
Chapter 4

Applications of Nonlocally Related PDE
Systems

4.1 Introduction

In Chapter 3, it was shown how one can systematically construct a set (tree)
of PDE systems nonlocally related to a given PDE system. In particular, local
conservation laws of a PDE system lead to augmented nonlocally related (po-
tential) systems that explicitly include nonlocal (potential) variables. More-
over, further nonlocally related PDE systems (nonlocally related subsystems)
arise when one or more dependent variables (including dependent variable(s)
arising after a point transformation that involves an interchange of dependent
and independent variable(s)) are excluded from a PDE system or its potential
systems, through differential relations. In Section 3.5, an algorithm for the
construction of an extended tree of nonlocally related systems was outlined.
In particular, n local conservation laws of a given PDE system lead to a tree
of up to 2n−1 nonlocally related potential systems. A tree is further extended
by considering subsystems of both the given PDE system and its nonlocally
related potential systems as well as by considering potential systems arising
from conservation laws (whose multipliers have an essential dependence on
potential variables) of its nonlocally related potential systems.

Nonlocally related systems in such extended trees are important for ap-
plications since they are constructed systematically and each solution of any
PDE system in such a tree yields a solution of any other PDE system in
the tree, including the given PDE system. More importantly, there is not
a one-to-one mapping between solutions of such nonlocally related systems.
Consequently, the usefulness of standard methods of analysis, especially co-
ordinate independent methods, can be enhanced when directly applied to
different nonlocally related PDE systems. In particular, a method of analysis
could be successful in achieving results when applied directly to a nonlocally
related system in a tree even if it is unsuccessful in achieving results when
directly applied to the given PDE system. Furthermore, from the simplicity
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of the construction of the mappings that relate PDE systems in an extended
tree, it is usually simple to transfer results achieved for a PDE system in such
a tree to other PDE systems in the tree, including the given PDE system.

Applications that naturally can arise from the use of such nonlocally re-
lated systems include:

(1) The construction of nonlocal conservation laws of a given PDE system
that arise as local conservation laws of nonlocally related PDE systems
This application was illustrated in Chapter 3 in the construction of nonlo-
cally related PDE systems arising from local conservation laws of potential
systems that in themselves arose from local conservation laws of the given
PDE system. Such local conservation laws of potential systems can yield
nonlocal conservation laws of the given PDE system, i.e., conservation laws
whose fluxes and/or densities have an essential dependence on potential vari-
ables. Furthermore, such local conservation laws of potential systems may
actually yield further local conservation laws of the given PDE system that
had not been previously determined due to lack of completeness in the direct
calculation of its local conservation laws.

(2) The construction of nonlocal symmetries of a given PDE system
In this chapter it is shown that point symmetries of a PDE system in a tree
of nonlocally related systems can systematically yield nonlocal symmetries of
a given PDE system.

A symmetry of a PDE system is defined topologically as a mapping (defor-
mation) of its solution manifold into itself. From this point of view, essentially
every PDE system has symmetries. The problem is to find such symmetries
and to find those that have applications. In particular, to find explicit sym-
metries it is necessary to calculate them in some fixed coordinate system.
Moreover, such calculations are simple to perform and the resulting symme-
tries are directly applicable if obtained through a direct application of Lie’s
algorithm, which yields only local symmetries of a PDE system. The infinites-
imals of local symmetries depend at most on a finite number of derivatives of
the dependent variables of the PDE system. However, such local symmetries
constitute at most a small subset of the total set of symmetries of a PDE
system.

In this chapter, it is shown that additional (nonlocal) symmetries of a
given PDE system can be found by a direct application of Lie’s algorithm to
PDE systems in a tree of nonlocally related systems. For the computation of
such nonlocal symmetries, it turns out that both nonlocally related potential
systems and subsystems can separately yield new symmetries (contrary to the
situation in the computation of nonlocal conservation laws, where all local
conservation laws of a subsystem are included in the local conservation laws
of a PDE system yielding the subsystem).
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A point symmetry of a potential system yields a nonlocal symmetry of a
given PDE system if at least one of its infinitesimal generator components
for the dependent and independent variables of the given PDE system has an
essential dependence on a potential (nonlocal) variable. On the other hand,
in the case of a nonlocally related subsystem, in order to isolate a nonlocal
symmetry of the given PDE system that arises from a point symmetry of the
subsystem, one has to compare the local symmetries of both the given PDE
system and the nonlocally related subsystem to determine whether a point
symmetry of the subsystem yields a nonlocal symmetry of the given PDE
system.

For a given PDE system that includes arbitrary constitutive functions
and/or parameters, one is interested in the classification of its local and non-
local symmetries with respect to such functions and/or parameters. In order
to do this, one can classify the local symmetries (with respect to such func-
tions and/or parameters) of PDE systems in a tree of nonlocally related sys-
tems constructed for a given PDE system. In this chapter, nonlinear diffusion
equations, nonlinear wave equations and the equations of planar gas dynamics
are considered as illustrative examples for such classifications. Comparisons
are made of the point symmetries of various nonlocally related PDE systems
in their respective trees to determine the point symmetries yielding nonlocal
symmetries of particular systems in trees.

(3) The construction of solutions of a given PDE system that arise from
symmetry reductions due to nonlocal symmetries but do not arise as invariant
solutions from symmetry reductions due to point symmetries
For a given PDE system, an important application of nonlocal symmetries
that arise from point symmetries of a nonlocally related system in a tree
results from the construction of the corresponding invariant solutions of the
nonlocally related system. In particular, such solutions are especially inter-
esting when the corresponding solutions of the given PDE system are not
invariant solutions that can be constructed from the point symmetries of the
given PDE system. This application is considered in the next chapter [Section
5.2.3].

In Section 5.2.3, such solutions are constructed for the linear wave equation
with a variable wave speed c(x). It is shown that a potential system of such
a linear wave equation has point symmetries that are nonlocal symmetries
of the linear wave equation for an interesting special form of the constitu-
tive function c(x) corresponding to wave propagation in two-layered media
with smooth transitions. These symmetries yield a countable infinite set of
invariant solutions for initial value problems. Moreover, this set of solutions
is complete and can be used to obtain Fourier series solutions for initial value
problems with arbitrary piecewise smooth data in the infinite space domain.
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A second example yields physical solutions for the Lagrange system of the
planar gas dynamics equations that arise as invariant solutions obtained from
nonlocal symmetries that are point symmetries of nonlocally related systems.

(4) The construction of non-invertible mappings relating PDEs
In Chapter 2, two important mapping problems were considered systemati-
cally: the invertible mapping of a given nonlinear PDE system to some linear
PDE system (in terms of the point/contact symmetries or local conservation
law multipliers of the nonlinear PDE system) and the invertible mapping of a
given linear PDE with variable coefficients to a linear PDE with constant co-
efficients (in terms of the point symmetries of abelian type of the linear PDE
with variable coefficients). Here these results are extended systematically to
include non-invertible mappings.

Firstly, if a nonlocally related PDE system in a tree can be linearized by a
point transformation whereas the given PDE system cannot be linearized by
a point (contact) transformation, then one obtains a non-invertible mapping
of the given PDE system to some linear system. Such non-invertible map-
pings arise from computing the point symmetries or local conservation law
multipliers of a nonlocally related PDE system.

Secondly, suppose a given linear PDE system with variable coefficients
cannot be mapped invertibly to a linear PDE system with constant coeffi-
cients. It turns out that for any given linear PDE system, it is straightforward
to construct an infinite number of potential systems since any solution of the
adjoint system of a given linear PDE system yields a set of conservation law
multipliers. If one of the corresponding potential systems can be invertibly
mapped into a constant coefficient linear PDE system, then as a consequence
the given linear PDE is mapped non-invertibly to a constant coefficient lin-
ear PDE system. Such non-invertible mappings are constructed for linear
parabolic equations with variable coefficients and lead to a significant exten-
sion of the classes of linear parabolic equations that can be mapped into the
heat equation beyond those found in Section 2.5.1.

The results presented in this chapter have appeared in Bluman & Kumei
[(1987), (1988), (1989)], Akhatov, Gazizov & Ibragimov (1991), Ames, Lohner
& Adams (1981), Bluman & Cheviakov (2007), Kingston & Sophocleous
(2001), Bluman, Temuerchaolu & Sahadevan (2005), Bluman, Cheviakov &
Ivanova (2006), and Bluman & Shtelen [(1996a), (2004)].

4.2 Nonlocal Symmetries

Local symmetries of a nonlocally related system can yield explicit symmetries
(nonlocal symmetries) of a given system of PDEs that do not arise as local
symmetries by a direct application of Lie’s algorithm to the given system. In
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particular, such nonlocal symmetries arise as local symmetries of nonlocally
related systems with infinitesimal generators having an essential dependence
on nonlocal potential variables in the case of nonlocally related systems that
are not subsystems. It is shown that this significantly enhances the applica-
bility of symmetry methods.

A symmetry of a system of differential equations is defined topologically
as any transformation of its solution manifold into itself. Hence, symmetry
transformations are not restricted to local transformations arising from in-
finitesimal generators whose coefficients are functions of the given system’s
independent and dependent variables and their derivatives to some finite or-
der. Through many examples, it is demonstrated that local symmetries do not
include all calculable (as well as useful) symmetries of a given PDE system.

Suppose a system of PDEs R{x, t ; u} has a potential system (k-plet)
S{x, t ;u, v} that is invariant under the one-parameter (ε) Lie group of point
transformations

x∗ = x + εξS(x, t, u, v) + O(ε2),

t∗ = t + ετS(x, t, u, v) + O(ε2),

u∗ = u + εηS(x, t, u, v) + O(ε2),

v∗ = v + εζS(x, t, u, v) + O(ε2),

(4.1)

with corresponding infinitesimal generator

X = ξi
S(x, t, u, v)

∂

∂xi
+ ηµ

S(x, t, u, v)
∂

∂uµ
+ ζp

S(x, t, u, v)
∂

∂vp
; (4.2)

ξi
S , i = 1, 2, are the infinitesimals corresponding to the independent variables

(x1, x2) = (x, t), ηµ
S are the infinitesimals corresponding to the dependent

variables uµ of R{x, t ; u}, µ = 1, . . . ,m, and ζp
S are the infinitesimals cor-

responding to the potential variables vp, p = 1, . . . , k of the k-plet potential
system S{x, t ; u, v}.

The point symmetry (4.1) maps any solution of S{x, t ;u, v} to a solution of
S{x, t ;u, v}, and hence through projection, induces a mapping of any solution
of R{x, t ; u} to a solution of R{x, t ;u}. Thus (4.1) yields a symmetry of
R{x, t ; u}. However, if the infinitesimals (ξS(x, t, u, v), ηS(x, t, u, v)) do not
depend explicitly on the nonlocal potential variables v, i.e.,

∂ξi
S

∂v
≡ 0,

∂ηµ
S

∂v
≡ 0, i = 1, 2; µ = 1, . . . , m, (4.3)

then (4.1) only yields a point symmetry of R{x, t ; u}, in terms of the in-
finitesimal generator given by

X = ξi
S(x, t, u)

∂

∂xi
+ ηµ

S(x, t, u)
∂

∂uµ
. (4.4)
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On the other hand, if the infinitesimals (ξS(x, t, u, v), ηS(x, t, u, v)) have an
essential dependence on v, then the point symmetry (4.1) defines a nonlocal
symmetry of R{x, t ; u}, since the potential variables v are nonlocal variables.
This leads to the following definition and the proof of the subsequent theorem.

Definition 4.2.1. The point symmetry (4.1) of the potential system S{x, t;
u, v} defines a potential symmetry of a PDE system R{x, t ; u} if and only
if the infinitesimals (ξS(x, t, u, v), τS(x, t, u, v), ηS(x, t, u, v)) depend explicitly
on one or more components of v.

Theorem 4.2.1. A potential symmetry of R{x, t ;u} is a nonlocal symmetry
of R{x, t ; u}.

Nonlocal symmetries of PDE systems can arise as potential symmetries
(i.e., point symmetries of singlet or k-plet potential systems), as well as sym-
metries of nonlocally related subsystems, as discussed below. Related to this,
it is important to note that a local symmetry of R{x, t ; u} could yield a non-
local symmetry of S{x, t ; u, v}. [By construction, R{x, t ;u} is an obvious
nonlocally related subsystem of S{x, t ; u, v}.]

Suppose R{x, t ;u} is a given PDE system with m dependent variables, and
R{x, t ; uµ1 , . . . , uµm−p} is a subsystem with m− p dependent variables that
is obtained by excluding p dependent variables uα in R{x, t ;u}. Consider
the problem of comparing the local symmetries of R{x, t ; u} with those of
its subsystem R{x, t ; uµ1 , . . . , uµm−p}.

If the subsystem R{x, t ; uµ1 , . . . , uµm−p} is locally related to R{x, t ; u}
(in the sense of Theorem 3.2.2), then there is a one-to-one correspondence
between solutions of the two systems. Consequently, the following theorem
holds.

Theorem 4.2.2. A local symmetry of a locally related subsystem R{x, t ;
uµ1 , . . . , uµm−p}of a PDE system R{x, t ; u} is a projection of some corre-
sponding local symmetry of R{x, t ; u} onto the space of variables of R{x, t ;
uµ1 , . . . , uµm−p}.

Note that a point symmetry of a PDE system R{x, t ;u} could project
onto a point or contact (or, more generally, higher-order (local)) symmetry
of a locally related subsystem R{x, t ; uµ1 , . . . , uµm−p}.

The situation is different for a nonlocally related subsystem. Here, there
is not a one-to-one correspondence between the solutions of a given PDE
system and a nonlocally related subsystem. In particular, numerous ex-
amples exist where a local symmetry X of a nonlocally related subsys-
tem R{x, t ; uµ1 , . . . , uµm−p} does not correspond to any local symmetry of
R{x, t ; u}, and conversely, a local symmetry Y of R{x, t ; u} does not cor-
respond to a local symmetry of R{x, t ; uµ1 , . . . , uµm−p}. For the rest of this
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chapter we only consider point symmetries of PDE systems. Correspond-
ingly, one can modify the statements in this paragraph through replacing
“local symmetry” by “point symmetry”.

Summarizing the above discussion, one can isolate three different types of
nonlocal symmetries that can be sought for a given PDE system R{x, t ; u}.

1. Nonlocal symmetries arising from point symmetry analysis of nonlo-
cally related subsystems of R{x, t ; u} obtained by excluding one or
more of its dependent variables. [Recall that such nonlocally related
subsystems could also arise through exclusion of a dependent variable
that arises after an interchange of one or more independent and de-
pendent variables of R{x, t ;u}.]

2. Nonlocal symmetries (potential symmetries) that arise as point sym-
metries of potential systems (including k-plet potential systems) of
R{x, t ; u}.

3. Nonlocal symmetries that arise as point symmetries of nonlocally re-
lated subsystems of potential systems of R{x, t ; u}.

More generally, such nonlocal symmetries of R{x, t ; u} can arise from seeking
local symmetries of any PDE system in an extended tree of nonlocally related
systems that includes R{x, t ; u}.

Among all such nonlocal symmetries of a PDE system R{x, t ; u}, the
ones that explicitly involve nonlocal variables (Type 2 and, in part, Type 3)
are easier to distinguish. In the case of finding Type 1 (and the remaining
ones of Type 3) nonlocal symmetries of a PDE system R{x, t ; u}, in order
to isolate nonlocal symmetries arising from a subsystem whose infinitesimal
components for (x, t, u) do not involve nonlocal variables, one must find all
point symmetries of R{x, t ;u}, and then see if a point symmetry of a consid-
ered nonlocally related system is included in the complete point symmetry
analysis of R{x, t ;u}.

It often turns out, as is illustrated by several examples, that a given sys-
tem R{x, t ;u} with an arbitrary constitutive function(s) can have nonlocal
symmetries for special forms of the constitutive function(s), arising as point
symmetries of one or more systems in an extended tree of nonlocally related
systems.

