefore the corresponding 
distribution function of the 1–2 interval is: 
 

 1
1

2 1 1 2

2( ) 1
2

t
t

t t

If x x
I l I l

 (1.231) 

 
Similarly, the torsion distribution function for the 2–3 interval is: 
 

 1 1 2 1
2

2 1 1 2 2 1 1 2

2 2( )
2 2

t t
t

t t t t

I l l If x x
I l I l I l I l

 (1.232) 

 
Both Equations (1.231) and (1.232) reduce to Equation (1.202), which gives 

2 1 y1 = Iy2. 

 
 

the torsion-related distribution function of a constant cross-section micro- 
bridge by the half-length model when l   0, l   l/2, and I
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As a direct application of the generic model developed herein, the paddle 
microbridge of Figure 1.55 (a) is studied now in terms of its bending and 
torsional resonant frequencies by using Rayleigh’s quotient method applied 
to the half-length structure of Figure 1.55 (b). It is assumed all segments have 
the same thickness t.  

The bending-related resonant frequency can be calculated by using the 
exact distribution functions of Equations (1.227) and (1.229) and this leads to 
quite a complicated equation. If, instead of using these distribution functions, 
one uses the simplified distribution function that results from Equation 
(1.194) by taking l = 2l1 + l2, namely: 
 

 
2 3

2 3
1 2 1 2

( ) 1 12 16
2 2b

x xf x
l l l l

 (1.234) 

 
the corresponding resonant frequency can be expressed as: 
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where: 
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Figure 1.55 Paddle microbridge: (a) top view with geometry; (b) half-length model 
 

Paddle Microbridge 
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When taking the following limits: l2  0, l1  l/2, and w2 = w1, Equation 
(1.235) and Equation (1.236) reduce to Equation (1.198), which gives the 
bending resonant frequency of a constant rectangular cross-section bridge of 
length l.  

The torsion resonant frequency has the following equation when using 
the exact distribution functions (Equations (1.231) and (1.232)): 
 

1 1 2 2
1 3 3 2 2 2 2 2 2 2 2

1 1 1 2 2 2 1 2 1 2 1 2 2 1

2
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8 12 6
t

G l w l w
tw

l w w t l w w t l w l l w w l w
 (1.237) 

 
Again, when taking the following limits: l2  0, l1  l/2, and w2 = w1, 
Equation (1.237) simplifies to Equation (1.205), which expresses the torsion 
resonant frequency of a constant rectangular cross-section bridge of length l.  
 
1.4.2.1.2 Variable cross-section 
 
Serially compounded microbridges may be designed having a variable cross-
section (generally, the width is considered variable and the thickness is 
constant, as mentioned previously) over all or just a few component 
segments. A generic formulation is derived in the following, which is further 
applied to a double trapezoid microbridge configuration. 
 

 
A variable cross-section microbridge is analyzed, which is formed of two 
identical segments at the roots (they are mirrored with respect to the 
symmetry axis, as shown in Figure 1.54) and a mid-segment, which is also 
placed symmetrically with respect to the same symmetry line. This particular 
configuration is an extension of the design presented in the previous section 
and that consisted of three constant cross-section segments of each the root 
ones were identical. Figure 1.54 (b) is redrawn here (in Figure 1.56) to better 
emphasize the features of interest. 

 

Generic Formulation 

Figure 1.56 Side view of half-length model for a symmetric, variable cross-section microbridge
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In bending, the half-length model of the microbridge is used because of 
the symmetry. The distribution functions corresponding to the two different 
segments are determined by using the approach detailed for the three-
segment constant cross-section microbridge. It can be shown that the 
distribution function corresponding to the segment starting from the guided 
end is: 
 

 (1 2) 1( )( ) b
b

b

A xf x
B

 (1.238) 

 
where: 
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and: 
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c
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 (1.240)  

 
Similarly, the distribution function of the second segment (the one towards 
the fixed point in Figure 1.56) is of the form: 
 

 (2 3) 2 ( )( ) b
b

b

A xf x
B

 (1.241) 

 
with: 
 

 (2 3) (2 3) (2 3)2 2
2( ) ( ) ( ) ( )

2 2b uz Fz uz My y My
l lA x C x c x C x c xC x  (1.242) 

 
The subscript (1–2) in the equations above refer to the segment 1–2 at the 
guided end, whereas the superscript (2–3) denotes the root segment. All 
compliances that enter Equations (1.238) through (1.242) and correspond to 
the first segment are calculated by considering point 1 in Figure 1.56 is the 
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origin; similarly, the compliances pertaining to the second segment are 
calculated with the origin at point 2. When l1  l/2, l2  0, and It1 = It2 (case 
where the two-segment variable cross-section bridge becomes a constant 
cross-section one of total length l), Equations (1.238) and (1.241) reduce to 
Equation (1.198), as it should be. 

In torsion, the same half-length model of Figure 1.56 is used by con-
sidering now that point 1 is free (which is the appropriate assumption in 
terms of torsion). The distribution function corresponding to the first segment, 
1–2, is: 
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 (1.243) 

 
whereas the distribution function corresponding to the root segment is: 
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   (1.244) 

 
Again, at limit, when l1  l/2, l2  0, and It1 = It2 (conditions that render the 
two-segment variable cross-section bridge into a constant cross-section one 
of total length l), Equations (1.243) and (1.244) reduce to Equation (1.205), 
as expected. 
 

 
The configuration sketched in Figure 1.57 is an application of the generic 
formulation given here. Although the microbridge of Figure 1.57 (a) is 
formed of four segments, because of its symmetry, it is possible to analyze 
only half-length the structure, as shown in Figure 1.57 (b). Consequently, 
two segments need to be taken into account only, and therefore this particular 
example falls into the three-segment category presented herein. 

Despite the fact that the variable cross-section segment (the trapezoid) is 
rather simple, the distribution functions for both bending and torsion are 
quite intricate, consequently the corresponding resonant frequencies are also 
complex and are not explicitly given here. The resonant frequencies are pro-
vided, which are calculated by means of the distribution functions defining a 
constant cross-section half-length bridge (Equation (1.198) for bending and 
Equation (1.205) for torsion). 

The bending resonant frequency is: 
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 (1.245) 

Trapezoid Paddle-Type Microbridge 
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with: 
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and: 
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Figure 1.57 Trapezoid paddle-type microbridge with geometry: (a) full-length structure; (b) half-
length structure 

 
The torsional resonant frequency is expressed as: 
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where: 
 
 1 1 2 1 24tA l w l w w  (1.249) 
 
and: 
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A comparison is performed between the resonant frequency results ob-

tained by means of the simplified distribution functions and those produced 
by using the exact distribution functions, not given here, but generically ex-
pressed by Equations (1.238), (1.241), (1.243), and (1.244). When calculating 
the exact-form resonant frequencies one has to consider that the variable 
width of the trapezoid segment (as shown in the top view of Figure 1.57 (b)) is: 
 

 2 1
2

2

( ) 2 w ww x w x
l

 (1.251) 

Table 1.3 comprises the results by the two models for a few values of the 
microbridge parameters. 

 
Table 1.3 Resonant frequencies by means of precise and simplified distribution functions 

 
Case t 

[μm] 
l1 

[μm] 
l2 

[μm] 
w1 

[μm] 
w2 

[μm] 
t,s 

[MHz] 
t 

[MHz] 
b,s 

[MHz] 
b 

[MHz] 
1 1 100 100 10 20 5.99 5.58 0.48 0.46 
2 1.5 100 100 10 20 8.96 8.34 0.73 0.69 
3 0.5 100 100 10 20 3.00 2.79 0.24 0.23 
4 1 150 100 10 20 4.77 4.50 0.28 0.26 
5 1 50 100 10 20 8.33 7.62 1.06 1.01 
6 1 100 150 10 20 4.89 4.50 0.35 0.33 
7 1 100 50 10 20 8.01 7.62 0.71 0.68 
8 1 100 100 15 20 5.60 5.43 0.49 0.48 
9 1 100 100 5 20 5.76 4.90 0.47 0.40 
10 1 100 100 10 30 3.96 3.52 0.47 0.43 

 

 
Rectangular Cross-Section Microbridge with Hole 

Similar to the example of the rectangular cross-section cantilever with a hole,
a similar perforated microbridge structure is studied here in terms of its 
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bending resonant frequency. Figure 1.58 shows the top view of it, indicating 
the geometry of the structure and of the hole. The detailed view of the hole is 
displayed in Figure 1.26, and is not retaken. Because only bending is the 
matter of interest here, it is assumed the hole is placed along the longitudinal 
axis of symmetry, as shown in the same Figure 1.58. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.58 Top view of a rectangular microbridge with hole 
 
Again, both mass and stiffness of the original constant rectangular cross-
section bridge will be modified by the presence of the hole. Alteration of the 

as shown in Figure 1.59. This configuration is a serially compounded one, 
but there is no symmetry about the structure’s midpoint and the entire length 
has to be taken into consideration. 
  
 
 
 
 
 
 
 
 
 
 

Figure 1.59 Equivalent three-segment microbridge 
 
The distribution function of a constant cross-section bridge (Equation (1.191)), 
with the corresponding polar coordinate transformation (Equation (1.108)) 
and associated derivatives (Equation (1.113)) is used. The bending resonant 
frequency is expressed as: 
 
 

bending stiffness by the hole enables consideration of a three-segment bridge, 
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with: 
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(1.253) 

 
When r  0, Equations (1.252) and (1.253) reduce to Equation (1.196), 
which gives the bending resonant frequency of a regular constant rectangular 
cross-section microbridge (without a hole in it). 

 
Example 1.21 

Analyze the influence of the hole position and dimension (radius) on the 
bending resonant frequency of a constant rectangular cross-section micro-
bridge, which is defined by a length l = 100 μm and a width w = 10 μm. 
 
Solution: 

A simulation similar to the one performed for a rectangular cross-section 
microcantilever with a perforation is applied here, and Figure 1.60 is the 3D 
plot of the frequency ratio of a bridge with hole to the one without the hole in 
it (the asterisk [*] indicates the structure without a hole). For the parameter 
ranges of this example, the bending resonant frequency of the hole micro-
bridge increases with larger radii and with the hole migrating towards the 
bridge midpoint. These trends are also highlighted in Figure 1.61, which plots 
the bending resonant frequency in terms of r and l1. 
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Figure 1.60 Comparison between the constant cross-section bridge without a hole and the 
similar bridge having a hole in it 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.61 Influence of hole position and radius on the bending resonant frequency of a 
microbridge with a hole in it 
 
The same numerical parameters used for the simulation in the case of a 
cantilever, namely: E = 165 GPa,  = 2300 kg/m3 (values corresponding to 
polysilicon), l = 100 μm, w = 10 μm, and t = 0.5 μm, have been used to plot 
Figure 1.61.  
 
Example 1.22 

Compare the resonant frequency of a rectangular cross-section micro-
bridge with perforation, as the one of Figure 1.58, when ignoring the change 
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in stiffness, to the one obtained when both the stiffness and inertia are con-
sidered altered by the hole. 
 
Solution: 

When stiffness alteration through perforation is disregarded, the bending 
resonant frequency is expressed as: 
 

 ' 51.85b
b

E lwlt
B

 (1.254) 

 
where Bb is given in Equation (1.253). Because the stiffness decrease through 

(1.254) yields a resonant frequency higher than the one where both stiffness 
and inertia variations have been taken into account. By taking the ratio of the 
two frequencies, the following function is obtained: 
 

 
'

22b

b b

lwl
A

 (1.255) 

 
with Ab defined in Equation (1.253).  
 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
Figure 1.62 Bending resonant frequency comparison between prediction with stiffness neglected 
and considered for a rectangular cross-section microbridge with hole: (a) c3 = 0.25; (b) c1 = 0.5 

 
Equation (1.255) can be reformulated in terms of the non-dimensional 
parameters c1 = l1/l, c2 = r/lm and c3 = w/l, which have been introduced in 
the example with the hole microcantilever. Figures 1.62 (a) and (b) show the 
3D variations of this ratio when c3 = 0.25 (Figure 1.62 (a)) and for c1 = 0.5 
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the very existence of the hole has been neglected, it is clear that Equation  
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(Figure 1.62 (b)), respectively. By neglecting the stiffness alteration produced 
through the perforation, particularly for large values of r and for small values 
of w, conduces to a relative increase of the bending resonant frequency b 
with respect to the actual b, as illustrated in Figure 1.62. 
 

 

is shown in Figure 1.63, is studied now with respect to its bending resonant 
frequency. 

Figure 1.63 Top view of microcantilever with a hole in it and geometry 
 
Only bending is analyzed again, and therefore it is assumed that the hole is 
located on the longitudinal axis. The microbridge is a serial structure com-
prising five different segments, as shown in Figure 1.64. 

 

 
Because the hole is not placed symmetrically along the microbridge, the full-
length structure needs to be taken into account to determine the out-of-the-
plane bending resonant frequency, which is calculated with the distribution 
function corresponding to a constant cross-section microbridge. 

 
 

Paddle Microbridge with Hole 

The paddle microbridge with a hole in the middle segment, whose top view 

Figure 1.64 Equivalent four-segment cantilever 
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The resonant frequency in this case is calculated as: 
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 (1.256) 

 
The expression of b is complex again and is therefore not explicitly given 
here. As the case was with the paddle cantilever, a check is performed by 
taking r  0 into the resonant frequency equation and the resulting bending 
frequency is: 
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with: 
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Compared to Equations (1.235) and (1.236), which gave the bending 
resonant frequency of a paddle microbridge by using the half-length model, 
Equations (1.257) and (1.258) are slightly different. It should be remembered 
again that Equations (1.235) and (1.236) have been obtained by using different 
distribution functions for the two segments, whereas Equations (1.257) and 
(1.258) correspond to a unique distribution function.  
 
Example 1.23 

Compare the bending resonant frequency of a paddle microbridge with 
hole with that of a similar bridge without a hole in it. Consider the particular 
case where l1 = l2 and w2 = 2w1. 
 
Solution:  

For the given particular conditions, the bending resonant frequency 
becomes of the form: 
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 1 2 335 ( , , )b
Et f c c c  (1.259) 

 
where f (c1, c2, c3), which is not explicitly given here, depends on three non-
dimensional parameters, of which c2 and c3 have been defined in Example 
1.22, and c1 is: 
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When there is no hole in the microcantilever c2 = 0, and therefore Equation 
(1.257) simplifies to: 
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Two 3D plots are drawn, one for the case in which c3 = 0.25, and the other 
one for c1 = 0.5, illustrated in Figure 1.65. 
 

 
Figure 1.65 Bending resonant frequency comparison between paddle microbridges with and 
without a hole: (a) c3 = 0.25; (b) c1 = 0.5 
 
For the set of analysis parameters, the resonant frequency of the original 
paddle microbridge is higher than the one of the similar configuration with a 
hole in it, which indicates that the change in mass (through removal of matter) 
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Also indicated in the same figures is the structure sensitivity to hole position 
and dimensions, as well as to the width dimensions. 
 
1.4.2.2 Non-Homogeneous Configurations 

 

various materials, which is not so common in current MEMS design. How-
ever, This situation can be encountered when analyzing microbridges having 

The generic formulation for both bending and torsion will briefly be 
discussed, followed by an example of a non-homogeneous paddle microbridge. 
 
1.4.2.2.1 Generic model 

 

hand, it has been shown that sensible errors in the torsion resonant frequency 
can occur when the simplified distribution function is employed instead of 
the actual ones. Consequently, distribution functions will only be derived in 
torsion for microbridges, while for bending the simplified distribution functions 
will be used. 

Figure 1.66 Non-homogeneous, multi-segment, serially compounded microbridge: (a) full-length 
model; (b) half-length model 
 
 

is more important that the change in stiffness, and leads to an overall decrease 
in the resonant frequency of the hole microbridge, as Figure 1.65 illustrates. 

In non-homogeneous microbridges, the component segments are built of 

The generic formulation developed for non-homogeneous microcantilevers 

the other segments of the microbridge that are fabricated of the same material, 

cantilevers that by using the simplified distribution function instead of the
precise, actual ones, accurate results are obtained in bending. On the other 

be analyzed in Section 1.4.3. 
the resulting bridge is a non-homogeneous one. This particular example will 

in Section 1.3.2.2 is valid for microbridges, too, when adequate distribution

respective segment into an equivalent one, of constant rigidity. Coupled with 

functions are used. It has been shown for non-homogeneous micro-

at least one portion in sandwich construction, which enables transforming the 
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The particular category of microbridges that have a symmetry line passing 
through their midpoint (as shown in Figure1.66 (a)), will be analyzed, as 
previously. This restriction enables studying only half the microbridge, as 
illustrated in Figure 1.66 (b). Also, the additional assumption is used that 
there is a mid-segment (the one having the length l1 in Figure 1.66 (a)) and 
therefore the microbridge comprises an odd number of segments. In doing so, 
the model that has been presented for full-length non-homogeneous micro-

1 1
 

1.4.2.2.2 Paddle microbridge 
 

As an example, the non-homogeneous paddle microbridge sketched in Figure 
1.55 (b) is considered here, where the two end segments are fabricated of the 
same material, different from the one of the mid-segment. For both bending 
and torsion, the half-model is employed. 

The geometric and material properties of the guided half segment of 
Figure 1.67 are assigned the subscript 1 and the root segment of the same 
figure is denoted by subscript 2. 

Figure 1.67 Top view of half-length paddle microbridge with geometry 

By using the generic model of a symmetric non-homogeneous microbridge 
developed previously, together with the simplified distribution function of 
Equation (1.191), the bending resonant frequency is expressed as: 
 

 2
,

b
b e

b

A
B

 (1.262) 

 with: 
 

2 2 2 2 2
1 1 1 1 1 2 1 1 1 2560 3 6 4 2 4bA t E l l ll l w E l l l ll l w  (1.263) 

The only modifications consist in utilizing l /2 instead of l  and l/2 instead of l.
cantilevers in Section 1.3.2.2 is valid for half-length microbridges as well.
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and 
 

 
6 4 3 3 4 2 5 6 7

1 1 1 1 1 1 1 1

5 2 2
2 2 1 1 1

35 70 35 63 70 20

13 30 20

bB w l l l l l l l l ll l

w l l l ll l
 (1.264) 

 
By using the exact (actual) torsion-related distribution functions derived for 
non-homogeneous microcantilevers, together with the length corrections men-
tioned at the beginning of the non-homogeneous microbridge section, the 
torsion resonant frequency is: 
 

 2
,

t
t e

t

A
B

 (1.265) 

 
with: 
 
 1 2 1 1 1 2 1 248tA G G G l l w G l w  (1.266) 

 
and: 
 

 
3 22 2 2 2 2 2 2

2 1 1 1 2 2 1 1 1 1 1 1

2 2 2
1 2 1 1 1 2 2 1 2

[3

3 ]
tB G l l w w w t l w t G l l w

GG l l l w w G l w
 (1.267) 

 
Example 1.24 

Consider a symmetric microbridge of constant rectangular cross-section 
over its length l, composed of three segments, of which the end ones are of 
the same material. Compare the bending and torsion resonant frequencies of 
this microbridge with the ones corresponding to a homogeneous microbridge 
having the same geometry and the material of the mid-segment of the non-
homogeneous configuration. 
 
Solution: 

The bending resonant frequency is readily computable by means of 
Equation (1.146) and by using the distribution function of Equation (1.194), 
which describes half-length microbridge and where the length l is simply the 
sum of lengths of all component segments. The bending resonant frequency 
of a homogeneous, constant cross-section microbridge by means of the half-
length model is given in Equation (1.198). Consequently, the ratio of the two 
frequencies can be formulated and it only depends on three non-dimensional 
variables, namely: E2/E1, 2/ 1, and l1/l. Figure 1.68 (a) plots the bending 
frequency ratio for l1/l = 0.4, whereas Figure 1.68 (b) plots the same ratio for 
E2/E1 = 0.7 and 2/ 1 = 0.5. 



  Chapter 1 100 

 
  
 
 
 
 
 
 
 
 
    
 
 
  
Figure 1.68 Bending resonant frequency ratio: non-homogeneous, three-segment microbridge 
versus homogeneous bridge as a function of: (a) elasticity modulus ratio; (b) length ratio 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.69 Torsion resonant frequency ratio: non-homogeneous, three-segment microbridge 
versus homogeneous bridge as a function of: (a) elasticity modulus ratio; (b) length ratio 
 

A similar comparison is made between the torsion resonant frequency of 
the non-homogeneous, three-segment microbridge of this example (computed 
by means of Equations (1.231) and (1.232)), and a homogeneous counterpart 
(whose expression is given in Equation (1.205)). Both models refer to the 
half-length microbridge and Figure 1.69 illustrates this ratio in function of 
non-dimensional variables. Figure 1.69 (a) was plotted for l1/l = 0.4 and 
Figure 1.69 (b) corresponds to G2/G1 = 0.7 and 2/ 1 = 0.5. As Figures 1.68 
(a) and 1.69 (a) indicate, the resonant frequencies (bending and torsion) of 
the non-homogeneous microbridge can be smaller than the corresponding reso-
nant frequencies of the homogeneous counterpart when the side segments 
possess low elastic modulii and large densities. Similarly, when the length of 
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the side segments decreases (equivalent to an increase in the length of the 
mid-segment for constant total length), the resonant frequencies of the non-
homogeneous microbridge are smaller than the ones of the homogeneous 
design. 
 
1.4.3 Multi-Layer (Sandwich) Microbridges 
 
As the case was with microcantilevers, microbridges can be designed by 
superimposing (attaching) several layers. The process can involve layers that 
have the same length or layers that have different lengths. The two cases will 
be briefly analyzed next. 

 
1.4.3.1 Equal-Length Multilayer Microbridges 
 
A microbridge with equal-length layers can be obtained from the cor-
responding microcantilever of Figure 1.42, by anchoring its the free end, and 
thus, obtaining the fixed-fixed boundary conditions. The generic derivation 
that has been presented for equal-length multi-layer microcantilevers remains 
valid for bridges, the only alteration being the different bending and torsion 
distribution functions that have to be used. The lumped-parameter method 
will be used next by considering the full-length bridge. 

For a microbridge of length l with layers having equal lengths and equal 
widths, the stiffness corresponding to the midpoint, which expresses the 
force-deflection relationship is, similar to a homogeneous bridge: 
 

 , 3

192 y e
b e

EI
k

l
 (1.268) 

 
where the equivalent bending rigidity (EIy)e is calculated by means of Equa-
tion (1.172). The equivalent lumped-parameter bending mass is determined as: 
 

 2
,
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128( )
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b e j j b
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m wt f x dx m  (1.269) 

 

b

 

 , 321.737 y e
b e

EI

ml
 (1.270) 

 

where m is the total mass of the composite beam, and the bending dis-
tribution function f (x) is given in Equation (1.191). By combining Equations
(1.268) and (1.269), the bending resonant frequency becomes: 
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By comparing Equation (1.270) to the first Equation (1.176) it can be seen 
that the bending resonant frequency of a microbridge is approximately six 
times larger than the one of a cantilever having the same geometry and mate-
rial parameters. 

Similar to a homogeneous microbridge, the mid-point torsion stiffness of 
a sandwiched microbridge is: 
 

 ,

4 t e
t e

GI
k

l
 (1.271) 

 
where the equivalent torsion rigidity is calculated by means of Equation 
(1.177). The equivalent mechanical moment of inertia corresponding to very 
thin layers is computed as: 
 

 2 2 2
,

1 0

8( )
12 15

lm

t e j j j t t
j

wJ t w t f x dx J  (1.272) 

 
where ft(x) is the torsion distribution function (Equation (1.201)) and Jt is the 
total mechanical moment of inertia, which is approximated to: 
 

 
2 2

,
1 1 12

m m
j j

t t j
j j

m w t
J J  (1.273) 

 
where mj is the mass of the j-th layer. The torsion resonant frequency is 
obtained by means of Equations (1.271) and (1.272) as: 
 

 , 2.739 t e
t e

t

GI
J l

 (1.274) 

 
Again, comparing the torsion resonant frequency of a microbridge to that of 
a microcantilever with identical geometry and inertia properties (Equation 
(1.180)), reveals the former is approximately 1.58 larger than the latter. 
 
Example 1.25 

For a two-component sandwich microbridge (bimorph), determine the 
thickness of the upper layer that would result in a maximum separation 
between the torsional and bending resonant frequencies. Consider E1 = 180 
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Solution:  
Equations (1.274) and (1.270) are used to set the torsion-to-bending 

resonant frequency ratio. By utilizing the numerical data of this problem, the 
frequency ratio can be expressed as a function of the two layers thickness 
ratio, and Figure 1.70 is a 2D plot of this relationship. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.70 Torsion-to-bending torsion frequency ratio as a function of the thickness ratio for 
a bimorph microbridge 
 
As Figure 1.70 indicates, the resonant frequency ratio has a minimum of 
about 1.9 for t1/t2 = 0.87, whereas the 2.2 maximum is reached at app-
roximately t1/t2 = 0.5. The limit to the resonant frequency ratio is: 
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 (1.275) 

 
which is also the value of the same frequency ratio for a homogeneous micro-
bridge corresponding to the numerical values of this example.  
 
1.4.3.2 Dissimilar-Length Multilayer Microbridges 

 
Sandwich microbridges can be fabricated with layers having dissimilar lengths, 
as sketched in Figure 1.71 (a), where m layers are shown (the top layer is 
denoted by 1). When the layers are disposed symmetrically with respect to 
the microbridge midpoint, half-length model can be used to simplify cal-
culating the bending and torsion resonant frequencies. 
 
 
  

GPa, E2 = 165 GPa, 1 = 3500 kg/m3, 2 = 2300 kg/m3, l = 350 μm, w = 50 
μm, t2 = 1 μm.  
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Figure 1.71 Side view of multi-layer (sandwich) microbridge: (a) full-length model; (b) half-
length model 
 
Over each of the lengths l1/2, l2/2, …, lm/2 (indicated in Figure 1.71 (b)), the 
respective beam segment is an equivalent one, whose elastic and inertia pro-
perties are calculated by considering the procedures explained in the previous 
subsection, because each segment is actually an equal-length sandwiched 
portion. On segment 1, for instance, m layered components are stacked, 
whereas the last segment, m, is formed of a single component (as shown in 
Figure 1.71). The lengths of Figure 1.71 (b) are derived from the actual ones 
of Figure 1.71 (a) as follows: 
 
 ' '

1i i il l l  (1.276) 
 
with i = 1, 2, …, m. This particular notation has been used here to enable 
using the procedure exposed at non-homogeneous multi-profile microbridges. 

In bending, the resonant frequency of the half-model shown in Figure 
1.71 (b) is calculated as: 
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(1.277) 

 
In Equation (1.277), a unique bending distribution function has been used, 
namely the one given in Equation (1.194), instead of individual distribution 
functions, as it was shown that the errors introduced by using the simplified 
distribution function of Equation (1.194) are minor. 
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The torsion resonant frequency is calculated as: 
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 (1.278) 

 
where the distribution functions ft,i (x) are calculated for each of the m 
intervals, by using the generic form of Equation (1.153) in which the 
coefficients of the first-degree polynomial are: 
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and 
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The sum Si of Equation (1.279) was defined in Equation (1.150). 
 
Example 1.26 

A symmetric three-layer microbridge as the one sketched in Figure 1.72 
(a) has its outer layers deposited of the same material and also of equal 
length and equal thickness. Study the bending resonant frequency of the 
structure in terms of the elastic and inertia properties of the materials by 
considering the middle (structural) layer is defined by: l = 200 μm, t2 = 1 μm, 
E2 = 165 GPa, and 2 = 2300 kg/m3. 
 
Solution: 

By using the generic Equation (1.277) for the case where m = 3 (three 
layers), as well as the specifications and numerical data of the problem, the 
bending resonant frequency of the trimorph can be expressed as a function of 
the following two ratios: E1/E2 and 1/ 2 and Figure 1.73 is the 3D plot 
showing this relationship. As Figure 1.73 indicates, the bending resonant 
frequency increases for added layers with higher elastic modulii and lower 
mass densities. 
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Figure 1.72 Side view of three-layer (trimorph) microbridge: (a) full-length model; (b) half-
length model 

 
1.5 MASS DETECTION BY THE RESONANT 

FREQUENCY SHIFT METHOD 
 
1.5.1 Method 

 
The bending or torsion resonant response of microcantilevers and micro-
bridges is used to detect extraneous matter that attaches to the resonant device. 
Mass addition changes the original resonant frequency of the microdevice 
and the shift in frequency is used as a metric for the quantity of added mass. 

Figure 1.73 Bending resonant frequency of a three-layer (trimorph) microbridge with iden-
tical outer layers as a function of material properties 
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A simple qualitative analysis can be performed for a beam (cantilever or 
bridge) to determine the effect of added mass. When a mass m attaches to 
the beam, the new resonant frequency can be expressed, by using the lumped- 
parameter approach as: 
 

 b
b

b

k
m m

 (1.281) 

 
As shown a bit later, the mass mb is a weighted value of the real mass m 
(weighting is due to various positions the added mass can assume on a beam), 
but, as a first approximation, it can be considered in Equation (1.281) that 

mb = m with sufficient accuracy. By also considering that the altered 
resonant frequency diminishes by a quantity  and that the stiffness can be 
expressed as: kb = mb ( b,0)2, Equation (1.281) gives the quantity of the 
deposited mass as: 
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which indicates that smaller masses can be detected by smaller frequency 
increments. Any detection equipment possesses a threshold value (in our case, 
the frequency), below which it is no longer accurate or even responsive. 
Clearly, such a value min will generate, through Equation (1.282), a 
minimum mass m that can be detected. By using the non-dimensional 
frequency and mass fractions (Lobontiu [7] and Lobontiu et al. [8]): 
 

 
m

b

b
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m

f
 (1.283) 

 
Equation (1.282) permits expressing fm as a function of f  as: 
 

 2
1 1

1mf f
 (1.284) 

 
It is clear from Equation (1.284) that zero added mass (fm = 0) produces no 
change in the resonant frequency (f  = 0). Figure 1.74 also shows the quasi-
linear proportionality between the two fractions. While all this discussion 
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pertained to beams and bending, a similar reasoning could be developed for 
torsional resonators, where the added mass in positions that are off the 
structure’s longitudinal axis produces a change in the mechanical moment of 
inertia, which decreases the original resonant frequency. 
 
 
 
 
 
 
 
 
 
 
 
      

 
1.5.2 Microcantilever Support 
 

 
1.5.2.1 Constant Cross-Section 

 
The simplest assumption will only be used here, namely that the mass 
attaches to the microcantilever in a point-like manner, as shown in Figure 1.75. 
Mass that deposits in a layer-like fashion over a portion of the cantilever 
length and over the whole width is a problem amenable to non-homogeneous 
structures (both cantilevers and bridges), and that problem has thoroughly 
been discussed in this chapter. In going with this assumption, the only 
modification will be in the total mass—when bending is taken into account, 
or in the mechanical moment of inertia—when torsion is discussed. It will be 
considered that there is no alteration in the structural stiffness, and therefore 
the original strain energy expression (Equation (1.4)) will be used. 

The mass is offset by a quantity l1 from the free end (as shown in Figure 
1.75) about the longitudinal direction of the microcantilever and the bending 
effect of this change to the original resonant frequency can be quantified by 
evaluating the altered kinetic energy due to mass attachment, the energy being:  
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Figure 1.74 Mass fraction in terms of frequency fraction (Equation (1.284)) 

Mass deposition will be first analyzed by studying the changes in the bending
and torsion resonant frequencies of cantilevers. Constant and variable cross-
section designs will be discussed in this subsection. 
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Figure 1.75 Top view of a rectangular cantilever with point-like deposited mass 

By considering Equation (1.5), which separates the space and time variables, 
as well as Equation (1.7), which gives the deflection distribution in terms of 
the tip deflection, the maximum energy resulting from Equation (1.285) can 
be assessed to be: 
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By equating the maximum kinetic energy of Equation (1.286) to the maximum 
potential energy resulting from Equation (1.4), the bending resonant frequency 
becomes: 
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with the distribution function fb (x) being given in Equation (1.37). By taking 
into account the relationship between the regular and circular frequency (f = 
2  ), Equation (1.287) allows expressing the attached mass as: 
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where fb,0 is the original frequency of the cantilever, expressible by means of 
its corresponding circular frequency of Equation (2.87), fb is the difference 
between the original and the modified natural frequencies (the modified 
frequency is always smaller than the original one through the mass increase), 
and the function gb(l1) is expressed as: 
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 (1.289) 

 
The last side of Equation (1.289) used the particular values of the transfer 
function and the geometry of rectangular cross-section.  

Equation (1.288) can also express the change in frequency as a result of a 
known deposited mass as: 
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Example 1.27 

Analyze the mass detection sensitivity of a microcantilever with l = 100 
μm, w = 20 μm, and t = 1 μm to the landing position of the mass and to the 
frequency shift. Consider the microcantilever is fabricated of polysilicon 
with E = 1.5 × 1011 N/m2, and  = 2300 kg/m3. 

 
Solution: 
 
 
 
 
 
 
 
 
 
 
 

 
Equations (1.288) and (1.289), together with the first Equation (1.42), 

which gives the original bending resonant frequency (with no mass attached 
to it), are used with the numerical data of the problem and the plots of 
Figures 1.76 and 1.77 are obtained, which show the influence of l1 and fb on 

Figure 1.76 Detected mass in terms of position and frequency change 
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the quantity of deposited mass, m. As shown in Figures 1.76 and 1.77, more 
mass can be detected when attached closer to the root of the cantilever for the 
same change in frequency (when the l1/l ratio increases). A larger mass can 
also be detected when the frequency change increases. 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.77 Detected mass in terms of frequency change (for l1/l = 0.5) 
 

While m depends on fb quasi-linearly (a better representation is given in 
Figure 1.77), the influence of deposited matter position on the micro-
cantilever is highly nonlinear, particularly for values of l1 that approach l. 
This can better be seen if the sensitivity of m to fb and l1/l is studied. The 
differential of m can be expressed as: 
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where c = l1/l. The partial derivatives in Equation (1.291) are the sensitivities 
of m to f and l1/l, respectively. Their equations are not included but the 
sensitivities are proportional to: 
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 (1.292)

which indicates the strong nonlinear character of the partial derivative of m 
in terms of cl. 

The offset mass (which is shown at a distance l2 from one side in Figure 
1.75) changes the inertia properties of the microcantilever in torsion and 
therefore its torsion resonant response. The new (altered) kinetic energy due 
to mass attachment is:  
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By applying the separation of variables between space and time with Equa-

distribution in terms of the tip angle, the maximum kinetic energy becomes: 
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By equating the maximum kinetic energy of Equation (1.294) to the maximum 
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t
is given in Equation (1.51). By following a procedure similar to the one 
detailed in the case of bending, the attached mass can be formulated from 
Equation (1.295) as: 
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where ft,0 is the original torsional frequency of the cantilever, expressed 
generically through its corresponding circular frequency of Equation (1.14), 

and the function gt(l1) is: 
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The last side of Equation (1.297) took into account the distribution function 
pertaining to a constant cross-section microcantilever subjected to free torsional 

The distribution function f  (x) of a constant cross-section microcantilever 

ft is the difference between the original and the modified natural frequencies, 

the torsion resonant frequency can be expressed as: 
potential energy (which remains constant and was discussed in Section 1.2.1),

tion (1.11) together with Equation (1.13), which expresses the torsion angle 
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vibrations, and It is expressed differently depending on the relationship bet-
ween w and t. 

Similar to the bending case, the change in torsional resonant frequency 
can be expressed in terms of the deposited mass as: 
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Example 1.28 simply analyzes the relationship between bending and 

torsional resonant frequencies of a cantilever without no mass attachment as 
a preparation for the next example, Example 1.29, which compares the same 
resonant frequencies when mass is deposited on the microcantilever. 
 
Example 1.28  

Compare the bending and torsional resonant frequencies of a constant 
cross-section microcantilever. 
 
Solution: 

By using Equations (1.42) and (1.51) through (1.54), which give the reso-
nant frequencies in bending and torsion, the following ratio can be formulated: 
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 (1.299) 

 
where μ is Poisson’s ratio expressing the connection between the longitudinal 
(Young’s) modulus and the shear modulus, namely: G = E/ [2(1 + μ)]. Figure 
1.78 plots the resonant frequency ratio as a function of two non-dimensional 
parameters by considering μ = 0.25 for a polysilicon material. As Figure 1.78  
 

 
 
 
 
 

 
 
 
 
 
 
 

Figure 1.78 Torsion-to-bending frequency ratio in terms of geometry parameters 
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shows it, the torsional resonant frequency is 10 to 40 times larger than the 

 
Example 1.29 

Consider mass attaches in a point-like manner on a constant cross-section 
microcantilever at l1 = l2 (as shown in Figure 1.75). Compare the altered bending 
and torsion resonant frequencies. 
 
Solution:  

By using Equation (1.287), the modified bending resonant frequency 
becomes: 
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 (1.300) 

 
Similarly, Equation (1.295) gives the altered resonant frequency as: 
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The following non-dimensional variables have been considered in the nume-
rical results presentation that follows: cl = l1/w, ct = t/l, and cw = w/l. The plot 
of Figure 1.79 shows the torsion-to-bending altered resonant frequency ratio 
as a function of cl and m by considering that ct = 0.05 and cw = 0.2. For the 
parameter ranges that have been chosen for this example, the altered torsion 
resonant frequency is 10.5 to 11.25 times larger than the bending one. The 
next plot, shown in Figure 1.80, represents the variation of the frequency ratio 
in terms of ct and cw, by considering that cl = 0.5 and m = 10–12 kg.  
 
 
   
 
 
    
 
 
 
 
 
 

Figure 1.79 Torsion-to-bending altered resonant frequencies (ct = t/l = 0.05, cw = w/l = 0.2) 
 

bending resonant frequency for the geometric parameter ranges. As canti- 
levers become relatively thicker and wider, the torsional and bending resonant
frequencies get closer. 
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Figure 1.80 Torsion-to-bending resonant frequencies (cl = l1/w = 0.25, m = 10–12 kg) 
 
The frequency ratio ranges between a value of 2 (relatively thick and wide 
cantilever configurations) and 20 (for very thin and narrow cantilevers), as 
illustrated in Figure 1.80.  
 
1.5.2.2 Single-Profile Variable Cross-Section Microcantilever 
 
For single-profile variable cross-section microcantilevers, the formulation is 
similar to the one derived for constant-cross section microcantilevers that 
was just presented. The only difference consists in the geometric properties 
being functions of x. As thus, the altered bending resonant frequency becomes: 
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The bending distribution function fb(x) is given in Equation (1.30) in its pre-
cise form and in Equation (1.37) under the simplifying assumption that the 
cross-section is constant. 

Similarly, the altered torsion resonant frequency is calculated as: 
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t
(1.49)—for variable cross-section—or (1.51)—in simplified form—for a 
constant cross-section bridge. 
 
Example 1.30 

Determine the total equivalent mass for a resonant microcantilever or 
microhinge when a mass of m attaches on it at a distance l1 measured from 
one end of the beam (the free one for cantilevers or one of the fixed ends for 
bridges). Consider the beam has a single-profile variable cross-section. 
 
Solution: 

For beams, the bending resonant frequency is the one of interest and 
finding the total equivalent mass reduces to expressing the kinetic energy 
after mass addition. Definitely: 
 
 0T T T  (1.304) 
 
where T0 is the original kinetic energy of the beam, which can be calculated by 
means of Equation (1.3) and T is the kinetic energy produced by the added 
mass, which can be expressed as: 
 

 
2

1( , )1
2
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 (1.305) 

 
The time- and space-dependent deflection uz (x,t) is discretized in both time 

function fb (x); Equation (1.7)), as: 
 
 ( , ) ( )sin( )z z bu x t u f x t  (1.306) 
 

z

0
time-independent maximum kinetic energy is: 
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2 z b b

l

T u A x f x dx mf l  (1.307) 

 

Equation (1.307) contains m, which is moderated/weighted by the bending 

with the torsion distribution function f (x) being given in either Equation 

It has been shown in Section 1.2.2 when introducing the lumped-parameter 

(by means of Equation (1.5)) and space (by means of the bending distribution 

where u  is the maximum deflection (free end for cantilevers and midpoint 

valent mass of the beam, reduced at the point of interest (where the maxi-
mum deflection is recorded). The second term in the same bracket of 

for symmetric bridges). By using Equation (1.306) to express T  and T, the 

method that the first term in the bracket represents the original equi-
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distribution function corresponding to the landing position of the added mass. 
Consequently, the total equivalent mass is: 
 
 ,0b b bm m m  (1.308)
 
with: 
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Example 1.31 

Express the mass that attaches to a resonant single-profile microcantilever 
in terms of the frequency shift, the original beam mass and resonant frequency, 
by also considering the landing position of the additional mass. Study the 
errors that are set when using the original quantity m instead of the weighted 
one mb of Equation (1.309). 
 
Solution: 

In the brief discussion at the beginning of the section on mass detection 
by resonant microdevices, it has been shown that a simplification in carrying 
out an analysis is to consider that the total mass (after external matter attach-
ment) is simply the sum of the original beam mass mb,0 and the unweighted 
additional mass m. In reality, the total (final) mass contains the weighted 
added mass mb of Equation (1.309). Consequently, Equation (1.182) 
transforms to: 
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 (1.310) 

 
The same consideration changes Equation (1.284) into: 
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The errors produced when utilizing m instead of mb are quantified by 
considering the following ratio resulting from Equation (1.309): 
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Figure 1.81 Error ratio between weighted and actual added mass as a function of landing 
position 
 
For a single-profile microcantilever, the simplified bending distribution function 
is given in Equation (1.37) and therefore the error ratio of Equation (1.312) 
becomes: 
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 (1.313) 

 
By using the connection l1 = c l, Figure 1.81 plots the inverse of the error ratio 
as a function of cl. 

The differences between the two mass fractions appear large, and the 
difference grows larger as the landing position moves toward the cantilever’s 
root. It should be considered, however, that the added mass enters square-
rooted into the bending resonant frequency (and this diminishes the dif-
ferences). In addition, the added mass is many times just a very small fraction 
of the resonator’s mass, and therefore the bending resonant frequency is ex-
pected to be less sensitive to the way of considering the added mass (original 
or weighted). To highlight these two aspects, one can construct a ratio 
between the altered resonant frequency that takes the weighted added mass 
and the one that simplifies the approach and considers the actual added mass. 
This ratio is:  
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where fm is the mass ratio defined in Equation (1.311). Since fb (l1) can be 
expressed in terms of cl = l/l1, the frequency ratio of Equation (1.314) 
depends only on fm and on cl and Figure 1.82 illustrates this relationship. 

Figure 1.82 Resonant frequency ratio: Equation (1.314) as a function of landing position of 
added mass and mass fraction 
 
As Figure 1.82 indicates, the differences between the two resonant frequencies 
are small, even for large mass fractions and locations of this additional mass 
that are very close to the microcantilever root. 
 
1.5.2.3 Paddle Microcantilever 

 

a and b, as sketched in Figure 1.83. 

Figure 1.83 Top view of a paddle microcantilever with point-like attached matter 
 

A paddle microcantilever is considered now in connection to mass detection
of point-like attached matter. It is assumed the particle lands at distances 
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By following again Rayleigh’s procedure, applied this time to the two-segment 
paddle configuration, the altered bending frequency can be expressed as: 
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 (1.315) 

 
where the simplified bending distribution function of Equation (1.37) can be 
used. Similarly, for torsion, the altered resonant frequency is: 
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 (1.316) 

 
where the torsion distribution function can be the simplified one of Equation 
(1.51). It can be seen that whether the modified bending frequency depends 
only on the parameter a, the torsion resonant frequency depends on both 
landing parameters, a and b. 
 
Example 1.32 

Determine the mass that can be determined through monitoring the 
change in the bending resonant frequency versus the mass detected through 
torsion resonant frequency for a paddle cantilever and a sampling frequency 

1 2 1 2

E = 1.5 × 1011 N/m2 and Poisson’s ratio μ = 0.25. 
 
Solution: 

The quantity of deposited mass that is monitored through shifting of the 
bending resonant frequency can be computed by means of Equation (1.288) 
where the gb (a) function is: 
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of 50 Hz. Consider the particular case: l  = l  = 100 μm, w  = 4w  = 20 μm,
t = 1 μm, a = b = 25 μm, and the material is polysilicon with Young’s modulus 

t1 t2
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After performing the calculations, Equation (1.317) becomes: 
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For torsion, the added mass is expressed by means of the generic Equation 
(1.296) where: 
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After calculations are carried out, Equation (1.319) becomes: 
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the functions of Equations (1.318) and (1.320) are compared in terms of the 
landing parameters a and b by means of their ratio, rg = gt (a,b) / gb (a). 
 
   
 
 
 
 
 
 
 
 
 
 
  

Figure 1.84     Torsion-to-bending ratio of functions gt to gb 
 

As Figure 1.84 suggests, for small values of b (when the torsion produced 
by the additional mass is relatively small), the ratio between the torsion and 
the bending influence functions of Equations (1.320) and (1.318) is quite large. 
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As b increases, this ratio reduces significantly for any given value of a. This 
trend can also be applied to the ratio of the modified frequencies. For the 
numerical values of this example, it is found that the mass detected through 
bending is 1.61 × 10–14 kg (for an original resonant frequency of 19,732 Hz), 
whereas the mass detected through torsion is 3.16 × 10–17 kg—almost 500 
times smaller (at a resonant frequency of 593,545 Hz).  
 
1.5.3 Microbridge Support 
 
Mass deposition can also be detected by monitoring the bending and torsion 

 
1.5.3.1 Constant Rectangular Cross-Section Microbridge 
 
A constant rectangular cross-section microbridge is now studied to determine 
its altered resonant frequencies in bending and torsion when mass attaches in 
a point-like manner on it, as shown in Figure 1.85. The formulations in both 
bending and torsion are identical to the ones developed for the constant rect-
angular cross-section cantilever, only the distribution functions are the ones 
pertaining to a bridge—Equation (1.191) for bending and Equation (1.201) 
for torsion, respectively. 

Figure 1.85 Top view of a rectangular microbridge with point-like deposited mass 
 

The altered bending resonant frequency resulting from Equation (1.287) is: 
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resonant shifts of microbridges. Constant cross-section and paddle configura- 
tions will be analyzed next in conjunction with mass attachment. 

+15 1
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where m = lwt is the mass of the bridge. The attached mass can be 
expressed in the form of Equation (1.288) by taking into account the original 
bending resonant frequency of a bridge and the change in frequency occurred 
due to mass deposition. The function gb (l1) of Equation (1.289) is here: 
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The altered torsion resonant frequency is obtained from Equation (1.295) as: 
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Equation (1.323), too, can be reformulated in the form of Equation (1.296) to 
express the quantity of deposited mass in terms of the original resonant fre-
quency and the change in frequency. In this case, the function gt (l1, l2) is: 
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Example 1.33 

Evaluate the landing position (l1 and l2) of a point-like mass that attaches 
on a microbridge knowing the shifts in bending and torsion resonant fre-
quencies fb and ft. Known are also the geometry and material properties of 
the microbridge. (a) Make the computations algebraically (symbolically); (b) 
Evaluate numerically the unknowns for fb = 500 Hz, ft = 1500 Hz, m = 
10–12 kg, l = 200 μm, w = 40 μm, t = 2 μm, E = 1.65 × 1011 N/m2, μ = 0.28,  = 
2400 kg/m3. 
 
Solution: 

 

(a) The deposited mass can be expressed for both bending (by using Equa-
tions (1.288) and (1.289), and torsion) by means of Equations (1.296) and
(1.297), namely: 
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where: 
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The first Equation (1.325) can be solved for l1, namely: 
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with: 
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As shown in Equation (1.327), two solutions can be valid for l1 because both 
values are in the 0  l interval where l1 can range. 

With l1 determined, the second Equation (1.325) is used to find l2, namely: 
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following two values for l1, according to Equation (1.327): l1,1 = 25 μm and 
l1, 2 = 175 μm, and it can be seen that both are valid, because the bridge’s 

(b) The numerical solution for the algorithm presented at point (a) gives the 
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the first one with respect to the microbridge midpoint, and this makes com-
plete sense. Moreover, one single value results for l2 when using either l1,1 or 
l1,2 given above, namely: l2,1 = l2,2 = 5.7 μm, but, because torsion is insensi-
tive to one or the other semi-regions determined by the longitudinal axis, the 
landing position may also be determined by a value of 5.7 μm measured from 
the axis in the direction opposed to the one indicated in Figure 1.85. As a 
result, the mass can attach in four different positions, namely: P1 (l1 = 25 μm, 
l2 = 5.7 μm), P2 (l1 = 175 μm, l2 = 5.7 μm), P3 (l1 = 25 μm, l2 = –5.7 μm), and 
P4 (l1 = 175 μm, l2 = –5.7 μm). 
 
