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Preface

This book is a sequel to Symmetries and Integration Methods (2002), by
George W. Bluman and Stephen C. Anco. It includes a significant update of
the material in the last three chapters of Symmetries and Differential Equa-
tions (1989; reprinted with corrections, 1996), by George W. Bluman and
Sukeyuki Kumei. The emphasis in the present book is on how to find sys-
tematically symmetries (local and nonlocal) and conservation laws (local and
nonlocal) of a given PDE system and how to use systematically symmetries
and conservation laws for related applications. In particular, for a given PDE
system, it is shown how systematically (1) to find higher-order and nonlocal
symmetries of the system; (2) to construct by direct methods its conserva-
tion laws through finding sets of conservation law multipliers and formulas to
obtain the fluxes of a conservation law from a known set of multipliers; (3) to
determine whether it has a linearization by an invertible mapping and con-
struct such a linearization when one exists from knowledge of its symmetries
and/or conservation law multipliers, in the case when the given PDE system
is nonlinear; (4) to use conservation laws to construct equivalent nonlocally
related systems; (5) to use such nonlocally related systems to obtain nonlo-
cal symmetries, nonlocal conservation laws and non-invertible mappings to
linear systems; and (6) to construct specific solutions from reductions arising
from its symmetries as well as from extensions of symmetry methods to find
such reductions.

This book is aimed at applied mathematicians, scientists and engineers
interested in finding solutions of partial differential equations and is written
in the style of the above-mentioned 1989 book by Bluman and Kumei. There
are numerous examples involving various well-known physical and engineering
PDE systems.

The preceding book by Bluman and Anco includes comprehensive treat-
ments of dimensional analysis, Lie groups of transformations, the discovery
and use of symmetries to construct solutions of ordinary differential equa-

ix



x Preface

tions, and also shows how to construct conservation laws (first integrals) of
ordinary differential equations through multipliers (integrating factors) as
well as how to construct invariant solutions of partial differential equations
from their point symmetries.

Chapter 1 reviews essential material from the Bluman and Anco book
on one-parameter Lie groups of point transformations and how to find point
symmetries of PDE systems and extends this material to the consideration of
one-parameter higher-order local transformations and the finding of higher-
order symmetries of PDE systems. This is followed by a comprehensive treat-
ment on how to construct directly the local conservation laws essentially for
any given PDE system. This treatment is based on first finding conservation
law multipliers. It is shown how this treatment is related to and subsumes
the classical Noether’s theorem (which only holds for variational systems).
In particular, multipliers are symmetries of a given PDE system only when
the system is variational as written. There is a full discussion on connections
between symmetries and conservation laws including the use of symmetries
to find one or more additional conservation laws from a known conservation
law.

Chapter 2 deals with the construction of local mappings relating a given
PDE system to a target system of interest (or a member of a target class
of PDE systems) from knowledge of the symmetries and/or conservation law
multipliers of the given PDE system. In particular it is shown how to deter-
mine whether (1) a given nonlinear PDE system can be mapped invertibly to
a linear PDE system and it is shown how to construct such a mapping when
one exists; (2) a given linear PDE with variable coefficients can be mapped
invertibly to a linear PDE with constant coefficients and it is shown how to
construct such a mapping when one exists.

Chapter 3 considers perhaps the most important application of the mate-
rial on conservation laws presented in Chapter 1. In particular, it is shown
how to use local conservation laws and subsystems of a given PDE system
to construct systematically a tree of equivalent nonlocally related systems.
One of the many exhibited examples involves the planar gas dynamics equa-
tions, for which it is shown how the Euler and Lagrange systems are related
systematically within such a tree of nonlocally related systems.

Chapter 4 considers the applications of such nonlocally related systems to
find systematically nonlocal symmetries and nonlocal conservation laws of a
given PDE system. In turn, it is shown how to use such nonlocal symme-
tries to construct nonlocal mappings of nonlinear PDE systems to equivalent
linear PDE systems and to use conservation law multipliers of nonlocally re-
lated systems to construct nonlocal mappings of linear PDEs with variable
coefficients to equivalent linear PDEs with constant coefficients.

The topics of Chapter 5 include how to use various kinds of symmetries
to construct explicit solutions of PDEs, a discussion of the complexity in-
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volved in the construction of interesting nonlocally related systems in multi-
dimensions, and a discussion of existing software to implement the procedures
presented in this book.

If one is primarily interested in the material of Chapters 3–5, then Chapter
2 can be skipped. Chapter 1 is essential reading for all subsequent chapters.

Every topic is illustrated by examples. All sections have many exercises. It
is essential to do some of the exercises to obtain a working knowledge of the
presented material. Each chapter begins with a comprehensive Introduction
section. The Discussion section at the end of each chapter discusses related
work and puts the subject matter of the chapter in context for later chapters.

Within each section of a given chapter, definitions, theorems, corollaries,
and remarks are numbered separately and consecutively. For example, Re-
mark 4.2.1 refers to the first remark in Section 4.2. Exercises appear at the
end of each section; Exercise 4.2.2 refers to the second problem of Exercises
4.2, i.e., the second problem at the end of Section 4.2.

There are separate Author and Subject indices as well as a References
section. In addition there is a Theorem, Corollary and Lemma Index.

The authors are grateful to their many collaborators without whom this
book would not have been possible. In particular we wish to thank Ju-
lian Cole (posthumously), Sukeyuki Kumei, Gregory Reid, Vladimir Shtelen,
Zhenya Yan, Temuerchaolu, Oleg Bogoyavlenskij, Nataliya Ivanova, Dennis
The, Sheng Liu, Thomas Wolf, and Juha Pohjanpelto.

Thanks also to Andy Wan, Chengzhong Wu, Raouf Dridi and Olivier Glo-
rieux for valuable comments on preliminary versions of the manuscript.

Finally, we thank our respective families for their patience and understand-
ing through the course of our writing including our children David, Benny,
Vladimir, Tatiana, Maria, and Darren to whom this book is dedicated.

Vancouver, British Columbia, Canada George W. Bluman
Saskatoon, Saskatchewan, Canada Alexei F. Cheviakov
St. Catharines, Ontario, Canada Stephen C. Anco



Introduction

This book is concerned with some modern developments related to sym-
metries and conservation laws for partial differential equations (PDEs). It
is a sequel to Symmetry and Integration Methods for Differential Equations
(2002) by George W. Bluman and Stephen C. Anco (2002), which focused
on Lie groups of transformations and their applications to solving ordinary
differential equations (ODEs) and finding invariant solutions of PDEs. The
present volume primarily concentrates on recent research of the authors and
their collaborators. Most important, we attempt to put this work in a form
accessible to graduate students and researchers in applied mathematics, the
physical sciences and engineering. Most of the material in this book did not
appear in Symmetries and Differential Equations [(1989); reprinted with cor-
rections (1996)], by George W. Bluman and Sukeyuki Kumei, and includes a
significant updating of the final three chapters.

In the latter part of the 19th century, Sophus Lie initiated his studies on
continuous groups (Lie groups) with the aim to put order to, and thereby ex-
tend systematically, the hodgepodge of heuristic techniques for solving ODEs.
He showed that the problem of finding the Lie group of point transforma-
tions leaving invariant a DE (ordinary or partial), i.e., a point symmetry of
a DE, reduced to solving related linear systems of determining equations for
its infinitesimal generators. Lie also showed that a point symmetry of a DE
leads, in the case of an ODE, to reducing the order of the DE (irrespective
of any imposed initial conditions) and, in the case of a PDE, to finding spe-
cial solutions called invariant (similarity) solutions of the DE. Moreover, he
showed that a point symmetry of a DE generates a one-parameter family
of solutions from any known solution of a DE that is not an invariant solu-
tion arising from the symmetry. Most importantly, Lie’s work is applicable
to nonlinear DEs. His work is discussed in the two above-mentioned books
as well as many other excellent references therein. The direct applicability of
Lie’s work to PDEs, especially nonlinear PDEs, is rather limited, even when

xiii



xiv Introduction

a given PDE has a point symmetry, since the resulting invariant solutions
yield only a small subset of the solution set of the PDE and hence few posed
boundary value problems can be solved.

The extensions of Lie’s work to PDEs have focused on finding further ap-
plications of point symmetries to include linearization mappings and solutions
of boundary value problems, extending the spaces of symmetries of a given
PDE system to include local symmetries (higher-order symmetries) as well
as nonlocal symmetries, extending the applications of symmetries to include
variational symmetries that yield conservation laws for variational systems,
extending variational symmetries to multipliers and resulting conservation
laws for any given PDE system, finding further solutions that arise from
the extension of Lie’s method to the “nonclassical method” as well as other
generalizations, and efficiently solving the (over-determined) linear system of
symmetry and/or multiplier determining equations through the development
of symbolic computation software as well as related calculations for solving
the nonlinear system of determining equations for the nonclassical method.

A symmetry of a PDE system is any transformation of its solution manifold
into itself, i.e., a symmetry transforms (maps) any solution of a PDE system
to another solution of the same system. Consequently, continuous symmetries
of PDE systems are defined topologically and hence are not restricted to
just point symmetries. Thus, in principle, any nontrivial PDE system has
symmetries. The problem is to find and use such symmetries. Practically,
to find a symmetry of a PDE system, one must consider transformations,
acting locally in some finite-dimensional space, whose variables include the
dependent variables of the PDE system. However, as it will be seen, these
transformation variables do not have to be restricted to the independent and
dependent variables of a given PDE system.

One such extension is to consider higher-order symmetries (local symme-
tries) where the solutions of the linear determining equations for the com-
ponents of infinitesimal generators of symmetries are allowed to depend on
a finite number of derivatives of the given dependent variables of the PDE.
[By comparison, components of infinitesimal generators of point symmetries
allow dependence at most linearly on the first derivatives of the dependent
variables whereas components of infinitesimal generators of contact symme-
tries allow arbitrary dependence on first derivatives of dependent variables.]
In making this extension, it is essential to realize that the linear determining
equations for local symmetries are the linearized system of the given PDE
that holds for all of its solutions. Globally, point and contact symmetries act
on finite-dimensional spaces whereas higher-order symmetries act on infinite-
dimensional spaces consisting of the dependent and independent variables as
well as all of their derivatives. Well-known integrable equations of mathemat-
ical physics such as the Korteweg–de Vries equation have an infinite number
of higher-order local symmetries.
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Another extension is to consider solutions of the determining equations
that allow an ad-hoc dependence on nonlocal variables such as integrals of
the dependent variables. Usually such symmetries are found formally through
recursion operators that depend on inverse differentiation. Integrable equa-
tions such as the sine-Gordon and cubic Schrödinger equations have an infi-
nite number of such nonlocal symmetries.

In her celebrated 1918 paper, Emmy Noether showed that if a system of
DEs admits a variational principle, then any local transformation group leav-
ing invariant the action integral for its Lagrangian density, i.e., an admitted
variational symmetry, yields a local conservation law. Conversely, any local
conservation law of a variational DE system arises from a variational sym-
metry, and hence there is a direct correspondence between local conservation
laws and variational symmetries (Noether’s theorem and its generalizations
due to Bessel-Hagen (1921) and Boyer (1967)).

There are several limitations to Noether’s theorem for finding the local
conservation laws for a given DE system. First of all, it is restricted to vari-
ational systems. Consequently, for this theorem to be applicable to a given
DE system as written, the system must have the same number of dependent
variables as the number of equations in the given system, and have no dis-
sipation. Moreover, if a given DE system consists of one scalar equation, it
must be of even order. In particular, a given system of DEs, as written, is
variational if and only if its linearized system is self-adjoint. There is also the
difficulty of finding local symmetries of the action integral. In general, not
all local symmetries of a variational DE system are variational symmetries.
Moreover, the use of Noether’s theorem to find local conservation laws is
coordinate-dependent.

A conservation law of a given DE system is a divergence expression that
vanishes on all solutions of the DE system. Conservation laws describe es-
sential properties of the process modeled by a given DE system and are also
used for existence, uniqueness and stability analysis and for the development
of numerical methods. In general, all such divergences that yield local con-
servation laws arise from linear combinations of the DEs of a given system
taken with sets of local multipliers in which each multiplier is an expression
depending on the independent and dependent variables as well as derivatives
(up to some finite order) of the dependent variables of a given DE system.
It will be seen that a given DE system has a local conservation law if and
only if there exists a set of local multipliers such that the corresponding lin-
ear combination of the DEs in the system is identically annihilated by the
Euler operators associated with each of its dependent variables without re-
stricting these variables to solutions of the DE system, i.e., the dependent
variables are now treated as arbitrary functions. If a given DE system, as
written, is variational then its local conservation law multipliers correspond
to variational symmetries. In this case, it turns out that its local conservation
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law multipliers satisfy a system of determining equations that includes the
linearizing system of the given DE system augmented by additional deter-
mining equations that taken together correspond to the action integral being
invariant under the associated variational symmetry. More generally, for any
given DE system, all local conservation law multipliers are the solutions of
an easily found linear determining system that includes the adjoint system of
the linearizing DE system. For any set of local conservation law multipliers,
one can either directly find the fluxes and density of the corresponding local
conservation law or, if this proves difficult, there is an integral formula that
yields them without the need of a specific functional (Lagrangian) even in
the case when the given DE system is variational.

Another important application of symmetries of PDEs is to determine
whether a given PDE system can be mapped into an equivalent target PDE
system of interest. This is especially significant if a target class of PDEs
can be completely characterized in terms of its symmetries. Target classes
with such complete characterizations include linear PDE systems and linear
PDEs with constant coefficients. Consequently, from knowledge of the point
or contact symmetries of a given PDE system, one can determine whether
it can be mapped invertibly to a linear PDE system by a point or contact
transformation and explicitly find such a mapping when one exists. Moreover,
one can also see whether such a linearization is possible from knowledge of the
local conservation law multipliers of a given PDE system. From knowledge
of the point symmetries of a linear PDE with variable coefficients, one can
determine whether it can be mapped by an invertible point transformation
to a linear PDE with constant coefficients and find such an explicit mapping
when one exists.

In order to effectively apply symmetry methods to PDE systems, one needs
to work in some specific coordinate frame in order to perform calculations.
A procedure to find symmetries that are nonlocal and yet are local in some
related coordinate frame involves embedding a given PDE system in another
PDE system obtained by adjoining nonlocal variables in such a way that the
related PDE system is equivalent to the given system and the given system
arises through projection. Consequently, any local symmetry of the related
system yields a symmetry of the given system. If the local symmetry of the
related system has an essential dependence on the nonlocal variables after
projection, then it yields a nonlocal symmetry of the given PDE system.

A systematic way to find such an embedding is through local conservation
laws of a given PDE system. For each local conservation law, one can intro-
duce a potential variable(s). By adjoining the resulting potential equations
to the given PDE system, one can construct an augmented system (poten-
tial system) of PDEs. By construction, such a potential system is nonlocally
equivalent to the given PDE system since, through built in integrability con-
ditions, any solution of the given PDE system yields a solution of the poten-
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tial system and, conversely, through projection any solution of the potential
system yields a solution of the given PDE system. But this relationship is
nonlocal since there is no one-to-one correspondence between solutions of the
given and potential systems. If a local symmetry of the potential system has
an essential dependence on the potential variables when projected onto the
space of variables of the given system, then it yields a nonlocal symmetry
(potential symmetry) of the given PDE system. It turns out that many PDE
systems have such potential symmetries. Moreover, one can find other non-
local symmetries of a given PDE system through seeking local symmetries of
an equivalent subsystem of the given system or one of its potential systems
provided that such a subsystem is nonlocally related to the given PDE sys-
tem. Invariant solutions of such potential systems and subsystems can yield
further solutions of the given PDE system. A potential symmetry is a local
symmetry of a potential system, thus it generates a one-parameter family of
solutions from any known solution of the potential system that in turn yields
a one-parameter family of solutions from a known solution of the given PDE
system. Similarly, this will be the case for a nonlocal symmetry arising from
a subsystem. Furthermore, local conservation laws of potential systems can
yield nonlocal conservation laws of a given PDE system provided that their lo-
cal conservation law multipliers have an essential dependence on the potential
variables. Linearizations of such potential systems through local symmetry
or local conservation law multiplier analysis can yield explicit nonlocal lin-
earizations of a given PDE system. Moreover, through a potential system one
can extend the mappings of linear systems with variable coefficients to linear
systems with constant coefficients to include nonlocal mappings between such
systems.

One can further extend embeddings through using local conservation laws
to systematically construct trees of nonlocally related but equivalent systems
of PDEs. If a given PDE system has n local conservation laws, then each
conservation law yields potentials and corresponding potential systems. Most
importantly, from the n local conservation laws, one can directly construct
up to 2n − 1 independent nonlocally related systems of PDEs by consider-
ing the corresponding potential systems individually (n singlets), in pairs
(n(n − 1)/2 couplets), . . . , and taken all together (one n-plet). In turn, any
one of these 2n − 1 systems could lead to the discovery of new nonlocal sym-
metries and/or nonlocal conservation laws of the given PDE system or any of
the other nonlocally related systems. Moreover, such nonlocal conservation
laws could yield further nonlocally related systems, etc. Furthermore, subsys-
tems of such nonlocally related systems could yield further nonlocally related
systems. Correspondingly, a tree of nonlocally related systems is constructed.
Through such constructions, one can systematically relate Eulerian and La-
grangian coordinate descriptions of gas dynamics and nonlinear elasticity. In
both cases, for a corresponding PDE system written in Eulerian coordinates,
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there exists a nonlocally related system that yields a corresponding PDE
system written in Lagrangian coordinates.

For a given class of PDEs with classifying (constitutive) functions, it is of
interest to classify its trees of nonlocally related systems and corresponding
symmetries and conservation laws with respect to various forms of its con-
stitutive functions. When a system is variational, i.e., its linearized system is
self-adjoint, then of course the local conservation laws arise from a subset of
its local symmetries and, in particular, the number of linearly independent
conservation laws cannot exceed the number of corresponding higher-order
symmetries. But from the above, one can see that, in general, this will not be
the case when a system is not variational. Here a specific constitutive func-
tion could yield more local conservation laws than local symmetries as well
as vice versa.

For any given PDE system, a transformation group (continuous or dis-
crete) that leaves it invariant yields a formula that maps a conservation law
to a conservation law of the same system, whether or not the given system
is variational. If the group is continuous, then in terms of a parameter ex-
pansion a given conservation law could map into more than one additional
conservation law for the given PDE system.

Another important extension relates to Lie’s work on finding invariant
solutions for PDE systems. As mentioned previously, a point symmetry of
a PDE system maps each of its solutions into a one-parameter family of
solutions. But some solutions map into themselves, i.e., they are themselves
invariant. Such solutions satisfy the characteristic PDE given by the invariant
surface condition yielding the invariants of the point symmetry. The invari-
ant solutions arising from the point symmetry are the solutions of the given
PDE system that satisfy the augmented system consisting of this character-
istic PDE with known coefficients (obtained from the point symmetry) and
the given PDE system itself. The invariant solutions arise as solutions of a
reduced system with one less independent variable. This method (“classical
method”) of Lie to find invariant solutions of a given PDE is generalized by
the nonclassical method introduced in Bluman’s 1967 PhD thesis where one
seeks solutions of an augmented system consisting of the given PDE system
and the characteristic PDE with unknown coefficients as well as differen-
tial consequences of the augmented system. Here the unknown coefficients
are determined by substituting the characteristic equation, and its differen-
tial consequences, into the determining system for point symmetries of the
augmented system. The resulting over-determined system is nonlinear (even
if the given PDE system is linear) in these unknown coefficients, but less
over-determined than is the case when finding point symmetries of the given
PDE system. Each solution of the determining system for point symmetries
is a solution of the determining system for the unknown coefficients of the
characteristic PDE. Solving for the unknown coefficients, one then proceeds
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to find the corresponding “nonclassical” solutions of the augmented system
that, by construction, include the classical invariant solutions.

The solutions of a PDE that can be obtained by the nonclassical method
include all of its solutions that satisfy a particular functional form (ansatz)
of some generality that allows an arbitrary dependence on a similarity vari-
able (depending on the independent and dependent variables of the PDE)
and an arbitrary dependence on a function of a similarity variable and the
independent variables of the PDE. The solutions obtained by the nonclassical
method include all solutions obtained “directly” from such an ansatz by the
direct method introduced by Clarkson and Kruskal in 1988.

For many PDE systems arising in applications, the linear determining
equations for local symmetry components or local conservation law multipli-
ers split into over-determined linear PDE systems that can contain hundreds
of equations. To generate, simplify and solve such PDE systems, symbolic
software is used. Modern symbolic packages include routines for the auto-
matic generation of determining equations, their subsequent simplification
and solution (including classification with respect to constitutive functions
and/or parameters of a given DE system), to yield local symmetries and
conservation laws of a given DE system.



Chapter 1

Local Transformations and Conservation
Laws

1.1 Introduction

A continuous symmetry of a system of partial differential equations (PDEs) is
a transformation that leaves invariant the solution manifold of the system, i.e,
it maps (deforms) any solution of the system into a solution of the same sys-
tem. This definition is topological in nature. However, in practice, the direct
calculation of the continuous symmetries of a given system of PDEs restricts
one to consider symmetries that are local transformations acting on its space
of independent variables, dependent variables and their derivatives. Lie’s al-
gorithm to determine Lie groups of point transformations (point symmetries)
of differential equations was presented in Bluman & Anco (2002) [see also
Ovsiannikov [(1962), (1982)]; Bluman & Cole (1974); Olver (1986); Bluman
& Kumei (1989); Stephani (1989); Hydon (2000); Cantwell (2002)]. Point
symmetries arise from solutions of linear systems of determining equations
for components of infinitesimal generators for the independent and dependent
variables of a given PDE system, where these components themselves depend
only on the given PDE system’s independent and dependent variables. Point
transformations acting on the space of the given independent and dependent
variables of a given PDE system can be extended (prolonged) to point trans-
formations acting on the space of the given independent variables, dependent
variables, and their derivatives to any finite order.

Lie’s algorithm for finding point symmetries of a PDE system can be
extended to find more general local symmetries admitted by PDEs. In the
extension of Lie’s algorithm, one uses differential consequences of the given
PDE system, i.e., invariance of a given PDE system is understood to include
its differential consequences. Here it is important to consider the infinitesimal
generators for point symmetries in their evolutionary form where the inde-
pendent variables are themselves invariant and the action of a group of point
transformations is strictly an action on the dependent variables of the PDE

1G.W. Bluman et al., Applications of Symmetry Methods to Partial Differential Equations,
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system, so that solutions are directly mapped into other solutions under the
group action. In evolutionary form, the components of infinitesimal genera-
tors for dependent variables have at most a linear dependence on the first
derivatives of the dependent variables (the coefficients of the first derivatives
are the components of the independent variables when not in evolutionary
form).

This allows one to readily extend Lie’s algorithm to seek contact symme-
triesof PDEs (only existing for scalar PDEs) where now the components of
infinitesimal generators for dependent variables can depend at most on the
first derivatives of the dependent variable of a given scalar PDE. [If this de-
pendence is at most linear on the first derivatives, then a contact symmetry is
a point symmetry.] A contact transformation is equivalent to a point transfor-
mation acting on the space of the given independent variables, the dependent
variable and its first derivatives, and, through this, can be naturally extended
to point transformations acting on the space of the given independent vari-
ables, the dependent variable and its derivatives to any finite order greater
than one.

Lie’s algorithm can be still further extended by allowing the infinitesi-
mal generators in evolutionary form to depend on derivatives of dependent
variables to any finite order. This allows one to calculate symmetries that
are called higher-order symmetries. In the scalar case, contact symmetries
are first-order symmetries. It turns out that higher-order symmetries are
not equivalent to point transformations acting on a finite-dimensional man-
ifold including the independent variables, the dependent variables and their
derivatives to some finite order. However, they are local symmetries in the
sense that the components of the dependent variables in their infinitesimal
generators depend at most on a finite number of derivatives of the given
PDE system’s dependent variables so that their calculation only depends on
the local behaviour of solutions of the given PDE system. Local symmetries
include point symmetries, contact symmetries and higher-order symmetries.
Local symmetries are uniquely determined when infinitesimal generators are
represented in evolutionary form.