4.2.1 Nonlocal symmetries of a nonlinear diffusion
equation

As a first example, consider a symmetry classification problem for the non-
linear diffusion equation U{x, t ; u} given by
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ut − (K(u)ux)x = 0, (4.5)

with an arbitrary constitutive function K(u) = L′(u) [Bluman & Kumei
(1989); Akhatov, Gazizov & Ibragimov (1991)]. All computations below are
presented modulo the group of equivalence transformations of the class of
PDEs (4.5), given by

t̃ = a4t + a1, x̃ = a5x + a2, ũ = a6u + a3,

K̃(ũ) =
a2
5

a4
K(u), L̃(ũ) =

a2
5a6

a4
K(u) + a7,

(4.6)

where a1, . . . , a7 are arbitrary constants with a4a5a6 6= 0.
An extended tree T4 of nonlocally related PDE systems for the nonlin-

ear diffusion equation U{x, t ; u} (4.5), holding for an arbitrary K(u), was
constructed in Section 3.5.2, and shown in Figure 3.3. This tree contains
nine nonlocally related PDE systems that have equivalence transformations
similar to those in (4.6) [Exercise 4.2.1]. It is also important to note that
some of the systems within the tree T4, namely, UVA{x, t ; u, v, α} (3.73),
UV{x, t ; u, v} (3.19), V{u, t ; v} (3.22), X{u, v ; x} [Exercise 3.3.3] have an
additional (projective) equivalence transformation

t̃ = t, x̃ = x− bv, ũ =
u

1− bu
, K̃(ũ) = (1 + bũ)−2K

(
ũ

1 + bũ

)
,

L̃(ũ) = L

(
ũ

1 + bũ

)
;

(4.7)

whereas the remaining nonlocally related systems, UA{x, t ;u, α} (3.73),
U{x, t ; u} (4.5), and A{x, u ;α} (3.38) do not have the equivalence trans-
formation (4.7). [It is a nonlocal transformation of these systems!]

Before seeking nonlocal symmetries of U{x, t ; u} (4.5), we present its point
symmetry classification [Table 4.1] [Ovsiannikov (1959)]. One can show that
no contact symmetries arise for any form of K(u).

Table 4.1 Local (point) symmetries of the nonlinear diffusion equation U{x, t ; u}
(4.5)

K(u) # Point Symmetries

Arbitrary 3 X1 = ∂
∂x

, X2 = ∂
∂t

, X3 = x ∂
∂x

+ 2t ∂
∂t

.

uν 4 X1, X2, X3, X4 = x ∂
∂x

+ 2
ν

u ∂
∂u

.

eu 4 X1, X2, X3, X5 = x ∂
∂x

+ 2 ∂
∂u

.

u−4/3 5 X1, X2, X3, X4

(
ν = −4

3

)
, X6 = x2 ∂

∂x
− 3xu ∂

∂u
.
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In principle, nonlocal symmetries of the nonlinear diffusion equation
U{x, t ; u} (4.5) can arise from any nonlocally related system within the tree
T4 given by (3.75). In Table 4.2, we present the point symmetry classification
of the two singlet potential systems UV{x, t ; u, v} (3.19) and UA{x, t ;u, α}
(3.32).

In comparison with Table 4.1, it is obvious that the point symmetry clas-
sification of the singlet potential system UA{x, t ; u, α} (3.32) yields no non-
local symmetries of the nonlinear diffusion equation U{x, t ; u} (4.5). On the
other hand, the point symmetry classification of the singlet potential system
UV{x, t ; u, v} (3.19) yields potential symmetries of U{x, t ;u}.

In particular, when K(u) = u−2, the system UV{x, t ;u, v} has an infi-
nite number of point symmetries that lead to the linearization of the sys-
tem UV{x, t ;u, v} by a point transformation [Section 2.4]; when K(u) =
eλ tan−1 u/(u2 + 1) (corresponding to L(u) = λ−1eλ tan−1 u), the system UV{x,
t ; u, v} has the point symmetry Y9 that is obviously a nonlocal symmetry of
the nonlinear diffusion equation U{x, t ; u}.

For all other distinguished cases, the point symmetry classification of
UV{x, t ; u, v} (3.19) is greatly simplified through use of the equivalence
transformation (4.7). This readily leads to an additional point symmetry
of UV{x, t ;u, v} for

K(u) = uν(1 + bu)−(ν+2), K(u) =
1

(1 + bu)2
eu/(1+bu),

and for

K(u) =
1

u2 + (1 + bu)2
exp

(
λ tan−1 u

1 + bu

)
.

These additional point symmetries of UV{x, t ;u, v} are obviously nonlocal
symmetries of U{x, t ;u}. Note that since K̃(ũ) = ũ−2 when K(u) = u−2, no
additional symmetries arise in the linearization case. The symmetry classifi-
cation of system UV{x, t ; u, v} first appeared in a different form in Bluman,
Kumei & Reid (1988). This paper did not make use of the important simpli-
fying equivalence transformation (4.7).

The symmetry classification of the couplet potential system UVA{x, t;
u, v, α} (3.73) is presented in Table 4.3.

Compared to the situation for the singlet potential system UV{x, t ; u, v}
(3.19), the couplet UVA{x, t ; u, v, α} (3.73) contains three additional dis-
tinguished cases: K(u) = u−2/3, K(u) = u−4/3(1 + bu)−2/3, and K(u) =
u−2/3(1 + bu)−4/3, with the respective point symmetries Z9, Z15 and Z16,
which are nonlocal symmetries of all other PDE systems in the tree.

One can show that the point symmetry classification of each of the
three remaining nonlocally related subsystems A{x, u ;α}, V{u, t ; v} and
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Table 4.2 Point symmetries of singlet potential systems of the nonlinear diffusion
equation (4.5)

K(u) UV{x, t ; u, v} UA{x, t ; u, α}
# Point Symmetries # Point Symmetries

Arbitrary 4 Y1 = X1, Y2 = X2, 3 Ŷ1 = X2,

Y3 = X3 + v ∂
∂v

, Y4 = ∂
∂v

. Ŷ2 = X3 + 2α ∂
∂α

,

Ŷ3 = ∂
∂α

.

uν 5 Y1, Y2, Y3, Y4, 4 Ŷ1, Ŷ2, Ŷ3, Ŷ4 = X4

Y5 = X4 +
(
1 + 2

ν

)
v ∂

∂v
. +2

(
1 + 1

ν

)
α ∂

∂α
.

eu 5 Y1, Y2, Y3, Y4, 4 Ŷ1, Ŷ2, Ŷ3, Ŷ5 = X5

Y6 = X5 + (2x + v) ∂
∂v

. +
(
x2 + 2α

)
∂

∂α
.

u−4/3 5 Y1, Y2, Y3, Y4, Y5 (ν = −4/3). 5 Ŷ1, Ŷ2, Ŷ3, Ŷ4,

Ŷ6 = X6.

u−2 ∞ Y1, Y2, Y3, Y4, Y5 (ν = −2), 4 Ŷ1, Ŷ2, Ŷ3, Ŷ4.

Y7 = −xv ∂
∂x

+ (xu + v)u ∂
∂u

+ 2t ∂
∂v

,

Y8 = −x(2t + v2) ∂
∂x

+ 4t2 ∂
∂t

+u(6t + 2xuv + v2) ∂
∂u

+ 4tv ∂
∂v

,

Y∞ = F 1(v, t) ∂
∂x

− u2F 2(v, t) ∂
∂u

,

(F 1(v, t), F 2(v, t)) is an arbitrary

solution of the linear system

F 1
t = F 2

v , F 1
v = F 2.

(u2 + 1)−1 5 Y1, Y2, Y3, Y4, 3 Ŷ1, Ŷ2, Ŷ3.

×eλ tan−1 u Y9 = v ∂
∂x

+ λt ∂
∂t

−(u2 + 1) ∂
∂u

− x ∂
∂v

.

uν(1 + bu)−(ν+2) 5 Y1, Y2, Y3, Y4, 3 Ŷ1, Ŷ2, Ŷ3.

Y10 = bv ∂
∂x

+ νt ∂
∂t

−(1 + bu)u ∂
∂u

− v ∂
∂v

.

(1 + bu)−2 5 Y1, Y2, Y3, Y4, 3 Ŷ1, Ŷ2, Ŷ3.

×eu/(1+bu) Y11 = b(2x + bv) ∂
∂x

+(1 + 2b)t ∂
∂t

−(1 + bu)2 ∂
∂u

− x ∂
∂v

.

(u2 + (1 + bu)2)−1 5 Y1, Y2, Y3, Y4, 3 Ŷ1, Ŷ2, Ŷ3.

× exp
(
λ Y12 = (2bx + (b2 + 1)v) ∂

∂x

× tan−1 u
1+bu

)
+(λ + 2b)t ∂

∂t

−((1 + bu)2 + u2) ∂
∂u

− x ∂
∂v

.
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Table 4.3 Symmetries of the couplet potential system UVA{x, t ; u, v, α} (3.73) of
the nonlinear diffusion equation (4.5)

K(u) # Point Symmetries

Arbitrary 5 Z1 = X1 + v ∂
∂α

, Z2 = X2, Z3 = Ŷ3, Z4 = Y4,

Z5 = X3 + v ∂
∂v

+ 2α ∂
∂α

.

uν 6 Z1, Z2, Z3, Z4, Z5, Z6 = X4 +
(
1 + 2

ν

)
v ∂

∂v
+ 2

(
1 + 1

ν

)
α ∂

∂α
.

eu 6 Z1, Z2, Z3, Z4, Z5, Z7 = X5 + (2x + v) ∂
∂v

+
(
x2 + 2α

)
∂

∂α
.

u−4/3 7 Z1, Z2, Z3, Z4, Z5, Z6 (ν = −4/3), Z8 = X6 − α ∂
∂v

.

u−2/3 7 Z1, Z2, Z3, Z4, Z5, Z6 (ν = −2/3),

Z9 = (xv − α) ∂
∂x

− 3uv ∂
∂u

− v2 ∂
∂v
− vα ∂

∂α
.

u−2 ∞ Z1, Z2, Z3, Z4, Z5, Z6 (ν = −2),

Z10 = −(xv + α) ∂
∂x

+ (2xu + v)u ∂
∂u

+ 2t ∂
∂v
− vα ∂

∂α
,

Z11 = −(6xt + xv2 + 2va) ∂
∂x

+ 4t2 ∂
∂t

+u(10t + 2u(2xv + a) + v2) ∂
∂u

+ 4tv ∂
∂v
− (2t + v2)α ∂

∂α
,

Z∞ = F 1(v, t) ∂
∂x

− u2F 2(v, t) ∂
∂u

+ F 3(v, t) ∂
∂α

,

(F 1(v, t), F 2(v, t), F 3(v, t)) is an arbitrary solution

of the linear system F 3
v = F 1, F 3

t = F2, F 1
v = F2.

(u2 + 1)−1eλ tan−1 u 6 Z1, Z2, Z3, Z4, Z5, Z12 = Y9 + v2−x2

2
∂

∂α
.

uν(1 + bu)−(ν+2) 6 Z1, Z2, Z3, Z4, Z5,

Z13 = bv ∂
∂x

+ νt ∂
∂t
− (1 + bu)u ∂

∂u
− v ∂

∂v
+ ( bv2

2 − α) ∂
∂α

.

(1 + bu)−2 6 Z1, Z2, Z3, Z4, Z5,

×eu/(1+bu) Z14 = b(2x + bv) ∂
∂x

+ (1 + 2b)t ∂
∂t
− (1 + bu)2 ∂

∂u

−x ∂
∂v

+ ( b2v2−x2

2 + 2bα) ∂
∂α

.

u−4/3(1 + bu)−2/3 7 Z1, Z2, Z3, Z4, Z5, Z13 (ν = −4/3),

Z15 = (3b2v2 + 2b(2xv + α) + 2x2) ∂
∂x

−6(x + bv)(1 + bu)u ∂
∂u

− (bv2 + 2α) ∂
∂v

+ (b2v+2bα)v ∂
∂α

.

u−2/3(1 + bu)−4/3 7 Z1, Z2, Z3, Z4, Z5, Z13 (ν = −2/3),

Z16 = (3bv2 + 2(xv − α)) ∂
∂x

− 6(1 + bu)uv ∂
∂u

−2v2 ∂
∂v

+ (bv2 − 2α)v ∂
∂α

.

1

u2 + (1 + bu)2
× 6 Z1, Z2, Z3, Z4, Z5, Z17 = (2bx + (b2 + 1)v) ∂

∂x
+ (λ + 2b)t ∂

∂t

exp
(
λ tan−1 u

1+bu

)
− ((1 + bu)2 + u2) ∂

∂u
− x ∂

∂v
+ ( (b2+1)v2−x2

2 + 2bα) ∂
∂α

.
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X{u, v ; x} yields no new nonlocal symmetries of the nonlinear diffusion equa-
tion U{x, t ;u} [Exercise 4.2.1].

Thus in this particular example, the point symmetry classification of the
“grand” couplet potential system UVA{x, t ; u, v, α} yields all point symme-
tries of each of the other PDE systems in the tree T4.

4.2.2 Nonlocal symmetries of a nonlinear wave
equation

As a second example, consider a symmetry classification problem for the
nonlinear wave equation U{x, t ; u} given by

utt = (c2(u)ux)x, (4.8)

with an arbitrary constitutive function c(u) [Ames, Lohner & Adams (1981);
Bluman & Kumei [(1987), (1988)]; Bluman & Cheviakov (2007)].

The group of equivalence transformations of U{x, t ; u} (4.8) is given by

x̃ = a1x + a4, t̃ = a2t + a5, ũ = a3u + a6, c̃(ũ) = a1a
−1
2 c(u), (4.9)

where a1, . . . , a6 are arbitrary constants with a1a2a3 6= 0. The point sym-
metry classification of the nonlinear wave equation U{x, t ; u} (4.8) [Ames,
Lohner & Adams (1981)] is presented in Table 4.4 (modulo the equivalence
transformations (4.9)).

Table 4.4 Point symmetries of the nonlinear wave equation U{x, t ; u} (4.8)

c(u) # Point Symmetries

Arbitrary 3 X1 = t ∂
∂t

+ x ∂
∂x

, X2 = ∂
∂t

, X3 = ∂
∂x

.

uν 4 X1, X2, X3, X4 = νx ∂
∂x

+ u ∂
∂u

.

eu 4 X1, X2, X3, X5 = x ∂
∂x

+ ∂
∂u

.

u−2 5 X1, X2, X3, X4 (ν = −2), X6 = t2 ∂
∂t

+ tu ∂
∂u

.

u−2/3 5 X1, X2, X3, X4 (ν = −2/3), X7 = x2 ∂
∂x

− 3xu ∂
∂u

.

An extended tree Td of nonlocally related PDE systems for the nonlinear
wave equation U{x, t ; u} (4.8), holding for an arbitrary wave speed c(u), was
constructed in Section 3.5.3, and exhibited in Figure 3.4.

We now classify nonlocal symmetries of the nonlinear wave equation
U{x, t ; u} (4.8) arising as point symmetries of any of the seven singlet poten-
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tial systems UA{x, t ;u, α}, UB{x, t ;u, β}, UV{x, t ; u, v}, UW{x, t ; u,w},
TP{u, v ; t, p}, TQ{u, v ; t, q} and TR{u, v ; t, r} given by (3.81)–(3.84) and
(3.92)–(3.94), respectively, or as point symmetries of the two nonlocally re-
lated subsystems X{u, v ;x} (3.86) and T{u, v ; t} (3.87) [Bluman & Chevi-
akov (2007); references therein].

In Tables 4.5a,b, for each of the nine above-mentioned nonlocally related
systems, the situations are summarized where nonlocal symmetries arise for
the nonlinear wave equation U{x, t ; u} (4.8) from point symmetries of any
of these nine systems. The results are given modulo the equivalence transfor-
mations (4.9).