  1.5.3.2 Paddle Microbridge 
 
The paddle microbridge can also be used to detect mass attachment on the 
paddle area particularly (which is larger). Figure 1.86 shows the top view and 
the landing position of a point-like mass on a paddle microbridge. 

Figure 1.86 Top view of a paddle microbridge with point-like attached matter 
 

In the case of bending, and by using the lumped-parameter approach, the 
resonant frequency resulting after mass attachment is: 
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The origin of measuring the x-coordinate is at the root on the left in Figure 
1.86. The original lumped-parameter stiffness and mass are: 
 

length is 200 μm. It can also be seen that the second position is symmetric to 
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and the distribution function is the simplified one (corresponding to a 
constant cross-section bridge): 
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A similar approach produces the following torsion resonant frequency: 
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The original lumped-parameter, equivalent stiffness and mechanical moment 
of inertia are:  
 

 

1 1 2

1

1 2

1

1 2

2 2

1 2
0

22

( ) ( )

( )

l l l
t t

t t t
l

l l
t

t
l l

df x df xk G I dx I dx
dx dx

df xI dx
dx

 (1.335) 

1 1 2

1

1 2

1 2

2 2 2 2 2 2
,0 1 1 2 2

0

2
2 2 2

1 1

[ ( ) ( )
12

( ) ]

l l l

t t t
l

l l

t
l l

tJ w w t f x dx w w t f x dx

w w t f x dx

(1.336) 

Example 1.34 
Compare the resonant bending and torsion performance of sensing the 

mass of substance deposited in a point-like manner on a paddle nanobridge in 
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terms of the landing parameters a and b for a microcantilever whose 
dimensions are l1 = l2 = 10 μm, w1 = 500 nm, w2 = 2 μm, t = 80 nm. Consider 
the material parameters are E = 1.55 × 1011 N/m2, μ = 0.25,  = 2400 kg/m3. 
Also determine the quantities determined by each resonance for a resonant 
frequency variation of f = 100 Hz. 
 
Solution: 

Equations (1.330) and (1.334) enable formulating the amount of mass 
detected through bending and torsion as: 
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m b t

meters a and b of Figure 1.1.  
 

 
  

 

shift is up to 30 times higher than the amount of mass detected by the torsional 
resonant shift, except for a small range of the position parameters in an area 
located towards the microbridge axis. As b increases, the equivalent inertia 
due to torsion also increases and the corresponding torsional resonant fre-
quency decreases, and this makes the ratio rm increase, as shown in Figure 1.87. 
 

(a) (b) 

The ratio r  = m / m  is plotted in Figure 1.87 as a function of the para-
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(b) reduced-range for position parameters 

As Figure 1.87 indicates, the amount of mass detected by the bending resonant 

Figure 1.87 Bending versus torsion mass detection: (a) full-range for position parameters;
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Problems 
 
Problem 1.1 

The elastic modulus E and Poisson’s ratio μ of an unknown material need 
to be determined. Propose an experimental method to evaluate these amounts 
that would employ the resonant response of a constant rectangular cross-section 
microcantilever. 

Problem 1.2  
Calculate the bending resonant frequency of a constant rectangular cross-

section microbridge by using a distribution function that results from applying a 
distributed load over the whole microbridge length. Compare the result with 
the regular equation produced when considering the distribution function 
generated by a point force applied at the midpoint. 
 
Problem 1.3 

Using Rayleigh’s quotient method, derive the bending resonant frequency 
of the elliptically filleted microcantilever whose top view is shown in Figure 
1.88. The elliptical semi-axes are a and b, as shown in the figure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.88 Top view of elliptically filleted microcantilever 
 
Problem 1.4 

Derive the torsional resonant frequency of the elliptically filleted micro-
cantilever of Figure 1.88. 
 
Problem 1.5 

Compare the resonant frequencies (in both bending and torsion) of a 
circularly filleted microcantilever to those of an elliptically filleted one  
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considering both configurations have the same length l, minimum width w 
and thickness t. 

Problem 1.6 
Design a constant cross-section microcantilever capable of discerning a 

minimum mass of m = 10–12 kg when the detecting equipment has a 
sensitivity of f = 10 Hz. 
 
Problem 1.7 

Evaluate the total equivalent mechanical moment of inertia for a torsion-
resonant microcantilever when a mass of m attaches on it at a distance l2 

variable cross-section. 
 

Problem 1.8 
Evaluate the mass that attaches to a resonant single-profile microbridge 

in terms of the frequency shift, the original beam mass, resonant frequency, 
and position of the additional mass. Also study the errors that are produced in 
calculating the bending resonant frequency when using the original quantity 

m instead of the weighted one mb. 
 

Problem 1.9 
Two parallelepiped microcantilevers have the same geometric envelope 

defined by l = 240 μm, w = 60 μm, and t = 1 μm. Holes are perforated in the 
cantilevers: 6 × 2 in one of them and 12 × 4 in the other one. The hole radius 
is r = 1.5 μm and the edge distance is a = 6 μm. 

(a) Determine the pitch distance p for each configuration. 

2350 kg/m3. 
  

Problem 1.10 

μ
 

substance at several locations (to increase the quantity of attached mass), as 
shown in the Figure 1.89. Known are the bending resonant frequency shift 

 = 2  × 500 rad/s, also l = 40 μm, w = 20 μm, t = 0.5 μm, p = 10 μm. The 
radius of a small circular spot is measured and is equal to r = 0.3 μm and the 
thickness of a deposed mass is 0.2 μm. Considering point-like mass 
deposition, find the density of the unknown substance. 
 
 
  
 

measured from the longitudinal axis. Consider the beam has a single-profile 

(b) Evaluate the equivalent stiffness, inertia and resonant frequency (bend-

= 0.28) is functionalized locally to enable orderly deposition of an unknown 
A parallelepiped microcantilever made up of polysilicon (E = 150 GPa, 

ing and torsion) for each configuration. Known are: E = 165 GPa, 
μ = 0.25,  =
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spots 
 
Problem 1.11 

Determine the optimum length and location of a patch on a constant 
rectangular cross-section microcantilever to obtain the best separation 
between the bending and the torsion resonant frequencies. The patch and the 
microcantilever have the same width w. Known are: l = 200 μm, t1 = 0.8 μm, 
t2 = 1 μm, E1 = 140 GPa, E2 = 165 GPa, 1 = 2500 kg/m3, 2 = 2300 kg/m3.    
 
Problem 1.12 

For a non-homogeneous paddle microcantilever, compare the bending 
resonant frequency obtained by using the actual distribution functions of 
Equations (1.147) through (1.151) to the one obtained by using the simplified 
distribution function of Equation (1.37).  
 
Problem 1.13 

The paddle microcantilevers of Figure 1.90 are fabricated from the same 
material and have the same thickness t. Calculate and compare the bending 
and torsional resonant frequencies of the two configurations for the particular 
case where w1 = 2w2. 

 
Figure 1.90 Two microcantilevers formed by serial connection of rectangular segments 

Problem 1.14 
A solid trapezoid microcantilever, as the one sketched in Figure 1.12, has 

specified values of the length l, minimum width w1 and thickness t. Study the 
2

Figure 1.89 Top view of a rectangular microcantilever with point-like deposited mass in eight 

torsion-to-bending resonant frequency ratio as a function of the root width w .    
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Problem 1.15 
By using the generic model of a homogeneous, two-segment constant rect-

angular cross-section microcantilever, find the precise distribution functions 
for bending and torsion for each segment of the circular corner-filleted design 
of Figure 1.91. 

Figure 1.91 Top view of circular corner-filleted microcantilever with geometry 

Problem 1.16 
Calculate the resonant frequencies for the corner-filleted microcantilever 

of Figure 1.91 corresponding to out-of-the-plane bending and torsion.  
 
Problem 1.17 

A two-segment profile microcantilever with a rectangular cross-section 
of constant thickness t is shown in Figure 1.92. Determine its out-of-the-
plane bending and torsion resonant frequencies: algebraically (symbolically) 

 
 
 

Figure 1.92 Top view of constant-thickness two-segment trapezoid microcantilever 
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Problem 1.18 
Solve the same problem as the one of the previous problem for the two-

segment inverted trapezoid microcantilever shown in Figure 1.93. 

 
Problem 1.19 

Holes need to be perforated in a constant rectangular cross-section 
microcantilever to reduce damping forces when the microcantilever operates 
in out-of-the-plane bending. Determine the change in the bending resonant 
frequency when four holes are perforated in a row along the longitudinal 
symmetry axis of the microcantilever. The diameter of a hole is d = w/4 (w is 
the microcantilever width), the spacing between two consecutive holes is w, 
and the spacing from the two edges to the extremity holes is w/4. Consider 
the numerical values: w = 50 μm, t = 1 μm, E = 160 GPa,  = 2400 kg/m3. 
 
Problem 1.20 

Calculate the torsional resonant frequency of the microcantilever of Problem 
1.19 and compare it to the resonant frequency of the original (imperforated) 
microcantilever.  
 
Problem 1.21 

 
Problem 1.22 

1 2 2 1 2

Figure 1.93 Top view of constant-thickness two-segment inverted trapezoid microcantilever 

and numerically for l = 200 μm, w1 = 15 μm, w2 = 3 w1, t = 1 μm, E = 150 
GPa, μ = 0.28,  = 2400 kg/m3. 

Determine the change in the bending resonant frequency when a hole is 

Solve Problem 1.20 for a paddle microbridge as the one of Fig. 1.63.
Consider l  = l , w  = 2w , and  r = w /4. 

perforated at the mass center of a constant rectangular cross-section micro-
bridge with a radius r = 1/4 of its width  w  . 



Microcantilevers and Microbridges 133 

Problem 1.23 
A paddle microcantilever has its paddle and root segments fabricated of 

different materials such that E1 = 0.6 E2 and 1 = 0.8 2. Compare the bending 
resonant frequency of the inhomogeneous microcantilever to that of a homo-
geneous microcantilever, which is fabricated of the material with E1 and 1.  
 
Problem 1.24 

An unknown material attaches over the whole paddle of a micro-
cantilever with a thickness equal to that of the original microcantilever. The 
resonant bending and torsion resonant frequencies are measured before and 
after attachment, and the mass of the deposited substance is also known. Eva-
luate the elastic modulus E and Poisson’s ratio μ of the substance.  
 
Problem 1.25 

Deposition of an unknown substance is monitored by means of the 
change in the out-of-the-plane bending resonant frequency of a constant rect-
angular cross-section microcantilever. The options of functionalizing the micro-
cantilever over half its length and whole length are considered. Which of the 
two variants will ensure the best frequency shift if the substance deposits in 
layers of equal thickness in both cases? 
 
Problem 1.26 

Use symbolic calculation to determine the out-of-plane bending and tor-
sional resonant frequencies of the right circularly filleted microbridge whose 
top view is sketched in Figure 1.94 in terms of the geometric parameters r, w, 
and t (constant thickness) for a generic material defined by E and G. (Hint: 
Use the half-length model and the generic, compliance-based model). 

Figure 1.94     Top view of right circularly filleted microbridge 
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Problem 1.27 
A hole is perforated in a constant rectangular cross-section microbridge 

at the midpoint. A cylinder having the dimensions of the perforated hole and 
the material properties of the original microbridge is deposited in the same 
position on an original microbridge. Calculate the bending resonant frequencies 
of the two modified configurations. Are the deviations from the original micro-
bridge resonant frequency identical? 
 
Problem 1.28 

A circularly filleted microbridge and an elliptically filleted one (sketched 
in Figure 1.46) have the same length l, minimum width w, and thickness t. 
Compare the bending and torsion resonant frequencies of the two 
configurations. 
 
Problem 1.29 

Design a constant-thickness homogeneous paddle microbridge with an 
out-of-the-plane bending resonant frequency comprised in the 1 to 2 range. 
The microbridge has a maximum geometric envelope of l × w and the thick-
ness is also specified by fabrication to t.  
 
Problem 1.30 

Compare the bending resonant frequencies of a circularly filleted micro-
cantilever and of a constant rectangular cross-section one. Both configurations 

 
Problem 1.31 

by a circularly notched one (Figure 1.25) to obtain a higher bending resonant 

1 1 2
w2), determine the ratio of the new-to-old bending resonant frequencies. 

  
Problem 1.32 

1

 
Problem 1.33 

 = 0.25 l, find the hole radius that will increase the 
resonant frequency by 20%. Assume l = 400 μm and  w = 80 μm.  

have the same thickness t, same length l, and the width of the constant cross-
section design is equal to the tip width of the circularly filleted one. 

1

2 2l1, w2 = 2w1, l1 = 100 μm, w1 = 20 μm,  t = 1 μm, and the material is 
polysilicon. 
 

tion of the hole is at l
cantilever to increase its original bending resonant frequency. If the posi-

A paddle microcantilever, as the one shown in Figure 1.21, is replaced 

thickness t, paddle dimensions (l

 r = w /4, 
l  = 

A circular hole is perforated in a constant rectangular cross-section micro- 

A small hole is perforated in a paddle microbridge. Study the change

frequency. Considering both configurations are defined by the same constant 

in the bending resonant frequency with the hole position. Consider

 and w ), as well as neck dimensions (l  and 
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Problem 1.34 
A constant rectangular cross-section microcantilever defined by a length 

l, width w, and thickness t is perforated in two variants: in the first variant, 
one hole is perforated at the symmetry center; in the second variant, eight 
holes are perforated at a distance a = l/20 from all the edges on two rows of 
four. Considering the pitch is the same about the x- and y-directions and 
equal to p = 4r (r is the hole radius): 

 
(a) Find a relationship between l and w.    
(b) Compare the bending resonant frequencies of the two perforated micro-

cantilevers. 
 
Problem 1.35 

 
Problem 1.36 

Solve Problem 1.35 by considering a bimorph microbridge instead of the 
microcantilever. 
 
Problem 1.37 

manner at the tip of a constant rectangular cross-section microcantilever over 
a length of l1 = l/3 (l is the cantilever length, its width is w = l/6, and the 
thickness is ts) over the whole width and with a thickness tp = ts/2. Known is 

Problem 1.38 

 
Problem 1.39 

A three-layer microbridge is studied, as the one analyzed in Example 
1.26 and sketched in Figure 1.72, whose patches thickness is tp = 2ts/3 (ts is 
the thickness of the supporting bridge) and length is l1 = 1/2 (l is the total 
length). Estimate its bending resonant frequency compared to the one of the 
microbridge alone (without the two patches). 
 
 
 

Study the changes in the bending and torsional resonant frequencies of a 
bimorph cantilever with equal-length, equal-thickness layers in terms of the 
material properties. Consider t = 1 μm and w = 40 μm. 

the shift in the bending frequency of b, Es, Et and s. 
 

A symmetric trapezoid microbridge, as the one illustrated in Figure 1.48, 
is defined by w1 = 30 μm, w2 = 70 μm, l = 300 μm, and t = 800 nm. Find its 

resonant frequencies are 1 × 106 Hz and 1 × 10  Hz, respectively, and the 
mass density is  = 2200 kg/m3. Assume the direct and shear elastic modulii 
are connected as: G = E/[2(1+μ)] where μ is Poisson’s ratio. 

material elastic properties E, G and μ, when the measured bending and torsion 

Find the density of an unknown substance that deposits in a layer-like 

5
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Problem 1.40 
Calculate the bending resonant frequency of the reversed trapezoid micro-

bridge configuration shown in Figure 1.95 and compare it with the bending 
frequency of the trapezoid configuration of Figure 1.48. 

Figure 1.95 Top view of reversed trapezoid microbridge 

Problem 1.41 
Determine the torsion resonant frequency of the microbridge of Figure 

1.95 and compare it to the similar frequency of the configuration shown in 
Figure 1.48. 
 
Problem 1.42 

The symmetric microbridge shown below in Figure 1.96 is designed to 
replace a constant rectangular cross-section microbridge having the same 

Figure 1.96 Top view of circular corner-filleted microbridge with geometry 

total length l, (l = l1 + 2r) width w, and thickness t. Calculate the radius of the 
fillet, r, which will increase the bending resonant frequency by 25%. Known 
are: r = 25 μm,  l1 = 150 μm, w = 10 μm, and t = 1 μm. 
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Problem 1.43 
A circular hole is perforated in a constant rectangular cross-section 

microcantilever and in an identical microbridge. If the dimensions of the two 
microresonators are l, w, and t, and knowing that the hole is positioned at the 
symmetry center, compare the two bending resonant frequencies as a func-
tion of the hole radius r. 
 
Problem 1.44 
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Mass attaches in a point-like manner at the symmetry centers on a con-
stant rectangular cross-section microcantilever and on an identical microbridge, 
as in Problem 1.43. Compare the two altered resonant frequencies.   
 



 

Chapter 2 
 
MICROMECHANICAL SYSTEMS: MODAL 
ANALYSIS 
 
 
 
 
 
 
 
 
 
2.1 INTRODUCTION 
 

 
2.2 SINGLE DEGREE-OF-FREEDOM MASS-SPRING 

MICROMECHANICAL SYSTEMS 

This chapter studies the resonant/modal response of micromechanical systems 
by separating their components in either mass elements, which only contribute 
to the system’s inertia, or spring elements, which only affect the overall elastic 
properties. The lumped-parameter method can thus conveniently be applied to 
model the free vibratory response of micromechanical systems. While some 
of them behave as single degree-of-freedom (DOF) systems, others undergo 
complex vibratory motion, which is defined by more than one DOF. For the 
latter category, it is possible at times to analyze each DOF individually, and 
such a motion is known as uncoupled. In other cases, two or more DOF com-
bine in terms of stiffness and/or inertia, which make the respective motions 
to be coupled. Lagrange’s equations are used to model the free response of 
multiple DOF micromechanical systems. Several example problems of mass-
spring microsystems undergoing linear or/and rotary resonant vibrations are 
amply discussed and fully solved.  

 
In many instances, microelectromechanical systems (MEMS) consist of masses 
(such as proof masses in accelerometers) and springs (such as microsuspen-
sions), which perform either linear or rotary motion, depending on the char-
acteristics of actuation and suspension. In such cases, it is advantageous to 
use lumped-parameter modeling, whereby the stiffness of the microsystem 
results solely from the spring suspension and the inertia fraction is given only 
by the proof mass. Some systems naturally behave as single DOF ones, with 
their motion being described by one physical parameter (commonly a displace-
ment for translatory systems, and an angle for rotary one). For multiple DOF 
systems, where several physical coordinates define the motion, there are 
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2.2.1 Paddle Microcantilever 
 

 

 
Figure 2.1 Paddle microcantilever with flexible, massless hinge and rigid proof mass 

 

situations in which different motion types can be characterized individually, 
with no interference from other motions, and in such cases each individual 
motion can be regarded as a single DOF one. Chapter 1, which presented the 
resonant response of microcantilevers and microbridges, illustrated this 

While Chapter 1 analyzed the cases in which inertia and stiffness fractions 
were produced by all segments composing a micromember, this subsection 
will assume that some segments of a microdevice are rigid, and therefore 
only contribute to the system’s inertia, while others, which are compliant, 
behave as springs and therefore only alter the elastic properties of the micro-
system. The concrete examples of paddle microcantilevers and paddle micro-
bridges will be studied as belonging to this first single DOF category. The 
second category of single DOF micromechanical systems comprises designs 
that can behave as multiple DOF systems, but whose complex motion can be 
decomposed into several independent motions, each being equivalent to a 
single DOF system. 
 

The paddle microcantilever, whose sketch is shown in a three-dimensional (3D) 
view in Figure 2.1, is the simplest example in which the flexibility is pro-
vided by the slender root portion (the hinge) and the inertia results from the 
tip mass (the paddle). This example has been studied in Chapter 1 (see Figure 
1.21 for the top-view dimensions) by assuming that both segments contribute 
flexibility and inertia to the overall system.  

category by studying the bending and torsion resonant frequencies separately. 
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The in-plane bending (the hinge rotates about the z-axis) is defined by 
the following stiffness and mass: 
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and the corresponding resonant frequency is: 
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 (2.2) 

 
The out-of-the-plane bending resonant frequency (when the hinge rotates 

about the y-axis) is calculated similarly as: 
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 (2.3) 

 
For a very thin rectangular cross-section, the lumped parameters defining the 
torsional resonant frequency are: 
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and therefore the corresponding resonant frequency is: 
 

 2 2
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2t
Gt wt

l l t w t w
 (2.5) 

 
 
Example 2.1 

Compare the torsion and out-of-the-plane resonant frequencies of a 
microcantilever in terms of the defining geometric parameters by using the 
lumped-parameter model previously derived. 
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Solution: 
By taking the ratio of the two frequencies (Equations (2.5) and (2.3)), the 

following equation is obtained: 
 

 2

2 2
, 1 1

2 2
1

t

b y

l

t w
 (2.6) 

 
where μ is Poisson’s ratio, which connects the E and G elastic modulii. When 
the two resonant frequencies are equal (the ratio of Equation (2.6) is equal to 
1), the length of the hinge needs to be: 
 

 * 2 2
2 1 10.35 1l t w  (2.7) 

 
The possible values of l2

* are plotted in Figure 2.2 in terms of the thickness t1 
and width w1 of the tip rigid segment and for polysilicon (with μ = 0.25). 
 

 
 

Figure 2.2 Limit length of hinge for equal bending and torsion resonant frequencies 
 

Obviously, for values of the hinge length that are larger than the limit value 
of Equation (2.7), the torsional resonant frequency is larger than the out-of-
the-plane bending one. 
 
Example 2.2 

Compare the out-of-the-plane bending resonant frequencies as yielded by 
the lumped-parameter model (Equation (2.3)) and the fully compliant, full-
inertia one (Equation (1.91)). Perform a similar comparison for the torsional 
resonant frequencies by using Equations (2.5) and (1.93). Assume the two 
segments have the same thickness (i.e., t1 = t2 = t). 
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Solution: 
When the segments have identical thicknesses, the two resonant 

frequencies of Equations (2.3) and (2.5) simplify to: 
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 (2.8) 

 
By combining Equation (2.8) with Equation (1.91), which formulates the 
bending resonant frequency of a paddle microcantilever where the equivalent 
stiffness and inertia fractions come from both segments, it is possible to 
express their ratio in terms of the width and length ratios as shown in the plot 
of Figure 2.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3 Out-of-the-plane bending resonant frequency ratio for a microcantilever: simplified 
model versus fully compliant, full-inertia model 
 
A similar comparison is made between the two torsion resonant frequencies 
corresponding to the two models, Equation (2.58) and Equation (1.93). The 
ratio of the two frequencies is again plotted in terms of the length and width 
ratios, when w1 = 100 μm and t = 1 μm. 

As the two plots of Figures 2.3 and 2.4 indicate, the predictions by the 
simplified model are larger than the ones that consider compliance and 
inertia of both segments. 
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Figure 2.4 Torsional resonant frequency ratio for a microcantilever: simplified model versus 
fully compliant, full-inertia model 
 
2.2.2 Paddle Microbridge 

 
Another design in which partial compliance from the slender segments and 
inertia from the larger ones is usually considered in modeling is the paddle 
microbridge of Figure 2.5, whose top-view dimensions are indicated in 
Figure 1.55. 

Figure 2.5 Paddle microbridge with flexible, massless hinges and rigid proof mass 
 

Again, the main resonant motions are produced by in-plane and out-of-
the-plane bending, as well as torsion of the end hinges. The mass is entirely 
provided by the proof mass and is considered lumped at the microbridge 
midpoint. The stiffness is produced by the two hinges, which act as two 
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springs in parallel. In bending, the boundary conditions for a hinge are fixed 
and guided, because the middle mass undergoes pure translations during 
bending vibrations. 

The following stiffness and mass correspond to in-plane bending (hinge 
rotation about the z-axis): 
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and the corresponding resonant frequency is: 
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Similarly, the resonant frequency corresponding to out-of-the-plane vibra-
tions (hinge rotation about the y-axis) is: 
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The stiffness and inertia corresponding to torsion and very thin cross-sections 
are: 
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Consequently, the torsion resonant frequency is: 
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Example 2.3 

Compare the torsion resonant frequency to the out-of-plane bending 
resonant frequency for a paddle microbridge by using the corresponding 
lumped-parameter models. 
 

b y,
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Solution: 
By combining Equations (2.13) and (2.11), the ratio of the two resonant 

frequencies is expressed as: 
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By enforcing that the out-of-the-plane bending resonant frequency be equal 
to the torsional one (the ratio of Equation (2.14) is one), results in the follow-
ing condition: 
 

 * 2 2
1 2 20.71 1l t w  (2.15) 

 
For l1 > l1

*, the torsional resonant frequency is larger than the out-of-the-
plane bending one. 

 
Example 2.4 

Compare the out-of-the-plane bending resonant frequencies, as well as 
the torsional ones, by using the lumped-parameter models (Equations (2.11) 
and (2.13)) and the fully compliant, full-inertia ones (Equations (1.235) and 
(1.237)) for a paddle microbridge. Consider the three segments have the 
same thickness (i.e., t1 = t2 = t). 
 
Solution: 

The resonant frequencies of Equations (2.11) and (2.13) become: 
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 (2.16) 

 
A plot similar to the one of Figure 2.3 in which the paddle microcantilever 
has been studied is drawn for the paddle microbridge, as shown in Figure 2.6. 
A similar comparison is also made between the two torsion resonant frequen-
cies corresponding to the two models. The ratio of the two frequencies is 
again plotted in terms of the length and width ratios, when w1 = 10 μm and  
t = 1 μm. 
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Figure 2.6 Out-of-the-plane bending resonant frequency ratio for a microbridge: simplified 
model versus fully compliant, full-inertia model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.7 Torsional resonant frequency ratio for a microbridge: simplified model versus fully 
compliant, full-inertia model 

 
As the two plots of Figures 2.6 and 2.7 suggest, the predictions by the simpli-
fied model are larger than the ones that consider compliance and inertia of 
both segments. 
 
2.2.3 Rotary Motion Systems 
 

geometric center and perpendicular to its plane can be elastically supported 
by a torsion spring, as sketched in Figure 2.8. 
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 A rigid body undergoing rotation about an axis that passes through its
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Figure 2.8 Single DOF rotary spring-mass system  
 

The resonant frequency of interest in this case is the one related to the 
rotary motion and is calculated as: 
 

 t
z

z

k
J

 (2.17) 

 
where the stiffness kt is related to the spiral spring and the moment of inertia 
Jz corresponds to the rotary hub.  
 
Example 2.5 

Find the resonant frequency of the torsional resonator sketched in Figure 
2.8, whereby a central hub rotates about a fixed shaft and is elastically 
supported about the substrate by a spiral spring. Consider the case in which 
the spiral spring has a small number of turns as well as the design with a 
large number of turns. 
 
Solution: 

The geometry of a spiral spring with a small number of turns is shown in 
Figure 2.9, and the torsional stiffness of such a spring (expressed with respect 
to the free end) is (e.g., see Lobontiu and Garcia [1]): 
 

 
1 2 max

2 z
t

EIk
r r

 (2.18) 

 
Equation (2.18) is valid for a thin cross-section where bending effects are 
predominant. For relatively thick cross-sections, the torsional stiffness is (see 
also Lobontiu and Garcia [1]): 
 

 
max

t
eAEk  (2.19) 

where e is the eccentricity between the cross-section centroidal axis and the 
neutral axis (the one where normal stresses are zero); the eccentricity (e.g., 
see Young and Budynas [2]) is calculated as: 
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Figure 2.9  Geometry of a spiral spring with small number of turns  

 

The resonant frequency can easily be calculated by using the generic 
Equation (2.17) and either Equation (2.18) or (2.19) depending on the cross-
section. 

For a spiral spring with a large number of turns, the stiffness—as shown 
in Chironis [3], Wahl [4], or Lobontiu and Garcia [1]—is: 
 

 z
t

EIk
l

 (2.21) 

 
where l is the length of the spiral. Equation (2.21) is identical to the one 
pertaining to a straight beam of length l under bending by a point moment. 
 
Example 2.6 

Compare the torsional resonant frequencies of two spiral-spring 
resonators predicted by the small and large number of turns models when 
considering the cross-section is thin and the spiral is logarithmic. 
 
Solution: 

When the accelerometers are identical, the large-to-small number of 
turns spiral spring resonant frequency ratio is: 
 

 1 2 max

2
r r

r
l

 (2.22) 

The length of the spiral is calculated by integration of an element length dl:  
 

 
max max

0 0

l dl rd  (2.23) 
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In the case of a logarithmic spiral spring, the polar equation describing this 
curve is: 
 
 br ae  (2.24) 
 
The unknown constants a and b are determined by considering the limit 
conditions: 
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Therefore, Equation (2.24) becomes: 
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The length of the logarithmic spiral segment and the resonant frequency ratio 
can be calculated from Equations (2.23), (2.22), and (2.26) as: 
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By using the radii relationship r2 = cr1, the resonant frequency ratio of the 
second Equation (2.27) is plotted in Figure 2.10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

As Figure 2.10 illustrates, the resonant frequency prediction by the large 
number-of-turns model is slightly than the one by the small number of turns. 
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Figure 2.10 Torsional frequency ratio (Equation (2.27)) as a function of the radii ratio 



Micromechanical Systems 151 

Also suggested in the same Figure 2.10 is that the resonant frequency ratio 
increases with larger maximum-to-minimum radius ratios.   
 
Example 2.7 

Determine the torsion-related resonant frequency of the rotary system of 
Figure 2.11, whereby the mobile hub is supported by n curved-beam springs. 
Study the influence of angle  on the resonant frequency. 

Figure 2.11 Set of curved beams acting as springs for the concentric hub-hollow shaft system 
 
Solution: 

Equation (2.17) changes to: 
 

 t
z

z

nk
J

 (2.28) 

 
where kt is the stiffness of one curved-beam spring and Jz is the mechanical 
moment of inertia of the mobile hub. The torsional stiffness of a single spring 
is given in Lobontiu and Garcia [1], based on Figure 2.12, and is not 
provided here, but in essence its equation is derived by expressing the 
relationship between the moment Mz and the corresponding angular 
deformation z at the free end of the curved beam in Figure 2.12. 

Figure 2.12  Curved-beam spring with geometry 
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The explicit form of Equation (2.28) is: 
 

 
2

2 3 2 2 cos sin 16cos 9
2 8cos cos 2 8sin 1 cos

z
z

z

nEI
RJ

(2.29) 

 
One modality of studying the influence of angle  on the resonant frequency 
of Equation (2.29) is by means of the following ratio: 
 

 
( )

( / 2)
z

z

r  (2.30) 

 
and this function is plotted in Figure 2.13 in terms of  when  ranges from 

maximum at approximately  = 92 . In other words, the resonant frequency 
increases (nonlinearly) with the angle  up to 92  and then decreases (also 
nonlinearly) as the angle further increases past the 92  value. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.13 Torsional frequency ratio (Equation (2.30)) as a function of  

 

2.2.4 Microaccelerometers 
 

Microaccelerometers are employed to measure acceleration by using various 
means of transduction and by monitoring linear or rotary motion. Single 
DOF linear accelerometers are presented in this subsection in terms of their 
main resonant frequency. Rotary microaccelerometers, which are essentially 
single DOF systems, possibly supported by several dedicated springs, operate 
on the principle described in the previous subsection. 

The bending free vibrations of the paddle microbridge have been analyzed 
in this chapter by means of a simple lumped-parameter model made up of a 
mass and two springs acting in parallel, as sketched in Figure 2.14. 

1  to 120 . As Figure 2.13 indicates, the resonant frequency reaches a° °
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Figure 2.14 Single DOF system composed of a mass and two parallel springs 
 
This system is a single DOF system, and its resonant frequency is calculated as: 
 

 
2k
m

  (2.31) 

 
Microaccelerometers are often times designed based on the principle of 
Figure 2.14, and a few single-DOF accelerometers are analyzed next. 

In what follows it will be assumed that the proof mass is defined by its 
mass m and that the hinge is defined by its in-plane dimensions l (the length) 
and w (width), whereas its thickness (the out-of-the-plane dimension) is t. 
 
2.2.4.1 Inclined-Beam Microaccelerometer 

 
The mass-spring microsystem of Figure 2.15 is used for linear motion about 
the indicated direction. Bending of the four beams ensures the alternative 
linear displacement of this system. 

Figure 2.15 Single DOF accelerometer with four inclined beam-springs 
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Figure 2.16 Load, displacement, and boundary conditions for an inclined beam-spring  
 
The stiffness about the direction of motion for one inclined beam is derived 
by Lobontiu and Garcia [1] based on the geometry given in Figure 2.16 and 
by using a generic formulation where the hinge is not necessarily a constant 
cross-section one, as the case is here. The procedure of finding the stiffness 
about the motion direction implies applying the force F, determining the 
corresponding displacement u, and finding the ratio of the two, which is the 

 

 
2 2

3

sin cosl wk Etw
l

 (2.32) 

 
Because there are four inclined beams that act as parallel springs, the total 
stiffness is four times the one given in Equation (2.32), and by also using the 
mass of the proof mass, the resonant frequency about the motion direction is: 
 

 
2 2sin cos2 Etw l w

l lm
 (2.33) 

 
2.2.4.2 Saggital-Spring Microaccelerometer 

 
Another accelerometer that operates as a single DOF system is the saggital-
spring one, shown in Figure 2.17. The saggital spring was introduced by 
Lobontiu and Garcia [1], who derived its stiffness about the direction of 
motion of the proof mass.  
 The stiffness of half the saggital spring, as shown in Lobontiu and Garcia [1], 
is based on applying a force F and calculating the resulting displacement u 
(Figure 2.18) for half the saggital spring, namely: 

stiffness. The formulation given by Lobontiu and Garcia [1] takes into 
consideration bending and axial deformations, and reduces for the constant 
rectangular cross-section hinge to: 
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Figure 2.17 Single DOF microaccelerometer with two end saggital springs 

Figure 2.18 Load, displacement, and boundary conditions for half a saggital spring 
 

 
6
cos

zEIk  (2.34) 

 
A saggital spring is formed of two identical halves, which act as two springs 
in parallel, and therefore the total stiffness of a spring is twice the one given 
in Equation (2.34). By taking into account that two saggital springs are 
connected in parallel to the proof mass, as shown in Figure 2.17, the total 

frequency of this accelerometer can be expressed as: 
 

 
2 6 zEI

 (2.35) 

l

stiffness is twice the one of a single spring; consequently, the resonant 

3 2

l cos ml
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2.2.4.3 U-Spring Microaccelerometer 
 

Figure 2.19 illustrates another accelerometer designed for one-directional 
motion, which is supported by two U-springs. The U-spring was also des-
cribed in terms of the stiffness characteristics about the main directions of 
motion by Lobontiu and Garcia [1]. When its side (shorter) arms are consi-
dered rigid compared to the long ones, the U-spring can be considered a 
particular design of the saggital spring (particularly when  = 0). Lobontiu 
and Garcia [1] considered three different U-spring configurations, which are 
sketched in Figure 2.20. 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2.19 Single DOF microaccelerometer with two end U-springs 

Figure 2.20 U-spring configurations with: (a) sharp corners; (b) semicircular corner; (c) rounded 
corners  

 

 

rations are different. In case the three segments composing the U-spring of 

the ratio of the force F and the corresponding displacement u at the same 
point about the motion direction) that the stiffness of half a U-spring is: 

The variant with sharp corners is only analyzed here, and the geometry  
of half a U-spring with sharp corners is given in Figure 2.21. 

Lobontiu and Garcia [1] gave the stiffnesses about two in-plane and the
out-of-the-plane directions for the three configurations shown in Figure 2.20
by taking the general case where the segments composing the three configu-

Figure 2.21 have the same constant cross-section, it can be shown(by taking 
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Figure 2.21 Geometry and boundary conditions of a half U-spring with sharp corners 
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 (2.38) 

 
where m is the mass of the proof mass. 
 
2.2.4.4 Folded-Beam Microaccelerometer 

 
A proof mass that is elastically suspended and supported by two folded 
springs is shown in Figure 2.22. This configuration, too, can be considered as 
a single DOF system, when only the motion indicated in Figure 2.22 is of 
interest, and the two springs act in parallel. The stiffness about the motion 
direction has been derived by Lobontiu and Garcia [1] and is based on the 
static model of a half folded beam, illustrated in Figure 2.23. Assuming the 

different cross-sections, it can be shown (e.g., see Lobontiu and Garcia [1]) 
that the stiffness about the motion direction is: 

 

 1 2
3 3
1 2

12 z zI Ik E
l l

 (2.39) 

 (2.36) 

2

two elastic members of the model sketched in Figure 2.22 have constant but 

tk 4k

The resonant frequency of the U-spring accelerometer is:

The total stiffness corresponding to two springs is:

 (2.37) 
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The two halves of a folded-beam are connected in parallel, and the proof 
mass is elastically opposed by two folded-beam springs that are connected in 
parallel. Again, the total stiffness of this system is four times the stiffness of 
Equation (2.39), and therefore the resonant frequency of the system having a 
point-like mass m is: 
 

 
3 3

1 2 2 1

1 2 1 2

4 3 z zE I l I l
l l ml l

 (2.40) 
 

 

Figure 2.22 Single DOF microaccelerometer with two side folded-beam springs 
 

Figure 2.23 Geometry of a half folded-beam spring 
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2.2.4.5 Serpentine-Spring Microaccelerometer 
 

The serpentine-spring microaccelerometer of Figure 2.24 is formed of a mass 
(which can be considered as a point-like mass) and two serpentine springs. 
The springs allow the point-like mass to undergo all six possible motions of a 
rigid solid, namely: in-plane translations about the x- and y-axes, out-of-the 
plane translation about the z-axis, and three rotations about the three axes 
mentioned above. 

Figure 2.24 Serpentine-spring microaccelerometer 
 

The top view of a microaccelerometer with two identical basic serpentine 
springs is sketched in Figure 2.25 and the dimensions of a basic serpentine 
spring are indicated in Figure 2.26. 
 

Figure 2.25 Top view of a microaccelerometer with basic serpentine springs 
 

Two modal motions are studied here: the translation one about the x-axis and 
the rotation one about the same axis (Figure 2.24). The two motions can be 
regarded as independent and their resonant frequencies be found separately, 
although later in this chapter a problem of this type will be studied as a 
multiple DOF system, with the DOF being statically coupled. 
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Figure 2.26 Geometry of a serpentine spring 
 

An approximation can be made by assuming the stiffnesses of one basic 
serpentine spring are the inverses of the corresponding compliances, which 
are given in Lobontiu and Garcia [1], namely: 
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2 1

3
2 2 3

2 2

z
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y t
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 (2.41) 

 
where Iz and Iy are the spring cross-sectional moments of inertia related to 
bending, and It is the similar torsion-related moment of inertia. By taking into 
account that each modal motion of the serpentine-spring microaccelerometer 
has to include two springs that are in parallel, the translation frequency can 
be expressed as: 
 

 2
1 1 2

3
2 3

z
tr

EI
ml l l

 (2.42) 

 
whereas the rotation resonant frequency is: 
 

 
2 12

y t
rot

z y t

EGI I
J EI l GI l

 (2.43) 

 
Example 2.8 

Design a serpentine-spring microaccelerometer whose translation resonant 
frequency is half the rotation resonant frequency. Consider the spring cross-
section is rectangular with ws = 5 ts and l1 = 5 l2. The proof mass is prismatic 
and its thickness is equal to the one of the serpentine spring. Consider the 
shear modulus is related to the longitudinal modulus as: G = 0.4 E and 
propose a design for the particular case where ts = 1 μm. 

l1 

l2 

l1 

l2 
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Solution: 
By using Equations (2.42) and (2.43), together with the particular design 

conditions of this example, the following resonant frequency ratio is formulated: 
 

 
2

2.21
1

rot l

tr w

c
c

 (2.44) 

 
with the non-dimensional parameters cl and cw defined as: cl = l2/ts and cw = 
w/ts. Figure 2.27 is the 3D plot of the frequency ratio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.27 Rotation-to-translation resonant frequency ratio 
 
By using the value of the 2 for this ratio, Equation (2.44) is reformulated as: 
 

 20.9 1l wc c  (2.45) 
 
and Figure 2.28 is the 2D plot of it. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.28 Length-to-thickness ratio versus width-to-thickness ratio 
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Numerically, when ts = 1 μm, Equation (2.45) and the plot of Figure 2.28 
enables expressing l2 in terms of w. For a value of w = 100 μm it follows that 
l2 = 90 μm. Given the other dimensional relationships of this problem, it 
follows that: l1 = 450 μm and ws = 5 μm. While the serpentine is fully 
designed, the length of the proof mass is not constrained mathematically, and 
therefore can be selected arbitrarily.  
 
2.2.4.6 Bent-Beam Spring Microaccelerometer 

 
Another accelerometer enabling planar motion is the bent-beam spring one 
shown in Figure 2.29. The relevant stiffnesses and compliances of the bent-
beam spring are provided by Lobontiu and Garcia [1], as briefly mentioned 
in the following. This system is primarily used in translational motions about 
the planar x- and y- axes. Out-of-the-plane motion of the proof mass is also 
possible as well as rotations about the x- and y-axes, but these latter motions 
are mostly considered as parasitic and are not studied here. Figure 2.30 
shows the geometry of a bent-beam spring. Motion about either x- or y-axis 

The simplest model will be analyzed here, which considers the two proof 
mass translation motions about the x- and y-axes are uncoupled. The (real) 
situation in which the motions are coupled will be analyzed later in this chapter, 
by considering the planar motion of the proof mass is a three DOF one. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.29 Bent-beam springs microaccelerometer 

 

 

is chiefly realized through bending of the spring legs that are perpendicular to 
the motion direction. At the same time, the legs that are parallel to the motion 
direction undergo axial deformation, which can be neglected, compared to 
the bending. By adjusting the lengths of the two legs composing a bent-beam 
spring, it is possible to favor one motion over the other. 
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Figure 2.30 Top view of a bent-beam spring with geometric parameters 
 

When the motion about the x-direction is only considered, it can simply 
be shown that the stiffness about that direction is (for one spring only): 
 

 3
2

3 z
x

EIk
l

 (2.46) 

 
Similarly, one spring’s stiffness about the y-axis is: 
 

 2
1 1 2

3
3
z

y
EIk

l l l
 (2.47) 

 

Determine the legs proportion of a bent-beam spring in a four-spring 
microaccelerometer arrangement as the one of Figure 2.29, which will make 
the translation resonant frequency about the y-axis to be n times larger than 
the one about the x-axis. 
 
Solution: 

The translation resonant frequency of the microaccelerometer about the 
x-axis combines four springs in parallel and is: 
 

 ,
4 2x x

tr x
k k
m m

 (2.48) 

 
where kx is given in Equation (2.46) and m is the proof mass. An equation 
similar to Equation (2.48) can be formulated with ky of Equation (2.47) 
instead of kx. In requiring that: 
 

Example 2.9 
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 ,

,

tr y

tr x

n  (2.49) 

 
results in: 
 

 2y

x

k
n

k
 (2.50) 

 
By using Equations (2.46) and (2.47) in conjunction with Equation (2.50) 
results in: 
 

 
1 3

cn c
c

 (2.51) 

 
where c = l2/l1. Figure 2.31 is a 2D plot showing the variation of n (the 
resonant frequency ratio) in terms of c. The plot of Figure 2.31 indicates a 
quasi-linear increase of the frequency ratio of Equation (2.49) as a function 
of the leg length ratio. It can be seen, for instance, that for a frequency ratio 
of approximately 4, the length of the leg at the anchor needs to be seven 
times larger than the one of the other leg. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.31 Resonant frequency ratio in terms of leg length ratio for a bent-beam spring 
microaccelerometer modeled as a single DOF system 

 

2.3 MULTIPLE DEGREE-OF-FREEDOM MASS-SPRING 
MICROMECHANICAL SYSTEMS 

 
The motion of multiple DOF mechanical microsystems is defined by several 
physical parameters (either linear displacement for a translatory DOF or angle 
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for a rotary DOF). The simplest situation is that of a single member that is 
rigid (and therefore behaves as a mass element) and connects to several 
spring elements. The same MEMS device can perform two different types of 
motion, in terms of its actuation. One motion is taking place in a plane parallel 
to the substrate whereby the mass involved in the motion lends the whole 
microsystem the characteristics of a three DOF system, as three coordinates 
(two translation displacements about the x- and y-directions, and one rotation 
about the z-axis) define the complex motion. Another motion that can be 
emulated through actuation is out-of-the-plane and is generally a combination 
of the remaining three elementary motions: the z-translation, and the x- and 
y-rotations. The two motion categories and their DOF are sketched in Figure 
2.32. More complex multi DOF MEMS contain more than one mass element, 
each mass element being capable of moving spatially about six DOF. 

Formulating the dynamic equations that describe the vibratory free 
response of multiple DOF micromechanical systems is achieved by lumped-
parameter modeling and utilization of Lagrange’s equations method, which is 
introduced next for classical spring systems, as well as for MEMS-type spring 
ones. Single-mass and multiple-mass mechanical microsystem examples, with 
both in-plane and out-of-the-plane motions, are then studied.  
 
 
 
 
 
 
 
 
 
 

Figure 2.32 DOF of single-mass mechanical microsystem: (a) planar motion; (b) out-of-the-
plane motion 
 
2.3.1 Lagrange’s Equations 

 
For a multi DOF vibrating system where energy conserves, Lagrange’s 
equations are: 
 

 0
i i i

d T T U
dt q q q

 (2.52) 

where qi are generalized coordinates and the dotted qi are generalized 
velocities. T represents the kinetic energy and U is the potential energy of the 
multi DOF system. The generalized coordinates set comprises the minimum 
number of parameters that completely define the state of a (vibrating) system. 
More details on this theorem can be found in specialized texts (such as those 
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of Thomson [5] or Timoshenko [6]). It is considered in the examples analyzed 
here that the generalized coordinates are actually physical displacements 
(linear and rotary), which define the positions of rigid bodies that are inter-

For a conservative system (where no forcing is exerted on the system), 
Equation (2.17) results in a n equations system, which governs the free 
vibrations of the system. Solving that system produces the resonant fre-

The first step in Lagrange’s equations method consists of identifying the 
independent motions of the system, which are identical to the number of 
DOF. Once the generalized coordinates qi are determined, the kinetic and 
potential energy terms need to be formulated, followed by derivation of the 
dynamic equations of motion corresponding to the system’s free response. 
The number of equations is equal to the number of DOF and they can all be 
collected in a matrix equation of the form: 
 
 {0}M q K q  (2.53) 
 
where [M] is the mass (or inertia) matrix, [K] is the stiffness matrix and {q} 
is the generalized coordinates vector, {q} = {q1 q2 …qn}t. The [M] and [K] 
matrices are of n × n dimension and are symmetric. 

 
2.3.1.1 Stiffness Method 
 
Left multiplication of Equation (2.53) by the inverse of the mass matrix leads 
to: 
 

1 {0}q M K q  (2.54)  

The solution to the homogeneous system (2.54) is of harmonic form, namely: 

 sin( )q Q t  (2.55) 

where {Q} is a vector containing the amplitudes of the {q} vector. Substi-
tuting Equation (2.55) into Equation (2.54) results in the following equation:  
 

 
12[ ] {0}I M K Q  (2.56) 

 
which is a homogeneous system of n linear algebraic equations with n 
unknowns. In order for the system to have nontrivial solutions, it is necessary 

quencies and the associated mode shapes.  

connected with various springs. 

 

There are two methods that enable formulating and solving the differential 
equations of the free vibrations of a multi DOF system: one is the stiffness 
method (the method generally used) and the other one (less employed, but 
equally efficient) is the flexibility/compliance method. Each of them will 
briefly be discussed next. 
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that the determinant of the matrix in the left-hand side of Equation (2.56) be 
0, namely: 
 
 det [ ] [ ] 0sI D  (2.57) 
 
where: 
 
 2  (2.58) 
 
is the eigenvalue corresponding to the resonant frequency , and: 
 
 

1[ ]sD M K  (2.59) 
 
is the stiffness-based dynamic matrix (the subscript s indicates it is based on 
stiffness). Equation (2.57)—the characteristic equation—is an n-degree alge-
braic equation that yields the eigenvalues . The theory of vibration shows 
that the first resonant frequency (or the natural frequency) and therefore its 
corresponding eigenvalue is limited as follows (e.g., see Thomson [5]): 
 

 1 ,
1

1

1 n

s iin
i

ii i
i

D
C M

 (2.60) 

 
where Ds,ii are the diagonal terms of the dynamic matrix [Ds] (the sum of the 
diagonal terms is the trace of that matrix), Mi are the diagonal terms of the 
mass matrix [M] (which is usually diagonal), and Cii are the diagonal terms 
of the compliance matrix, which is defined as the inverse of the stiffness 
matrix [K]. 

For every eigenvalue, Equation (2.56) allows solving for an eigenvector 
{Q}i. Through normalization, one component of {Q}i is equal to 1 and all 
other n – 1 components are less than 1 in their absolute value. Knowing all 
the components of an eigenvector gives a visual representation of the corres-
ponding eigenmode, which collects the relative amplitudes of all DOF at a 
resonant frequency (or eigenvalue). 