Sophus Lie considered contact transformations and contact symmetries
of PDEs. Emmy Noether (1918) introduced the notion of a one-parameter
higher-order transformation in her celebrated paper on conservation laws.
The well-known infinite sequences of conservation laws of the Korteweg–
de Vries (KdV) and sine-Gordon equations are directly related to admitted
infinite sequences of local symmetries (higher-order symmetries) obtained
through the use of recursion operators [Olver (1977)].

A conservation law of a given PDE system is a divergence expression that
vanishes on all solutions of the PDE system. In general, any such nontrivial
divergence expression that yields a local conservation law of the given PDE
system arises from a linear combination formed by local multipliers (char-
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acteristics, factors), depending on the independent and dependent variables
as well as at most a finite number of derivatives of the dependent variables
of the given PDE system, with each PDE in the given system. It turns out
that a divergence expression depending on independent variables, dependent
variables and their derivatives to some finite order is annihilated by the Euler
operators associated with each of its dependent variables; conversely, if the
Euler operators, associated with each dependent variable in an expression
involving independent variables, dependent variables and their derivatives to
some finite order, annihilate the expression, then the expression is a diver-
gence expression. From this it follows that a given PDE system has a local
conservation law if and only if there exists a set of local multipliers whose
linear combination with each of the PDEs in the system is identically annihi-
lated by the Euler operators associated with each of its dependent variables
without restricting these dependent variables in the linear combination to
solutions of the PDE system, i.e, the dependent variables are treated as ar-
bitrary functions.

Thus the problem of finding local conservation laws of a given PDE sys-
tem reduces to the problem of finding sets of local multipliers whose linear
combination with each PDE in the given system is annihilated by the Euler
operators associated with each dependent variable with the dependent vari-
ables in the given PDE system replaced by arbitrary functions (and their
derivatives). Each such set of multipliers yields a local conservation law of
the given PDE system. Moreover, for any given set of local multipliers yield-
ing a local conservation law, there is an integral formula to obtain the flux
and densities of the conservation law [Anco & Bluman [(1997a), (2002a,b)],
Anco (2003)]. Often it is straightforward to obtain the conservation law by
direct calculations after its multipliers are known [Wolf (2002a)]. What has
been outlined here is referred to as the direct method for obtaining local
conservation laws.

For a given PDE system, Lie’s algorithm yields a set of over-determined
linear determining equations whose solutions yield admitted local symme-
tries. This set of linear PDEs arises from the linearization of the given PDE
system (Fréchet derivative) about an arbitrary solution of the given PDE sys-
tem, i.e., the resulting linear system must hold for each solution of the given
PDE system. After the given PDE system and its differential consequences
are substituted into the linearization of the given PDE system, the resulting
linear system must hold with the dependent variables replaced by arbitrary
functions (and their derivatives).

In contrast, for a given PDE system, sets of multipliers yielding local
conservation laws are solutions of a set of over-determined linear determining
equations arising from annihilations by Euler operators. It turns out that
the set of linear multiplier determining equations for local conservation law
multipliers includes the adjoint of the set of linear PDEs arising from the
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linearization of the given PDE system about an arbitrary solution of the
given PDE system [Anco & Bluman (1997a)].

It follows that in the situation when the set of linearized equations of a
given PDE system (Fréchet derivative) is self-adjoint, the set of multiplier
determining equations includes the set of local symmetry determining equa-
tions. Consequently, here each set of local conservation law multipliers yields
a local symmetry of the given PDE system. In particular, the conservation
law multipliers are also components of the infinitesimal generators of local
symmetries in evolutionary form. However, in the self-adjoint case, the set
of linear determining equations for local conservation law multipliers is more
over-determined than those for local symmetries since here the set of linear
determining equations for local conservation law multipliers includes further
linear PDEs in addition to the set of linear PDEs for local symmetries. Con-
sequently, in the self-adjoint case, there can exist local symmetries that do
not yield local conservation law multipliers.

Noether (1918) showed that if a system of differential equations admits a
variational principle, then any one-parameter Lie group of point transforma-
tions that leaves invariant the action functional yields a local conservation
law. In particular, she gave an explicit formula for the fluxes of the conserva-
tion law. Noether’s theorem was extended by Bessel-Hagen (1921) to allow
the one-parameter Lie group of point transformations to leave invariant the
action functional to within a divergence term. As presented, their results
depended on Lie groups of point transformations used in their “standard”
form, i.e., not in evolutionary form. Boyer (1967) showed how all such con-
servation laws could be obtained from Lie groups of point transformations
used in evolutionary form. From this point of view, it is straightforward to
apply Noether’s theorem to obtain a conservation law for any one-parameter
higher-order transformation leaving invariant the action functional to within
a divergence term. A one-parameter higher-order transformation that leaves
invariant an action functional to within a divergence term is called a varia-
tional symmetry.

As might be expected, Noether’s explicit formula for a local conservation
law arises from local multipliers that yield components of local symmetries in
evolutionary form. From this point of view, it follows that all local conserva-
tion laws arising from Noether’s theorem are obtained by the direct method.
Moreover, one can see that a variational symmetry must map an extremal
of the action functional to another extremal. Since an extremal of an action
functional is a solution of the system of differential equations arising from
the variational principle, it follows that a variational symmetry must be a
local symmetry of the given system of differential equations arising from the
variational principle.

A system of differential equations (as written) has a variational principle if
and only if its linearized system (Fréchet derivative) is self-adjoint [Volterra
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(1913); Vainberg (1964); Olver (1986)]. From this point of view it also follows
that all conservation laws obtained by Noether’s theorem must arise from the
direct method.

theorem to be directly applicable to a given DE system, the following must
hold.

• The linearized system of the given DE system is self-adjoint.
• One has an explicit action functional.
• One has a one-parameter local transformation that leaves the action func-

tional invariant to within a divergence. In order to find such a symmetry
systematically, one first finds local symmetries (solutions of the linearized
system) and then checks whether such local symmetries leave the action
functional invariant to within a divergence.

tem, whether or not its linearized system is self-adjoint. No functional needs
to be determined. Moreover, a set of local conservation law multipliers is rep-
resented by any solution of an over-determined linear system of PDEs sat-
isfied by the multipliers and this over-determined linear system is obtained
directly from the given DE system. As mentioned above, in the case when
the linearized system is self-adjoint, the symmetry determining equations are
a subset of this over-determined linear system.

For any system of DEs, a contact transformation maps the given DE sys-
tem into another system of DEs. Through the contact transformation one can
give an explicit formula that transforms any conservation law of the given
DE system into a conservation law of the transformed DE system. In the
case when the contact transformation is a symmetry (not necessarily a con-
tinuous symmetry) of the given DE system, it follows that here the contact
transformation maps any known conservation law of the given DE system
into another conservation law of the same DE system. However, the resulting
conservation law could be the same one! When the symmetry is a continuous
symmetry (i.e., a point or contact symmetry), due to the parameter depen-
dence of the contact transformation, through parameter expansion, one could
obtain more than one new conservation law from a known conservation law.

1.2 Local Transformations

In Bluman & Anco (2002) [see also Bluman & Kumei (1989); Olver (1986);
Stephani (1989); Hydon (2000)], point transformations and one-parameter Lie
groups of point transformations were defined and it was shown how to find all
the one-parameter Lie groups of point transformations (point symmetries) of

On the other hand, the direct method is applicable to any given DE sys-

The direct method supersedes Noether’s theorem. In particular, for Noether’s
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a given system of partial differential equations. Moreover, it was shown how
to use a point symmetry to obtain a one-parameter family of solutions from a
known solution, except in the case when the known solution is itself invariant
(i.e., maps into itself under the action of the point symmetry). In this case,
it was shown how to use a point symmetry to find such invariant solutions,
through a system of PDEs with one less independent variable. In this section,
we first review some essential information about point transformations and
do this in such a way that point transformations can be generalized to include
the wider class of local transformations.

1.2.1 Point transformations

Consider the situation of n independent variables x = (x1, . . . , xn) and m de-
pendent variables u(x) = (u1(x), . . . , um(x)). Partial derivatives are denoted
by uμ

i = ∂uμ(x)/∂xi; the notation

∂u ≡ ∂1u =
(
u1

1(x), . . . , u1
n(x), . . . , um

1 (x), . . . , um
n (x)

)
denotes the set of all first-order partial derivatives;

∂pu =
{
uμ

i1...ip
| μ = 1, . . . ,m; i1, . . . , ip = 1, . . . , n

}
=
{

∂puμ(x)
∂xi1 . . . ∂xip

| μ = 1, . . . ,m; i1, . . . , ip = 1, . . . , n
}

denotes the set of all partial derivatives of order p.
A point transformation is a one-to-one transformation acting on the n+m-

dimensional space (x, u). In particular, a point transformation is of the form

x∗ = f(x, u), (1.1a)

u∗ = g(x, u). (1.1b)

Through invariance of contact conditions, a point transformation (assum-
ing that (1.1) is differentiable as needed) naturally extends to a one-to-one
transformation acting on (x, u, ∂u, . . . , ∂pu)-space for p = 1, 2, . . ..

In particular the pth extended transformation of (1.1) is given by
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(x∗)i = f i(x, u), (1.2a)

(u∗)μ = gμ(x, u), (1.2b)

(u∗)μ
i = hμ

i (x, u, ∂u), (1.2c)
...

(u∗)μ
i1 ... ip

= hμ
i1 ... ip

(x, u, ∂u, . . . , ∂pu), (1.2d)

where i, i1, . . . , ip = 1, . . . , n, μ = 1, . . . ,m; (u∗)μ
i = ∂(u∗)μ/∂(x∗)i, etc. In

particular, the transformed components of first-order derivatives are deter-
mined by ⎡⎢⎣ (u∗)μ

1
...

(u∗)μ
n

⎤⎥⎦ =

⎡⎢⎣h
μ
1
...
hμ

n

⎤⎥⎦ = A−1

⎡⎢⎣D1g
μ

...
Dng

μ

⎤⎥⎦ , (1.3)

where A−1 is the inverse of the Jacobian matrix

A =

⎡⎢⎣D1f
1 . . . D1f

n

...
...

Dnf
1 . . . Dnf

n

⎤⎥⎦ , (1.4)

in terms of total derivative operators

Di =
∂

∂xi
+ uμ

i

∂

∂uμ
+ uμ

ii1

∂

∂uμ
i1

+ uμ
ii1i2

∂

∂uμ
i1i2

+ · · · , (1.5)

i = 1, . . . , n. The transformed components of higher-order derivatives are
determined by⎡⎢⎣ (u∗)μ

i1 ... ip−1 1

...
(u∗)μ

i1 ... ip−1 n

⎤⎥⎦ =

⎡⎢⎣ h
μ
i1 ... ip−1 1

...
hμ

i1 ... ip−1 n

⎤⎥⎦ = A−1

⎡⎢⎣D1h
μ
i1 ... ip−1

...
Dnh

μ
i1 ... ip−1

⎤⎥⎦ . (1.6)

Now consider the situation where the point transformation (1.1) is a one-
parameter Lie group of point transformations given by

(x∗)i = f i(x, u; ε) = xi + εξi(x, u) +O(ε2), i = 1, . . . , n, (1.7a)

(u∗)μ = gμ(x, u; ε) = uμ + εημ(x, u) +O(ε2), μ = 1, . . . ,m, (1.7b)

with the corresponding infinitesimal generator given by

X = ξi(x, u)
∂

∂xi
+ ημ(x, u)

∂

∂uμ
. (1.8)
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A one-parameter Lie group of point transformations (1.7) induces one-
parameter Lie groups of point transformations acting on (x, u, ∂u)-space, . . . ,
(x, u, ∂u, . . . , ∂ku)-space, as follows.

(u∗)μ
i = uμ

i + εη
(1) μ
i (x, u, ∂u) +O(ε2), (1.9a)

...

(u∗)μ
i1...ik

= uμ
i1...ik

+ εη
(k) μ
i1...ik

(x, u, ∂u, . . . , ∂ku) +O(ε2), (1.9b)

with the extended infinitesimals given by

η
(1) μ
i = Diη

μ − (Diξ
j)uμ

j , (1.10)

and
η
(k) μ
i1...ik

= Dik
η
(k−1) μ
i1...ik−1

− (Dik
ξj)uμ

i1...ik−1j , (1.11)

μ = 1, . . . ,m, i, ij = 1, . . . , n for j = 1, . . . , k with k = 2, 3, . . ..

The kth extended infinitesimal generator (kth prolongation of (1.8)) is
given by

X(k) = ξi(x, u)
∂

∂xi
+ ημ(x, u)

∂

∂uμ
+ η

(1) μ
i (x, u, ∂u)

∂

∂uμ
i

+ · · · + η
(k) μ
i1...ik

(x, u, ∂u, . . . , ∂ku)
∂

∂uμ
i1...ik

.
(1.12)

1.2.2 Contact transformations

Consider the situation of n independent variables x = (x1, . . . , xn) and one
dependent variable u(x).

Definition 1.2.1. A contact transformation is a transformation of the form
(m = 1)

(x∗)i = f i(x, u, ∂u), (1.13a)

u∗ = g(x, u, ∂u), (1.13b)

u∗i = hi(x, u, ∂u), (1.13c)

i = 1, . . . , n, that is one-to-one on some domain D in (x, u, ∂u)-space and
leaves invariant the contact condition, i.e.,

du∗ = u∗i dx
∗ i. (1.14)
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It is assumed that f i, g have an essential dependence on the first derivatives
of u. Otherwise a contact transformation is a point transformation.

Theorem 1.2.1 (Lie (1890), Mayer (1875)). Equations (1.13) define a con-
tact transformation if and only if the functions f i, g, hi satisfy

∂g

∂ui
= hj

∂f j

∂ui
, (1.15a)

∂g

∂xi
+ ui

∂g

∂u
= hj

(
∂f j

∂xi
+ ui

∂f j

∂u

)
, (1.15b)

for i = 1, . . . , n.

Proof. The proof is straightforward and is left to Exercise 1.2.1. ��

Now consider the situation where a contact transformation (1.13) is a one-
parameter (ε) Lie group of contact transformations given by

(x∗)i = xi + εξi(x, u, ∂u) +O(ε2), (1.16a)

u∗ = u+ εη(x, u, ∂u) +O(ε2), (1.16b)

u∗i = ui + η
(1)
i (x, u, ∂u) +O(ε2), (1.16c)

i = 1, . . . , n, with infinitesimal generator

X = ξi(x, u, ∂u)
∂

∂xi
+ η(x, u, ∂u)

∂

∂u
+ η

(1)
i (x, u, ∂u)

∂

∂ui
. (1.17)

Theorem 1.2.2. Equations (1.16) define a one-parameter Lie group of con-
tact transformations if and only if the functions ξi, η satisfy

∂η

∂ui
− uj

∂ξj

∂ui
= 0, i = 1, . . . , n. (1.18)

Proof. From (1.10), one has

η
(1)
j =

∂η

∂xj
+
∂η

∂u
uj +

∂η

∂ui
uij −

[
∂ξk

∂xj
+
∂ξk

∂u
uj +

∂ξk

∂ui
uij

]
uk, j = 1, . . . , n.

Equations (1.16) define a one-parameter Lie group of contact transformations
if and only if ∂η(1)

j /∂uik = 0, i, j, k = 1, . . . , n. This leads to (1.18). ��

Let the characteristic function W of an infinitesimal generator (1.17) be
defined by

W = ξiui − η. (1.19)

Then it is straightforward to show that the following theorem holds [Exercise
1.2.2].
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Theorem 1.2.3. Let (1.17) be the infinitesimal generator of a one-parameter
Lie group of contact transformations. In terms of the characteristic function
(1.19), the infinitesimals are given by

ξj =
∂W

∂uj
,

η = ui
∂W

∂ui
−W,

η
(1)
j = −∂W

∂xj
− uj

∂W

∂u
,

j = 1, . . . , n.

1.2.3 Higher-order transformations

Now consider the situation of n independent variables x = (x1, . . . , xn) and m

dependent variables u(x) = (u1(x), . . . , um(x)) and a transformation acting
on some finite-dimensional (x, u, ∂u, . . . , ∂ku)-space such that the transfor-
mation leaves invariant all contact conditions. Such transformations are of
the form

(x∗)i = f i(x, u, ∂u, . . . , ∂su), (1.20a)

(u∗)μ = gμ(x, u, ∂u, . . . , ∂su). (1.20b)

One can show [Exercise 1.2.3] that the only transformations of the form
(1.20) that are one-to-one on (x, u, ∂u, . . . , ∂ku)-space for some finite k are
point transformations of the form (1.1) or contact transformations of the form
(1.13). In the proof, one can show that for all other transformations of the
form (1.20), for any k, the components of kth-order partial derivatives in the
transformations will have an essential dependence on components of partial
derivatives of order at least k + 1. Hence any one-to-one transformation of
the form (1.20) must act on the space of all partial derivatives (an infinite-
dimensional space) if it is not a point or contact transformation. Such a
one-to-one transformation is called a higher-order transformation.

1.2.4 One-parameter higher-order transformations

Even though higher-order transformations do not have a one-to-one action
on any finite-dimensional space (x, u, ∂u, . . . , ∂ku), it turns out that one can
characterize a class of one-parameter higher-order transformations in terms of
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infinitesimal generators (vector fields) X = ηi(x, u, ∂u, . . . , ∂ku)∂/∂ui. To do
this effectively, it is important to first consider one-parameter Lie groups of
point transformations in terms of mappings of surfaces to other surfaces and
then consider an equivalent way of finding such mappings so that independent
variables are not transformed, i.e., only dependent variables are transformed.

Mappings of surfaces

Consider a one-parameter Lie group of point transformations

(x∗)i = f i(x, u; ε) = eεXxi, i = 1, . . . , n, (1.21a)

(u∗)μ = gμ(x, u; ε) = eεXuμ, μ = 1, . . . ,m, (1.21b)

with infinitesimal generator

X = ξi(x, u)
∂

∂xi
+ ημ(x, u)

∂

∂uμ
. (1.22)

Consider the family of surfaces uμ = Θμ(x) that is not invariant under (1.21).
For a specific value of ε, a transformation (1.21) maps a point (x, u) on the
family of surfaces uμ = Θμ(x) into the point (x∗, u∗) with

(x∗)i = f(x,Θ(x); ε), i = 1, . . . , n, (1.23a)

(u∗)μ = gμ(x,Θ(x); ε), μ = 1, . . . ,m. (1.23b)

For this specified value of ε, one can eliminate x from (1.23) by substitution
through the inverse transformation of (1.21a), i.e., by substitution of

x = f(x∗, u∗;−ε)

into (1.23b). Then

u∗ = g(f(x∗, u∗;−ε), Θ(f(x∗, u∗;−ε)); ε)
= g(e−εXx∗, Θ(e−εXx∗); ε),

(1.24)

with

X = ξi(x, u)
∂

∂xi
+ ημ(x, u)

∂

∂uμ
= ξi(x∗, u∗)

∂

∂(x∗)i
+ ημ(x∗, u∗)

∂

∂(u∗)μ
.

Replacing (x∗, u∗,−ε) by (x, u, ε) in (1.24), one then has

u = g(eεXx,Θ(eεXx);−ε) = g(f(x, u; ε), Θ(f(x, u; ε));−ε). (1.25)
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Theorem 1.2.4. Suppose the family of surfaces u = Θ(x) is not invari-
ant under (1.21). Then (1.25) implicitly defines a mapping of the family of
surfaces uμ = Θμ(x) into a one-parameter family of surfaces uμ = φμ(x; ε).

In order to effectively generalize one-parameter Lie groups of point or
contact transformations to one-parameter higher-order transformations, it is
important to consider the mapping of surfaces from the point of view of
transformations acting directly on the space of functions u = u(x) instead
of transformations acting on (x, u)-space (or (x, u, ∂u)-space in the case of
contact transformations). In particular, this leads to an explicit formula for
the family of surfaces uμ = φμ(x; ε) defined by (1.25).

Consider again the mapping of a family of surfaces uμ = Θμ(x) into the
one-parameter family of surfaces uμ = φμ(x; ε) under a one-parameter Lie
group of point transformations (1.21). Geometrically, this transformation rep-
resents a mapping of points (x, u) into (x∗, u∗) as discussed above, leading to
the implicit formula (1.25) for the family of surfaces uμ = Θμ(x). For gener-
alization to mappings under higher-order transformations, it is important to
describe this mapping explicitly as a direct transformation of the family of
surfaces uμ = Θμ(x) to the one-parameter family of surfaces uμ = φμ(x; ε).
Formally, this mapping is given by

x∗ = x,

u∗ = φ(x; ε) = (eεX̂u)
∣∣∣
u=Θ(x)

,

in terms of some infinitesimal generator X̂.
We now derive a formula for the infinitesimal generator X̂. Under a one-

parameter Lie group of point transformations (1.21), one has

(x∗)i = xi + εξi(x,Θ(x)) +O(ε2), i = 1, . . . , n, (1.26a)

(u∗)μ = uμ + εημ(x,Θ(x)) +O(ε2), μ = 1, . . . ,m. (1.26b)

The dependence of u∗ on x∗ yields the image uμ = φμ(x; ε) of the family
of surfaces uμ = Θμ(x). In order to obtain φμ(x; ε), one eliminates x from
(1.26). Solving (1.26a) for x yields

xi = (x∗)i − εξi(x∗, Θ(x∗)) +O(ε2), i = 1, . . . , n. (1.27)

After substituting (1.27) into (1.26b) and then expanding about ε = 0, one
obtains

φμ(x∗, ε) = Θμ(x∗) + ε
[
ημ(x∗, Θ(x∗)) − ∂Θμ(x∗)

∂(x∗)i ξi(x∗, Θ(x∗))
]

+O(ε2),

μ = 1, . . . ,m.
(1.28)
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Then after replacing x∗ by x in (1.28) through using (1.27), one obtains the
direct image of the family of surfaces uμ = Θμ(x) under the one-parameter
Lie group of point transformations (1.21). In particular, the family of surfaces
uμ = Θμ(x) is mapped into the one-parameter family of surfaces given by

(u∗)μ = φ(x; ε) = Θμ(x) + ε
[
ημ(x,Θ(x)) − ∂Θμ(x)

∂xi ξi(x,Θ(x))
]

+O(ε2),

μ = 1, . . . ,m.
(1.29)

Now observe that the same image of the family of surfaces uμ = Θμ(x)
can be obtained by a one-parameter family of transformations that leaves
invariant the independent variables x:

(x∗)i = xi, i = 1, . . . , n,
(u∗)μ = uμ + ε

[
ημ(x, u) − uμ

i ξ
i(x, u)

]
+O(ε2), μ = 1, . . . ,m.

(1.30)

Consequently, the infinitesimal generator for the one-parameter family of
transformations (1.30) is given by

X̂ =
[
ημ(x, u) − uμ

i ξ
i(x, u)

] ∂

∂uμ
. (1.31)

Geometrically, one has moved from a transformation (1.21) acting on
(x, u)-space to a transformation (1.30) acting on the space of functions
u = u(x). The infinitesimal generator (1.31) is the characteristic form (evo-
lutionary form) of the infinitesimal generator (1.22).

As examples (n = m = 1), for the translation group

x∗ = x+ ε,

u∗ = u,
(1.32)

one has
X =

∂

∂x
, X̂ = −ux

∂

∂u
; (1.33)

and for the scaling group
x∗ = eεx,

u∗ = e2εu,
(1.34)

one has
X = x

∂

∂x
+ 2u

∂

∂u
, X̂ = [2u− xux]

∂

∂u
. (1.35)

Local transformations

One can generalize one-parameter Lie groups of point transformations with
infinitesimal generators in the characteristic form (1.31) to one-parameter
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higher-order local transformations with infinitesimal generators of the form

X̂ = η̂μ(x, u, ∂u, . . . , ∂su)
∂

∂uμ
, (1.36)

where the infinitesimal components depend on derivatives of u up to some
finite order s ≥ 1.

Formally, one can exponentiate (1.36) to obtain a corresponding one-
parameter higher-order local transformation acting on the space of functions
u = u(x):

(x∗)i = xi, i = 1, . . . , n,
(u∗)μ = uμ + εη̂μ(x, u, ∂u, . . . , ∂su) +O(ε2), μ = 1, . . . ,m.