Table 4.5 (a) Cases for which nonlocal symmetries of the nonlinear wave equation
U{x, t ; u} (4.8) arise

System Poten- Condition on c(u) Symmetries; Remarks
tial(s)

UA (3.83) α No special cases Nonlocal symmetries
do not arise.

UB (3.84) β c(u) = u−2/3 Linearizable by a
point transformation.

F ′′(u)
(F ′(u))2 = 4F (u)+C1

(F (u)+C2)2+C3
, One nonlocal symme-

try.
(F (u) =

∫
c2(u)du, C1, C2, C3 = const)

UV (3.81) v Arbitrary Infinite number of
nonlocal symmetries;
there exists an in-
vertible mapping to
linear system XT
(3.85) (hodograph
transformation).

[
c′(u)
c3(u)

(
c(u)
c′(u)

)′′]′
= 0 One or two additional

nonlocal symmetries.

UW (3.82) w c(u) = (u + B)−2 Linearizable by a
point transformation.

c′(u)
c(u) = −2u+C1

u2+C2
(C1, C2 = const) One nonlocal symme-

try.

The nonlocal symmetries for the cases listed in Tables 4.5a,b arise as fol-
lows.

(1) The potential system UB{x, t ;u, β}
The potential system UB{x, t ; u, β} (3.84), i.e.,
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Table 4.5 (b) Cases for which nonlocal symmetries of the nonlinear wave equation
U{x, t ; u} (4.8) arise

System Poten- Condition on c(u) Symmetries; Remarks
tial(s)

TP (3.92) v, p −(2uc2+u2cc′)c′′′+2u2c(c′′)2

c3(uc′+2c)2 One or two nonlocal
symmetries.

+−(4c2+u2(c′)2−8ucc′)c′′+6(c′)2(c−uc′)
c3(uc′+2c)2

= λ2, λ = const

c(u) = u−2 Infinite number of
nonlocal symmetries;
there exists a point
mapping to a linear
system with constant
coefficients.

TQ (3.93) v, q c(u) = u−2/3; c(u) = u−2 Two nonlocal symme-
tries.

TR (3.94) v, r ucc′′+c′(c−uc′)
(uc′+2c)2 = γ2 = const Two nonlocal symme-

tries.

X (3.86) v (−2cc′′+5(c′)2)c2c′′′′+3c3(c′′′)2+16c2(c′′)3

c3(2cc′′−5(c′)2)2 One or two nonlocal
symmetries.

+−24c2c′′′c′′c′+12c(c′c′′)2−10(c′)4c′′

c3(2cc′′−5(c′)2)2

= σ2, σ = const

T (3.87) v (α ′ + Hα) ′ = σ2αc2(u), σ = const. One or two nonlocal
symmetries.

(H = c′(u)/c(u), α2 = (H2 − 2H′)−1)

c(u) = u−2 Infinite number of
nonlocal symmetries;
there exists an in-
vertible mapping to
a linear system with
constant coefficients.

βx = xut,

βt = xc2(u)ux −
∫

c2(u)du,

has the group of equivalence transformations

x̃ = a1x, t̃ = a2t + a4, ũ = a3u + a5,

b̃ = a2
1a
−1
2 a3b− a2a7t + a6, F̃ (ũ) = a2

1a
−2
2 a3F (u) + a7,

(4.10)

where F (u) =
∫

c2(u)du; a1, . . . , a7 are arbitrary constants with a1a2a3 6= 0.
For an arbitrary wave speed c(u), the system UB{x, t ; u, β} has three

point symmetries given by
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Y1 =
∂

∂t
, Y2 =

∂

∂β
, Y3 = x

∂

∂x
+ t

∂

∂t
+ β

∂

∂β
.

These point symmetries project onto point symmetries of the nonlinear wave
equation U{x, t ; u} (4.8).

If the wave speed c(u) satisfies the ODE

F ′′(u)
(F ′(u))2

=
4F (u) + C1

(F (u) + C2)2 + C3
, (4.11)

where F (u) =
∫

c2(u)du and C1, C2, C3 are arbitrary constants, then the
system UB{x, t ;u, β} has an additional point symmetry

Y4 =
(
F (u) + 1

2C1

)
x

∂

∂x
+ β

∂

∂t
+

(F (u) + C2)2 + C3

F ′(u)
∂

∂u

+
(
2C2β − (C2

2 + C3)t
) ∂

∂β
,

which is a nonlocal symmetry of the nonlinear wave equation U{x, t ; u} (4.8).
For c(u) = u−2/3, the potential system UB{x, t ;u, β} has an infinite num-

ber of point symmetries that lead to the linearization of the potential system
UB{x, t ; u, β} by a point transformation, and thus a linearization of the non-
linear wave equation U{x, t ;u} (4.8) by a nonlocal transformation [Exercise
4.2.3].

(2) The potential system UV{x, t ; u, v}
The potential system UV{x, t ; u, v} (3.81), i.e.,

vx = ut,

vt = c2(u)ux,

has the group of equivalence transformations

x̃ = a1x + a4v + a5, t̃ = a2t + a−1
1 a2a4u + a6,

ũ = a3u + a7t + a8, ṽ = a1a
−1
2 a3v + a1a

−1
2 a7x + a9,

c̃(ũ) = a1a
−1
2 c(u),

(4.12)

where a1, . . . , a9 are arbitrary constants with a1a2a3 6= 0.
The nonlinear PDE system UV{x, t ; u, v} is locally related to the lin-

ear PDE system XT{u, v ; x, t} (3.85) through an interchange of depen-
dent and independent variables in terms of the hodograph transformation
x = x(u, v), t = t(u, v). Hence these two systems have the same point sym-
metries. In particular, the infinite number of point symmetries of the PDE
system XT{u, v ;x, t}, due to its linearity, yields an infinite number of non-
local symmetries of the nonlinear wave equation U{x, t ; u}.



260 4 Applications of Nonlocally Related PDE Systems

The point symmetries of the PDE system UV{x, t ; u, v} are summarized
in Table 4.6.

For an arbitrary wave speed c(u), in addition to the infinite number of
point symmetries arising from the linearity of XT{u, v ; x, t}, the system
UV{x, t ; u, v} has four additional point symmetries that project onto the
three point symmetries of the nonlinear wave equation U{x, t ;u} (4.8) [Table
4.4]. Further point symmetries arise when c(u) satisfies the ODE

c′(u)
c3(u)

(
c(u)
c′(u)

)′′
= λ2 = const. (4.13)

For several classes of wave speeds c(u) satisfying (4.13), these point symme-
tries yield nonlocal symmetries of U{x, t ; u}.

Table 4.6 Point symmetries of the potential system UV{x, t ; u, v} of the nonlinear
wave equation U{x, t ; u} (4.8)

c(u) # Point Symmetries

Arbitrary ∞ Infinite number of point symmetries following
from the linearity of the invertibly related system
XT{u, v ; x, t}.

Arbitrary 4 W1 = ∂
∂t

, W2 = ∂
∂x

, W3 = ∂
∂v

, W4 = t ∂
∂t

+ x ∂
∂x

.

uν (ν 6= 0,−1) 6 W1, W2, W3, W4,

W5 = νt ∂
∂t
− u ∂

∂u
− (1 + ν)v ∂

∂v
,

W6 = −((2ν + 1)tv + xu) ∂
∂t
− (tu1+2ν + xv) ∂

∂x

+2uv ∂
∂u

+
[
(1 + ν)v2 + u2+2ν

1+ν

]
∂

∂v
.

eu 6 W1, W2, W3, W4, W7 = x ∂
∂x

+ ∂
∂u

+ v ∂
∂v

,

W8 = − (2vt + x) ∂
∂t
− 2eut ∂

∂x
+ 4v ∂

∂u

+(4eu + v2) ∂
∂v

.

u−1 6 W1, W2, W3, W4, W5 (ν = −1),

W9 = (tv − xu) ∂
∂t
− (tu−1 + xv) ∂

∂x
+ 2uv ∂

∂u

+2 log u ∂
∂v

.

c(u) satisfies (a), (b) or (c): 6 W1, W2, W3, W4,

(a) c′ = c2ν−1 sinh(ν log c) W10,11 = e±v
{
((2 + Γ ′)t± Γx) ∂

∂t

(b) c′ = c2ν−1 sin(ν log c) +(Γ ′x± c2Γt) ∂
∂x

− 2Γ ∂
∂u

∓ 2(Γ ′ + 1) ∂
∂v

}
,

(c) c′ = c2ν−1 cosh(ν log c) where Γ = c/c′.
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The point symmetries W6, W8,W9,W10,W11 of the potential system
UV{x, t ; u, v} correspond to nonlocal symmetries of the nonlinear wave equa-
tion U{x, t ;u} (4.8).

(3) The potential system UW{x, t ; u,w}
The potential system UW{x, t ; u,w} (3.82), i.e.,

wx = tut − u,

wt = tc2(u)ux,

has the group of equivalence transformations that includes the transforma-
tions

x̃ = a1x + a4, t̃ = a2t, ũ = a3u + a6t + a7,

w̃ = a1a3w − a1a7x + a5, c̃(ũ) = a1a
−1
2 c(u),

(4.14)

where a1, . . . , a7 are arbitrary constants with a1a2a3 6= 0, and the projective
transformation

x̃ = x− bw, t̃ =
t

1 + bu
, ũ =

u

1 + bu
, w̃ = w,

c̃(ũ) = (1 + bũ)−2 c
( ũ

1 + bũ

)
.

(4.15)

For an arbitrary c(u), the potential system UW{x, t ; u,w} has the point
symmetries

Z1 =
∂

∂x
, Z2 =

∂

∂w
, Z3 = x

∂

∂x
+ t

∂

∂t
+ w

∂

∂w
.

These point symmetries project onto point symmetries of U{x, t ; u}.
If the wave speed c(u) satisfies the ODE

c′(u)
c(u)

= −2u + C1

u2 + C2
, (4.16)

where C1, C2 are arbitrary constants, then the potential system UW{x, t;
u,w} has an additional point symmetry

Z4 = w
∂

∂x
+ (u + C1)t

∂

∂t
+ (u2 + C2)

∂

∂u
− C2x

∂

∂w
,

which is obviously a nonlocal symmetry of U{x, t ; u}.
The general solution of (4.16) is found to be as follows:
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C2 = ω2 > 0 : c(u) =
c0

u2 + ω2
exp

{
−C1

ω
tan−1 u

ω

}
;

C2 = −ω2 < 0 : c(u) =
c0

u2 − ω2

∣∣∣∣
u + ω

u− ω

∣∣∣∣
C1/2ω

;

C2 = 0 : c(u) =
c0

u2
eC1/u.

(4.17)

In (4.17), c0 is an arbitrary constant of integration.
For c(u) = (u + B)−2, where B is an arbitrary constant, the system

UW{x, t ; u,w} has an infinite number of point symmetries. One can show
that here UW{x, t ; u,w} is linearizable by a point transformation, and thus
the nonlinear wave equation U{x, t ; u} is linearizable by a nonlocal transfor-
mation [Exercise 4.2.2].

(4) The potential system TP{u, v ; t, p}
The potential system TP{u, v ; t, p} (3.92), i.e.,

pv = utu − t,

pu = uc2(u)tv,

has the group of equivalence transformations that includes the transforma-
tions

ũ = a1u, ṽ = a2v + a4, t̃ = a−1
2 a3t + a6 + a7u,

p̃ = a3p + a5 − a2a6v, c̃(ũ) = a−1
1 a2c(u),

(4.18)

where a1, . . . , a7 are arbitrary constants with a1a2a3 6= 0, and the projective
transformation

ũ =
u

1 + bu
, ṽ = v, t̃ =

t

1 + bu
, p̃ = p,

c̃(ũ) = (1 + bũ)−2 c
( ũ

1 + bũ

) (4.19)

similar to (4.15).
The point symmetry classification of the linear PDE system TP{u, v ; t, p}

(modulo its obvious infinite number of point symmetries due to its linearity)
is as follows.

Case 1. For an arbitrary wave speed c(u), the system TP{u, v ; t, p} has the
three point symmetries

L1 =
∂

∂v
, L2 = t

∂

∂t
+ p

∂

∂p
, L3 =

∂

∂p
,

that project onto point symmetries of the nonlinear wave equation U{x, t ; u}
(4.8).



4.2 Nonlocal Symmetries 263

Case 2. For c(u) = u−2, the system TP{u, v ; t, p} has an infinite number
of point symmetries that are related to point symmetries of the system
UV{x, t ; u, v} with c(u) = const, since here the system TP{u, v ; t, p} is
mapped by the point transformation y = −1/u, γ = t/u into the system with
constant coefficients given by

pv − γy = 0,

py − γv = 0.

Remark 4.2.1. Note that the PDE system TP{u, v ; t, p} is obviously not
invariant under the translations u → u+B, and thus it does not have an infi-
nite number of point symmetries when c(u) = (u+B)−2. However, by taking
a linear combination of potential systems TP{u, v ; t, p} and XT{u, v ;x, t}
(3.85) with weights 1 and B, and denoting a “combination” potential variable
by z = p+Bx, one obtains a potential system TZ{u, v ; t, z} which does have
an infinite number of point symmetries when c(u) = (u + B)−2

Case 3. For c(u) 6= u−2, and c(u) satisfying the ODE

−(2uc2 + u2cc′)c′′′ + 2u2c(c′′)2 − (4c2 + u2(c′)2 − 8ucc′)c′′

c3(uc′ + 2c)2

+
6(c′)2(c− uc′)
c3(uc′ + 2c)2

= λ2,

(4.20)

with λ a real or imaginary constant, the system TP{u, v ; t, p} has additional
point symmetries as follows.

Case 3a. When λ 6= 0 in (4.20), two additional point symmetries are given by

L4, 5 = e±λv

{[
± λ2u2c

2(2c + uc′)
t

−
(

λ
c + uc′

2c + uc′
− u2(cc′′ − 3(c′)2)− 4ucc′ − 2c2

(2c + uc′)2

)
p

]
∂

∂p

±
[

λ2c

2(2c + uc′)
p +

(
u2(cc′′ − 3(c′)2)− 4ucc′ − 2c2

2(2c + uc′)2

)
t

]
∂

∂t

− λuc

2c + uc′
∂

∂u
±

[
u2(cc′′ − 2(c′)2)− 2ucc′ − 2c2

(2c + uc′)2

]
∂

∂v

}

which yield nonlocal symmetries of the nonlinear wave equation U{x, t ;u}.
Case 3b. When λ = 0 in (4.20), the general solution of ODE (4.20) involves
three distinguished classes given by
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c(u) = Auν(u + B)−2−ν ; (4.21)

c(u) = Auν ; (4.22)

c(u) = Au−2eB/u; (4.23)

A,B, ν are nonzero constants with ν 6= −2.
From the equivalence transformations (4.18), it follows that a system

TP{u, v ; t, p} with wave speed (4.21) is invertibly equivalent to a sys-
tem TP{u, v ; t, p} with wave speed (4.22). Hence one only considers the
non-equivalent cases (4.22), (4.23) (modulo the equivalence transformations
(4.18)).

Case 3b(1). For wave speeds c(u) = uν with ν 6= −1, the system TP{u, v ; t, p}
has two additional point symmetries given by

L6 = νt
∂

∂t
− u

∂

∂u
− (1 + ν)v

∂

∂v
− p

∂

∂p
,

L7 = −((2ν + 1)tv + p)
∂

∂t
+ 2uv

∂

∂u

+
[
(1 + ν)v2 +

u2+2ν

1 + ν

]
∂

∂v
+ (tu2+2ν − vp)

∂

∂p
.

Note that the symmetry L7 is nonlocal for U{x, t ;u} but local for the system
UV{x, t ; u, v}; the symmetries L6 and L7 correspond to the symmetries W5

and W6, respectively, in Table 4.6.