2.3.1.2 Flexibility/Compliance Method 
 

Another method that models the free-vibratory response of a multi DOF 
system is the flexibility/compliance method, because it uses the compliance 
matrix [C] instead of the stiffness matrix [K]. It is known that [C] is the 
inverse of [K] and therefore, Equation (2.53) can be written as: 
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1 {0}M q C q  (2.61) 

 
By left multiplying Equation (2.61) by [C] and by taking into account 
Equation (2.55), results in: 
 

 2

1 [ ] {0}I C M Q  (2.62) 

 
Again, nontrivial solution for {Q} requires that: 
 

 
1det [ ] 0cI D  (2.63) 

where: 
 
 [ ] [ ][ ]cD C M  (2.64) 
 
is the compliance-based dynamic matrix (the subscript c indicates the matrix 
is formulated based on compliance). Equation (2.63) is the characteristic 
equation corresponding to the compliance-based approach and the remaining 
steps in characterizing the modal response through this procedure are 
identical to those of the stiffness-based approach.  
 
2.3.1.3 Classical Spring-Mass Systems 
 
For systems that are formed of regular springs (designed for linear or rotary 
motion) and masses, applying Lagrange’s equations of Equation (2.52) is 
straightforward. An example is fully solved next detailing all the steps involved 
in finding the eigenvalues, eigenvectors, and describing the eigenmodes for a 
two DOF system. 
 

Analyze the modal response of the mechanical system of Figure 2.33 consis-
ting of two rigid bodies undergoing translatory motions and two linear springs.   
 
 
 
 
 
 
 

Figure 2.33 Two DOF mass-spring system 
 

Example 2.10 
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Solution: 
The two coordinates x1 and x2 fully define the state of the system (namely, 

the positions of the two masses) and therefore this is a two DOF system. The 
kinetic energy is related to the masses and their velocities as: 
 

 2 2
1 1 2 2

1 1
2 2

T m x m x  (2.65) 

 
The potential energy is stored in the two springs, which deform when two 
non-zero displacements x1 and x2 are set. The potential energy is: 
 

 22
1 1 2 2 1

1 1
2 2

U k x k x x  (2.66) 

Lagrange’s equations applied to the kinetic and potential energy, Equations 
(2.65) and (2.66), result in: 
 

 1 1 1 2 1 2 2

2 2 2 1 2 2

0
0

m x k k x k x
m x k x k x

 (2.67) 

 
In matrix form, Equation (2.67) is written as: 
 
 0M x K x  (2.68)  
 
where: 

 1

2

0
0
m

M
m

 (2.69)  

is the mass matrix and: 

 1 2 2

2 2

k k k
K

k k
 (2.70) 

 
is the stiffness matrix. The coordinate vector of Equation (2.68) is: 
 

 1

2

x
x

x
 (2.71) 

 
The mass matrix of Equation (2.69) is diagonal and because there are no non-
zero off-diagonal terms, the system is dynamically uncoupled. On the other 
hand, this system is statically coupled because there are non-zero off-diagonal 
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terms in the stiffness matrix of Equation (2.70), which indicates elastic connec-
tivity between the two DOF. 

As the case was with single DOF systems, the solution to Equation (2.68) 
is sought in harmonic form: 
 

 1

2

sin sin
X

x t X t
X

 (2.72) 

 
where X1 and X2 are unknown amplitudes and  is an arbitrary (also 
unknown) resonant frequency. By substituting Equation (2.72) into Equation 
(2.68), the latter changes to: 
 
 2 sin 0M K X t  (2.73) 

 
The characteristic equation corresponding to nontrivial solutions {X} of 
Equation (2.73) is: 
 

 4 21 2 2 1 2
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0k k k k k
m m m m

 (2.74) 

 
The two roots of Equation (2.74) are: 
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In the situation in which the two bodies have identical masses, m1 = m2 = m, 
and the springs are also identical, k1 = k2 = k, the resonant frequencies 
become: 

 2
1,2

3 5
2

k
m

 (2.76) 

 
or, approximately: 
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 (2.77) 
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A direct consequence of the Equation system (2.73) being homogeneous is 
that absolute values of the amplitudes composing the vector {X} cannot be 
determined because one component has to be arbitrary. As a result, the 
equation system can only provide amplitude ratios, in our case X2/X1 (or 
X1/X2) for either of the two resonant frequencies. Explicitly, Equation (2.73) 
can be written as: 
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k kX X
m m
k kX X
m m

 (2.78) 

 
where i = 1, 2 (for the two resonant frequencies of Equation (2.77). For 1 of 
the first Equation (2.77), the following ratio is obtained from either of the 
two parts of Equation (2.78): 
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(1)
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1 5
2

X
X

 (2.79) 

 
Equation (2.79) suggests two things in relation to the vibratory state of the 
system corresponding to the resonant frequency 1: the first indication is that 
the two bodies move (vibrate) either about their positive directions x1 and x2 
of Figure 2.33 or about the negative directions of the same axes; the second 
indication is that the amplitude of the second body (denoted by m2 in the 
same Figure 2.33) is always larger than the one of the first body (because the 
amplitude ratio is larger than 1). This system motion is named mode and can 
be represented graphically as shown in Figure 2.34 (a). 

Similarly, for 2 of Equation (2.77), both parts of Equation (2.78) pro-
duce the following amplitude ratio: 
 

 
(2)
2
(2)
1

1 5
2

X
X

 (2.80) 

 
The minus sign of this ratio shows that the two bodies move in opposite 
directions during the resonant motion 2 and that the amplitude of the second 
body is smaller than the one of the first body. The second mode is sketched 
in Figure 2.34 (b). In both parts of Figure 2.34, an amplitude of 1 was 
selected for the first body’s vibratory motion, which results in the respective 
modes being normalized. A more explicit representation of the two modal 
motions is shown in Figure 2.35, in which the actual free vibrations of the 
two bodies are sketched for the two resonant frequencies of Equation (2.77). 
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Figure 2.34 Modes for the two DOF mass-spring system: (a) first mode; (b) second mode 

 
 

Figure 2.35 Resonant vibrations of the two DOF mass-spring system: (a) first mode; (b) second 
mode 
 
2.3.1.4 Micromechanical Spring-Mass Systems 
 
In micromechanical systems, the springs, masses, and their specific functions 
are not always clearly defined as in classical macro-domain systems, where 
springs (for instance) are designed for either linear or rotary motion and their 
inertia is usually disregarded. In MEMS, often times a vibrating flexible 
component contributes with both inertia and stiffness—illustrative examples 
are the microcantilevers and microbridges studied in Chapter 1. Moreover, a 
beam vibrating in a plane cumulates the functions of three different springs as 
its elastic properties are defined by three stiffnesses, namely: the direct linear 
Kl (connecting a force to the resulting deflection), direct rotary Kr (setting up 
the relationship between a moment and its corresponding rotation angle), and 
coupled (or cross) Kc (which relates a force to a rotation angle or a moment 
to a deflection). 
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Demonstrate that the strain (potential energy) corresponding to the planar 
bending vibrations of a cantilever is expressed as a quadratic form in the free 
endpoint degrees of freedom uz (deflection) and y (slope/rotation). 
 
Solution: 

For a two DOF system, the quadratic-equation strain energy should be of 
the generic form: 
 

 2 2
z z y yU au bu c  (2.81) 

 
and therefore if constants a, b, and c can be found to satisfy Equation (2.81) 
and to be physically meaningful and adequate to this problem, it follows the 
problem’s assertion was proven. By applying Castigliano’s first theorem, the 
tip force and moment that correspond to the deflection and slope at the same 
point are derived from the bending strain energy U as: 
 

 

2

2

z z y
z

y z y
y

UF au b
u

UM bu c
 (2.82) 

 
In matrix form, Equation (2.82) is written as: 
 

 
2

2
z z

y y

F ua b
M b c

 (2.83) 

 

 

 z zl c

y yc r

F uK K
M K K

 (2.84) 

 
where Kl, Kc, and Kr are the direct linear, cross (coupled), and direct rotary 
stiffnesses. By comparing Equations (2.83) and (2.84), it follows that: 

 

1
2

1
2

l

c

r

a K

b K

c K

 (2.85) 

At the same time, as known from mechanics of materials, the load vector and 
the deformation/displacement one are related by means of the stiffness matrix as:

Example 2.11 
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and consequently, the quadratic form of Equation (2.81) becomes: 
 

 2 21 1
2 2l z c z y r yU K u K u K  (2.86) 

 
Equation (2.86) can also be written in matrix form as: 
 

 
1
2

t
z zl c

y yc r

u uK K
U

K K
 (2.87) 

 
which is the second order formulation of the generic (n-th order for n DOF) 
equation of the strain (potential) energy for a linear elastic system. 
 

Using the compliance approach, find the resonant frequencies and the 
related eigenvectors and eigenmodes for the cantilever beam with a tip mass 
of Figure 2.36 during free vibrations in the xz plane. 

 

Figure 2.36 Cantilever with tip mass vibrating in the xz plane 
 
Solution: 

The elastic strain energy, as shown in the Example 2.9, is of quadratic 
form in uz and y, as shown in Equation (2.86), and the corresponding stiffness 
matrix is the one given in Equation (2.84). The flexibility/compliance approach 
needs the compliance matrix, which is the inverse of the stiffness matrix. For 
a constant cross-section microcantilever, and when considering the displace-
ment vector at the free end is {u} = {uz y}t, the compliance matrix is: 

Considering the stiffness results only from the flexible beam and the 
inertia from the tip mass, the system of Figure 2.36 vibrating in the xz plane 
behaves as a two DOF system, its generalized coordinates being the z-
displacement of the mass (which is identical to the cantilever tip deflection uz) 
and its rotation (which is the same as the slope at the cantilever’s free end, y). 

Example 2.12 
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3 2

2

1 3 2[ ]

2
y

l l

C
EI l l

 (2.88) 

 
The kinetic energy of the two DOF system results from the z-translation and 
y-rotation of the tip mass, namely: 
 

 2 2 01 1 1
02 2 2

z
z y y z y

y y

um
T mu J u

J
 (2.89)

 
which indicates the inertia matrix is: 
 

 
0

[ ]
0 y

m
M

J
 (2.90) 

 
By solving the characteristic equation (Equation (2.63)), the following 
resonant frequencies are obtained: 
 

 
22 2 2 2

1,2 3

2
3 3 3y

y y y
y

EI
J l m J l m J l m

J l m
 (2.91) 

 
Two eigenvectors, {U(1)} and {U(2)} (the letter U is used for modal amplitudes 

each having two components, U1
(1) and U2

(1) for the first eigenvector and first 
eigenfrequency of Equation (2.91) and U1

(2) and U2
(2) for the second eigen-

vector and second eigenfrequency of Equation (2.91). Because the amplitude 
of the harmonic motion of the first DOF (the translation uz) has the dimen-
sion of length and the amplitude of the second DOF is an angle (measured in 
radians), it follows that the ratio of the two DOF modal amplitudes has either 
the dimension of a length or length to the power of –1, depending on the order 
in the ratio. To make those ratios non-dimensional, either multiplication or 
division by a length factor is necessary. For instance, the following non-
dimensional ratios can be formulated: 
 

 

2(1)
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1 (1)
1

2(2)
2

2 (2)
1

3 3
1

3

3 3
1

3

i i i

i i i

r r rQr l
Q

r r rQr l
Q

 (2.92) 

to make correspondence to the cantilever’s free end displacement vector {u}), 
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Figure 2.37 Modal amplitude ratios: (a) first mode; (b) second mode 

with: 

 
2

i
y

l mr
J

 (2.93) 

 
Figure 2.37 shows the variation of the two modal ratios of Equation (2.92) in 
terms of the inertia ratio of Equation (2.93). The two ratios are positive, 
which indicates that the two modal motions take place either both about the 
positive directions of the z- and y-axes or both about the negative directions 
of these axes (the motions are synchronous). The following limits are taken 
to the first non-dimensional ratio of Equation (2.92): 
 

 
10

1

lim 2

lim 2.5
i

i

r

r

r

r
 (2.94) 

 
Equations (2.94) indicate that the transformed motion of the second DOF ( y, 
whose amplitude is U2 and which by multiplication through l becomes a 
displacement) is always larger than the motion of the first DOF (the 
amplitude U1 of uz). Similar limits taken to the second ratio of Equation 
(2.92) results in:  
 

 
20

2

lim 0

lim
i

i

r

r

r

r
 (2.95) 

 
Equations (2.95) also indicate that the two DOF motions for the second mode 
are synchronous. However, the magnitude relationship between the two motions 
is not immediately clear. By solving the equation r2 = 1, the solution is ri = 9/7, 
which, coupled with Equation (2.93), results in: 
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 * 27
9yJ l m (2.96)  

 
y y

*  

ri < 9/7 and, as shown in the plot of Figure 2.37 (b), r2 < 1, therefore the 

DOF. The reverse relationship is in place for Jy > Jy
* when ri > 9/7 and r2 > 1. 

 
2.3.1.5 Rayleigh’s Quotient in Matrix Form 
 
Chapter 1 introduced and applied Rayleigh’s quotient method to determine 
the resonant frequency in either bending or torsion for microcantilevers and 
microbridges. Essentially, because bending and torsion were decoupled, the 
two free vibratory motions have been treated separately, each as a single 
DOF system. Micromechanical systems, however, may possess several DOF, 
and for such cases, Rayleigh’s quotient is formulated in matrix form as 
shown in the following. 

A mechanical system defined by n DOF and which undergoes free 
undamped vibrations has the following kinetic and potential energies: 
 

 

1
2
1
2

t

t

T q M q

U q K q
 (2.97) 

 
By considering harmonic response of the form given in Equation (2.55), the 
maximum kinetic and potential energies are: 
 

 

2
max

max

1
2
1
2

t

t

T Q M Q

U Q K Q
 (2.98) 

 
where {Q} is the amplitude vector of {q}, according to the same Equation 
(2.55). By equating the maximum kinetic energy to the maximum potential 
one (because the system is conservative), the resulting resonant frequency is 
expressed as: 
 

 2
,

1

t n

s iit
i

Q K Q
D

Q M Q
 (2.99) 

 

of Equation (2.96), For values of J  that are smaller than the threshold value J

transformed motion of the second DOF is smaller than the one of the first 



  Chapter 2 178 

The second equality of Equation (2.99) is a consequence of Equation (2.60), 
which showed that the upper limit to the resonant frequency series is the 
trace of the stiffness-based dynamic matrix, and this limit is shown to be 
identical to the value calculated by means of Rayleigh’s quotient approach 
(see Thomson [5] for more details). 
 
2.3.2 Single-Mass Mechanical Microsystems 

 
This section analyzes multiple DOF mechanical microsystems that are 
formed of a single rigid body (mass) and several springs that can be either 
simple (such as straight-line beams) or more complex, as the one studied in 

space has six DOF (three translations and three rotations), and therefore the 
systems analyzed in this section are six DOF ones. To simplify the corres-
ponding analysis, it is generally possible (as mentioned previously) to split 
the problem into two subproblems, namely: one planar (which considers two 
translations in one plane and a rotation about an axis perpendicular to the 
plane), and the other out-of-the-plane (which focuses on the remaining three 
DOF: two rotations about axes contained in the plane of the first motion 
category and one translation about the axis perpendicular to the plane). This 
division is also suggested by the operation of MEMS, many of which vibrate 
in a plane parallel to the substrate (and therefore belong to the first category), 
such as microgyroscopes, microactuators, and microsensors, as well as many 
others that vibrate out-of-the-plane (and are therefore representative of the 
second category), such as torsional micromirrors or switches. 

For each design category, two modeling methods are proposed: the first 
one uses the geometry of deformation and addresses systems of relatively 
simple geometries with springs placed symmetrically; the second methodo-
logy is generic and can model any single-mass multiple-spring mechanical 
microsystem with springs that can be dissimilar and located at different dis-
tances from the rigid body’s center in a non-symmetric manner.   
 
2.3.2.1 In-Plane Motion 
 
The two modeling procedures mentioned previously will be discussed in this 
subsection that addresses the planar motion of single-mass, multiple-spring 
mechanical microsystems undergoing planar motion. 
 
2.3.2.1.1 Formulation based on deformation geometry 
 
A simple method, which is based on the geometry of deformation of the 
compliant members (the springs), can be developed to analyze the planar motion 
of single-mass, multiple-spring mechanical microsystems. The method, as 
shown in the following, can be applied to devices of relatively uncomplicated 
geometry with symmetric disposition of the springs.  

the Section 2.2 dedicated to microresonators as single DOF systems. A body in 
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While for a single-segment (straight or curved line) spring, which deforms 
trough bending, there are two tip deformations corresponding to a point 
moment and force acting at that tip, as shown in Figure 2.38 (a), for a spring 
formed of at least two lines (straight or curved) that are not collinear, there 
are three tip deformations in relation to three agents: two point forces and 
one moment, as illustrated in Figure 2.38 (b). 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.38 Loads and degrees of freedom at the free tip of a: (a) single segment beam; (b) two-
segment beam 
 
The load-deformation at the free tip of the single-segment spring is of the 
form: 
 

 y yFy uy Fy z

Fy z Mz zz z

F uK K
K KM

 (2.100) 

 
The stiffness subscripts indicate the corresponding load-deformation relation-
ships. For the two-segment beam of Figure 2.38 (b), the counterpart of Equa-
tion (2.100) is: 
 

 
x xFx ux Fx uy Fx z

y Fx uy Fy uy Fy z y

Fx z Fy z Mz zz z

F uK K K
F K K K u

K K KM
 (2.101) 

 
As mentioned in Lobontiu and Garcia [1], for instance, there are two families 
of stiffnesses for these types of problems in which bending produces cross 
effects (a force can produce rotation and/or a moment results in a deflection). 
In cases in which compliances can easily be determined and compounded in 
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Fx, ux 

Fy uy 

Mz, uz 
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y

(b)

Stiffnesses of Multi-Segment Springs 
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the stiffness matrix is calculated by inverting the corresponding compliance 
matrix. The compliance matrix corresponding to the stiffness matrix of Equa-
tion (2.101) is of the generic form: 
 

 
ux Fx ux Fy ux Mz

ux Fy uy Fy uy Mz

ux Mz uy Mz z Mz

C C C
C C C C

C C C
 (2.102) 

 
The off-diagonal terms of the stiffness matrices of Equations (2.100) and 

(2.101) indicate cross-bending or coupling between the DOF. A system in 
which this situation happens is the mark of a statically coupled system. 
Conversely, a system is uncoupled (or decoupled) when all off-diagonal 
terms in a stiffness matrix are zero. The physical significance of the bending-
produced coupling is indicated in Figure 2.39 (a) for linear–linear interaction 
and Figure 2.39 (b) for rotary–linear interaction. The force Fx (e.g., in Figure 
2.39 (a)) produces a displacement uy of the guided wedge about the y-
direction, and therefore the corresponding spring and its stiffness reflect this 
relationship in the subscript, KFx–uy. Similarly, rotation of the eccentric disk, 
as shown in Figure 2.39 (b) and that is caused by a moment Mz, determines 
the linear motion of the guided body about the y-direction. Consequently, the 
spring capturing this interaction has a stiffness denoted by KMz–uy. 

Figure 2.39 Physical representation of coupled stiffness: (a) linear–linear case; (b) rotary–
linear case 
 
 
 

matrices similar to the stiffness matrices of either Equation (2.100) or (2.101),  
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When the planar free vibratory motion of a generic accelerometer with two 
end beam springs (as the one whose top view is sketched in Figure 2.40) is 
considered, the system behaves as a three DOF system, its generalized 
coordinates being ux, uy, and z (the motions of the plate’s mass center), as 
indicated in Figure 2.41. 

Figure 2.40 Top view of two-beam microaccelerometer 
 
The coordinates of points 1  and 2  where the original points 1 and 2 displace 
after the proof mass moves by ux, uy, and z are determined as: 
 

 1

1

1 cos
sin

x x z

y y z

u u l
u u l

 (2.103) 

and: 
 

 2

2

1 cos
sin

x x z

y y z

u u l
u u l

 (2.104) 

Figure 2.41 Top view of microaccelerometer with deformed beam-springs 

Two-Beam Microaccelerometer 
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By considering small deformations, it follows that sin z  z and cos z  1, 
and, therefore, Equations (2.103) and (2.104) simplify to: 
 

 
1 2

1 1

2 1

x x x

y y z

y y z

u u u
u u l
u u l

 (2.105) 

 
The elastic potential energy of the two actual beams combines contributions 
from 18 individual springs (nine for each real spring). For the left spring of 
Figure 2.40, denoted by 1, the elastic energy is: 
 

 
2 2 2

1 ,1 1 ,1 1 ,1 ,1 1 1

,1 1 ,1 1

1 1 1
2 2 2Fx ux x Fy uy y Mz z z Fx uy x y

Fx z x z Fy z y z

U K u K u K K u u

K u K u
(2.106) 

 
The potential energy of the other spring can be expressed similarly to the 
equation above. By adding up the elastic energies of the two beams, and by 
taking into account the two springs behave as pure beams, it follows that: 
KFx-ux = 0, KFx-uy = 0 and KFx- z = 0, and the total potential elastic energy 
becomes: 
 
 2 2

,1 ,1 ,1 1 ,12Fy uy y Fy z y z Mz z Fy uy zU K u K u K l K  (2.107) 

 
The kinetic energy corresponding to the inertia properties of the proof mass 
is: 
 

 2 21 1
2 2y z zT mu J  (2.108)  

 
By taking the U and T derivatives involved in Lagrange’s formulation, the 
following matrix-form equation is obtained: 
 

 
0
0

y y

zz

u u
M K  (2.109) 

 
where the mass matrix is: 
 

 
0

0 z

m
M

J
 (2.110) 

 

 

2
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and the stiffness matrix is: 
 

 
2

2
1
2

6 3
4

3 2 1 3

z
l lEIK

ll
l l

 (2.111) 

 
The stiffness matrix has been obtained after considering the following 
stiffness terms of a fixed-free beam (the beam-spring): KFy–uy,1 = KFy–uy,2 = 
12EIz/l3, KFy– z,1 = KFy– z,2 = 6EIz/l2, KMz– z,1 = KMz– z,2 = 4EIz/l. By solving the 
resulting characteristic equation, the following resonant frequencies are 
obtained: 
 

22 2 2 2 2 2 2
1 1 13

4 3 3 3 3 3 12z
z z z

z

EI J m l l J m l l J m l l
J ml

(2.112) 

 

 
A proof mass that undergoes planar motion can be suspended over the 
substrate by means of two identical springs, instead of two beams, as the case 
was in the previous subsection. This design is sketched in Figure 2.42. Each 
spring will move at its tip, which is connected to the proof mass by two 
linear displacements (about its local x- and y-axes), and one rotation about 
the z-axis, which is perpendicular to the motion plane. The modal response 
for this microsystem will be analyzed where all six stiffnesses of a spring are 
taken into consideration (and the system is statically coupled) by using the 
Lagrange’s equations method. The six stiffnesses are gathered in the stiffness 
matrix denoted by [K1] in Figure 2.42. 

Figure 2.42 Top view of microaccelerometer with two generic springs 

Two-Spring Microaccelerometer 
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The displacements of the two points can be expressed in terms of the 
disk center’s displacements ux and uy and its rotation z under the assumption 
of small displacements. For point P1, these displacements are: 
 

 1

1

x x

y y z

u u
u u R

 (2.113)  

 
and for P2 they are: 
 

 2

2

x x

y y z

u u
u u R

 (2.114) 

 
The displacements of Equations (2.113) and (2.114) serve at expressing the 
strain energy that is stored in the two generic springs of the microaccelero-
meter sketched in Figure 2.42 when the disk is displaced by the quantities ux 
and uy and rotated by an angle z, namely:  
 

 
2 2 2 2

,1 ,1 ,1 ,1 ,1

,1

2

2
Fx ux x Fy uy y Mz z Fy z Fy uy z

Fx uy x y

U K u K u K RK R K

K u u
 (2.115) 

 
By calculating the partial derivatives of U in terms of the three DOF, ux, uy, 
and z, the resulting stiffness matrix is of the form given in Equation (2.101) 
with: 

 

 
,1 ,1

,1 ,1 ,1 ,1

2 ; 2 ; 0;

2 ; 0; 2 2

Fx ux Fx ux Fx uy Fx uy Fx z

Fy uy Fy uy Fy z Mz z Mz z Fy z Fy uy

K K K K K

K K K K K R K RK
(2.116) 

 
The kinetic energy results from the three independent motions of the proof 
mass and has the form: 
 

 2 2 21 1 1
2 2 2x y z zT mu mu J  (2.117) 

 
By calculating the partial derivatives and the time derivatives corresponding 
to Lagrange’s equations, the inertia matrix is of diagonal form: 
 
 [ ] zdiag M m m J  (2.118) 
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Having the stiffness and inertia matrices defined in Equations (2.116) and 
(2.118), the three resonant frequencies of the microsystem shown in Figure 
2.42 can be determined in terms of the specific springs. 
 

 
An example of the generic procedure derived previously, the bent-beam 
microaccelerometer of Figure 2.43, is analyzed next. Figure 2.44 is a sketch 
with the top view of a bent-beam spring showing the tip loading, which 
serves at determining the six compliances and related stiffnesses. 

 

Figure 2.43 Top view of microaccelerometer with two bent-beam springs 
 

Figure 2.44 Bent-beam spring with geometry and tip loading 
 

Bent-Beam Microaccelerometer 

More details on finding the six compliances of a bent-beam spring are given 
in Lobontiu and Garcia [1]. In essence, when only bending is taken into 
account, the tip deflections (about the x- and y-axes) and tip rotation can be 
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is based on the strain energy stored in the bent beam. When the two portions 
of the bent beam have the same (constant) cross-section and the lengths of 
Figure 2.44, the six stiffnesses in the matrix of Equation (2.101) are calcu-
lated by inverting the compliance matrix of Equation (2.102). Its terms are 
calculated from the model proposed by Lobontiu and Garcia [1], which are: 
 

 

3 2 2
2 1 2 2

,1 ,1 ,1

2
1 1 2 1 1 2 1 2

,1 ,1 ,1

; ;
3 2 2

3 2
; ;

3 2

ux Fx ux Fy ux Mz
z z z

uy Fy uy Mz z Mz
z z z

l l l lC C C
EI EI EI

l l l l l l l lC C C
EI EI EI

(2.119) 

 
The stiffness matrix defining the load-displacement relationship at the end of 
a bent-beam spring connected to the central proof mass is found by inverting 
the compliance matrix with the components given in Equation (2.119). 
 

Determine the three resonant frequencies corresponding to the free in-
plane vibrations of a two-spring microaccelerometer when the two springs 
are bent beams of identical constant cross-section with l1 = l2 = l. Consider 
the proof mass is a disk with a radius R = 2l and its mass is m. 
 
Solution: 

In this situation, the six components of overall stiffness matrix of 
Equation (2.101) are: 
 

 
3 3

3

15 655;

9 ; 0; 0

z z
Fx ux Fy uy Mz z

z
Fx uy Fx z Fy z

EI EIK K K
l l

EIK K K
l

 (2.120) 

 
The moment of inertia is calculated as: 
 

 
2

26
18

2z

l
J m ml  (2.121) 

 
By using the data of the problem, the following resonant frequencies are 
obtained: 
 

determined by using Castigliano’s second (or displacement) theorem, which 

Example 2.13 
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1
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 (2.122) 

 
A similar problem is the one of a four-spring microaccelerometer. The in-
plane free vibrations are first studied, followed by the out-of-plane motion. 
Figure 2.45 shows the configuration of a proof mass elastically supported by 
four generic and identical springs. 

 

 
When the plate center moves by the quantities ux, uy and rotates by an angle 

z, the displaced positions of points P1, P2, P3, and P4 (indicated in Figure 
2.45) are defined by the following quantities: 
 

Figure 2.45 Top view of a four-spring accelerometer 

Four-Spring Microaccelerometer 
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cos sin

sin cos
ix x i y i

iy x i y i z

u u u
u u u R

 (2.123) 

 
where i = 1, 2, 3, and 4. In the case the four points are placed on the 
circumference, such that: 1 = 0, 2 = /2, 3 = , and 4 = 3 /2, the total 
strain energy can be expressed as: 
 

 
2 2

,1 ,1 ,1 ,1

2
,1 ,1 ,12 2

Fx ux Fy uy x Fx ux Fy uy y

Mz z Fy z Fy uy z

U K K u K K u

K R K RK
 (2.124) 

 
The kinetic energy corresponding to the proof mass is the one given in Equa-
tion (2.117) for the three DOF planar motion. By applying Lagrange’s equa-
tions, the inertia matrix is the one of Equation (2.118), whereas the stiffness 
matrix is of diagonal form, namely: 
 
 2 2 4Fx ux Fx ux Mz zdiag K K K K  (2.125) 
 
with: 
 

 
,1 ,1

,1 ,1 ,12
Fx ux Fx ux Fy uy

Mz z Mz z Fy z Fy uy

K K K

K K R K RK
 (2.126) 

 
The stiffness and the inertia matrices being of diagonal form, a micro-

resonator of this type is fully decoupled. Again, the three resonant frequ-
encies corresponding to the three DOF in-plane free vibrations of the proof 
mass can be determined by the generic procedure. 
 

Calculate the in-plane resonant frequencies of the four bent-beam 
serpentine spring microaccelerometer of Figure 2.46. The geometry of the 
spring is shown in Figure 2.47. Consider the middle plate is square with its 
side equal to 2l1. Also known are l1 = 2l2, l2 = 20 μm, t = 1 (the device 
thickness), w = 5 μm (the spring cross-sectional width), E = 165 GPa,  = 
2500 kg/m3. 

 
Solution: 

The stiffnesses characterizing the elastic behavior of the bent-beam 
serpentine spring of Figure 2.47 are determined by calculating the inverse of 
the compliance matrix given in Lobontiu and Garcia [1]. For the particular 
data of this example, the relevant stiffnesses are: 

Example 2.14 
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Figure 2.46 Microaccelerometer with four bent-beam serpentine springs 

Figure 2.47 Geometry of bent-beam spiral spring 

 
3
2

2

3986
7113

71776
7113

Fx ux Fy uy

z
Mz z

EIK K
l

EIK
l

 (2.127) 

 
In this case, the radius of Figure 2.46 is calculated in terms the proof mass 
side as: R = 21/2 l1, whereas the area moment of the spring cross-section is Iz 
= w3t/12. The proof mass moment of inertia is Jz = 8ml2

2, where m is the 

 

plate’s mass. After carrying out the calculations, the following resonant fre- 
quencies are obtained: 

y
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1 2

2 2

3
2 2

0.75

1.12

z

z

EI
l ml

EI
l ml

 (1.128) 

2.3.2.1.2 Generic formulation for n-spring microaccelerometer 
 
A micromechanical system formed of a rigid plate undergoing planar motion 
and n identical springs that are clamped at one end on the plate and at the 
other on the fixed substrate is schematically shown in Figure 2.48. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

springs) 
 
This system is defined by three DOF, expressed by two translations and one 
rotation of a point belonging to the rigid plate (usually its center of mass/-
symmetry). The lumped-parameter mass matrix is the one of Equation (2.118). 
The stiffness matrix will be formulated next, which will enable calculation of 
the three resonant frequencies associated with the system’s planar motion 
and the three DOF. 

As mentioned previously, the two translation motions are coupled; more-
over, the proof mass in its planar motion behaves as a three DOF system, the 
motions associated with its center of mass being the x and y translations and 
a rotation z. Figure 2.49 indicates the displaced position of a proof mass, 
whose center moved by the quantities ux and uy, whereas the whole body 
rotates by an angle z. This situation is characteristic of planar motions, and 
proof masses are a good illustration of this particular vibratory system (such 
as a microgyroscope). 

 

P 

x 

y 

i 

generic spring

rigid plate 

di 

O

Figure 2.48 Solid plate with a generic spring in planar motion (the microsystem contains n 
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It is of interest to determine the position of several points on the periphery 
of the proof mass after the planar motion of it. These points are locations 
where various springs can attach to the proof mass and therefore determining 
the displaced position of these points will enable evaluating the elastic defor-
mations of the corresponding springs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.49 Three DOF of a solid in planar motion 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 2.50 Displacement of a generic point P on a solid undergoing planar motion 
 
Figures 2.49 and 2.50 show the planar motion of the solid in planar motion: 
initially, the point P is on the circumference of radius di and its angular 
position is defined by an angle i. The two translations of the solid, ux and uy, 
displace this point at P', whereas the third motion, the planar rotation z, 
further moves the point at P" by means of the vector uri. Consequently, the 
total displacement u can be expressed as: 

O 

O' 

x 

x' ux uy

z

P'
P"

i 

P 
ux

uy

uri
ui

 

O 

O' 

x 

y 

y' y" 

x' 

x" 

z 

ux

uy

z

P'
P"

i 

P 

di 
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 i x y riu u u u  (2.129) 
 
The Cartesian projections of this vector are: 
 

 

cos
2 2

sin
2 2

z
xi x ri i

z
yi y ri i

u u u

u u u
 (2.130) 

 
By noticing that: uri = di z, Equation (2.130) transforms into: 
 

 
sin

2

cos
2

z
xi x i z i

z
yi y i z i

u u d

u u d
 (2.131) 

 
By expanding the sine and cosine factors in Equation (2.131) and by taking 
into account the small-displacement environment (small z), namely: 
 

 
sin

2 2

cos 1
2

z z

z

 (2.132) 

Equation (2.131) simplifies to: 
 

  
sin
cos

xi x i z i

yi y i z i

u u d
u u d

 (2.133) 

 
Equation (2.133) enables one to find the position of a point laying at a 
distance di from the rigid body’s center and positioned by angle i with respect 
to the x- (horizontal) axis when the center of mass of a solid moves in a plane 
by the quantities ux and uy and when the solid rotates by a small angle z. 

Equation (2.133) needs to be used in expressing the potential energy of 
the microoscillator formed of the central mass and n identical springs. As 
shown previously, each spring can be defined by six individual stiffness 
parameters, namely three direct-bending ones: KFx–ux, KFy–uy, KMz– z, and three 
cross-bending ones: KFx–uy, KFx– z, and KFy– z. All these stiffnesses are 
expressed in the local frames of every individual spring, and these axes are,  
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in general, not parallel to the global reference frame axes x and y. It is there-
fore necessary to express the relevant deformations of a spring (which give 
the potential energy of that spring in combination to the corresponding stiff-
nesses) in terms of the displacements at the spring end, which are determined 
by means of Equation (2.133). To achieve this goal, a coordinate transforma-
tion between the local frame of a generic spring and the global reference 
frame is performed, based on Figure 2.51, which allows formulating the 
following relationship: 
 

 
cos sin 0
sin cos 0

0 0 1

xi xii i

yi i i yi

zi z

u u
u u  (2.134) 

 
where the vector in the left-hand side collects the spring deformations about 
the local xi and yi axes, and the vector in the right-hand side was calculated in 
Equation (2.133). The rotation matrix of Equation (2.134) took into account 
that the rotation at point P equals the rotation of the rigid plate.  
   
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.51 Global and local frames at the endpoint of a generic spring 
 

By combining Equations (2.133) and (2.134), the following relationship 
is obtained connecting the spring deformations to the displacements of the 
plate’s center: 
 

 
cos sin 0
sin cos

0 0 1

xi xi i

yi i i i y

zi z

u u
u d u  (2.135) 

At the same time, the potential energy of the generic spring i expressed 
in terms of its stiffnesses and local deformations is: 
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2 2 2

, , , ,

, ,

1
2i Fx ux i xi Fy uy i yi Mz z i zi Fx uy i xi yi

Fx z i xi zi Fy z i yi zi

U K u K u K K u u

K u K u
 

If Equation (2.135) is substituted in Equation (2.136), the potential energy of 
a generic spring will be a function of the system’s three DOF, ux, uy, and z, 
as well as of its stiffnesses. It is thus possible to calculate the total potential 
energy owing to the n springs as: 
 

 
1

n

i
i

U U  (2.137) 

   
By taking the partial derivatives of the total potential energy in terms of the 
three coordinates, ux, uy, and z, the following equation is obtained: 
 

 
11 12 13

12 22 23

13 23 33

x
x

y
y

z

z

U
u uK K K
U K K K u
u

K K K
U

 (2.138) 

 
where the overall, global-frame stiffness matrix connecting the two vectors 
has its components expressed as: 
  

 ,
1

n

jk jk i
i

K K  (2.139) 

 
with j, k = 1, 2, 3 for j  k and : 
 

 

2 2
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i i Fy uy i i Fy z i Mz z i

K K d K K d K

K d K d K K

 (2.140) 

 
(2.136) 
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To conclude, determining the total stiffness matrix in the global frame, the 
following steps have been followed: 
 

1. Express the tip displacements of an individual spring in the global 
reference frame in terms of the system’s three DOF. 

2. Express the deformations of an individual spring (which are in the 
local reference frame) in terms of the system’s three DOF. 

3. Express the potential energy corresponding to one spring in quadratic 
form in terms of its deformations (in the local frame). 

4. Express the potential energy of one spring in terms of the system’s 
three DOF. 

5. Sum all individual potential energies to obtain the total strain energy. 
6. Calculate the partial derivatives of the total potential energy in terms 

of the system’s DOF and determine the overall, global-frame stiffness 
matrix. 

 
It should be noted that phases 5 and 6 are interchangeable, and therefore, if more 
convenient, partial derivatives of individual spring’s potential energy should 
be calculated first, followed by summing of all the corresponding stiffness terms. 
 
2.3.2.1.3 Fishhook spring microaccelerometer 
 
A microaccelerometer with two fishhook springs, as sketched in Figure 2.52, 
is analyzed in terms of its in-plane free vibratory motion. A fishhook spring  
 

Figure 2.52 Top view of a microaccelerometer with two fishhook springs 

Figure 2.53 Geometry, boundary conditions, and planar coordinates of a fishhook spring as a 
half U-spring 
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is actually a half U-spring, as the one pictured in Figure 2.21. Figure 2.53 
retakes this configuration and indicates the x- and y-axes as directions of the 
planar motion. 
The generic inertia matrix is given in Equation (2.101), whereas the stiffness 
components of a fishhook spring are calculated by inverting the compliance 
matrix, which, for constant cross-section, is derived from Lobontiu and 
Garcia [1], and whose components are: 
 

 
3 2 2 2
1 1 2 3 1 1 3 33 3 3

3ux Fx
z

l l l l l l l l
C

EI
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 2 2 32
2uy Mz

z

l l l
C

EI
 (2.145) 

 

 1 2 3
z Mz

z

l l lC
EI

 (2.146) 

 
Figure 2.52 also indicates that n = 2 (there are two springs) and that the two 

1 2
equations of the overall (global) stiffness matrix are complicated, and finding 

 

Find the resonant frequency of a microaccelerometer suspended by two 
fishhook springs, as the one of Figure 2.52, by considering that l1 = l2 = l, l3 = 
2l1, Jz =ml1

2, and d1 = d2 = 4l1. 
 
Solution:  

By following all the steps indicated in the generic procedure, the follow-
ing overall, global-frame stiffness matrix is obtained: 

the three resonant frequencies is algebraically difficult. The following example
will analyze a simplified configuration. 

springs are positioned by the angles  = 0  and  = 180 . Closed-form° °

Example 2.15 
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2 2

*
2 2

37 21 0

21 165 0
59

0 0 3637

z

l l
EIK

l l l
 (2.147) 

 
Equation (2.147) shows that the rotational DOF z is decoupled from the 
translational ones, ux and uy, in terms of stiffness (statically). The mass matrix 
is simply: 
 

 
2

1 0 0
0 1 0
0 0

M m
l

 (2.148) 

 
The three resonant frequencies can now be determined from the stiffness 
matrix (Equation (2.147)) and mass matrix (Equation (2.148)) as: 
 

 

1

2

1

0.75

1.69

7.85

z

z

z

EI
l ml

EI
l ml

EI
l ml

 (2.149) 

 
 
2.3.2.2 Out-of-the-Plane Motion 
 
The two modeling procedures previously exposed (the geometry of defor-
mation method and the generic method) for the planar motion problem can 
also be implemented to study out-of-the-plane free vibrations of single-mass, 
multiple-spring mechanical microsystems, as discussed in this subsection.  

 
2.3.2.2.1 Geometry of deformation formulation 

 
For relatively simple geometry configurations that are designed based on 
spring symmetry, the geometry of deformation method can be used, as 
exemplified next through two- and four-spring microaccelerometers. 
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Consider the out-of-the plane motion of a two-spring microaccelerometer, 

whose side view of its undeformed state is shown in Figure 2.54. The parti-
cular case is studied here with the motion taking place in the xz plane.  

Figure 2.54 Side view of two-spring microaccelerometer 
 
An arbitrary out-of-the-plane state of the proof mass and the deformed 
springs are uniquely defined by two geometric parameters connected to the 
proof mass center (as shown in Figure 2.55), namely: the z-translation, uz, 
and y-rotation, y. 
  

 
The relationships of the displacements of points 1 and 2 to the center plate 
motion are: 

 
1 1

2 1

z z y

z z y

u u l

u u l
 (2.150)  

 
The elastic potential energy of the two actual springs is expressed by adding 
up the elastic potential energies of eight individual springs (four for each 
actual spring) in the form: 

Two-Spring Microaccelerometer 

Figure 2.55 Side view of microaccelerometer with deformed springs 
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2

2 2
,1 ,1 ,1

1

1 1
2 2Fz uz iz My y y Fz y iz y

i
U K u K K u  (2.151) 

 
where the subscript portion 1 shows the two springs are identical. By taking 
into account the two springs are identical, and by considering Equation 
(2.150), Equation (2.151) changes to: 
 
 2 2 2

,1 ,1 1 ,1 ,12Fz uz z My y Fz uz y Fz y z yU K u K l K K u  (2.152) 

 
The kinetic energy of this system contains the parts contributed by the central 
plate in its translation about the z-axis and rotation about the y-axis, namely: 
 

 2 21 1
2 2z y yT mu J  (2.153) 

 
By applying now Lagrange’s equations method, corresponding to the uz and 

y DOF, the following matrix-form equation is obtained: 
 

 
0

2
0

z z

yy

u u
M K  (2.154) 

 
where the mass matrix is: 
 

 
0

0 y

m
M

J
 (2.155) 

 
and the stiffness matrix is: 
 

 ,1 ,1
2

,1 ,1 1 ,1

Fz uz Fz y

Fz y My y Fz uz

K K
K

K K l K
 (2.156) 

 
The solutions to the characteristic equation are: 
 

 
2 2 2

,1 ,1 ,1 1 ,12
1,2

4 y Fz y Fz uz My y Fz uz

y

B mJ K K K l K B

mJ
 (2.157) 

 
with: 
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 2
,1 ,1 ,1My y Fz uz y Fz uzB m K l K J K  (2.158)

 

Consider the two springs are simple constant cross-section beams of 
length l = l1. Study whether it is possible to have a rotational resonant 
frequency that is n times the translational one, 1 = n 2. 
 
Solution: 

By using the following substitution: 
 
 ym xJ  (2.159) 
 
into the problem’s condition that relates the two resonant frequencies, and by 
using the expressions of 1 and 2 (Equation (2.157)), the following 
equation is obtained: 
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22 2 2
,1 ,1 ,1 1

1

1 4 1
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 (2.160) 

 
The following stiffnesses are used in Equation (2.160): 
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 (2.161) 

 
There are two solutions of x resulting from Equation (2.160), namely: 
 
   

 

4 2 2 4 2

1,2 2 2
1

3 13 6 13 13 1 13 38 13

128

n n n n n
x

n l
 (2.162) 

 
In order for the two roots x1 and x2

 to be real, the quantity under the square 
root sign in Equation (2.162) needs to be positive, and this leads to the 
following conditions: 

1

Example 2.16 
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0 0.63

1.59
n

n
 (2.163) 

 
Another condition relates to the solution x2 as that one needs also to be 
positive, but it can simply be shown that the numerator in Equation (2.162) is 
always a positive number. 
 

 
The out-of-the-plane free vibrations of the four-spring microaccelerometer 
shown in Figure 2.45 are defined by three DOF of the plate center, namely: 
uz, x, and y. If a rotation of the proof mass about the x-axis is considered 
together with another rotation about the y-axis, both superimposed to an out-
of-the-plane translation about the z-axis, the resulting coordinates of the 
points 1, 2, 3, and 4 are for the linear case: 
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4

z z y

z z x

z z y

z z x

u u R
u u R
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u u R

 (2.164) 

 
These vibratory motions involve bending and torsion of each pair of springs. 
Plate center translation by a quantity uz, for instance, involves bending of all 
springs, while plate rotation about the x-axis means the springs that are 
aligned with this axis will be subjected to torsion, whereas the other two 
springs will bend. Consequently, the strain energy stored by the four real 
springs due to bending is: 
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 (2.165) 

 
The strain energy corresponding to torsion of the four springs is: 
 

Four-Spring Microaccelerometer 
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 2 2
,1 ,1

1 12 2
2 2t Mx x y Mx x xU K K  (2.166) 

 
The total elastic strain energy is the sum of the two energy components of 
Equations (2.165) and (2.166), namely: 
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The kinetic energy involves the three motions of the plate, and is of the form: 
 

 2 2 21 1 1
2 2 2z x x y yT mu J J  (2.168) 

 
By applying Lagrange’s equations procedure, the following matrix equation 
results: 
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u u
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where the mass matrix is: 
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y
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M J

J
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and the stiffness matrix is: 
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with: 
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Consider a circular plate of radius R and thickness t is supported by four 
identical beams of rectangular cross-section (w and t), as shown in Figure 
2.56. Calculate the three resonant frequencies corresponding to the free out-
of-the-plane vibrations of the proof mass and beams system. The beams are 
defined by a length of l = 120 μm and cross-sectional dimensions of w = 8 
μm and t = 0.5 μm. The material is polysilicon with E = 160 GPa and  = 
2500 kg/m3. Consider three different values of the disk radius, namely: R = 
100 μm, 150 μm, and 200 μm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.56 Accelerometer with four simple-beam springs 
 

Solution: 
In this case, the stiffnesses defining each of the four springs (expressed 

in local coordinate frames for each) are: 
 

 
3 2

12 6
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y y
Fz uz Fz y

y t
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 (2.173) 

 
In Equations (2.173), Iy is the spring’s cross-sectional moment of area cal-
culated as: Iy = wt3/12 and It is the spring’s cross-sectional torsion moment of 
area (which for very thin cross-sections is It = wt3/3, where w and t are the 
spring’s constant cross-sectional width and thickness). The mass of the central 
disk is simply 2m R t . For a solid disk, the moments of inertia are: Jx = Jy 
= mR2/4.  

x 

y 

12

3 4

C

R

Example 2.17 
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It is expected that this accelerometer produce a piston-type modal motion 
(out-of-the-plane z-translation) and two identical rotation modes of the disk 
about the x- and y- axes, the last two modal frequencies needing to be equal. 
However, due to round-off errors, the rotation resonant frequencies were 
slightly different for each of the three different radius values, and therefore 
the results for them have been averaged. These values are shown in Table 2.1. 

 
Table 2.1 Resonant frequencies of the three DOF system 

 
R 

[μm] 
1 [rad/s] 2 = 3 

[rad/s] 
100 82,695 181,169 
150 58,626 106,120 
200 45,464 75,183 

  
2.3.2.2.2 Generic formulation for n-spring microaccelerometer 
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Figure 2.57 Angular DOF of a solid in out-of-the-plane motion 

A generic model is derived here to characterize the free out-of-the-plane 
vibrations of a single-mass, multiple-spring mechanical microsystem. The 
kinetic energy is given in Equation (2.168) and the corresponding inertia 
matrix is the one of Equation (2.170). Consequently, only derivation of the 
stiffness matrix needs to be pursued, as shown in the following.  

The local displacements at the connection point between the central plate 
and a generic spring i are expressed in terms of the plate’s center displace-
ments, which are x, y, and uz based on the sketch of Figure 2.57.  
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By following a procedure similar to the one applied for the planar motion, it 
can be shown that: 
 

  

sin cos

cos sin

sin cos

zi z i x i i y i

xi x i y i

yi x i y i

u u d d
 (2.174) 

 
Equation (2.174) provides the deformations of a generic spring whose end is 
connected to a central plate when the center of mass of a solid moves out-of-
the-plane plane by the quantities uz, x, and y. 

Each spring connecting to the central plate can be defined by six indi-
vidual stiffness parameters, namely three direct ones: KFz–uz, KMx– x, KMy– y 
and three cross-bending ones: KFz– x, KFz– y, and KMx– y. These stiffnesses are 
expressed in the local frames and it is therefore necessary to express the 
local-frame spring deformations as a function of the system’s three DOF.  