(1.37)

To calculate the higher-order terms in (1.37), one extends (prolongs) the
infinitesimal generator (1.36) to act on the components of derivatives of u
by requiring that the contact conditions are invariant. Consequently, the ex-
tended infinitesimal generator (the prolongation of X̂) is given by

X̂∞ = η̂μ ∂

∂uμ
+ η̂

(1) μ
i

∂

∂uμ
i

+ · · · + η̂
(p) μ
i1...ip

∂

∂uμ
i1...ip

+ · · · , (1.38)

where, analogously to (1.10) and (1.11),

η̂
(1) μ
i = Diη̂

μ, (1.39a)

η̂
(p) μ
i1...ip

= Dip
η̂
(p−1) μ
i1...ip−1

, (1.39b)

μ = 1, . . . ,m; i, ij = 1, . . . , n for p = 2, 3, . . ..

Hence the exponentiation of the infinitesimal generator (1.36) yields the
following transformation.

Definition 1.2.2. A one-parameter higher-order local transformation is a
transformation of the form

(x∗)i = xi, i = 1, . . . , n,

(u∗)μ = eεX̂∞
uμ = uμ +

∞∑
j=1

εj

j!
(X̂∞)j−1η̂μ, μ = 1, . . . ,m, (1.40)

where X̂∞ is given by (1.38).

Note that one can invert (1.40) through inverse exponentiation.
One can show that:

1. A one-parameter local transformation is equivalent to a one-parameter
Lie group of point transformations if and only if all η̂μ are of the form
η̂μ = ημ(x, u) − uμ

i ξ
i(x, u) for some ημ(x, u), ξi(x, u) (i = 1, . . . , n;
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μ = 1, . . . ,m), i.e, each η̂μ is linear in the first derivatives uμ
i and has

no dependence on higher-order derivatives of u.
2. A one-parameter local transformation is equivalent to a one-parameter

Lie group of contact transformations if and only if m = 1 and η̂ is of
the form η̂ = η̂(x, u, ∂u) with a nonlinear dependence on first-order
derivatives of u.

In particular, the following theorem holds.

Theorem 1.2.5. A one-parameter local transformation with an infinitesimal
generator of the form

X = W (x, u, ∂u)
∂

∂u
(1.41)

is equivalent to a one-parameter Lie group of contact transformations with
the infinitesimal generator

X = ξj(x, u, ∂u)
∂

∂xj
+ η(x, u, ∂u)

∂

∂u
+ η

(1)
j (x, u, ∂u)

∂

∂uj
, (1.42)

where

ξj(x, u, ∂u) =
∂W

∂uj
, (1.43a)

η(x, u, ∂u) = ui
∂W

∂ui
−W, (1.43b)

η
(1)
j (x, u, ∂u) = −∂W

∂xj
− uj

∂W

∂u
, (1.43c)

j = 1, . . . , n.

Proof. Let η, ξj satisfy (1.43a),(1.43b). Then

∂η

∂uj
=

∂W

∂uj
+ ui

∂2W

∂ui∂uj
− ∂W

∂uj
= ui

∂2W

∂ui∂uj
= ui

∂ξj

∂ui
, j = 1, . . . , n.

Hence (1.18) is satisfied. Moreover,

η − ξjuj = ui
∂W

∂ui
−W − uj

∂W

∂uj
= −W ;

η
(1)
j =

∂η

∂xj
+
∂η

∂u
uj −

[
∂ξk

∂xj
+
∂ξk

∂u
uj

]
uk = −∂W

∂xj
− uj

∂W

∂u
.

Hence (1.42), (1.43) defines a contact transformation group equivalent to the
group generated by W (x, u, ∂u)∂/∂u. ��

Consequently, any one-parameter local transformation with an infinitesi-
mal generator of the form
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η(x, u, ∂u)
∂

∂u
(1.44)

is uniquely equivalent to an infinitesimal generator of a one-parameter Lie
group of contact transformations with η(x, u, ∂u) playing the role of a char-
acteristic function.

The proof that an infinitesimal generator of the form (1.44) is uniquely
equivalent to an infinitesimal generator of a one-parameter Lie group of point
transformations when η(x, u, ∂u) has a linear dependence on first derivatives
is left to Exercise 1.2.5.

A one-parameter higher-order local transformation is a one-parameter lo-
cal transformation that is neither a one-parameter Lie group of point trans-
formations nor a one-parameter Lie group of contact transformations. In
the literature, such transformations are also called Lie–Bäcklund transforma-
tions or Noether transformations. It should be pointed out that neither Lie
nor Bäcklund considered such higher-order transformations whereas Noether
(1918) implicitly considered such transformations in her famous paper on
conservation laws. For further information on higher-order transformations,
see Ibragimov (1985) and Anderson & Ibragimov (1979).

For example, the infinitesimal generator

Ŷ =
[
1
2u

2ux + 2uxuxx + uuxxx + 3
5uxxxxx

] ∂

∂u
(1.45)

corresponds to a higher-order transformation. The one-parameter transfor-
mation defined by (1.45) arises as a higher-order symmetry for the Korteweg–
de Vries (KdV) equation

ut + uux + uxxx = 0, (1.46)

which describes the amplitude u(x, t) of long surface waves on shallow water.

1.2.5 Point symmetries

Consider a system R{x ;u} of N PDEs of order k with n independent vari-
ables x = (x1, . . . , xn) and m dependent variables u(x) = (u1(x), . . . , um(x)),
given by

Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N. (1.47)

Consider a one-parameter Lie group of point transformations

(x∗)i = f i(x, u; ε), (1.48a)

(u∗)μ = gμ(x, u; ε), (1.48b)
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with the corresponding infinitesimal generator

X = ξi(x, u)
∂

∂xi
+ ημ(x, u)

∂

∂uμ
. (1.49)

The kth extension (prolongation) of (1.49) is given by

X(k) = ξi(x, u)
∂

∂xi
+ ημ(x, u)

∂

∂uμ
+ η

(1) μ
i (x, u, ∂u)

∂

∂uμ
i

+ . . .+ η
(k) μ
i1...ik

(x, u, ∂u, . . . , ∂ku)
∂

∂uμ
i1...ik

,
(1.50)

where η
(1) μ
i , . . ., η(k) μ

i1...ik
are defined in terms of {ξi(x, u), ημ(x, u)} by (1.10)

and (1.11), for μ = 1, . . . ,m, and i, ij = 1, . . . , n for j = 1, . . . , k.

Definition 1.2.3. A one-parameter Lie group of point transformations
(1.48) leaves the PDE system R{x ;u} (1.47) invariant if and only if its
kth extension (1.50) leaves invariant the solution manifold of R{x ;u} in
(x, u, ∂u, . . . , ∂ku)-space, i.e., it maps any family of solution surfaces of the
PDE system (1.47) into another family of solution surfaces of PDE system
(1.47). In this case, the one-parameter Lie group of point transformations
(1.48) is called a point symmetry of the PDE system R{x ;u} (1.47).

Lie’s algorithm to find the point symmetries of a given PDE system (1.47)
is given by the following theorem.

Theorem 1.2.6 (Infinitesimal criterion of invariance under a one-parameter
Lie group of point transformations). Let (1.49) be the infinitesimal generator
of a one-parameter Lie group of point transformations (1.48). Let (1.50) be
its kth extension. Then the transformation (1.48) is a point symmetry of the
PDE system R{x ;u} (1.47) if and only if for each α = 1, . . . , N ,

X(k)Rα(x, u, ∂u, . . . , ∂ku) = 0, (1.51)

when
Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N. (1.52)

The proof of this theorem appears in Olver (1986) with the restriction that
R{x ;u} (1.47) can be written in a solved form in terms of a set of leading
derivatives.

Note that the invariance criterion (1.51), (1.52) involves substitutions of
the N PDEs (1.52) and (possibly) their differential consequences into each
of the N determining equations (1.51). In particular, the extended generator
X(k) (1.50) involves derivatives of u up to (and including) the order k. To
carry out these substitutions, in practice one first expresses each PDE in the
system (1.52) in a solved form with respect to some leading derivative. In
particular, the resulting solved-form system of N PDEs must have the fea-



18 1 Local Transformations and Conservation Laws

ture that all differential consequences of the left-hand sides of each PDE in
the system (1.52) are linearly independent of the left-hand sides of the other
N − 1 PDEs in the system (1.52). Moreover, none of these N left-hand side
leading derivatives or their differential consequences can appear in any of the
right-hand sides of the N PDEs in the system (1.52). [In the case of a scalar
PDE (1.52), a leading derivative is given by any kth-order derivative that ap-
pears linearly in (1.52). In the case of a dynamical PDE system (1.52), a time
derivative yields a leading derivative.] Then one substitutes the established
leading derivatives given by the N solved-form PDEs and (possibly) their
differential consequences into each of the equations (1.51). [In particular, for
any PDE Rσ(x, u, ∂u, . . . , ∂k′

u) = 0 of order k′ < k, its differential conse-
quences up to order k, i.e., ∂lRσ(x, u, ∂u, . . . , ∂k′

u) = 0, l = 1, . . . , k − k′,
must be computed and used in substitutions.] The resulting linear system
to determine the components ξi(x, u), ημ(x, u) of the infinitesimal generator
(1.49) is called the set of determining equations for the point symmetries of
R{x ;u} (1.47).

In the resulting set of determining equations for the point symmetries of
R{x ;u}, one can treat each uμ and each of its derivatives uμ

i , uμ
ij , etc. as in-

dependent variables along with xi. Consequently, the set of determining equa-
tions splits into an over-determined linear PDE system for {ξi(x, u), ημ(x, u)}.
The number of arbitrary constants that arise in the solution of the set of de-
termining equations is the number of point symmetry generators (1.49) when
the number of generators is finite. [It can happen that the number of point
symmetry generators is infinite – this is the case when the given PDE system
R{x ;u} (1.47) is a linear PDE system or a nonlinear PDE system that is
linearizable by a point transformation.]

After the symmetry components {ξi(x, u), ημ(x, u)} (i = 1, . . . , n; μ =
1, . . . ,m) are found, one can find the global form of the Lie group of point
transformations through either solving a corresponding system of first-order
ODEs or exponentiation in terms of the infinitesimal point symmetry gen-
erators. For details, see any of Bluman & Anco (2002), Bluman & Kumei
(1989), Olver (1986), Stephani (1989), or Hydon (2000).

As an example, consider the linear heat equation

ut = uxx. (1.53)

One can show that X is a point symmetry of the heat equation (1.53) if and
only if its second extension X(2) satisfies[

X(2)(ut − uxx)
] ∣∣∣

uxx=ut

= (η(1)
t − η(2)

xx )
∣∣∣
uxx=ut

= 0 (1.54)

which leads to
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X = ξ(x, t)
∂

∂x
+ τ(t)

∂

∂t
+ [f(x, t)u+ g(x, t)]

∂

∂u

with the components of X satisfying the corresponding set of linear deter-
mining equations given by

τ ′(t) − 2ξx = 0,
2fx − ξxx + ξt = 0,

ft − fxx = 0,
gt − gxx = 0.

(1.55)

After solving the linear determining system (1.55), one finds that the heat
equation (1.53) has an infinite number of point symmetries given by the
infinitesimal generators X∞ = g(x, t)∂/∂u with gt = gxx, corresponding to
its linearity, and six nontrivial point symmetries given by the infinitesimal
generators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
,

X4 = tx
∂

∂x
+ t2

∂

∂t
−
(

1
2 t+ 1

4x
2
)
u
∂

∂u
,

X5 = t
∂

∂x
− 1

2xu
∂

∂u
, X6 =

∂

∂u
.

(1.56)

Now consider the point symmetry represented by the infinitesimal gener-
ator

X4 = tx
∂

∂x
+ t2

∂

∂t
−
(

1
2 t+ 1

4x
2
)
u
∂

∂u
. (1.57)

The initial value problem to determine the corresponding global one-parameter
Lie group of point transformations is given by

dx∗

dε
= x∗t∗,

dt∗

dε
= (t∗)2,

du∗

dε
= −

(
1
2 (t∗) + 1

4 (x∗)2
)
u∗,

(1.58)

with x∗ = x, t∗ = t, u∗ = u when ε = 0. Solving (1.58), one obtains the
one-parameter Lie group of point transformations

x∗ =
x

1 − εt
, t∗ =

t

1 − εt
, u∗ =

[√
1 − εt exp

(
− εx2

4(1 − εt)

)]
u, (1.59)

admitted by the heat equation (1.53).
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1.2.6 Contact and higher-order symmetries

Previously, we have seen that in order to generalize one-parameter Lie groups
of point (or contact) transformations to one-parameter higher-order local
transformations, it was natural to consider transformations from the point of
view of directly mapping surfaces to other surfaces with independent variables
fixed. This led to the consideration of one-parameter local transformations
with infinitesimal generators of the form (1.36) with extended infinitesimal
generators given by (1.38), (1.39).

A one-parameter local transformation (1.37) leaves the PDE system R{x;
u} (1.47) invariant if and only if its kth extension

X(k) = η̂μ ∂

∂uμ
+ η̂

(1) μ
i

∂

∂uμ
i

+ · · · + η̂
(k) μ
i1...ik

∂

∂uμ
i1...ik

(1.60)

leaves invariant the solution manifold of R{x ;u} in (x, u, ∂u, . . . , ∂ku)-space,
i.e., it maps any family of solution surfaces of the PDE system (1.47) into
some (possibly the same) family of solution surfaces of PDE system (1.47).
In this case, the one-parameter local transformation is called a local (higher-
order, contact, or point) symmetry of the PDE system R{x ;u} (1.47).

From this point of view, Lie’s algorithm extends as follows in order to find
the local symmetries of a given PDE system if R{x ;u} (1.47) can be written
in a solved form with respect to a set of leading derivatives.

Theorem 1.2.7 (Infinitesimal criterion of invariance under a one-parameter
local transformation). Let (1.36) be the infinitesimal generator of a one-
parameter local transformation (1.37) of order s ≥ 0, and let X(k) (1.60) be
its kth extension. Then the transformation (1.37) is a local (point, contact or
higher-order) symmetry of the PDE system R{x ;u} (1.47) if and only if for
each α = 1, . . . , N ,

X(k)Rα(x, u, ∂u, . . . , ∂ku) = 0, (1.61)

when

Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N,

∂lRσ(x, u, ∂u, . . . , ∂ku) = 0, l = 1, . . . , s, σ = 1, . . . , N. (1.62)

The invariance criterion (1.61), (1.62) involves substitutions of theN PDEs
(1.62) and their differential consequences (up to order s) into each of the N
equations (1.61). [Note that if a particular PDE Rσ(x, u, ∂u, . . . , ∂k′

u) = 0
has order k′ < k, then all its differential consequences ∂lRσ(x, u, ∂u, . . . , ∂k′

u)
= 0, l = 1, . . . , s+ k − k′, must be computed and used in substitutions.] Af-
ter these substitutions, the resulting linear system of PDEs to determine the
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components of the infinitesimal generator (1.36) is called the set of determin-
ing equations for the local symmetries of order s of R{x ;u} (1.47).

Note that the set of N PDEs (1.61) without substitutions arising from
(1.62) is just the linearization of the given PDE system (1.62), i.e., the Fréchet
derivative of the given PDE system (1.62). After the substitutions of (1.62)
and their differential consequences, one sees that a local symmetry of a given
system of PDEs is simply any solution of its linearized system that holds for
every solution of the given PDE system. In particular, in terms of an arbi-
trary function V (x) = (V 1(x), . . . , V m(x)), the linearizing operator (Fréchet
derivative) associated with the PDE system R{x ;u} (1.47) is given by

Lσ
ρ [U ]V ρ =

[
∂Rσ[U ]
∂Uρ

+
∂Rσ[U ]
∂Uρ

i

Di + · · · + ∂Rσ[U ]
∂Uρ

i1...ik

Di1 . . .Dik

]
V ρ,

σ = 1, . . . , N.

(1.63)

It follows that a local transformation (1.37) is a local symmetry of the PDE
system R{x ;u} (1.47) if and only if

Lσ
ρ [u]η̂ρ[u] = 0, σ = 1, . . . , N, (1.64)

when Rσ(x, u, ∂u, . . . , ∂ku) = 0, ∂lRσ(x, u, ∂u, . . . , ∂ku) = 0, l = 1, . . . , s,
σ = 1, . . . , N.

1.2.7 Equivalence transformations and symmetry
classification

If a PDE system contains classifying (constitutive) functions and/or param-
eters, it is useful to consider equivalence transformations of the system, i.e.,
transformations that preserve the differential structure of the equations in the
PDE system but may change the form of the constitutive functions and/or
parameters. In particular, the consideration of equivalence transformations
is useful in analyses that involve classifications with respect to constitutive
functions and/or parameters, such as local symmetry and local conservation
law analysis. Moreover, classification tables are usually presented modulo
known equivalence transformations, i.e., only for forms of constitutive func-
tions and/or parameters that are not related by an equivalence transforma-
tion.

Work on equivalence transformations was initiated by Ovsiannikov (1982).
Multiple applications and extensions of the notion of equivalence transforma-
tions appear in the works of Akhatov, Gazizov & Ibragimov [(1987), (1991)],
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Ibragimov, Torrisi & Valenti (1991), Lisle (1992), Popovych & Ivanova
(2005a), and other authors.

Without loss of generality, consider the family FK of PDE systems
R{x ;u;K}:

Rσ(x, u, ∂u, . . . , ∂ku,K) = 0, σ = 1, . . . , N, (1.65)

involving L constitutive functions and/or parameters K = (K1, . . . , KL).
Such functions may depend on particular dependent and independent vari-
ables of the system, as well as derivatives of dependent variables.

Definition 1.2.4. A one-parameter Lie group of equivalence transformations
of a family FK of PDE systems is a one-parameter Lie group of transforma-
tions given by

x̃i = f i(x, u; ε), i = 1, . . . , n,
ũμ = gμ(x, u; ε), μ = 1, . . . ,m,

K̃l = Gl(x, u,K; ε), l = 1, . . . , L,
(1.66)

which maps a PDE system R{x ;u;K} ∈ FK into another PDE system
R{x̃ ; ũ; K̃} in the same family.

Note that if constitutive functions and/or parameters are not modified
under the one-parameter Lie group of equivalence transformations (1.66),
then the transformation (1.66) is simply a point symmetry of each PDE
system in the family FK .

Simple one-parameter Lie groups of equivalence transformations can be
often found by inspection. Consider the incompressible three-dimensional
Navier–Stokes equations in Cartesian coordinates (x1, x2, x3):

∂v1

∂x1
+

∂v2

∂x2
+

∂v3

∂x3
= 0,

∂vi

∂t
+ vj ∂v

i

∂xj
+

∂p

∂xi
= ν

(
∂2vi

∂(x1)2
+

∂2vi

∂(x2)2
+

∂2vi

∂(x3)2

)
,

i = 1, 2, 3.

(1.67)

Here the fluid viscosity ν = const > 0 is a constitutive parameter. One can
check that the PDE system (1.67) admits the group of equivalence transfor-
mations

t̃ = t, x̃ = ax, ṽi = avi, p̃ = a2p, ν̃ = a2ν,

where a = eε, which maps the PDE system (1.67) into the PDE system



1.2 Local Transformations 23

∂ṽ1

∂x̃1
+

∂ṽ2

∂x̃2
+

∂ṽ3

∂x̃3
= 0,

∂ṽi

∂t
+ ṽj ∂ṽ

i

∂x̃j
+

∂p̃

∂x̃i
= ν

(
∂2ṽi

∂(x̃1)2
+

∂2ṽi

∂(x̃2)2
+

∂2ṽi

∂(x̃3)2

)
,

i = 1, 2, 3.

which coincides with (1.67) except for a different viscosity coefficient.
As a second example, consider the family of nonlinear PDE systems

{R{x, t ;u, v;K}}
vx = u,

vt = K(u)ux
(1.68)

related to the nonlinear diffusion equation where the conductivity K(u) is an
arbitrary constitutive function. To find one-parameter Lie groups of equiv-
alence transformations of the family (1.68), one applies the standard Lie
symmetry algorithm to the general PDE system (1.68), treating the consti-
tutive function K(u) as a new dependent variable. Additionally, one needs
to assume that the symmetry components for t, x, u and v are independent
of K, following the definition (1.66). The resulting symmetry generators are
given by

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂v
,

X4 =
∂

∂u
+ x

∂

∂v
, X5 = x

∂

∂x
+ v

∂

∂v
+ 2t

∂

∂t
,

X6 = u
∂

∂u
+ v

∂

∂v
, X7 = F (t)

∂

∂t
−KF ′(t)

∂

∂K
,

X8 = v
∂

∂x
− u2 ∂

∂u
+ 2Ku

∂

∂K
,

X9 = x2 ∂

∂x
+ (v − xu)

∂

∂u
+ xv

∂

∂v
+ 4xK

∂

∂K
,

X10 = xv
∂

∂x
+ u(v − xu)

∂

∂u
+ v2 ∂

∂v
+ 2(xu+ v)K

∂

∂K
.

(1.69)

One can check that for the generators X9 and X10, if K = K(u), then the
transformed function K̃ is not a function of ũ only. Therefore these generators
do not correspond to equivalence transformations of the family (1.68). [The
same is true for the generator X7 with the arbitrary function F (t), when
F ′′(t) �= 0.]

The finite form of the equivalence transformations of the family of PDEs
(1.68) arises from the seven generators X1, . . . ,X7 (F ′(t) = const) and corre-
spondingly involves seven arbitrary parameters. It is given by
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t̃ = a5t+ a1, x̃ = a6x+ a2,

ũ = a7u+ a3, ṽ = a5a7v + a3x+ a4,

K̃(ũ) =
a2
5

a6
K(u) =

a2
5

a6
K

(
ũ− a3

a7

)
,

(1.70)

where a1, . . . , a7 are arbitrary constants, with a5, a6, a7 �= 0. In particular,
under an equivalence transformation (1.70), the PDE system R{x, t ;u, v;K}
(1.68) with a constitutive function K(u) is mapped into a PDE system

R{x̃, t̃ ; ũ, ṽ; K̃} of the form (1.68), with K̃(ũ) =
a2
5

a6
K

(
ũ− a3

a7

)
.

The generator X8 defines an additional one-parameter group of equivalence
transformations given by

t̃ = t, x̃ = x− a8v, ũ =
u

1 − a8u
, ṽ = v,

K̃(ũ) = (1 + a8ũ)−2K

(
ũ

1 + a8ũ

)
.

(1.71)

Here a8 is an arbitrary constant.

It is worth making the following remark [Ovsiannikov (1982)]. Consider
a family FK of PDE systems with constitutive functions and/or parameters
K. Consider a symmetry group that is common for all PDE systems in the
family FK , i.e., an intersection of symmetry groups of PDE systems with all
possible forms of constitutive functions and/or parameters K. Then such a
group is always included in the group of equivalence transformations of the
family FK .

1.2.8 Recursion operators for local symmetries

In Section 1.2.6, it was seen that the algorithm for finding contact or higher-
order symmetries of PDEs is essentially the same as that for finding point
symmetries. A difficulty in applying this algorithm is to determine a pri-
ori which derivatives could appear in an admitted infinitesimal (1.37). For
most known scalar PDE examples, it happens that if a given scalar PDE
has a higher-order symmetry then it has an infinite sequence of higher-order
symmetries where successive terms of the sequence depend on higher-order
derivatives of the dependent variable. Olver (1977) introduced the notion of
recursion operators to generate such infinite sequences of higher-order sym-
metries. Firstly, we examine the situation for linear PDEs where local recur-
sion operators and corresponding sequences of higher-order symmetries can
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arise naturally from a nontrivial local symmetry. Secondly, we consider the
situation for nonlinear PDEs.