Case 3b(2). For c(u) = u−1, the system TP{u, v ; t, p} again has two addi-
tional point symmetries given by

L6 (ν = −1), L8 = (tv − p)
∂

∂t
+ 2uv

∂

∂u
+ 2 log u

∂

∂v
− (t− pv)

∂

∂p
.

The point symmetry L8 is nonlocal for U{x, t ;u} but local for the system
UV{x, t ; u, v}. These symmetries correspond to W5 (ν = −1) and W7, re-
spectively, in Table 4.6.

Case 3b(3). For c(u) = u−2e1/u, the system TP{u, v ; t, p} has two additional
point symmetries given by

L9 = (pu− 2tv(u + 1))
∂

∂t
− 2u2v

∂

∂u
+ (u2 + e2/u)

∂

∂v
+ t

e2/u

u

∂

∂p
,

L10 = t(u + 1)
∂

∂t
+ u2 ∂

∂u
− v

∂

∂v
.

The symmetries L9 and L10 are nonlocal for both U{x, t ;u} and the system
UV{x, t ; u, v}.
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(5) The potential system TQ{u, v ; t, q}
The potential system TQ{u, v ; t, q} (3.93), i.e.,

qv = vtu,

qu = c2(u)(vtv − t),

has the group of equivalence transformations

ũ = a1u + a4, ṽ = a2v, q̃ = a3q + a5 + 1
3a2

2a7v
3,

t̃ = a1a
−2
2 a3t + a2a6v + a1a7uv, c̃(ũ) = a−1

1 a2c(u),
(4.24)

where a1, . . . , a8 are arbitrary constants with a1a2a3 6= 0.
The point symmetry classification of the linear potential system TQ{u, v;

t, q} is given in Table 4.7.

Table 4.7 Point symmetries of the potential system TQ{u, v ; t, q} (3.93)

c(u) # Point Symmetries

Arbitrary ∞ Infinite number of point symmetries following from the linearity.

Arbitrary 2 M1 = ∂
∂q

, M2 = t ∂
∂t

+ q ∂
∂q

.

uν 3 M1, M2, M3 = (2ν + 1)t ∂
∂t
− u ∂

∂u
− (ν + 1)v ∂

∂v
.

eu 3 M1, M2, M4 = 2t ∂
∂t
− ∂

∂u
− v ∂

∂v
.

u−2 5 M1, M2, M3, M5 = u2

u2v2−1

[
t ∂

∂t
+ u ∂

∂u
+ v ∂

∂v

]
,

M6 = 1
u2

[
(4u3q − 5tv2u2 − 3t) ∂

∂t
− (3u2v2 + 1)u ∂

∂u
+ (u2v2 + 3)v ∂

∂v

+ 2
u

(2tv2 + (u2v2 + 1)uq) ∂
∂q

]
.

u−2/3 5 M1, M2, M3, M7, M8 [Exercise 4.2.4]

For c(u) = u−2 or c(u) = u−2/3, the system TQ{u, v ; t, q} has five point
symmetries; the symmetries (M5, M6) and (M7, M8), respectively, yield non-
local symmetries of the nonlinear wave equation U{x, t ; u} (4.8).

(6) The potential system TR{u, v ; t, r}
The potential system TR{u, v ; t, r} (3.94), i.e.,

rv = v(utu − t),

ru = uc2(u)(vtv − t),

has the group of equivalence transformations that includes the transforma-
tions
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ũ = a1u, ṽ = a2v, r̃ = a3r + a4 − 1
3a2

2a6v
3,

t̃ = a−2
2 a3t + a5uv + a6v

∗, c̃(ũ) = a−1
1 a2c(u),

(4.25)

where a1, . . . , a6 are arbitrary constants with a1a2a3 6= 0, and the projective
transformation

ũ =
u

1 + bu
, ṽ = v, t̃ =

t

1 + bu
, r̃ = r,

c̃(ũ) = (1 + bũ)−2 c
( ũ

1 + bũ

)
.

(4.26)

It follows that for the system TR{u, v ; t, r}, the wave speeds

c(u) = uν and c(u) = uν(u + B)−2−ν (ν 6= −2), (4.27)

are equivalent. In particular, the following wave speeds are equivalent.

1. c(u) = u−1 and c(u) = u−1(Au + B)−1.
2. c(u) = u−4/3 and c(u) = u−4/3(Au + B)−2/3.
3. c(u) = 1 and c(u) = (Au + B)−2.

A,B are nonzero constants. The wave speed c(u) = u−2 yields invariance
under the equivalence transformation (4.27).

The point symmetry classification of the linear potential system TR{u, v;
t, r} (modulo its equivalence transformations (4.25), (4.26)) is given in Table
4.8.

Note that the system TR{u, v ; t, r} has an additional point symmetry
when c(u) satisfies the ODE

ucc′′ + c′(c− uc′)
(uc′ + 2c)2

= γ2 = const. (4.28)

The general solution of the ODE (4.28) for γ 6= 0 (modulo the equivalence
transformations (4.25), (4.26)) consists of two families of solutions: (a) c(u) =
uν (ν = const) and (b) c(u) = u−2e1/u. For c(u) satisfying the ODE (4.28)
with γ = 0, i.e., c(u) = u−4/3 (modulo the equivalence transformations (4.25),
(4.26)), the system TR{u, v ; t, r} has two additional point symmetries.

Comparing Tables 4.4 and 4.8, one observes that the point symmetries
N4,. . . ,N10 of the potential system TR{u, v ; t, r} yield nonlocal symmetries
of the nonlinear wave equation U{x, t ;u} (4.8). Of course, when c(u) = 1,
U{x, t ; u} is linear and TR{u, v ; t, r} is a nonlinear system.

Note that at a first glance the symmetries N4 and N7 of the potential sys-
tem TR{u, v ; t, r} seem to project onto point symmetries of the nonlinear
wave equation U{x, t ; u}. But since x is a nonlocal variable for the potential
system TR{u, v ; t, r}, and the symmetry generators N4 and N7 do not con-
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Table 4.8 Point symmetries of the potential system TR{u, v ; t, r} (3.94)

c(u) # Point Symmetries

Arbitrary ∞ Infinite number of point symmetries following from the linearity.

Arbitrary 2 N1 = ∂
∂r

, N2 = t ∂
∂t

+ r ∂
∂r

.

uν , ν 6= −2 3 N1, N2, N3 = 2(ν + 1)t ∂
∂t
− u ∂

∂u
− (ν + 1)v ∂

∂v
.

u−2e1/u 3 N1, N2, N4 = (u + 1)t ∂
∂t

+ u2 ∂
∂u

− v ∂
∂v
− r ∂

∂r
.

u−4/3 4 N1, N2, N5, N6 [Exercise 4.2.4.]

u−2 5 N1, N2, N3 (ν = −2), N7 = tu ∂
∂t

+ u2 ∂
∂u

,

N8 = 1
u

[
(tu2v2 + 2t− u2r) ∂

∂t
+ 2v ∂

∂v
+ (tv2 + r) ∂

∂r

]

−(1 + u2v2) ∂
∂u

.

1 5 N1, N2, N3 (ν = 0), N9 = 1
u2−v2

(
u ∂

∂u
− v ∂

∂v

)
,

N10 = 2[t(u2 + v2) + 2r] ∂
∂t
− u(u2 + 3v2) ∂

∂u
− v(3u2 + v2) ∂

∂v

+2[2tu2v2 − r(u2 + v2)] ∂
∂r

.

tain an explicit x-component, it turns out that the actual transformation of
x is nonlocal under the actions of both N4 and N7.

(7) The nonlocally related subsystem X{u, v ; x}
The linear wave equation X{u, v ; x} (3.86), i.e.,

xvv = (c−2(u)xu)u,

has the group of equivalence transformations

ũ = a1u + a4, ṽ = a2v + a5, x̃ = a3x + a6v + a7,

c̃(ũ) = a−1
1 a2c(u),

(4.29)

where a1, . . . , a7 are arbitrary constants with a1a2a3 6= 0.
For the wave speed c(u) = u−2/3, the PDE X{u, v ; x} has an infinite

number of point symmetries [Exercise 4.2.5] (in addition to those due to its
linearity), which suggests that it can be mapped by a point transformation
into a constant coefficient linear PDE.

The PDE X{u, v ;x} has two additional point symmetries when c(u) sat-
isfies the ODE

(−2cc′′ + 5(c′)2)c2c′′′′ + 3c3(c′′′)2 + 16c2(c′′)3 − 24c2c′′′c′′c′

c3(2cc′′ − 5(c′)2)2

+
12c(c′c′′)2 − 10(c′)4c′′

c3(2cc′′ − 5(c′)2)2
= σ2 = const.

(4.30)
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The point symmetries of the PDE X{u, v ; x} are summarized in Table 4.9.

Table 4.9 Point symmetries of the PDE X{u, v ; x} (3.86)

c(u) # Point Symmetries

Arbitrary ∞ Infinite number of point symmetries following from
the linearity.

Arbitrary 3 J1 = x ∂
∂x

, J2 = ∂
∂v

, J3 = ∂
∂x

.

u−2/3 ∞ Exercise 4.2.5

(4.30) (σ 6= 0) 5 J1, J2, J3, J4, 5 = e±σv
{

1
2xFH ∂

∂x
+ F (v) ∂

∂u

±σ−1[F ′ + FH] ∂
∂v

}
.

(4.30) (σ = 0) 5 J1, J2, J3, J6 = v
{1

2xFH ∂
∂x

+ F ∂
∂u

}

+
{
K v2

2 +
∫

c2Fdu
}

∂
∂v

,

J7 = 1
2xFH ∂

∂x
+ F ∂

∂u
+ Kv ∂

∂v
.

Particular case (a) for σ = 0: 5 J
(a)
6 = ν(ν + 1)xv ∂

∂x
+ 2(ν + 1)uv ∂

∂u

+[u2ν+2 + v2(ν + 1)2] ∂
∂v

,

c(u) = uν (ν = const) J
(a)
7 = u ∂

∂u
+ (ν + 1)v ∂

∂v
.

Particular case (b) for σ = 0: 5 J
(b)
6 = xv ∂

∂x
+ 2v ∂

∂u
+ [e2u + v2] ∂

∂v
,

c(u) = eu J
(b)
7 = ∂

∂u
+ v ∂

∂v
.

In Table 4.9, F (u) = (3H2(u)− 2H ′(u))−1/2, H(u) = c′(u)/c(u).
From the symmetry commutator relations, one can show that

(F ′ + HF )2 − (σc(u)F )2 = K2 = const,

and hence for σ = 0, F ′ + HF = K = const [Bluman & Kumei (1987)].
Comparing Tables 4.4 and 4.9, one observes that the symmetries J4, J5

and J6 yield nonlocal symmetries of U{x, t ;u} (4.8); the symmetry J7 yields
a nonlocal symmetry of U{x, t ; u} except for the two listed particular cases.
For the case c(u) = u−2/3, the PDE X{u, v ; x} has an infinite number of
point symmetries that are nonlocal symmetries of the nonlinear wave equation
U{x, t ; u}.

(8) The nonlocally related subsystem T{u, v ; t}
The linear wave equation T{u, v ; t} (3.87), i.e.,

tuu = c2(u)tvv,
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has the group of equivalence transformations that includes the transforma-
tions

ũ = a1u + a4, ṽ = a2v + a5,

t̃ = a3t + a6 + a7u + a8v + a9uv, c̃(ũ) = a−1
1 a2c(u),

(4.31)

and the projective transformation

ũ =
u

1 + bu
, ṽ = v, t̃ =

t

1 + bu
, c̃(ũ) = (1 + bũ)−2 c

( ũ

1 + bũ

)
, (4.32)

where a1, . . . , a9 and b are arbitrary constants with a1a2a3 6= 0.
The point symmetry classification of the PDE T{u, v ; t}, modulo the

equivalence transformations (4.31), (4.32), is given in Table 4.10.
Comparing with the point symmetry classification of the nonlinear wave

equation U{x, t ;u} [Table 4.4], one observes that the symmetries K5, K7,
K8, K9, K10, K11 and K12 yield nonlocal symmetries of the nonlinear wave
equation U{x, t ; u} (4.8).
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Table 4.10 Point symmetries of the PDE T{u, v ; t} (3.87) nonlocally related to the
nonlinear wave equation U{x, t ; u} (3.76)

c(u) # Symmetries

Arbitrary ∞ Infinite number of point symmetries following
from the linearity.

Arbitrary 3 K1 = t ∂
∂t

, K2 = ∂
∂v

, K3 = ∂
∂t

.

uν , ν 6= 0,−1,−2 5 K1, K2, K3, K4 = u ∂
∂u

+ (1 + C)v ∂
∂v

,

K5 = −1
2Ctv ∂

∂t
+ uv ∂

∂u

+
[

u2+2C

1+C
+ 1

2 (1 + C)v2
]

∂
∂v

.

eu 5 K1, K2, K3, K6 = ∂
∂u

+ v ∂
∂v

,

K7 = −1
2 tv ∂

∂t
+ v ∂

∂u
+ 1

2 [e2u + v2] ∂
∂v

.

u−1 5 K1, K2, K3, K4 (C = −1),

K8 = 1
2 tv ∂

∂t
+ uv ∂

∂u
+ (log u) ∂

∂v
.

u−2 ∞ Infinite number of nonlocal symmetries; there

exists a point transformation into a linear PDE

with constant coefficients [Exercise 4.2.6].
[
(Bu2 + C) 5 K1, K2, K3,

× exp{A ∫
(Bu2 + C)−1du}

]−1
K9 = 1

2 t(A + 2Bu) ∂
∂t

+ (Bu2 + C) ∂
∂u

−Av ∂
∂v

,

K10 = 1
2 t(A + 2Bu)v ∂

∂t
+ (Bu2 + C)v ∂

∂u

(A, B, C = const) +
[−1

2Av2 +
∫

c2(u)(Bu2 + C)du
]

∂
∂v

.

c(u) satisfies 5 K1, K2, K3,

(α ′ + Hα) ′ = σ2c2(u)α, K11,12 = e±σv
[
− 1

2 tαH ∂
∂t

+ α ∂
∂u

where σ = const 6= 0, ±σ−1(α ′ + Hα) ∂
∂v

]
.

H(u) = c ′(u)/c(u),

α2(u) = (H2(u)− 2H′(u))−1

4.2.3 Classification of nonlocal symmetries of
nonlinear telegraph equations arising from point
symmetries of potential systems

Consider the nonlinear telegraph (NLT) equation U{x, t ;u} given by

utt − (F (u)ux)x − (G(u))x = 0. (4.33)
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The complete point symmetry classification of the PDE (3.60) with respect to
the constitutive functions F (u) and G(u) [Kingston & Sophocleous (2001)],
modulo the equivalence transformations (3.61), is presented in Table 4.11.

Table 4.11 Point symmetries of the nonlinear telegraph equation U{x, t ; u} (3.60)

F (u) G(u) # Point Symmetries

Arbitrary Arbitrary 2 X1 = ∂
∂t

, X2 = ∂
∂x

.

e(α+1)u eu 3 X1, X2, X3 = (α− 1)t ∂
∂t

+ 2αx ∂
∂x

+ 2u ∂
∂u

.

uα uα+β+1 3 X1, X2, X4 = (α + 2β)t ∂
∂t

+ 2βx ∂
∂x

− 2u ∂
∂u

.

u−2 u−1 4 X1, X2, X4, X5 = ex ∂
∂x

− uex ∂
∂u

.

uα ln u 3 X1, X2, X6 = (α + 2)t ∂
∂t

+ 2(α + 1)x ∂
∂x

+ 2u ∂
∂u

.

eαu u 3 X1, X2, X7 = αt ∂
∂t

+ 2αx ∂
∂x

+ 2 ∂
∂u

.

u−4 u−3 4 X1, X2, X4, X8 = t2 ∂
∂t

+ ut ∂
∂u

.