The potential energy of a generic spring expressed in terms of local 
deformations is: 
 

 
2 2 2
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1
2i Fz uz i zi Mx x i xi My y i yi Fz x i zi xi
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(2.175) 

 
As the case was with the planar motion of the n-spring single-mass micro-
system, the potential energy of Equation (2.175) is expressed in terms of the 
system’s three DOF, uz, x, and y by means of the transformation Equation 
(2.174). Then, again, the total strain energy is found by adding up all 
individual strain energies and, by calculating partial derivatives of the total 
potential energy, the following matrix equation is derived: 
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 (2.176)   

 
where the terms Kjk of Equation (2.176) are calculated by means of the 
summation of Equation (2.139) with: 
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 (2.177) 

  
 

Determine the out-of-the-plane resonant frequency of the microresonator 
shown in Figure 2.58. The proof mass is supported by three identical beams 
of constant circular cross-section, which are placed at a 120o relative center 
angle. Consider that d = l (l is the length of the beam) and Jx = Jy = ml2. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.58 Three-beam microaccelerometer 
 

Example 2.18 
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Solution: 
The compliance matrix of a constant cross-section beam expressing defor-

mation-load relationships based on the three DOF of the plate uz, x, and y is: 
 

 

2

0
3 2
0 1 0

0 1
2

i
z

l l

lC
EI

l
 (2.178) 

 
where it has been taken into account that Ip = 2Iz = 2Iy and G = E/[2(1+μ)]. 
By following up the procedure exposed previously, the overall global-frame 
stiffness matrix (which combines contributions from the three identical beam 
springs) is: 
 

 2
3

2

36 0 0
[ ] 0 43.2 0

0 0 43.2

zEIK l
l

l
  (2.179) 

 
Because the stiffness matrix of Equation (2.179) is diagonal, it follows that 
the microresonator of Figure 2.58 is statically decoupled, and because the 
inertia matrix for a lumped-parameter system of this type is also of diagonal 
form (which indicates dynamic decoupling) it follows that the analyzed 
mechanical microsystem is fully decoupled. 

By using the numerical data of this example, the following resonant 
frequencies are obtained: 
 

 
1

2 3

6

6.57

z

z

EI
l ml

EI
l ml

 (2.180) 

 
The first resonant frequency of Equation (2.180) is connected to the trans-
lation DOF uz and therefore the resulting mode is a “piston”-type one, whereby 
the central plate translates about the z-axis and the beams are subjected to 
bending only. The other two modes have identical resonant frequencies and 
are connected to the rotations x and y.   
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2.3.3 Two-Mass Mechanical Microsystems 
 
A system composed of two masses and two sets of springs (one set connecting 
the two bodies one to another, and the second spring set connecting the outer 
body to the substrate, as sketched in Figure 2.59) is analyzed here. Again, the 
in-plane and out-of-the-plane motions will be studied separately, and stiff-
ness and inertia matrices will be derived for both design categories by means 
of ge
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.59 Two-mass multi-spring mechanical microsystem 
 
The springs are just symbolically represented as linear springs—in actuality 
they can be any spring capable of elastically reacting spatially when acted 
upon by any of the six possible point loads. The assumption that the longi-
tudinal spring axis passes through the two plates center (the plates are also 
assumed concentric) is used here. These two hypotheses do not reduce the 
generality of the problem. In addition (as shown in the solved examples), this 
situation is encountered in practical MEMS design.  
 
2.3.3.1 In-the-Plane Motion 
 

This system has six DOF, as shown in Figure 2.61 (a), namely two trans-
lations and one rotation for each of the bodies denoted by a (the inner one) 
and b (the outer one). A generic inner spring denoted by i (there are n such 
springs) is fixed at points P (on the inner plate) and Q (on the outer one). A 
generic outer spring, j, is also shown (there can be m such springs), which is 
connected to the outer body and to the substrate. 

 
 

 

 Figure 2.60 shows the main features of the microsystem’s planar motion.
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Figure 2.60 Two-mass, multi-spring mechanical microsystem in planar motion: (a) degrees of 
freedom; (b) model geometry 
 
2.3.3.1.1 Inertia matrix 
 
The six DOF can be arranged into the following vector: 
 

 
t

ax ay az bx by bzu u u u u  (2.181) 

 
Assuming the two plates are defined by the masses ma and mb as well as by 
the mechanical moments of inertia Jaz and Jbz, it is simple to demonstrate that 
the lumped-parameter inertia matrix corresponding to the DOF of Equation 
(2.181) is diagonal and of the form: 
 
 [ ] a a az b b bzdiag M m m J m m J  (2.182) 
 
2.3.3.1.2 Stiffness matrix 
 

single-mass, multi-spring system in planar motion. The first step, therefore, 
is expressing the global displacement components at points P, Q, and S 
(Figure 2.60 (b)) in terms of the system six DOF, namely: 
 

x 

uax 

uay 

ubx 

uby 

bz 
az 

O

(a) (b)

 The procedure here follows the steps covered in the similar problems of a
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sin
cos

sin

cos

sin

cos

Pxi ax Pi i az

Pyi ay Pi i az

Qxi bx Qi i bz

Qyi by Qi i bz

Sxj bx Sj j bz

Syj by Sj j bz

u u d
u u d
u u d

u u d
u u d

u u d

 (2.183) 

 
The next step is expressing the inner and outer springs deformations in terms 
of the system six DOF. It should be noticed that while the outer springs defor-
mations are expressed by exactly following the procedure applied previously 
for single-mass microsystems, the inner springs are subjected to deformations 
that are differences between the absolute displacements of their endpoints. It 
can be shown that the deformations of a generic inner spring are: 
 

 

cos sin cos sin

sin cos sin

cos

xi ax i ay i bx i by i

yi ax i ay i Pi az bx i

by i Qi bz

zi az bz

u u u u u

u u u d u
u d

 (2.184) 

 
Similarly, the deformations of a generic outer spring j are: 
 

 

cos sin

sin cos
xj bx j by j

yj bx j by j Sj bz

zi bz

u u u

u u u d  (2.185) 

 
The potential energy stored by a generic spring is: 
 

 
2 2 2

, , , ,

, ,

1
2i Fx ux k xk Fy uy k yk Mz z k zk Fx uy k xk yk

Fx z k xk zk Fy z k yk zk

U K u K u K K u u

K u K u
 (2.186) 

 
where k = i for the inner spring (i = 1, 2, …, n) and k = j for the outer spring 
(j = 1, 2, …, m).  

By substituting Equations (2.184) and (2.185) into the corresponding 
Equation (2.186), the individual potential energies of the inner and outer springs 
become functions of the system’s six DOF. The total potential energy is 
determined by adding all individual spring contributions, and then the partial 
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derivatives connected to Lagrange’s equations (as shown for single-mass 
systems) are calculated, which enables formulating the 6 × 6 lumped-para-
meter stiffness matrix according to the DOF of Equation (2.181). The stiffness 
matrix components are calculated as: 
 

 ,
1

n

kl kl i
i

K K  (2.187) 

 
with k, l = 1, 2, 3 and k  l, and as: 
 

 , ,
1 1

n m

kl kl i kl j
i j

K K K  (2.188) 

 
with k, l = 4, 5, 6 and k  l. 

The individual stiffnesses for the inner spring entering Equations (2.187) 
and (2.188) are expressed per row. The first row contains the terms: 

 

 

2 2
11, 14, 44, , , ,

, ,
12, 15, 24, 45, ,

13, 34, , , , ,

1

cos sin(2 ) sin

cos(2 ) sin(2 )
2

cos sin

i i i Fx ux i i Fx uy i i Fy uy i i

Fx ux i Fy uy i
i i i i Fx uy i i i

i i Fx z i Pi Fx uy i i Fy z i Pi Fy uy i i

K K K K K K
K K

K K K K K

K K K d K K d K

K 6, 46, , , , ,cos sini i Fx z i Qi Fx uy i i Fy z i Qi Fy uy i iK K d K K d K

(2.189) 

 
The second line is formed of: 
 

 

2 2
22, 25, 55, , , ,

23, 35, , ,

, ,

26, 56, , ,

, ,

cos sin(2 ) sin

cos

sin

cos

sin

i i i Fy uy i i Fx uy i i Fx ux i i

i i Fy z i Pi Fy uy i i

Fx z i Pi Fx uy i i

i i Fy z i Qi Fy uy i i

Fx z i Qi Fx uy i i

K K K K K K

K K K d K

K d K

K K K d K

K d K

 (2.190) 

 
The elements of the third line are: 
 

 
2

33, , , ,

36, , , ,

2i Pi Fy uy i Pi Fy z i Mz z i

i Pi Qi Fy uy i Pi Qi Fy z i Mz z i

K d K d K K

K d d K d d K K
 (2.191) 
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The element of the sixth line is: 
 

 2
66, , , ,2i Qi Fy uy i Qi Fy z i Mz z iK d K d K K  (2.192) 

 
The elements corresponding to the outer spring are: 
 

 

2 2
44, , , ,

, ,
45, ,

46, , , , ,

2
55, , ,

cos sin(2 ) sin

cos(2 ) sin(2 )
2

cos sin

cos sin(2 )

j Fx ux j j Fx uy j j Fy uy j j

Fx ux j Fy uy j
j Fx uy j j j

j Fx z j Sj Fx uy j j Fy z j Sj Fy uy j j

j Fy uy j j Fx uy j j Fx

K K K K

K K
K K

K K d K K d K

K K K K 2
,

56, , , , ,

2
66, , , ,

sin

cos sin

2

ux j j

j Fy z j Sj Fy uy j j Fx z j Sj Fx uy j j

j Sj Fy uy j Sj Fy z j Mz z j

K K d K K d K

K d K d K K

(2.193) 

 

Determine the resonant frequencies of the microgyroscope sketched in 
Figure 2.61 by considering that Jaz = Jbz = 4ml2. The four line springs are 
identical and their length is l. Known are also Q1Q2 = 4l and S1S2 = 6l. 
Consider only the bending deformations of the springs. 

Figure 2.61 Two-mass, four-beam microgyroscope in planar motion 
 
Solution: 

The distances of interest are dP1 = dP2 = l, dQ1 = dQ2 = 2l, dS1 = dS2 = 3l 
and the position angles are 1 = 1 = 0o, 2 = 2 = 180o. The system has only 
four DOF because the axial deformation of the beams not being accounted 
for, the displacements uax and ubx are zero. This also caries over the beam 
allowed deformations, which are only deflections and slopes. In this situation, 
the following element stiffnesses are also zero: KFx–ux, KFx–uy, and KFx– z. The 
remaining stiffnesses are the usual bending ones, namely: KFy–uy = 12EIz/l3, 
KFy– z = 6EIz/l2 and KMz– z = 4EIz/l. With those values, the stiffness matrix is 
calculated as: 

Example 2.19 
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2 2

2 2

6 60 0

0 14 0 234
6 120 0

0 23 0 112

z

l l
EIK
l

l l

 (2.194) 

 
The inertia matrix is: 
 

 
2

2

1 0 0 0
0 4 0 0
0 0 1 0
0 0 0 4

l
M m

l

 (2.195) 

 
The two matrices have been calculated for the following DOF vector: {u} = 
{uay  az  uby  bz}t. The following resonant frequencies have been obtained: 
 

 i z
i

c EI
l ml

 (2.196) 

 
where c1 = 3.02, c2 = 4.21, c3 = 7.92, and c4 = 15.3.     
 
2.3.3.2 Out-of-the-Plane Motion 
 
The out-of-the-plane motion of the generic microsystem of Figure 2.60 (b) is 
studied now. In this case, the other six DOF of the two bodies, namely out-
of-the-plane (z-axis) translation and rotations about the x- and y-axes of the 
plates common centers, are of importance (Figure 2.62 indicates these DOF). 
 
2.3.3.2.1 Inertia matrix 
 
The six DOF can be arranged into the following vector: 
 

 
t

az ax ay bz bx byu u u  (2.197) 

 
By expressing the kinetic energy corresponding to these DOF and by per-
forming the partial and time derivatives implied by the kinetic energy term in 
the Lagrange’s equations, the inertia matrix is of diagonal form, namely: 
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 Figure 2.62 Degrees of freedom for a two-mass microsystem undergoing free out-of-the-plane 

vibrations 
 
 [ ] a ax ay b bx bydiag M m J J m J J  (2.198) 

 
2.3.3.2.2 Stiffness matrix 
 

and S for the outer spring (see Figure 2.60 (b)) are first expressed by the aid 
of Figure 2.62 in terms of the system’s six DOF shown in Equation (2.197), 
namely: 
 

 

sin cos

cos sin

sin cos

Pzi az Pi i ax Pi i ay

Pxi ax i ay i

Pyi ax i ay i

u u d d
 (2.199) 

 

 

sin cos

cos sin

sin cos

Qzi bz Qi i bx Qi i by

Qxi bx i by i

Qyi bx i by i

u u d d

 (2.200) 

 

 

sin cos

cos sin

sin cos

Szj bz Sj j bx Sj j by

Sxj bx j by j

Syj bx j by j

u u d d

 (2.201) 

 
 

O

uaz 

ubz 

bx 

ay 

by 

ax 

x

y

The displacements of the three points of interest, P and Q for the inner spring, 
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The next step, as mentioned previously, is to express the deformations of 
the generic inner and outer springs at their end closest to the plates center in 
terms of the system’s six DOF. Again, the deformations of the inner spring 
are to be expressed as differences between its ends displacements, the end-
points being anchored at the plates a and b. The connection equations for the 
generic inner spring i are: 
 

 

sin cos

sin cos

cos sin cos sin

sin cos sin cos

zi az Pi i ax Pi i ay

bz Qi i bx Qi i by

xi ax i ay i bx i by i

yi ax i ay i bx i by i

u u d d

u d d
 (2.202) 

 
The equations for the generic spring j are: 
 

 

sin cos

cos sin

sin cos

zj bz Sj j bx Sj j by

xj bx j by j

yj bx j by j

u u d d
 (2.203) 

 
The potential energy stored by either the inner spring or the outer is: 
 

 
2 2 2

, , ,

, , ,

1
2k Fz uz k zk Mx x k xk My y k yk

Fz x k zk xk Fz y k zk yk Mx y k xk yk

U K u K K

K u K u K
 (2.204) 

 
where k = i for the inner spring and k = j for the outer spring.  

By substituting the connection Equations (2.202) and (2.203) into Equation 
(2.204) with the appropriate k, the potential energies of inner and outer 
springs are expressed in terms of the six DOF. The total potential energy 
again is the sum of all individual energies, and by taking the partial deri-
vatives of the total potential energy in terms of the six DOF, as required by 
Lagrange’s equations, the overall 6 × 6 stiffness matrix is obtained. The sub-
matrix corresponding to the inner springs is also 6 × 6, as all six DOF are 
involved, whereas the submatrix of the outer springs is 3 × 3 because only ubz, 

bx, and bx are involved. The terms of the overall stiffness matrix are 
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11, 14, 44, ,

12, , , ,

13, , , ,

15, 45, , , ,

16, 46, ,

cos sin

sin cos

cos sin

sin

i i i Fz uz i

i Fz x i i Fz y i Pi Fz uz i i

i Fz x i i Fz y i Pi Fz uz i i

i i Fz x i i Fz y i Qi Fz uz i i

i i Fz x i i F

K K K K

K K K d K

K K K d K

K K K K d K

K K K K , , cosz y i Qi Fz uz i id K

 (2.205) 

 
The elements on the second row are: 

 

2 2 2
22, , , , ,

, ,

2
, , , ,

23,

, ,

24, ,

cos 2 sin

sin(2 )

2 sin(2 )

2
cos(2 )

cos

i Mx x i i Pi Fz uz i Pi Fz y i My y i i

Mx y i Pi Fz X i i

Pi Fz uz i Pi Fz y i My y i Mx x i i
i

Mx y i Pi Fz x i i

i Fz x i i

K K d K d K K

K d K

d K d K K K
K

K d K

K K K , ,

, ,2
25, ,

2
, , ,

2 2
26, , , , ,

sin

2
cos sin(2 )

2
sin

cos sin

Fz y i Pi Fz uz i i

Mx y i Pi Qi Fz x i
i Mx x i i i

Pi Qi Fz uz i Pi Qi Fz y i My y i i

i Mx y i Qi Fz x i i Mx y i Pi Fz x i i

Pi Qi Fz

d K

K d d K
K K

d d K d d K K

K K d K K d K

d d K , , , , sin(2 )
2

uz i Pi Qi Fz y i My y i Mx x i
i

d d K K K
 (2.206) 

 
The elements on the third row are: 
 

computed by means of Equations (2.187) and (2.188), as given next. For the 
generic inner spring, the stiffness elements of the first row are: 
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2 2 2
33, , , , ,

, ,

34, , , ,

2 2
35, , , , ,

sin 2 cos

sin(2 )

sin cos

cos sin

i Mx x i i Pi Fz uz i Pi Fz y i My y i i

Mx y i Pi Fz x i i

i Fz x i i Fz y i Pi Fz uz i i

i Mx y i Pi Fz x i i Mx y i Qi Fz x i i

Pi

K K d K d K K

K d K

K K K d K

K K d K K d K

d , , , ,

, ,2
36, ,

2
, , ,

sin(2 )
2

2
sin sin(2 )

2
cos

Qi Fz uz i Pi Qi Fz y i My y i Mx x i
i

Mx y i Pi Qi Fz x i
i Mx x i i i

Pi Qi Fz uz i Pi Qi Fz y i My y i i

d K d d K K K

K d d K
K K

d d K d d K K

 (2.207) 

 
The elements on the fifth row are: 
 

 

2 2 2
55, , , , ,

, ,

2
, , , ,

56,

, ,

cos 2 sin

sin(2 )

2 sin(2 )

2
cos(2 )

i Mx x i i Qi Fz uz i Qi Fz y i My y i i

Mx y i Qi Fz X i i

Qi Fz uz i Qi Fz y i My y i Mx x i i
i

Mx y i Qi Fz uz i i

K K d K d K K

K d K

d K d K K K
K

K d K

 (2.208) 

 
The relevant element on the sixth row is: 

2 2 2
66, , , , ,

, ,

sin 2 cos

sin(2 )

i Mx x i i Qi Fz uz i Qi Fz y i My y i i

Mx y i Qi Fz x i i

K K d K d K K

K d K
 (2.209) 

The stiffness elements corresponding to the outer spring j are: 
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44, ,

45, , , ,

46, , , ,

2 2 2
55, , , , ,

, ,

56,

cos sin

sin cos

cos 2 sin

sin(2 )

j Fz uz j

j Fz x j j Fz y j Sj Fz uz j j

j Fz x j j Fz y j Sj Fz uz j j

j Mx x j j Sj Fz uz j Sj Fz y j My y j j

Mx y j Sj Fz x j j

j

K K

K K K d K

K K K d K

K K d K d K K

K d K

K
2

, , , ,

, ,

2 2 2
66, , , , ,

, ,

2
sin(2 )

2
cos(2 )

2 cos sin

sin(2 )

Sj Fz uz j Sj Fz y j Mx x j My y j
j

Mx y j Sj Fz x j j

j Sj Fz uz j Sj Fz y j My y j j Mx x j j

Mx y j Sj Fz x j j

d K d K K K

K d K

K d K d K K K

K d K

(2.210) 

 

Determine the resonant frequencies corresponding to the out-of-the-plane 
motion of the two-mass, four-spring microgyroscope sketched in Figure 2.63. 
Consider that all beams are identical with their length being l = 200 μm and 
of circular cross-section with a diameter d = 2 μm. The material is poly-

 
ax

Jbx = ml2/4, Jay = Jby = ml 2. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.63 Two-mass, four-beam microgyroscope in out-of-the-plane free vibration 

m = 0.002 kg and their relevant mechanical moments of inertia are: J = 
silicon with E = 150 GPa and μ = 0.25. The two plates have the same mass 

Example 2.20 



Micromechanical Systems 219 

Solution: 
The configuration of Figure 2.63 brings a slight alteration to the micro-

gyroscope of the previous example through changing the position of the outer 

following particular amounts apply in this example: dP1 = dP2 = l, dQ1 = dQ2 = 
2l, dS1 = dS2 = l, and also: 1 = 0 , 2 = 180 , 1 = 90 , 2 = 270 . 

The vector defining the relevant DOF of a beam element in the local 
frame is {uk} = {uzk, xk, yk}t with k = i, j. Consequently, the following local 
stiffnesses are applying here: KFz-uz = 12EIz/l 3, KFz- y = 6EIz/l 2, KMy- y = 4EIz/l, 
and KMx- x = EIz/[(1+μ)l ]. By carrying out the necessary calculations, the 
overall stiffness matrix is found to be: 
 

 

2 2

2 2

6 60 0 0 0

0 0.4 0 0 0.4 0
0 0 14 0 0 234
6 120 0 0 0

0 0.4 0 0 14.4 0
0 0 23 0 0 38.4

z

l l

EIK
l

l l

 (2.211) 

 
The inertia matrix is diagonal, its diagonal terms being: 
 

 
2 2

2 2[ ]
4 4

ml mldiag M m ml m ml  (2.212) 

 
The resonant frequencies have the following numerical values: 1 = 485 
rad/s, 2 = 4,578 rad/s, 3 = 6,750 rad/s, 4 = 46,264 rad/s, 5 = 153,846 
rad/s, 6 = 169,781 rad/s. 
 
Problems 
 
Problem 2.1 

Design a paddle microcantilever with equal torsion and bending resonant 
frequencies. Its thickness is t and the dimensions of the geometric rectangular 
envelope are l and w. Known are also the material parameters. 
 
Problem 2.2 

Mass attaches uniformly over the whole paddle area of a paddle micro-
cantilever. By using a lumped-parameter model with the paddle considered 

springs by 90 . It can be checked that all six DOF are thus enabled. Also, the°

° ° ° °
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Problem 2.3 

Solve Problem 2.2 by considering a paddle microbridge instead of the 

 
Problem 2.4 

Mass attaches in a point-like manner to the symmetry center of a paddle 
microcantilever. Calculate the bending frequency shift by using a model with 
the paddle considered rigid and the root segment considered massless and 
compliant. Also calculate the frequency shift by considering inertia and 
compliance are contributed by both the paddle and root segments. 
 
Problem 2.5 

Solve Problem 2.4 by considering a paddle microbridge instead of the 
paddle microcantilever. 
 
Problem 2.6 

 
Problem 2.7 

 
Problem 2. 8 

A paddle microcantilever as the one sketched in Figure 2.1 has a bending 
frequency that is too low. Calculate the increase in the resonant frequency 
gained through converting the cantilever into a paddle bridge by addition of 
another flexure, identical to the original one, to its free end. Use the lumped-
parameter model. 
 
Problem 2.9 

paddle microcantilever. Consider w2 = 2w1. 

Study the torsion-to-bending resonant frequency ratio of a paddle micro-
cantilever when considering inertia is resulting only from the paddle and 
compliance is being produced by the root segment. 

Rework Problem 2.6 for a paddle microbridge. 

A torsional microresonator as the one pictured in Figure 2.8 is supported 
by a spiral spring with n = 1 turn, a minimum radius of r1 = 20 μm and 
maximum radius r2 = 30 μm. The microfabrication technology results in a 
uniform thickness of t = 2 μm. Determine the spring’s cross-sectional width w 
and inertia of the resonator which will produce a resonant frequency of 30 kHz. 
Consider the cross-section is thin, and E = 155 GPa and  = 2300 kg/m3. 

rigid and the root considered massless and compliant calculate the change in 
the bending resonant frequency. Consider l1 = l2 and w1 = 2w2. 
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Problem 2.10 
A rotary microresonator as the one pictured in Figure 2.11 has a 

specified resonant frequency t. Given are also the shaft diameter ds and the 
hub inner diameter di, as well as the material properties. Determine the radius 
of curvature of the curved springs as well as the number of springs. 

  
Problem 2.11  

 
Problem 2.12 

 
Problem 2.13 

Problem 2.14 

 

 
 Figure 2.64 Single DOF microaccelerometer with in-plane motion 

A single DOF rotary spring-mass microsystem as the one of Figure 2.8 
has a spring with n = 1.5 turns and its cross-section is square with a known 
side t, in the situation where the r/t < 8 (r is the variable curvature radius). 
Study the design variants that will generate a torsion resonant frequency 
ranging anywhere in the interval t1  t2. Consider J is also known. 

A microcantilever of constant circular cross-section (of known length l 
x

about the microcantilever’s longitudinal axis) at its free end. Identify the 
material modulus of elasticity E and Poisson’s ratio μ by using the bending 
and torsional resonant response of this paddle microcantilever. 

An inclined-beam microaccelerometer, as the one shown in Figure 2.15, 
to obtain a resonant frequency of 50 kHz when the proof mass is defined by 

–15 kg, E = 150 GPa and w = t = 2 μm. What is the expected 

 [0o; o

Find the in-plane resonant frequency of the single DOF microresonator 
shown in Figure 2.64. Known are the mass of the central plate, as well the 
geometry and material properties of the two identical constant cross-section 
beams. Also derive the result by using Problem 2.13. 

20 ] range? 

m = 2 × 10

and diameter d) has a rigid body (of known mass m and moment of inertia J  

r esonant frequency when l spans the [50; 300] μm range and  spans the
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Problem 2.15 
Compare the resonant frequencies of a saggital-spring microaccelero-

meter (Figure 2.17) and a U-spring one (Figure 2.19). Consider the proof 
masses are identical and also the long beams composing the springs are 
identical. Consider the short segments of the U-springs are rigid and study 
the influence of the inclination angle of the legs in the saggital springs. 
 
Problem 2.16 

a) the resonant frequency corresponding to the in-plane free vibrations 
about the direction perpendicular to the beam axis; 

b) the resonant frequency corresponding to the free rotations about the 
beams axes. 

Known are the length l, the cross-sectional dimensions w and t (t is very 
small), and the material properties. 
 
 
 
 
 
 
 
 

Figure 2.65 Microaccelerometer with offset beams 
 
Problem 2.17 

A linear microresonator supported by four inclined beam-springs (as the 
one of Figure 2.15) needs to have a resonant frequency 50% larger than its 
current one. Propose the design changes that will achieve this task when the 
only modifications are in the beams inclination  and width w. 
 
Problem 2.18 

Determine the dimensions of the constant rectangular cross-section of the 
four identical beams that elastically support the proof mass in Figure 2.66, 
such that the in-plane resonant frequency is one-quarter the out-of-plane one. 
Assume both the in- and out-of-the-plane resonant frequencies are translatory. 
Known is the mass m of the rigid plate, the length of the beams l, the beams’ 
cross-sectional dimensions w and t, as well as the material’s linear modulus 
of elasticity E.  
 

A microaccelerometer is composed of a rigid plate (of mass m and 
central moment of inertia Jx) and two identical beams, as sketched in Figure 
2.65. Considering the system is a single DOF one, calculate: 
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Figure 2.66 Microaccelerometer with in-plane and out-of-the-plane motions 
 

 
Problem 2.21 

Analyze the resonant frequency of the single DOF microaccelerometer 
with two folded beam suspensions shown in Figure 2.22 by considering that 
the length l2 (see Figure 2.23) ranges from 0.2 × l1 to 0.8 × l1, as well as when 
the moment of inertia Iz2 varies from 0.1 × Iz1 to 2 × Iz1. 

 
Problem 2.19 

Compare the resonant frequencies of an inclined beam-spring micro-
accelerometer and of a saggital spring one (both are assumed to be single 
DOF systems). Assume the two configurations have beams that are identical 
in both dimensions and inclination and identical proof masses, too. 
 
Problem 2.20 

Figure 2.67     Microaccelerometer with U springs 

A single DOF microaccelerometer (as the one of Figure 2.67) is supported 
by U-springs at its ends. Find the percentage change in the resonant frequency 
after the length 3 1 22 2l l l  (see Figure 2.21) is increased by 50%. The mass 
of the rigid plate is m.  
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Problem 2.22 

Problem 2.23 

 
Problem 2.24 

Problem 2.25 
A constant cross-section cantilever with a tip mass (as the one sketched 

in Figure 2.36) has to be designed to operate at two specified resonant 
frequencies, 1 and 2. Knowing the tip mass m and its mechanical moment 
of inertia Jy, as well as the cantilever thickness t and material’s Young’s 
modulus E, determine the other dimensions defining the microcantilever.  
 
Problem 2.26 

Determine the in-plane resonant frequencies of the microaccelerometer 

points to the plate is l. The mass of the plate is m, the beams’ cross-sectional 
dimensions are w and t, and Young’s modulus is E.  
 
Problem 2.27 

A two-mass system, as the one schematically shown in Figure 2.68, can 
function as a mechanical or electrical microfilter, altering the input to the 
system (which can be a displacement or a voltage, for instance). Calculate 
the resonant frequencies of this system by using Lagrange’s equations and 
describe the corresponding modes. 
 

the two beams. The distance from the plate center to the beams’ connection 
shown in Figure 2.64 of Problem 2.14. Neglect the axial deformations of

Design the two identical basic spiral springs of a single DOF micro-
accelerometer by finding a relationship between l1 and l2 (as pictured in 
Figures 2.24, 2.25, and 2.26) that needs to have a torsional resonant frequency 
that is twice the in-plane bending resonant frequency. The proof mass is a 
parallelepiped and is defined by a mass m and a mechanical moment of inertia 
J. The springs’ cross-section is defined by t and w.  

Compare the planar-motion resonant frequencies of two single DOF 
microaccelerometers that have identical proof masses. One design has its 
proof mass suspended by means of two end folded-beam springs, and the 
other one by means of two basic spiral springs. Consider the dimensions l1 
and l2, which define both springs, are identical; the springs cross-sections and 
material properties are also identical. 
 

A bent-beam spring microaccelerometer, as the one sketched in Figure 
2.29 with the spring being shown in Figure 2.30, has to ensure the maximum 
separation between the two resonant translations about the x- and the y-axes. 
Knowing that a leg’s length is limited by lmin and lmax, propose a design that 
will produce the maximum separation between the two in-plane resonant 
frequencies. 
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Figure 2.68 Lumped-parameter model of a two-mass microfilter 

Problem 2.28 
By applying Lagrange’s equations, calculate the resonant frequencies of 

a mechanical microsystem whose lumped-parameter schematic representa-
tion is given in Figure 2.69. Describe the corresponding modes. 

Figure 2.69 Lumped-parameter model of a two-mass microresonator 
 

For a constant-thickness paddle microcantilever, as the one shown in 

 

 

A two-beam spring accelerometer as the one of Figure 2.40 is confined 
within a rectangular envelope of 2L × L. Knowing that the thickness of the 
microdevice is constant and equal to t, determine the design that will realize 

Figure 1.21, use the lumped-parameter modeling method to derive the equi- 
valent tip inertia and compliance properties corresponding to out-of-the-plane
bending. Use this model to determine the resonant frequencies by using the
compliance approach. 

Problem 2.29 
Determine the resonant frequencies corresponding to out-of-the-plane 

bending of a constant cross-section microbridge with a point-like body at its 
midpoint whose mass m and mechanical moment of inertia Jy are known. 
Known are also the length l, cross-sectional moment of inertia Iy and 
elasticity modulus E for the microbridge.   

Problem 2.30 

Problem 2.31 

Problem 2.32 

Repeat Problem 2.30 for the microcantilever sketched in Fig. 1.92 of 
Problem 1.17 when w2 = 2w1. 
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A proof mass defined by m and Jz is symmetrically supported by four 
identical beams, as in Figure 2.45. The beam cross-section is square with a 
side of t. Ignoring the axial deformations of the beams, find the beam length l 
when one resonant frequency is 1.5 times larger than the other one during free 
in-plane vibrations. It is also known that the radius of the disk plate is R = l. 
 

A circular disk of mass m and mechanical moment of inertia Jz is 
symmetrically and radially supported by three fishhook springs (as the one of 
Figure 2.53). Knowing that l1 = l2 = l3 = R (R is the disk radius), also 
knowing Young’s modulus E, determine the resonant frequencies of the in-
plane motion. 
 

 

Determine the percentage change in the piston-type resonant frequency 

beams are identical and the proof mass is the same. 
 

 

z-axis) between a two-beam accelerometer and a four-beam one when all 
(the one corresponding to translatory out-of-the-plane vibrations about the 

Problem 2.34 

Problem 2.35 

Problem 2.36 

Problem 2.37 

Problem 2.38 

Problem 2.33 
A proof mass defined by m and Jz is end-supported by two identical basic 

spiral springs. Knowing the compliances at one spring end (Lobontiu and 
Garcia [1]), namely: Cux–Fx = 2l1

2 (2l1 + 3l2)/(3EIz), Cux–Fy = – l1l2 (l1 + 
2l2)/(EIz), Cux–Mz = l1 (l1 + 2l2)/(EIz), Cuy–Fy = 2l2

2 (9l1 + 4l2)/(3EIz), Cuy–Mz = – 
2l2 (2l1 + l2)/(EIz), C z–Mz = 2(2l1 + l2)/(EIz), calculate the three resonant 
frequencies corresponding to the in-plane free vibrations. The distance from 

A two-beam accelerometer (as the one shown in Figure 2.54) has the 
ratio of its two out-of-the-plane resonant frequencies equal to 5. Determine a 
relationship between the plate’s mechanical moment of inertia Jy and mass m 
when l1 = 2l (l is the length of the beam and l1 is the plate half-length). 

Find the out-of-the-plane resonant frequencies of the microgyroscope 
sketched in Figure 2.61. All four beams are identical and have circular 
constant cross-section. Known is also that mb = 2ma, Jax = Jbx, Jay = 4Jby. 
 

the maximum difference between the two resonant frequencies corresponding 
to the in-plane free vibrations. Use the approximations of the deformation 
geometry method. 
 

the plate’s center to the spring connection points is l1. It is also known that  
l1 = 2l, l2 = l and R = 6l. 
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Figure 2.70 Microgyroscope with beam springs 

Problem 2.41 

 

Figure 2.71 Lumped-parameter model of a two-mass microresonator 

A mechanical microfilter can be modeled by means of the lumped-
parameter model sketched in Figure 2.71. For this particular system it is 
known that mi+1 = qm × mi (i = 1, 2 and qm > 1), also that kj + 1 = qk kj (j = 1, 2, 
3 and 0 > qk < 1). Determine the minimum and the maximum resonant 
frequencies of this system. 

Compare the minimum resonant frequency of the in-plane free vibrations 
for the microgyroscope of Figure 2.61, to the minimum one of the micro-
gyroscope of Figure 2.63, considering similar designs with identical constant 
cross-section beams. 
 

Problem 2.39 

Problem 2.40 
Calculate the in-plane resonant frequencies for the microgyroscope 

sketched in Figure 2.70. All beams are identical and ma = mb, Jbz = 8Jaz. The 
inner disc’s radius is equal to R/4. 
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Chapter 3 
 
ENERGY LOSSES IN MEMS AND EQUIVALENT 
VISCOUS DAMPING 
 
 
 
 
 
 
 
 
 
3.1 INTRODUCTION 
 
Energy losses change the behavior of mechanical microsystems and limit their 
performance. The response of a single degree-of-freedom (DOF) mechanical 
system, for instance, is conditioned by a damping term (force in translatory 
motion and torque in rotary motion), which can be formulated as a viscous 
damping agent whose magnitude is proportional to velocity. The damping 
coefficient is the proportionality constant and various forms of energy losses 
can be expressed as viscous damping ones, either naturally or by equivalence 
so that a unitary formulation is obtained. For oscillatory micro/nanoelectro-

the quality factor (Q-factor), which is the ratio of the energy stored to the 
energy lost during one cycle of vibration, and the damping coefficient can be 
expressed in terms of the Q-factor. Energy losses in MEMS/NEMS are the 
result of the interaction between external and internal mechanisms. Fluid–
structure interaction (manifested as squeeze- or slide-film damping), anchor 
(connection to substrate) losses, thermoelastic damping (TED), surface/volume 
losses and phonon-mediated damping are the most common energy loss 
mechanisms discussed in this chapter.   
 

3.2 LUMPED-PARAMETER VISCOUS DAMPING 
 
3.2.1 Viscous Damping Coefficient and Damping Ratio 

 
Viscous damping in a lumped-parameter system that performs linear motion 
is expressed by a resistance force, which is proportional to velocity, namely: 
 
 dF cx  (3.1) 

mechanical systems (MEMS/NEMS), losses can be quantified by means of 
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where c is the damping coefficient (a similar relationship is obtained for rotary 
motion where a torque is set through damping resistance and that is pro-
portional to the angular velocity).  
 
 
 
 
 
 
 
 
 

Figure 3.1 Mass-dashpot single DOF system 
 
The damped free vibrations of the single DOF system of Figure 3.1 are des-
cribed by the equation: 
 
 0mx cx kx  (3.2) 
 
For linear systems, the damping coefficient c is constant, as well as the mass m 
and stiffness k coefficients. However, as shown in the following, situations 
may appear in damped MEMS/NEMS system where c depends on the 
vibration frequency (particularly in driven systems). Equation (3.2) in such 
instances becomes nonlinear, and its integration is not pursued in this chapter. 

By using the following notations: 
 

 

2

2

r

r

k
m
c

m

 (3.3) 

 
where r is the resonant frequency and  is the damping ratio, Equation (3.2) 
can be rewritten as: 
 
 22 0r rx x x  (3.4) 
 
which is the standard form known from vibrations. There are three different 
cases and their corresponding solutions depend on the value of the damping 
ratio . When 0 <  < 1, which leads to underdamped free vibrations, the 
solution to Equation (3.4) (e.g., see Thomson [1]) is:  
 

 

 

 2

(0)( ) (0) sin (0)cos
1

rt
d d

d

xx t e x t x t  (3.5)  
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where d is the damped resonant frequency and is defined as: 
 

 21d r  (3.6) 
 
Equation (3.5) can be rewritten as: 
 
  ( ) sinrt

dx t Xe t  (3.7) 
 
where: 
 

 

2

1

2

(0)(0)
1

cos
1tan (0)

1 (0)

d

d

xx
X

x
x

 (3.8) 

 
For  = 1, the vibrations of the system shown in Figure 3.1 are critically 

damped and the solution to Equation (3.4) is: 
 

( ) (0) 1 (0)rt
rx t e x t x t  (3.9) 

The overdamped vibrations occur when  > 1, and the solution to Equa-
tion (3.4) is in that case: 
 

 
2 21 1

( ) r rt t
x t ae be  (3.10) 

 
with: 
 

 

2

2 2

2

2 2

1 (0)
2 1 2 1

1 (0)(0)
2 1 2 1

r

r

a x

xb x

  (3.11) 

x(0)
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Figure 3.2 plots the three damped vibration cases under zero initial displace-
ment and non-zero initial velocity. An exponentially decaying envelope is the 
asymptote curve to the underdamped response curve. The overdamped res-
ponse curve is rapidly decaying. The critically damped response shows no 
harmonicity, as well as the overdamped one, and they both rapidly converge 
towards zero. 

 
Figure 3.2 Free damped response of underdamped, overdamped, and critically damped single 
DOF system 
 
3.2.2 Complex Number Representation of Vectors 

 
It is convenient in many situations where harmonic excitation and response 
are in place to use the complex number representation of vectors. Figure 3.3 
shows the one-to-one mapping that connects the classical representation of a 
vector and the one utilizing complex numbers. Considering the rod in Figure 
3.3 rotates at constant angular velocity , the projections of point P on the 
Cartesian frame axes are: 
 

 
cos

sin

x R t

y R t
  (3.12) 

 
because the angle that positions the rotating vector is  = t (  being the 
constant angular speed). 

 
 

 
 

The velocity components are the time derivatives of x and y of Equation (3.12), 
and therefore the total velocity is:  
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Figure 3.3 Classical planar representation of a vector versus complex-number representation 
of the same vector 
  

 
2 2

2 2
x y

dx dyv v v R
dt dt

 (3.13) 

 
Similarly, the normal acceleration is found by using the x- and y-components 
and its well-known value is: 
 

 2 2 2
n x ya a a R  (3.14) 

 
The one-to-one mapping of the rotating vector of Figure 3.3 into the complex 
number representation is warranted by the fact that a complex number is 
defined by a real component and an imaginary one. When the x- and y-
projections of a vector are identical to the real and imaginary parts of a 
complex number, respectively, a vector in a plane is mapped into the image 
of a complex number in the complex plane. The complex number that is the 
map of the rotating vector in Figure 3.3 can be expressed in algebraic form, 
as well as in trigonometric and exponential forms (the latter due to Euler’s 
formula), namely: 
 
 cos sin j tz x jy R t j t Re  (3.15) 

 
The exponential form of a complex number is compact and is used in problems 
involving harmonic amounts. A few properties of exponential-form complex 
numbers are illustrated next. Multiplying two complex numbers, namely: 
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 1 21 2
1 2 1 2 1 2

jj jz z R e R e R R e  (3.16) 
 
indicates the result is another complex number (vector) positioned at 1 + 2 
and having a magnitude equal to the product of the two multiplying complex 
numbers. Also, multiplication by the imaginary number j results in: 
 

 2cos sin
2 2

j
jjz j Re R e  (3.17) 

 
which shows the result is the original complex number z rotated by /2 clock-
wise. Similarly, division by j rotates a complex number by – /2 (or counter-
clockwise) because: 
 

 
3
2 23 3cos sin

2 2
j j

jz jz j R e R e R e
j

 (3.18)  

 
The velocity and acceleration of point P  in the complex plane are found by 
taking the first and second time derivative of z, namely: 
 

 
2

2 2
2

j t

j t
n

dzv i e j z
dt
d z dva e z
dt dt

 (3.19) 

 
The first Equation (3.19) indicates the velocity vector is rotated /2 in a clock-
wise direction with respect to the position vector R (Figure 3.3), whereas the 
normal acceleration is parallel to the displacement vector but has an opposite 
direction—both situations being well known properties of the constant 
angular velocity rotation. 
 
3.2.3 Q-Factor 

 
The Q-factor is a figure of merit that takes into consideration the various 
energy losses in a vibrating system. For an oscillator, it is generally defined as: 
 

 2 s

d

UQ
U

 (3.20) 

 
where Us is the energy stored (in the absence of losses) and Ud is the energy 
dissipated during one oscillatory cycle. 
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For a single DOF mechanical system, as the one shown in Figure 3.1, the 
energy stored in an oscillatory cycle (when damping the energy loss source is 
disregarded) is due to the elastic spring and is expressed as: 
 

 21
2sU kX  (3.21) 

 
Considering the work done by the viscous damping force is fully converted 
into energy lost during one oscillatory cycle, and considering a linear system, 
as the one shown in Figure 3.1, the damping energy is computed as: 
 
 d dU F dx c xdx  (3.22) 

 
The Q-factor is formulated by considering the interaction between the vibratory 
system and a harmonic (sine or cosine) excitation, and in such a characteri-
zation, the Q-factor is a forced-response one. The damping of a system can 
also be judged based on the free response, which would remove any depend-
ency on excitation. Both ways are briefly discussed next. 
 

 
When a sinusoidal force acts on the mass-dashpot system pictured in Figure 
3.1, the solution is obtained by carrying out the integration of Equation 
(3.22) for one period, and the energy lost through damping during one 
oscillation cycle is: 
 
 2

dU c X  (3.23) 
 
Consequently, the Q-factor defined in Equation (3.20) becomes: 
 

 
1

2
kQ

c
 (3.24) 

 
where  = / r. At resonance (  = r and  = 1), the Q-factor reduces to: 
 

  
1

2r
r

kQ
c

 (3.25) 

 
Example 3.1 

Analyze the Q-factor corresponding to the underdamped translational 
vibrations of a micromechanical system modeled as a single DOF system 
under sinusoidal excitation. 

3.2.3.1 Forced-Response Q-Factor  
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Solution: 
Equation (3.41) is used for the plot of Figure 3.4 (a), whereas the plot of 

quency (which amounts to increasing ) and the damping ratio  results in 
smaller Q-factors (Figure 3.4 (a)). Similarly, by increasing the damping ratio, 
the Q-factor diminishes (Figure 3.4 (b)). 
 

Figure 3.4 Quality factors: (a) regular quality factor; (b) resonant quality factor 
 
Example 3.2 

Demonstrate that for a freely damped single DOF vibratory system the 
Q-factor can be defined as the number of oscillations required to reduce the 
system’s energy to 1/e2  (approximately 1/535) of its original energy. 
 
Solution: 

According to Equation (3.7), the maximum displacement is obtained as: 
 
 max ( ) rtx t Xe   (3.26) 
 

If the energy of the system is the one stored in the spring, namely: 
 

 2
max

1
2

U kx   (3.27) 

 
and if n was the number of oscillations necessary to reduce the initial energy 
to the proportion mentioned in the problem, it means that: 
 

 40
2

1
r r

n
nT

U e
U e

 (3.28) 

 

Figure 3.4 (b) is drawn based on Equation (3.25). Increasing the actuation fre-
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where it has been considered that time t is expressed as: 
 
 rt nT  (3.29) 
 
and the initial time is t0 = 0. The relationship between the resonant period Tr 
and circular resonant frequency has also been considered: 
 

 
2

r
r

T  (3.30) 

 
The problem’s condition is: 
 

 20U e
U

 (3.31) 

 
Comparing Equations (3.28) and (3.31) yields: 
 

 
1

2 rn Q  (3.32) 

 
which demonstrates the problem assertion.  

Free decaying underdamped vibrations can be evaluated by means of the 
logarithmic decrement , which is defined as the natural logarithm of the 
ratio of any two successive amplitudes, and, according to Equation (3.7), can 
be calculated as: 
 

 1
1

ln ln
r

r

nT
n

rn T
n

x e T
x e

 (3.33) 

 
By taking into account Equation (3.6), which gives the relationship between 
the undamped and damped resonant frequencies, Equation (3.33) changes to: 
 

  
2

2
1

 (3.34) 

 
When using Equation (3.25), which expresses the resonant Q-factor in terms 
of the damping ratio, in conjunction with Equation (3.34), the resonant  
Q-factor results: 
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2

2

1 1 4
2rQ  (3.35) 

Example 3.3  
Determine the resonant Q-factor of a nano cantilever whose amplitude 

decays to 1/en after m free oscillations. Also determine the equivalent viscous 
damping. 
 
Solution: 

Considering that: 
 

 2 11 1 2

2 3 1
... m m

m m m

x xx x x
x x x x x (3.36) 

 
the natural logarithm of this relationship is applied, namely: 
 

 2 11 1 2

2 3 1
ln ln ln ... ln ln 1m m

m m m

x xx x x mx x x x x  (3.37) 

 
The problem statement is: 
 

 1 n

m

x ex  (3.38) 

 
or 
 

 1ln
m

x nx  (3.39) 

 
Comparing Equations (3.37) and (3.39) results in: 
 

 1
n

m  (3.40) 

 
The resonant Q-factor becomes, by means of Equations (3.35) and (3.40): 
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4 11 1
2r
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Q

n
 (3.41) 
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Figure 3.5 is the plot of Qr as a function of m and n. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.5 Resonant quality factor in terms of the number of cycles and amplitude ratio 

 
Example 3.4 

Consider the case in which several loss mechanisms act simultaneously 
on a MEMS, and that their individual Q-factors are known. Determine the 
total equivalent Q-factor, the corresponding equivalent damping ratio, as well 
as the resonant damping ratio, if the individual loss contribution superimpose 
linearly. 
 
Solution: 

The inverse of the Q-factor, as defined in Equation (3.20), is: 
 

 1

2
d

s

UQ
U

 (3.42) 

 
When several dissipation mechanisms are simultaneously present, the total 
loss energy can be expressed as: 
 
 ,d d i

i
U U  (3.43) 

 
where Ud,i are individual loss energy terms. Combination of Equations (3.42) 
and (3.43) results in: 
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U U
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U U
 (3.44) 
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In other words, the inverse of the total Q-factor is the sum of the individual 
Q-factor inverses. An equivalent viscous damping ratio can then be found, 
according to Equation (3.24), which connects the Q-factor and the equivalent 
damping ratio, namely: 
 

 11
2eq i

i
Q  (3.45) 

 
At resonance (when the frequency ratio  = 1), the equivalent damping ratio is: 
 

 1
,

1
2eq r i

i
Q  (3.46) 

 

 
A damped vibratory system can also be characterized in terms of energy effi-
ciency by formulating a Q-factor corresponding to its free response. Unlike 
the customary approach to the Q-factor where a harmonic force is applied to 
the mechanical system, the free-response Q-factor is defined based on the 
initial conditions of free vibrations. In the case in which an initial velocity 
applies to a single DOF underdamped system (the initial displacement being 
assumed zero), the free response of the system, according to Equation (3.5), is: 
 

 
(0)( ) sinrt

d
d

xx t e t  (3.47) 

 
The damping energy lost during one oscillation cycle is of the form: 
 
 d dU F dx c xdx  (3.48) 

 
After taking the time derivative of x(t) from Equation (3.47), by also consider-
ing the relationship between the damping coefficient c and the damping ratio  
(Equation (3.3)), the damping energy of Equation (3.48) can be expressed as: 
 

 
2

4

1 21 1 (0)
2dU e mx  (3.49) 

 
As Equation (3.49) suggests, the damping energy is constant for specified 
system parameters and initial conditions, and is not cycle-dependent (as pro-
bably expected). 