Recursion operators for linear PDEs

Consider a linear PDE system

Lu = 0, (1.72)

where L is a linear differential operator. Suppose the linear PDE system
(1.72) has a nontrivial local symmetry

X = ημ(x, u, ∂u, . . . , ∂su)
∂

∂uμ
. (1.73)

[“Trivial” local symmetries of any linear PDE system (1.72) include X =
uμ∂/∂uμ and X = fμ(x)∂/∂uμ where u = f(x) is any solution of (1.72).]
From (1.64) and the linearity of (1.72), it follows that (1.72) has the local
symmetry (1.73) if and only if η satisfies the local symmetry determining
equations

Lη
∣∣∣
Lu=0

= 0. (1.74)

Now suppose η is linear homogeneous in u, i.e.,

η = Ru (1.75)

in terms of some linear differential operator R. [This is the situation for any
point symmetry of a linear scalar PDE of second or higher order [Bluman
(1990)].] For a scalar u, equation (1.75) is of the form

η = r(x)u+ ri(x)ui + · · · + ri1···ik(x)ui1···ik
, (1.76)

with
R = r(x) + ri(x)Di + · · · + ri1···ik(x)Di1 . . .Dik

, (1.77)

for some functions r(x), ri(x), . . . , ri1···ik(x). For a linear PDE system, equa-
tions (1.75) are of the form

ηα = rα
β (x)uβ + rα i

β (x)uβ
i + · · · + rα i1···ik

β (x)uβ
i1···ik

, (1.78)

and R is a matrix differential operator with matrix elements

Rα
β = rα

β (x) + rα i
β (x)Di + · · · + rα i1···ik

β (x)Di1 . . .Dik
, (1.79)
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for some functions rα
β (x), rα i

β (x), . . . , rα i1···ik

β (x). When η = Ru, the local
symmetry determining equations (1.74) become

LRu
∣∣∣
Lu=0

= 0, (1.80)

i.e., if u = Θ(x) solves Lu = 0, then u = RΘ(x) also solves Lu = 0. It
immediately follows that if the linear PDE system (1.72) has a local symmetry
(1.73) with an infinitesimal of the form (1.75), then it also has higher-order
symmetries (1.73) with infinitesimals of the form

η = Rju, j = 1, . . . . (1.81)

More generally, from the above it is easy to see that the following theorem
holds.

Theorem 1.2.8. If the determining equations (1.74) are satisfied by both
η = η̃(x, u, ∂u, . . . , ∂pu) and η = Ru, where R is given by (1.77) or (1.79),
then

η = Rj η̃, j = 1, . . . (1.82)

also satisfies the determining equations (1.74). Hence the linear PDE system
(1.72) has the infinite sequence of higher-order symmetries Rj η̃μ∂/∂uμ, j =
1, . . . .

A linear differential operator R given by (1.77) or (1.79) is called a recur-
sion operator for the linear PDE system (1.72) corresponding to an admitted
nontrivial local symmetry (1.73) with an infinitesimal of the form (1.75).

In both quantum mechanics and the study of group properties of spe-
cial functions [Miller (1968), (1977)], local symmetries of related linear PDE
systems are considered in terms of corresponding recursion operators R.

The following lemma is easily proved by direct calculation.

Lemma 1.2.1. The extended operator X∞ = ηγ∂/∂uγ + Djη
γ∂/∂uγ

j + · · ·
commutes with any total derivative operator Di, i.e., [Di,X∞] = 0.

The proof of the following theorem follows from the above lemma.

Theorem 1.2.9. Let ηi = Riu and let Xi = ηi∂/∂u where Ri is a linear
differential operator of the form (1.77), i = 1, . . . . The commutation relation
[Xi,Xj ] = Xk holds if and only if the commutation relation [Ri,Rj ] = −Rk

is satisfied.

Now consider two examples.

(1) Schrödinger equation for a harmonic oscillator
As a first example, consider the Schrödinger equation for a harmonic oscillator
given by
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Lu = (H − iDt)u = (− 1
2D2

x + 1
2x

2 − iDt)u = 0. (1.83)

One can show that the PDE (1.83) has the recursion operators R1 = eit(x+
Dx) and R2 = e−it(x − Dx) as well as the trivial operator R3 = 1, with
[R1,R2] = 2R3. The corresponding local symmetries are

X1 = eit(xu+ ux)
∂

∂u
, X2 = e−it(xu− ux)

∂

∂u
, X3 = u

∂

∂u
, (1.84)

and satisfy the commutation relation [X1,X2] = −2X3. It is easy to see that
the infinitesimal generators (1.84) are respectively equivalent to the point
symmetries eit (−∂/∂x+ xu∂/∂u), e−it (∂/∂x+ xu∂/∂u), u∂/∂u. From The-
orem 1.2.8, it follows that PDE (1.83) has the symmetries [P (R1,R2)u]∂/∂u
for any polynomial function P (a, b) in a and b.

(2) Schrödinger equation for the hydrogen atom
As a second example, consider the time-independent Schrödinger equation
for the hydrogen atom given by

Lu =
(

1
2
Δ + r−1 + E

)
u = 0, (1.85)

where the Laplacian Δ = D2
x + D2

y + D2
z, r =

√
x2 + y2 + z2, E = const. It

is well-known [Schiff (1968)] that PDE (1.84) has three recursion operators
corresponding to the Runge–Lenz vector R = 1

2 (p × L − L × p)−r/r where
p and L are, respectively, the linear and angular momentum operators. The
x-component of R is the recursion operator given by

R1 = −
(
xD2

z − zDzDx − yDxDy + xD2
y − Dx +

x

r

)
.

Corresponding to R1, the PDE (1.84) has the local symmetry given by

X1 = (R1u)
∂

∂u
= −

(
xuzz − zuxz − yuxy + xuyy − ux +

x

r
u
) ∂

∂u
. (1.86)

Clearly, the local symmetry (1.86) is equivalent to neither a point symmetry
nor a contact symmetry and hence is a genuine higher-order symmetry of the
linear PDE (1.84).

Recursion operators for nonlinear PDEs

If a nonlinear scalar PDE

R(x, u, ∂u, . . . , ∂ku) = 0 (1.87)
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has a higher-order symmetry

X = η(x, u, ∂u, . . . , ∂su)
∂

∂u
, s ≥ 2, (1.88)

then this indicates that it may have an infinite sequence of higher-order sym-
metries

Xi = Riη
∂

∂u
, i = 1, . . . , (1.89)

generated in terms of some recursion operator R.
As one sees from Theorem 1.2.7, the PDE (1.87) has a higher-order sym-

metry (1.88) if and only if

X(k)R(x, u, ∂u, . . . , ∂ku) = L[u]η = 0 (1.90)

holds for every solution of PDE (1.87) where L[u] is the linearization opera-
tor (Fréchet derivative) associated with the nonlinear scalar PDE (1.87). In
particular,

L[u] =
∂R

∂u
+

∂R

∂uj
Dj + · · · + ∂R

∂uj1···jk

Dj1 . . .Djk
. (1.91)

The linearized equation associated with PDE (1.87) is given by

L[u]v = 0 (1.92)

in terms of its linearization operator (1.91). For any solution u = Θ(x) of PDE
(1.87), the linearized equation (1.92) is a linear PDE for v. The infinitesimal
η(x, u, ∂u, . . . , ∂su) of a higher-order symmetry (1.88) of PDE (1.87) is ob-
viously a solution v = η(x, u, ∂u, . . . , ∂su) of the linearized equation (1.92).
Conversely, any solution v = f(x, u, ∂u, . . . , ∂pu), p ≥ 2, of (1.92), where
u = Θ(x) is any solution of PDE (1.87), yields a higher-order symmetry
f(x, u, ∂u, . . . , ∂pu) ∂/∂u of PDE (1.87).

Let u = Θ(x) be any solution of PDE (1.87). Now suppose the linearized
equation (1.92) has a nontrivial local symmetry with its infinitesimal gener-
ator given by

(R[u]v)
∂

∂v
, (1.93)

where R[u] is of the local form (1.77), i.e.,

R[u] = r(x, u, ∂u, . . . , ∂lu) + ri(x, u, ∂u, . . . , ∂lu)Di + · · ·
+ri1...im(x, u, ∂u, . . . , ∂lu)Di1 . . .Dim ,

(1.94)

for some functions r(x, u, ∂u, . . . , ∂lu), ri(x, u, ∂u, . . . , ∂lu), . . . , ri1...ik(x, u,
∂u, . . . , ∂lu). The above and Theorem 1.2.8 lead to the following theorem.
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Theorem 1.2.10. If the nonlinear scalar PDE (1.87) has the higher-order
symmetry (1.88) and its linearized equation (1.92) has the local symmetry
(1.93), then v = (R[u])qη solves the linearized equation (1.92), for each pos-
itive integer q. Hence PDE (1.87) has the infinite sequence of higher-order
symmetries given by

Xq = (R[u])qη
∂

∂u
, q = 1, . . . . (1.95)

Note that a recursion operator R[u] satisfies the determining equation

L[u]R[u]v = 0 (1.96)

that holds for any (u, v) pair satisfying the given nonlinear scalar PDE (1.87)
and its linearized equation (1.92).

In applying Theorem 1.2.10 to find a local recursion operator R[u] for
some given nonlinear scalar PDE (1.87), it is important to note that one
need not know a priori which derivatives of u enter in the coefficients of
R[u]. However, the highest derivative m appearing in R[u] must be chosen
a priori in any calculation. Then R[u] is found through application of Lie’s
algorithm. The existence of a local recursion operator is often connected with
an underlying point or contact transformation that invertibly maps the given
nonlinear scalar PDE to some linear PDE.

As an example, consider the integrated Burgers’ equation given by

uxx − 1
2u

2
x − ut = 0. (1.97)

The associated linearized equation is given by

L[u]v = 0, (1.98)

in terms of the linearizing operator

L[u] = D2
x − uxDx − Dt. (1.99)

Now suppose that the linearized equation (1.98), (1.99) has a recursion op-
erator of the form

R[u] = a+ bDx + cD2
x, (1.100)

whose coefficients a, b, and c depend on x, t, u, ux, uxx, . . . . Without loss of
generality, one need only consider a recursion operator given by a polynomial
in Dx with coefficients depending at most on x-derivatives of u, since all
t-derivatives of u can be expressed in terms of x-derivatives of u through
substitutions for t-derivatives from the given PDE (1.97), and Dt, DxDt, etc.
can be expressed in terms of Dx from the linearized equation (1.98), (1.99).
Consequently, the determining equation for the coefficients of the recursion
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operator (1.100) is given by

L[u]R[u]v = vD2
xa+ 2vxDxa+ vxxa+ vxD2

xb+ 2vxxDxb

+vxxxb+ vxxD2
xc+ 2vxxxDxc+ vxxxxc− vuxDxa

−vxuxa− vxuxDxb− vxxuxb− vxxuxDxc− vxxxuxc

−vDta− vta− vxDtb− vxtb− vxxDtc− vxxtc = 0.

(1.101)

Equation (1.101) must hold for every solution (u, v) of (1.97) and (1.98),
(1.99). After substitution for the t-derivatives of (v, vx, vxx) in (1.101) through
equation (1.98), and two differential consequences in terms of x-derivatives of
v, the determining equation (1.101) becomes a linear homogeneous expression
in terms of independent variables vxxx, vxx, vx and v. Thus the determining
equation (1.101) reduces to the following four equations for the coefficients
a, b, and c:

Dxc = 0, (1.102a)

2Dxb+ 2uxxc− Dtc = 0, (1.102b)

2Dxa+ D2
xb− uxDxb+ uxxb− Dtb+ uxxxc = 0, (1.102c)

D2
xa− uxDxa− Dta = 0. (1.102d)

Equations (1.102) must hold for any solution u = Θ(x, t) of the integrated
Burgers’ equation (1.97). In solving (1.102), we use PDE (1.97) and its dif-
ferential consequences to substitute for t-derivatives of u, ux, uxx, . . . . From
equation (1.102a), it immediately follows that

c = c(t). (1.103)

Then equation (1.102b) yields

b = b(x, t, ux) = −c(t)ux + 1
2xc

′(t) + α(t), (1.104)

for arbitrary α(t). After substituting equations (1.103) and (1.104) into equa-
tion (1.102c), one finds that

a = a(x, t, ux, uxx)

= −1
2c(t)uxx + 1

4c(t)u
2
x −

[
1
4xc

′(t) + 1
2α(t)

]
ux

+ 1
8x

2c′′(t) + 1
2xα

′(t) + β(t),

(1.105)

for arbitrary β(t). Finally, substitution of equation (1.105) into equation
(1.102d) leads to

c′′′(t) = 0, α′′(t) = 0, β′(t) = 1
4c

′′(t). (1.106)
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Consequently, one obtains six recursion operators for the integrated Burgers’
equation (1.97) given by

R1[u] = 1, R2[u] = 1
2ux − Dx, R3[u] = 1

2 (tux − x) − tDx,

R4[u] = 1
4 [u2

x − 2uxx] − uxDx + D2
x,

R5[u] = 1
4 [tu2

x − xux − 2tuxx] +
[
1
2x− tux

]
Dx + tD2

x,

R6[u] = 1
4 [t2u2

x − 2txux − 2t2uxx + x2 + 2t]

+[xt− t2ux]Dx + t2D2
x.

(1.107)

It is easy to see that if {R1[u], . . . ,Rp[u]} is a set of p recursion op-
erators of a given nonlinear scalar PDE (1.87), then any polynomial op-
erator P (R1[u], . . . ,Rp[u]) is a recursion operator of PDE (1.87). Thus if
a given nonlinear scalar PDE (1.87) has a local symmetry η ∂/∂u and a
set of p recursion operators, then PDE (1.87) also has local symmetries
P (R1[u], . . . ,Rp[u])η ∂/∂u for any polynomial operator P (R1[u], . . . ,Rp[u]).

Since for the recursion operators (1.107), one can show that R4 =
(R2)2, R5 = R2R3, R6 = (R3)2, it follows that only R2[u] and R3[u]
are independent recursion operators. From its invariance under translations
in x, it follows that the integrated Burgers’ equation (1.97) has the symmetry
ux 2 3 x∂/∂u

for any polynomial P (R2[u],R3[u]). Note that

R2[u]ux = −uxx + 1
2u

2
x = −ut,

R3[u]ux = −tuxx + 1
2 [tu2

x − xux] = −[tut + 1
2xux]

correspond to the invariance of PDE (1.97) under translations in t and par-
ticular scalings of x and t, respectively. These two recursion operators applied
to the point symmetry ux ∂/∂u yield infinite sequences of higher-order sym-
metries of the integrated Burgers’ equation (1.97). An example of such a
higher-order symmetry is given by

(R2[u])3ux
∂

∂u
=
[
−uxxt + uxuxt + 1

4 (2uxx − u2
x)ut

] ∂

∂u
.

A higher-order symmetry classification problem

Now consider a higher-order symmetry classification problem for the nonlin-
ear heat conduction equation given by

ut − (K(u)ux)x = 0. (1.108)

P(R [u],R [u])u∂/∂u.Consequently,PDE(1.97) has the local symmetry
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In particular, we find all conductivities K(u) for which PDE (1.108) has
higher-order symmetries [Bluman & Kumei (1980)].

For brevity of notation, in this example we denote x-derivatives by ux =
u(1), uxx = u(2), uxxx = u(3), etc.

Suppose PDE (1.108) has a higher-order symmetry

X = η(x, t, u, u(1), . . . , u(s))
∂

∂u
(1.109)

for some s ≥ 2. For convenience, we introduce the notations

η0 =
∂η

∂u
, ηi =

∂η

∂u(i)
, ηij =

∂2η

∂u(i)∂u(j)
, K ′ =

dK

du
, K ′′ =

d2K

du2
.

The PDE (1.108) has the higher-order symmetry (1.109) if and only if the
determining equation (linearized equation)

X(2)(ut − (K(u)ux)x)

= L[u]η

= [Dt −K ′′(u(1))2 − 2K ′u(1)Dx −K ′u(2) −KD2
x]η = 0

(1.110)

holds for every solution u = Θ(x, t) of the corresponding nonlinear heat
conduction equation (1.108). In (1.110), one has

Dtη =
∂η

∂t
+ η0ut +

s∑
i=1

ηiu
(i)
t , Dxη =

∂η

∂x
+

s∑
i=0

ηiu
(i+1),

D2
xη =

∂2η

∂x2
+ 2

s∑
i=0

∂ηi

∂x
u(i+1) +

s∑
i,j=0

ηiju
(i+1)u(j+1) +

s∑
i=0

ηiu
(i+2).

After substituting for ut and u
(i)
t in (1.110) through the given PDE (1.108)

and its differential consequences with respect to x-derivatives of u, the deter-
mining equation (1.110) becomes a polynomial equation in terms of u(s+1).

The coefficients of each power of u(s+1) must separately vanish. The vanishing
of the coefficients of (u(s+1))2 and u(s+1), respectively, yields the equations

ηss = 0, sK ′ηsu
(1) = 2K

s−1∑
i=0

ηisu
(i+1). (1.111)

The solution of (1.111) leads to

η = αKs/2u(s) + f(u, u(1), . . . , u(s−1)), (1.112)

where f is an arbitrary function of its arguments and α = const �= 0 if s ≥ 3.
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The substitution of (1.112) into the determining equation (1.110) reduces
(1.110) to a polynomial equation in terms of u(s). The vanishing of its coef-
ficients of (u(s))2 and u(s), respectively, yields the equations

∂2f

∂(u(s−1))2
= 0,

2K
s−2∑
i=0

u(i+1) ∂2f

∂u(i)∂u(s−1)
+ (1 − s)K ′u(1) ∂f

∂u(s−1)

− 1
2αs(s+ 3)K ′Ks/2u(2)

+ 1
4

[
s2(K ′)2Ks/2−1 − 2s(s+ 2)K ′′Ks/2

]
(u(1))2 = 0.

(1.113)

From (1.113), one can easily deduce that η is of the form

η = α
[
Ks/2u(s) + 1

4s(s+ 3)K ′Ks/2−1u(1)u(s−1)
]

+g(u)u(s−1) + h(u, u(1), . . . , u(s−2)),
(1.114)

where g and h are arbitrary functions of their respective arguments. More im-
portantly, the substitution of (1.114) into (1.113) yields a nontrivial solution
for η only if the conductivity K(u) satisfies the ODE

2KK ′′ − 3K ′2 = 0. (1.115)

The solution of ODE (1.115) leads to

K(u) =
c

(u+ d)2
, (1.116)

for arbitrary constants c and d. Hence, modulo scalings and translations in
u, the only nonlinear heat conduction equation (1.108) that could have a
higher-order symmetry is given by

ut − (u−2ux)x = 0. (1.117)

Let K(u) = u−2. Then for s = 3, the substitution of (1.114) into the
determining equation (1.110) yields a higher-order symmetry η1 ∂/∂u of PDE
(1.117) with

η1 = u−3u(3) − 9u−4u(1)u(2) + 12u−5(u(1))3. (1.118)

For s = 4, the substitution of (1.114) into the determining equation (1.110)
yields a second higher-order symmetry η2 ∂/∂u of the PDE (1.117) with

η2 = u−4u(4) − 14u−5u(1)u(3) − 10u−5(u(2))2

+ 95u−6(u(1))2u(2) − 90u−7(u(1))4.
(1.119)
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The invariance of PDE (1.117) under translations in t leads to PDE (1.117)
admitting η0 ∂/∂u with

η0 = ut = (u−2ux)x = u−2u(2) − 2u−3(u(1))2. (1.120)

The form of η0, η1 and η2 leads one to seek a recursion operator of the form

R[u] = pDx + q + rD−1
x (1.121)

so that R[u]ηi = ηi+1, i = 0, 1, where DxD−1
x is the identity operator and

p, q, r are functions of u, u(1), u(2). Then one can show that R[u]η0 = η1 if and
only if p = u−1 and [u−2u(2) − 2u−3(u(1))2]q + u−2u(1)r = −3u−4u(1)u(2) +
6u−5(u(1))3, and, furthermore, that R[u]η1 = η2 if and only if q = −2u−2u(1)

and r = −u−2u(2) + 2u−3(u(1))2. Consequently, one can show that the oper-
ator (1.121) can be written more concisely as

R[u] = D2
x ◦ u−1 ◦ D−1

x . (1.122)

It is left as an exercise to prove that the operator R[u] given by (1.122) is a
recursion operator of the nonlinear heat conduction equation (1.117). Corre-
spondingly, PDE (1.117) has the infinite sequence of higher-order symmetries
given by (R[u])sη0 ∂/∂u, s = 1, . . . . Moreover, one can show that these are
the only higher-order symmetries of PDE (1.117) [Bluman & Kumei (1980)].

Exercises 1.2

1.2.1. Prove Theorem 1.2.1 [Lie (1890); Mayer (1875)].

1.2.2. By direct calculation, show that Theorem 1.2.3 holds.

1.2.3. Prove that the only transformations of the form (1.20) that are one-
to-one on (x, u, ∂u, . . . , ∂ku)-space for some finite k are point transformations
of the form (1.1) or contact transformations of the form (1.13).

1.2.4. For u = u(x, t), show that the transformation given by

x∗ = x+ ut,

t∗ = t+ ux,

u∗ = u+ uxut

(1.123)

yields a contact transformation.

1.2.5. Show that an infinitesimal generator of the form (1.44) is uniquely
equivalent to an infinitesimal generator of a one-parameter Lie group of point
transformations when η(x, u, ∂u) has a linear dependence on first derivatives.
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1.2.6. For the linear heat equation (1.53), show that the one-parameter Lie
group of transformations (1.59) maps any solution u = θ(x, t) that is not
invariant under (1.57) into the one-parameter family of solutions of PDE
(1.53) given by the expression

u = φ(x, t; ε) =
1√

1 − εt
exp

[
εx2

4(1 − εt)

]
θ

(
x

1 − εt
,

t

1 − εt

)
.

1.2.7. Find the contact symmetries of the Liouville equation uxt = eu.

1.2.8. Consider the PDE system given by

vx = u,

vt = F (x, t, u, ux),
(1.124)

and the related scalar PDE given by

vt = F (x, t, vx, vxx). (1.125)

(a) Show that any solution of the PDE system (1.124) yields a solution
of the related scalar PDE (1.125) and, conversely, that any solution
of the related scalar PDE (1.125) yields a solution of the PDE system
(1.124).

(b) Show that a point symmetry of the PDE system (1.124) yields a contact
symmetry (which could be a point symmetry) of the related scalar PDE
(1.125) and, conversely, that a contact symmetry of the related scalar
PDE (1.125) yields a point symmetry of the PDE system (1.124).

1.2.9. Consider Burgers’ equation:

ut + uux = uxx. (1.126)

(a) Show that the only admitted local symmetries of the form X =
η(x, u, ux, uxx, uxxx) ∂/∂u are given by

X1 = ux
∂

∂u
, X2 = (uxx − uux)

∂

∂u
,

X3 =
(
4uxxx − 6uuxx − 6u2

x + 3u2ux

) ∂

∂u
.

(b) Show that X1 and X2 correspond to point symmetries and that X3

corresponds to a higher-order symmetry.
(c) Find the other three higher-order symmetries of the form

X = η(x, t, u, ux, uxx, uxxx) ∂/∂u [Bluman & Kumei (1989)].

1.2.10. Find groups of equivalence transformations for the following families
of PDE systems.
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(a) Diffusion-convection equations given by

ut = (A(u)ux)x +B(u)ux,

involving constitutive functions A(u) and B(u) [Popovych & Ivanova
(2004)].

(b) Nonlinear telegraph (NLT) equations given by

utt − (F (u)ux)x − (G(u))x = 0,

involving constitutive functions F (u) and G(u) [Bluman & Temuer-
chaolu (2005a)].

(c) Lagrange PDE systems of planar gas dynamics equations given by

qs − vy = 0,
vs + py = 0,

ps +B(p, q)vy = 0,

involving a constitutive function B(p, q) [Akhatov, Gazizov & Ibragi-
mov (1991)] .

(d) PDE systems for part (c) in the polytropic case, i.e., B(p, q) = γp/q,
where γ = const is an arbitrary constitutive parameter.

(e) Linear PDE systems given by

pv = utu − t,

pu = uc2(u)tv,

involving a constitutive function c2(u). [These systems arise in the
analysis of nonlocally related systems for the nonlinear wave equations
[Bluman & Cheviakov (2007)]; see Section 4.2.2.]

(f) Bragg–Hawthorne equations describing axially symmetric ideal fluid
flow, given by

vrr −
vr

r
+ vzz + I(v)I ′(v) = −r2P ′(v),

involving constitutive functions I(v), P (v).

1.2.11. Consider the linear PDE

x2uxx + xux − utt + x2u = 0. (1.127)

(a) Show that from its invariance under translations in t and scalings of
u, it follows that PDE (1.127) has solutions of the form u = eνty(x, ν),
ν = const, where y(x, ν) satisfies a reduced ODE.

(b) Show that y(x, ν) satisfies Bessel’s equation of order ν given by
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y′′ + x−1y′ + (1 − ν2x−2)y = 0.

(c) Find the recursion operators of the form R = a(x, t) + b(x, t)Dt +
c(x, t)Dx that are admitted by PDE (1.127). Find their commutation
relations.