The complete point symmetry classification of the nonlocally related po-
tential system UV1{x, t ; u, v1} (3.62), i.e.,

v1
x = ut,

v1
t = F (u)ux + G(u),

yielding nonlocal symmetries of the NLT equation (4.33), is presented in
Table 4.12 for G′(u) 6= 0 [Bluman, Temuerchaolu & Sahadevan (2005)]. Part
of this classification appears in Reid (1991b).

Observe that the point symmetries of the potential system UV1{x, t ;u, v1}
yield one nonlocal symmetry of the NLT equation U{x, t ; u} for eight classes
of constitutive functions. In the cases F (u) = u−2, G(u) = u−1, and F (u)
arbitrary, G(u) = const, the potential system UV1{x, t ;u, v1} (3.62) is lin-
earizable by a point transformation, and thus the corresponding NLT equa-
tion U{x, t ;u} (4.33) is linearizable by a nonlocal transformation.

4.2.4 Nonlocal symmetries of nonlinear telegraph
equations with power law nonlinearities

In this section, local conservation laws of the nonlinear telegraph equation
U{x, t ; u} (4.33) [Section 3.4.3] are used to construct extended trees of non-
locally related PDE systems for the three cases that arise. For the special
situation of power law nonlinearities, F (u) = uα, G(u) = uβ , nonlocal sym-
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Table 4.12 Point symmetries of the potential system UV1{x, t ; u, v1} (3.62) that
yield nonlocal symmetries of the NLT equation U{x, t ; u} (4.33)

F (u) G(u) # Point Symmetries Yielding Nonlocal Symmetries

Arbitrary const ∞ Infinite number of symmetries; there exists a point

mapping of the potential system UV1{x, t ; u, v1}
u−2 u−1 (3.62) to a linear system [Exercise 3.4.6].

± 4u2α+β−1

(u2α±1)2
(u2α∓1)
(u2α±1) 1 Y1 = [(β + 1)t + 2αv] ∂

∂t
+ 2[βx + α

∫
F (u)du] ∂

∂x

+2u ∂
∂u

+ [2αt + (β + 1)v] ∂
∂v

.

uβ−1 sec2(α ln u) tan(α ln u) 1 Y2 = [(β + 1)t− 2αv] ∂
∂t

+ 2[βx− α
∫

F (u)du] ∂
∂x

+2u ∂
∂u

+ [2αt + (β + 1)v] ∂
∂v

.

−uβ−1(ln u)−2 (ln u)−1 1 Y3 = [(β + 1)t + 2v] ∂
∂t

+ 2[βx +
∫

F (u)du] ∂
∂x

+2u ∂
∂u

+ (β + 1)v ∂
∂v

.

e2βu sec2 u tan u 1 Y4 = (βt− v) ∂
∂t

+ 2[βx− ∫
F (u)du] ∂

∂x
+ ∂

∂u

+(t + βv) ∂
∂v

.

e2βusech2u tanh u 1 Y5 = (βt + v) ∂
∂t

+ 2[βx +
∫

F (u)du] ∂
∂x

+ ∂
∂u

−e2βucsch2u coth u +(t + βv) ∂
∂v

.

−u−2e2βu u−1 1 Y6 = (βt + v) ∂
∂t

+ 2[βx +
∫

F (u)du] ∂
∂x

+ ∂
∂u

+ βv ∂
∂v

.

metries are classified that arise as point symmetries of nonlocally related
PDE systems within these extended trees.

(1) Trees of nonlocally related systems for the NLT equation
The extended tree construction procedure [Section 3.5] is applied to the NLT
equation U{x, t ;u}, through use of the local conservation laws obtained in
Section 3.4.3. Note that the exclusion of dependent variables leads only to
locally related subsystems. [Here there is no consideration of nonlocally re-
lated subsystems arising from interchanges of independent and dependent
variables.] Three cases arise.

Case (a): Arbitrary F (u), G(u). Here, the NLT equation (4.33) has two local
conservation laws. The corresponding extended tree Ta consists of 22 = 4
PDE systems.

• The NLT equation U{x, t ;u} (4.33).
• Two singlet potential systems UV1{x, t ;u, v1} (3.62) and UV2{x, t ; u, v2}

(3.63).
• One couplet UV1V2{x, t ;u, v1, v2} [(3.62), (3.63)].
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Case (b): G ′(u) = F (u), F (u) arbitrary. Here, the NLT equation (4.33) has
four local conservation laws. The corresponding extended tree Tb consists of
16 PDE systems.

• The NLT equation U{x, t ;u} (4.33).
• Four singlet potential systems UV1{x, t ;u, v1} (3.62), UV2{x, t ; u, v2}

(3.63), UB3{x, t ; u, b3} (3.64) and UB4{x, t ; u, b4} (3.65).
• Six couplets UV1V2{x, t ; u, v1, v2} [(3.62), (3.63)], UV1B3{x, t ; u, v1, b3}

[(3.62), (3.64)], UV1B4{x, t ; u, v1, b4} [(3.62), (3.65)], UV2B3{x, t; u,

v2, b3} [(3.63), (3.64)], UV2B4{x, t ;u, v2, b4} [(3.63), (3.65)] and
UB3B4{x, t ; u, b3, b4} [(3.64), (3.65)].

• Four triplets UV1V2B3{x, t ; u, v1, v2, b3}, UV1V2B4{x, t ;u, v1, v2, b4},
UV1B3B4{x, t ; u, v1, b3, b4} and UV2B3B4{x, t ; u, v2, b3, b4}, given by
the unions (3.62)–(3.64), [(3.62), (3.63), (3.65)], [(3.62), (3.64), (3.65)] and
(3.63)–(3.65), respectively.

• One quadruplet UV1V2B3B4{x, t ;u, v1, v2, b3, b4} (3.62)–(3.65), involv-
ing all four potentials.

Case (c): G(u) = u, F (u) arbitrary. Here the NLT equation (4.33) again has
four local conservation laws. The corresponding extended tree Tc of nonlocally
related PDE systems consists of 16 PDE systems.

• The NLT equation U{x, t ;u} (4.33).
• Four singlet potential systems UV1{x, t ;u, v1} (3.62), UV2{x, t ; u, v2}

(3.63), UC3{x, t ;u, c3} (3.66) and UC4{x, t ; u, c4} (3.67).
• Six couplets UV1V2{x, t ; u, v1, v2} [(3.62), (3.63)], UV1C3{x, t ;u, v1, c3}

[(3.62), (3.66)], UV1C4{x, t ;u, v1, c4} [(3.62), (3.67)], UV2C3{x, t; u, v2,

c3}[(3.63), (3.66)], UV2C4{x, t ;u, v2, c4} [(3.63), (3.67)] and UC3C4{x, t;
u, c3, c4} [(3.66), (3.67)].

• Four triplets UV1V2C3{x, t ; u, v1, v2, c3}, UV1V2C4{x, t ; u, v1, v2, c4},
UV1C3C4{x, t ;u, v1, c3, c4}, and UV2C3C4{x, t ; u, v2, c3, c4}, given by
the unions [(3.62), (3.63), (3.66)], [(3.62), (3.63), (3.67)], [(3.62), (3.66),
(3.67)] and [(3.63), (3.66), (3.67)], respectively.

• One quadruplet UV1V2C3C4{x, t ;u, v1, v2, c3, c4} [(3.62), (3.63), (3.66),
(3.67)], involving all four potential variables.

(2) Symmetries of the NLT equation and nonlocally related systems for power
law nonlinearities

Case (a): F (u) = uα, G(u) = uβ ; α, β 6= 0. The classification of the point
symmetries of the four PDE systems within the tree Ta is presented in Table
4.13.

From the form of the point symmetries listed in Table 4.13, it follows that
no nonlocal symmetries are obtained for the systems U{x, t ; u} (4.33) and
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Table 4.13 Point symmetries of the NLT equation (4.33) and nonlocally related
systems in the general power law nonlinearity case (a): F (u) = uα, G(u) = uβ

(α, β 6= 0)

System # Point Symmetries

UV1V2 5 X1 = (α− β + 1)x ∂
∂x

+ (α
2 − β + 1)t ∂

∂t
+ u ∂

∂u

UV1,UV2, +α+2
2 v1 ∂

∂v1 + (α− β + 2)v2 ∂
∂v2 ,

U X2 = ∂
∂x

, X3 = ∂
∂t

+ v1 ∂
∂v2 , X4 = ∂

∂v1 , X5 = ∂
∂v2 .

UV1{x, t ; u, v1} (3.62). The infinitesimal generator X3 yields a nonlocal sym-
metry of the system UV2{x, t ;u, v2} (3.63) (i.e., the system UV2{x, t ; u, v2}
is not invariant under translations in t) and a point symmetry of the other
systems. All other infinitesimal generators define point symmetries of all sys-
tems in Table 4.13.

Case (b): G ′(u) = F (u), i.e., F (u) = (α+1)uα, G(u) = uα+1, α 6= 0,−1,−2.
From the equivalence relation (3.61), this case is equivalent to the situation
when F (u) = uα, G(u) = uα+1. The point symmetry classifications of the 16
PDE systems within the tree Tb are presented in Table 4.14.

Table 4.14 Point symmetries of the potential NLT systems for case (b): F (u) =
(α + 1)uα, G(u) = uα+1 (α 6= 0,−1,−2)

System F (u) G(u) # Point Symmetries

UV1V2B3B4, (α + 1)uα uα+1 7 Y1 = −α
2 t ∂

∂t
+ u ∂

∂u
+ v2 ∂

∂v2 + α+2
2 v1 ∂

∂v1

UV1V2B3, +α+2
2 b3 ∂

∂b3 + b4 ∂
∂b4 ,

UV1V2B4, Y2 = ∂
∂x

+ b3 ∂
∂b3 + b4 ∂

∂b4 ,

UV1B3B4, Y3 = ∂
∂t

+ b3 ∂
∂b4 + v1 ∂

∂v2 , Y4 = ∂
∂v1 ,

UV2B3B4, Y5 = ∂
∂v2 , Y6 = ∂

∂b3 , Y7 = ∂
∂b4 .

UV1V2,UV1B3, −3u−4 u−3 8 Y1, Y2, Y3, Y4, Y5, Y6, Y7,

UV1B4,UV2B3, Y8 = t2 ∂
∂t

+ tu ∂
∂u

− v2 ∂
∂v1 − b4 ∂

∂b3 .

UV2B4,UB3B4,

UV1,UV2,

UB3,UB4,

U

UV1V2 3u2 u3 8 Y1, Y2, Y3, Y4, Y5, Y6, Y7,

Y9 = 3v1 ∂
∂x

+ (tv1 − v2 + 3u) ∂
∂t
− uv1 ∂

∂u

−(v1)2 ∂
∂v1 − v1v2 ∂

∂v2 .
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The case α = −2 is not included in Table 4.14 since here the system
UV1{x, t ; u, v1} is linearizable by a point transformation [Bluman & Kumei
(1989)] [Section 4.2.3].

From Table 4.14, it follows that for the case when F (u) = 3u2, G(u) =
u3, the potential system UV1V2{x, t ; u, v1, v2} [(3.62), (3.63)] has the point
symmetry Y9 which yields a nonlocal symmetry of the NLT equation U{x, t;
u} (4.33). Moreover, this is the only case yielding a nonlocal symmetry of the
NLT equation U{x, t ; u}.

Note that the infinitesimal generator Y3 yields a nonlocal symmetry
of each of the systems UV1V2B4{x, t ; u, v1, v2, b4} [(3.62), (3.63), (3.65)],
UV2B3B4{x,t ; u,v2,b3,b4}(3.63)–(3.65),UV1B4 1 4

UV2B3{x, t ; u, v2, b3} [(3.63), (3.64)], UV2B4{x, t ;u, v2, b4} [(3.63), (3.65)],
UV2{x, t ; u, v2} (3.63) and UB4{x, t ; u, b4} (3.65), and a point symmetry
of the other nine systems; the infinitesimal generator Y8 yields a nonlo-
cal symmetry of the systems UV1V2B3{x, t ; u, v1, v2, b3} (3.62) – (3.64),
UV1B3B4{x, t ; u, v1, b3, b4} [(3.62), (3.64), (3.65)], UV1B3{x, t ; u, v1, b3}
[(3.62), (3.64)], UV1B4{x, t ; u, v1, b4} [(3.62), (3.65)], UV2B3{x, t ; u, v2, b3}
[(3.63), (3.64)], UV1{x, t ; u, v1} (3.62) and UB3{x, t ; u, b3} (3.64), and a
point symmetry of the other nine systems; the infinitesimal generator Y9

yields a point symmetry of the system UV1V2{x, t ;u, v1, v2} [(3.62), (3.63)]
and a nonlocal symmetry of the other 15 listed nonlocally related systems.

Case (c): F (u) = uα, G(u) = u (α 6= 0). The corresponding classification of
the point symmetries is found in Table 4.15. The linear case α = 0 is not con-
sidered. The entries in Table 4.15 for the triplets UV1C3C4{x, t ; u, v1, c3, c4}
[(3.62), (3.66), (3.67)], UV2C3C4{x, t ; u, v2, c3, c4} [(3.63), (3.66), (3.67)],
and the couplets V1C4{x, t ;u, v1, c4} [(3.62), (3.67)], UC3C4{x, t ; u, c3, c4}
[(3.66), (3.67)] are missing since they are not known.

From the form of the known point symmetries listed in Table 4.15, it fol-
lows that no nonlocal symmetries arise for the systems U (4.33) and UV1

(3.62); the infinitesimal generator Z2 yields a nonlocal symmetry of the sys-
tems UV2C3 [(3.63), (3.66)], UC3 (3.66) and UC4 (3.67), and a point sym-
metry of the other listed systems; the infinitesimal generator Z3 yields a
nonlocal symmetry of the systems UV1V2C4 [(3.62), (3.63), (3.67)], UV1C3

[(3.62), (3.66)], UV2C3 [(3.63), (3.66)], UV2C4 [(3.63), (3.67)], UV2 (3.63),
UC3 (3.66) and UC4 (3.67), and a point symmetry of the other listed sys-
tems. All other infinitesimal generators yield point symmetries of each of the
systems listed in Table 4.15.

{x,t ; u,v ,b }[(3.62),(3.65)],
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Table 4.15 Point symmetries of the potential NLT systems for case (c): F (u) = uα,
G(u) = u (α 6= 0)

System Case # Point Symmetries

UV1V2C3C4 α 6= −1 7 Z1 = α
2 t ∂

∂t
+ αx ∂

∂x
+ u ∂

∂u
+ α+2

2 v1
∂

∂v1

UV1V2C3 +v2(a + 1) ∂
∂v2

+ 3α+2
2 c3 ∂

∂c3 + (2α + 1)c4 ∂
∂c4 ,

UV1V2C4 Z2 = ∂
∂x

+ v1
∂

∂c3 + v2
∂

∂c4 ,

UV1V2, UV1C3, Z3 = ∂
∂t

+ v1
∂

∂v2
− v2

∂
∂c3 + c3 ∂

∂c4 ,

UV2C3, UV2C4, Z4 = ∂
∂v1

, Z5 = ∂
∂v2

, Z6 = ∂
∂c3 , Z7 = ∂

∂c4 .

UV1,UV2, α = −1 8 Z2, Z3, Z4, Z5, Z6, Z7,

UC3,UC4, Z8 = −1
2 t ∂

∂t
− x ∂

∂x
+ u ∂

∂u
+ 1

2v1
∂

∂v1

U − (
t + 1

2 c3
)

∂
∂c3 −

(
t2

2 + c4
)

∂
∂c4 .

UV1C3C4, ?

UV2C3C4

UV1C4,UC3C4

4.2.5 Nonlocal symmetries of the planar gas dynamics
equations

In Section 3.5.4, an extended tree Tb of nonlocally related PDE systems was
constructed for the planar gas dynamics equations. One should do a point
symmetry classification for each PDE system in the tree Tb with respect to
the constitutive function B(p, q). In this section, it is shown that in many
cases a point symmetry of one system in the tree yields a nonlocal symmetry
of one or more other systems.