3.2.3.2 Free-Response Q-Factor  
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The elastic energy that is stored during one oscillation cycle (when con-
sidering there are no losses) is: 
 

  21 (0)
2dU mx  (3.50)  

 
By using its definition of Equation (3.20), the free-response damping factor is: 
 

 
2

4

1

2

1

Q

e

 (3.51) 

 
Equation (3.51) gives the Q-factor of a freely vibrating system as a function 
of the damping ratio, and this relationship is plotted in Figure 3.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 3.6 Quality factor as a function of damping ratio (underdamped case) in a free response 
 
It can simply be shown that: 
 

 
0

1

lim

lim 2

Q

Q
 (3.52) 

 
While the upper limit value is expected (the Q-factor would go to infinity 
when there are no energy losses, according to Equation (3.20)), the lower 
limit (2 ) corresponding to the critically damped case shows that the entire 
original kinetic energy of the system is converted to damping energy (the two 
energies are equal, if the factor 2  is ignored). 
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Example 3.5 
Compare the free-response Q-factor of Equation (3.51) to the resonant 

Q-factor corresponding to the forced response (Equation (3.25)). 
 
Solution: 

The two Q-factors can be compared by considering their ratio, which is: 
 

 
2

4

1

4

1
Qr

e

 (3.53) 

 
This ratio function is plotted in Figure 3.7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3.7 Quality factor ratio (free versus forced response) as a function of damping ratio for 

underdamped vibrations 
 

It can also be shown that: 
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Equation (3.54) indicates the two Q-factors are only equal in the absence of 
any viscous damping (  = 0). In the opposite case (critically damped system, 
 = 1), the Q-factor of the free response is 4  times larger than the classical, 

forced-response Q-factor. 
As shown in subsequent sections of this chapter, an equivalent damping 

ratio can be formulated that incorporates all the damping sources, and therefore 
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an equivalent (overall) Q-factor is obtained. Equation (3.51) can be used to 
express the damping ratio that corresponds to a given Q-factor, namely: 

 
2

2

2ln 1

216 ln 1

Q

Q

 (3.55) 

 
Example 3.6 

Express the Q-factor corresponding to the free response of a single DOF 
mass-dashpot system when the initial conditions consist of non-zero displace-
ment x (0). The initial velocity is assumed zero. 
 
Solution: 

When an initial displacement is applied to a mass-dashpot system, the 
response to this initial condition is, according to the general solution of 
Equation (3.5):  
 

 2( ) sin cos (0)
1

rt
d dx t t t x e  (3.56) 

 
The velocity function can therefore be determined, together with the damping 
energy lost during one vibration cycle, as shown for the case with non-zero 
initial velocity. By taking into account that the elastically stored energy is: 
 

 21 (0)
2sU kx  (3.57) 

 
the Q-factor can be expressed as: 
 

 

2

2

2 2 4

21 1 coth
1

1 2 1 1
Q  (3.58) 

 
Figure 3.8 plots the relative error between the Q-factor of Equation (3.58) 
and the one of Equation (3.51) for damping ratios not exceeding 0.1—which 
is a realistic upper limit for underdamped MEMS. 
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Figure 3.8 Relative errors between free-response quality factors: velocity versus displacement 
initial conditions 
 

As the figure shows, the two models yield results that are in excellent 
agreement for the feasible domain of the damping ratio. 

 

3.3 STRUCTURAL DAMPING  
 

particularly in harmonically driven ones. In metallic materials, for instance, 
the energy dissipated per cycle is independent of frequency for a wide range 
(Thomson [1]), and is proportional to the square of the response amplitude, 
namely: 
 
 2

dU X  (3.59) 
 
Converting different forms of damping into viscous damping is advantageous 
from a computational standpoint because of the velocity dependency of the 
viscous damping. The energy loss through equivalent viscous damping during 
one oscillation cycle (period) is: 
 
 2

,d eq eqU c X  (3.60) 
 
Equations (3.59) and (3.60) yield: 
 

  eqc  (3.61) 

 
The motion equation for a structurally damped system is therefore: 
 

 cosmx x k x F t  (3.62) 

It has been shown that materials contribute to energy losses in driven systems, 
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If complex form is used again and when the following relationship is 
considered: 
 
 x j x  (3.63) 
 
Equation (3.62) can be rewritten as: 
 

 j tmx k j x Fe  (3.64) 

 
By using the notation (Thomson [1]): 
 
 k  (3.65) 
 
Equation (3.62) becomes: 
 
 1 j tmx k j x Fe  (3.66) 
 
The quantity k(1 + j ) is called complex stiffness and the factor  is the 
structural damping factor. When an exponential-form particular solution is 
sought for Equation (3.66), the real amplitude becomes: 
 

 
22 2 2

FX
k m k

 (3.67) 

 
At resonance, Equation (3.67) transforms into: 
 

 r
FX
k

 (3.68) 

 
For viscous damping, the resonant amplitude is: 
 

 
2r

r

F FX
c k

 (3.69) 

 
Comparison of Equations (3.68) and (3.69) indicates that: 
 
 2  (3.70) 
 
for equal resonant amplitudes. The output-input amplitude ratio (transfer func-
tion, as it will be shown with more detail in Chapter 4) is: 
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 2

1( ) XG j
F k m j k

 (3.71) 

 
whereas the frequency response function (also treated in Chapter 4) is: 
 

 
2

2 22 2 2 2 2

1 1( )
1 1 1

kXH j j
F j

(3.72) 

 
Example 3.7 

The Q-factor is determined experimentally at resonance for a metal micro-
cantilever whose length l, cross-sectional width w, and thickness t are known. 
Determine the structural loss coefficient  by assuming the experimental test 
is conducted in vacuum (such that friction losses can be neglected), at low 
temperature (to discard thermal damping effects), and when support losses 
are disregarded. 
 
Solution: 

By taking into account Equations (3.25) and (3.70), the structural damp-
ing factor  is expressed as: 
 

 
1

rQ
 (3.73) 

 
which can be transformed by way of Equation (3.65) into: 
 

 
r

k
Q

 (3.74) 

 
As known from elementary beam theory, the lumped-parameter stiffness of 
the cantilever at its free end is: 
 

 
3

34
Ewtk

l
 (3.75) 

 
Consequently, the structural loss coefficient becomes: 
 

 
3

34 r

Ewt
l Q

 (3.76) 

Equation (3.76) emphasizes that the loss coefficient is inversely proportional 
to the resonant Q-factor. It can also be seen that long (l large) and thin (w and 
t small) microcantilevers produce less structural damping.   
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3.4 SQUEEZE-FILM DAMPING  
 
In squeeze-film damping, a MEMS plate-like member moves against a fixed 
surface and the gas in between generates a viscous damping resistance to 
motion, as sketched in Figure 3.9. Two particular gas regimes will be ana-
lyzed next together with their models, namely: the continuum flow regime and 
the free molecular flow regime. 
 
 
 
 
 
 
 
 
 

Figure 3.9 Squeeze-film damping 
 
3.4.1 Continuum Flow Regime 

 
In cases in which gas pressure is close to the normal (atmospheric) one and 
the gap is considerably larger than the free molecular path of gas molecules, 
the gas behaves as a continuum and approaches/results pertaining to continuum 
gas models are applicable. 

Integration of the Poisson-type equation, which expresses the film pressure 
under isothermal conditions, was performed by Blech [2], for instance, who 
provided the following viscous damping coefficient for a rectangular plate of 
dimensions l and w (l > w): 

 

 
2 2 2
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64
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plw m r nc
z

m n m r n
 (3.77) 

 
where r = w/l and: 
 

 
2

2

12 eff w
pz

 (3.78) 

 
is the dynamic squeeze-number. In the equations above  is the frequency of 
the mobile plate, p is the atmospheric pressure, z is the channel gap and μeff is 
the effective dynamic viscosity. The last quantity is a corrected value of a 
regular dynamic viscosity number, when taking into account the relationship 
between the gas channel dimensions and the molecular mean free path, , 
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x
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(the distance between a molecule’s two consecutive collisions). This is best 
expressed by the Knudsen number: 
 

 Kn z  (3.79) 

 

 

 1.1591 9.638eff Kn
 (3.80) 

 
which is an accurate prediction for the range 0 < Kn < 880. 

The dynamic squeeze number , as indicated by Blech [2], is also an 
indicator of the necessity of considering the spring effect of gas trapped 
between the two plates at values of  > 3. In such situations, the equivalent 
spring constant of the gas was found to be: 
 

 
2 2 2 2

8 22, , 2 2 2 2 2
4

64
m odd n odd

plw m r nk
z

m n m r n
 (3.81) 

 
Example 3.8 

Compare the viscous damping coefficient of Equation (3.77) when the 
first four terms of the double series are retained with the viscous damping 
coefficient provided by Zhang et al. [4], namely: 
 

 
3 3

4 2 2 3

96 l wc
l w z

 (3.82) 

 
2

1.85 × 10–5 N-s/m2, and use the first level of approximation. 
 
Solution: 

For m = n = 3, Equation (3.77) gives a damping coefficient denoted by c33. 
When the plate’s geometry is of interest, one can select an operating 
frequency and a gap distance, for instance, f = 500,000 Hz and z = 10 μm. By 
also using the other numerical values of this example, the plot of Figure 3.10 
is obtained, which shows the relative errors between c33 and c, calculated as: 
 

 33

33

c ce c  (3.83) 

 
 

Consider that air pressure is p = 100,000 N/m , dynamic viscosity is μ = 

Veijola et al. [3], for instance, suggest the effective dynamic viscosity: 
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Figure 3.10 Relative errors in damping coefficients in terms of plate geometry in squeeze-film 
damping 
 
For l = 200 μm and w = 50 μm, the plot of Figure 3.11 is obtained, which 
indicates the influence of vibration frequency and gap dimension on the same 
damping coefficient ratio. 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.11 Relative error in damping coefficients in terms of vibration frequency and gap 
dimension in squeeze-film damping 
 
Example 3.9 

Analyze the precision of calculating the squeeze-film damping coefficient 
of Equation (3.77) as a function of the number of n and m terms in the cor-
responding infinite series. 
 
Solution: 

The squeeze number of Equation (3.77) is expressed as a series expan-
sion in m and n. The double sum that defines it is expressed next by taking 
several levels of approximation, namely: 
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 (3.84) 
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 (3.85) 
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4
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 (3.86) 

 
Equations (3.84), (3.85), and (3.86) are used to form the following relative 
error numbers: 
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 (3.87) 

 
For a squeeze number  = 10, the percentage errors defined in Equation (3.87) 
are plotted in Figure 3.12 in terms of the non-dimensional variable r = w/l. 

 
 Figure 3.12 Relative errors in computing the squeeze number 
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As Figure 3.12 shows, the relative errors decrease sharply from the third 
level of approximation (when six terms are retained from the series; Equation 
(3.86)), which is compared to the second level of approximation (when four 
terms are retained from the series, as shown in Equation (3.85)). The relative 
error e11–55 of Equation (3.87) is very similar to the error e33–55 and was not 
plotted here. It is therefore safe, in terms of accuracy, to truncate the series 

 
Example 3.10 

Analyze the squeeze number variation with respect to the width of a 
microplate that moves against a fixed plate and the spacing between the two 
plates in the case of air. Known are the following amounts: molecular free 
mean path  = 85 μm, dynamic viscosity coefficient μ = 1.85 × 10–5 N-s/m, 
pressure p = 101,325 N/m2, frequency f = 100 MHz.  
 
Solution: 

With the numerical values given in this problem, and by taking into 
account that  = 2 f, the squeeze number becomes: 
 

 
2

8 1.159

1.375
1 6.15

w
e z z  (3.88) 

 
Figure 3.13 shows the variation of the squeeze number in terms of the plate 
width and the spacing. Figure 3.14 gives the squeeze number dependency of 
the gap for a fixed width w = 800 μm. 

Figure 3.13 Squeeze number as a function of plate width w and gap z 
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expansion involved in calculating the viscous damping coefficient corres- 
ponding to the squeeze film phenomenon at m = n = 3. 
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Solving the equation  = 3, where  is given in Equation (3.78) results in z = 
541.5 μm. Figures 3.13 and 3.14 indicate that  decreases with the gap 
increasing and therefore, according to Blech’s prescription, for gaps larger 
than 541.5 μm, air escapes the gap and the additional spring behavior is not 
manifested. 
 
Example 3.11 

Examine the influence of gas entrapping (  = 10) in a paddle microbridge 
(Figure 3.15) on its bending-related resonant frequency. Assume the out-of-
the-plane motion of the paddle segment is always parallel to the substrate. 
 
 
 
 
 
 
 
 
 
 

Figure 3.15 Top view of paddle bridge with dimensions 
 
Solution: 

When only considering the elasticity of the end segments of a paddle 
microbridge (as the one shown in Figure 3.15), the stiffness corresponding to 
out-of-the-plane bending (about the y-axis) is: 
 

Figure 3.14  Squeeze number as a function of gap z 
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 (3.89) 

 
In the case air is entrapped between the out-of-the-plane vibrating middle 
plate and substrate, the corresponding spring effect is expressed by the stiff-
ness given in Equation (3.81) and the total stiffness is the one of a spring 
parallel connection, namely: 
 

 
3 2 2 2 2

1 2 2
, 3 8 22, , 2 2 2 2 21

4

642tot
b y

m odd n odd

Ewt pl w m r nk
l z

m n m r n
 (3.90) 

 
The mass of the microbridge is considered to be provided by the middle 
segment, which, according to Figure 3.15, is: 
 
 2 2m w l t  (3.91) 
 
When taking a one-term series approximation in Equation (3.90) (m = n = 1), 
the following resonant frequency percentage error can be formulated: 
 

 , ,, ,

, ,

totaltotal
b y b yb y b y

b y b y

k k
e

k
 (3.92) 

 
Equation (3.92) has been used to draw Figures 3.16 and 3.17. Figure 3.16 is 
plotted for l2 = 200 μm and w2 = 100 μm, whereas Figure 3.17 is plotted for 
l2 = 200 μm and w1 = 50 μm.  
  
 
 
 
 
 
 
 
 

 
 

Figure 3.16 Relative errors in bending resonant frequency of a paddle microcantilever (l2 = 200 
μm, w2 = 100 μm)  
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Figure 3.17 Relative errors in bending resonant frequency of a paddle microcantilever (l1 = 200 
μm, w1 = 50 μm) 
 
As Figure 3.16 indicates, the relative differences between the out-of-the-plane 
bending resonant frequency when air elasticity is taken into account and the 
one in which air elasticity is not considered, increase with the length of the mid- 
segment increasing and the width decreasing up to a maximum of 80% for 
the selected parameter ranges. The effects of length and width of the root 
segment (the flexible ones) on the same resonant frequency differences are 
shown in Figure 3.17, which indicates that differences do increase with both 
length and width, increasing up to a relative maximum of 25% for the 
parameters analyzed in the figure.  
 
3.4.2 Free Molecular Flow Regime 

 
The squeeze-film damping models presented thus far are accurate for situa-
tions in which the gas behaves as a continuum, and this condition is satisfied 
when the pressure is not very low, because in such cases the mean free 
molecular path of gas molecules is less than the plate gap (which amounts to 
the Knudsen number of Equation (3.69) being less than one, Kn < 1). The 
mean free molecular path is defined by the following equation: 
 

 
22 A

RT
d N p

 (3.93) 

 
where R is the universal gas constant, T is the absolute temperature, d is the 
gas molecule diameter, NA is Avogadro’s number (which gives the number of 
molecules in a mole of substance), and p is the pressure. For air, R = 8.314 
J/mol-K, NA = 6.022 × 1023, and the molecular diameter is d = 3 × 10–10 m. In 

Equation (3.93) becomes: 
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0.01

p  (3.94) 

 
Under normal pressure conditions, such as p = 100,000 N/m2, the mean free 
molecular path is  = 0.1 μm, whereas for small pressures (almost vacuum), 
such as p = 1 N/m2, the mean free molecular path is  = 1 cm. Regular gaps 
in MEMS are of the order of micrometers, and therefore, for low (vacuum) 
pressures, the molecular mean free path is much smaller than the gap in a 
squeeze-film situation. Consequently, the continuum laws are no longer applic-
able and models pertaining to the free molecular domain are in place. By 
using notions of the momentum transfer, the Christian model [5], gives the 
following estimate of the Q-factor due to air damping at low pressures: 
 

 

3
2

2 m

t RTQ p M
 (3.95) 

 
where  is the gas mass density, t is the plate thickness, p is the pressure, and 
Mm is the molar weight of gas. This model assumed an infinitely large volume 
and considered the Maxwell-Boltzmann distribution of gas velocity. The 
results of Christian’s model (which was derived for macroscale applications) 
indicated Q-factors larger than experimental measurements indicated. Kadar 
et al. [6] used a variant of the Maxwell-Boltzmann distribution, namely the 
Maxwell stream distribution, and proposed the following Q-factor:  
 

 

3
21

2 8m m

t RT t RTQ p M p M
 (3.96) 

 
which is essentially  times smaller than Christian’s model prediction. 

Bao et al. [7] propose a similar Q-factor model that accounts for the plate 
dimensions and gap, namely:  
 

 
3
22

2 m

t z RTQ p l w M
 (3.97) 

 
where z is the gap and l and w are the dimensions of a rectangular plate. This 
model also considers the energy transfer from the oscillating plate to the gas 
and the reflection wall effects.  
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Example 3.12 
A plate with l = 180 μm, w = 40 μm, and t = 1 μm is suspended by two 

single-wall carbon nanotubes (SWCNTs) 1.4 in diameter and oscillates out-

and at a frequency of f = 1 MHz. Calculate the length of the SWCNT beams 
that will render the continuum-model and molecular-model Q-factors equal. 
Consider the following numerical properties: free gap z = 10 μm, pressure 
p = 1000 N/m2.   
 
Solution: 

For air, the molecular weight is Mm = 0.029 kg/mol and the molecular 
diameter is d = 3 × 10–10 m; the gas constant is R = 83145 J/mol-K and the 
density at sea level and normal temperature is 1.2 kg/m3. With the numerical 
data of the example and with the aid of Equation (3.94), it is found that the 
molecular free path is  = 10 μm, which is equal to the equilibrium gap, and 
therefore both the continuum and molecular models are likely to be valid. 
The continuum-model Q-factor is obtained from the corresponding damping 
coefficient as: 
 

 c
kQ c  (3.98) 

 
It can be seen that this Q-factor depends on the spring stiffness, whereas the 
molecular-model Q-factor does not depend on any stiffness. Anyway, in 
order for the two models’ Q-factors to be equal, the stiffness needs to have a 
specified value. By calculating the two models’ Q-factors, an equation in k 
results, which gives k = 17.27 N/m. At the same time, it is known from 
mechanics of materials that the stiffness of a clamped-guided beam is: 
 

 
4

3

3
16 b

d Ek
l

 (3.99) 

 
where E is the elastic modulus of the beam. An average value of E = 1012 
N/m2 will be considered, and lb is the unknown beam length. The total stiff-
ness is twice the one given in Equation (3.99) because there are two beams 
supporting the plate, and therefore by equating that stiffness to the number 
found above, the resulting beam length is lb = 11.18 nm. 

Bao’s model assumed constant gas particle velocity, and, in addition, the 
amplitude of oscillations was considered much smaller than the gap dimen-
sion. The time interval when a molecule is located between the resonator and 
the wall was assumed to be much smaller than the plate oscillation period. 
Hutcherson and Ye [8] proposed a Q-factor model that was two times smaller  
 

of-the-plane against the substrate in air at normal temperature T = 300°K 
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than the Q-factor, according to Bao’s model prediction. This model allowed 
for variations in the gas particle velocity and was proved to be valid for 
situations in which the ratio of the gap to the plate length is around 1/200. 

The Q-factor in squeeze-film damping is further affected by gas–surface 
interactions, of which out gassing from surfaces and gas molecule adsorption 
by the plates are the most important. A quantifier of these interactions is the 
normal momentum accommodation coefficient (NMAC), n, which ranges 
from 0 for no adsorption to 1 for full adsorption. Polikarpov et al. [9] pro-
posed the following damping ratio, which took into account the gas–surface 
adsorption interaction: 
 

 
2 2n mmpt kT

 (3.100) 

 
where  is the plate’s material mass density, t is the plate thickness (as 
previously mentioned), mm is the molecular mass of the gas, k is Boltzmann’s 
constant, and T is the absolute temperature. By taking Equation (3.24) into 
account, which defines the relationship between the damping ratio and the 
Q-factor, the latter can be expressed by also considering that: 
 

 m mm M
k R

 (3.101) 

 
as: 
 

 

3
2 2

2 2 n m

tf RTQ
p M

 (3.102) 

 
Equation (3.102) also considered the relationship between the angular fre-
quency  and the normal one f, namely:  = 2  f.  
 
3.4.3 Squeeze-Film Damping for Rotary-Motion Plates  

 
Equivalent viscous damping coefficients expressed so far that involved squeeze- 
film damping referred to translation and therefore were related to linear-
motion damping forces. In the case sketched in Figure 3.18, a plate rotates 
about a fixed pivot point and the gas is squeezed between the moving plate 
and the fixed substrate producing a damping torque, which opposes the 
motive angular velocity .  
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Figure 3.18 Squeeze-film damping and rotary plate 
 
This topic has usually been approached by linearizing the Reynolds equation 
that expressed the variable pressure about the x-direction under the assump-
tion that the angular motions of the plate are small compared to the static gap 
z0. The linearized equation is subsequently solved, and its solution is used to 
determine the total resistive damping torque (Darling et al. [10], Dotzel et al. 
[11], Pan et al. [12] and Bao et al. [13], to cite just a few of the work dedi-
cated to this topic). Veijola et al. [14] presented a simple model that yielded 
the damping coefficient pertaining to a plate rotating at an angular velocity , 
which is connected to the corresponding torque as: 
 
 d rM c  (3.103) 
 
The model starts by considering the linearized, temperature-independent 
Reynolds equation in one dimension (the x-direction): 
 

 
2 2
0

2 0

( )
12 eff

z d p x x
dx z  (3.104) 

 
where the linear velocity of the plate at a distance x measured from the central 
pivot point is simply  × x, and p0 is the ambient (constant) pressure. The solu-
tion to Equation (3.104) is a third-order polynomial and its two integration 
constants are determined by applying the trivial boundary conditions: 
 
 / 2 / 2 0p w p w  (3.105) 
 
The pressure is therefore: 
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 (3.106) 
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where: 
 

 
3

1 3
02

eff w
c

z
 (3.107) 

 
The elementary damping force acting on an elementary surface area dA = 
dxdy and opposing the plate rotation can be expressed as: 
 

 ( )ddF p x dxdy  (3.108) 
 
and this force produces an elementary damping torque: 
 

 ( )d ddM xdF xp x dxdy  (3.109) 
 
The total damping torque is found by integrating Equation (3.109) over the 
whole plate area, namely: 
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After integration and consideration of Equation (3.103), which gives the 
relationship between damping torque and angular velocity, the torsional 
damping coefficient is expressed as: 
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Example 3.13 

A plate is suspended at its ends by two serpentine springs that are clamped 
at their opposite ends to the substrate, as sketched in Figure 3.19. Compare 
the squeeze-film damping that is generated when the plate moves out-of-the 
plane parallel to the substrate to the damping corresponding to the small-
angle rotation of the plate about the x-axis. 
 
 
 
 
 
 
 
 
 
 

Figure 3.19 Plate with two end serpentine springs 
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Solution: 

which, according to the definition of Equation (3.25), depend on inertia, damp-
ing, and stiffness. For the translatory motion about the z-axis, the Q-factor is: 
 

 z
z

z

MK
Q c  (3.112) 

 
where M is the mass of the plate, cz (Equation (3.82)) is the damping 
coefficient of the z-axis translation, and Kz is the stiffness of the spiral 
springs corresponding to the same motion. Similarly, the Q-factor defining 
damping due to squeeze-film effects accompanying the resonant rotary 
vibrations of the plate can be expressed as: 
 

 r x
r

r

K J
Q c  (3.113) 

 
where Jx is the plate mechanical moment of inertia about the x-axis, cr 
(Equation (3.111)) is the damping coefficient of this motion and Kr is the 
torsional stiffness of the two serpentine springs. The plate’s moment of 
inertia depends on mass as: 
 

 2 2

12x p
MJ w t  (3.114) 

 
where tp is the plate thickness. 

The stiffness of a serpentine spring expressing translatory motion about 
the z-axis in Figure 3.19 was given by Lobontiu and Garcia [15], and because 
there are two springs in parallel in this application, the corresponding 
stiffness is twice the one of an original spring, namely: 
 

  3 3
1 2 1 2 1 2

3
3 ( 3 ) 2 ( 2 )

y t
z

y t

EGI I
K

EI l l l l GI l l
 (3.115) 

 
Similarly, Lobontiu and Garcia [15] derived the torsional stiffness of a spiral 
spring that defines rotation about the x-axis of Figure 3.19. The total 
torsional stiffness of this application is twice the one of an original spiral 
spring, namely:  
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 (3.116) 

 

The damping comparison is carried out by means of the resonant Q-factors, 
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In Equations (3.115) and (3.116), E and G are the longitudinal and shear 
modulii of the spring material, whereas l1 is the length of half of a long leg 
defining the spiral spring and l2 is the length of a spring short leg, as also 
shown in a previous example in Chapter 1. Figure 3.20 shows the cross-
section of a spiral spring, which is assumed constant and identical for both 
the long and short legs. 
  
 
 
 
 
 
 
 

Figure 3.20 Cross-sectional dimensions of the spiral spring 
 
Considering the cross-section is thin, the moments of inertia are related as: 
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3t y

wtI I  (3.117) 

 
All the amounts that are necessary to compute the Q-factors of Equations 
(3.112) and (3.113) are now available. The non-dimensional variables c1, c2, 

w t 1 1 2 2
cw p p

1 2
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 Figure 3.21 Numerical simulation for rotary-to-translatory quality factor ratio for squeeze-film 
damping: (a) c1 = 0.5, c2 = 0.1; (b) cw = 0.2, ct = 0.01 
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× l, t  = c  × l. The plots of Figure 3.21 show the variation of the rotation-
to-translation Q-factor ratio. In Figure 3.21 (a), c  = 0.5 and c  = 0.1, whereas 
in Figure 3.21 (b), c  = 0.2 and c  = 0.01. t

c , and c  are introduced and defined as follows: l  = c  × l, l  = c  × l, w =  
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3.4.4 Squeeze-Film Damping: Translatory Perforated Plates 
 

Proper operation of MEMS/NEMS under squeeze-film damping conditions is 
often times hampered by the relatively high damping coefficients (parti-
cularly for thick plates), which reduce the device Q-factor. An alternative to 
using slide-film damping instead of squeeze-film damping or to packaging 
the device in low-pressure cells is to perforate the plate, which allows air to 
flow through from the gap and therefore reduce damping. Finding the damp-
ing coefficient under the presence of a number of holes in the original plate 
implies modification of the original Reynolds’s pressure equation so that the 

velocity; this procedure yields the damping coefficient. Of the many con-
tributions to this area, Bao et al. [16, 17] proposed the approach of dividing 
the plate into cells with holes at centers, as shown, for instance, in Figure 3.22. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.22 Portion of hole-plate showing actual hole and perforation cell arrangement 
 
They assumed the pressure is a smooth function of position under the entire 
plate and that the fluid actually flowing through the physical hole penetrates 
the whole cell. Another assumption of their model is that flow through the hole 
(about the z-direction) is fully developed Poiseuille flow, which is a pressure- 
driven flow, and has a curvilinear symmetric profile with zero velocity at the 
edges and maximum velocity at the hole center. In doing so, the actual area 
of a rectangular plate, for instance, is transformed into an equivalent smaller 
area where pressure acts uniformly, as indicated in Figure 3.23. 

rrc

p

actual hole 
perforation cell 

puted subsequently, and is of the form: damping coefficient times plate 
perforation region is taken into consideration. The damping force can be com- 



MEMS Losses 263 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.23 Top view of actual and equivalent damping plate 
 
By applying this procedure, the following damping coefficient is obtained 
under the additional assumption that at least three holes exist across the plate 
in any direction: 
 

 2
3
0

12 2 2a a ac l w l l l
z

 (3.118) 

 
where w and l are the plate in-plane dimensions, z0 is the original (static) gap, 
μ is the dynamic viscosity (which for slip and transition regimes can be 
substituted by μeff [Equation (3.80)], according to Veijola et al. [3]), and la is 
the attenuation length (Bao et al. [16, 17]), which is computed as: 
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eff
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In Equation (3.119), teff is the effective thickness of the plate, which takes 
into account additional flow resistance at the perforation ends (particularly 
when the hole radius r compares to the plate thickness t), and is calculated as: 
 

 
3

8eff
rt t  (3.120) 

 
The coefficient  in Equation (3.119) is the ratio between the hole radius r and 
the perforation cell radius rc, namely:  = r/rc. In the same Equation (3.119): 
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The radius of the perforation cell can be computed based on Figure 3.22 by 
following the procedure developed by Mohite et al. [18], for instance. The 
holes and their perforation cells (circles) can be grouped in the hexagonal 
arrangement shown in the same figure. The area of the hexagon coupling the 
seven circles is approximately equal to the area of the center cell plus six iden-
tical cell areas, each equal to one-third the area of a full cell. Consequently, 
the hexagon area equals a total of three cell areas, namely: 
 

 21 36 3
2 2 cp p r  (3.122) 

 
Equation (3.122) gives the radius of the cell as a function of the pitch 
distance p between two adjacent plate holes: 
 

 0.525cr p  (3.123) 
 

Example 3.14 
Study the influence of the pitch dimension p on the attenuation length 

and of the squeeze-film damping of a rectangular plate with holes in it. The 

= 10 μm and the air’s dynamic viscosity is μ = 1.73 × 10–5 N-s/m2. 
 

Solution: 
By using the given numerical data, Equations (3.118) through (3.123) are 

used to express la and c in terms of only the pitch distance p and the hole 
radius r. Figure 3.24 shows the two functions plotted against p and r. Both 
the attenuation length and the damping coefficient increase with the pitch 
distance in a quasi-linear fashion, as shown in Figure 3.24, whereas the 

smaller compared to the influence of the pitch distance. 
 

  
Figure 3.24 Damping characteristics for a plate with holes: (a) attenuation length; (b) damping 
coefficient 

(a) (b) 
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3.5 SLIDE-FILM DAMPING  
 

When the motion of a plate takes place parallel to another fixed plate (such as 
the substrate in a MEMS device), shearing of the fluid underneath and above 
the moving plate will generate viscous damping resistance through the relative 
fluid-structure sliding. The slide-film damping is sketched in Figure 3.25. 
 
 
 
 
 
 
 
 

Figure 3.25 Slide-film damping 
 
Depending on the Knudsen number, which compares the mean free mole-

cular path to the fluid path, there are normally four different flow types, and 
the damping coefficients are determined by different models. For Knudsen 
numbers smaller than 0.001, which means the free molecular path is at least 
three orders of magnitudes smaller than the fluid gap, the viscous damping 
can be assessed by macro-scale, conventional methods pertaining to continuum 
models. Larger values of the Kn number indicate the mean free molecular 
path and gap dimension become comparable and micro/nano phenomena 
such as gas rarefaction and gas–surface interactions have to considered. As 
such, when 0.001 < Kn < 0.1, the flow is known as slip flow, and slip 
velocity boundary conditions have to be accounted for. To determine the 
damping coefficients, Navier-Stokes equations are solved for both flow 
categories. For 0.1 < Kn < 10, transition flow conditions are set up, while for 
Kn > 10 the flow is free molecular. These cases are discussed next. 
 
3.5.1 Continuum Flow Regime 
 
In the case of Knudsen numbers that are less than 0.001, the flow is governed 
by macro-scale laws and the viscous damping coefficient is determined as 
follows. The boundary conditions are considered fixed, namely: 
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 (3.124) 

 
The shearing stresses present between two adjacent fluid layers in one-

dimensional flow are expressed (e.g., see Landau and Lifschitz [19]) as: 
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( )xdv z

dz
 (3.125) 

 
One model that enables predicting the damping coefficient is the Couette 

model, according to which the velocity profile of the fluid between the two 
plates varies linearly from 0 (at the fixed plate) to the mobile plate velocity at 
the interface with it. The fluid above the moving plate is assumed to displace 
with a velocity equal to that of the plate, as sketched in Figure 3.26 below. 
As a direct consequence, damping is only generated by the fluid between the 
two plates.  
 
 
 
 
 
 
 
 
 
 

 
Figure 3.26 Velocities in Couette slide-film damping 

 
For Couette-type flow, the linear velocity profile of Figure 3.26 is expressed as: 
 

 
0

( )x x
zv z vz  (3.126) 

 
By combining Equations (3.125) and (3.126), the shearing stress becomes: 
 

 
0

xv
z  (3.127) 

 
which indicates the stress is constant over the two plates gap. The damping 
force produced at the plate–fluid interface can be calculated by multiplying 
the shear stress to the mobile plate area, namely: 
 

 
0

d x
AF A vz  (3.128) 

 
A linear damping force is the product of a damping coefficient to the velocity, 
and therefore Equation (3.128) yields the following viscous damping 
coefficient owing to Couette-type slide-film effects: 

vx

x
y
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0

C
Ac z  (3.129) 

 
The corresponding Q-factor of Equation (3.24) can be calculated by means of 
cC from Equation (3.129) as: 
 

 0
C

kzQ
A

 (3.130) 

 
where k is the spring stiffness associated with the mobile plate (which is 
elastically supported over the substrate) and  is the frequency of the sinu-
soidal force that drives the mobile plate. At resonance, when the driving 
force frequency equals the plate-spring resonant frequency, the Couette-type 
Q-factor becomes: 
 

  0
,C r

zQ km
A

 (3.131)  

 
where m is usually the mass of the moving plate. Equation (3.130) indicates 
that the Q-factor increases by reducing the dynamic viscosity of the gas, as 
well as the plate area, and by increasing the gap, together with the mass and 
stiffness of the plate-spring system. 
 
Example 3.15 

A plate microresonator, as the one sketched in Figure 3.27, is driven at 
resonance by a comb-drive actuator. The plate is elastically supported by two 
spiral springs. Design a plate-spring system that will have a specified Q-
factor at resonance for given air viscosity and plate gap. Assume also that the 
plate area is known and that the plate-to-spring thickness ratio and the spring’s 
leg length ratio (the spring is shown in Figure 3.28) are specified as well. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.27 Electrostatically actuated and sensed microplate resonator with spiral springs (top view) 
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Solution: 
Equation (3.131) can be rewritten as: 

 

 0
,C r

z ktQ
A

 (3.132) 

 
where  is the plate’s mass density and t is its thickness. The total stiffness of 
this microresonator is twice the stiffness of a single spring because there are 
two springs here acting in parallel. The stiffness of a spiral spring can be 
found as the inverse of the compliance given by Lobontiu and Garcia [15] as: 
 

 2
1 1 2

3
2 2 3

zEIk
l l l

 (3.133) 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.28 Geometry of spiral spring unit 
 
The geometry of a spiral spring unit is shown in Figure 3.28, but each of the 
springs shown in Figure 2.27 is formed of two serially connected spiral spring 
units, and the total stiffness is therefore the equivalent stiffness of the spring 
arrangement shown in Figure 3.29. 
 
 
 
 
 
 
 
 
 

Figure 3.29 Spring arrangement for the microresonator of Figure 3.28 
 
By serially combining two identical spiral units to form one full spiral spring, 
the resulting stiffness becomes half the one of Equation (3.133). By further 
combining the two resulting springs in parallel, the final equivalent stiffness 
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is twice the one of a serial chain, and therefore equal to the one of the 
original spring unit of Equation (3.133). By considering the spring cross-
section is square with a thickness ts, the Q-factor of Equation (3.132) 
becomes: 
 

 
5/ 2

, 3/ 2
2

C r
tQ c
l

 (3.134) 

 
where: 
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 (3.135) 

 
has the dimension of length to the – (2/5) power and with: l1 = cl l2, and ts = 

t
increasing the plate and spring thickness and by shortening the legs of the 
spiral spring. By selecting one parameter, for instance l2, the other unknown 
can be computed as: 
 

 
2 /5

, 3/5
2

C rQ
t lc  (3.136) 

 
3.5.2 Slip Flow Regime 

 

when the mean free molecular path-to-gap ratio increases and when the gas 
velocity is not zero at the gas-fixed surface interface due to some gas mole-
cular motion. The flow velocity is still linear (the Couette flow). For relatively 
slow motion of the plate (when gas inertia is not accounted for), as well as 
for fast vibrating plates (where inertia of gas is a factor), different damping 
coefficients can be obtained analytically by solving the Navier-Stokes equation 
in conjunction with using slip velocity boundary conditions, as shown in the 
following. 
 

  

 

 
0

x
eff

v
z  (3.137) 

 Slip flow regimes are set up for Knudsen numbers 0.001 < Kn < 0.1,

3.5.2.1 Frequency-Independent Damping 

One modality of deriving the damping coefficient is expressing the maximum
fluid shear stress, which occurs at the fluid–plate boundary:  

c t. E quation (3.134) suggests that the Q-factor can be improved  by
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where μeff is the effective dynamic viscosity and is determined according to 
various assumptions and contains corrections (mainly in terms of the Knudsen 
number) that will be discussed a bit later in this section. From Equation 
(3.137) one can calculate the damping force as: 
 

 
0

eff
d x

A
F A vz  (3.138) 

 
Because this force is equal to the damping coefficient multiplied by velocity, 
it follows that the damping coefficient is, according to Equation (3.138): 
 

  
0

eff A
c z  (3.139) 

 

 
For large Reynolds numbers, where inertia effects are larger than viscosity 
effects, damping is dependent on frequency because gas velocity distribution 
becomes dependent on time, and different models are in place (Veijola and 
Turowski [20]). The Navier-Stokes equation, which describes the diffusion 
problem with no pressure gradient in one dimension, is: 
 

 
2

2

( , ) ( , )x xv z t v z t
t z

 (3.140) 

 
where  is the kinematic viscosity. The generic solution to this partial-
derivative differential equation can be obtained in the frequency domain, 
when the velocity of the plate is: 
 
 ( , ) ( )sinx xv z t V z t  (3.141) 
 
It can be shown that the generic amplitude of Equation (3.141) is of the form: 
 

 1 2( cos hx
j jV z z C z  (3.142) 

 
For fixed boundary conditions, Equation (3.142) reduces to: 
 

3.5.2.2 Frequency-Dependent Damping: Stokes Model 

) C sin h
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j z
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j z
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3.5.2.2.1 Above-the-plate model  

 

plate and the unbounded fluid (gas) can be determined by integrating the 
same Navier-Stokes equation, Equation (3.140). The integration can be 
performed for fixed boundary conditions (according to the continuum model) 
or by considering various order slip at the boundaries. 

 

For fixed boundary conditions (no velocity slip at the plate interface; see Kundu 
[21]) the following equations apply: 
 

 
(0, ) cos
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x x

x

v t V t
v t bounded

 (3.144) 

 
Solutions of the type are sought: 
 
 ( , ) ( )j t

x xv z t e V z  (3.145) 
 
where all the involved functions are complex functions. (It should be men-
tioned that z is measured from the plate towards the fluid.) By substituting 
Equation (3.145) into Navier-Stokes Equation (3.140) and by using the two 
boundary conditions of Equation (3.144), the fluid velocity (which is a real 
quantity) can be expressed as: 
 

 
1

2 2 2( , ) Re cos
2

z j z zj t
x x xv z t v e e e v e t z (3.146) 

 
Equation (3.146) resembles the solution to a wave propagation problem, but 
in actuality there are no restoring forces participating in this motion, and 
therefore, it represents a diffusion problem (derived from solving the Navier-
Stokes original diffusion equation). The amplitude of the fluid motion 
indicated in Equation (3.146) is: 
 

 The viscous damping coefficient of the motion between an oscillating

Fixed boundary conditions (continuum model) 
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 2( )
z

x xV z v e  (3.147) 
 
and varies with z as shown in Figure 3.30. As z increases the influence of the 
boundary condition-generated vibration diminishes. For a value of: 
 

 4d  (3.148) 

 
which is known as the diffusion length or parameter, the amplitude is: 
 

 
4
2( ) (0) 0.05x d x xV V e v  (3.149) 

 
which is 5% of the wall velocity. A parameter similar to the diffusion length 
is the penetration depth, , which is the distance where the motion amplitude 
reduces by a factor of e, which means that: 
 

 12
x xv e v e  (3.150) 

 
and therefore: 
 

 
2

 (3.151) 

 
The diffusion length and penetration depth are related as: 
 
 2 2d  (3.152) 
 
The viscous damping coefficient at the moving plate–fluid interface is found 
by first determining the shear stress at that interface through application of 
Newton’s law of viscosity (Equation (3.125)). The velocity amplitude 
derivative at the interface is: 
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 (3.153) 
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Figure 3.30 Velocities in Stokes slide-film damping 

 
By ignoring the minus sign in Equation (3.153), the shear stress of Equation 
(3.125) can be expressed, and therefore the corresponding shear force 
corresponding to the plate surface’s A is: 
 

 
2d xF Av  (3.154) 

 
A typical viscous damping force is equal to damping coefficient times 
velocity and, consequently, the damping coefficient is: 
 

 
2 2 2dc A A A  (3.155) 

 

 
For rarefied gas, the continuum-model boundary condition at the moving plate 
needs to be amended, as the gas velocity will differ from the plate’s velocity. 
First-order slip boundary condition (e.g., see Kundu [21]) are expressed as: 
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where  is the free molecular path. By carrying out the procedure that has 
been detailed for the continuum model, the following gas velocity is found at 
the moving plate boundary: 
 

First-order slip boundary conditions 
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The shear stress at the interface is: 
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 (3.158) 

 
The total force at the gas–plate interface is determined by multiplying the 
stress of Equation (3.158) by the plate’s area. Because the resulting force is 
the product of plate velocity amplitude Vx by a coefficient, this being the 
standard form of a damping force, the corresponding damping coefficient is:  
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By taking into account that the dynamic viscosity is mass density times 
kinematic viscosity, the damping coefficient of Equation (3.159) can also be 
written as: 
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The penetration depth in this situation is found from its definition equation, 
namely: 
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which results in: 
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 (3.162) 
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3.5.2.2.2 Between-the-plates model 
 

Again, fixed boundary conditions, as well as slip boundary ones will be con-
sidered here. 
 

 
To determine the damping coefficient at the moving plate–fluid interface for 
the space enclosed between the moving and the fixed plates, a solution to the 
Navier-Stokes equation is the one suggested by Landau and Lifshitz [19]: 
 
 ( , ) sin( ) cos( ) j t

xv z t A z B z e  (3.163) 
 
where: 
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2
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and z is the variable length parameter that ranges within the [0, z0] interval, and 
is measured from the mobile plate (when z = 0), as suggested in Figure 3.30. 
By using the continuum-model (no-slip) boundary conditions of this problem: 
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where the first boundary condition used the complex-number notation to 
denote the mobile plate velocity, the space-dependent portion of Equation 
(3.163) becomes:   
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The shear stress at the moving plate–fluid interface is found by using Newton’s 
law as: 
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Fixed boundary conditions (continuum model) 
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Equation (3.167) gives the complex number form of the shear stress, but only 
its real part accounts for the actual shear stress, which is: 
 

 1 0 1 0

1 0 1 0

2 sin 2
2 cos 2x

z z
V

z z
 (3.168) 

 
with: 
 

 1 2
 (3.169) 

 
Because, again, the damping force is shear stress times area but is also damp-
ing coefficient times velocity, the damping coefficient can be computed from 
Equation (3.167) as: 
 

 1 0 1 0
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cos h 2 cos 2

z z
c A

z z
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Example 3.16 

Evaluate the total damping coefficient generated due to air friction above 
plate that undergoes vibrations parallel to the substrate, as well as between 
the plate and the substrate, by considering the continuum model does apply 
(with fixed boundary conditions). 
 
Solution: 

Equations (3.155) and (3.170) give the damping coefficients outside the 
plate and between the plate and the substrate, respectively. The total loss in 
case several independent effects superimpose can be evaluated by means of 
the inverse of an equivalent Q-factor, which is obtained by adding up the 
inverses of the individual Q-factors, as shown by Equation (3.44). At the same 
time, according to Equation (3.24), the Q-factor is proportional to the inverse 
of the damping coefficient. Consequently, the total damping coefficient is 
the sum of individual contributions from above-the-plate and between-the-
plates damping coefficients, namely: 
 
 a bc c c  (3.171) 
 
where ca is given in Equation (3.155) and cb in Equation (3.170). The plot of 
Figure 3.31 shows the variation of the ca/c ratio.  
 
 
 

sin h
cos h1
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Figure 3.31 Above-the-plate damping coefficient as a fraction of the total damping coefficient 
 
For relatively small gaps and driving frequencies, the damping produced 
above the plate is less significant in the overall damping coefficient, as shown 
in the figure, cases in which the damping owing to fluid–structure interaction 
predominates. For higher gaps and frequencies, the fraction of damping pro-
duced above the plate increases and approaches the one generated between 
the plates. 
 

 
The model described in the previous subsection together with its corresponding 
damping coefficient equation account for fixed boundary conditions, accord-
ing to the continuum model. When slip boundary conditions are assumed 
(which account for flows in the slip and/or transition flow regimes), a different 
coefficient is produced, as shown next. 

The slip boundary conditions account for gas rarefaction at low pressures 
and very small gaps that result in a gas velocity that is non-zero at the fixed 
wall (the slip velocity) and is different from the oscillating wall velocity at 
that interface. These changes in fluid velocity distribution alter the damping 
coefficient resulting from the rarefied fluid-moving plate interaction. The first- 
order slip boundary conditions (Burgdorfer [22]), also known as Maxwell’s 
boundary conditions, are: 
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 (3.172) 

 
where vx is the gas slip velocity (at either the fixed plate or the oscillating 
one), Vx is the plate velocity amplitude,  is the mean free molecular path, 

First-order slip boundary conditions 
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and z is measured starting from the fixed plate. This model considers the 
velocity distribution near the surface as being linear. 

If the solution of Equation (3.142) to the Navier-Stokes equation 
(Equation (3.140)) is used, the two constants involved are determined by using 
the slip boundary conditions of Equation (3.172). By then using the normal 
procedure of expressing the real part of the complex velocity distribution, 
followed by calculation of its z-dependent first derivative and calculation of 
the shear stress at the moving plate–fluid interface, the damping force is 
obtained by multiplying the shear stress by the plate’s surface area. This last 
step enables identifying the viscous damping coefficient as the multiplier of 
the plate’s velocity amplitude. The viscous damping coefficient, as shown by 
Veijola and Turowski [20], for instance, is: 
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where the two terms, c1 and c2, are the additions to the damping coefficient 
corresponding to non-slip boundary conditions (Equation (3.170)) and are, 
according to Veijola and Turowski [20]: 
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 (3.174) 

 

 
The first-order boundary slip model captures the linear velocity distribution 
at boundaries for vibration frequencies that are not so high. In the case of 
higher frequencies, the linear character of velocity distribution near the oscil-
lating plate needs to be replaced by a higher-order distribution. A second-
order slip boundary condition, as shown by Beskok and Karniadakis [23], 
Beskok et al. [24], Bahukudumbi et al. [25], Park et al. [26] or Veijola and 
Turowski [20], requires: 
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Higher-order Slip Boundary Conditions 
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where the higher-order factor, according to Beskok and Karniadakis [23], is 
computed as: 
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z z
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z

 (3.176) 

 
where vx was selected to be the velocity distribution according to the 
continuum model (Equation (3.146)). For b = 0, Equation (3.175) is identical 
to Equation (3.172), which describes the first-order slip model. By applying 
the same procedure indicated to the first-order slip model, the damping 
coefficient can be obtained. Veijola and Turowski [20] propose the following 
complex number form damping coefficient: 
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where 2 = (2j 1)1/2. A variant of modeling higher-order slip velocity 
boundary conditions at the moving wall is proposed by Bahukudumbi et al. 
[25], who propose the following boundary condition: 
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 (3.178) 

 
where  is the slip coefficient, which is expressed, according to the same 
reference, as: 
 

 
0.58642
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z

 (3.179) 

 
For a slip coefficient of  = 1, the classical Maxwell, first-order slip velocity 
boundary condition is retrieved.  
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3.5.3 Free Molecular Flow Regime and Unifying Theories  
 

For very large Knudsen numbers, Kn, the free molecular path exceeds by far 
the gap dimensions, and the flow is in the free regime. The shear stress on a 
plate that displaces at a velocity Vx can be expressed, according to Kogan 
[27], for instance, as: 
 

 0
2

x
RTV  (3.180) 

 
where R is the universal gas constant and T is the temperature of the mobile 
plate. The damping coefficient corresponding to the free molecular flow 
regime is therefore: 
 

 0
2RTc A  (3.181) 

 
Attempts have been made by researchers in this domain to generate 

closed-form analytical equations that would be applicable for the whole 
range of Knudsen numbers, covering the domain from continuum to free 
molecular. Corrections expressing slip-wall effects can be incorporated in 
effective values of either the shear stress or the dynamic viscosity, and there-
fore the simple linear Couette model can be used to generate damping co-
efficients by means of Equations (3.129), (3.130), and (3.131) at the beginning 
of this section treating the slide-film damping.    