(d) Find two linear combinations of these recursion operators, labeled R+

and R− with the property that they act, respectively, as raising and
lowering operators in the sense that R±eνty(x, ν) = e(ν±1)ty(x, ν ± 1)
[Miller (1968)].

1.2.12. Show that if {R1[u], . . . ,Rp[u]} is a set of p recursion operators of
a nonlinear scalar PDE (1.87), then any polynomial operator P (R1[u], . . . ,
Rp[u]) is a recursion operator of PDE (1.87).

1.2.13. Show that the operator R[u] given by (1.122) is a recursion operator
of the nonlinear heat conduction equation (1.117).

1.2.14.

(a) Show that if R[u] is a recursion operator of the integrated Burgers’
equation (1.97), then the operator DxR[D−1

x u]D−1
x is a recursion op-

erator of Burgers’ equation (1.126).
(b) For the recursion operators R2[u] = 1

2ux − Dx, R3[u] = 1
2 (tux − x) −

tDx, of PDE (1.97), find the corresponding recursion operators of PDE
(1.126).

1.2.15. Consider the Korteweg–de Vries equation

ut + uux + uxxx = 0. (1.128)

(a) Find the linearized equation associated with PDE (1.128).
(b) Show that

R[u] = D2
x + 2

3u+ uxD−1
x (1.129)

is a recursion operator of PDE (1.128).
(c) From its invariance under translations in x, clearly PDE (1.128) has the

point symmetry ux ∂/∂u. Hence, apply the recursion operator (1.129)
to ux ∂/∂u to obtain the two higher-order symmetries of lowest order
in the corresponding infinite sequence of higher-order symmetries of
PDE (1.128).

(d) Find a scaling symmetry of PDE (1.128). Show that the application of
the recursion operator (1.129) to this scaling symmetry does not yield
local symmetries of PDE (1.128).

1.2.16. Consider the system of PDEs

uxx + u2v + iut = 0, (1.130a)

vxx + uv2 − ivt = 0. (1.130b)
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Show that the matrix operator given by

R[u, v] =
[
iDx + iuD−1

x ◦ v iuD−1
x ◦ u

−ivD−1
x ◦ v −iDx − ivD−1

x ◦ u

]
is a recursion operator of the system of PDEs (1.130). Note that if v = ū is the
complex conjugate of u, then PDE (1.130a) becomes the cubic Schrödinger
equation given by uxx + ūu2 + iut = 0 and PDE (1.130b) is its complex
conjugate equation [Ablowitz, Kaup, Newell & Segur (1974)].

1.2.17. Verify that R[u] = D2
x + uxD−1

x ◦ uxDx is a recursion operator for
the sine-Gordon equation

uxt − sinu = 0. (1.131)

Find two higher-order symmetries of PDE (1.131). [This recursion operator
for PDE (1.131) was found by Olver (1977).]

1.3 Conservation Laws

In the study of DEs, conservation laws have many significant uses. They de-
scribe physical conserved quantities such as mass, energy, momentum and
angular momentum, as well as charge and other constants of motion. They
are important for investigating integrability and linearization mappings and
for establishing existence and uniqueness of solutions. They are also used in
the analysis of stability and global behavior of solutions. In addition, they
play an essential role in the development of numerical methods and provide
an essential starting point for finding nonlocally related systems and poten-
tial variables. In particular, a conservation law is fundamental in studying a
given DE in the sense that it holds for any posed data (initial and/or bound-
ary conditions). Moreover, the structure of conservation laws is coordinate-
independent, as a point (contact) transformation maps a conservation law
into a conservation law.

1.3.1 Local conservation laws

Consider a system R{x ;u} of N partial differential equations of order k

with n independent variables x = (x1, . . . , xn) and m dependent variables
u(x) = (u1(x), . . ., um(x)), given by

Rσ[u] = Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N. (1.132)
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Definition 1.3.1. A local conservation law of PDE system (1.132) is a di-
vergence expression

DiΦ
i[u] = D1Φ

1[u] + · · · + DnΦ
n[u] = 0 (1.133)

holding for all solutions of PDE system (1.132). In (1.133), Φi[u] = Φi(x,
u, ∂u, . . . , ∂ru), i = 1, . . . , n, are called the fluxes of the conservation law,
and the highest-order derivative (r) present in the fluxes Φi[u] is called the
(differential) order of a conservation law.

Remark 1.3.1. If one of the independent variables of R{x ;u} is time t, the
conservation law (1.133) takes the form

DtΨ [u] + divΦ[u] = 0, (1.134)

where divΦ[u] = DiΦ
i[u] = D1Φ

1[u] + · · · + Dn−1Φ
n−1[u] is a spatial di-

vergence, and x = (x1, . . . , xn−1) are n− 1 spatial variables. Here Ψ [u] is
referred to as a density, and Φi[u] as spatial fluxes of the conservation law
(1.134).

The following theorem is easily proved.

Theorem 1.3.1. Suppose the conservation law (1.134) is defined on a do-
main D in x-space for t > 0, and its fluxes Φi[u] vanish on the boundary
∂D (or alternatively, D is unbounded and lim|x|→∞ Φi[u] = 0 for all i). Then∫
D Ψ [u] dn−1x is time-independent.

Proof. Integrating (1.134) over D, one obtains∫
D

DtΨ [u]dn−1x = −
∫
D

(divΦ[u])dn−1x = −
∮

∂D
(Φ[u] · n)dn−2x = 0.

��

The conserved quantity in Theorem 1.3.1 is called a constant of motion.
It can be evaluated in terms of initial data for u(x, t) at time t = 0, i.e.,∫

D
Ψ [u]dn−1x =

∫
D
Ψ [f ]dn−1x,

where f(x) = u(x, 0).

As a first example, consider the adiabatic motion of an ideal gas on a
bounded three-dimensional domain: x = x = (x1, x2, x3) ∈ D ⊂ R

3. At
position x and time t, let v(x, t) = v = (v1(x, t), v2(x, t), v3(x, t)), ρ = ρ(x, t)
and p = p(x, t) be the velocity, the density, and the pressure of the gas,
respectively. For adiabatic processes in an ideal gas, the entropy density is
given by S = cv ln pρ−γ , where cv = const is the specific heat of the gas
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at constant volume, and γ = const is the adiabatic exponent. The Euler
equations describing such a gas motion are given by

Dtρ+ Dj(ρvj) = 0, (1.135a)

ρ(Dt + vjDj)vi + Dip = 0, i = 1, 2, 3, (1.135b)

ρ(Dt + vjDj)p+ γρpDjv
j = 0. (1.135c)

In particular, the equation (1.135c) results from the conservation of entropy
along the streamlines of the flow: (Dt + vjDj)S = 0.

Equation (1.135a) is a divergence expression (1.134) and thus a conserva-
tion law of the PDE system (1.135). It expresses the local conservation of
mass. In particular, the integral version of (1.135a) is given by

Dt

∫
D
ρd3x = −

∫
D

div (ρv)d3x = −
∫

∂D
ρ(v · n)dS, (1.136)

showing that the rate of change of the total gas mass M(t) =
∫
D ρd3x in D is

due to the flux of gas proportional to the component of velocity v ·n normal
to the domain boundary ∂D. Hence, if the velocity is tangent to the domain
boundary (v · n = 0), the total mass is a constant of motion.

Other conservation laws of the Euler PDE system (1.135) arise from linear
combinations of the equations of the system. For example, multiplying equa-
tion (1.135a) by vi and adding equation (1.135b), for i = 1, 2, 3, one obtains
the three components of the vector equation of conservation of momentum
(three scalar conservation laws):

vi
[
Dtρ+ Di(ρvj)

]
+
[
ρ(Dt + vjDj)vi + Dip

]
= Dt(ρvi) + Dj(ρvivj + pδij) = 0, i = 1, 2, 3.

(1.137)

In integral form, this yields

Dt

∫
D
ρvd3x = −

∫
D

div(ρv ⊗ v + p I)d3x = −
∫

∂D
[ρv(v · n) + pn] dS,

where P(t) =
∫
D ρvd3x is the total momentum of the gas in D and ρv(v ·

n) + pn = n · (ρv⊗v + pI) is the flux of the momentum of the gas normal to
the boundary of D. [Here v ⊗ v is a 3 × 3 tensor with components vivj , and
I is the identity tensor with components δij .]

As another example, taking a linear combination of equations (1.135a),
(1.135b), and (1.135c) with respective multipliers (vi)2/2, ρvi, and 1/ρ(γ −
1), followed by summation in i from 1 to 3, one obtains the equation of
conservation of energy :
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3∑
i=1

(
1
2 (vi)2

[
Dtρ+ Dj(ρvj)

]
+ ρvi

[
ρ(Dt + vjDj)vi + Dip

]
+

1
ρ(γ − 1)

[
ρ(Dt + vjDj)p+ γρpDjv

j
] )

= Dt(E) + Dj

(
vj(E + p)

)
= 0,

(1.138)

where E = 1
2ρv

2 + p/(γ − 1) is the total energy density. Thus, one has

Dt

∫
D

[
1
2ρv

2 +
p

γ − 1

]
d3x = −

∫
D

div ((E+p)v)d3x = −
∫

∂D
(E+p)(v·n)dS,

relating the rate of change of the total energy in the gas in D to the normal
component of the flux of the energy (E + p)v through the boundary of D.

Similarly, the linear combination arising after multiplying equation (1.135a)
by the vector x×v, and cross-multiplying the vector equation (1.135a) by the
vector v, yields the three components of the angular momentum conservation
law :

Dt(mi) + Dj

(
vjmi

)
− (curl(px))i = 0, i = 1, 2, 3, (1.139)

where m = x×ρv = (m1,m2,m3) is the angular momentum density [Exercise
1.3.1].

As an example of a time-independent conservation law, consider Maxwell’s
equation

divB ≡ D1B
1 + D2B

2 + D3B
3 = 0 (1.140)

in R
3, for the magnetic field B = B(x, t) = (B1(x, t), B2(x, t), B3(x, t)). The

integral form of the conservation law (1.140) for any closed domain D with
boundary surface ∂D in R

3 yields∫
D

div Bd3x =
∮

∂D
B · ndS = 0,

which shows that there is no magnetic flux through the boundary of D. This
expresses the fact that magnetic charges do not exist.

Certain PDE systems have an infinite number of local conservation laws.
A well-known example of this situation is given by the Korteweg–de Vries
equation

ut + uux + uxxx = 0, (1.141)

where u(x, t) is the amplitude of long surface waves on shallow water. In addi-
tion to conservation laws for mass, momentum and energy, given, respectively,
by
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Dt(u) + Dx

(
1
2u

2 + uxx

)
= 0, (1.142a)

Dt

(
1
2u

2
)

+ Dx

(
1
3u

3 + uuxx − 1
2u

2
x

)
= 0, (1.142b)

Dt

(
1
6u

3 − 1
2u

2
x

)
+Dx

(
1
8u

4 − uu2
x + 1

2 (u2uxx + u2
xx) − uxuxxx

)
= 0,

(1.142c)

the KdV equation (1.141) has an infinite sequence of local conservation laws
of increasing order in which the conserved densities are polynomials in u and
its x-derivatives [Miura, Gardner & Kruskal (1968)]. In particular, the next
higher-order local conservation law in this sequence is given by

Dt

(
5
72u

4 − 5
6uu

2
x + 1

2u
2
xx

)
+Dx

(
1
18u

5 − 5
12u

2u2
x + 5

6u
2
xuxx + 4

3uu
2
xx

− 5
3uuxuxxx − 1

2u
2
xxx + uxxuxxxx

)
= 0.

(1.143)

The KdV equation (1.141) also has local conservation laws with explicit de-
pendence on t and x. An example of such a conservation law is given by

Dt

(
1
2 tu

2 − xu
)

+ Dx

(
− 1

2xu
2 + tuuxx − 1

2 tu
2
x − xuxx + ux

)
= 0 (1.144)

which can be shown to describe the motion of the center of mass of a surface
wave.

1.3.2 Equivalent conservation laws

Definition 1.3.2. A local conservation law (1.133) of the PDE system
R{x ;u} (1.132) is trivial if its fluxes are of the form Φi[u] = M i[u] +Hi[u],
where M i[u] and Hi[u] are functions of x, u and derivatives of u such that
M i[u] vanishes on the solutions of the system (1.132), and DiH

i[u] ≡ 0 is
identically divergence-free.

In particular, a trivial conservation law contains no information about a
given PDE system R{x ;u} (1.132) and arises in two cases:

1. Each of its fluxes vanishes identically on the solutions of the given PDE
system.

2. The conservation law vanishes identically as a differential identity. In
particular, this second type of trivial conservation law is simply an
identity holding for arbitrary fluxes.

As an example, consider the PDE system
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vx = u, vt = K(u)ux. (1.145)

The conservation law

Dt(u(u− vx)) + Dx(2(vt −K(u)ux)) = 0

is a trivial conservation law of the first type for PDE system (1.145), and

Dt(uxx) − Dx(utx) = 0

is a trivial conservation law of the second type.
An important general example of a trivial conservation law of the second

type is given by div(curl f) = 0 for any vector function f(x) in R
3, and its

multi-dimensional generalizations.
The notion of a trivial conservation law leads to the following definitions

of equivalence and linear dependence of conservation laws.

Definition 1.3.3. Two conservation laws DiΦ
i[u] = 0 and DiΨ

i[u] = 0 are
equivalent if Di(Φi[u]−Ψ i[u]) = 0 is a trivial conservation law. An equivalence
class of conservation laws consists of all conservation laws equivalent to some
given nontrivial conservation law.

Definition 1.3.4. A set of l conservation laws {DiΦ
i
(j)[u] = 0}l

j=1 is linearly
dependent if there exists a set of constants {a(j)}l

j=1, not all zero, such that
the linear combination

Di(a(j)Φi
(j)[u]) = 0 (1.146)

is a trivial conservation law. In this case, up to equivalence, one of the con-
servation laws in the set can be expressed as a linear combination of the
others.

In practice, one is interested in finding linearly independent sets of con-
servation laws of a given PDE system.

1.3.3 Multipliers for conservation laws. Euler
operators

In general, for a given PDE system (1.132), nontrivial local conservation laws
arise from linear combinations of the equations of the PDE system (1.132)
with multipliers (factors, characteristics) that yield nontrivial divergence ex-
pressions. In seeking such expressions, the dependent variables (and each of
their derivatives) that arise in the PDE system (1.132), or appear in the mul-
tipliers, are replaced by arbitrary functions (and their derivatives). By their
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construction, such divergence expressions vanish on all solutions of the PDE
system (1.132).

In particular, a set of multipliers {Λσ[U ]}N
σ=1 = {Λσ(x,U, ∂U, . . . , ∂lU)}N

σ=1

yields a divergence expression for the PDE system R{x ;u} (1.132) if the
identity

Λσ[U ]Rσ[U ] ≡ DiΦ
i[U ] (1.147)

holds for arbitrary functions U(x). Then on the solutions U(x) = u(x) of the
PDE system (1.132), if Λσ[U ] is non-singular, one has a local conservation
law

Λσ[u]Rσ[u] = DiΦ
i[u] = 0. (1.148)

A multiplier Λσ[U ] is singular if it is a singular function when evaluated on
solutions U(x) = u(x) of the given PDE system (1.132). [In practice, one is
only interested in non-singular sets of multipliers, since considering singular
multipliers can lead to arbitrary divergence expressions that are not conser-
vation laws of the given system. For example, Λσ[U ] = DiΦ

i[U ]/Rσ[U ] yields
Λσ[U ]Rσ[U ] ≡ Di(NΦi[U ]), in terms of arbitrary functions Φ1[U ], . . . , Φn[U ].]

Through this approach, the determination of local conservation laws for
a given PDE system (1.132) reduces to finding sets of local multipliers. The
following essential questions arise.

1. How can one formulate the determining equations to find all sets of
local multipliers of a given PDE system (1.132) that only yield its
nontrivial local conservation laws?

2. Under what conditions do all nontrivial local conservation laws arise
from sets of local multipliers? Conversely, under what conditions does
a set of local multipliers yield only nontrivial local conservation laws?

3. How can one construct the fluxes of a local conservation law arising
from a given set of local multipliers?

The first question is answered through the use of Euler operators that are
introduced below. The second question involves writing a given PDE system
in a solved form with respect to some leading derivatives, as shown below
and discussed further in Section 1.3.4. The third question is considered in
Section 1.3.7.

Definition 1.3.5. The Euler operator with respect to U j is the operator
defined by

EUj =
∂

∂U j
− Di

∂

∂U j
i

+ · · · + (−1)sDi1 . . .Dis

∂

∂U j
i1...is

+ · · · (1.149)

for each j = 1, . . . ,m.

By direct calculation, one can show that the Euler operators (1.149) an-
nihilate any divergence expression DiΦ

i[U ]. In particular, the following iden-
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tities hold for arbitrary U(x):

EUj (DiΦ
i(x,U, ∂U, . . . , ∂rU)) ≡ 0, j = 1, . . . ,m. (1.150)

The converse also holds. Specifically, the only scalar expressions annihilated
by Euler operators are divergence expressions. This establishes the following
theorem.

Theorem 1.3.2. The equations EUjF (x, U, ∂U, . . . , ∂sU) ≡ 0, j = 1, . . . ,m
hold for arbitrary U(x) if and only if F (x,U, ∂U, . . . , ∂sU) ≡ DiΨ

i(x,U, ∂U,
. . . , ∂s−1U) holds for some functions Ψ i(x,U, ∂U, . . . , ∂s−1U), i = 1, . . . , n.

Proof. See Exercises 1.3.2 and 1.3.3. ��

From Theorem 1.3.2, the proof of the following theorem connecting local
multipliers and local conservation laws is immediate.

Theorem 1.3.3. A set of non-singular local multipliers {Λσ(x,U, ∂U, . . . ,
∂lU)}N

σ=1 yields a local conservation law for the PDE system R{x ;u} (1.132)
if and only if the set of identities

EUj (Λσ(x, U, ∂U, . . . , ∂lU)Rσ(x,U, ∂U, . . . , ∂kU)) ≡ 0,

j = 1, . . . ,m,
(1.151)

holds for arbitrary functions U(x).

The set of equations (1.151) yields the set of linear determining equa-
tions to find all sets of local conservation law multipliers of the PDE sys-
tem R{x ;u} (1.132) by considering multipliers of all orders l = 1, 2, . . ..
Since equations (1.151) hold for arbitrary U(x), it follows that one can treat
each Uμ and each of its derivatives Uμ

i , Uμ
ij , etc. as independent variables

along with xi, and consequently the linear PDE system (1.151) splits into an
over-determined linear system of determining equations whose solutions are
the sets of local multipliers {Λσ(x,U, ∂U, . . . , ∂lU)}N

σ=1 of the PDE system
R{x ;u} (1.132).

It is important to note that for PDE systems in solved form with respect
to a set of leading derivatives, there is a simple converse to Theorem 1.3.3.
In particular, suppose each PDE of a given kth order PDE system R{x ;u}
(1.132) can be written in a solved form

Rσ[u] = ujσ

iσ,1...iσ,s
−Gσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N, (1.152)

where s ≤ k, 1 ≤ jσ ≤ m, 1 ≤ iσ,1, . . . , iσ,s ≤ n for all σ = 1, . . . , N .
In (1.152), {ujσ

iσ,1...iσ,s
} is a set of N linearly independent sth order leading

partial derivatives, with the property that none of them or their differen-
tial consequences appears in {Gσ[u]}N

σ=1. Then, without loss of generality,
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all leading derivatives and their differential consequences can be eliminated
in the fluxes Φi[u] of any given local conservation law (1.148) through the
PDEs (1.152) and their differential consequences. This leads to the following
theorem.

Theorem 1.3.4. For each local conservation law DiΦ
i[u] = 0 of a PDE sys-

tem R{x ;u} (1.132) written in solved form (1.152), there exists an equivalent
local conservation law DiΦ̃

i[u] = 0 that can be expressed in a characteristic
form

DiΦ̃
i[U ] = Λ̃σ[U ]

(
U jσ

iσ,1...iσ,s
−Gσ[U ]

)
(1.153)

in terms of a set of non-singular local multipliers {Λ̃σ[U ]}N
σ=1, with fluxes that

contain no leading derivatives U jσ

iσ,1...iσ,s
nor their differential consequences.

Proof. See Exercise 1.3.4. ��

Most importantly, Theorem 1.3.4 establishes that essentially, to within
equivalence, all local conservation laws of a PDE system R{x ;u} (1.132),
written in a solved form (1.152), arise from local multipliers that are the
solutions of the determining equations (1.151).

Remark 1.3.2. The assumption that R{x ;u} (1.132) can be written in a
solved form is the same assumption that is required when finding the local
symmetries of R{x ;u} (1.132). Even in the situation when a given PDE
system R{x ;u} (1.132) cannot be written in a solved form (1.152), the mul-
tiplier approach still can be used to seek local conservation laws of R{x ;u}
(1.132).

1.3.4 The direct method for construction of
conservation laws. Cauchy–Kovalevskaya form

Following from Theorems 1.3.3 and 1.3.4, a systematic procedure for the
construction of local conservation laws, referred to as the direct method, is
now outlined.

• For a given kth-order PDE system R{x ;u} (1.132), seek sets of multi-
pliers of the form {Λσ(x, U, ∂U, . . . , ∂lU)}N

σ=1 to some specified order l.
Choose the dependence of multipliers on their arguments so that singular
multipliers do not arise.

• Solve the set of determining equations (1.151) for arbitrary U(x) to find
all such sets of multipliers.

• Find the corresponding fluxes Φi(x,U, ∂U, . . . , ∂rU) satisfying the identity
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Λσ(x,U, ∂U, . . . , ∂lU)Rσ(x,U, ∂U, . . . , ∂kU)

≡ DiΦ
i(x,U, ∂U, . . . , ∂rU).

(1.154)

• Each set of fluxes and multipliers yields a local conservation law

DiΦ
i(x, u, ∂u, . . . , ∂ru) = 0,

holding for all solutions u(x) of the given PDE system R{x ;u} (1.132).

In practice, in setting up and then solving the set of multiplier determining
equations (1.151), it is convenient to write the given PDE system R{x ;u}
(1.132) in a solved form (1.152) with respect to some leading derivatives. In
particular, when a given PDE system is written in a solved form, Theorem
1.3.4 ensures that all local conservation laws to a specified order are found.
Moreover, it is preferable to have a PDE system written in a solved form since
this leads to a straightforward elimination of singular multipliers (which do
not lead to conservation laws) and trivial multipliers (which lead to trivial
conservation laws).

The fluxes Φi[U ] are found either by directly matching the two sides of
equation (1.154), or in the case of complicated forms of multipliers and/or
PDEs, by an integral formula that is presented in Section 1.3.7. In the sit-
uation when the given PDE system has a scaling symmetry, the fluxes can
often be found by an algebraic formula in terms of the corresponding sets of
multipliers without integration [Section 1.5.2].

Cauchy–Kovalevskaya form

It is important to note that in general, for a given PDE system, whether
or not it is in a solved form (1.152), there need not be a one-to-one cor-
respondence between sets of conservation law multipliers {Λσ[U ]}N

σ=1 and
equivalence classes of conservation laws. In particular, this relation can be
many-to-one, as illustrated by the following example.

Consider the PDE system for Maxwell’s equations in a vacuum in three
space dimensions, given by

Et − curlB = 0, Bt + curlE = 0,

divE = 0, divB = 0,
(1.155)

for time-dependent electric and magnetic fields given, respectively, by E=
(E1(x, t), E2(x, t), E3(x, t)), B = (B1(x, t), B2(x, t), B3(x, t)). The PDE
system (1.155) can be written in a solved form (1.152) in many ways. For
instance, a straightforward choice of eight leading derivatives for the eight
PDEs in system (1.155) is given by E1

x and B1
x and the components of Et
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and Bt. It is easy to verify that the set of eight respective multipliers given
by {ΛE = gradF , ΛB = gradG, ΛE

4 = −DtF , ΛB
4 = −DtG} of the PDE

system (1.155) yields the local conservation law

Dt(−F divE −G divB)

+div (F (Et − curlB) +G(Bt + curlE)) = 0,
(1.156)

where F (x, t) and G(x, t) are arbitrary functions. Since the density and the
fluxes of the conservation law (1.156) vanish on all solutions of the PDE sys-
tem (1.155), it follows that the conservation law (1.156) is trivial even though
its multipliers are nontrivial. The existence of the conservation law (1.156)
arises from Maxwell’s equations (1.155) satisfying the differential identities

div(Et − curlB) = Dt divE, div(Bt + curlE) = Dt divB,

that hold for arbitrary functions E(x, t),B(x, t). A similar situation will arise
for any PDE system that satisfies a differential identity. For such PDE sys-
tems, the correspondence between sets of nontrivial multipliers and nontrivial
fluxes is many-to-one.