(1) A comparison of point symmetries of three nonlocally related PGD sys-
tems
In Table 4.16, for several representative classes of constitutive functions
B(p, q), there is a comparison of the point symmetries of three nonlocally
related PGD systems: the Euler system E{x, t ; v, p, ρ} (3.39), the Lagrange
system L{y, s ; v, p, q} (3.42), and the potential system EA1{x, t ; v, p, ρ, α1}
(3.40) of the Euler system. [For a full classification, see Akhatov, Gazizov &
Ibragimov (1991).]

Observe that the symmetry X7 is local for the systems E{x, t ; v, p, ρ}
and EA1{x, t ; v, p, ρ, α1} but yields a nonlocal symmetry of the system
L{y, s ; v, p, q}; the symmetries Z7, Z8 and ZΘ are local for L{y, s ; v, p, q} but
yield nonlocal symmetries of the systems E{x, t ; v, p, ρ} and EA1{x, t; v, p, ρ,

α1}; the symmetries Y8,Y10, Y11 and Y12 are local for the systems EA1{x, t;
v, p, ρ, α1} and L{y, s ; v, p, q} but yield nonlocal symmetries of the sys-
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Table 4.16 A comparison of point symmetries of the PGD systems E{x, t ; v, p, ρ},
EA1{x, t ; v, p, ρ, α1} and L{y, s ; v, p, q}

B(p, q) Point Symmetries

E{x, t ; v, p, ρ} EA1{x, t ; v, p, ρ, α1} L{y, s ; v, p, q}
Arbitrary X1 = ∂

∂x
, X2 = ∂

∂t
, Y1 = ∂

∂x
, Y2 = ∂

∂t
, Z1 = ∂

∂s
,

X3 = t ∂
∂t

+ x ∂
∂x

, Y3 = X3 + α1 ∂
∂α1 , Z2 = s ∂

∂s
+ y ∂

∂y
,

X4 = t ∂
∂x

+ ∂
∂v

. Y4 = X4, Z3 = ∂
∂v

,

Y5 = ∂
∂α1 . Z4 = ∂

∂y
.

3p/q X1, X2, X3, X4, Y1, Y2, Y3, Y4, Y5, Z1, Z2, Z3, Z4,

X5 = x ∂
∂x

+ v ∂
∂v

Y6 = X5 − α1 ∂
∂α1 , Z5 = −y ∂

∂y
+ v ∂

∂v

−2ρ ∂
∂ρ

, +2q ∂
∂q

,

X6 = p ∂
∂p

+ ρ ∂
∂ρ

, Y7 = X6 + α1 ∂
∂α1 , Z6 = y ∂

∂y
+ p ∂

∂p

−q ∂
∂q

.

X7 = t2 ∂
∂t

+ tx ∂
∂x

Y8 = X7. Nonlocal

+ (x− tv) ∂
∂v

− 3tp ∂
∂p
− tρ ∂

∂ρ
.

−p/q X1, X2, X3, X4, Y1, Y2, Y3, Y4, Z1, Z2, Z3, Z4,

X5, X6. Y5, Y6, Y7, Z5, Z6,

Nonlocal Nonlocal Z7 = ∂
∂p

+ q
p

∂
∂q

,

Nonlocal Nonlocal Z8 = s ∂
∂v
− y ∂

∂p

−yq
p

∂
∂q

.

pF (peq) X1, X2, X3, X4, Y1, Y2, Y3, Y4, Y5, Z1, Z2, Z3, Z4,

Nonlocal Y8 = t ∂
∂t

+ 2α1 ∂
∂x

− v ∂
∂v

Z9 = s ∂
∂s
− v ∂

∂v

− 2p ∂
∂p

+ 2ρ2 ∂
∂ρ

. − 2p ∂
∂p

+ 2 ∂
∂q

.

F (q) X1, X2, X3, X4, Y1, Y2, Y3, Y4, Y5, Z1, Z2, Z3, Z4,

X8 = ∂
∂p

. Y9 = ∂
∂p

, Z10 = ∂
∂p

,

Nonlocal Y10 = t2

2
∂

∂x
+ t ∂

∂v
− α1 ∂

∂p
. Z11 = s ∂

∂v
− y ∂

∂p
.

F (p + nq) X1, X2, X3, X4. Y1, Y2, Y3, Y4, Y5, Z1, Z2, Z3, Z4,

n 6= 0 Nonlocal Y11 = nα1 ∂
∂x

− ∂
∂p
− ρ2 ∂

∂ρ
, Z12 = ∂

∂q
− n ∂

∂p
,

Nonlocal Y12 = nt2+(α1)2

2
∂

∂x
+ nt ∂

∂v
Z13 = ns ∂

∂v

− nα1 ∂
∂p
− ρ2α1 ∂

∂ρ
. −ny ∂

∂p
+ y ∂

∂q
.

F (p) X1, X2, X3, X4. Y1, Y2, Y3, Y4, Y5, Z1, Z2, Z3, Z4,

Nonlocal YΨ = Ψ(α1) ∂
∂x

− ρ2Ψ ′(α1) ∂
∂ρ

. Nonlocal

Nonlocal Nonlocal ZΘ = Θ
(
y, q

+
∫

dp
F (p)

)
∂

∂q
,

Ψ(α1) arbitrary. Θ(y, z) arbitrary.
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tem E{x, t ; v, p, ρ}; the infinite number of symmetries YΨ are local for the
system EA1{x, t; v, p, ρ, α1} but yield nonlocal symmetries of the systems
E{x, t ; v, p, ρ} and L{y, s ; v, p, q}.

(2) Nonlocal symmetries of polytropic PGD equations
Now consider symmetries of the nonlocally related PDE systems of planar
gas dynamics equations in the tree Tb for the polytropic case B(p, q) =
γp/q, γ 6= 0. Comparisons are made for the complete point symmetry
classifications of several such PDE systems: systems E{x, t ; v, p, ρ} (3.39),
L{y, s ; v, p, q} (3.42) and L{y, s ; p, q} (3.46) [Table 4.17], as well as for the
potential systems LW1{y, s ; v, p, q, w1} (3.97), LW4{y, s ; v, p, q, w4} (3.120)
and LW4{y, s ; p, q, w4} (3.123) [Table 4.18].

Table 4.17 Point symmetries of the PGD systems E{x, t ; v, p, ρ}, L{y, s ; v, p, q} and
L{y, s ; p, q} in the polytropic case

γ Point Symmetries

E{x, t ; v, p, ρ} L{y, s ; v, p, q} L{y, s ; p, q}
Arbitrary X1 = ∂

∂x
,

X2 = ∂
∂t

, Z1 = ∂
∂s

, Ẑ1 = Z1,

X3 = t ∂
∂t

+ x ∂
∂x

, Z2 = s ∂
∂s

+ y ∂
∂y

, Ẑ2 = Z2,

X4 = t ∂
∂x

+ ∂
∂v

, Z3 = ∂
∂v

,

X5 = x ∂
∂x

+ v ∂
∂v

Z4 = v ∂
∂v

+ p ∂
∂p

+ q ∂
∂q

, Ẑ3 = p ∂
∂p

+ q ∂
∂q

,

+p ∂
∂p
− ρ ∂

∂ρ
,

X6 = p ∂
∂p

+ ρ ∂
∂ρ

. Z5 = y ∂
∂y

+ p ∂
∂p
− q ∂

∂q
, Ẑ4 = Z5,

Z6 = ∂
∂y

. Ẑ5 = Z6,

Ẑ6 = y2 ∂
∂y

+ yp ∂
∂p

−3yq ∂
∂q

.

3 X1, X2, X3, X4, X5, X6, Z1, Z2, Z3, Z4, Z5, Z6. Ẑ1, Ẑ2, Ẑ3, Ẑ4, Ẑ5, Ẑ6,

X7 = xt ∂
∂x

+ t2 ∂
∂t

Ẑ7 = s2 ∂
∂s
− 3sp ∂

∂p

+(x− vt) ∂
∂v

+sq ∂
∂q

.

−3tp ∂
∂p
− tρ ∂

∂ρ
.

−1 X1, X2, X3, X4, X5, X6. Z1, Z2, Z3, Z4, Z5, Z6, Ẑ1, Ẑ2, Ẑ3, Ẑ4, Ẑ5, Ẑ6,

Z7 = ∂
∂p

+ q
p

∂
∂q

, Ẑ8 = Z7,

Z8 = −s ∂
∂v

+ y ∂
∂p

Ẑ9 = y ∂
∂p

+ yq
p

∂
∂q

,

+yq
p

∂
∂q

. Ẑ10 = s ∂
∂p

+ sq
p

∂
∂q

,

Ẑ11 = sy ∂
∂p

+ syq
p

∂
∂q

.

Observe that the symmetry Ẑ7 yields nonlocal symmetries of each of
the systems L{y, s ; v, p, q} and LW4{y, s ; v, p, q, w4} but yields local sym-
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Table 4.18 Point symmetries of the PGD systems LW4{y, s ; p, q, w4}, LW4{y, s;
v, p, q, w4} and LW1{y, s ; v, p, q, w1} in the polytropic case

γ Point Symmetries

LW4{y, s ; p, q, w4} LW4{y, s ; v, p, q, w4} LW1{y, s ; v, p, q, w1}
Arbitrary Ĵ1 = ∂

∂w4 , J1 = Ĵ1, Y1 = ∂
∂w1 ,

Ĵ2 = ∂
∂s

, J2 = Ĵ2, Y2 = Ĵ2,

Ĵ3 = y ∂
∂y

+ s ∂
∂s

J3 = Ĵ3, Y3 = y ∂
∂y

+ s ∂
∂s

+w4 ∂
∂w4 , +w1 ∂

∂w1

J4 = ∂
∂v

, Y4 = ∂
∂v

+ s ∂
∂w1 ,

Ĵ4 = p ∂
∂p

+ q ∂
∂q

J5 = v ∂
∂v

+ Ĵ4, Y5 = v ∂
∂v

+ p ∂
∂p

+ q ∂
∂q

+(γ + 1)w4 ∂
∂w4 +w1 ∂

∂w1 ,

Ĵ5 = y ∂
∂y

+ p ∂
∂p
− q ∂

∂q
, J6 = Ĵ5, Y6 = y ∂

∂y
+ p ∂

∂p
− q ∂

∂q
,

+(2− γ)w4 ∂
∂w4 ,

Ĵ6 = ∂
∂y

. J7 = Ĵ6. Y7 = Ĵ6.

3 Ĵ1, Ĵ2, Ĵ3, Ĵ4, J1, J2, J3, J4, Y1, Y2, Y3, Y4,

Ĵ5, Ĵ6, J5, J6, J7. Y5, Y6, Y7,

Ĵ7 = s2 ∂
∂s
− 3sp ∂

∂p
Y8 = Ĵ7 + (w1 − sv) ∂

∂v

+sq ∂
∂q

. +sw1 ∂
∂w1 .

−1 Ĵ1, Ĵ2, Ĵ3, Ĵ4, J1, J2, J3, J4, Y1, Y2, Y3, Y4,

Ĵ5, Ĵ6, J5, J6, J7, Y5, Y6, Y7.

Ĵ7 = Z7, J8 = Z7,

Ĵ8 = Z8, J9 = Z8.

Ĵ9 = Ẑ10,

Ĵ10 = Ẑ11.

1 Ĵ1, Ĵ2, Ĵ3, Ĵ4, J1, J2, J3, J4, Y1, Y2, Y3, Y4,

Ĵ5, Ĵ6, J5, J6, J7. Y5, Y6, Y7.

Ĵ11 = Ẑ6.

metries of the other four considered systems E{x, t ; v, p, ρ}, L{y, s ; p, q},
LW1{y, s ; v, p, q, w1} and LW4{y, s ; p, q, w4}; the symmetries Z7 and Z8

yield nonlocal symmetries of the systems E{x, t ; v, p, ρ} and LW1{y, s;
v, p, q, w1} but local symmetries of the other four considered systems L{y, s;
v, p, q}, L{y, s ; p, q}, LW4{y, s ; v, p, q, w4} and LW4{y, s ; p, q, w4}; the sym-
metries Ẑ10 and Ẑ11 are local symmetries of the Lagrange subsystem L{y, s;
p, q} and the subsystem LW4{y, s ; p, q, w4} but yield nonlocal symme-
tries of the other four considered systems E{x, t ; v, p, ρ}, L{y, s ; v, p, q},
LW1{y, s; v, p, q, w1} and LW4{y, s ; v, p, q, w4}. Interestingly, the symme-
try Ẑ6, a local symmetry of the Lagrange subsystem L{y, s ; p, q} for any
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value of the polytropic constant γ, yields a local symmetry of the sub-
system LW4{y, s ; p, q, w4} only in the case γ = 1 (and yields a nonlocal
symmetry otherwise), and is a nonlocal symmetry of the other four consid-
ered PGD systems E{x, t ; v, p, ρ}, L{y, s ; v, p, q}, LW1{y, s ; v, p, q, w1} and
LW4{y, s ; v, p, q, w4} for all values of γ.

(3) Nonlocal symmetries of generalized polytropic PGD equations
As another example, consider a nonlocal symmetry classification problem for
PGD equations with a generalized polytropic equation of state

B(p, q) =
M(p)

q
, M ′′(p) 6= 0, (4.34)

which excludes the polytropic case considered in the previous example.
For the sake of brevity, consideration is only given for the extended tree Ta

(3.105) of PDE systems of planar gas dynamics equations. [These follow from
local conservation laws of the Lagrange PGD system L{y, s ; v, p, q} that arise
from zeroth-order multipliers Λi = Λi(y, s, v, p, q); see Section 3.5.4, Figure
3.5.]

The extended tree T ′a includes ten nonlocally related PDE systems.

• The Euler system E{x, t ; v, p, ρ} (3.39).
• The Lagrange system L{y, s ; v, p, q} (3.42).
• Three singlet potential systems LW1{y, s ; v, p, q, w1} (3.97), LW2{y, s;

v, p, q, w2}(3.98), and LW3{y, s ; v, p, q, w3} (3.99).
• Three couplets LW1W2{y, s ; v, p, q, w1, w2} (3.100), LW1W3{y, s; v, p, q,

w1, w3} (3.101), and LW2W3{y, s ; v, p, q, w2, w3} (3.102).
• One triplet LW1W2W3{y, s ; v, p, q, w1, w2, w3} (3.103).
• The nonlocally related subsystem L{y, s ; p, q} (3.46).

The point symmetry classification of each of the above seven potential sys-
tems (modulo the equivalence transformations (3.96)), i.e., the three singlets,
three couplets and one triplet, yields Table 4.19 that lists point symmetries
and nonlocal symmetries for the Lagrange PGD system L{y, s ; v, p, q} with
the equation of state (4.34).

In Table 4.19, the symmetries of each PDE system arise as projections of
infinitesimal generators presented in the right-hand column on the space of
variables of that system.

From Table 4.19, observe that the Euler system E{x, t ; v, p, ρ} has the
same symmetries for any M(p). The infinitesimal generators Z9, . . . , Z12 yield
point symmetries of the systems L{y, s ; p, q}, L{y, s ; v, p, q} and LW2{y, s;
v, p, q, w2}, and nonlocal symmetries of all other systems; the infinitesimal
generators Z13, Z14 yield point symmetries of the systems L{y, s ; p, q} and
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Table 4.19 Symmetries of the generalized polytropic planar gas dynamics equations

System M(p) Point Symmetries

E Arbitrary X1 = ∂
∂t

, X2 = ∂
∂x

, X3 = t ∂
∂x

+ ∂
∂v

,

X4 = x ∂
∂x

+ v ∂
∂v
− 2ρ ∂

∂ρ
,

X5 = x ∂
∂x

+ t ∂
∂t

.