Veijola and Turowski [20], for instance, suggest using the following 
effective damping coefficient: 
 

 

0

1 2
eff

z

 (3.182) 

 
where μ is the actual dynamic viscosity and  is the free mean molecular path. 
The same reference proposes as an alternative a different effective dynamic 
viscosity, which is derived from normalizing the shear stress by the free 
molecular path as: 
 

 0.10.7881 2 0.2 neff K
n nK K e

 (3.183) 

 
which represents a curve fit obtained from numerical results of an integro-
differential equation derived by Cercignani and Pagani [28] based on a 
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linearized Boltzmann equation. First-order slip boundary conditions have 
been taken into account in these models. Having the effective dynamic 
viscosity enables calculation of the shear stress by means of Newton’s law 
(Equation (3.125)). Similarly, Bahukudumbi et al. [25] propose the following 
shear stress ratio obtained from curve fitting of numerical results: 
 

 
2

2

2a Kn bKn
a Kn cKn b

 (3.184) 

 
where a = 0.530, b = 0.603, c = 1.628 (values rounded to three decimal 
points). Equation (3.184) enables expressing the shear stress for any value of 
the Knudsen number, from 0 (continuum model) to infinity (free molecular 
regime). The damping force is obtained by multiplying the shear stress by the 
moving plate area, which enables determining the damping coefficient. 

 
3.6 THERMOELASTIC DAMPING  

 
The coupling between a strain/deformation field in an elastic body and the 
temperature field is best illustrated by the equation connecting the elongation 
of a bar, l, to the temperature variation, T as: 
 
 l l T  (3.185) 
 
by means of the linear coefficient of thermal expansion . An oscillating 
elastic body is out of equilibrium state, but local variations of its strain field 
interact with the thermal variations, according to Equation (3.185). This 
connection provides a mechanism for energy dissipation towards regain of 
equilibrium. This is actually a relaxation process consisting of an irreversible 
heat flow. For a vibrating beam, for instance, where the upper fibers contract 
and the lower fibers extend at a given moment in time, a heat flow loss 
occurs from the heated fibers (the extended ones) to the cooled fibers (the 
ones that contract). This energy loss phenomenon is known as TED. 

Roszhart [29] derived a model for cantilever beams which predicts the 
following Q-factor: 
 

 
2 4 2 2 2
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16
4
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t ET

 (3.186) 

 
where c is the specific heat,  is the heat capacity, E is Young’s modulus,  is 
the mass density, T is the temperature, t is the thickness, and  is the 
vibration frequency. 
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In the 1930s, Zener [30] proposed an approximation to the Q-factor 
pertaining to thermoelastic losses, which is still considered operationally 

considers that damping can be approximated by a relaxation process in which 
thermal diffusion occurs across the thickness of a vibrating beam. The 
standard model has at its core a generalization of Hooke’s law, which is 
expressed as: 
 

 r
d dE
dt dt

 (3.187) 

 
where Er is the relaxed modulus of elasticity, whereas  and  are the 
constant-strain relaxation time and constant-stress time, respectively. By 
assuming that the stress and strains vary harmonically, which in complex 
notation is: 
 

 0

0

j t

j t

e

e
 (3.188) 

 
Equation (3.187) becomes: 
 
 0 , 0r cE  (3.189) 
 
which is similar to the normal Hooke’s law and where Er,c is a complex 
modulus, expressed as: 
 

 ,
1
1r c r

jE E
j

 (3.190) 

 
The inverse of the Q-factor can be defined as the ratio of the imaginary part 
to the real part of the complex modulus, and after transforming the complex 
modulus of Equation (3.190) in its standard, complex-number form: 
 

 
2

, 2 2 2 2

1
1 1r cE j  (3.191) 

 
the inverse of the Q-factors can be expressed as: 
 

  1
21

u r r th

u r r th

E EQ
E E

 (3.192) 

valid. Zener’s model, also known as the standard model of the anelastic solid, 
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Eu is the unrelaxed modulus and is defined as: 
 

 u rE E  (3.193) 

 
where the thermal relaxation time is: 
 

 
2

2th
t c

k
 (3.194) 

 
with c being the specific heat (at either constant pressure or constant volume 
[the differences are small between the two conditions]), r being the canti-
lever resonant frequency, T being the temperature, t being the cantilever 
cross-sectional thickness,  being the mass density, and k being the thermal 
conductivity. 

The Q-factor accounting for thermal damping losses, according to Zener’s 
model and when considering the following approximation (Lifshitz and 
Roukes [31]): 
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 (3.195) 

 
is: 
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2

1 r th

r th

cQ
E T

 (3.196) 

 
In Equation (3.195), Ead is the adiabatic (unrelaxed) modulus of elasticity, 
whereas E is the regular, isothermal (relaxed) modulus of elasticity. 
 
Example 3.17 

Analyze the Q-factor due to thermal damping in terms of the relaxation 
constant r th. 
 
Solution: 

The inverse of the Q-factor, Q–1, which is proportional to the losses 
incurred by a system, is plotted in a non-dimensional form, as shown in 
Figure 3.32, based on Equation (3.196). As Figure 3.32 shows, the non-
dimensional damping has a maximum for r th = 1, which indicates that the 
resonant frequency and the relaxation rate (the inverse of the relaxation time) 
should be approximately equal for the maximum peak damping to occur. 
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When r >> 1/ th, the material does not have the necessary time to relax 
because the vibration is too fast. When, on the contrary, r << 1/ th, the 
vibration is very slow and the system is in equilibrium technically, with little 
energy being lost. 

thermoelasticity: 
 

 
1

2

2

sinh sin1
6 cosh cos

cQ
E T

 (3.197) 

 
with:   
 

 
2
r ct
k

 (3.198) 

 

 
Figure 3.32 Non-dimensional thermal damping as a function of the relaxation parameter 
 

3.7 OTHER INTRINSIC LOSSES 
 

Other intrinsic losses are phonon-mediated and they include the ones pro-
duced by phonon–electron interactions as well as those generated by the 
interaction between phonons and the mechanical vibration of a microdevice. 
The first category of losses is a viscous drag exerted by the free electrons on 

Q-factor corresponding to a thin cantilever by using the equations of lin ear
Lifshitz and Roukes [31] derived the exact closed-form solution to the 
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oscillating ions and is mostly significant in metallic MEMS because it is 
based on material high electrical conductivity (Czaplewski et al. [32]). 

The latter loss category is defined by the propagating mechanical 
vibration in a MEMS device, which causes the phonons to thermally readjust 
and reach a different equilibrium state, this state alteration being the channel 
for energy losses. The Q-factor in this case (Czaplewski et al. [32]) is of the 
Zener type, namely: 
 

 

2
2

2

1 r phl

r ph

vQ
CT

 (3.199) 

 
where C is the heat capacity per unit volume, vl is the longitudinal wave 
(sound) velocity and the phonon relaxation time is: 
 

 2

3
ph

p DC v
 (3.200) 

 
 being the material thermal conductivity, Cp being the constant-pressure 

heat capacity, and vD being the Debye sound velocity defined as: 
 

 3 3 3

3
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l t
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  (3.201) 

 
It is known that the longitudinal velocity is: 
 

 l
Ev  (3.202) 

 
whereas the transverse wave velocity (or the group velocity) is: 
 

 
2tv

T
 (3.203) 

 
The constant  in Equation (3.199) is the Gruneisen’s constant (e.g., see 
Braginski et al. [33] and Burakowsky and Preston [34]), whose definition is: 
 

 
v

E
C

 (3.204) 

 
Burakowsky and Preston [34] propose the following equation to determining 
, which depends only on material density: 
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 31/3
1 2

1
2

cc c  (3.205) 

 
where c1, c2, and c3 are constants that can be evaluated individually for 
various materials, and the same reference gives those values for 20 metallic 
materials. 

Another internal dissipation mechanism is due to defects or disorder in a 
material, and relaxation (damping) is provided by reconfiguration/reordering 
between equilibrium states that usually occurs through motion by atoms, 
vacancies, impurities, or dislocations. The Q-factor of a MEMS oscillator 
subjected to this particular type of loss is of the generic Zener-type, namely: 
 

 
21 r

r

Q c  (3.206) 

 
where the constant c depends on the type of defect and its intensity. The 
relaxation time (Czaplewski et al. [32]) can be expressed for these processes 
as an Arrhenius-type equation: 
 

 
0

1 1 aE
RTe  (3.207) 

 
where R is the universal gas constant (R = 8.31 J/(mol K)), 0 is the 
characteristic atomic vibration period and is of the order of 10–13 s, and Ea is 
the activation energy of the relaxation process. Usually this energy is equal to 

 
Example 3.18 

Evaluate the relaxation time involved in the losses due to defect motion 
if the characteristic atomic vibration period is 0 = 2.5 × 10–13 s and the acti-
vation energy is Ea = 1.5 eV. Considering a microresonator whose resonant 
frequency is 10,000 Hz is defined by a Q-factor Q = 1000, which is solely 
due to defect motion losses, determine the constant c of Equation (3.206). 
 
Solution: 

By taking into account that 1 eV = 1.6 × 10–9 J and by considering the 
numerical data of this problem, the relaxation time can be expressed as a 
function of temperature, and Figure 3.33 plots this relationship. As Figure 
3.33 indicates, the relaxation time decreases when the temperature increases, 
as expected, but is largely determined by the value of the characteristic 
atomic vibration period 0. The constant c is simply found from Equation 
(3.206) as: 

the self-diffusion energy and is of the order of 1–2 eV per mol. 
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2
2

1 2
rfc Q
f

 (3.208)  

and its numerical value is c = 6.28 × 10–6. 

 
Figure 3.33 Relaxation time as a function of temperature 

 

3.8 SUBSTRATE (ANCHOR) LOSSES 
 

Vibration of micro/nano mechanical devices, particularly the resonant ones, 
is transmitted to the substrate and dissipates into it; the corresponding losses 
are known as support (or substrate, or anchor) losses. Reduction of these 
losses, as indicated by Mihailovich and MacDonald [35], for instance, can be 
achieved by either utilizing symmetry in designing resonant structures such 
that zero (desirably) forces/moments are transmitted to the support or by 
interposing a mass between the oscillating structure and the substrate such 
that the energy of the mass is small compared to the energy of the original 
structure. 

Modeling and quantifying losses to the substrate by a micro/nano 
oscillator is generally performed by assessing the vibration energy, which is 
transmitted through the anchor regions by the shearing forces and bending or 
torsional moments generated locally by the vibrating structures. Park and 
Park [36] developed a methodology enabling evaluation of the anchor losses 
by means of a modified Fourier semi-analytic technique involving numeric 
solutions. Osaka et al. [37] considered cantilever beams of infinite width that 
are attached to a semi-infinite substrate and gave the following Q-factor 
corresponding to anchor losses: 
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where l is the beam length and t is its thickness. Hao et al. [38] derived a 
very similar Q-factor, namely: 
 

 
3

32.09 lQ
t

 (3.210) 

 
value corresponding to the first vibration mode and to a material with 
Poisson’s ratio μ = 0.3. The same reference developed an equation requiring 
numeric integration, which gives the Q-factor of cantilevers for various 
modes as a function of modal amounts and the Poisson’s ratio. The res-
pective equation indicates the Q-factor decreases with the mode number 
increasing and is proportional to the cube of the length-to-thickness ratio. 
A similar result is provided by the same referenced paper for bridges 
(clamped-clamped beams). 

Photiadis and Judge [39] proposed a model with closed-form Q-factor of 
cantilevers by taking into account all the dimensions of the beam together 
with the substrate thickness. For the case in which the substrate thickness ts is 
smaller than the wavelength of the wave transmitted to the substrate, they 
derived the following Q-factor equation: 
 

 
2

21.05 stlQ
w t

 (3.211) 

 
where, in addition to the parameters already introduced here, w is the beam 
cross-sectional width. Equation (3.211) is a simplification of a more generic 
equation derived in the same reference—the equation mentioned here cor-
responds to cantilever designs with thicknesses far smaller than the substrate 
thickness and was shown valid for cases when s/3 < ts < s. Figure 3.34 
shows the dependency of the Q-factor on the l/w and ts/t ratios. 
  
 
 
 
 
 
 
 
 
 
 
 
  

Figure 3.34 Quality factor due to anchor losses in terms of geometry 
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Example 3.19 
Design a cantilever that would be able to produce an anchor loss-related 

Q-factor of Q = 10,000 when the substrate has a thickness ts = 500 μm. 
 
Solution: 

Equation (3.211) enables expression of the cantilever thickness as: 
 

 
11.025 s

lt t
Q w

 (3.212) 

 
For the numerical data of the problem, the solution is: t = 5.125 (l/w)1/2. The 
thickness is plotted in terms of the cantilever length and cross-sectional width 
in Figure 3.35. As Figure 3.35 shows it, the thickness increases with the 
length-to-width ratio for the specified values of the Q-factor and substrate 
thickness. For l/w = 5, the cantilever thickness becomes: t = 11.6 μm. 

Photiadis and Judge [39] also analyzed designs for which the substrate 
thickness is larger compared to the wavelength of the transmitted vibration, 
and proposed the following Q-factor: 
 

 
4

43.226 l lQ
w t

 (3.213) 

 
Both Equations (3.211) and (3.213) were derived for a material with μ = 3 
(steel-type). It can be seen from Equation (3.213) that the substrate thickness 
does not affect the Q-factor for relatively thick substrates. There are also 
marked differences between the predictions of Equation (3.209) by Osaka et al. 
[37], Equation (3.210) by Hao et al. [38], on one side, and Equation (3.213) 
by Photiadis and Judge [39]. 
 

Figure 3.35 Cantilever thickness in terms of length and width 
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3.9 SURFACE LOSSES 
 

The generic Zener model can also stand for dissipative processes different 
from the TED since by taking into account a complex modulus of the type: 
 
 1 2cE E jE  (3.214) 
 
where E1 can be the real, conventional elastic modulus of a specific material, 
and E2 stands for the dissipative part of that material (generated by lattice 
defects motion, for instance), the Q-factor is simply: 
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Equation (3.215) can actually be derived for the case of internal bulk (through 
the volume) dissipation (e.g., as shown by Yasumura et al. [40]) by express-
ing the Q-factor according to its definition, which takes into account the 
energy stored and the energy lost during one oscillation cycle. According to 
Equation (3.215), the Q-factor related to bulk internal losses strictly depends 
on elastic and dissipative material properties. 

Surface loss mechanisms can also occur in situations such as disruption 
of the atomic lattice produced by microfabrication defects, for instance, or in 
cases of surface contamination (such as adsorbates on the surface). Yasumura 
et al. [40] derived the following Q-factor owing to surface losses for a 
cantilever having the cross-sectional width w and thickness t: 
 

 1

,12 3 s
s

EwtQ Q
w t E

 (3.216) 

 
where  is the thickness of a thin dissipative layer for which the following 
complex modulus is used: 
 
 , 1 2s c s sE E jE  (3.217) 
 
defined by a Q-factor: 
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For cantilevers with large widths compared to their thickness, w >> t, Equa-
tion (3.216) simplifies to: 
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 (3.219) 

 
As indicated by Equations (3.216) and (3.219), the surface losses are affected 
by the cross-sectional dimensions, in addition to elastic and dissipative 
material properties, and are not influenced by the cantilever length, as one 
would expect by taking into account that length defines the longitudinal area, 
w × l.  
 
Problems 
 
Problem 3.1 

The differential equation expressing the free damped vibrations of a 
20x x . Determine the 

mass m, damping coefficient c, and stiffness k, as well as the damped 
resonant frequency d of this lumped-parameter system. 
 
Problem 3.2 

Repeat Problem 3.2 in the case of the following differential equation: 
500 6, 250,000 0x x x . 

 
Problem 3.3 

The free damped vibrations of a two DOF mechanical microsystem are 
characterized by the following mass, damping and stiffness matrices: 

2

2

1

0 0
; ;

0 0
a b d d

M C K
a b d d

, where the real co-

efficients a, b,  d1, and d2 are specified. Identify a mechanical microsystem 
that possesses these properties by drawing a schematic of the microsystem and 
by also calculating its individual physical parameters. 
 
Problem 3.4   

Repeat Problem 3.3 in the case the microsystem’s matrices are: 

2

2

0 0
; ;

0 0
d da b

M C K
d da b

. 

 
Problem 3.5 

1,000,000x 0single DOF microresonator is:  

The free damped response of the mechanical microfilter of Figure 3.36 is 
1 2

and the two damped resonant frequencies d1 and d2. By also knowing the 
mass m of the two rigid oscillators, evaluate the stiffnesses k1 and k2. 

determined experimentally, consisting of the logarithmic decrements  and , 

1

1

1
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Figure 3.36 Two DOF microfilter with damping 

Problem 3.6 

 
Problem 3.7 

Problem 3.8 

Problem 3.9 

out-of-the-plane response. The resonant Q-factor Qr and the damped resonant 
frequency d are determined experimentally. By knowing all geometric and 
inertia parameters of the microbridge, use a lumped-parameter model (with 
the paddle rigid and the root massless and compliant) to evaluate the 
elasticity (Young’s) modulus E of the microbridge material. 
 
Problem 3.10 

A paddle microcantilever is tested at resonance by monitoring its damped, 

Calculate the bending resonant frequency r of a resonator for which the 
logarithmic decrement  and damped frequency d are known. 

A paddle microcantilever is tested at resonance by using out-of-the-plane 
bending and torsion. It is determined the torsion-to-bending damped resonant 
frequency ratio is r. By using a lumped-parameter model, evaluate the overall 
losses corresponding to these motions. By using a lumped-parameter model, 
evaluate the loss corresponding to torsion as a function of the loss produced 
through bending. 

Solve Problem 3.7 by considering a paddle microbridge instead of a 
paddle microcantilever. 

Solve Problem 3.9 by considering a paddle microbridge instead of a 
paddle microcantilever. 
 
Problem 3.11 

Establish a relationship between the resonant (forced) Q-factor and the 
free-response Q-factor (with non-zero initial velocity) for a single DOF 
damped microresonator when the logarithmic decrement  is known.  
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Problem 3.12 

 
Problem 3.13 

 
Problem 3.14 

 

Problem 3.15 

 
Problem 3.16  

A 300 μm × 50 μm × 2 μm plate vibrates normal to the substrate at 10 
kHz. The plate is supported by two end rectangular cross-section beams, each 
50 μm long, 10 μm wide, and 1 μm thick. The initial gap is 12 μm, the gas 
pressure is 0.001 atm, and the dynamic viscosity is 1.8 × 10–5 N-s/m2. 
Calculate the squeeze-film damping coefficient.  
 
Problem 3.17 

A plate 200 μm long and 40 μm wide is used to determine the nature of 
an unknown gas by monitoring the plate’s vibratory response against a 
substrate (the initial gap is 8 μm). The plate vibrates at 8,000 Hz at normal 
temperature and pressure. Considering the Q-factor corresponding to squeeze- 
film damping is 7,600, calculate the molecular mass of the gas.  

A paddle microcantilever with both segments contributing to compliance 
and inertia is vibrated in out-of-the-plane bending in a vacuum environment 

experimentally. By ignoring other losses of this microsystem, and by 
considering all geometric and material parameters of the microbridge are 
known, calculate the structural loss coefficient . 

A Q-factor of 7,800 is experimentally determined for a trapezoid canti-

represents 80% of the total losses. Determine the elastic modulus of this 
cantilever’s material. It is also known that  = 0.0005. 

A constant rectangular cross-section microbridge with E = 155 GPa,  
 = 2300 kg/m3  and length l = 100 μm is displaced by 5 μm at its midpoint 

and then let to freely vibrate. After t = 50 s, its midpoint vibration amplitude 
is 30 nm. Evaluate the Q-factor corresponding to the overall losses.  

A microbridge formed of a central plate of 90 μm length, 10 μm width, 
and 1 μm thickness, and two side CNTs, each 20 μm long and 50 nm in 
diameter, vibrates normally to the substrate. Knowing the bridge–substrate 
initial gap is 3 μm and that the Q-factor owing to squeeze-film damping is 
9,300, calculate the dynamic viscosity. Known are also  = 6000 rad/s and  
E = 50 GPa. Use Zhang’s continuum-gas model. 

lever whose minimum width, maximum width, thickness, and length are

to evaluate structural losses, and the corresponding Q-factor is determined 

20 μm, 80 μm, 1 μm, and 300 μm, respectively. The structural damping roughly 
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Problem 3.18 

Figure 3.37 Bridge suspended on two carbon nanotube beams 

Problem 3.19 
A microresonator consists of a central square plate (of known mass m 

and dimensions L × L), which is supported symmetrically on the midpoints 
of its sides by four identical CNT beams of known length l, diameter d, and 
modulus of elasticity E. At a very small pressure p, this microsystem can be 
used as a thermal sensor. The out-of-plane vibrations of the plate are moni-
tored experimentally and the Q-factor Q is determined at  = r. By using 
Bao’s molecular-flow model, and by also knowing the gas molecular mass 
Mm and the gas constant R, determine the gas temperature T.     
 
Problem 3.20 

A torsional micromirror is formed of a rectangular plate and two end 
beams. The inertia and geometric properties of the plate and beams are 
known. Compute the equivalent viscous damping ratio when the Q-factor 
corresponding to torsional vibrations of the micromirror is known. Consider 
only the losses produced through squeeze-film damping. 
 
Problem 3.21 

The plate shown in Figure 3.37 is supported by two CNT beams and can 
vibrate in out-of-the-plane translation and rotary motion. Knowing that l = 400 
μm, w = 70 μm, lb = 300 μm, d = 60 nm (d is the CNT diameter), and also 
that the Q-factors owing to squeeze-film damping are Qt = 6,500 for tran-
slation and Qr = 6,800 for rotation, find the plate-substrate gap z0 and the 
dynamic viscosity μ. Known is also that ft = fr = 100 Hz. 

A paddle microbridge with the paddle rigid and the root segments 
massless and compliant (of constant rectangular cross-section) is used as a 
torsional oscillator to assess the dynamic viscosity coefficient μ of an 
unknown gas. All design and material properties being known, as well as the 
damped resonant frequency d and resonant quality factor Qr, devise an 
algorithm to determine μ. Known is also that ft = fr = 100 Hz. 
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Problem 3.22 

 
 
 
 

 
 
 
 
 
 

 
Problem 3.23 

 
Problem 3.24 

Problem 3.25 

 Problem 3.26 

w p 

p

l

Figure 3.38  Plate with holes 

Find the damped resonant frequency of the plate with 10 holes, as shown 
in Figure 3.38, by considering the squeezed-film stiffness. The plate is 
suspended by two end springs, each of 2 N/m stiffness. Known are the hole 
radius r = 3 μm, l = 80 μm, w = 20 μm, p = 15 μm, and μ = 1.7 × 10–5 N-s/m2, 
z0 = 8 μm, t = 2 μm and  = 2300 kg/m3. 

Study the variation of c in Problem 3.22 as a function of the number of 
holes n. 
 

A plate vibrates parallel to the substrate by maintaining a constant gap  
of 10 μm. The air density is  = 1.1 kg/m3 and the dynamic viscosity is  

–5 N-s/m2. By using the continuum model, determine the frequency 
at which the damping coefficient corresponding to the above-the-plate fluid–
structure interaction is equal to the one between the moving plate and the 
substrate. Known are also l = 200 μm and w = 100 μm. 
 

A plate is supported by two identical end springs and vibrates at 50,000 
Hz parallel to the substrate. The area of the plate is 40,000 μm2. Knowing the 
penetration depth is 80 μm, the Q-factor owing to above-the-plate fluid–
structure interaction is 5,000, find the stiffness of the spring. 

The losses due to friction with the fluid above the plate are 0.8 of the 
losses generated by air friction between the plate and the substrate. Con-
sidering the first-order slip boundary conditions, find the dynamic viscosity 
knowing the constant gap z0 = 15 μm, vibration frequency f = 65,000 Hz, free 
molecular path  = 20 μm, and plate area A = 20,000 μm2. 

μ = 1.7 × 10



  Chapter 3 296 

Problem 3.27 

 
Problem 3.28 

Problem 3.29 
The Q-factor of a silicon trapezoid microresonator corresponding to 

defect motion is 8,000. Knowing the relaxation period is 2 × 10–13 s and the 
activation energy is 2 eV, as well as the microresonator’s dimensions (length 

the equivalent viscous damping ratio. 
 
Problem 3.30 
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Chapter 4 
 
FREQUENCY AND TIME RESPONSE OF MEMS 
 
 
 
 
 
 
 
 
 
4.1 INTRODUCTION 
 
Microelectromechanical systems are discussed in this chapter by taking into 
account the forcing factor and therefore the forced response. When actuation 
is produced by harmonic (sinusoidal, cosinusoidal) factors, the frequency 
response needs to be analyzed, which, essentially, consists of characterizing 
the response amplitude and phase shift over the excitation frequency range. 
The Laplace transform and the transfer function approach are used to study 
topics such as transmissibility, coupling, mechanical-electrical analogies, as 
well as applications such as microgyroscopes and tuning forks. When 
excitation is not harmonical, the time response of MEMS has to be addressed. 
The Laplace transform method, the state-space approach, and time-stepping 
schemes are discussed in connection with the time response of MEMS. Non-
linear problems, such as those generated by large deformations, and dedicated 
modeling/solution methods, such as time-stepping schemes or the approximate 
iteration method are presented, all in the context of MEMS applications.   

 
4.2 FREQUENCY RESPONSE OF MEMS 
 

actuating/sensing purposes. When there is no damping in the system, the res-
ponse is a vibration having the same frequency as the excitation force/moment 
and in phase with it. When damping is present (particularly of a viscous 
nature), the system response is a vibration whose amplitude is proportional to 
the excitation amplitude, having the same oscillation frequency and out-of-
phase. Analyzing the frequency response of a harmonically driven or sensed 
system implies analyzing the response amplitude and phase angle (only for 
damped vibrations) over the whole frequency range. This section analyzes 
the frequency response of single and multiple DOF microelectromechanical 
systems that are modeled through the lumped-parameter technique using the 
transfer function approach based on the Laplace transform method. 
 

 Harmonic excitation of microelectromechanical systems is often used for
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4.2.1 Frequency Response 
 
The response characteristics of a mechanical system under harmonic 
(sinusoidal/cosinusoidal) excitation are introduced by using a single DOF 
system that is studied in the absence and then in the presence of viscous 
damping. 
 
4.2.1.1 Undamped Frequency Response  

 
An undamped, single DOF mechanical system under harmonic excitation is 
sketched in Figure 4.1. 
 
 
 
 
 
 
 
 Figure 4.1 Single DOF mass-spring system under harmonic excitation 

 
The equation of motion, which governs the vibrations of the system, shown 
in Figure 4.1 is: 
 
 cosmx k x F t  (4.1) 
 
The complex number notation that has been introduced in Chapter 3 can be 
used in connection to Equation (4.1) considering that both the excitation 
function and the system response are complex numbers, with the 
understanding that, however, both the excitation and the response are the real 
parts of their corresponding complex number representations. This means 
Equation (4.1) can be expressed as: 
 
 j tmx kx Fe  (4.2) 
 
and therefore its solution is of the form: 
 
 j tx Xe  (4.3) 
 
which, substituted in Equation (4.2), results in: 
 

 2

FX
m k

 (4.4) 
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Consequently, the complex form solution of Equation (4.2) is: 
 

 2
j tFx e

m k
 (4.5) 

 
Because only the real part should be retained from the complex form, the 
solution of Equation (4.1) is: 
 

 2 cosFx t
m k

 (4.6) 

 
Equation (4.4) allows formulating the following ratio: 
 

 2

1XG
F k m

 (4.7) 

 
which is known as transfer function and is extremely useful in describing the 
steady-state response, and will be used in this section. Another parameter, 
the frequency response function, is defined as: 
 

 2

1
1

kXH kG
F

 (4.8) 

 
and it actually represents the ratio of the amplitudes of the elastic (spring) 
force and the excitation force. The variable  in Equation (4.8) is the ratio of 
the excitation frequency to the resonant frequency, namely: 
 

 
r

 (4.9) 

 
where: 
 

 r
k
m

 (4.10) 

 
is the resonant (natural) frequency of the system. When the excitation fre-
quency  = r, the transfer function, the frequency response function and the 
response amplitude all go to infinity, as can be checked from Equations (4.4), 
(4.7), and (4.8). A system with zero losses is an idealized situation, and 
definitely irreparable damage will incur to such a system under resonant con-
ditions. Real systems, however, are characterized by energy losses (which, in 
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general, and as shown in the Chapter 3, can be expressed in the form of equi-
valent viscous damping), and therefore the resonant response amplitude has a 
finite value. 
 
4.2.1.2 Damped Frequency Response  

 
A damped, single DOF mechanical system under harmonic excitation is 
sketched in Figure 4.2. 
 
 
 
 
 
 
 
 

Figure 4.2 Single DOF mass-dashpot system under harmonic excitation 
 
A mass-dashpot system’s response to harmonic excitation, in the case where 
viscous damping is present, is made up of two components: one represents the 
system’s reaction at its own resonant frequency and the other is the system’s 
response at the excitation and its frequency input. The former component 
dies out in time eventually due to damping and is important in characterizing 
the transient response (the first phase in time), whereas the latter defines the 
steady-state response. The system sketched in Figure 4.2 is characterized by 
the dynamic equation: 
    
 j tmx cx kx Fe  (4.11) 
 
where, again, the complex representation of the excitation has been used. The 
solution to Equation (4.11) is the sum of two terms: one, the complementary 
solution, is the solution to the homogeneous equation (where there is no 
excitation) and it characterizes the transitory response; the second solution 
term is the particular solution, which defines the steady-state response when 
time goes to infinity and after the transient effects have generally vanished 
altogether. The frequency response characterization of a system regards its 
steady-state response and the related particular solution. As such, an expon-
ential solution as the one of Equation (4.3) is sought here, too. After taking 
the two time derivatives and substituting them into Equation (4.11), the par-
ticular solution’s amplitude is: 

 

 
2

2 22 2 2 2 2 2 2

F k mF FcX j
m k jc k m c k m c

 (4.12) 
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By taking into account the following relationship: 
 

 
1tan /2 2 j y xx jy x y e  (4.13) 

 
Equation (4.12) can be rewritten as: 
 

 
1 2tan /( )

22 2 2

j c k mFX e
k m c

 (4.14) 

 
which means the particular solution of Equation (4.11) is: 
 

 
1 2tan /( )

22 2 2

j t c k m
p

Fx e
k m c

 (4.15) 

 
The transfer function is determined by means of Equation (4.7) as: 
 

 2

1( ) XG j
F k m jc

 (4.16) 

 
The modulus (magnitude) of this transfer function is: 
 

 
22 2 2

1( )G j
k m c

 (4.17) 

 
By taking into account only the real parts of the excitation and response 
signals, it follows that: 
 
 cosp px X t  (4.18) 
 
with: 
 

 
1

2

( )

tan

pX G j F

c
k m

 (4.19) 

 
Equations (4.18) and (4.19) indicate that the response amplitude is propor-
tional to the excitation amplitude F (the proportionality factor is the modulus 
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of the transfer function) and that the response is a harmonic one having the 
same vibration frequency with the excitation. In other words, defining the 
frequency response of a single DOF viscously damped system is equivalent 
to defining the modulus of the transfer function and the phase angle between 
input (excitation) and output (response). 
 
Example 4.1 

A paddle microbridge, as the one of Figure 2.5, is driven electrostatically 
in out-of-the-plane vibration by a cosinusoidal force at  = 0.8 r (the 
resonant frequency). By using a lumped-parameter model with the paddle 
being rigid and the root segments being flexible and massless, determine the 
thickness and length of the root segments such that an amplitude of 1 μm is 
achieved when a maximum force of 100 μN is applied. The microbridge 
material has a modulus of elasticity of 160 GPa and the width of its roots is 
equal to 50 μm. Consider the viscous damping coefficient is  = 0.2.  
 
Solution: 

By using the definitions of the damping ratio (Equation (3.3)) and 
frequency ratio (Equation (3.28)), the modulus of the transfer function can be 
expressed as: 
 

 
2 2 4

1( )
1 2 2 1

G j
k

 (4.20) 

 
The stiffness k of the paddle microbridge, according to the lumped-parameter 
that uses the inertia of the paddle only and the compliance of the two root 
segments, is similar to the one of Equation (2.9), namely: 
 

 
3

1
1

2 tk Ew
l

 (4.21) 

 
By taking into account Equation (4.16), as well as Equations (4.19) and 
(4.20), the stiffness can be expressed as: 
 

 
2 2 41 2 2 1z

Fk
U

 (4.22) 

 
where F is the amplitude of the cosinusoidal force and Uz is the amplitude of 
the microbridge deflection at its midpoint. By combining Equations (4.21) 
and (4.22), the following relationship is produced: 
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  3 2 2 4
1 12 1 2 2 1z

t F
l EwU

 (4.23) 

 
1

t = 1 μm, for instance, the root length is approximately l1 = 56 μm.   
    

4.2.2 Transfer Function Approach to Frequency Response 
 
As shown in the previous subsection, the steady-state response of a damped 
system under harmonic excitation has an amplitude proportional to the 
excitation amplitude, the proportionality factor being the modulus of the 
transfer function. The concept of transfer function, as well as the corres-
ponding modeling approach, will be introduced in this section by means of 
the Laplace transform method. 
 
4.2.2.1 Laplace Transform and the Transfer Function 
 
The Laplace transform maps a real function depending on a real variable into 
a complex function depending on a complex variable. In dynamics problems, 
the real variable is time, and the definition of the Laplace transform is: 
 

 
0

[ ( )] ( ) ( )stu t u t e dt U s  (4.24) 

 
where u(t) is the original function and U(s) is the Laplace-transformed function. 
The Laplace transform of a function exists if the function is continuous (or 

The other condition for a function to be Laplace transformable is that the 
function is of exponential order (see specialized texts, such as those of Ogata 
[1] or Nise [2], for more details) requiring: 
 

 
0,

lim ( )
,

ct

t
c

u t e  (4.25) 

 
where  is a real and positive number and c is the abscissa of convergence. 
Equation (4.25) basically requires that the time-dependent function grows 
slower than an exponential function e t. It can be shown that polynomial or 
harmonic functions, for instance, are Laplace-transformable. Knowledge of 
the Laplace transform U(s) enables finding the original, time-dependent function 
by means of the inverse Laplace transform as: 

The numerical data of this example result in t/l  = 0.018. For a thickness of  

piecewise continuous for finite intervals) for the zero-to-infinity time interval. 

L
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 1( ) [ ( )]u t U s  (4.26) 
 
Tables are usually provided that give the Laplace transforms of elementary 
functions, such that by knowing a transformed function, its time-dependent 
counterpart can easily be found by simple tabular inspection. Table 4.1 shows 
a few Laplace-transformed function pairs necessary here (more pairs can be 
found in Ogata [1]). 
 

Table 4.1 Elementary functions paired through Laplace transformation 
 

u(t) U(s) 
nt  1

!
n

n
s

 

sin t  2 2s
 

cos t  2 2

s
s

 

ate  
1

s a  

 
The Laplace transform is a linear operator, which means that given the 

set of functions ui(t) and constants ci, the following relationship holds true: 
 

 
1 1

[ ( ) ] ( )
n n

i i i i
i i

c u t cU s  (4.27) 

 
with Ui(s) being the Laplace transform of ui(t). 

The most powerful feature, probably, of the Laplace transform approach 
is the one that enables transforming ordinary linear differential equations with 
time-unvarying coefficients into algebraic equations by implicitly incorporat-
ing the initial conditions into the transformation. The resulting algebraic 
equation can be solved for U(s), and the unknown original function u(t) can 
ultimately be determined from U(s) by using the inverse Laplace transform. 
The following equation provides the Laplace transform of the n-th order 
differential of a function u(t): 
 

 
1

1
1 0

( ) ( )[ ] ( )
n in

n n i
n i

i t

d u t d u ts U s s
dt dt

 (4.28)  

 
where the sum in the right-hand side collects the initial conditions of the 
time-dependent dynamic model. The MEMS dynamic models usually extend 

L

L

L
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no higher than the second-order differential, such that of interest here are the 
following two transformation rules, which result from the generic Equation 
(4.28): 
 

 

2
2

2

( )[ ] [ ( )] ( ) (0) (0)

( )[ ] [ ( )] ( ) (0)

d u t u t s U s su u
dt

du t u t sU s u
dt

 (4.29) 

 
Example 4.2 

24 3 cosu au a u b t for a and b being positive real constants and 
with zero initial conditions, namely: du/dt (0) = 0 and u(0) =0. 
 
Solution: 

By combining the linearity feature of the Laplace transform operator 
(Equations (4.27) and (4.29) and Table 4.1), the Laplace transform is applied 
to this example’s differential equations, which results in: 
 

 31 2 4
2 2 2 2

( )
34 3

AA A AbsU s
s a s a s j s js as a s

(4.30) 

 
The constants A1 to A4, which correspond to simple-fraction expansion, can 
be found by elementary algebra. A1, for instance, is found as: 
 

 1 2 2 2 23 2
s a

bs bA
s a s a

 (4.31) 

 
The other constants are similarly found as: 
 

 2 3 42 2

3 ; ;
2 3 2 32 9

b b bA A A
a j a ja

 (4.32) 

 
 The original function u(t) can thus be obtained as: 
 
 3

1 2 3 4( ) at at j ju t A e A e A e A e  (4.33) 
 
By substituting the constants A1 to A4 from Equations (4.31) and (4.32) into 
Equation (4.33) and after some more algebraic manipulation, the original 
time-dependent function becomes: 

L L

L L

Find the solution to the following second-order differential equation:  
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3

1
2 2 2 2 2 2

3( ) cos tan
2 9 9 3

at atb e e abu t t
a a a a

(4.34) 

 
When time goes to infinity, Equation (4.34) yields the particular solution, 
which describes the steady-state behavior of the single DOF system, and 
which can be expressed with an equation similar to Equation (4.18) as: 
 
 ( ) ( ) cos ( )p pu t U t  (4.35) 
 
where: 
 

 
2 2

1

3( )
9

( ) tan
3

p
abU

a

a

 (4.36) 

 
Example 4.3 

By using the Laplace direct and inverse transforms, derive the time res-
ponse of the single DOF mechanical microsystem shown in Figure 4.3, which 
is actuated electrostatically by a comb driver being operated by a cosinusoidal 
voltage. Consider the initial displacement and initial velocity have zero values.  

 
 
 
 
 
 
 
 
 
 

Figure 4.3 Mass-spring system and electrostatic longitudinal (comb-drive) actuation 
 
Solution: 

In longitudinal (or comb-drive) actuation, an electrostatic force is gene-
rated between the mobile plate of mass m and the fixed substrate, which is 
expressed (e.g., see Lobontiu and Garcia [3]) as: 
 

 2

2e
lf v
g

 (4.37) 

 

where  is the medium (usually air) electric permittivity, l is the two plates 
common dimension perpendicular to the drawing plane, g is the gap that is 
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maintained constant between the two plates, and v is the voltage, which here 
is assumed to vary harmonically as: 
 
 cosv V t  (4.38) 
 
The equation of motion for the plate of Figure 4.3 is: 
 
 emx kx f  (4.39) 
 
By applying the direct Laplace transform to Equation (4.39), the counterpart 
x(t), the function X(s), is obtained as:  
 

 2
2 2 2 2

1( )
4 4

l sX s V
g s ms k s ms k

 (4.40) 

 
Equation (4.40) can be expanded in simple fractions as: 
 

 2 3 4 51
2 2 2( )

4
A s A A s AAX s

s ms k s
 (4.41) 

 
After determining the coefficients A1 to A5 by identifying the corresponding 
terms of Equations (4.40) and (4.41), the inverse Laplace transform is applied 
to Equation (4.41), and the time-domain position of the plate is obtained as: 
 

 
2

2

2 1 2 cos cos 2
( ) 1

1 4
rt tFx t

k
 (4.42) 

 
with: 
 

 2

4
lF V
g

 (4.43) 

 
Equation (4.42) shows that the solution is the superposition of the static 
spring force and two other forces: one that combines the natural response 
with the excitation frequency and the other, which is the result of excitation. 
 
Example 4.4 

Determine the voltage amplitude that needs to be applied at resonance to 
the microelectromechanical system of Example 4.3 so that the mobile plate 

 



310  Chapter 4 

travels a maximum distance xmax = 15 μm. Known are the following amounts: 
r = 10,000 rad/s, k = 0.001 N/m, g = 1 μm, l = 800 μm, and the air 

permittivity  = 8.8 × 10–12 F/m.  
 
Solution: 

At resonance, the excitation frequency  is equal to the resonant frequ-
ency r, and Equation (4.42) simplifies to: 
 

 ( )r
r

Fx t
k

 (4.44) 

 
with F given in Equation (4.43) and kr calculated as:  
 

 
2

3

4 2 cos sin
2

r
r

r

kk
tt

 (4.45) 

 
Maximizing xr of Equation (4.44) is equivalent to minimizing kr and by 
combining Equations (4.44) and (4.45), the voltage amplitude is calculated 
as: 
 

 ,max ,min2 r rgx k
V

l
 (4.46) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.4 Equivalent resonant compliance in terms of time  

 
Figure 4.4 plots the inverse of kr from Equation (4.45), which is actually an 
equivalent compliance, and it can be seen that the maximum value of 1/kr is 
1,500, which means kr,min = 1/1,500. By using this value together with the 
other numerical data, it is found that V = 75 Volts.  

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012
0

200
400
600
800

1000
1200
1400

1/kr [m/N] 

t [s]



Frequency and Time Response  311 

The Laplace transform can also be used to solve systems of linear differ-
ential equations with time-unvarying coefficients. Consider a system of n 
second-order differential equations, whose matrix form is: 
 
 ( ) ( ) ( ) ( )M u t C u t K u t f t  (4.47) 
 
where [M ], [C ], and [K ] are the inertia, damping and stiffness matrices; 
{u(t)} and {f(t)} are the displacement vector and forcing vectors: 
 

 1 2

1 2

( ) ( ) ( ) ... ( )

( ) cos ... cos

t
n

t
n

u t u t u t u t

f t F t F F F t
 (4.48) 

 
It has been assumed here that the excitation vector is of harmonic form, and 
that all excitation components differ only by their amplitudes.  

By taking the Laplace transform to Equation (4.47), the Laplace-domain 
unknown vector {U(s)} is obtained as: 
 
 

1( ) ( ) ( )U s A s B s  (4.49) 
where: 
 

 

2

2 2

( )

( ) (0) (0) (0)

A s s M s C K
sB s F s M u M u C u

s

(4.50) 

 
with {u(0)} being the initial displacement vector and the similar dotted 
vector being the initial velocity vector. The original vector {u(t)} can now be 
found by taking the inverse Laplace transform to Equation (4.49). More 
details and utilization of the Laplace approach to multi DOF systems with 
generic excitation will be given in the section dedicated to the time response.  
 
4.2.2.2 Transfer Function Approach 
 
A system, be it mechanical, electrical, electromechanical, or of a different 
nature (but whose behavior can be modeled by means of differential 
equations) is often times considered, in the control domain especially, of the 
simple form indicated in Figure 4.5. 

 
 
 
 

SYSTEM
INPUT OUTPUT

 

Figure 4.5 System with input and output signals 
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In a single DOF mass-dashpot mechanical system, which is subjected to a 
time-dependent force and which is described by the differential equation: 
 
 ( )mx cx kx f t  (4.51) 

 

  

 2(0) 0
(0) 0

( ) 1( )
( ) x

x

X sG s
F s ms cs k

 (4.52) 

 
The generic concept of transfer function will be used more in subsequent 

sections of this chapter treating modeling in the time domain; for frequency 
response systems, a specialized transfer function operates, as shown next. 

equation is: 
 
 cosmx cx kx F t  (4.53) 

 
By applying the Laplace transform to Equation (4.53), the transformed X(s) 
becomes: 
 

 31 2 4
2 2 2

1 2

( ) AA A AFsX s
s s s s s j s jms cs k s

  (4.54) 

 
where s1 and s2 are the roots of the polynomial ms2 + cs + k. The theory of 
stability (e.g., see Ogata [1]), shows that the real parts of s1 and s2 should be 
negative in order for the system’s response to be stable. Assuming this 
condition is satisfied, as also shown in the previous example, it follows that 
the first two fractions of Equation (4.54) go to zero when time goes to 
infinity, which means that: 
 

 3 4
2 2

( ) A AFsG s
s j s js

 (4.55) 

 

 

 

 

of the forcing amplitude. Formally, the transfer function is defined as the 

mechanical system shown in Figure 4.2, the corresponding differential 

ratio of the Laplace transform of the output to the Laplace transform of the

When cosinusoidal excitation is considered of the single DOF 

in an intuitive manner as the ratio of the displacement amplitude to the ratio
The concept of transfer function has been introduced in a Chapter 3

input with zero initial conditions; the function is denoted by G(s), and can

the input is the forcing term f(t) and the output is the displacement x(t).  

be expressed as: 
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The two constants of Equation (4.55) are: 
 

 
3

4

( ) ( )
2

( ) ( )
2

s j

s j

Fs FA G s G j
s j

Fs FA G s G j
s j

 (4.56) 

 
It is also known from complex number analysis that: 
 

 
( ) ( )

( ) ( )

j

j

G j G j e

G j G j e
 (4.57) 

 
where  is the angle made by the position line of G(j ) with the real (x) axis, 
as shown in Figure 4.6. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6 Transfer function as a complex number 
 
The original function’s particular solution is determined by combining 
Equations (4.54), (4.56), and (4.57) as: 
 

 ( ) ( ) ( ) cos
2

j t j t

p
e ex t F G j F G j t  (4.58) 

 
Equation (4.58) indicates that the response of a single DOF mechanical 
system to harmonic (cosinusoidal) excitation consists of a harmonic function 
whose amplitude is equal to the product of the excitation signal amplitude to 
the modulus of the cosinusoidal transfer function G( j ). The frequency of 
the response function is separated from the one of the input signal by a phase 
angle . Consequently, the frequency response parameters are defined by 
means of the cosinusoidal transfer function as: 

-

G(j )

G(-j )

x (real) 

y (imaginary) 



314  Chapter 4 

 

2 2

1

( ) Re ( ) Im ( )

Im ( )
tan

Re ( )

G j G j G j

G j
G j

 (4.59) 

 
The minus sign of the phase angle indicates that the response signal is behind 
the excitation one. For a single DOF damped mechanical system, the actual 
expressions for the modulus and phase angle of the cosinusoidal transfer 
function are given in Equations (4.17) and (4.19).  
 
Example 4.5 
 
 

 
Analyze the out-of-the-plane bending frequency response of a paddle 

E = 3

following geometric parameters: l1 = l2 = 200 μm, w1 = 100 μm, w2 = 20 μm, 
and t = 1 μm. Use the lumped-parameter model by considering the paddle is 
rigid and provides the equivalent mass fully. 
 
Solution: 

Because there is no damping, the phase angle of Equation (4.59) is zero 
and the modulus of the cosinusoidal transfer function of Equation (4.57) is: 
 

 2

1( )G j
k m

 (4.60) 

 
By using the first equation in Equation (4.59) together with the data of this 
example, the out-of-the-plane bending resonant frequency is found to be r = 
47,348 rad/s. Figure 4.7 plots the frequency response function H of Equation 
(4.8) as a function of the frequency ratio  as defined in Equation (4.9). It can 
be seen that at resonance the frequency response function (and therefore the 
cosinusoidal transfer function, which is related to the frequency response 
function according to Equation (4.8)) goes to infinity. 
 
Example 4.6 

viscous damping) for l1 = l2 = l = 250 μm, w1 = 30 μm, w2 = 150 μm, t = 0.8 
3

r

 
165 GPa and  = 2300 kg/m . The microcantilever is defined by the 

microcantilever vibrating in vacuum and fabricated of polysilicon with 

excitation and with monitoring of the frequency response. By using the 
A paddle microbridge is used as a torsional resonator under harmonic 

lumped-parameter model, evaluate the elastic properties of the microbridge 
material, as well as the overall losses (which are considered to be produced by 

Hz and the phase angle  = 16.88  at  = 100,000 rad/s. °
μm, and  = 2400 kg/m . Known is also the resonant frequency f  = 22,000 
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Figure 4.7 Frequency response function in terms of frequency ratio 
 
Solution:  

Equation (2.13), which gives the torsion resonant frequency of a 
microbridge, simplifies for this particular example to: 
 

 * 1
2 2

2 2

2.82t
Gwt

l w t w
 (4.61) 

 
As discussed in Chapter 3, the damped resonant frequency can be found from 
the undamped one by means of the equation: 
 

 2 *1t t  (4.62) 
 
The absolute value of the phase angle is: 
 

 1
2

2tan
1

 (4.63) 

 
where  is the frequency ratio of Equation (4.9). Equations (4.61), (4.62), and 

= 0.1.   
 