In general, a one-to-one correspondence between sets of nontrivial local
multipliers and nontrivial fluxes will hold only for PDE systems that admit
a Cauchy–Kovalevskaya form.

Definition 1.3.6. A PDE system R{x ;u} (1.132) is in Cauchy–Kovalevskaya
form with respect to an independent variable xj , if the system is in a solved
form for the highest derivative of each dependent variable with respect to xj ,
i.e.,

∂sσ

∂(xj)sσ
uσ = Gσ(x, u, ∂u, . . . , ∂ku), 1 ≤ sσ ≤ k, σ = 1, . . . ,m, (1.157)

where all derivatives with respect to xj appearing in the right-hand side of
each PDE of (1.157) are of lower order than those appearing on the left-hand
side.

Definition 1.3.7. A PDE system R{x ;u} (1.132) admits a Cauchy - Kova-
levskaya form if it can be written in Cauchy–Kovalevskaya form with respect
to some independent variable (after a point (contact) transformation if nec-
essary).

Note that a Cauchy–Kovalevskaya form (1.157) is a special case of a solved-
form PDE system (1.152) with respect to the same leading derivatives for
all dependent variables. Consequently, a PDE system can admit a Cauchy–
Kovalevskaya form only if its number of dependent variables equals the num-
ber of PDEs in the system, i.e., N = m.



1.3 Conservation Laws 49

As simple examples, the KdV equation admits the Cauchy–Kovalevskaya
forms ut = −uux − uxxx and uxxx = −ut − uux in terms of leading t- and
x-derivatives, respectively; the wave equation utx = 0 is not in Cauchy–
Kovalevskaya form as written, but admits the Cauchy–Kovalevskaya form
uTT = uXX after the point transformation T = t− x, X = t+ x.

As a less obvious example, consider the two-dimensional Euler equations
for an incompressible fluid given by

ut + uux + vuy +
1
ρ
px = 0,

vt + uvx + vvy +
1
ρ
py = 0,

ux + vy = 0,

(1.158)

where (u, v) is the fluid velocity, p is the fluid pressure, and ρ = const is the
density of the fluid. The PDE system (1.158) cannot be written in Cauchy–
Kovalevskaya form with respect to leading t-derivatives but can be written
in Cauchy–Kovalevskaya form with respect to leading x-derivatives:

ux = −vy, px = −ρ(ut + uux + vuy), vx = − 1
u

(
1
ρ
py + vt + vvy

)
.

An example of a PDE system that does not admit a Cauchy–Kovalevskaya
form is given by Maxwell’s equations (1.155) since in this system there are
N = 8 PDEs and only m = 6 dependent variables, i.e., N �= m.

Now one can show that the following theorem holds.

Theorem 1.3.5. Suppose a PDE system admits a Cauchy–Kovalevskaya
form (1.157). Then all of its nontrivial (up to equivalence) local conservation
laws arise from multipliers. Moreover, there is a one-to-one correspondence
between equivalence classes of conservation laws and sets of conservation law
multipliers with no dependence on derivatives of uσ with respect to xj.

For details of the proof, see Anco & Bluman (2002b).

Remark 1.3.3. For a PDE system R{x ;u} (1.132) that has a Cauchy–
Kovalevskaya PDE form (1.157), there is a particularly effective formulation
of the direct method to find local conservation laws. Let t denote the in-
dependent variable in the derivative appearing in solved form in each PDE
of the system and let x = (x1, . . . , xn−1) denote the remaining independent
variables. It is convenient to express the given PDE system in its equivalent
first-order (evolutionary) form with respect to t:

Rσ[u] =
∂uσ

∂t
− gσ(x, t, u, ∂xu, . . . , ∂

k
xu) = 0, σ = 1, . . . ,m. (1.159)
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Since t-derivatives ∂uj/∂t and their differential consequences can be ex-
pressed through the equations (1.159), one can show from Theorems 1.3.4
and 1.3.5 that all nontrivial local conservation laws (up to equivalence) of
the system (1.159) arise from non-singular sets of multipliers of the form
Λσ(x, t, U, ∂xU, . . . , ∂

l
xU), σ = 1, . . . ,m.

1.3.5 Examples

To illustrate the direct method to obtain local conservation laws of a given
system of PDEs, we consider two examples.

(1) A nonlinear telegraph system
As a first example, consider a nonlinear telegraph system (u1 = u, u2 = v)
given by

R1[u, v] = vt − (u2 + 1)ux − u = 0,
R2[u, v] = ut − vx = 0.

(1.160)

This is a first-order Cauchy–Kovalevskaya PDE system with leading deriva-
tives vt and ut.

We seek all local conservation law multipliers of the form

Λ1 = ξ(x, t, U, V ), Λ2 = φ(x, t, U, V ) (1.161)

of the PDE system (1.160). In terms of the Euler operators

EU =
∂

∂U
− Dx

∂

∂Ux
− Dt

∂

∂Ut
, EV =

∂

∂V
− Dx

∂

∂Vx
− Dt

∂

∂Vt
,

the determining equations (1.151) for the multipliers (1.161) become

EU

[
ξ(x, t, U, V )(Vt − (U2 + 1)Ux − U)
+ φ(x, t, U, V )(Ut − Vx)] ≡ 0,

EV

[
ξ(x, t, U, V )(Vt − (U2 + 1)Ux − U)
+ φ(x, t, U, V )(Ut − Vx)] ≡ 0,

(1.162)

where U(x, t) and V (x, t) are arbitrary functions. Equations (1.162) split with
respect to Ut, Vt, Ux, Vx to yield the over-determined linear PDE system given
by

φV − ξU = 0, φU − (U2 + 1)ξV = 0,

φx − ξt − UξV = 0, (U2 + 1)ξx − φt − UξU − ξ = 0,
(1.163)
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whose solutions (ξ(x, t, U, V ), φ(x, t, U, V )) are the sets of local multipliers
of all nontrivial local conservation laws of zeroth order of the NLT system
(1.160).

The solutions of the determining system (1.163) are the five sets of local
multipliers given by

(ξ1, φ1) = (0, 1), (ξ2, φ2) = (t, x− 1
2 t

2),

(ξ3, φ3) = (1,−t), (ξ4, φ4) = (ex+ 1
2 U2+V , Uex+ 1

2 U2+V ),

(ξ5, φ5) = (ex+ 1
2 U2−V ,−Uex+ 1

2 U2−V ).

(1.164)

Each set (ξ, φ) determines a nontrivial zeroth-order local conservation law
DtΨ(x, t, u, v) + DxΦ(x, t, u, v) = 0 with the characteristic form

DtΨ(x, t, U, V ) + DxΦ(x, t, U, V )

≡ ξ(x, t, U, V )R1[U, V ] + φ(x, t, U, V )R2[U, V ].
(1.165)

In particular, after equating like derivative terms of (1.165), one has the
relations

ΨU = EUΨ = φ, ΨV = EV Ψ = ξ,

ΦU = ξ
∂R1

∂Ux
+ φ

∂R2

∂Ux
, ΦV = ξ

∂R1

∂Vx
+ φ

∂R2

∂Vx
= −φ,

Ψt + Φx = −Uξ.

(1.166)

The integration of the equations (1.166) for each set of multipliers yields the
following five linearly independent zeroth order local conservation laws of the
PDE system (1.160):

Dtu+ Dx[−v] = 0,

Dt[(x− 1
2 t

2)u+ tv] + Dx[(1
2 t

2 − x)v − t( 1
3u

3 + u)] = 0,

Dt[v − tu] + Dx[tv − ( 1
3u

3 + u)] = 0,

Dt[ex+ 1
2 u2+v] + Dx[−uex+ 1

2 u2+v] = 0,

Dt[ex+ 1
2 u2−v] + Dx[uex+ 1

2 u2−v] = 0.

(1.167)

For further details, see Bluman & Temuerchaolu (2005a), where conserva-
tion laws are found for wide classes of nonlinear telegraph systems.

(2) Korteweg–de Vries equation
As a second example, consider the KdV equation
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R[u] = ut + uux + uxxx = 0. (1.168)

Since the PDE (1.168) can be directly expressed in the solved form
ut = g[u] = −(uux + uxxx), it follows from Remark 1.3.3 that local mul-
tipliers yielding local conservation laws of PDE (1.168) are of the form
Λ = Λ(x, t, U, ∂xU, . . . , ∂

l
xU), l = 1, 2, . . . i.e., multipliers can be assumed to

depend at most on x-derivatives of U . Consequently, Λ(x, t, U, ∂xU, . . . , ∂
l
xU)

is a local conservation law multiplier for the PDE (1.168) if and only if it
satisfies the determining equation (1.151) given by

EU

(
Λ(x, t, U, ∂xU, . . . , ∂

l
xU)(Ut + UUx + Uxxx)

)
= −DtΛ− UDxΛ− D3

xΛ+ (Ut + UUx + Uxxx)ΛU

−Dx((Ut + UUx + Uxxx)Λ∂xU )

+ · · · + (−1)lDl
x((Ut + UUx + Uxxx)Λ∂l

xU ) ≡ 0

(1.169)

for an arbitrary function U(x, t) where here the Euler operator

EU =
∂

∂U
− (Dt

∂

∂Ut
+ Dx

∂

∂Ux
) + D2

x

∂

∂Uxx
+ · · ·

truncates after max(3, l) x-derivatives of U . Note that the linear determining
equation (1.169) is of the form

α1[U ] + α2[U ]Ut + α3[U ]∂xUt + · · · + αl+2[U ]∂l
xUt ≡ 0 (1.170)

where each αi[U ] depends at most on x, t, U and x-derivatives of U . Since
U(x, t) is an arbitrary function, in equation (1.170) each of Ut, ∂xUt, . . . , ∂

l
xUt

can be treated as independent variables, and hence αi[U ] = 0, i = 1, . . . , l+2.
Furthermore, there is a further splitting of each of these l + 2 determining
equations with respect to each of the x-derivatives of U . This yields an over-
determined linear PDE system for the multipliers. One can show that there
is a one-to-one correspondence between multipliers of order at most l and
conserved densities of order at most l/2 (to within total derivatives with
respect to x) for the KdV equation (1.168).

Now consider zeroth-order multipliers, i.e., Λ = Λ(x, t, U). Then from
equations (1.169) and (1.170), it follows that

(Λt + UΛx + Λxxx) + 3ΛxxUUx + 3ΛxUUU
2
x

+ΛUUUU
3
x + 3ΛxUUxx + 3ΛUUUxUxx ≡ 0.

(1.171)

Equation (1.171) is a polynomial identity in the variables Ux, Uxx. Hence
equation (1.171) splits into the three equations (the other three equations
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are differential consequences)

Λt + UΛx + Λxxx = 0, ΛxU = 0, ΛUU = 0,

whose solution yields the three local multipliers

Λ1 = 1, Λ2 = U, Λ3 = tU − x. (1.172)

It is easy to check that the three multipliers (1.172) yield the conservation
laws for mass, momentum and center of mass motion, given, respectively, by
equations (1.142a)–(1.142c), of the KdV equation (1.168).

Next consider first order multipliers, i.e., Λ = Λ(x, t, U, Ux). From equa-
tions (1.169) and (1.170), one gets −α3 = ΛUx

= 0. Thus the KdV equation
has no first order multipliers. It is left as an exercise to show that there is
only one second order multiplier Λ = Λ(x, t, U, Ux, Uxx), given by

Λ4 = Uxx + 1
2U

2. (1.173)

1.3.6 Linearizing operators and adjoint equations

Consider a system of N PDEs R{x ;u} given by

Rσ[u] = Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N, (1.174)

with n independent variables x = (x1, . . . , xn) and m dependent variables
u = (u1, . . . , um). Let

Rσ[U ] = Rσ(x,U, ∂U, . . . , ∂kU), σ = 1, . . . , N, (1.175)

for an arbitrary function U(x) = (U1(x), . . . , Um(x)). The linearizing opera-
tor L[U ] associated with the PDE system (1.174) is given by

Lσ
ρ [U ]V ρ =

[∂Rσ[U ]
∂Uρ

+
∂Rσ[U ]
∂Uρ

i

Di + · · ·

+
∂Rσ[U ]
∂Uρ

i1...ik

Di1 . . .Dik

]
V ρ, σ = 1, . . . , N,

(1.176)

in terms of an arbitrary function V (x) = (V 1(x), . . . , V m(x)). The adjoint
operator L∗[U ] associated with the PDE system (1.174) is obtained formally
through integration by parts and is given by
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L∗ σ
ρ [U ]Wσ =

∂Rσ[U ]
∂Uρ

Wσ − Di

(
∂Rσ[U ]
∂Uρ

i

Wσ

)
+ · · ·

= +(−1)kDi1 . . .Dik

(
∂Rσ[U ]
∂Uρ

i1...ik

Wσ

)
,

ρ = 1, . . . ,m,

(1.177)

in terms of an arbitrary function W (x) = (W1(x), . . . ,WN (x)).
In particular, the operators (1.176) and (1.177) satisfy the divergence re-

lation
WσLσ

ρ [U ]V ρ − V ρL∗ σ
ρ [U ]Wσ ≡ DiΨ

i[U ] (1.178)

with

Ψ i[U ] =
k−1∑
p=0

k−p−1∑
q=0

(−1)q
(
Di1 . . .Dip

V ρ
)

×Dj1 . . .Djq

(
Wσ

∂Rσ[U ]
∂Uρ

j1...jqii1...ip

)
,

(1.179)

where j1 . . . jq and i1 . . . ip are ordered combinations of indices such that
1 ≤ j1 ≤ . . . ≤ jq ≤ i ≤ i1 ≤ . . . ≤ ip ≤ n. [Exercise 1.3.16].

Now let Wσ = Λσ[U ] = Λσ(x,U, ∂U, . . . , ∂lU), σ = 1, . . . , N. By direct
calculation, in terms of the Euler operators defined by (1.149), one can show
that

EUρ(Λσ[U ]Rσ[U ]) ≡ L∗ σ
ρ [U ]Λσ[U ] + Fρ(R[U ]) (1.180)

with

Fρ(R[U ]) =
∂Λσ[U ]
∂Uρ

Rσ[U ] − Di

(
∂Λσ[U ]
∂Uρ

i

Rσ[U ]
)

= + · · · + (−1)lDi1 . . .Dil

(
∂Λσ[U ]
∂Uρ

i1...il

Rσ[U ]
)
,

ρ = 1, . . . ,m.

(1.181)

From expression (1.180), it immediately follows that {Λσ[U ]}N
σ=1 is a set

of local multipliers of the PDE system R{x ;u} (1.174) yielding a divergence
expression if and only if the right hand side of (1.180) vanishes for arbitrary
U(x). Now suppose each multiplier is non-singular for each solution U(x) =
u(x) of the PDE system (1.174). Since the expression (1.181) then vanishes
for each solution U(x) = u(x) of the PDE system R{x ;u} (1.174), it follows
that every set of non-singular multipliers {Λσ[U ]}N

σ=1 of R{x ;u} is a solution
of the adjoint linearizing system of PDEs when U(x) = u(x) is a solution of
the PDE system R{x ;u}, i.e.,

L∗ σ
ρ [u]Λσ[u] = 0, ρ = 1, . . . ,m. (1.182)
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In particular, the following two results have been proved.

Theorem 1.3.6. For a given PDE system R{x ;u} (1.174), every set of local
conservation law multipliers {Λσ[U ] = Λσ(x,U, ∂U, . . . , ∂lU)}N

σ=1 satisfies the
identity

L∗ σ
ρ [U ]Λσ[U ] +

∂Λσ[U ]
∂Uρ

Rσ[U ] − Di

(
∂Λσ[U ]
∂Uρ

i

Rσ[U ]
)

+ · · · + (−1)lDi1 . . .Dil

(
∂Λσ[U ]
∂Uρ

i1...il

Rσ[U ]
)

≡ 0, ρ = 1, . . . ,m,

(1.183)

holding for arbitrary functions U(x) = (U1(x), . . . , Um(x)), where the com-
ponents {L∗ σ

ρ [U ]} of the adjoint operator of the linearizing operator (Fréchet
derivative) for the PDE system (1.174) are given by expressions (1.177).

Corollary 1.3.1. For any solution U(x) = u(x) = (u1(x), . . . , um(x)) of a
given PDE system R{x ;u} (1.174), each set of local multipliers {Λσ[U ]}N

σ=1

satisfies the adjoint linearizing system

L∗ σ
ρ [u]Λσ[u] = 0, (1.184)

where {L∗ σ
ρ [U ]} is given by the components of the adjoint operator (1.183).

The identity (1.183) provides the explicit general form of the multiplier
determining system (1.151) in Theorem 1.3.3. In general, the adjoint system
(1.184) is strictly a subset of system (1.151) when one takes into account
the splitting of (1.183) with respect to a set of leading derivatives for Rσ[U ],
σ = 1 . . . , N .

As an example, consider the KdV equation (1.168). Its linearizing operator
is given by

L[U ] = D3
x + UDx + Ux + Dt, (1.185)

in terms of an arbitrary function U(x, t). The formal adjoint operator of the
linearizing operator (1.185) is given by

L∗[U ] = −D3
x − UDx − Dt, (1.186)

since for any two functions V (x, t) and W (x, t), the expression WL[U ]V −
V L∗[U ]W is a divergence. In particular, one has

WL[U ]V − V L∗[U ]W

≡ Dt(WV ) + Dx(WVxx −WxVx +WxxV +WV U).
(1.187)

Then one can show that the set of determining equations (1.151) for local
multipliers Λ(x, t, U, ∂xU, . . . , ∂

l
xU) of the KdV equation splits into an over-

determined linear system consisting of the l + 2 equations
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−D̃tΛ− UDxΛ− D3
xΛ = 0, (1.188a)

l∑
k=1

(−Dx)kΛ∂k
xU = 0, (1.188b)

(1 − (−1)q)Λ∂q
xU +

l∑
k=q+1

k!
q!(k − q)!

(−Dx)k−qΛ∂k
xU = 0, q = 1, . . . , l − 1,

(1.188c)

(1 − (−1)l)Λ∂l
xU = 0, (1.188d)

where D̂t = ∂/∂t+g[U ] ∂/∂U+(g[U ])x ∂/∂Ux+. . . is the total time derivative
operator restricted to the KdV equation, with g[U ] = −(UUx + Uxxx). In
particular, Λ(x, t, u, ∂xu, . . . , ∂

l
xu) satisfies

L∗[u]Λ[u]|R[u]=ut−g[u]=0 = 0, (1.189)

and after substitution for ut in (1.189), one obtains the first determining
equation (1.188a) holding for arbitrary u = U(x, t).

As one can see, the determining equation (1.188a) for multipliers Λ(x, t,
U, ∂xU, . . . , ∂

l
xU) is the adjoint of the linearizing equation of the KdV equa-

tion given by
L[u]η[u]|R[u]=ut−g[u]=0 = 0, (1.190)

in terms of the infinitesimals η[u] of local symmetries η[u] ∂/∂u of the KdV
equation. In particular, the adjoint determining equation (1.188a) is just
one of the set of l + 2 linear determining equations (1.188) that are the
necessary and sufficient conditions for Λ(x, t, U, ∂xU, . . . , ∂

l
xU) to yield a local

conservation law of the KdV equation (1.168).

1.3.7 Determination of fluxes of conservation laws
from multipliers

Consider a set of non-singular multipliers {Λσ[U ] = Λσ(x,U, ∂U, . . . , ∂lU)}N
σ=1

that yields a divergence expression for a PDE system R{x ;u} (1.174) with
some set of fluxes {Φi[U ] = Φi(x,U, ∂U, . . . , ∂rU)}n

i=1, i.e.

Λσ[U ]Rσ[U ] ≡ DiΦ
i[U ], (1.191)

which thus gives a local conservation law

divΦ[u] = 0 (1.192)

holding on the solutions U(x) = u(x) of the PDE system (1.132).



1.3 Conservation Laws 57

Given a set of conservation law multipliers, the problem of finding the
fluxes {Φi[U ]}n

i=1 is formally a problem of inversion of the divergence differ-
ential operator. Modulo trivial conservation laws of the first type [Section
1.3.2], a set of multipliers defines an equivalence class of conservation laws,
up to free constants and arbitrary functions. In particular, for any fluxes
{Φi[U ]}n

i=1 of a local conservation law in characteristic form

DiΦ
i[U ] ≡ Λσ[U ]Rσ[U ],

the addition of curl-type expressions DjH
ij [U ] given in terms of arbi-

trary functionsHij(x,U, ∂U, . . . , ∂r−1U) = −Hji(x,U, ∂U, . . . , ∂r−1U), i, j =
1, . . . , n, yields an equivalent local conservation law having the same charac-
teristic form

DiΦ̃
i[U ] ≡ Λσ[U ]Rσ[U ]

with fluxes
Φ̃i[U ] = Φ̃i[U ] + DjH

ij [U ]

since DiDjH
ij [U ] ≡ 0 holds identically. Thus, the fluxes arising from a set

of local conservation law multipliers are always arbitrary to within curl-type
expressions, which are described by an n-dimensional generalization of the
vector operator identity div curl = 0 in three dimensions. From the practical
point of view, for a given set of multipliers, it is sufficient to find just one
corresponding set of fluxes.

There are several ways of finding the fluxes of local conservation laws from
a known set of multipliers. Each method has its own advantages in different
situations depending on the precise form of the multipliers and PDE system.
First, we present a direct method that converts (1.191) directly into the
set of determining equations to be solved for the fluxes Φi[U ]. This method
is easy to implement for simple types of conservation laws, including those
involving arbitrary functions. The second method sets up a one-dimensional
integral (homotopy) formula that yields Φi[U ]. This formula is systematic
and hence more generally applicable, but it can be awkward for conservation
laws involving arbitrary functions or if singularities arise at the endpoints of
integration.

It is important to note that in the situation when a PDE system has
a scaling symmetry, one can often find fluxes of conservation laws by an
algebraic formula in terms of the corresponding sets of multipliers without
integration. This is considered in Section 1.5.2.
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Direct computation of fluxes of conservation laws

For conservation laws arising from simple forms of multipliers, the fluxes are
most easily found by direct matching of the two sides of equation (1.191).
Often, to find the divergence expression in (1.191), one can use integration
by parts on the terms in the expression Λσ[U ]Rσ[U ].

If integration by parts is not obvious, one may alternatively assume a
general form for the fluxes Φi[U ] with an appropriate choice of dependence
on derivatives of U , and directly solve the resulting determining equations
that arise from equating both sides of (1.191). In particular, if the maximal
order of derivatives of U(x) present in the multipliers is l, and the maximal
order in the equations Rσ[U ] appearing in the linear combination (1.191)
is k, then, without loss of generality (i.e., up to a trivial conservation law)
one may assume that the fluxes are of the form Φi(x,U, ∂U, . . . , ∂rU), where
r = max(l, k) [Olver (1983)]. Moreover, in the common situation when the
left-hand side of (1.191) is linear in the partial derivatives of highest order
(i.e., max(l, k)), one may assume that the fluxes Φi[U ] depend only on the
derivatives of U(x) up to order r = max(l, k)−1. After determining the order
r of derivatives appearing in the fluxes Φi[U ], one proceeds directly by first
equating terms in (1.191) that contain the highest derivatives of U(x), second
solving for the dependence of Φi[U ] on these derivatives, then repeating these
steps on the remaining terms of successively lower orders.

As an example, consider the nonlinear wave equation

R[u] = utt − (c2(u)ux)x = 0, (1.193)

with an arbitrary wave speed c(u). For simplicity, consider multipliers of the
form Λ[U ] = Λ(x, t, U). The determining equations (1.150) yield the solution
Λ(x, t) = C1+C2x+C3t+C4tx, where C1, . . . , C4 are arbitrary constants. As
a result, one obtains four linearly independent conservation laws, arising from
the multipliers Λ(1) = 1, Λ(2) = x, Λ(3) = t, Λ(4) = tx. We now determine
the corresponding density-flux pairs.