L, L, (i) Arbitrary Z1 = ∂
∂s

+ w2 ∂
∂w3 , Z2 = ∂

∂y
+ w1 ∂

∂w3 ,

LW1, LW2, LW3, Z3 = ∂
∂v

+ s ∂
∂w1 + y ∂

∂w2 + sy ∂
∂w3 ,

LW1W2, LW1W3, Z4 = −y ∂
∂y

+ 2q ∂
∂q

+ v ∂
∂v

+ w1 ∂
∂w1 ,

LW2W3, Z5 = s ∂
∂s

+ y ∂
∂y

+ w1 ∂
∂w1 + w2 ∂

∂w2

LW1W2W3 +2w3 ∂
∂w3 ,

Z6 = ∂
∂w1 , Z7 = ∂

∂w2 , Z8 = ∂
∂w3 .

L, L, LW2 (ii) −p ln p Z9 = y ∂
∂y

+ 2p ∂
∂p

+ 2q
ln p

∂
∂q

+ v ∂
∂v

+ 2w2 ∂
∂w2 .

(iii) γp + δp
γ+1

γ Z10 = (γ+1)y

2γ
∂

∂y
+ p ∂

∂p
− q

δp1/γ+γ
∂

∂q

γ 6= 0,−1 + (γ−1)v

2γ
∂

∂v
+ w2 ∂

∂w2 .

(iv) 1 + αep, Z11 = ∂
∂p

+ αep

1+αep q ∂
∂q
− s ∂

∂w2 ,

α = ±1 Z12 = y ∂
∂p

+ αep

1+αep yq ∂
∂q
− s ∂

∂v
− sy ∂

∂w2 .

L, LW2 (ii) −p ln p Z13 = y2 ∂
∂y

+ yp ∂
∂p
−

(
3− 1

ln p

)
yq ∂

∂q

−(yv − w2) ∂
∂v

+ yw2 ∂
∂w2 .

(iii) γp + δp
γ+1

γ Z14 = y2 ∂
∂y

+ yp ∂
∂p
−

(
3− δ

γ
p1/γ

δp1/γ+γ

)
yq ∂

∂q

γ 6= 0,−1 −(yv − w2) ∂
∂v

+ yw2 ∂
∂w2 .

L (iii) with γ = 3: Ẑ15 = 1
3s2 ∂

∂s
− sp ∂

∂p
+ 1

δp4/3+3spq ∂
∂q

.

3p + δp
4
3

LW2{y, s ; v, p, q, w2}, and nonlocal symmetries of all other systems, includ-
ing the Euler system E{x, t ; v, p, ρ} and the Lagrange system L{y, s ; v, p, q}.

The point symmetries of the Lagrange subsystem L{y, s ; p, q} include
all corresponding point symmetries of the system LW2{y, s ; v, p, q, w2}; for
M(p) = 3p + δp4/3, one additional symmetry Ẑ15 is obtained that is a non-
local symmetry of the Euler system E{x, t ; v, p, ρ}, the Lagrange system
L{y, s ; v, p, q} and all its seven potential systems considered in this example.

All other infinitesimal generators in Table 4.19 project onto point sym-
metries for both the Euler system E{x, t ; v, p, ρ} and the Lagrange system
L{y, s ; v, p, q}.
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Exercises 4.2

4.2.1. Find equivalence transformations of the nonlocally related systems in
the extended tree T4 for the nonlinear diffusion equation (3.18). Determine the
point symmetry classifications of each of the nonlocally related subsystems
A{x, u ;α}, V{u, t ; v} and X{u, v ;x} within the extended tree T4 for the
nonlinear diffusion equation (3.18).

4.2.2. Find the infinite set of point symmetries of the potential system
UW{x, t ; u,w} (3.82) of the nonlinear diffusion equation (3.18). Find a point
transformation that maps UW{x, t ; u,w} into a linear PDE system.

4.2.3. Show that the potential system UB{x, t ;u, β} (3.84) of the nonlinear
wave equation utt = (c2(u)ux)x (3.76), in the case c(u) = u−2/3, has an
infinite number of point symmetries. For this case, find an explicit form of
the linearizing transformation. [Hint: In this case, instead of computing an
infinite number of point symmetries and applying Theorem 2.4.2, one may
start by introducing new independent variables s = x−1, β = x3u. The
resulting PDE system is linearizable by a hodograph transformation.]

4.2.4.

(a) Find the point symmetries M7 and M8 of the potential system TQ{u, v;
t, q} (3.93) of the wave equation utt = (c2(u)ux)x (3.76) [Table 4.7].

(b) Find the point symmetries N5 and N6 of the potential system TR{u, v;
t, r} (3.94) of the wave equation (3.76) [Table 4.8].

4.2.5. Find the point symmetries of the linear wave equation X{u, v ; x}
(3.86). Deduce whether this linear wave equation can be mapped by a point
transformation into a constant coefficient linear PDE.

4.2.6. Calculate the components of the nontrivial infinite-parameter set of
point symmetries of the linear wave equation

qtt = x2qxx (4.35)

(equivalent to the equation (3.87) after a suitable renaming of the variables).
Show that the scalar PDE (4.35) can be mapped into the constant coefficient
linear wave equation QXT = 0 by the point transformation

X = 1/x + t, T = 1/x− t, Q = q/x + t

[Bluman (1983); Bluman & Kumei (1987)].

4.2.7. Show that the symmetry Ẑ6 [Table 4.17], which yields a nonlocal sym-
metry of both the polytropic Euler and Lagrange PGD systems and a local
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symmetry of the Lagrange subsystem L{y, s ; p, q}, also yields a local symme-
try of both the potential Lagrange system LW2{y, s ; v, p, q, w2} (3.98) and
the triplet potential Lagrange system LW1W2W3{y, s ; v, p, q, w1, w2, w3}
(3.103). Find the components of the infinitesimal symmetry generator corre-
sponding to each of v, w1, w2, and w3.

4.3 Construction of Non-invertible Mappings Relating
PDEs

In this section, nonlocally related systems are used to extend the work pre-
sented in Sections 2.4–2.6 on the invertible mapping of a given PDE system
to one of a simpler type that can draw on an arsenal of well-known solution
techniques. In particular, it is shown how to find useful nonlocal mappings
relating PDEs through the use of nonlocally related potential systems.

Firstly, the invertible mapping algorithm presented in Section 2.4 is ex-
tended to include nonlocal mappings of nonlinear PDEs to linear PDEs. Here,
if a nonlocally related potential system has a point symmetry that satisfies
the criteria of Theorems 2.4.1 and 2.4.2 and yields a nonlocal (potential) sym-
metry of a given PDE system, then one can construct an invertible mapping
of the potential system to a linear system that in turn yields a nonlocal map-
ping of the given nonlinear PDE system to a linear PDE system. A similar
extension occurs when such a nonlocal mapping exists of a nonlinear PDE
system to a linear PDE system when the nonlocally related potential system
of the nonlinear PDE system has a set of local conservation law multipliers
that satisfies the criteria of Theorems 2.6.1 and 2.6.2.

Secondly, it is shown how to extend the invertible mapping algorithm
presented in Section 2.4 to include nonlocal mappings of linear PDEs with
variable coefficients to linear PDEs with constant coefficients. Here one starts
from the observation that each solution set of the adjoint PDE system of a
given linear PDE system is a set of conservation law multipliers of the given
PDE system and correspondingly yields a nonlocally related linear potential
system of the given PDE system. The aim is to find a particular solution
set of the adjoint PDE system that yields an invertible mapping of its corre-
sponding nonlocally related linear potential system to a constant coefficient
linear system. In turn this yields a non-invertible (nonlocal) mapping of the
given linear PDE with variable coefficients to a linear PDE with constant co-
efficients. As examples, we consider nonlocal transformations of Kolmogorov
equations to the backward heat equation [Bluman & Shtelen (2004)]. There
also exists related work on nonlocal transformations of Schrödinger equations
to the free particle equation [Bluman & Shtelen (1996a)].
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4.3.1 Non-invertible mappings of nonlinear PDE
systems to linear PDE systems

Suppose a given nonlinear PDE system does not have local (point or contact)
symmetries (or, equivalently, does not have local conservation law multipli-
ers) that yield an invertible mapping to a linear PDE system. In particular,
this means that its local symmetries do not satisfy the criteria of Theorems
2.4.1, 2.4.2 (or, equivalently, that its local conservation law multipliers do
not satisfy the criteria of Theorems 2.6.1, 2.6.2) so that there does not ex-
ist an invertible mapping of the nonlinear PDE system to any linear PDE
system. However, it could happen that a nonlocally related system has an
infinite set of local symmetries (an infinite set of local conservation law mul-
tipliers) that yields an invertible mapping of the nonlocally related system
to some linear PDE system. Consequently, through the invertible mapping
of the nonlocally related system to a linear system, one obtains a nonlocal
(non-invertible) mapping of the given nonlinear PDE system to a linear PDE
system. Of course, the local symmetries (local conservation law multipliers)
yielding such a linearization of the nonlocally related system, must have an
essential dependence on nonlocal variables.

For illustration, the following examples are considered.

(1) Linearization of Burgers’ equation
As a first example, consider Burgers’ equation

ut + uux − uxx = 0. (4.36)

One can show that equation (4.36) has at most a finite number of contact
symmetries. Hence there exists no point or contact transformation that lin-
earizes Burgers’ equation. As written (for convenience, after multiplication
by the factor 2), the PDE (4.36) can be expressed as the conservation law
Dt(2u)+Dx(u2−2ux) = 0. Correspondingly, one obtains the potential system

vx = 2u,

vt = 2ux − u2.
(4.37)

The potential system (4.37) has an infinite number of point symmetries given
by the infinitesimal generator

X = ev/4

{
[2h(x, t) + g(x, t)u]

∂

∂u
+ 4g(x, t)

∂

∂v

}
, (4.38)

where (g(x, t), h(x, t)) is an arbitrary solution of the linear PDE system
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h = gx,

hx = gt

(4.39)

[Vinogradov & Krasil’shchik (1984); Kersten (1987)]. Consequently, one can
apply Theorems 2.4.1, 2.4.2 to obtain the well-known nonlocal Hopf–Cole
transformation that linearizes Burgers’ equation (4.36) [Exercise 2.4.4].

Note that from the form of the infinitesimal generator (4.38), one can
immediately see that the locally related subsystem of (4.37), known as the
integrated form of Burgers’ equation, given by

vt = vxx − 1
4 (vx)2, (4.40)

has the linearizing point symmetries

X = ev/4g(x, t)
∂

∂v
,

where g(x, t) is any solution of the linear heat equation

gt − gxx = 0.

(2) Linearization of a nonlinear heat conduction equation
The nonlinear heat conduction equation

ut − (u−2ux)x = 0, (4.41)

which arises directly as a conservation law, does not have linearizing contact
symmetries. However, one can show that the corresponding potential system
given by

vt = u−2ux,

vx = u,
(4.42)

has the infinite set of linearizing point symmetries

X = g(t, v)
∂

∂x
− h(t, v)u2 ∂

∂u
, (4.43)

where (g(t, v), h(t, v)) is an arbitrary solution of the linear system

h = gv,

hv = gt

(4.44)

[Bluman, Kumei, & Reid (1988)]. See Exercise 2.4.3 for the corresponding
transformation to a linear system.

Again, note that from the form of the infinitesimal generator (4.43), it
follows that the locally related subsystem of (4.42), given by
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vt = (vx)−2vxx, (4.45)

has the infinite set of linearizing point symmetries

X = g(t, v)
∂

∂x
,

where g(t, v) is an arbitrary solution of the linear heat equation

gt = gvv.

See Exercise 2.4.3 for the corresponding linearizing transformation.

(3) Linearization of the Thomas equations
As a third example, consider the nonlinear system of Thomas equations given
by

vt − ux = 0,

vt − uv − u− v = 0,
(4.46)

that describes a fluid flow through a reacting medium [Thomas (1944); see
also Whitham (1974)] and also can be related to the equations for two-wave
interaction [Hasegawa (1974); Hashimoto (1974); Yoshikawa & Yamaguti
(1974)]. Since the nonlinear PDE system (4.46) does not have an infinite
number of point symmetries, it cannot be linearized by a point transforma-
tion. The first equation of (4.46) is written as a conservation law, which in
turn leads directly to the corresponding potential system given by

wx = v,

wt = u,

vt − uv − u− v = 0.

(4.47)

One can show [Bluman & Kumei (1990b)] that the potential system (4.47)
has the infinite set of point symmetries

X = ew
{

[F (x, t)u + H(x, t)]
∂

∂u
+ [F (x, t)v + G(x, t)]

∂

∂v

+F (x, t)
∂

∂w

}
,

(4.48)

where (F (x, t), G(x, t), H(x, t)) is an arbitrary solution of the linear PDE
system

Fx = G,

Ft = H,

Gt = G + H.

(4.49)

Applying Theorems 2.4.1 and 2.4.2, one obtains the point transformation
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z1 = x,

z2 = t,

w1 = e−w,

w2 = e−wv,

w3 = e−vu,

(4.50)

that invertibly maps the nonlinear system (4.47) to the linear system given
by

∂w1

∂z1
= w2,

∂w1

∂z2
= w3,

∂w2

∂z2
= w2 + w3.

(4.51)

Consequently, any solution (w1(z1, z2), w2(z1, z2), w3(z1, z2)) of the linear
system (4.51) yields the solution

(u(x, t), v(x, t)) = −
(

w3(x, t)
w1(x, t)

,
w2(x, t)
w1(x, t)

)
,

of the Thomas equations (4.47).
Note that from the form of the infinitesimal generator (4.48), it follows

that the locally related subsystem of (4.47), given by

wxt − wtwx − wt − wx = 0, (4.52)

has the linearizing infinite set of point symmetries

X = F (x, t)ew ∂

∂w
(4.53)

where F (x, t) is any solution of the linear PDE

Fxt − Ft − Fx = 0.

In particular, one obtains the point transformation W = e−w that maps
the nonlinear PDE (4.52) to the linear PDE Wxt −Wt −Wx = 0.

(4) Linearization of a nonlinear reaction-diffusion equation
Consider the nonlinear reaction-diffusion equation given by

ut − u2uxx − 2u2 = 0. (4.54)

One can show that the PDE (4.54) has no linearizing set of contact sym-
metries and hence cannot be linearized by an invertible transformation. Mul-
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tiplying the PDE (4.54) by u−2 yields the conservation law

Dt(u−1) + Dx(ux + 2x) = 0,

and the corresponding potential system (u 6= 0)

vx = u−1,

vt = −(ux + 2x) = −(u + x2)x.
(4.55)

The nonlinear PDE system (4.55) also has no linearizing set of point sym-
metries. However, since the second PDE in (4.55) is written as a conservation
law, one can accordingly introduce a second potential variable w to obtain
the nonlocally related potential system

vx = u−1,

wx = v,

wt = −(u + x2).

(4.56)

On can show [Exercise 2.4.8] that the potential system (4.56) has an infinite
number of linearizing point symmetries given by the infinitesimal generator

X = e(w−xv)
{

(F (t, v)− xH(t, v))
∂

∂x

+(G(t, v)− 2xF (t, v) + (x2 − u)H(t, v))
∂

∂u

+(vF (t, v)− (1 + xv)H(t, v))
∂

∂w

}
,

(4.57)

where (F (t, v), G(t, v),H(t, v)) is an arbitrary solution of the linear system

∂H(t, v)
∂v

= F (t, v),
∂H(t, v)

∂t
= G(t, v),

∂F (t, v)
∂v

= G(t, v). (4.58)

Consequently, one can show that the application of Theorems 2.4.1, 2.4.2
to the point symmetries (4.57) yields the point transformation

z1 = t,

z2 = v,

w1 = xe(xv−w),

w2 = (x2 + u)e(xv−w),

w3 = e(xv−w) − 1,

that invertibly maps the nonlinear PDE system (4.56) to the linear system
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∂w1

∂z2
= w2,

∂w3

∂z2
= w1,

∂w3

∂z1
= w2.