Example 4.7 
The constant cross-section microcantilever of Figure 4.8 is used to sense 

an external magnetic field B by means of a metallic circular loop embedded 
in it that is ran by a current i = Icos( t). Determine the magnetic field by 
using a lumped-parameter model. Known are the length of the cantilever l, its 
cross-section dimensions w and t, the current amplitude I, the actuation 
frequency , and the maximum tip deflection Uz, which is measured 
experimentally. 

(4.63) contain the unknowns G and , which are found as: G = 64 GPa and  
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Figure 4.8 Microcantilever with loop carrying a current for harmonic excitation detection of 
external magnetic field  
 
Solution: 

The interaction between an electric current and a magnetic field generates a 
Lorentz-type force. As shown by Lobontiu and Garcia [3], who analyzed a 
similar example in the static domain, the result of the interaction between the 
current passing through the loop and the external magnetic field that is 
parallel to the microcantilever’s length is a bending moment about the D-D 
axis (as shown in Figure 4.8), which is expressed as: 
 
 2 cos cosbm ABi R BI t M t  (4.64) 
 
As suggested by Equation (4.64), the bending moment changes its direction 
because of the current’s changing sign, and the result is an alternating bending 
of the microcantilever. When damping is ignored, the lumped-parameter model 
of the vibrating cantilever is the one sketched in Figure 4.9. 
 
 
 
 
 
 
 
 

 
 Figure 4.9 Equivalent lumped-parameter model of a microcantilever 
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To obtain the alternating tip force necessary in the equivalent translation model 
of Figure 4.9, it is assumed that the force f would produce the same tip 
deflection as the actual bending moment mb. The equivalent force can simply 
be evaluated by using the beam theory as: 
 

 
3 3 cos cos
2 2

bm Mf t F t
l l

 (4.65) 

 
The equivalent, lumped-parameter mass and stiffness (e.g., see Lobontiu [4]) 
are: 
 

 
3

3

33
140

y
e

e

EI
k

l

m m
 (4.66) 

 
where m is the microcantilever mass. By using the tip force of Equation (4.65) 
as well as the stiffness and mass fractions of Equation (4.66), the following 
differential equation describing the motion of the lumped mass me is 
obtained: 
 
 e z e zm u k u f  (4.67) 
 
When considering the input is f and the output is uz, the transfer function 
corresponding to Equation (4.67) is: 
 

 2

( ) 1( )
( )

z

e e

U sG s
F s m s k

 (4.68) 

 

 

 zU j
G j

F j
 (4.69) 

 
The amplitude of the output is Uz, whereas the amplitude of the input is 
determined from Equations (4.64) and (4.65) as: 
 

 
23

2
R BIF j

l
 (4.70) 

The modulus of the cosinusoidal transfer function is actually the ratio of the
real-valued amplitudes of the output and input, namely: 
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By combining Equation (4.68) (with j  instead of s), (4.69), and (4.70), the 
unknown value of B is found to be: 
 

 
4 2

2
20.012 z

Et wB U
lR I

 (4.71) 

 
Example 4.8 

The torsion micromirror of Figure 4.10 is set into motion by the inter-
action between the external magnetic field B and the alternating current i = I 
cos( t), which passes through the circular metallic loop embedded in the 
central plate. Determine the maximum current amplitude such that the 
supporting circular cross-section beams do not yield. 
 
 
 
 
 
 
 
 

 
Figure 4.10 Electromagnetically actuated torsion micromirror with torsion hinges 

 
 Solution: 

The result of the interaction between the magnetic field and the loop current 
is an alternating moment directed along the hinges axis. The moment is: 
 
 2 cos cost tm ABi R BI t M t  (4.72) 
 
where Mt is the torsion moment amplitude. 

The torsional vibration lumped-parameter model is described by the 
equation: 
 
 tJ k m  (4.73) 
 
where J is the moment of inertia of the rigid plate about the hinges axis, and 
k is the torsion stiffness of the two hinges, which is equal to:  
 

 
4

2
16

pGI d Gk
l l

 (4.74) 
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where d is the hinge diameter. By applying the Laplace transform to Equation 
(4.73), the following transfer function is obtained: 
 

 2

1( )G s
Js k

 (4.75) 

 
when considering the torsion moment is the input and the rotation angle is 
the output. The amplitude of the output  is equal to the modulus of the 
cosinusoidal transfer function multiplied by the input amplitude Mt, namely: 
 

 
2

max 2t
R BIG j M

k J
 (4.76) 

 
Equations (4.72) and (4.75)—with j  instead of s—have been used to derive 
Equation (4.76). 

It is known from mechanics of materials that the torsion angle and shear 
stress are expressed as: 
 

 

2

t

p

t

p

M l
GI
M d

I

 (4.77) 

 
By combining the two equations in Equation (4.77), the maximum rotation 
angle can be obtained as a function of the maximum (admissible) shear stress 
as:  

 max max
2l

Gd
 (4.78) 

 
Equations (4.76) and (4.78) represent the same amount, and by equalizing the 
right-hand sides of these equations, and by also taking account the stiffness 
Equation (4.74), one can express the maximum current as: 
 

 
4 2

max max2

160.04 Gd JlI
GdR B

 (4.79) 

 
Figure 4.11 plots the maximum current Imax as a function of the hinge diameter 
d for the following numerical parameters: G = 66 GPa, J = 3.2 × 10–19 kg-m2, 
l = 100 μm, max = 108 N/m2, B = 5T,  = 20,000 rad/s. For large hinge  
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Figure 4.11 Maximum current versus hinge diameter 
 
diameters, such as d = 4 μm, relatively large currents, of the order of 40 mA 
are needed. For smaller diameters, such as d = 1 μm, the maximum current is 
only 8.5 μA.   
 
4.2.2.3 Transmissibility 
 
Forces/moments or displacements in MEMS can be transmitted from a source 
(input) to an actuator/sensor (output), and if the input signal is harmonic, the 
concept of cosinusoidal transfer function can be used to relate the amplitudes 
of the input and output signals. Figure 4.12 is the schematic representation of 
a mechanical microsystem, which receives a harmonic input displacement y 
to be transmitted as an output displacement x through a mass-dashpot. 

 
 
 
 
 
 
 
 
 

Figure 4.12 Displacement transmissibility principle 
 
The equation of motion for the body can be formulated by Newton’s law as: 
 
 0mx c x y k x y  (4.80) 
which is rearranged as: 
 
 mx cx kx cy ky  (4.81) 
 

x
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y = Ycos( t)
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By applying the Laplace transform to Equation (4.81) where, again, the input 
is y and the output is x, the transfer function is: 
 

 2

( )( )
( )

X s cs kG s
Y s ms cs k

 (4.82) 

 
The transmissibility is defined as the ratio of the modulus of the complex-
form output to the modulus of the complex-form input, which is actually the 
ratio of the two signals amplitudes. For the mechanical system of Figure 4.12, 
the transmissibility is: 
 

 
2 2 2

2 22 2 2

X j c j k k cT G j
Y j m c j k k m c

 (4.83) 

 
Equation (4.83) can be formulated in terms of the damping ratio  and 
frequency ratio  as: 
 

 
2 2

22 2 2

1 4

1 4
T  (4.84) 

 
Figure 4.13 is the plot of T as a function of  for three different values of the 
damping ratio. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13 Transmissibility as a function of the frequency ratio 
 

Simple calculations, as also shown in the plot of Figure 4.13, indicate that the 
transmissibility is equal to 1 for  = 0 and  = 2 , which means that the 
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input signal is fully transmitted for these two values of the frequency ratio. 
For very small damping, the transmitted amplitude is large at resonance 
(when  = 1), as also suggested in Figure 4.13. For very large values of the 
excitation frequency (when  >> 1), the transmitted amplitude is smaller than 
the input amplitude, and goes to zero as  tends to infinity. 
 
Example 4.9 

Out-of-the-plane bending of a microcantilever whose support is harmoni-
cally driven by a known signal y (as sketched in Figure 4.14 (a)) is used to 
evaluate the overall losses of the microsystem by monitoring the deflections 
of the microcantilever’s free tip. Determine the quality factor (Q-factor) in 
terms of the system’s parameters, excitation frequency, and transmissibility. 

 

 
 
 
 
 
 
 
 
 
 
  
Figure 4.14 Microcantilever on oscillating support: (a) schematic setup; (b) equivalent lumped-
parameter model  
 
Solution: 

The equivalent, lumped-parameter system is shown in Figure 4.14 (b), 
where me and ke are the equivalent mass and stiffness fractions, provided in 
Equation (4.66) and ce is the equivalent viscous damping, which is assumed 
to express all the energy losses. By taking into account that the Q-factor is 
expressed as a function of the damping ratio and frequency ratio as Q = 
1/(2 ), as shown in Chapter 3, Equation (4.84) yields: 
 

 
2

22 2

1

1 1

TQ
T

 (4.85) 

 
At resonance, Equation (4.85) simplifies to: 

 2 1r rQ T  (4.86) 
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where Tr is the transmissibility at resonance and is expressed as: 
 

 
21 4

2rT  (4.87) 

 

Q-
frequency—the last two factors being incorporated into the frequency ratio . 
 
4.2.2.4 Coupled Systems 
 
In transduction microsystems, which combine an actuation subsystem with a 
detection/sensing one, the two systems interact and are coupled. This inter-
action can be studied by means of the individual transfer functions and their 
combination. Assume that n subsystems, each defined by its own transfer 
function, interact in the form indicated in Figure 4.15.  
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 4.15 Coupled system: (a) serial interaction of n subsystems; (b) equivalent system 
 
when the output signal from one subsystem is the input signal to the adjacent 
system, and if this coupling connection applied to all subsystems, then the 
following is true: 
 

 
1 1 3 2

1 1 2 1

1 2 1

( ) ( ) ( ) ( ) ( )...
( ) ( ) ( ) ( ) ( )
( ) ( )... ( ) ( )

n n n

n n

n n

X s X s X s X s X s
X s X s X s X s X s
G s G s G s G s

 (4.88) 

 
By considering the ratio Xn+1(s)/X1(s) is an equivalent transfer function G(s), 
it follows from Equation (4.88) that: 

G2(s)G1(s) 
X1(s) X2(s) X3(s)

G1(s)
Xn(s) Xn+1(s) 

G1(s) G1(s)… Gn(s)
X1(s) Xn+1(s)

(a)

(b)

factor, transmissibility, the microcantilever’s parameters and the excitation 
Equations (4.86) and (4.87) give the quantitative relationship between the 

1 2( ) ( ) ( )... ( )nG s G s G s G s  (4.89) 
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which shows that the overall (equivalent) transfer function of a coupled 

which is indicated in Figure 4.15 (b). It should be mentioned that the 
approach discussed only applies when the subsystems do not load each other. 

Equations (4.88) and (4.89) can also be expressed in matrix form as: 
 
 ( ) ( ) ( )O s G s I s  (4.90) 
 
where {O(s)} is the output vector, defined as: 
 
 2 3 1( ) ... t

nO s X X X  (4.91) 
 
{I(s)} is the input vector, defined as: 
 
 1 2( ) ... t

nI s X X X  (4.92) 
 
and [G(s)] is the diagonal-form transfer-function matrix, namely: 
 
 1 2( ) ( ) ( ) ... ( )ndiag G s G s G s G s  (4.93) 
 
Example 4.10 

Consider a MEMS filter whose lumped-parameter representation is shown 
in Figure 4.16, and which is formed on n mass-dashpot units connected in 
series. Express the individual transfer functions considering the input and 
output signals are displacements, and also express the output amplitude. The 
system’s input is a cosinusoidal displacement x1.  
 
 
 
 
 
 
 
 

 
Figure 4.16 Serial n DOF mechanical microoscillator with harmonic input 

 
Solution: 

Actual systems do couple, however, in a slightly different manner from 
the one just presented. Consideration of the n DOF mechanical microsystem 
(which can be used to filter an input signal) of Figure 4.16, indicates the last 

system formed of n subsystems is the product of subsystem transfer functions, 
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mass is only connected at one end. For this serial system the output displace-
ment from one subsystem is the input displacement to the subsequent one, 
and therefore the rule just presented of the overall transfer function being the 
product of individual transfer functions should apply. However, by writing 
the dynamic equations for the n masses, it is clear that three signals in the 
Laplace domain are related to one mass (DOF), while for transfer function 
formulation only two signals would be needed. 

Consider the mass i in the sequence, which is shown in Figure 4.17 and 
whose equation of motion is: 
 

 1 1 1 1 0i i i i i i i i imx c x x c x x k x x k x x (4.94) 
 
 
 
 
 
 
 
  

Figure 4.17 Generic mass with dashpots in a serial mechanical microsystem 
 
The Laplace transform of Equation (4.94) with zero initial conditions results in: 
 

 2
1 1( ) 2 2 ( ) 0i i ics k X s ms cs k X cs k X s  (4.95) 

 
which shows three signals are involved with the generic mass subsystem. 
The last mass in the sequence, however, only relates two signals: the input 
one, Xn–1(s) and the output one, Xn(s). Its transfer function is therefore: 
 

 2
1

( )( )
( )

n
n

n

X s cs kG s
X s ms cs k

 (4.96) 

 
Equation (4.96) enables expressing Xn(s) as a function of Xn–1(s), and 
generally it can be stated that: 
 

 1
1

( )( )
( )

i
i

i

X sG s
X s

 (4.97) 

 
and 
 

 2
1 1

( )( )
( ) 2 2 ( )

i
i

i i

X s cs kG s
X s ms cs k cs k G s

 (4.98) 
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Equation (4.98) is a recurrence relationship that enables back calculation of 
the individual transfer functions for the serial mechanical system of Figure 
4.16. In the end, the output amplitude is calculated as: 
 
 1 1 2( ) ( ) ( )... ( )... ( )n i nX j X G j G j G j G j  (4.99)  
 
Example 4.11 

Figure 4.18 is the schematic representation of an experiment involving 
harmonic excitation of a mass-spring system (ma, ka), which is to be per-
formed on an optical table defined by mt, c, and kt. A sensing microdevice, 
defined by ms, ks is placed on the table. Knowing the minimum signal 
amplitude the sensor can detect is Xmin, find the necessary amplitude of the 
actuator. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.18 Optical table with actuator and sensing microdevices 

 
Solution: 

The equations of motion for the actuator, table, and sensor are: 
 

 
1 1 2

2 2 2 2 1 2 3

3 3 2

0

0

a a

t t a s

s s

m x k x x f

m x cx k x k x x k x x

m x k x x

 (4.100) 

 
By Laplace-transforming Equation (4.100) with zero initial conditions yields: 
 

 

2
1 2

2
1 2 3

2
2 3

( ) ( ) ( )

( ) ( ) ( ) 0

( ) ( ) 0

a a a

a t a t s s

s s s

m s k X s k X s F s

k X s m s cs k k k X s k X s

k X s m s k X s

 (4.101) 
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Equations (4.101) can be expressed in matrix form as: 
 
 1( ) ( ) ( )A s X s F s  (4.102) 
 
with: 
 

 1 2 3

1

( ) ( ) ( ) ( )

( ) ( ) 0 0

t

t

X s X s X s X s

F s F s
 (4.103) 

 
and: 
 

 

2

2

2

0
( )

0

a a a

a t a t s s

s s s

m s k k
A s k m s cs k k k k

k m s k
 (4.104) 

 
Equation (4.102) allows solving for {X(s)} as: 
 
 

1
1( ) ( ) ( )X s A s F s  (4.105) 

 
The three variables X1(s), X2(s), and X3(s) can be expressed in terms of F(s) 
by Equation (4.105). By only combining X1(s) and X3(s), and considering the 
harmonic nature of the excitation and the cosinusoidal transfer function app-
roach, the minimum amplitude of the actuators is: 
 

 min
1 1

13

XX X j
G j

 (4.106) 

 
where G13 is the transfer function between the actuator and sensor, and its 
modulus is: 
 

 13 222 2 2 2 2 2

a s

s s s s s a t s t

k kG j
c k m k k m k k k m

(4.107) 

 
4.2.3 Electrical Microsystems 
 
Microtransduction, which comprises actuation and sensing, is largely achieved 
in MEMS/NEMS by subsystems that involve (mostly) electrostatic means. 
Moreover, as shown in a subsequent section, mechanical components have 
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electrical analogous counterparts, and therefore electromechanical micro-
systems can be formulated unitarily in either the mechanical domain or the 
electrical one. A brief review of the main notions of electrical circuits that 
are needed in the modeling and analysis of electromechanical micro/nano 
systems will be given here. 

As known from basic electrical circuit theory, the principal elements are 
the resistor, the capacitor, and the inductor. The electrical impedance is a 
central concept, which is defined as the ratio of the voltage phasor across an 
element to the current phasor through that element, namely: 
 

 
EZ
I

 (4.108) 

 
 
 
 
 
 
 
 

Figure 4.19     Schematic for electrical impedance definition 

 
and its definition is symbolized as in Figure 4.19. 

The phasor form of a harmonic signal is introduced to explain the 
electrical impedance definition mentioned above. Consider a harmonic 
signal: 
 
 cosx X t  (4.109) 
 
which can also be expressed as the real part of the complex number: 
 
 Re cos sin Re j j tx X t j t Xe e  (4.110) 

 
The following quantity: 
 
 jX Xe  (4.111) 
 
is the phasor-form of the complex number. It can be seen that the phasor 
comprises full information (in exponential form) about a complex number 
which is defined by a modulus X and a phase angle . Equation (4.110) can 
be written now by means of Equation (4.111) as: 
 

Z
I

E
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  Re j tx Xe  (4.112) 

 
Figure 4.20 shows the main electrical elements. 

 
 
 
 
 
 
 
 

 
 Figure 4.20 Electrical elements with voltages: (a) resistor; (b) capacitor; (c) inductor 

 
The voltages on the three components are expressed as: 
 

 
1

R R

C C

L
L

e Ri

e i dt
C

die L
dt

 (4.113) 

 
whereas, conversely, the currents are expressed as: 
 

 

1

R
R

C
C

L L

ei
R

dei C
dt

i e dt
L

 (4.114) 

 
Let us now formulate the impedances corresponding to the three electrical 
components by following the definition and when considering the following 
harmonic voltage is applied across each component: 
 
 cos Re j te E t Ee  (4.115) 
 
By comparing Equation (4.115) to the definition of a phasor (Equations 
(4.110) and (4.111)), it follows that the phasor form of the voltage is: 

RiR 

eR 

L iL

eL 

CiC

eC 

(a) (b) (c) 
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 E E  (4.116) 
 
Equation (4.114) allows expressing the current through the resistor as: 
 

 cos Re j t
R

e E Ei t e
R R R

 (4.117) 

 
and therefore the phasor-form of the current as: 
 

 R
EI
R

 (4.118) 

 
By combining Equations (4.116) and (4.118), the electrical impedance 
corresponding to the resistor is: 
 

 R
R

R R

E EZ R
I I

 (4.119) 

 
Example 4.12 

Derive the electrical impedances corresponding to a capacitor and an 
inductor when a cosinusoidal voltage of the type defined in Equation (4.115) 
is applied to each component. 
 
 
Solution: 

By dropping the voltage subscript, the current corresponding to the 
capacitor, as shown in the second Equation (4.114), is expressed as: 
 

 
2

sin cos
2

Re Re

C

j j t j t

dei C CE t CE t
dt

CEe e j CEe
 (4.120) 

 
Equation (4.120) shows that the capacity intensity phasor is:  
 
 CI j CE  (4.121) 
 
By combining now Equations (4.116) and (4.121), the electrical impedance 
of a capacitor becomes: 
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1

C
jZ

j C C
  (4.122) 

 
To determine the impedance of the inductor, the current of Equation 

(4.114) is rewritten based on the cosinusoidal voltage (after dropping the 
subscript to the voltage) as: 
 

 
2

1 sin cos
2

Re Re

L

j j t j t

E Ei edt t t
L L L

E Ee e j e
L L

 (4.123) 

 
which shows that: 
 

 L
EI j
L

 (4.124) 

 
Consequently, the impedance of an inductor is: 
 

 L
L

E LZ j L
I j

 (4.125) 

 
The three impedances just derived can very simply be determined by 

using the Laplace transform as shown next, and by introducing the notion of 
Laplace-domain electrical impedance as: 
 

 
( )( )
( )

E sZ s
I s

 (4.126) 

 
where E(s) is the Laplace transform of the voltage across an electrical 
component and I(s) is the current transform through that component, both 
transforms being taken with zero initial conditions. 

By applying the Laplace transform to the first Equation (4.114), it can be 
shown that: 
 

 
( ) ( )( )
( ) ( )

R
R

R R

E s E sZ s R
I s I s

 (4.127) 

Similarly, the Laplace transform applied to the second Equation (4.114) 
results in: 
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( ) ( ) 1( )
( ) ( )

C
C

C C

E s E sZ s
I s I s Cs

 (4.128) 

 
The inductor-related impedance is found from the third Equation (4.114) and 
its Laplace transform is: 
 

 
( ) ( )( )
( ) ( )

L
L

L L

E s E sZ s Ls
I s I s

 (4.129) 

 
When substituting j  for s in Equations (4.127), (4.128), and (4.129), the 
originally derived impedances of Equations (4.119), (4.122), and (4.125) are 
retrieved. 

The Laplace-domain electrical impedance notion allows eliminating the 
step of passing from the time domain to the Laplace domain through the 
dedicated transformation, and enables working directly with algebraic 
amounts. Immediate advantages resulting from this shortcut regard the 
possibility of treating impedances, voltages, and currents in the Laplace 
domain as the ones related to resistors into the time domain. A series 
connection of n impedances for instance results in the following equivalent 
impedance: 
 

 
1

( ) ( )
n

s i
i

Z s Z s  (4.130) 

 
whereas a parallel connection yields: 
 

 
1

1 1
( ) ( )

n

ip iZ s Z s
 (4.131) 

 
Example 4.13    

Find the transfer function between the input voltage ei(t) and the output 
voltage eo(t) for the electrical circuit of Figure 4.21 by using the complex 
impedance approach. Determine the characteristics of the output voltage 
when time goes to infinity by considering the input is a cosinusoidal function 
of time. 
 
 
 
 
 
 
 
 

Figure 4.21 Electrical circuit with input and output voltage signals 

R1

C1

C2

R2

Lei eo
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Solution: 
The actual electrical system of Figure 4.21 has a corresponding circuit 

that uses the impedances shown in Figure 4.22. 
 
 
 
 
 
 
 
 

Figure 4.22 Equivalent electrical circuit with impedances 
 
By considering the current is I(s), the input and output Laplace-domain 
voltages can be expressed as: 
 

 1 2( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

i o

o o

E s Z s Z s Z s I s
E s Z s I s

 (4.132) 

 
Consequently, the transfer function is: 
 

 
1 2

( ) ( )( )
( ) ( ) ( ) ( )

o o

i o

E s Z sG s
E s Z s Z s Z s

 (4.133) 

 
where:  

 

1
1

1 1

2
2

2

2

( )
1

( )

1( )o

RZ s
R C s

LR sZ s
R Ls

Z s
C s

 (4.134) 

 
By substituting Equation (4.134) into Equation (4.133), the transfer function 
becomes: 
 

 
2

1 1 1 2 1 2
3 2

1 2 1 2 1 1 1 2 2 1 2 1 2 2

( )
LRC s L R R C s R

G s
LR R CC s L R C R R C s L R R C C s R

(4.135) 
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When j  is used instead of s in Equation (4.135), the following complex 
number results: 
 
 ( )G j a bj  (4.136) 
 
with:  

 

Aa
B
Cb
B

 (4.137) 

 
where: 
 

 

2 2 2 2 2 2 2 2
1 1 1 2 2 2 1 1

2 2 2
1 2 1 1 2 2

24 2 2 2 2 2 2
1 2 2 1 1 2

2 22 2 2 2 2
2 2 1 1 2 1 2

2 2 2 2 2 2
2 1 2 1 1 2 1 2

{ [ 1] 1

}
2 1

1

A L R C C C LR C R C

R R C C C R

B L R R C L R C C

R LC R C C LC C

C C L R R C R R R R

 (4.138) 

 
For a cosinusoidal input of amplitude Ei, the amplitude of the output is 
simply: 
 
 ( )o iE E G j  (4.139) 
 
with the modulus of the transfer function determined from Equations (4.137) 
and (4.138). Knowing the real and imaginary parts of G( j ) also allows 
calculating the phase  between the input and output voltages. 
 
4.2.4 Mechanical-Electrical Analogy 
 

 

Equations similar to the dynamic equation describing the motion of a single 
DOF mechanical system can be written for elementary electrical circuits. There 
are always two electrical systems that are analogous to a given mechanical 
system, as indicated in Figure 4.23. 
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Figure 4.23 Force-voltage and force-current mechanical-electrical analogies 
 
The equation of motion for the mass of Figure 4.23 is: 
 
 mx cx kx f  (4.140) 
 
For the series electrical circuit of the same figure, according to Kirchhoff’s 
second (loop or mesh) law, the source voltage is the sum of voltages on the 
three elements, namely: 
 

 
1

L R C
die e e e L Ri idt
dt C

 (4.141) 

 
where Equation (4.113) has been applied for element voltages by also recogni-
zing the current i is the same across all electrical components in a series 
circuit. It is also known that the current is expressed in terms of charge as: 
 

 
dqi
dt

 (4.142) 

 
and therefore Equation (4.141) becomes: 
 

 
1Lq Rq q e
C

 (4.143) 

 
which is a second-order differential equation, similar to Equation (4.140), which 
defined the dynamics of the mechanical system of Figure 4.23. The source of 
motion is the force for the mechanical system, whereas for the electrical one, 
the source is voltage, and therefore the corresponding mechanical-electrical 
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relationship is known as the force-voltage analogy, as illustrated in Figure 
4.23. According to this analogy, the corresponding pairs in the two systems 
are displacement-charge (x-q), force-voltage ( f-e), mass-inductance (m-L), 
damping coefficient-resistance (c-R), and spring stiffness-capacitance inverse 
(k-C –1). 

Another analogy, known as force-current analogy (also indicated in Figure 
4.23), can be formulated between a mechanical system and an electrical one. 
By considering the parallel circuit of Figure 4.23, the currents are related 
according to Kirchhoff’s first (node) law as: 
 

 
1

L R C
e dei i i i edt C

L R dt
 (4.144) 

 
where Equation (4.114) have been used together with the fact that in a parallel 
connection the voltage e is the same on each electrical component branch. It 
is known that the voltage and the magnetic flux  are related as: 
 

 
de
dt

 (4.145) 

 
and therefore Equation (4.144) changes to: 
 

 
1 1C i
R L

 (4.146) 

 
which is a second-order differential equation similar to Equation (4.140), which 
described the dynamics of a mechanical system; consequently, the mechanical 
system and the parallel electrical system are analogous. The following pairs 

mass-capacitance (m-C ), damping coefficient-resistance inverse (c-R–1), and 
stiffness-inductance inverse (k-L–1). 

Mechanical impedances can be formulated similarly to the electrical 
ones. The mechanical impedance of a mechanical element can be defined as 
the ratio of the force phasor to the resulting velocity phasor, namely:  

 
FZ
V

 (4.147) 
 
By considering the following harmonic force: 
 
 cos Re j tf F t Fe  (4.148) 
 
its related phasor, as discussed previously in this section, is: 

 

 

describe the connection: displacement-magnetic flux (x- ), force-current  ( f-i), 
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 F F  (4.149) 
 
If a mass element is acted upon by the force of Equation (4.149), the corres-
ponding motion equation is defined by way of Newton’s law as: 
 

 mdvm f
dt

 (4.150) 

 
where vm is the velocity, which is found by integrating Equation (4.150), 
namely: 
 

 

2sin cos Re
2

Re

j j t
m

j t

F F Fv t t e e
m m m

Fj e
m

 (4.151) 

 
Equation (4.151) indicates that the velocity phasor is: 
 

 m
FV j

m
 (4.152) 

 
By combining Equations (4.149) and (4.152), the mass-related mechanical 
impedance is: 
 

 m
mZ j m
j

 (4.153) 

 
Example 4.14 

By using the phasor definition, derive the mechanical impedances for a 
spring of stiffness k and a damper of damping coefficient c. Consider that the 
harmonic force defined in Equation (4.148) is acting on each mechanical 
element. 
 
Solution: 

In the case of a damper, the acting force and the opposing damping one 
balance out, and therefore: 
 
 ccv f  (4.154) 
 
The velocity vc can be expressed by using Equations (4.148) and (4.154) as: 
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 cos Re j t
c

F Fv t e
c c

 (4.155) 

 
Equation (4.155) shows that the damping-related velocity phasor is: 
 

 c
FV
c

 (4.156) 

 
and, consequently, the corresponding mechanical impedance is: 
 

 c
c

FZ c
V

 (4.157) 

 
For a spring element that is acted upon by the harmonic force of 

Equation (4.148) the force balance equation is: 
 
 kx f  (4.158) 
 
By taking the time derivative of Equation (4.158) and by also considering 
Equation (4.148), the stiffness-related velocity is obtained as: 
 

 
2

1 sin cos
2

Re Re

k

j j t j t

df F Fv t t
k dt k k

F Fe e j e
k k

 (4.159) 

 
Equation (4.159) indicates that the velocity phasor is: 
 

 k
FV j
k

 (4.160) 

 
which means the stiffness-related mechanical impedance is: 
 

 k
k

F k kZ j
V j

 (4.161) 

 
Example 4.15 

Derive the Laplace-domain mechanical impedances of a mass, damping, 
and spring elements. The Laplace-domain mechanical impedance is defined 
as the ratio of the Laplace transform of force to the Laplace transform of 
velocity. 
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Solution: 
By applying the Laplace transform to Equation (4.150) and by using zero 

initial conditions one obtains: 
 
 ( ) ( )mmsV s F s  (4.162) 
 
and therefore the mass-related mechanical impedance is: 
 

 
( )( )
( )m

m

F sZ s ms
V s

 (4.163) 

 
The Laplace transform applied to Equation (4.154) results in: 
 
 )()( sFscVc  (4.164) 
 
which yields: 
 

 c
sV
sFsZ

c
c )(

)()(  (4.165) 

 
By taking the time derivative to Equation (4.158) and then by applying the 
Laplace transform with zero initial conditions, the Laplace-domain, stiffness 
related mechanical impedance results, namely: 
 

 
s
k

sV
sFsZ

k
k )(

)()(  (4.166) 

 
Equations (4.163), (4.165), and (4.166) are identical to Equations (4.153), 
(4.157), and (4.161), respectively, when using j  instead of s. 
 
Example 4.16 

Determine an electrical system analogous to the mechanical microsystem, 
which is schematically shown by means of a lumped parameter model in 
Figure 4.24. 
 
 
 
 
 
 
 
 

Figure 4.24 wo DOF mechanical system 
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Solution: 
The dynamic equations of the two DOF system are, according to Newton’s 

law: 

 
01212222222

211211111111

xxkxkxcxm
fxxkxkxkxcxm

 (4.167) 

 
By using the force-voltage analogy, the equations corresponding to the 
electrical system are: 
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111

12
12
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2

2222
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1
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qq
C

q
C

qRqL

eqq
C

q
C

q
C

qRqL
 (4.168) 

 
Equations (4.168) are actually Kirchhoff’s second law, and the fact that there 
are two equations indicates the electrical system should have two loops. By 
inspection of Equation (4.168), the candidate electrical system, which is 
analogous to the mechanical one of Figure 4.24, is sketched in Figure 4.25. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.24 
 
Kirchhoff’s equations for the two loops of Figure 4.25 are, in their standard 
(current) form: 
 

 

1
1 1 1 1 1 1 2

1 1 12

2
2 2 2 2 2 1

2 12

1 1 1

1 1 0

diL R i i dt i dt i i dt e
dt C C C
diL R i i dt i i dt
dt C C

 (4.169) 
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L2
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C12 C2 i1

i2

i1 - i2

 

 

Figure 4.25 Two-loop electrical system, which is the analogous of the mechanical system of 
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4.2.5  Electromechanical Microsystems with Variable 
Capacity 

 
Transduction in MEMS/NEMS often times requires interaction between a 
mechanical subsystem and an electrical subsystem, such as a capacitive one. 
Comb-type driving or sensing is one modality of transduction that uses the 
variation of capacitance principle, as already seen in this chapter. The analogy 
between a mechanical system and an electrical one is very useful, as the mecha-
nical parameters can be transformed/scaled into their electrical counterparts 
and therefore subsequent modeling of the MEMS in the electrical domain 
only becomes possible. Consider the MEMS of Figure 4.26, which is com-
posed of a comb drive, a proof mass, and two beams that act as springs. 
 

Figure 4.26 Comb-driven microelectromechanical system 
 

Figure 4.27 (a) shows the electrical and mechanical models of the MEMS of 
Figure 4.26. Figure 4.27 (b) gives the full electrical schematic by using 
equivalent quantities Lm, Rm, and Cm that correspond to the actual mechanical 
quantities m (mass of the proof mass), c (damping coefficient), and k (beam 
spring stiffness). The problem of determining the electrical equivalent 

 

By combining the known relationship between charge and current [Equation 
(4.142)] and Equation (4.169) yields Equation (4.168), which proves that, 
indeed, the electrical system proposed in Figure 4.25 is the electrical 
analogous of the mechanical system of Figure 4.24. 
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counterparts of the mechanical ones, which was studied by Lin et al. [5] or 
Bannon et al. [6], amongst others, can be approached considering the energy 
equivalence between mechanical and electrical elements with small/elementary 
variations of physical amounts. 

Figure 4.27 Schematics of the comb-driven MEMS: (a) electromechanical; (b) equivalent 
electrical  
 

To find the inductance Lm, which is equivalent to the mass m, the 
inductor’s energy is: 
 

 
2 2 2

21 1 1
2 2 2L m m m

dq dx dC dxU L i L L e
dx dt dx dt

 (4.170) 

 
where e is the voltage and C is the variable capacitance of the comb driver. 
The kinetic energy of the mass m that moves linearly is: 
 

 
2

2
1

dt
dxmT   (4.171) 

 
By equating the inductor’s energy to the kinetic energy, the equivalent 
inductance is obtained: 
 

 2

dx
dCe

mLm  (4.172) 

 
The equivalent resistance Rm is determined by considering the electrical 

energy dissipated on the resistor and the mechanical energy dissipated 
through damping. The Joule-type electrical energy over a short time dt is: 
 

 
2 2 2

2
R m m m

dq dx dC dxU R i dt R dt R e dt
dx dt dx dt

 (4.173)  
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whereas the energy dissipated through damping is equal to the work done by 
the damping force and can be expressed as: 
 

 d
dxU c dx
dt

 (4.174) 

By equating now the two energies of Equations (4.173) and (4.174), the equi-
valent resistance is obtained as: 
 

 2

dx
dCe

cRm  (4.175) 

 
The electrostatic energy that is stored on a capacitor can be expressed as: 
 

 
2

2C
m

dqU
C

 (4.176) 

 
while the elastic potential energy stored in the actual spring is: 
 

 2

2
1 kdxU  (4.177) 

 
By equating the energies expressed in Equations (4.176) and (4.177), and by 
also taking into account that: 
 

 
dx
dCe

dx
dq

 (4.178) 

 
the equivalent capacitance becomes: 
 

 

2

m

dCe
dxC
k

 (4.179) 

 
It should be mentioned that in actual MEMS comb-type actuation the 

voltage e is the sum of a dc (bias) term and a harmonic component. 
 
Example 4.17 

Consider a purely cosinusoidal voltage is applied to actuate a MEMS as 
the one shown in Figure 4.26. Use the electrical equivalent system and the 
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complex impedance approach to determine the current through the 
mechanical loop of the equivalent electrical circuit.  
 
Solution: 

By considering the current through the input (left) loop of Figure 4.27 is 
Ii(s) and the one through the output (right) loop of the same figure is Io(s), the 
Kirchhoff’s loop laws yield (by means of the complex impedance approach) 
the following equations: 
 

 

1( ) ( ) ( ) ( )

1 1( ) ( ) ( )

i i i o

o m m i o
m

E s I s R I s I s
Cs

I s L s R I s I s
C s Cs

 (4.180) 

 
Substitution of Ii(s) between the two equations in Equation (4.180) produces 
the transfer function connecting the input voltage Ei(s) and output current 
Io(s): 
 

 3 2

( )( )
( ) 1

o m

i m m m m m m m m

I s C sG s
E s L RCC s C L CRR s RC RC R C s

 

By utilizing j  for s in Equation (4.181), G( j ) is obtained in the standard 
algebraic form of a complex number with the real and imaginary parts 
expressed as: 
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AG j
B
CG j
B

 (4.182) 

 
with: 
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Again, knowledge of the real and imaginary parts of the cosinusoidal transfer 
function yields the modulus and the phase angle, which fully define the output 
current. 
 
4.2.6 Microgyroscopes 
 
Microgyroscopes are used as sensors in a large variety of applications, the 
best known being the ones in the automobile industry. They are based on the 
forces that act on a body moving with respect to a non-inertial reference frame. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Consider, for instance, the reference frame xrOyr, which rotates (and is 
therefore a non-inertial reference frame) about the fixed (inertial) reference 
frame xOy with an angular velocity . A body of mass m moves with a 
velocity vr measured in the non-inertial frame. It is known from mechanics 
that three forces need to be accounted for when referencing the motion in the 
rotating frame, namely: the centrifugal force fcen, the Coriolis force fC, and the 
Euler force fE, which are shown in Figure 4.28 and are defined as: 
 

 2
cen

C r

E

f m r

f m v
df m r
dt

 (4.184) 

 

xr

fcen 

x

fE

fC 

r 

vr

x
yr 

 

m

fixed frame 

rotating frame

Figure 4.28 Forces acting on the point of mass m in a rotating reference frame 
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2

2
cen

C r

E

f m r
f m v

df m r m r
dt

 (4.185) 

 
where  is the angular acceleration of the rotating frame (and of the body). 
The Coriolis force is usually the only one credited in modeling gyroscopes, 
although when there is an angular acceleration, the Euler force is also present 
and directed about the same direction as the Coriolis force. 
 
Example 4.18 

Assess the errors induced by ignoring the Euler force in a microgyro-
scope, which moves with a given relative velocity and when r ranges between 
rmin and rmax. 
 
Solution:  

Equation (4.185) allows formulating the following relative error: 
 

 1
2

C E

C r

f f re
f v

 (4.186) 

 
The errors can be reduced for small angular velocities and small relative 
velocities, as Equation (4.186) indicates, which also shows that large angular 
accelerations and large distances of the point mass from the center of rotation 
also reduce the errors. In other words, the error is minimum at rmax and maxi-
mum at rmin.   

Consider now the microgyroscope’s model of Figure 4.29. The body of 
mass m is constrained to move unidirectionally about the x-axis where har-
monic driving is applied by a force f inside a massless carrier. At its turn, the 
carrier is constrained to move about a direction, which, initially, is perpendi-
cular to the drive direction. The carrier is subjected to an angular velocity  
and an angular acceleration  about an axis perpendicular to the drawing 
plane of Figure 4.29. As a result, a Coriolis force and an Euler force will act 
on the body about the sense direction. The equations of motion of the inside 
body about the drive and sense directions are: 
 

 
2

d d

s s

mx c x k x f
my c y k y m x x

 (4.187) 

 

 

These forces have the following magnitudes: 
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Figure 4.29 Microgyroscope model 
 

By applying the Laplace transforms with zero initial conditions to Equation 
(4.187), the following algebraic equations result: 
 

 
2

2

( ) ( )

( ) 2 ( )

d d

s s

ms c s k X s F s

ms c s k Y s m s X s
 (4.188) 

 
Elimination of X(s) between the two equations in Equation (4.188) produces 
the following transfer function connecting F(s)—the input—and Y(s)—the 
output: 
 

 
2 2

2( )( )
( ) d d s s

s mY sG s
F s ms c s k ms c s k

 (4.189) 

 
Example 4.19 

The microgyroscope of Figure 4.30 is encapsulated in a vacuum-like 
environment and is supported by two identical beams inside a carrier whose 
mass is neglected. The carrier is also suspended inside its enclosure by two 
beams that are identical to the ones suspending the central body (the four 
beams are of length l ). Analyze the amplitude of the driving force as a  
 
 
 

f, vr

fC + fE

x (drive direction) 

cd 

kd

cs ks

y (sense direction)

m

massless carrier

 

where the Coriolis and Euler forces defined in Equation (4.185) have been 
used in the second Equation (4.187). 
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Figure 4.30 Beam-suspended microgyroscope 
 
function of the external angular velocity considering that  = 0, m = 2 grams, 

Y
 

 
Solution: 

The force amplitude can be expressed as: 
 

 

22

22

k m
F Y

m
 (4.190) 

 
where Y is the amplitude of the sensed signal and k is the stiffness of one pair 
of beams, which is equal to: 
 

 
3

3 3

12 22 zEI Ew tk
l l

 (4.191) 

 
By using the numerical data of this problem, the plot of Figure 4.31 is drawn, 
which shows the amplitude of the driving force as a function of the external 
angular velocity. It can be seen that the force amplitude varies nonlinearly with 
the circular frequency. 
 
 
 
 
 

drive direction 

sense direction

 

m

support beams

 = 1 μm. Ignore Euler effects. 
l = 100 μm, t = 5 μm, w = 1 μm, E = 160 GPa, and the sensed amplitude is 
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Figure 4.31 Driving force amplitude as a function of the external angular frequency 
 
4.2.7 Resonant Frequencies and the Laplace Method 
 
The characteristic equation of a multi DOF system can be determined in the 
Laplace domain. Consider, for instance, the microgyroscope of Figure 4.29. 
Its free-response dynamic equations can be set in matrix form as: 
 
 0M u C u K u  (4.192) 
 
with: 

 

0
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0
0

d

s

d

s
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k
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k

 (4.193)  

 
being the mass, damping, and stiffness matrices and {u} = {x   y}t being the 
displacement vector. When solutions of the exponential type, {u} = {U} 
sin( t) are sought, the condition for nontrivial solutions to be found is: 
 
 2det 0M C K  (4.194) 
 
which is the characteristic equation, whose algebraic form is: 
 
 2 2 0d d s sm c k m c k  (4.195) 
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Equations (4.194) and (4.195) can be retrieved by applying the Laplace 
transform to the matrix Equation (4.192), which results in: 
 
 2 ( ) 0s M s C K U s  (4.196) 

 
with [M ], [C ], and [K ] defined in Equation (4.193) and {U(s)} being the 
Laplace transform of {u(t)}. By using j  for s in Equation (4.196) and by 
requiring that nontrivial solutions {U(s)} be determined, Equation (4.194) is 
retrieved, which is the characteristic equation. The characteristic equation is 
also found by equating the polynomial in the denominator of the transfer 
function to zero. 
 
Example 4.20 

Find the resonant frequencies of the system shown in Figure 4.32 by 
applying the transfer function approach. Consider the system behaves as a 
two DOF one with the coordinates being the displacements x1 and x2. Also 
consider the input is the force acting on the body of mass m1. 
 
Solution: 

The dynamic equations of the two DOF system are: 
 

 1 1 1 1 2

2 2 2 2 1

2

0

m x kx k x x f

m x kx k x x
 (4.197) 

 
 
 
 
 
 
 
 
 
 

Figure 4.32 Two DOF mechanical microsystem 
 
By applying the Laplace transform with zero initial conditions to Equation 
(4.197), the following transfer functions can be formulated: 
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1 2
1 2 2 2

1 2
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 (4.198) 
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 2
2 2 2 2

1 2

( )( )
( ) 3 2

X s kG s
F s m s k m s k k

 (4.199) 

 
It can be checked that both transfer functions have the same denominators 
and, consequently, the characteristic equation is: 
 
 2 2 2

1 23 2 0m k m k k  (4.200) 

 
The eigenvalues resulting from Equation (4.200) are: 
 

 2 2 2
1,2 1 2 1 1 2 2

1 2

2 3 4 7 9
2

k m m m m m m
m m

 (4.201) 

 
4.2.8 Tuning Forks 
 
Another example of the Coriolis and Euler effects in MEMS is the tuning 
fork, which is used to sense angular velocity and acceleration in non-inertial 
reference frames. 

 

Figure 4.33 Tuning-fork microgyroscope: (a) out-of-the-plane driving and in-plane sensing; 
(b) in-plane driving and out-of-the-plane sensing 

 

Figure 4.33 indicates the Coriolis effect for two common situations: in the case 
of Figure 4.33 (a), the relative velocity is achieved through out-of-the-plane 
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driving of the two tines that will bend in opposite directions. The superposition 
between the tines motions and the external angular velocity  will generate 
Coriolis accelerations, which are directed towards the rotation axis and within 
the plane of the tines. The case pictured in Figure 4.33 (b) applies in-plane 
driving and the Coriolis accelerations of the two tines is sensed as out-of-the-
plane bending.  

By considering one tine can be modeled by using lumped parameters (a 
mass m and two springs, kx and ky, located at the tine’s free end), Figure 4.34 
(a) can be used to indicate the velocity and accelerations that occur. It is also 
considered that the longitudinal axis of tine coincides with the input rotation 
axis, such that no centrifugal force acts on the tine. The interaction between 
the drive velocity vrx and the external angular velocity  generates the 
Coriolis acceleration aCy, whereas the resulting vibration along the y-axis and 
the corresponding relative velocity vry interacting with the angular velocity 
will generate the Coriolis acceleration about the x-axis. The forces acting on 
the mass m are shown in Figure 4.34 (b). By assuming small displacements 
and a linear system, the equations of motion about the x- and y-axes are: 
 

 
2
2 0

x d

y

mx k x m y f
my k y m x

 (4.202) 

 

Figure 4.34  Lumped-parameter model of one tine: (a) physical model; (b) free-body diagram 

 
The forcing (drive) term is fd, as shown in the first Equation (4.202). By 
applying the Laplace transform with zero initial conditions to the second 
Equation (4.202), the following transfer function is obtained: 
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 2

( ) 2( )
( ) y

Y s m sG s
X s ms k

 (4.203) 

 
Equation (4.203) enables finding the sensed amplitude from the drive ampli-
tude and the modulus of the cosinusoidal transfer function as: 
 

 2

2 d

y d

mY X
k m

 (4.204) 

 
where d is the drive frequency. When the tuning fork is used as a sensor,  
can be found from Equation (4.204) as: 
 

 
2

2
y d

d

k m Y
m X

 (4.205) 

 
Equation (4.203) also shows that the signal y is /2 behind the x signal and is 
calculated as: 
 

 2

2cos sin sin
2

d
d d d

y d

my Y t Y t X t
k m

 (4.206) 

 
By also applying the Laplace transform to the first Equation (4.202) under 

zero initial conditions, by eliminating X(s) and by using Equation (4.203), the 
following transfer function is obtained, which combines the sensed displace-
ment to the input force, namely: 
 

 
2 2 2 2 2

( ) 2
( ) 4d x y

Y s m s
F s m s ms k ms k

 (4.207) 

 
The characteristic equation corresponding to the above transfer function is: 
 
 2 2 2 2 24 0r r x r ym m k m k  (4.208) 

 
whose roots are the resonant frequencies of the two DOF lumped-parameter 
system of Figure 4.34 (a): 
 

 
2 2

2
,1,2

4 4 4

2
x y x y x y

r

k k m k k m k k

m
 (4.209) 
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Example 4.21 
A tuning fork is used to measure an external angular velocity by measuring 

the sensed and drive displacements capacitively. Knowing that a tine has a 
length of l and a rectangular cross-section defined by w and t (w < t and t is 
parallel to the y-axis), study the influence of the tine’s dimensions, as well as 
of the drive and sensed amplitudes X and Y on the monitored . 
 
Solution: 

Equation (4.205) can be written as: 
 

 

2

2

y
d

d

k
Ym
X

 (4.210) 

 

and the tine stiffness is: 
 

 
3

3 3

3
4

x
y

EI Ewtk
l l

 (4.211) 

 
The lumped-parameter mass is equivalent to the total cantilever mass, 
namely: 
 

 
33

140
m lwt  (4.212) 

 

 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 

Figure 4.35 Tuning fork with clamped-clamped tines 
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By combining Equations (4.210), (4.211), and (4.212), the angular frequency 
can be expressed as: 
 

 

2
2

4
35
33

2

d

d

Et
Yl
X

 (4.213) 

 
Equation (4.213) indicates that by increasing the thickness t of the tine and 
by decreasing its length l, it is possible to reduce the amplitude ratio Y/X to 
detect the external angular frequency . 