For the multiplier Λ(1) = 1, one has

Λ(1)[U ]R[U ] ≡ Dt(Ut) − Dx(c2(U)Ux), (1.194)

since PDE (1.193) is in divergence form as it stands:

Dt(ut) − Dx(c2(u)ux) = 0. (1.195)

For the multiplier Λ(2) = x, one can determine the flux and density using
integration by parts:
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Λ(2)[U ]R[U ] ≡ x(Dt(Ut) − Dx(c2(U)Ux))

≡ Dt(xUt) − Dx(xc2(U)Ux) + c2(U)Ux

≡ Dt(xUt) − Dx

(
xc2(U)Ux −

∫
c2(U)dU

)
,

(1.196)

and thus the corresponding conservation law is given by

Dt(xut) − Dx

(
xc2(u)ux −

∫
c2(u)du

)
= 0. (1.197)

Similarly, for the multiplier Λ(3) = t, one finds

Λ(3)[U ]R[U ] ≡ Dt(tUt − U) − Dx(tc2(U)Ux), (1.198)

giving the corresponding conservation law

Dt(tut − u) − Dx(tc2(u)ux) = 0. (1.199)

To find the flux and density of the somewhat more complicated fourth
conservation law of PDE (1.193) arising from the multiplier Λ(4) = tx, it is
straightforward to solve the flux-density determining equation

Λ(4)[U ]R[U ] = tx(Dt(Ut) − Dx(c2(U)Ux)) ≡ DtT [U ] + DxX[U ]. (1.200)

Since the left-hand side of (1.200) is linear in the highest derivatives Utt

and Uxx, one can assume that T [U ] = T (x, t, U, Ut, Ux) and X[U ] =
X(x, t, U, Ut, Ux). Expanding both sides of (1.200), one obtains

tx(Utt − 2c(U)c′(U)(Ux)2 − c2(U)Uxx)

= (Tt + TUUt + TUtUtt + TUxUtx)

+ (Xx +XUUx +XUt
Utx +XUx

Uxx) .

(1.201)

Matching the terms of the highest order derivatives Utt, Uxx and Utx, one
finds that

tx = TUt
, −txc2(U) = XUx

, TUx
= −XUt

. (1.202)

The third equation in (1.202) can be replaced by TUx
= XUt

= 0, since one
can show that the general solution of TUx

= −XUt
just leads to equivalent

conservation laws. The first two equations in (1.202) yield

T [U ] = txUt + α(x, t, U), X[U ] = −txc2(U)Ux + β(x, t, U), (1.203)

for arbitrary α(x, t, U), β(x, t, U). Substituting (1.203) into the determining
equations (1.201) and setting to zero coefficients of first-order partial deriva-
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tives of U , one finds

x = −αU , tc2(U) = βU , αt = −βx.

Therefore

α(x, t, U) = −xU + α̃(x, t), β(x, t, U) = t

∫
c2(U)dU + β̃(x, t), α̃t = −β̃x.

It is evident that any choice of α̃ and β̃ satisfying α̃t = −β̃x yields an equiv-
alent conservation law, with the simplest one having α̃ = β̃ = 0. Thus, the
fluxes of the fourth conservation law of PDE (1.193) are given by

T [U ] = txUt − xU, X[U ] = −txc2(U)Ux + t

∫
c2(U)dU,

and the corresponding conservation law is given by

Dt(txut − xu) − Dx

(
txc2(u)ux − t

∫
c2(u)du

)
= 0. (1.204)

Integral formula for fluxes of a conservation law

In the case of complicated forms of multipliers and/or PDE systems, the
problem of finding fluxes can be reduced to an integral (homotopy) formula.

Consider a set of local conservation law multipliers {Λσ[U ]}N
σ=1 of a given

PDE system R{x ;u} (1.174), i.e.,

Λσ[U ]Rσ[U ] ≡ DiΦ
i[U ]. (1.205)

Denote the linearizing operator (1.176) associated with the PDE system
R{x ;u} (1.174) by

(LR)σ
ρ [U ]V ρ =

[∂Rσ[U ]
∂Uρ

+
∂Rσ[U ]
∂Uρ

i

Di

+ · · · + ∂Rσ[U ]
∂Uρ

i1...ik

Di1 . . .Dik

]
V ρ,

σ = 1, . . . , N,

(1.206)

and its adjoint (1.177) by
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(L∗
R)σ

ρ [U ]Wσ =
∂Rσ[U ]
∂Uρ

Wσ − Di

(
∂Rσ[U ]
∂Uρ

i

Wσ

)
+ · · · + (−1)kDi1 . . .Dik

(
∂Rσ[U ]
∂Uρ

i1...ik

Wσ

)
,

ρ = 1, . . . ,m,

(1.207)

acting, respectively, on arbitrary functions V = (V 1(x), . . . , V m(x)) and W =
(W1(x), . . . ,WN (x)).

For each multiplier Λσ[U ] = Λσ(x,U, ∂U, . . . , ∂lU), introduce the corre-
sponding linearizing operator

(LΛ)σρ[U ]Ṽ ρ =
[∂Λσ[U ]

∂Uρ
+
∂Λσ[U ]
∂Uρ

i

Di

+ · · · + ∂Λσ[U ]
∂Uρ

i1...il

Di1 . . .Dil

]
Ṽ ρ,

σ = 1, . . . , N,

(1.208)

and its adjoint

(L∗
Λ)σρ[U ]W̃ σ =

∂Λσ[U ]
∂Uρ

W̃ σ − Di

(
∂Λσ[U ]
∂Uρ

i

W̃ σ

)
+ · · · + (−1)kDi1 . . .Dil

(
∂Λσ[U ]
∂Uρ

i1...il

W̃ σ

)
,

ρ = 1, . . . ,m,

(1.209)

acting, respectively, on arbitrary functions Ṽ = (Ṽ 1(x), . . . , Ṽ m(x)) and W̃ =
(W̃1(x), . . . , W̃N (x)).

It is straightforward to show that the operators (1.206)–(1.209) satisfy the
following divergence identities [Exercise 1.3.16]:

Wσ(LR)σ
ρ [U ]V ρ − V ρ(L∗

R)σ
ρ [U ]Wσ ≡ DiS

i[V,W ;R[U ]], (1.210)

W̃ σ(LΛ)σρ[U ]Ṽ ρ − Ṽ ρ(L∗
Λ)σρ[U ]W̃ σ ≡ DiS̃

i[Ṽ , W̃ ;Λ[U ]], (1.211)

with

Si[V,W ;R[U ]] =
k−1∑
p=0

k−p−1∑
q=0

(−1)q
(
Di1 . . .Dip

V ρ
)

×Dj1 . . .Djq

(
Wσ

∂Rσ[U ]
∂Uρ

j1...jqii1...ip

)
,

(1.212)

and
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S̃i[Ṽ , W̃ ;Λ[U ]] =
l−1∑
p=0

l−p−1∑
q=0

(−1)q
(
Di1 . . .Dip Ṽ

ρ
)

×Dj1 . . .Djq

(
W̃ σ ∂Λσ[U ]

∂Uρ
j1...jqii1...ip

)
,

(1.213)

where k is the order of the PDE system R{x ;u} (1.174), l is the maximal
order of the derivatives appearing in the multipliers {Λσ[U ]}N

σ=1, and j1 . . . jq,
i1 . . . ip are ordered combinations of indices such that 1 ≤ j1 ≤ . . . ≤ jq ≤
i ≤ i1 ≤ . . . ≤ ip ≤ n.

Now introduce a one-parameter family of functions

U(λ) ≡ U + (λ− 1)V, (1.214)

where U = (U1(x), . . . , Um(x)) and V = (V 1(x), . . . , V m(x)) are arbitrary
functions, and λ is a scalar parameter. Replacing U by U(λ) in the conserva-
tion law identity (1.205), one has

∂

∂λ
(Λσ[U(λ)]Rσ[U(λ)]) ≡

∂

∂λ
DiΦ

i[U(λ)] = Di

(
∂

∂λ
Φi[U(λ)]

)
. (1.215)

[The last identity holds since λ can be viewed as an additional independent
variable.] The left-hand side of (1.215) can then be expressed in terms of the
linearizing operators (1.206) and (1.208) as follows:

∂

∂λ
(Λσ[U(λ)]Rσ[U(λ)]) = Λσ[U(λ)](LR)σ

ρ [U(λ)]V ρ +Rσ[U(λ)](LΛ)σρ[U(λ)]V ρ.

From (1.210) and (1.211) with Wσ = Λσ[U(λ)] and W̃ σ = Rσ[U(λ)], re-
spectively, one obtains

∂

∂λ
(Λσ[U(λ)]Rσ[U(λ)])

= V ρ(L∗
R)σ

ρ [U(λ)]Λσ[U(λ)] + DiS
i[V,Λ[U(λ)];R[U(λ)]]

+V ρ(L∗
Λ)σρ[U(λ)]Rσ[U(λ)] + DiS̃

i[V,R[U(λ)];Λ[U(λ)]]

= Di

(
Si[V,Λ[U(λ)];R[U(λ)]] + S̃i[V,R[U(λ)]Λ[U(λ)]]

)
,

(1.216)

where the last equality follows from the identity (1.183) holding for local
conservation law multipliers in Theorem 1.3.6 [Exercise 1.3.17].

Comparing (1.215) and (1.216), one finds that

Di

(
∂

∂λ
Φi[U(λ)]

)
= Di

(
Si[V,Λ[U(λ)];R[U(λ)]] + S̃i[V,R[U(λ)];Λ[U(λ)]]

)
,
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which implies

∂

∂λ
Φi[U(λ)] = Si[V,Λ[U(λ)];R[U(λ)]] + S̃i[V,R[U(λ)];Λ[U(λ)]], (1.217)

up to fluxes of a trivial conservation law. Now let V = U−Ũ , for an arbitrary
function Ũ = (Ũ1(x), . . . , Ũm(x)), so that

U(λ) = λU + (1 − λ)Ũ

with U(0) = Ũ and U(1) = U . Then, integrating (1.217) with respect to λ

from 0 to 1, one obtains

Φi[U ] = Φi[Ũ ]

+
∫ 1

0

(
Si
[
U − Ũ , Λ[λU + (1 − λ)Ũ ];R[λU + (1 − λ)Ũ ]

]
+S̃i

[
U − Ũ , R[λU + (1 − λ)Ũ ];Λ[λU + (1 − λ)Ũ ]

])
dλ,

(1.218)

i = 1, . . . , n.
The following theorem has been proven.

Theorem 1.3.7. For a given set of local conservation law multipliers
{Λσ[U ]}N

σ=1 of a PDE system R{x ;u} (1.174), the corresponding fluxes are
given by the integral formula (1.218).

In the formula (1.218), Ũ is an arbitrary function of x, chosen so that the
integral converges. Different choices of Ũ yield fluxes of equivalent conserva-
tion laws. One normally chooses Ũ = 0 (provided that the integral converges).
Once Ũ = Ũ(x) has been chosen, the fluxes {Φi[Ũ ]}N

i=1 can be found by direct
integration through the divergence relation

DiΦ
i[Ũ ] = Λσ[Ũ ]Rσ[Ũ ] ≡ F (x).

For example, one may choose

Φ1[Ũ ] =
∫

F (x)dx1, Φ2[Ũ ] = · · · = Φn[Ũ ] = 0.

As an example, consider the modified Korteweg–de Vries equation

ut + u2ux + uxxx = 0. (1.219)

One can show that PDE (1.141) has a local conservation law arising from the
multiplier Λ[U ] = U , i.e., f [U ] = U(Ut +U2Ux +Uxxx) ≡ DtΦ

1[U ]+DxΦ
2[U ]

is a divergence expression. Using Ũ = 0, one finds Φ1[0] = Φ2[0] = 0, and
hence
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Φ1[U ] = 1
2U

2, Φ2[U ] = 1
4U

4 + UUxx − 1
2U

2
x .

Alternatively, using Ũ = x, one finds Φ1[Ũ ] = tx3, Φ2[Ũ ] = 0, and hence

Φ1[U ] = 1
2 (U − x)2 + x(U − x) + tx3,

Φ2[U ] = 1
4 (U − x)4 + x(U − x)3 − 1

2 (Ux − 1)2 + (U − x)Uxx

+ 3
2x

2(U − x)2 + x3(U − x) − Ux + xUxx + 1,

which are a density and a flux of an equivalent conservation law [Exercise
1.3.12].

1.3.8 Self-adjoint PDE systems

An especially interesting situation arises when the linearizing operator (Fréchet
derivative) L[U ] of a given PDE system (1.174) is self-adjoint.

Definition 1.3.8. Let L[U ], with its components Lσ
ρ [U ] given by (1.176),

be the linearizing operator associated with a PDE system (1.174). The
adjoint operator of L[U ] is L∗[U ], with its components L∗σ

ρ [U ] given by
(1.177). L[U ] is a self-adjoint operator if and only if L[U ] ≡ L∗[U ], i.e.,
Lσ

ρ [U ] ≡ L∗σ
ρ [U ], σ, ρ = 1, . . . ,m.

It is straightforward to see that if a PDE system, as written, has a self-
adjoint linearizing operator, then

• the number of dependent variables appearing in the system must equal
the number of equations in the system, i.e., N = m;

• if the PDE system is a scalar PDE, the highest-order partial derivative
appearing in it must be of even order.

The converse of the latter statement is false. For example, consider the
linear heat equation

ut − uxx = 0. (1.220)

The linearizing operator of PDE (1.220) is obviously given by L = Dt − D2
x,

with adjoint operator L∗ = −Dt − D2
x �≡ L.

One can show that a given PDE system, as written, has a variational
(Lagrangian) formulation if and only if its associated linearizing operator is
self-adjoint [Volterra (1913); Vainberg (1964); Olver (1986)]. Lagrangians and
variational formulations are considered in Section 1.4.

Most importantly, if the linearizing operator associated with a given PDE
system is self-adjoint, then any set of local multipliers yields the components,
in evolutionary form, of a local symmetry of the given PDE system. In par-
ticular, one has the following theorem.
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Theorem 1.3.8. Consider a given PDE system R{x ;u} (1.174) with N =
m. Suppose its associated linearizing operator L[U ], with its components
given by (1.176), is self-adjoint. Suppose {Λσ(x, U, ∂U, . . . , ∂lU)}m

σ=1 is a
set of local conservation law multipliers of the PDE system (1.174). Let
ησ(x, u, ∂u, . . . , ∂lu) = Λσ(x, u, ∂u, . . . , ∂lu), σ = 1, . . . ,m, where U(x) =
u(x) is any solution of the PDE system R{x ;u} (1.174). Then

ησ(x, u, ∂u, . . . , ∂lu)
∂

∂uσ
(1.221)

is a local symmetry of the PDE system R{x ;u} (1.174).

Proof. From the equations (1.184) of Corollary 1.3.1 with L[U ] = L∗[U ], it
follows that in terms of the components (1.176) of the associated linearizing
operator L[U ], one has

Lσ
ρ [u]Λσ(x, u, ∂u, . . . , ∂lu) = 0, ρ = 1, . . . ,m, (1.222)

where u = Θ(x) is any solution of the PDE system R{x ;u} (1.174). But
the set of equations (1.222) is the set of determining equations for a local
symmetry Λσ(x, u, ∂u, . . . , ∂lu) ∂/∂uσ of the PDE system R{x ;u} (1.174).
Hence, it follows that (1.221) is a local symmetry of the PDE system R{x ;u}
(1.174). ��

The converse of Theorem 1.3.8 is false. In particular, suppose ησ(x, u, ∂u,
. . . , ∂lu) ∂/∂uσ is a local symmetry of a given PDE system R{x ;u} (1.174)
with a self-adjoint linearizing operator L[U ]. Let Λσ(x, U, ∂U, . . . , ∂lU) =
ησ(x,U, ∂U, . . . , ∂lU), σ = 1, . . . ,m, where U(x) = (U1(x), . . . , Um(x)) is an
arbitrary function. Then it does not necessarily follow that {Λσ(x,U, ∂U, . . . ,
∂lU)}m

σ=1 is a set of local multipliers of a local conservation law of the PDE
system (1.174). This can be seen as follows: In the self-adjoint case, the set
of local symmetry determining equations is a subset of the set of local mul-
tiplier determining equations, so consequently each local symmetry yields a
set of local multipliers if and only if each solution of the set of local sym-
metry determining equations also solves the remaining set of local multiplier
determining equations.

For example, it can happen that a nonlinear PDE whose linearizing oper-
ator is self-adjoint has a point symmetry that does not yield a local conserva-
tion law multiplier. In particular, consider the nonlinear wave-speed equation
[Anco & Bluman (2002a)] given by

utt = u2uxx + uu2
x. (1.223)

It is easy to see that PDE (1.223) is invariant under the scaling point sym-
metry x → αx, u → αu, corresponding to the infinitesimal generator
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X = (u− xux)
∂

∂u
. (1.224)

The linearizing operator associated with PDE (1.223) is given by

L[U ] = D2
t − U2D2

x − 2UUxDx − 2UUxx − U2
x . (1.225)

It is easy to check that L[U ] is a self-adjoint operator, i.e., L∗[U ] = L[U ]. Let
R[U ] = Utt − U2Uxx − UU2

x . Then Λ(x, t, U, Ut, Ux) is a multiplier of a local
conservation law of the PDE (1.223) if and only if

EU (R[U ]Λ) = D2
tΛ− U2D2

xΛ− 2UUxDxΛ− (2UUxx + U2
x)Λ

+R[U ]ΛU − Dx(R[U ]ΛUx
) − Dt(R[U ]ΛUt

) ≡ 0,
(1.226)

in terms of the Euler operator EU = ∂/∂U − Dx ∂/∂Ux − Dt ∂/∂Ut +
D2

x ∂/∂Uxx +D2
t ∂/∂Utt. Equation (1.226) is an identity holding for all values

of x, t, U, Ux, Ut, Uxx, Uxt, Ut, Uxxx, Uxxt, Uxtt, Uttt. It is left as an exercise to
show that equation (1.226) splits into a system of two determining equations
for Λ(x, t, U, Ux, Ut), consisting of

D̂2
tΛ− U2D2

xΛ− 2UUxDxΛ− (2UUxx + U2
x)Λ = 0, (1.227)

and
2ΛU + D̂tΛUt

− DxΛUt
= 0, (1.228)

in terms of the total derivative D̂t = ∂/∂t + Ut ∂/∂U + Utx ∂/∂Ux +
g[U ] ∂/∂Ut +Utxx ∂/∂Uxx +Dt(g[U ]) ∂/∂Utt associated with the PDE (1.223)
where g[U ] = U(UUx)x.

The first determining equation (1.227) is the determining equation for Λ(x, t,
u, ut, ux) ∂/∂u to be a contact symmetry of the given PDE (1.223). If a
contact symmetry satisfies the second determining equation then it yields a
local multiplier Λ(x, t, U, Ut, Ux) for the PDE (1.223). It is easy to check that
the scaling symmetry (1.224) obviously satisfies the symmetry determining
equation (1.227) but does not satisfy the second determining equation (1.228)
when u(x, t) is replaced by an arbitrary function U(x, t). Hence the scaling
symmetry (1.224) does not yield a local conservation law of PDE (1.223).

Exercises 1.3

1.3.1. Derive the conservation law (1.139) of the Euler equations (1.135) for
the adiabatic motion of an ideal gas. Write down the integral form of the
conservation law (1.139).
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1.3.2. Show that the Euler operator (1.149) annihilates any divergence ex-
pression, i.e.,

EUj (DiΦ
i(x,U, ∂U, . . . , ∂rU)) ≡ 0

holds for any set of functions {Φi(x,U, ∂U, . . . , ∂rU)}n
i=1, j = 1, . . . ,m where

U = U(x) = (U1(x), . . . , Um(x)) is an arbitrary function.

1.3.3. Show that in terms of the Euler operators (1.149), the expressions
EUjF (x,U, ∂U, . . . , ∂sU) ≡ 0, j = 1, . . . ,m, hold if and only if F (x,U, ∂U,
. . . , ∂sU) ≡ DiΨ

i(x,U, ∂U, . . . , ∂s−1U) holds for some set of functions {Ψ i(x,
U, ∂U, . . . , ∂rU)}n

i=1, where U = U(x) = (U1(x), . . . , Um(x)) is an arbitrary
function.

1.3.4. Prove Theorem 1.3.4. [Hint: by adding trivial fluxes (of the first type)
to fluxes Φi[U ] if necessary, one can assume that each Φi[U ] contains no
leading derivatives nor their differential consequences.]

1.3.5. Discuss whether each of the following two equations are in Cauchy–
Kovalevskaya form with respect to the given independent variables. If not,
find a point transformation that yields one or more Cauchy–Kovalevskaya
forms.

(a) Benjamin–Bona–Mahoney equation [Benjamin, Bona & Mahoney (1972)]:
ut + (1 + u2)ux − uxxt = 0.

(b) Symmetric regularized long wave equation [Seyler & Fenstermacher
(1984)]: utt + uxx + uutx + uxut + uttxx = 0.

1.3.6. Consider a PDE system R{x ;u} (1.132) written in Cauchy–Kovalevskaya
form (1.157) with respect to the independent variable x1. Denote the leading
and the subleading derivatives by

uσ
L =

∂sσ

∂(x1)sσ
uσ, uσ

S =
∂sσ−1

∂(x1)sσ−1
uσ, σ = 1, . . . ,m.

Let DiΦ
i[u] = 0 be a nontrivial conservation law of R{x ;u} (1.132).

(a) Show that the corresponding multipliers are given by

Λσ[U ] = EUσ
S
(Φ1[U ]), σ = 1, . . . ,m,

where EUσ
S

is the Euler operator with respect to a subleading derivative
uσ

S , given by

EUσ
S

=
∂

∂Uσ
S

−
n∑

i=2

Di
∂

∂(Uσ
S )i

+
n∑

i,j=2

DiDj
∂

∂(Uσ
S )ij

+ · · · .

(b) Show that the multipliers Λσ[U ] do not depend on leading derivatives
uσ

L and their differential consequences ∂uσ
L, . . . .
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(c) Show that there exists an equivalent conservation law DiΦ̃
i[u] = 0,

such that the fluxes {Φ̃i[U ]}m
i=1 do not depend on leading derivatives

uσ
L and their differential consequences ∂uσ

L, ∂
2uσ

L, etc.

1.3.7. Show that a set of functions {ξ(x, t, U, V ), φ(x, t, U, V )} solves equa-
tions (1.162) if and only if {ξ(x, t, U, V ), φ(x, t, U, V )} solves equations
(1.163).

1.3.8. Show that (1.164) yields all solutions of the equations (1.163).

1.3.9. Show that the only conservation law multipliers of the form Λ(x, t, U,
Ux, Uxx) of the KdV equation (1.168) are given by (1.172) and (1.173).

1.3.10. Show that the expression (1.180), (1.181) holds.

1.3.11. Consider the generalized KdV equation

ut + unux + uxxx = 0, (1.229)

with parameter n > 0.

(a) For all n > 0, show that the only multipliers of the form Λ(x, t, U, Ux,

Uxx) of PDE (1.229) are given by Λ1 = 1, Λ2 = U, Λ3 = Uxx +
Un+1/(n+ 1).

(b) Show that the only additional multipliers of the form Λ(x, t, U, Ux, Uxx)
of PDE (1.229) are given by Λ4 = tU−x if n = 1; Λ5 = t

(
Uxx + 1

3U
3
)
−

1
3xU if n = 2. For details, see Anco & Bluman (2002a).

1.3.12. Fill in the details for the calculations of fluxes of local conservation
laws of the modified Korteweg–de Vries equation (1.219).

1.3.13. Consider the class of Klein–Gordon wave equations of the form

utx − g(u) = 0 (1.230)

with a nonlinear interaction term g(u).

(a) Show that the linearizing operator of PDE (1.230) is self-adjoint.
(b) Derive the set of determining equations for local conservation law

multipliers of the form Λ(x,U, Ux, . . . , ∂
p
xU) of PDE (1.230) where

∂j
xU = ∂jU/∂xj , j = 1, . . . , p. Isolate the determining equation that

yields the local symmetries of the form X = Λ(x, u, ux, . . . , ∂
p
xu)∂/∂u

of PDE (1.230).
(c) A conservation law is said to be of order q if its fluxes depend at most on

derivatives of order q. For multipliers of the form Λ(x,U, Ux, . . . , ∂
p
xU),

show that the only PDEs of the form (1.230), that have a conservation
law of order q = 2 are given by

(i) Liouville equation where g(u) = eu;
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(ii) sine-Gordon equation where g(u) = sinu;
(iii) sinh-Gordon equation where g(u) = eu ± e−u,

modulo scalings and translations in u [Anco & Bluman (2002a)].
(d) Find the multipliers of the form Λ(x,U, Ux, Uxx, Uxxx) and correspond-

ing second-order conservation laws for each of the Liouville, sine-
Gordon and sinh-Gordon equations.