Correspondingly, one can show that any solution (w1, w2, w3) 6= (0, 0,−1)
of this linear system yields the solution

u =
w2(w3 + 1)− (w1)2

(w3 + 1)2

of the nonlinear reaction-diffusion equation (4.54).

(5) Linearization of a nonlinear telegraph equation
As a final example, consider the nonlinear telegraph equation [Varley & Sey-
mour (1985)]

φtt = (φt)2φxx + φt(1− φt). (4.59)

One can show that PDE (4.59) does not have contact symmetries yielding
its linearization by an invertible point or contact transformation.

Let u = φt, v = φx. Then the corresponding PDE system

u = φt,

v = φx,

ut = u2vx + u(1− u),

(4.60)

is equivalent to and locally related to the scalar PDE (4.59), and hence (4.60)
is also not linearizable by an invertible transformation.

Clearly, the nonlinear PDE system (4.60) has a nonlocally related subsys-
tem given by

ux = vt,

ut = u2vx + u(1− u).
(4.61)

As shown in Section 2.4.1, the nonlinear telegraph system (4.61) has an
infinite set of point symmetries yielding its linearization by the point trans-
formation (2.92) to the linear PDE system given by (2.93). In turn, this yields
the linearization of the nonlinear telegraph equation (4.59) by a non-invertible
(nonlocal) transformation.

Of course, one could consider the nonlinear PDE system (4.61) as the given
PDE system with the nonlocally related potential system (4.60) arising from
its first equation written as a conservation law. In turn, the scalar equation
(4.59) is a locally related subsystem of the potential system (4.60).
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4.3.2 Non-invertible mappings of linear PDEs with
variable coefficients to linear PDEs with
constant coefficients

In Section 2.5, there was consideration of the problem of determining whether
a given linear PDE with variable coefficients can be mapped invertibly to a
linear PDE with constant coefficients. The basis of the presented algorithm
was the observation that a linear PDE with constant coefficients is com-
pletely characterized by its point symmetries connected with its linearity
and invariance under the abelian group of translations of its independent
variables. This led to a definitive answer to the posed problem and also to
the construction of such an invertible mapping when one exists. Parabolic
and hyperbolic equations were considered as specific examples.

Now suppose a given linear PDE with variable coefficients cannot be
mapped invertibly to a linear PDE with constant coefficients. Using the lin-
ear parabolic PDE as a canonical example, it is shown how to construct
non-invertible mappings to extend the class of linear PDEs with variable co-
efficients that can be mapped to linear PDEs with constant coefficients. This
is accomplished through consideration of an appropriate potential system.
In particular, for any given linear PDE, any solution of its adjoint equation
is a multiplier for a conservation law that yields an equivalent nonlocally
related potential system. The aim is to find such a multiplier so that the
corresponding potential system can be mapped invertibly into a linear PDE
system with constant coefficients. As a consequence, the given linear PDE
could be mapped, non-invertibly, into an equivalent constant coefficient lin-
ear PDE. When the given PDE is a linear parabolic equation (without loss
of generality, PDE (2.176)), then the constant coefficient PDE can be taken
to be the backward heat equation.

The explicit relationship between the solutions of any given linear PDE
system and its local conservation law multipliers (which satisfy the adjoint
system of the given system) is exhibited by equations (2.219) and (2.220) in
Section 2.6.

Now suppose the given PDE is the linear parabolic PDE in the standard
form (see Section 2.5.1 and the discussion following equation (2.176)) given
by

Lu = uxx + uy + V (x, y)u = 0. (4.62)

The results presented in Section 2.5.1 can be summarized in terms of the
following theorem [Bluman & Shtelen (2004)] which can be proven by direct
calculation.

Theorem 4.3.1. A linear parabolic PDE (4.62) can be mapped invertibly by
a point transformation to the backward heat equation
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wz1z1 + wz2 = 0 (4.63)

if and only if V (x, y) is of the form

V (x, y) = a(y)x2 + b(y)x + c(y) (4.64)

for some functions a(y), b(y), c(y). The point transformation that yields the
mapping is given by

z1 = σ(y)x + ρ(y),

z2 =
∫ y

σ2(ŷ)dŷ,

w = u exp 1
4 [σ−1σ′(y)x2 + 2σ−1ρ′(y)x + λ(y)],

(4.65)

where (σ(y), ρ(y), λ(y)) is a solution of the nonlinear system of ODEs

σ−2(σσ′′ − 2σ′2) = 4a(y),

(σρ′′ − 2σ′ρ′) = 2σ2b(y),

λ′ = σ−2(ρ′2 − 2σσ′) + c(y).

(4.66)

The solution of ODE system (4.66) appears in Bluman & Shtelen (2004).
Now the result of Theorem 4.3.1 is extended to include nonlocal (non-

invertible) transformations of linear parabolic equations of the form (4.62)
to the backward heat equation (4.63), i.e., through nonlocal transformations
arising from related potential systems, one can widen the class of functions
V (x, y) for which a linear PDE (4.62) can be mapped into the backward
heat equation (4.63). The work presented here appears in Bluman & Shtelen
(2004).

A multiplier φ(x, y) that yields a local conservation law of the linear
parabolic PDE (4.62) is any solution φ(x, y) of its adjoint PDE

L∗φ = φxx − φy + V (x, y)φ = 0. (4.67)

In particular, for arbitrary functions (U(x, y), Φ(x, y)), one has the rela-
tionship

ΦLU − UL∗Φ

= Φ[Uxx + Uy + V (x, y)U ]− U [Φxx − Φy + V (x, y)Φ]

= Dx(ΦUx − ΦxU) + Dy(ΦU).

(4.68)

Consequently, for any solution φ(x, y) of the adjoint equation (4.67), the
given linear parabolic scalar PDE (4.62) is nonlocally equivalent to the cor-
responding linear potential system
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vx = φu,

vy = φxu− φux.
(4.69)

By direct calculation, one can prove the following extended theorem.

Theorem 4.3.2. Let ψ(x, y) be any solution of the linear PDE

ψxx + ψy + [a(y)x2 + b(y)x + c(y)]ψ = 0, (4.70)

for some specific coefficients a(y), b(y), c(y). Let φ(x, y) = ψ−1. For the same
coefficients a(y), b(y), c(y), consider the linear parabolic PDE (4.62) with

V (x, y) = −2
∂2

∂x2
log |φ(x, y)|+ a(y)x2 + b(y)x + c(y). (4.71)

The corresponding potential system (4.69) can be mapped invertibly by a point
transformation to the backward heat potential system

∂w2

∂z1
= w1,

∂w2

∂z2
= −∂w1

∂z1
,

(4.72)

for which each component satisfies the backward heat equation, i.e., wi
z1z1 +

wi
z2 = 0, i = 1, 2. In particular, such a mapping is given by

z1 = σ(y)x + ρ(y),

z2 =
∫ y

σ2(ŷ)dŷ,

w1 = σ−1eg(x,y)
{
u +

(
1
2σ−1(σ′(y)x + ρ′(y))− ψ−1ψx

)
ψv

}
,

w2 = eg(x,y)ψv,

(4.73)

where (σ(y), ρ(y), λ(y)) is a solution of the corresponding nonlinear ODE
system (4.66) and

g(x, y) = 1
4 [σ−1σ′(y)x2 + 2σ−1ρ′(y)x + λ(y)].

The mapping (4.73) defines a point transformation acting on (x, t, u, v)-
space that projects onto a nonlocal transformation acting on (x, t, u)-space if
the coefficient of v is nonzero in the third equation of the mapping.

It is easy to see that the mapping (4.73) yields a nonlocal transformation
of the linear PDE (4.62) to the backward heat equation if and only if V (x, y)
is of the form (4.71), V (x, y) is not quadratic in x, and φ(x, y) satisfies the
condition
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∂5

∂x5
log |φ(x, y)| 6 ≡ 0.

Let ψ̂(z1, z2) be any solution of the backward heat equation ψ̂z1z1 + ψ̂z2 =
0. Then from the mapping equations (4.65) it follows that

ψ(x, y) = ψ̂(z1, z2) exp{− 1
4 [σ−1σ′(y)x2 + 2σ−1ρ′(y)x + λ(y)]}

is a solution of the linear parabolic PDE (4.70), and accordingly, V (x, y)
given by the equation (4.71) becomes

V (x, y) = a(y)x2 + b(y)x + c(y)− 2σ2


 ψ̂z2

ψ̂
+

(
ψ̂z1

ψ̂

)2

− σ′(y)

σ(y)
, (4.74)

where z1 = σ(y)x+ρ(y), z2 =
∫ y

σ2(ŷ)dŷ, with σ(y), ρ(y) related to a(y), b(y)
through the first two ODEs of the system (4.66). Hence every solution of the
backward heat equation yields a coefficient V (x, y) given by (4.74) for which
the corresponding linear parabolic PDE (4.62) can be mapped to the back-
ward heat equation. Moreover, one can prove the following theorem [Exercise
4.3.3].

Theorem 4.3.3. Let w = ψ̂(z1, z2) be a solution of the backward heat equa-
tion wz1z1 + wz2 = 0. Such a solution yields a coefficient V (x, y) given by
(4.74). The corresponding linear parabolic PDE (4.62) can be mapped to the
backward heat equation only through a nonlocal transformation if and only if
ψ̂(z1, z2) is not one of the forms

(I) ψ̂(z1, z2) = e(Pz1−P 2z2),

(II) ψ̂(z1, z2) =
1√

(z2 − ẑ2)
exp

{
(z1 − ẑ1)2

4(z2 − ẑ2)

}
,

where P, ẑ1, ẑ2 are arbitrary constants.

In Bluman & Shtelen (2004), a recycling procedure [See also Bluman &
Reid (1989).] is described that can further extend the class of linear parabolic
equations that can be mapped into the heat equation by explicit nonlocal
transformations. Interesting special cases include d-Bessel processes of the
form

∂u

∂t
+

∂2u

∂R2
+

(d− 1)
R

∂u

∂R
= 0, d = 2k + 1, k = 1, 2, . . . .

For related work on classes of Schrödinger equations that can be mapped
into the free particle equation by nonlocal transformations, see Bluman &
Shtelen (1996a).
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Exercises 4.3

4.3.1. Consider the potential system UW{x, t ; u,w} (3.82) of the nonlinear
wave equation (4.8) in the case c(u) = (u + B)−2.

(a) Find an infinite set of point symmetries of the potential system
UW{x, t ; u,w} (3.82).

(b) Find a point transformation that maps UW{x, t ; u,w} into a linear
PDE system.

4.3.2. Show that the potential system UB{x, t ;u, β} (3.84) of the nonlinear
wave equation utt = (u−4/3ux)x has an infinite number of point symmetries.
Find the explicit form of a linearizing transformation.

4.3.3. Prove Theorem 4.3.3.

4.4 Discussion

Pucci & Saccomandi (1993) give some necessary conditions for the existence
of potential symmetries that arise from the potential system for a given scalar
PDE written as a conservation law.

For diffusion-convection equations of the form

ut − [f(u)ux + k(u)]x = 0,

Sophocleous (1996) classifies all functions f(u) and k(u) for which there exist
potential symmetries through analyzing the potential system that arises from
the equation as written. He also finds the corresponding potential symmetries.

Chou & Qu (1999) consider the potential system and potential equation,
respectively given by

vx = u,

vt = D(u)(ux)n + E(u)
(4.75)

and
vt = D(vx)(vxx)n + E(vx) (4.76)

for the class of diffusion-convection equations of the form

ut − [D(u)(ux)n + E(u)]x = 0. (4.77)

They classify the cases when the potential system (4.75) yields a potential
symmetry of (4.77) and classify the point symmetries of the potential equa-
tion (4.76). It is not noted in this paper that (1) each point symmetry of
(4.76) yields a local symmetry of (4.75); and (2) each potential symmetry of
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(4.77) that results from a point symmetry of (4.75), must yield a local sym-
metry (not necessarily a point symmetry) of (4.76). [It is easy to see that the
potential system (4.75) and the potential equation (4.76) are locally related.]

Sophocleous (2005) finds potential symmetries of the class of nonlinear
diffusion equations with variable coefficients of the form

ut = [g(x)unux]x (4.78)

by considering the potential system that arises from the equation as written.
In particular, he shows that such potential symmetries arise in two cases:
(i) n = −2, g(x) = x2; (ii) n = −2, g(x) = x−2. For the first case, he
obtains potential symmetries that yield the linearization of PDE (4.78) and
also exhibits invariant solutions of (4.78), arising from potential symmetries.

Ivanova, Popovych & Sophocleous (2008a,b) classify potential systems and
resulting nonlocal conservation laws and potential symmetries for variable
coefficient diffusion-convection equations of the form

f(x)ut − [g(x)f(u)ux]x −H(x)G(u)ux = 0.

Ivanova & Sophocleous (2008) classify potential systems and find resulting
potential symmetries of systems of diffusion equations of the form

ut = [f(u, v)ux]x,

vt = [g(u, v)ux]x.

Senthilvelan & Torrisi (2000) find potential symmetries and resulting in-
variant solutions for a nonlinear PDE system representing a simplified model
for reacting mixtures. Potential symmetries are exhibited that yield the lin-
earization of the given PDE system by a nonlocal transformation.

Bluman, Cheviakov, & Ganghoffer (2008) consider the complete set of
equations of nonlinear elasticity in a dynamical context. A tree of nonlocally
related systems is constructed that includes both the Lagrange and Euler
PDE systems. As a consequence, nonlocal symmetries are found for both
systems. Invariant solutions are constructed from such a nonlocal symmetry
of the Euler system.

Formally, nonlocal symmetries have been found for PDEs through infinites-
imals depending on nonlocal variables that are integrals of the given depen-
dent variables of a given PDE system [Konopelchenko & Mokhnachev [(1979),
(1980)]; Kumei (1981); Kapcov (1982); Pukhnachev (1987)]. In these works
nonlocal symmetries are not realized as local symmetries of potential systems.

A particular way of obtaining nonlocal symmetries of PDEs is to seek
recursion operators, depending on inverse differentiation (integral) operators,
that generate sequences of nonlocal symmetries from local symmetries. For
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further details, see Kapcov (1982), Bluman & Kumei (1989), and Guthrie
(1994).

In Krasil’shchik & Vinogradov (1984) [see also Vinogradov & Krasil’shchik
(1984); Kersten (1987); Vinogradov (1989); Krasil’shchik & Kersten (2000)],
nonlocal symmetries are defined as local symmetries of an associated auxil-
iary PDE system whose integrability conditions yield the given PDE system.
A rather general form is assumed for the auxiliary system which involves un-
specified functions. In principle, these unspecified functions are determined
by requiring that the integrability conditions of the auxiliary PDE system
yield the given PDE system. In order to apply their method (related to an
idea introduced by Wahlquist and Estabrook (1975)) it seems that one has
to impose very strong assumptions on the form of the unspecified functions.

In the final chapter, the complexity in finding nonlocal symmetries and
nonlocal conservation laws of a given PDE system in the case of three or
more independent variables is considered. It is seen that in order that such
nonlocal symmetries and/or nonlocal conservation laws can arise from local
symmetries and/or local conservation laws, respectively, of a potential sys-
tem, it is necessary to append the potential system with gauge constraints
that relate the potential variables. On the other hand, it is shown that local
symmetries of nonlocally related systems arising as subsystems of a given
PDE system can yield nonlocal symmetries of the given PDE system as in
the situation for two independent variables. Moreover, unlike potential sys-
tems arising from divergence-type conservation laws, potential systems aris-
ing from lower-degree (e.g., curl-type) conservation laws may require fewer or
no gauge constraints in order to yield nonlocal symmetries and/or nonlocal
conservation laws.
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