Another tuning fork is shown in Figure 4.35 where the two tines are actually 
clamped at both ends instead of being clamped-free as they were with the 
first tuning fork analyzed. The model that has been developed previously for 
one clamped-free tine aligned with the external axis of rotation remains valid. 
Only the equivalent mass and stiffnesses about the drive and sense directions 
will change because the lumped mass is placed at the middle of the tine (instead 
of being located at its free end in the previous tuning fork configuration). 
 
Example 4.22 

Compare the sensed amplitude that is detected by a clamped-clamped 
tuning fork with the one captured by a clamped-free configuration.  
 
Solution: 

Equation (4.204) can be formulated as: 
 

 
2

2 d

y
d

Y Xk
m

 (4.214) 

 
By considering a half-length model for a clamped-clamped beam, the lumped-
parameter equivalent mass and stiffness are (as shown in Lobontiu [4]): 
 

 
3

96

13
70

x
y

EIk
l

m lwt
 (4.215) 

 
The following signal ratio can be formulated, by also using the previous 
example: 
 

 
2

421
c c c f d

X X Et
Y Y l

 (4.216) 
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where c-c means clamped-clamped and c-f stands for clamped-free. Consider, 
3

d
value of approximately 4.5 for the signal ratio difference of Equation (4.216). 
This result indicates that for the same drive amplitude, drive frequency and 
external frequency, the clamped-free tuning fork senses a larger signal than 
the clamped one. 

 
4.3 TIME-DOMAIN RESPONSE OF MEMS 
 

 
As the case was with the frequency domain, the Laplace transform and the 
inverse Laplace transform can be used to solve a differential equation (or a 
differential equations system for multiple DOF system) in the time domain, 
provided the equations are linear and with time-unvarying coefficients. The 
dynamic Equation (4.47), which defines the motion of a multiple DOF system 
involving the inertia, damping stiffness matrices, as well as a forcing vector, 
can simply be solved for a linear system with constant matrices by first applying 
the Laplace transform to Equation (4.47). It is known that: 

 

 
2( ) ( ) (0) (0)

( ) ( ) (0)

u t s U s s u u

u t s U s u
 (4.217) 

 
where {U(s)} is the Laplace transform of {u(t)}, the unknown time-domain 
vector. By combining now Equation (4.217) with Equation (4.47), it can be 
shown that: 
 
 

1( ) ( ) ( )U s A s B s  (4.218) 
 
with: 
 

 
2( )

( ) ( ) (0) (0) (0)

A s s M s C K

B s F s M s u u s C u
 (4.219) 

 
The solution is determined by applying the inverse Laplace transform to 
Equation (4.218), which results in: 
 
 

11 1( ) ( ) ( ) ( )u t U s A s B s  (4.220) 

 

 

and Solution 
4.3.1 Time-Domain Laplace-Transform Modeling 

for instance, the following numerical values: E = 150 GPa,  = 2400 kg/m ,  
t = 1 μm, l = 100 μm,  = 10,000 rad/s,  = 20,000 rad/s, which result in a 

L

L

L L
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Example 4.23 
Consider the tine of a tuning fork is located at a distance R from the axis 

of rotation, the longitudinal direction of the tine being parallel with the rotation 
axis. By using the lumped-parameter modeling and the Laplace transform, 
express the system’s matrices and vectors corresponding to cosinusoidal exci-
tation with zero initial displacement and velocity. 
 
Solution: 

It can be shown that in this situation, a new force, the centrifugal one acts 
on the lumped-mass about the x-axis as shown in Figure 4.36. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.36 Lumped-parameter model of a tine from a tuning fork 
 
The dynamic equations of motion for the two DOF system are of the matrix 
form shown in Equation (4.47) with the system’s matrices being: 
 

 

2

0
0

0 2
2 0

0
0

x

y

m
M

m

m
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m

k m
K

k

 (4.221) 

 
The driving force and unknown coordinate vectors are: 
 

 
2 0

( ) ( ) ( )

t

d

t

f f m R

u t x t y t
 (4.222) 
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The vector {B} of Equation (4.219) simplifies to: 
 
 ( ) ( )B s F s  (4.223) 
 
because the initial condition vectors are zero, and therefore: 
 

 
12( ) ( )U s s M s C K F s  (4.224) 

 
4.3.2 State-Space Modeling 
 
An alternate method to representing the dynamic behavior of micro/nano 
systems is the state-space approach, which is widely used in control systems. 
This approach is instrumental in modeling cases with nonlinearities, as well 
as multiple-input multiple-output (MIMO) systems (Ogata [1], Nise [2]). The 
state-space approach uses the concepts of state, state variables and state 
vectors to formulate the state-space equations and then solve them for the 
output vector. The state variables are the minimum set of parameters that 
fully define the response of a dynamic system at any time moment t when the 
input is known at an initial time t0. The state variables at a particular time t 
define the state of the system at that time and can be collected in one vector, 
named the state vector. Formally, the state-space representation uses the 
following two equations: 
 

 
( ) ( ) ( )

( ) ( ) ( )

x t A x t B u t

y t C x t D u t
 (4.225) 

 
The first of the two equations in Equation (4.226) is known as the state 
equation whereas the second is the output equation. The vector {x} is the 
state vector, {u} is the input vector and {y} is the output (unknown) vector. 
Matrix [A] in Equation (4.225) is the state matrix, [B] is the input matrix, [C ] 
is the output matrix, and [D] is the direct transition matrix. They are all 
assumed constant. 

Application of the Laplace transform to Equation (4.225) with zero 
initial conditions produces the following equations:   
 

 
( ) ( ) ( )

( ) ( ) ( )

s X s A X s B U s

Y s C X s D U s
 (4.226) 

 
where: 
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( ) ( )

( ) ( )

( ) ( )

X s x t

U s u t

Y s y t

 (4.227) 

 
By expressing {X(s)} from the first Equation (4.226) and then substituting it 
into the second Equation (4.226), the Laplace-domain output vector is deter-
mined as: 
 
 ( ) ( ) ( )Y s G s U s  (4.228) 
 
where the matrix [G(s)] is calculated as: 
 

 
1

( )G s C s I A B D  (4.229) 
 
The example of a single DOF cantilever will be studied next as an 

application of the state-space approach. 
 
Example 4.24 

Use the state-space approach to model the forced damped vibrations of a 
cantilever beam by considering the single DOF model and the following force 
acting on it: tetu at cos)(

parameters of the microcantilever’s material are E = 150 GPa,  = 2400 
kg/m3. The microcantilever dimensions are l = 300 μm, w = 80 μm, t = 1 μm, 
and the damping coefficient is  = 0.01. 
 
Solution: 

The equation of motion of the single DOF system can be written as: 
 
 )()()()( tutkytyctym  (4.230) 
 
The following two state variables are selected: 
 

 
yx
yx

2

1  (4.231) 

 
Using Equation (4.231) together with Equation (4.230) results in: 
 

 u
m

x
m
cx

m
kx 1

212  (4.232) 

. Consider the following numerical values: 
a = 4000, the frequency of the excitation function is f = 100 Hz, the material 

L

L

L
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Equations (4.231) indicate that: 
 
 21 xx  (4.233) 
 
Equations (4.232) and (4.233) can now be written in vector-matrix form, 
which is the state equation expressed generically in the first Equation 
(4.225): 
 

 u
m

x
x

m
c

m
k

x
x

1
010

2

1

2

1  (4.234) 

 
The matrices [A] and [B] of the first Equation (4.225) can be identified in 
Equation (4.234) and they are: 
 

 
t

m
B

m
c

m
kA

10

10

 (4.235) 

 
Because the input vector has only one component, the excitation function u(t), 
the matrix [B] reduces to a vector, as shown in Equation (4.235). The first 
Equation (4.231) can be written in vector-matrix form as: 
 

 1

2

1 0 0
x

y u
x

  (4.236) 

 
which is the output equation generically given in the second Equation (4.225). 
Inspection of Equation (4.236) shows that: 
 

 
0

01
D
C

 (4.237) 

 
Having determined the four matrices [A], [B], [C], and [D] allows calculation 
of the [G] matrix defined in Equation (4.229), which is actually a scalar in 
this particular example, namely: 
 

 
kcsms

sG 2
1)(  (4.238) 

. 
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The Laplace transform of the input function is: 
 

 
22)(

as
assU  (4.239) 

 
The unknown Y(s) is therefore: 
 

 
22 2

( ) ( ) ( ) s aY s G s U s
ms cs k s a

 (4.240) 

Figure 4.37 Time response of single DOF microcantilever 
 
The lumped-parameter mass is given by Equation (4.66) and its numerical 
value is m = 1.358 × 10–11 kg. The stiffness is also given in Equation (4.66) 
and its numerical value is found to be k = 0.333 N/m. The damping coefficient 
is determined from the damping ratio, mass, and stiffness as shown in Chapter 
3, and is found to be for the parameters of this problem c = 0.425 × 10–7 
Ns/m. With these numerical values and by applying the inverse Laplace 
transform to Equation (4.240), the time-domain response of the single DOF 
microcantilever is obtained and plotted in Figure 4.37. 

Consider now applying the state-space formalism to the dynamics of a 
system having n DOF, and whose behavior is described by the matrix-form 
equation: 
 
 )()()()( tutyKtyCtyM  (4.241) 
 
where [M ], [C], and [K] are the system’s regular mass, damping and stiffness 
matrices, respectively, all square and of n × n dimension. The vectors {y(t)} 
and {u(t)} are the output and input vectors, both having the dimension n. As 
shown in the previous example, for a single DOF system whose dynamics is 
defined by a second order differential equations two state variables were needed. 
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The system discussed here has n DOF and therefore 2n state variables are 
needed. One possible choice of the state vector is the following one: 
 

 

nn

n

n

nn

yx

yx
yx

yx

yx
yx

2

22

11

22

11

...

...

 (4.242) 

 
By combining Equations (4.241) and (4.242) a state equation of the type 
shown in the first Equation (4.225) is obtained where the [A] matrix is: 
 

 1 12 2

0 0
nxn nxn

nx n
A

M K M C
 (4.243) 

 
with [0]n×n being the n × n zero matrix. The [B] matrix is: 
 

 12 2

0 0

0
nxn nxn

nx n
nxn

B
M

 (4.244) 

 
The derivative of the state vector is: 
 

 1
2 1

1 2 2

0

...
nx

tnx
n n n

x
x x x

 (4.245) 

 
and the input vector is written as: 
 

 1
2 1

1 2

0

...
nx

tnx
n

u
u u u

 (4.246) 

 
where {0}nx1 is the n-dimension zero vector. 

Equation (4.242) allows formulating the output equation in the simplified 
form: 
 y C x   (4.247) 
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where the [C] matrix is: 
 

 
2 2

0
0 0

nxn nxn
nx n

nxn nxn

I
C  (4.248) 

 
with [I]nxn being the identity matrix. 

With the [A], [B], [C] matrices defined in Equations (4.243), (4.244), and 
(4.249), the [G(s)] matrix of Equation (4.229) simplifies to: 
 

 
1

( )G s C s I A B  (4.249) 
 
which enables calculation of the Laplace-domain output vector Y(s), by means 
of Equation (4.228). In the end, the time-domain output vector y(t) is found 
by applying the inverse Laplace transform to Y(s). 

While the formalism derived here demonstrated that the dynamic equation 
of a MIMO microsystem can be expressed in state space form, care should be 
exercised as the matrices defined involve singularities and inversion by regular 
methods cannot be performed. There are matrix methods that can solve this 
aspect, as shown in more advanced matrix methods texts (Perlis [7]). An alter-
native formulation allowing to solve for Y(s) is also shown next. Consider the 
state variables as being divided into two vectors, namely: 
 

 1 2 1 2

1 2 2 1 2

... ...

... ...

t t
a n n

t t
b n n n n

x x x x y y y

x x x x y y y
 (4.250) 

 
By combining Equation (4.250) with Equation (4.241) the following relation-
ships are obtained: 
 

 b b a

a b

M x C x K x u

x x
 (4.251) 

 
The Laplace transform is applied to the two equations in Equation (4.251) 
considering zero initial conditions, and then Xb(s) is eliminated from the two 
resulting Laplace-domain equations and Xa(s) is found: 
 

 
1( ) ( ) ( ) ( )aX s Y s G s U s  (4.252) 

with [G(s)] being calculated as: 

 2( )G s s M s C K  (4.253) 
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Application of the inverse Laplace transform to Y(s) of Equation (4.252) 
yields the output vector y(t).  

It should also be pointed put that the approach described herein is also 
one that allows transforming a state-space formulation into a transfer 
function model if [G(s)] is regarded as a transfer function for a MIMO 
system. 
 
Example 4.25 

Study the time response of the micro mechanism sketched in Figure 2.61 
when the outer body is driven electrostatically and in-plane by a force 
defined as ( ) sinatu t Ae t . Consider the system operates in vacuum 
and l = 200 μm, m = 10–8 kg, E = 165 GPa,  = 200 rad/s, a = 4000, A = 
0.00001 N. 
 
Solution: 

The system behaves as a four DOF one when planar motion is analyzed, 

variables are needed and they are selected as follows: 
 

 
1 2 3 4

5 6 7 8

; ; ; ;

; ; ; ;
ay az by bz

ay az by bz

x u x x u x

x u x x u x
 (4.254) 

 
Consequently, the matrices [A], [B], and [C] defined in Equations (4.243), 
(4.244), and (4.248) are of an 8 × 8 dimension. By following the approach 
developed previously, the time response of the system is obtained. Because 
of the specific type of driving, the two bodies undergo pure translations and 
therefore the rotational DOF are identically zero. Figure 4.38 shows the 
variations of ya and yb as functions of time. 

 
Figure 4.38 Time response of four DOF microsystem: (a) inner mass motion; (b) outer mass 
motion 

(a) (b) 

 

in Equations (2.193) and (2.194). Being a four DOF system, eight state 
as discussed in Example 2.17. The stiffness and mass matrices are given 

0 0.01 0.02 0.03 0.04

4 10 6

2 10 6

0

2 10 6

4 10 6

0 0.01 0.02 0.03 0.04
4 10 6

2 10 6

0

2 10 6

4 10 6

 

y a
 [m

] 

y a
 [m

] 

t [s] t [s] 



Frequency and Time Response  365 

4.3.3 Transfer-Function to State-Space Model 
Transformation 

  
The transfer-function model can be transformed into a state-space model, as 
shown next. A single-input, single-output (SISO) system will be considered 

systems, and with particular application to dynamic systems that are modeled 
by means of second-order differential equations, the transfer function will 
involve second-degree polynomials in s of the form: 
 

 
2

1 2 3
2

1 2 3

( )( )
( )

a s a s aY sG s
U s b s b s b

 (4.255) 

 
and is symbolically shown in Figure 4.39. Figure 4.40 suggests an alternative 
representation of the transfer function of Figure 4.39 by means of an inter-
mediate function Z(s), which allows separation between the numerator and 
denominator of the transfer function G(s). 
  
 
 
 
 
 

Figure 4.39 Transfer function for a single-input single-output system 
 
 
 
 
 
 
Figure 4.40 Alternative transfer function representation of a single-input single-output system 

 
This coupling that is realized by means of Z(s) allows defining the following 
transfer functions: 
 

 
2

1 2 3

2
1 2 3

( ) 1
( )
( )
( )

Z s
U s b s b s b
Y s a s a s a
Z s

 (4.256) 

 
Cross multiplication in Equation (4.256), followed by application of the 
inverse Laplace transform with zero initial conditions, produce the following 
equations in the time domain: 

2
1 2 3

2
1 2 3

a s a s a
b s b s b

( )U s ( )Y s

2
1 2 3

1
b s b s b

( )U s  ( )Y s
2

1 2 3a s a s a
( )Z s

here, which is one of the most encountered cases in MEMS / NEMS. For such 
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 1 2 3

1 2 3

b z b z b z u
a z a z a z y

 (4.257) 

 
The following selection is made for state variables: 
 

 1

2

x z
x z

 (4.258) 

 
by means of which the first of the equations in Equation (4.257) and the 
combination of the two of the equations in Equation (4.258) result in a state-
form equation, namely: 
 

 1 1
3 2

2 2
1 1

0 1
0
1

x x
ub b

x x
b b

 (4.259) 

 
The second equation in Equation (4.257) together with Equation (4.258) 
produce the output equation: 
 

 11 3 1 1
3 2 1

21 2

xa b a by a a a u
xb b

 (4.260) 

 
and therefore the complete state-model is obtained from the transfer-function 
model. 
 
Example 4.26 

The transfer function corresponding to the excitation-response of a micro-

cantilever is of the form: 2

2( )
3 5 2

sG s
s s

. Determine the equivalent 

state-space model for this SISO system. 
 
Solution: 

Equation (4.259) gives the following matrix [A]: 
 

 
0 1
2 5
3 3

A  (4.261) 
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 0 2C  (4.262) 
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1
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x

 (4.263) 

 
4.3.4 Time-Stepping Schemes 
   
For single or multiple DOF systems, such as the ones analyzed thus far, it is 
convenient to use the so-called time discretization to solve (integrate) the 
dynamic equations of motion. For time discretization, the infinite time domain is 
partitioned into a finite number of time stations, separated by a time step, 
such that two consecutive time stations are connected by: 

 
 1n nt t t  (4.264) 

 
Based on this discretization, recurrence relationships have been derived 
enabling to determine the system variables at the moment tn+1 in terms of the 
known values of the system variables at the moment tn and the forcing factors. 
One method of formulating a dynamic model in the time domain uses the 
truncated Taylor series expansion of the unknown time-dependent vector. 
This methodology results in a time-stepping scheme whereby a polynomial is 
selected to approximate the nodal vector in the following form: 
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!

n nn
n n

m
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n

du d uu u t t t t
dt dt

d u t t
m dt

 (4.265) 

 
Obviously, when the values of the polynomial and of its derivatives up to the 
order m are known at the moment n, similar values of the polynomial and its 
derivatives corresponding to the moment n + 1 can be computed by means of 
the equation above. 

 

whereas Equation (4.260) gives the row vector {C} as: 

The state and output equations, which define the state space model, are therefore: 
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A time-stepping scheme needs to be consistent and stable. Consistency 
requires that the degree of the approximating polynomial is at least equal to 
the order of the differential equation modeling the system. For the dynamics 
of a structural microsystem, for instance, which is governed by a second-
order differential equation, the approximating polynomial needs to be at least 
a second-degree one. To be stable, a time-stepping scheme cannot produce a 
solution that increases indefinitely with time (diverges) or a that is oscillatory. 
Certain algorithms comply with the stability requirement when the time step 
is less than a critical value: 
 
 crt t  (4.266) 
 
Such algorithms are named conditionally stable, as contrasted to the uncon-
ditionally stable ones, which provide a stable solution independently of the 
time step.  

Time-stepping schemes, as the one described by Equation (4.265) are 
named single-step, whereby the unknowns at time n + 1, which are {d2 

un+1/dt2}, {dun+1/dt}, and {u}n+1, are expressed in terms of the same amounts 
at the previous time station, {d2 un/dt2}, {dun/dt}, and {u}n. Such algorithms 
are largely implemented in finite element software, for instance, and can be 
designed based on a constant or a variable time step to solve linear first- and 
second-order problems. Another class of algorithms for time-dependent 
dynamics problems is made up of multiple-step algorithms where the 
unknown {u}n+1 is determined as a function of {u}n, {u}n–1, …, {u}p and 
therefore the nodal vector derivatives are eliminated from the recurrence 
relationships. For nonlinear problems, special algorithms do exist, and more 
details can be found in specialized texts, such as the one by Wood [8]. The 
present text will briefly discuss single-step and nonlinear time-stepping 
schemes. 

Another criterion of classifying the time-stepping schemes regards the 
algebraic equations system, which has to be solved at each time step. Implicit 
algorithms are solving coupled equations and this process involves more 
computational resources. Explicit algorithms result in models with the 
equations describing the system response at any given time moment that are 
decoupled, such as the situation is where lumped matrix formulation is used. 
 
4.3.4.1 The Central Difference Method 

 
One very popular time-stepping scheme, the central difference method, is 
presented first. This algorithm is a single-step one, is conditionally stable and 
can be formulated both implicitly and explicitly. The base equations are the 
following ones: 
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 (4.267) 

 
When the two definition equations in Equation (4.267) are used in conjunc-
tion with the lumped-parameter element equation corresponding to the time 
moment n: 
 
 

n n n n
M u C u K u F  (4.268) 

 
the following equation can be formulated that expresses the nodal variable at 
the time moment n + 1: 
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An alternative formulation to Equation (4.269) is: 
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 (4.270) 

 
where the acceleration at moment n is: 
 
 

1 1 1

n n n n
u M C u M K u M F  (4.271) 

 
A time-stepping scheme starts based on initial conditions (at t = 0), which, 
for a second-order system, are known values of the displacement vector and 

the central difference method progresses with evaluating the nodal vector, 
together with its velocity and acceleration at the second time moment and so 
on up to a moment n. Specifically, this time progression scheme involves the 
following calculations at time n + 1 based on known values of the nodal 
vector and its first time derivative at moment n: 
 

of its first time derivative (velocity). Based on the equations presented herein, 
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(i) Find the nodal vector {u}n+1 by means of Equations (4.270) and 
(4.271). 

(ii) Find the nodal vector {u}n+2 by means of Equation (4.269) when 
using n + 1 instead of n. 

(iii) Find the first time derivative of {u}n+1 by means of the first 
Equation (4.267) when using n + 1 instead of n. 

(iv) Find the second time derivative of {u}n+1 by means of Equation 
(4.271) when using n + 1 instead of n. 

 
This algorithm is explicit only when the lumped-parameter inertia and 

damping matrices are diagonal. This assertion is demonstrated by inspection 
of the left-hand side of both Equations (4.269) and (4.270) for [M] and [C] in 
diagonal form. Consequently, the components of the nodal vector at moment 
n + 1, {u}n+1, can be determined independently, as the n algebraic equations 
are decoupled. 

As mentioned previously, the central difference algorithm is conditionally 
stable, and as Meirovitch [9] mentions, the critical time step is: 
 

 
max

2
crt  (4.272) 

 
where max is the maximum resonant frequency of the dynamic model.  
 
Example 4.27 

The proof mass of Figure 4.41 is supported by two identical folded beams 
and is electrostatically actuated and sensed in the x-direction by comb-type 
units. The driver applies a cosinusoidal force. Formulate an algorithm allowing 
evaluatation of the Couette damping between the moving plate and the above- 
and beneath-plate air. Assume the actuation frequency varies by a known 
time law. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.41 Comb-drive transduction of a proof mass supported by two identical folded beams 

folded-beam

sensing 

proof-mass 

actuation 

x 
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Solution: 
When considering damping is produced through slide-film mechanisms 

and when accounting for friction between the plate and the surrounding air, 
the total damping coefficient is found by adding the two damping contribu-
tions given in Equations (3.173) and (3.155) as: 
 

 1 0 1 0
1

1 0 1 0

sinh 2 sin 2
1

cosh 2 cos 2
z z

c A
z z

 (4.273) 

 
with μ being the dynamic viscosity coefficient, A is the plate area, 1 is given 
in Equation (3.169)—and it depends on the motion frequency , and z0 is the 
constant gap between the plate and the substrate.  

The dynamic equation of the proof mass is: 
 

 cosmx cx kx F t  (4.274) 
 
Because c depends on  through the coefficient 1, and  is variable, Equation 
(4.274) is not with constant coefficients and therefore regular methods, such 
as the transfer-function approach are not applicable. By taking into account 
that the proof mass displacements are known through electrostatic sensing, a 
time-stepping scheme that uses the displacements can be used in conjunction 
with Equation (4.274) to evaluate the damping coefficient. For a single DOF 
system, as the one of this example problem, Equation (4.267) simplifies to: 
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 (4.275) 

 
Combination of Equations (4.274) and (4.275), the latter one written for the 
n-th time station, allows expressing the damping coefficient at the same time 
instant n as: 
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2

1 1
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 (4.276) 

 
4.3.4.2 The Newmark Scheme and Nonlinear Problems  

 
By introducing a parameter  to account for various types of accelerations of 
the unknown nodal vector, Newmark [10] proposed the following single-step 
recurrence relationship: 
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A generalization of the original Newmark algorithm is presented by 
Zienkiewicz and Taylor [11] who introduced two parameters, 1 and 2, in 
the form: 
 

 

2 2

2 21 1

1 11 1

1
2 2

1

n n n n n

n n n n

t tu u t u u u

u u t u t u
 (4.278) 

 
Equations (4.278) are coupled with the dynamic equations written for the 
time stations n and n + 1, namely: 
 

 1 1 1 1n n n n

n n n n

M u C u K u F

M u C u K u F
 (4.279) 

 
By expressing the accelerations at time stations n and n + 1 from Equation 
(4.278) and substituting them into Equation (4.279), the nodal vector at time 
n + 1 can be expressed as: 
 
 

1

1 , 1n n n
u A F  (4.280) 

 
where: 
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and: 
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Frequency and Time Response  373 

 

2
1

2 1

1 2
2

2 1

1
3 2

2 1

2
1

2 1

1
2 2

2 1

2

2

1

2 1

a
t

a
t

a
t

b
t

b
t

 (4.283) 

 
Equations (4.280), (4.281), and (4.282) indicate that the Newmark algorithm, 
unlike the central difference method, is self-starting, which means that 
successive calculation of {u}n+1 only needs the initial values (at t = 0) of the 
nodal vector and of its first time derivative. 

The algorithm is unconditionally stable when: 
 
 2 1 0.5  (4.284) 
 
as indicated by Zienkiewicz and Taylor [11], for instance. When 2 = 0, the 
Newmark algorithm is explicit. It can also be shown that the Newmark 
algorithm reduces to the central difference scheme when 1 = 0.5 and 2 = 0. 

In several categories of dynamic problems involving nonlinearities of 
material type (rate-dependent, for instance), geometric type (large deformations), 
or actuation, the system matrices or/and the load vector depend on the 
displacement vector and/or the velocity vector. In other cases, the damping 
coefficients are functions of the driving frequency. In a more generic case, it 
can be assumed that all the system matrices, as well as the forcing vector 
depend on both the displacement vector and its time derivative. A collocation 
algorithm, such as the Newmark scheme, can be employed to solve a nonlinear 
problem and the steps corresponding to one time station are the following ones:  
 

(i) Find the system matrices [M({u}n, {du/dt}n)], [C({u}n, {du/dt}n)], 
[K({u}n, {du/dt}n)], and the nodal vector {F({u}n, {du/dt}n)}. 

(ii) Find the acceleration vector {d2u/dt2}n from the dynamic 
equation: 

 

The new coefficients of Equations (4.281) and (4.282) are: 



374  Chapter 4 

 
, ,

, ,

n n n n n n

n n n n n n

M u u u C u u u

K u u u F u u
 (4.285) 

 
(iii) Find the first time derivative of {u}n+1 as well as {u}n+1 by 

solving the equation system: 
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(4.286) 

 
Example 4.28 

Formulate the time-stepping algorithm that would solve the dynamics of 
the cosinusoidally excited undamped vibrations of the single DOF mass-
spring system shown in Figure 4.42 where the electric actuation force is of 
plate type. Consider a lumped-parameter model where the moving plate has a 
mass m and the spring has a stiffness k. The initial gap is g, the plate area is A 
and the air permittivity is .  
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.42 Plate-type electrostatic harmonic actuation of a single DOF mass-spring system  
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Solution: 
Considering the voltage applied between the two plates is: 

 
 cos( )e E t  (4.287) 
 
the electrostatic attraction force is: 
 

 2
22e

Af e
g x

 (4.288) 

 
By applying Newton’s second law to the single DOF lumped-parameter system 
of Figure 4.42, and by also using Equations (4.287) and (4.288), the follow-
ing equation is obtained: 
 

 
2

2
2 cos ( )

2
AEmx kx t

g x
 (4.289) 

 
which has the driving force depending on the variable x. 

The driving force at moment n can be expressed as: 
 

 
2
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n
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 (4.290) 

 
The acceleration at the same moment n is determined from the dynamic 
equation of motion, namely: 
 

 n n
n

f kxx
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 (4.291) 

 
The following equations system needs to be solved, corresponding to the 
generic model (Equation (4.286)): 
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n n n n n n
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ttx x tx x x x tx
(4.292) 

 
After that, the algorithm is repeated for the next time station, n + 1. 
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4.3.5 Approximate Methods and Nonlinear MEMS Problems 
 
Situations with relatively small nonlinearities can arise in MEMS due to large 
deformations, when the spring-type force is no longer linear, as shown next. 
It is known that nonlinear springs can be of a hardening type or of a softening 
type, as shown in Figure 4.43, where the characteristic of a linear spring is 
also included.    

 
 
 
 
 
 
 
 
 
  

Figure 4.43 Linear and nonlinear spring characteristics 
 
For a nonlinear hardening spring more force (for instance) is needed to 

obtain the same deformation when compared to a linear one, whereas less 
force from a softening spring will produce the same displacement as a linear 
spring. The nonlinear theory of vibrations (e.g., see Rao [12] or Thomson 
[13]), indicates that the free non-damped vibrations of a softening and a 
hardening spring, respectively, attached to a mass in a single DOF system are 
described by the equations: 
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 (4.293) 

 
Equations (4.293) can be rearranged in the form known as the Duffing 
oscillator’s equations, namely: 
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 (4.294) 

 
with l being the resonant frequency of the mass-linear spring system and μ 
is a small parameter. The solution to the Duffing’s oscillator will be approached 
shortly but before that, an example demonstrating that a large-deformations 
microcantilever behaves as a softening-spring nonlinear free oscillator will 
be discussed. It is well-known in mechanics of materials that the nonlinear, 
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large-deformation model of a cantilever produces tip deflections that are smaller 
than the ones predicted by the linear, small-deformation model (e.g., see Gere 
and Timoshenko [14]). 
 
Example 4.29 

Calculate the nonlinear coefficient μ corresponding to the free vibrations 
of a constant rectangular cross-section microcantilever, subjected to large 
deflections by considering it behaves according to the softening-spring 
Duffing oscillator. Express the coefficient for a tip angle of 75o. 
 
Solution:  

Figure 4.44 shows the side view of a deformed microcantilever under the 
action of a tip force. 
 
 
 
 
 
 
  

 
 
 
 
 
 
 

 
Figure 4.44 Microcantilever with tip force and large deformations 

 
Under the assumption of large deformations, the free end 1 no longer moves 
only about the z-axis, it also has a motion about the longitudinal x-axis, as 
indicated in Figure 4.44. It can be shown (e.g., see Lobontiu and Garcia [3]) 
that the elementary arc of the inset of Figure 4.44 can be computed at an 
arbitrary position defined by an angle y (not shown in the figure above) as: 
 

 
1

1
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 (4.295) 

 
The total length l of the deformed beam (which is assumed to remain 
constant) can therefore be found by integrating Equation (4.295) as: 
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Similarly, the deflection about the z-axis is calculated as: 
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 (4.297) 

 
The force F1z can be considered as the elastic force, a nonlinear one, and if it 
is further assumed this force is a nonlinear, softening-spring one, by inspection 
of the Duffing’s oscillator (the second Equation (4.294)), the parameter μ can 
be expressed as: 
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 (4.298) 

 
The calculation algorithm requires calculation of F1z from Equation (4.296) 
for a selected value of 1y, followed by calculation of the free end deflection 
u1z from Equation (4.297) and then evaluation of μ from Equation (4.298). 
The mass of Equation (4.298) is the equivalent one given in Equation (4.66) 
and the linear resonant frequency is calculated by means of it and the stiffness 
provided in Equation (4.66). For the tip angle specified in the example, it is 
obtained: 
 

 
2

60.3 Et
l

 (4.299) 

 
3

l = –6 m–2-s–2.  
Solving the nonlinear Equation (4.294) can be performed by approximate 

analytic methods (Rao [12] or Thomson [13]) such as perturbation, iteration 
or Ritz-Galerkin (finite element-type) procedures. In what follows, the iteration 
method will be used to solve the following equation, which describes the forced 
undamped response: 
 
 2 3

1 cosz l z z zu u u F t  (4.300) 
 
where the subscript 1 has been dropped from both uz and Fz.  

The iteration method presupposes taking a first approximation to the real 
solution to Equation (4.300), and using that approximation in all applicable 

200 μm, the coefficient is μ = 2.7 × 10
=  2300 kg/m ,  t = 1 μm, and For a microcantilever with E = 165 GPa, 



Frequency and Time Response  379 

terms of Equation (4.300) except the one with the second time derivative, 
which is subsequently considered the second approximation. By selecting the 
first approximate solution as: 
 
 1 cosz zu U t  (4.301) 
 
and substituting it in Equation (4.300), application of the next approximation, 
as mentioned previously leads to: 
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Equation (4.302) also took into consideration the following trigonometric 
relationship: 
 

 3 3 1cos cos cos 3
4 4

t t t  (4.303) 

 
Integration of Equation (4.302) with zero initial conditions produces: 
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By halting the approximation series at this stage, and if the two approxi-
mations, uz1 and uz2 are valid choices, they should be similar and therefore 
the term in the higher harmonic of Equation (4.304) should not be considered. 
Consequently, by comparing Equations (4.304) and (4.303), it follows that 
the coefficients of cos ( t) in the two equations should be equal; this con-
dition results in: 
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For the free response, Fz = 0 in Equation (4.305), and therefore the frequency 

 of the system’s free response varies according to: 
 

 
2

2

31
4

z
l

l

U
 (4.306) 
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Equation (4.306) indicates that the response frequency of the softening spring 
decreases with the amplitude of vibration. It can be shown that for a harden-
ing spring a plus sign should be taken in the same Equation (4.306), which 
shows the response frequency increases with the amplitude. 

When damping is also taken into consideration, the equation of the 
Duffing oscillator is: 
 

 2 3 cosz z l z z zu cu u u F t  (4.307) 
 
It is known that damping introduces a phase difference between driving and 
response. If the approximation of Equation (4.301) is to be kept, than the 
excitation force should be of the following form, as suggested by Rao [12]: 
 

 1 2cos cos sinz zf F t F t F t  (4.308) 
 
By substituting the approximation solution of Equation (4.300) together with 
the force of Equation (4.308) and the trigonometric Equation (4.304) into 
Equation (4.307), the latter equation transforms into an equation with two terms, 
one in sin( t), the other one in cos( t), when, again, the term in cos(3 t) is 
ignored. In order for that resulting equation to be identically equal to 0, the 
coefficients of the sine and of the cosine terms need to be 0, namely: 
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Equations (4.309) are now squared and then they are added up (by also 
considering that (Fz)2 = (F1)2 + (F2)2), and the following algebraic equation is 
produced: 
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1 2 z

2, as shown in 
Figure 4.45. The same figure represents the jump phenomenon, evident 
between points 2 and 5 and 3 and 6, respectively.  

From Equation (4.309) one can also obtain the phase angle as: 
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 (4.311) 

For the –  range, Equation (4.310) has three solutions U
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Figure 4.45 Jump phenomenon in a damped, harmonically driven Duffing oscillator 
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Problems 
 
Problem 4.1 

z
rectangular cross-section microcantilever. For the free end, compare the 
resulting deflection amplitude with the deflection produced by applying a 
force F statically at the same point. Consider the system has no energy losses. 
 
Problem 4.2 

A single DOF mass-dashpot translational MEMS is driven by a sinusoidal 
force. Its motion equation is of the form: 23 2 sinx ax a x b t  where 
a and b are positive real constants. Determine the system’s response x(t) for 
zero initial conditions by using the Laplace-transform approach.  
 
Problem 4.3 

By using the Laplace-transform approach, determine the frequency 

considering a cosinusoidal force is applied about the motion direction to the 
proof mass. Known are the amounts defining the excitation, the proof mass, 
the dimensions, and material properties of the two identical beams of 
constant cross-section, as well as the equivalent viscous damping ratio. The 
initial conditions are zero displacement and zero velocity. 
 
Problem 4.4 

A paddle microbridge of known geometry and material parameters is 
actuated torsionally by a cosinusoidal electrostatic torque at a frequency  = 
1.5 r (the torsion resonant frequency). Determine the amplitude of the actu-
ation torque knowing that the maximum angle of rotation of the microbridge  
 

response of the system shown in Figure 2.64 of Problem 2.14 (Chapter 2) by 

A harmonic force f  = Fcos( t) is applied at the free end of a constant 
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is max. Use a lumped-parameter model whereby inertia is provided by the 
paddle and compliance comes from the root segments. Consider the micro-
bridge vibrates in an environment with viscous damping of known damping 
ratio .  
 
Problem 4.5 

 
Problem 4.6 

A microdevice is formed of a shuttle mass and for identical beams, as 
shown in Figure 4.46. The microdevice can sense the out-of-the-plane motion 
of the mass electrostatically and is placed on a support that vibrates harmo-
nically. Determine the motion of the support from the sensed motion of the 
shuttle mass. Known are the dimensions and material properties of the constant 
cross-section beams, as well as the mass of the shuttle mass and the viscous 
damping ratio. 

 
 
 
 
 
 
 
 
 
 
  

Figure 4.46  Shuttle mass supported by four identical beam springs 
 
Problem 4.7 

Determine the steady-state response of a translational single DOF 
microdevice consisting of a rigid plate of mass m, a spring of stiffness k, and 
a damper of damping coefficient c. A force f = Fsin( t) acts on the rigid 
plate. 

 

A constant rectangular cross-section microcantilever that is placed in 
vacuum is excited harmonically into out-of-the-plane bending vibration by a 
force of known amplitude at one quarter the microcantilever’s resonant 
frequency. The motion of the free-end is sensed electrostatically. By using a 
lumped-parameter model, determine the elastic modulus E of microcantilever’s 
material, by also knowing all geometry parameters, as well as the mass density.  

The plate shown in Figure 4.47 has a mass m = 1.5 × 10–8 kg, is actuated 
electrostatically by a comb drive with a harmonic voltage e = 20 cos( t) 
Volts and is suspended elastically above the substrate by two identical 

Problem 4.8 
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Figure 4.47 Single DOF proof mass with comb drive actuation and inclined beams suspension      
 

Design a mechanical microsystem whose transfer function is of the form: 

(a) 2

a
bs cs d

 

 

(b) 2

as b
cs ds e

 

 
and identify the constants a, b, c, d, and e with physical amounts. 
 

 

Determine the lumped-parameter model of the microsystem shown in 
Figure 4.48, which consists of a shuttle mass and two folded-beam suspensions 
(the geometry of a folded beam is shown in Figure 2.23). Comb-drive actuation 
of cosinusoidal type is applied in a vacuum environment. Find the transfer 
function by considering the input is the electrostatic force and the output is 
the shuttle mass displacement. 

inclined beams. Derive the equation of motion of the plate in terms of the 
actuation frequency knowing the length of a beam is lb = 100 μm, its cross-
section is square with a side of 1 μm and the inclination angle is  = 5o. The 
gap is g = 1.5 μm, the air permittivity is  = 8.8 × 10–12 F/m, and lz = 5 μm 
(comb thickness) and E = 150 GPa. Consider there are 15 comb drive 
actuation pairs. 

Problem 4.9 

Problem 4.10 

Problem 4.11 

Determine the electrical analogues of the mechanical microsystems of 
Problem 4.9. 



384  Chapter 4 

Figure 4.48  Folded-beam microaccelerometer with comb drive actuation 

Figure 4.49  Spiral-spring microaccelerometer with comb drive actuation 

The geometry of the serpentine spring, as the two identical ones that are con-
nected to the proof mass, can be seen in Figure 2.25. 
 

 

A paddle microbridge is constructed from a material with parameters of 
uncertain values. By using a lumped-parameter model and cosinusoidal force 

Evaluate the parameter μ of the nonlinear spring force corresponding to 
large-deformation bending vibrations of a paddle microcantilever by consi-
dering its root segment is compliant and massless, whereas the paddle section 
is rigid and provides the inertia of the microsystem. Consider the free end 
deformation angle is 50o. The geometric and material parameters are: l1 = 250 
μm, l2 = 100 μm, w1 = 80 μm, w2 = 10 μm, t = 1 μm, E = 150 GPa,  = 2400 
kg/m3. 

Problem 4.12 

Problem 4.13 

Problem 4.14 

Solve Problem 4.11 for the MEMS shown in Figure 4.49. 



Frequency and Time Response  385 

Figure 4.50 Microbridge with current loop and magnetic field interaction 
 

Figure 4.51 Paddle microcantilever with current loop and external magnetic field 

Find the maximum deflection of the constant cross-section microcantilever 
shown in Figure 4.50 resulting from the interaction between the current i = I 

Known are the microbridge dimensions: length l, width w, thickness t, as well 
as Young’s modulus E, mass density , the driving frequency , and current 
amplitude I. Consider the system incurs no energy losses. 

The microdevice shown in Figure 4.51 is used to evaluate the overall 

current i = I cos( t) passing through the circular loop and the external 
magnetic field B. Knowing B, I, R, l, w, t, m, , and the amplitude Uz of the 
out-of-the-plane vibration of the paddle free end, determine the damping 
ratio that corresponds to equivalent viscous damping.  

Problem 4.15 

Problem 4.16 

excitation applied to the paddle, determine the shear modulus G and mass 
density . Known are the geometric parameters l1 = 100 μm, l2 = 200 μm, w1 
= 20 μm, w2 = 200 μm, t = 1 μm. The resonant frequency is fr = 25,000 Hz, 
the excitation frequency is  = 120,000 rad/s, and the deflection amplitude is 
Uz = 2 μm. The equivalent damping ratio is  = 0.1. 

damping ratio of the vibrating structure produced by the interaction of the 

cos( t) passing through the circular loop and the external magnetic field B. 
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Figure 4.52 Microdevice with interaction between current and external magnetic field 

The microcantilever of Figure 4.14 is used as a sensor to determine an 
external vibration y by monitoring the tip deflection. Knowing the overall  
Q-factor of the detection system Q as well as the excitation frequency , 
together with the microcantilever’s geometric and material properties, 

 

calculate the amplitude of the external vibration Y. Also known is the 
amplitude Uz. 

The microdevice of Figure 4.53 is used to gauge the floor vibrations that 
are known to be of sinusoidal nature by analyzing the frequency response. 
Evaluate the characteristics of the floor vibrations (amplitude and frequency) 
if the sensed amplitude is 2.5 μm and the phase angle is 20o. Known are also 
l = 200 μm, the beams diameter d = 1 μm, m = 10–10 kg,  = 0.6, and E = 165 
GPa.  

Problem 4.18 

Problem 4.19 

Analyze the vibration produced by the interaction between the external 
magnetic field B and the harmonic current i = I cos( t) passing through the 
circular loop shown in Figure 4.52. Considering that known are B, I, l, R (R = 
l/2), d (the diameter of the circular hinge), Jc (plate’s central mechanical 
moment of inertia), m (plate’s mass),  (operating frequency), G (shear 
modulus) and Y (yield strength), verify whether the flexures will yield under 
dynamic load. 

Problem 4.17 
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Figure 4.54 Rotating platform with microaccelerometer 

The bent-beam (see Figure 2.30) microaccelerometer sketched in Figure 
4.54 is used as a sensor being placed on a platform that rotates with an angle  

i = i cos( t). The relative rotation of the sensor is monitored electrostatically 
such that its amplitude, frequency and phase angle are known. By also 
knowing the beams dimensions, (equal-length legs of square cross-section) 
material properties, and by neglecting damping losses, evaluate the platform 
angular amplitude. 

Problem 4.20 

Figure 4.53 Three-beam microaccelerometer 
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To measure the vibrations produced by an actuator, a sensor is placed on 
the floor, as shown in Figure 4.56. Knowing all the inertia and spring char-
acteristics, as well as the excitation/sensed frequency  and the sensed ampli-
ztude X3, determine the excitation frequency F and the floor vibration amplitude 
X2. 

Figure 4.56 Microtransduction setup for monitoring floor vibration 

Problem 4.22 

 

The mechanical microfilter shown in Figure 4.55 is formed of two 
identical proof masses m, each mass being supported by two identical beams of 
length l and square cross-section with a side t. Four other beams, also identical 
with the support beams (and which form a saggital spring; see Figure 2.18) 
connect the two shuttle masses. If the input to this system is a force f  = F 
cos( t) applied on the first body, determine the output amplitude X . 

Problem 4.21 

 
Figure 4.55 Two-mass mechanical microfilter 

2
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Determine a mechanical microsystem to be analogous to the electrical 
system sketched in Figure 4.58. 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.58 Two-loop electrical system 

Problem 4.26

Propose an electrical system that is analogous to the mechanical micro-

 

Determine an electrical system analogous to the mechanical microsystem 

 

filter of Figure 4.55 in Problem 4.21. 

shown in Figure 4.56 in Problem 4.22. 

Problem 4.24 

Problem 4.25 

 

For the electrical circuit shown in Figure 4.57, determine the output voltage 
amplitude Eo when the input voltage is ei = Ei cos( t). 

Figure 4.57 Electrical circuit under harmonic voltage excitation 

Problem 4.23 

 

The MEMS of Figure 4.59 is actuated electrostatically by means of a 
comb drive that produces a cosinusoidal force fe. Consider the two proof 

Problem 4.27 

R1 

L1

e1 

R3

R2C1 

C2 

C2 

e2 
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For the microgyroscope shown in Figure 4.30, assess the external constant 
angular velocity  when a cosinusoidal driving force is used. Known are all 
physical parameters defining the microgyroscope. 
 

The microgyroscope shown in Figure 4.60 uses four identical spiral 
springs as the one defined in Figure 2.26 Evaluate the amplitude of the 
cosinusoidal driving force that is needed to achieve a prescribed sense 
amplitude for a given external angular velocity. (Hint: Use KFx-ux of Equation 

(2.41) and 2
2 1 2

3
2 9 4

z
Fy uy

EIK
l l l

(Lobontiu and Garcia [3])) 

Problem 4.29 

Problem 4.30  

in Figure 2.18, each of the four identical beams having a length of l and a 
circular cross-section of diameter d. 
 

 

(a) Find the vibration amplitudes of the two proof masses. 
(b) Determine the electrical system that is equivalent to the MEMS; 

Problem 4.28 

masses have each a mass m, and that the saggital spring is as the one defined 

Figure 4.59 Two-mass microresonator with saggital spring and comb drive excitation 

Answer the two questions of Problem 4.27 for the MEMS shown in Figure 
4.49 of Problem 4.12. 
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microfilter of Figure 4.55. The input is a force applied to the body on the left 
and the output is x2. 

Problem 4.34 

 

Compare the Y/X amplitude ratios of the two tuning forks of Figure 4.33 
when a cosinusoidal driving force is applied under external constant angular 
velocity and when a tine has a rectangular cross-section with the width w larger 
than the thickness t (the width is the dimension in the plane of the fork).  
 

Calculate the resonant frequencies of the mechanical system of Figure 4.56 
by applying the transfer function approach when considering the input is the 
force generated by the actuator and the output is the sensor displacement. 
Consider kf = 5ka = 10ks, mf = 1,000ma = 10,000ms, ks = 1 N/m and ms =  
10-10 kg. 

Problem 4.32

Problem 4.33 

For a tuning fork with out-of-the-plane cosinusoidal driving and in-plane 
sensing, as the one shown in Figure 4.33 (a), determine the driving frequency 
that will realize an amplitude ratio between the sensed and driving amplitudes 
(Y/X ) of 2 for a given external angular velocity. A tine is defined by a length l 
and has square cross-section of side t. 

Problem 4.31 

Figure 4.60 Microgyroscope with four spiral springs 
 

drive direction 

sense direction

 

m

Answer the same question of Problem 4.33 for the mechanical 
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slide-film damping defined by a coefficient c occurs between the plate and 
the substrate. 

A force f = cos( t) is generated electrostatically by using the 
micromechanism shown in Figure 4.61. Determine the time response of the 
shuttle mass in the presence of squeeze-film damping, which is defined by a 
constant damping coefficient, c.  

Problem 4.40 

Problem 4.41 

45
4)( 2 ss

ssG  

 

 

–at

Problem 4.38 

Problem 4.39 

  

Determine the state-space model, which is equivalent to the following 

 

 
1

32)( 2 ss
ssG  

Find the time response of a paddle microbridge when a force f(t) = 10-6te-at 
is applied at the middle of the paddle. Consider a lumped-parameter model 
without damping. Known are: l1 = l2 = 100 μm, w2 = 2w1 = 40 μm, t = 1 μm,  
E = 160 GPa and  = 2,300 kg/m3. 
 

Problem 4.36 

Problem 4.37 

Use the matrix formulation together with the direct and inverse Laplace 
transforms to find the time response of the two-mass MEMS of Figure 4.59 
when an electrostatic force f(t) = Fe-at (a > 0) is applied. Known are also k = 
1 N/m and  = 10-10 kg. 

Problem 4.35 

ms

Solve Problem 4.39 by using the central difference method. Consider 

Solve Problem 4.37 for the transfer function:

transfer function: 

f(t) = Fte cos( t). Consider there is no damping and find the time response
of the system by using the Newmark algorithm. 

The plate in Figure 4.48 translates due to an actuation force of the type
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Figure 4.61 Proof mass with folded springs and plate-type actuation 
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