1.3.14. Consider the nonlinear wave equation

utt − uxx + up = 0, p > 1. (1.231)

(a) Show that the linearizing operator of PDE (1.231) is self-adjoint.
(b) Find all point symmetries of PDE (1.231).
(c) Find which point symmetries yield local conservation law multipliers

of PDE (1.231) and find the fluxes of corresponding conservation laws
[Anco & Bluman (1997a)].

1.3.15. Consider the nonlinear telegraph system of PDEs given by

R1 = vt − F (u)ux −G(u) = 0,
R2 = ut − vx = 0.

(1.232)

(a) Assuming that F (u) is arbitrary, find all local multipliers of the form
Λ1 = ξ(x, t, U, V ), Λ2 = φ(x, t, U, V ) of the PDE system (1.232), i.e.,
do a local multiplier classification with respect to G(u) [Bluman &
Temuerchaolu (2005a)].

(b) Find the fluxes of the corresponding conservation laws.

1.3.16.

(a) By a direct computation, show that the Fréchet derivative (lineariza-
tion) of an expression Rσ[U ] = Rσ(x,U, ∂U, . . . , ∂kU) can be expressed
as the action of the linearization operator Lσ

ρ [U ] (1.176):

F(Rσ[U ]) ≡ d

dh
Rσ[U + V h]

∣∣∣
h=0

= Lσ
ρ [U ]V ρ.

(b) Using integration by parts, find the adjoint of the linearizing operator
L∗ σ

ρ [U ] and fluxes Φi[U ], such that

WσLσ
ρ [U ]V ρ ≡ V ρL∗ σ

ρ [U ]Wσ + DiΦ
i[U ]

for arbitrary functions Wσ and V ρ. Thus derive formulas (1.177) and
(1.179).

1.3.17. Consider a system of N PDEs Rσ[u] = 0, σ = 1, . . . , N , given by
(1.174), and a set of multipliers {Λσ[U ]}N

σ=1 for these equations.
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The components of the adjoint linearization operator for PDE system
(1.174) are given by (1.177)

(L∗
R)σ

ρ [U ]Wσ =
∂Rσ[U ]
∂Uρ

Wσ − Di

(
∂Rσ[U ]
∂Uρ

i

Wσ

)
+ · · · + (−1)kDi1 . . .Dik

(
∂Rσ[U ]
∂Uρ

i1...ik

Wσ

)
,

ρ = 1, . . . ,m,

acting on arbitrary functions W = (W1(x), . . . ,WN (x)).
Define the adjoint linearization operator of a PDE system Λσ[u] = 0,

σ = 1, . . . , N , by

(L∗
Λ)σ ρ[U ]W̃ σ =

∂Λσ[U ]
∂Uρ

W̃ σ − Di

(
∂Λσ[U ]
∂Uρ

i

W̃ σ

)
+ · · · + (−1)kDi1 . . .Dik

(
∂Λσ[U ]
∂Uρ

i1...ik

W̃ σ

)
,

ρ = 1, . . . ,m,

acting on arbitrary functions W̃ = (W̃ 1(x), . . . , W̃N (x)).
Show that the condition (1.183) for the set of multipliers {Λσ[U ]}N

σ=1 to
yield a divergence expression can be written as a symmetric expression

(L∗
R)σ

ρ [U ]Λσ[U ] + (L∗
Λ)σ ρR

σ[U ] = 0. (1.233)

1.4 Noether’s Theorem

In 1918, Noether (1918) presented her celebrated procedure (Noether’s the-
orem) to find local conservation laws for systems of DEs that admit a varia-
tional principle (action functional). When a given DE system admits a vari-
ational principle, then the extremals of its action functional yield the given
DE system (the Euler–Lagrange equations). In this case, Noether showed that
if one has a point symmetry of the action functional (action integral), then
one obtains the fluxes of a local conservation law through an explicit formula
that involves the infinitesimals of the point symmetry and the Lagrangian
(Lagrangian density) of the action functional.

In this section, we present Noether’s theorem and its generalizations due
to Bessel-Hagen (1921) and Boyer (1967).
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1.4.1 Euler–Lagrange equations

Consider a functional J [U ] in terms of n independent variables x = (x1, . . . ,

xn) and m arbitrary functions U = (U1(x), . . . , Um(x)) and their partial
derivatives to order k, defined on a domain Ω,

J [U ] =
∫

Ω

L[U ]dx =
∫

Ω

L(x,U, ∂U, . . . , ∂kU)dx. (1.234)

The function L[U ] = L(x,U, ∂U, . . . , ∂kU) is called a Lagrangian and the
functional J [U ] is called an action integral . Consider an infinitesimal change
of U given by U(x) → U(x)+εv(x) where v(x) is any function such that v(x)
and its derivatives to order k – 1 vanish on the boundary ∂Ω of the domain
Ω. The corresponding change (variation) in the Lagrangian L[U ] is given by

δL = L(x,U + εv, ∂U + ε∂v, . . . , ∂kU + ε∂kv)

−L(x, U, ∂U, . . . , ∂kU)

= ε

(
∂L[U ]
∂Uσ

vσ +
∂L[U ]
∂Uσ

j

vσ
j + · · · + ∂L[U ]

∂Uσ
j1···jk

vσ
j1···jk

)
+O(ε2).

(1.235)

Then after repeatedly using integration by parts, one can show that

δL = ε(vσEUσ (L[U ]) + DiW
i[U, v]) +O(ε2), (1.236)

where EUσ is the Euler operator with respect to Uσ and

W i[U, v] = vσ

(
∂L[U ]
∂Uσ

i

+ · · · + (−1)k−1Dj1 · · ·Djk−1

∂L[U ]
∂Uσ

ij1···jk−1

)

+vσ
j1

(
∂L[U ]
∂Uσ

ij1

+ · · · + (−1)k−2Dj2 · · ·Djk−1

∂L[U ]
∂Uσ

ij1j2···jk−1

)
+ · · · + vσ

j1···jk−1

∂L[U ]
∂Uσ

ij1j2···jk−1

.

(1.237)
From expression (1.236) and the divergence theorem, the corresponding

variation in the action integral J [U ] is given by

δJ = J [U + εv] − J [U ] =
∫

Ω
δLdx

= ε
∫

Ω
(vσEUσ (L[U ]) + DlW

l[U, v])dx+O(ε2)

= ε(
∫

Ω
vσEUσ (L[U ])dx+

∫
∂Ω

W l[U, v]nldS) +O(ε2)

(1.238)
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where
∫

∂Ω
represents the surface integral over the boundary ∂Ω of the domain

Ω with n = (n1, . . . nn) being the unit outward normal vector to ∂Ω . It
follows that if U = u(x) extremizes the action integral J [U ], then the O(ε)
term of δJ must vanish and hence∫

Ω

vσEuσ (L[u])dx = 0 (1.239)

for an arbitrary v(x) defined on the domain Ω. Hence, it follows that if
U = u(x) extremizes the action integral J [U ] given by (1.234), then u(x)
must satisfy the PDE system

Euσ (L[u]) =
∂L[u]
∂uσ

+ · · · + (−1)kDj1 · · ·Djk

∂L[u]
∂uσ

j1···jk

= 0,

σ = 1, . . . ,m.

(1.240)

Equations (1.240) are called the Euler–Lagrange equations satisfied by an
extremum U = u(x) of the action integral J [U ]. The following theorem has
been proved.

Theorem 1.4.1. If a smooth function U(x) = u(x) is an extremum of an
action integral J [U ] =

∫
Ω
L[U ]dx with L[U ] = L(x,U, ∂U, . . . , ∂kU), then

u(x) satisfies the Euler–Lagrange equations (1.240).

1.4.2 Noether’s formulation of Noether’s theorem

We now present Noether’s formulation of her theorem. In this formulation, the
action integral J [U ] (1.234) is required to be invariant under a one-parameter
Lie group of point transformations

(x∗)i = xi + εξi(x,U) +O(ε2), i = 1, . . . , n,

(U∗)μ = Uμ + εημ(x,U) +O(ε2), μ = 1, . . . ,m,
(1.241)

with corresponding infinitesimal generator given by

X = ξi(x, U)
∂

∂xi
+ ην(x,U)

∂

∂Uν
. (1.242)

Invariance holds if and only if
∫

Ω∗ L[U∗]dx∗ =
∫

Ω
L[U ]dx where Ω∗ is the

image of Ω under the point transformation (1.241). The Jacobian of the
transformation (1.241) is given by

J = det(Di(x∗)j) = 1 + εDiξ
i(x, U) +O(ε2). (1.243)
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Then dx∗ = Jdx. Moreover, since (1.241) is a Lie group of transformations, it
follows that L[U∗] = eεX(k)

L[U ] in terms of the kth extension of the in-
finitesimal generator (1.242). Consequently, in Noether’s formulation, the
one-parameter Lie group of point transformations (1.241) is a point sym-
metry of J [U ] (1.234) if and only if∫

Ω
(JeεX(k) − 1)L[U ]dx

= ε
∫

Ω

(
L[U ](Diξ

i(x,U)) + X(k)L[U ]
)
dx+O(ε2)

(1.244)

holds for arbitrary U(x) where X(k) is the kth extended infinitesimal gener-
ator given by expression (1.12) with U replacing u. Hence, if J [U ] (1.234)
has the point symmetry (1.241), then the O(ε) term in (1.244) vanishes, and
thus one obtains the identity

L[U ]Diξ
i(x,U) + X(k)L[U ] ≡ 0. (1.245)

In Section 1.2.4, it was shown that the one-parameter Lie group of point
transformations (1.241) is equivalent to the one-parameter family of local
transformations

(x∗)i = xi, i = 1, . . . , n,

(U∗)μ = Uμ + ε[ημ(x,U) − Uμ
i ξ

i(x,U)] +O(ε2), μ = 1, . . . ,m,
(1.246)

with the corresponding kth extended infinitesimal generator X̂(k) given
through the appropriate truncation of expressions (1.30), (1.31) with U re-
placing u.

Under the transformation (1.246), the corresponding infinitesimal change
U(x) → U(x)+εv(x) has components vμ(x) = η̂μ[U ] = ημ(x,U)−Uμ

i ξ
i(x,U)

in terms of the transformations (1.246). Moreover, from the group property
of (1.246), it follows that

δL = εX̂(k)L[U ] +O(ε2). (1.247)

Thus ∫
Ω

δLdx = ε

∫
Ω

X̂(k)L[U ]dx+O(ε2). (1.248)

Consequently, after comparing expression (1.248) to expression (1.238) with
vμ(x) = η̂μ[U ] = ημ(x,U) − Uμ

i ξ
i(x,U), it follows that

X̂(k)L[U ] ≡ η̂μ[U ]EUμ(L[U ]) + DiW
i[U, η̂[U ]], (1.249)

where W i[U, η̂[U ]] is given by expression (1.237) with the obvious substitu-
tions.
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The proof of the following theorem is straightforward and is left to Exercise
1.4.3.

Theorem 1.4.2. Let X(k) be the kth extended infinitesimal generator of the
one-parameter Lie group of point transformations (1.241) and let X̂(k) be the
kth extended infinitesimal generator of the equivalent one-parameter family
of transformations (1.246). Let F [U ] = F (x,U, ∂U, . . . , ∂kU) be an arbitrary
function of its arguments. Then the following identity holds:

X(k)F [U ] + F [U ]Diξ
i(x,U) ≡ X̂(k)F [U ] + Di(F [U ]ξi(x,U)). (1.250)

Putting all of the above together, one obtains the following theorem.

Theorem 1.4.3 (Noether’s formulation of Noether’s theorem). Suppose a
given PDE system R{x ;u} (1.174), as written, arises from a variational
principle, i.e., the given PDE system is a set of Euler–Lagrange equations
(1.239) whose solutions u(x) are extrema U(x) = u(x) of an action integral
J [U ] (1.234) with Lagrangian L[U ]. Suppose the one-parameter Lie group of
point transformations (1.241) is a point symmetry of J [U ]. Let W l[U, v] be
defined by (1.237) for arbitrary functions U(x), v(x). Then

(1) The identity

η̂μ[U ]EUμ(L[U ]) ≡ −Di(ξi(x,U)L[U ] +W i[U, η̂[U ]]) (1.251)

holds for arbitrary functions U(x), i.e., {η̂μ[U ]}m
μ=1 is a set of local

multipliers of the Euler–Lagrange system (1.239);
(2) The local conservation law

Di(ξi(x, u)L[u] +W i[u, η̂[u]]) = 0 (1.252)

holds for any solution u = Θ(x) of the Euler–Lagrange system (1.239).

Proof. Let F [U ] = L[U ] in the identity (1.250). Then from the identity
(1.245), one obtains

X̂(k)L[U ] + Di(L[U ]ξi(x,U)) ≡ 0 (1.253)

holding for arbitrary functions U(x). Substitution for X̂(k)L[U ] in (1.253)
through (1.249) yields (1.251). If U(x) = u(x) solves the Euler–Lagrange
system (1.239), then the left-hand side of the identity (1.251) vanishes. This
yields the conservation law (1.252). ��
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1.4.3 Boyer’s formulation of Noether’s theorem

Boyer (1967) extended Noether’s theorem to enable one to conveniently find
conservation laws arising from invariance under higher-order transformations
by generalizing Noether’s definition of invariance of an action integral J [U ]
(1.234). In particular, under the following definition, an action integral J [U ]
(1.234) is invariant under a one-parameter higher-order transformation if its
integrand L[U ] is invariant to within a divergence under such a transforma-
tion.

Definition 1.4.1. Let

X̂ = η̂μ(x, U, ∂U, . . . , ∂sU)
∂

∂Uμ
(1.254)

be the infinitesimal generator of a one-parameter higher-order local trans-
formation (1.40) with its extension X̂∞ given by (1.38), (1.39). Let η̂μ[U ] =
η̂μ(x, U, ∂U, . . . , ∂sU). The transformation is a local symmetry of J [U ] (1.234)
if and only if

X̂∞L[U ] ≡ DiA
i[U ] (1.255)

holds for some set of functions Ai[U ] = Ai(x,U, ∂U, . . . , ∂rU), i = 1, . . . , n.

Definition 1.4.2. A local transformation with infinitesimal generator (1.40)
that is a local symmetry of J [U ] (1.234) is called a variational symmetry of
J [U ] (1.234).

The proof of the following theorem follows from the property of Euler
operators annihilating divergences.

Theorem 1.4.4. A variational symmetry with infinitesimal generator (1.254)
of the action integral J [U ] (1.234) yields a local symmetry with infinitesi-
mal generator X̂ = η̂μ(x, u, ∂u, . . . , ∂su) ∂/∂uμ of the corresponding Euler–
Lagrange system (1.239).

The following theorem generalizes Noether’s formulation of her theorem.

Theorem 1.4.5 (Boyer’s generalization of Noether’s theorem). Suppose a
given PDE system R{x ;u} (1.174), as written, arises from a variational
principle, i.e., the given PDE system is a set of Euler–Lagrange equations
(1.239) whose solutions u(x) are extrema U(x) = u(x) of an action inte-
gral J [U ] (1.234) with Lagrangian L[U ]. Suppose a local transformation with
infinitesimal generator (1.254) yields a variational symmetry of J [U ]. Let
W l[U, v] be defined by (1.237) for arbitrary functions U(x), v(x). Then

(1) The identity

η̂μ[U ]EUμ(L[U ]) ≡ Di(Ai[U ] −W i[U, η̂[U ]]) (1.256)
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holds for arbitrary functions U(x), i.e., {η̂μ[U ]}m
μ=1 is a set of local

multipliers of the Euler–Lagrange system (1.239);
(2) The local conservation law

Di(W i[u, η̂[u]] −Ai[u]) = 0 (1.257)

holds for any solution u = Θ(x) of the Euler–Lagrange system (1.239).

Proof. For a local transformation with infinitesimal generator (1.254), it fol-
lows that the corresponding infinitesimal change U(x) → U(x) + εv(x) has
components vμ(x) = η̂μ[U ]. Consequently, equation (1.247) becomes

δL = εX̂∞L[U ] +O(ε2). (1.258)

But from (1.236) it follows that

δL = ε(η̂μ[U ]EUμ(L[U ]) + Di(W i[U, η̂[U ]])) +O(ε2). (1.259)

Hence it immediately follows that

X̂∞L[U ] = η̂μ[U ]EUμ(L[U ]) + Di(W i[U, η̂[U ]]) (1.260)

holds for arbitrary functions U(x). Since the local transformation with in-
finitesimal generator (1.254) is a variational symmetry of J [U ] (1.234), it fol-
lows that equation (1.255) holds. Substitution for X̂∞L[U ] in (1.260) through
(1.255) yields the identity (1.256). If U(x) = u(x) solves the Euler–Lagrange
system (1.239), then the left-hand side of the identity (1.256) vanishes. This
yields the conservation law (1.257). ��

Theorem 1.4.6. If a conservation law is obtained through Noether’s formu-
lation (Theorem 1.4.3), then the conservation law can be obtained through
Boyer’s formulation (Theorem 1.4.5).

Proof. Suppose the one-parameter Lie group of point transformations (1.241)
yields a conservation law. Then the identity (1.253) holds. Consequently,

X̂(k)L[U ] = X̂∞L[U ] = DiA
i[U ], (1.261)

where Ai[U ] = −Di(L[U ]ξi(x,U)). But equation (1.261) is just the condition
for the one-parameter Lie group of point transformations (1.241) to be a
variational symmetry of J [U ] (1.234). Consequently, one obtains the same
conservation law from Boyer’s formulation. ��
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1.4.4 Limitations of Noether’s theorem

There are several limitations inherent in using Noether’s theorem to find local
conservation laws for a given PDE system R{x ;u}. First of all, it is restricted
to variational systems. Consequently, the linearizing operator (Fréchet deriva-
tive) for R{x ;u}, as written, must be self-adjoint, which implies that the
number of PDEs must be the same as the number of dependent variables
appearing in R{x ;u}. [In particular, this can be seen from comparing ex-
pressions (1.176) and (1.177).] Moreover, if R{x ;u} is a scalar equation, it
must be of even order. In addition, one must find an explicit Lagrangian L[U ]
whose Euler–Lagrange equations yield R{x ;u}.

There is also the difficulty of finding the variational symmetries of a given
variational PDE system R{x ;u}. First, for the given PDE system, one must
determine local symmetries depending on derivatives of dependent variables
up to some chosen order. Second, one must find an explicit Lagrangian L[U ]
and check if each symmetry of the given PDE system leaves invariant the
Lagrangian L[U ] to within a divergence, i.e., if a symmetry is indeed a vari-
ational symmetry.

Finally, the use of Noether’s theorem to find local conservation laws is
coordinate dependent since the action of a point (contact) transformation
can transform a DE having a variational principle to one that does not have
one. On the other hand, in Section 1.5, it is shown that conservation laws are
coordinate-independent in the sense that a point (contact) transformation
maps a conservation law into a conservation law, and therefore it follows
that an ideal method for finding conservation laws should be coordinate-
independent.

Artifices may make a given PDE system variational. Such artifices include:

1. The use of multipliers. As an example, the PDE

utt +H ′(ux)uxx +H(ux) = 0, (1.262)

as written, does not admit a variational principle since its linearized
equation vtt + H ′(ux)vxx + (H ′′(ux)uxx + H ′(ux))vx = 0 is not self-
adjoint. However, the equivalent PDE

ex[utt +H ′(ux)uxx +H(ux)] = 0, (1.263)

as written, is self-adjoint!
2. The use of a contact transformation of the variables. As an example,

the PDE
exutt − e3x(u+ ux)2(u+ 2ux + uxx) = 0, (1.264)

as written, does not admit a variational principle, since its linearized
PDE and the adjoint PDE are different. But the point transformation
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x∗ = x, t∗ = t, u∗(x∗, t∗) = y(x, t) = exu(x, t), maps the PDE (1.264)
into the self-adjoint PDE

ytt − (yx)2yxx = 0, (1.265)

which is the Euler–Lagrange equation for an extremum Y = y of the
action integral with Lagrangian L[Y ] = Y 2

t /2 − Y 4
x /12.

3. The use of a differential substitution. As an example, the Korteweg–de
Vries equation

ut + uux + uxxx = 0, (1.266)

as written, obviously does not admit a variational principle since it is
of odd order. But the well-known differential substitution u = vx yields
the related transformed KdV equation

vxt + vxvxx + vxxxx = 0, (1.267)

which arises from the Lagrangian L[V ] = (Vxx)2/2− (Vx)3/6−VxVt/2.
4. The use of an artificial additional equation. For example, the linear

heat equation ut −uxx = 0 is not self-adjoint since its adjoint equation
is given by wt + wxx = 0. However the decoupled PDE system

ut − uxx = 0, ũt + ũxx = 0

is evidently self-adjoint! [In general, the formal system, obtained through
appending any given PDE system by the adjoint of its linearized sys-
tem, is self-adjoint.]

The direct method for finding conservation laws [Section 1.3.4] is free of all
of the above problems. It is directly applicable to any PDE system, whether
or not it is variational. Moreover, it does not require the knowledge of a
Lagrangian, whether or not one exists. Indeed, under the direct method,
variational and non-variational PDE systems are treated in the same manner.

The direct method is naturally coordinate-independent. This follows from
the fact that a point (contact) transformation maps a conservation law into
a conservation law, and hence either form of a conservation law (in original
or transformed variables) will arise from corresponding sets of multipliers,
which can be found by the direct method in either coordinate system.

Finding conservation laws through the direct method is computationally
more straightforward than through Noether’s theorem even when a given
PDE system is variational. One simply writes down the set of linear deter-
mining equations (1.151) holding for arbitrary functions U(x), which in the
case of a variational system, includes the symmetry determining equations
as a subset of the multiplier determining equations. Hence, the resulting set
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of linear determining equations for local multipliers is usually not as difficult
to solve as the set of linear determining equations for local symmetries since
the determining system is more over-determined in the variational case.

On the other hand, if a given PDE system is variational and one has ob-
tained the Lagrangian for the PDE system, then it is worthwhile to combine
the direct method with Noether’s theorem as follows. First, use the direct
method to find the multipliers of local conservation laws and hence the cor-
responding variational symmetries. Second, for each variational symmetry,
find the corresponding divergence term DiA

i[U ] that arises from the use of
Boyer’s formulation of the extended Noether’s theorem. Third, use the expres-
sion (1.237) in conjunction with Boyer’s formula (1.257) to find the resulting
conservation law.

1.4.5 Examples

Now examples are considered, including two that compare the use of Noether’s
theorem and the direct method for finding conservation laws (for PDE sys-
tems that admit a variational formulation), and another that compares the
local symmetry and conservation law structure of PDE systems that are not
variational [Bluman & Temuerchaolu (2005b)].

Klein–Gordon wave equation

Consider the class of Klein–Gordon wave equations

R[u] = utx + g(u) = 0 (1.268)

with a general nonlinear interaction term g(u). This class has a variational
principle given by the action functional

J [U ] =
∫

L[U ] dtdx, (1.269)

with Lagrangian

L[U ] = − 1
2UtUx + h(U), h′(U) = g(U). (1.270)

For a general g(u), the point symmetries of PDE (1.268) are translations in
t and x and a scaling, respectively, given by the generators (in characteristic
form)
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X1 = ut
∂

∂u
, X2 = ux

∂

∂u
, X3 = (tut − xux)

∂

∂u
. (1.271)

It is easy to check that all three symmetries (1.271) are variational sym-
metries of the action functional J [U ] (1.269). In particular, the actions of the
extensions (1.38), (1.39) of the generators (1.271) on the Lagrangian (1.270)
yield the divergence expressions

X̂∞
1 L[U ] = −Dt

(
1
2UtUx + h(U)

)
, (1.272a)

X̂∞
2 L[U ] = −Dx

(
1
2UtUx + h(U)

)
, (1.272b)

X̂∞
3 L[U ] = −Dt

(
1
2 tUtUx + t h(U)

)
+ Dx

(
1
2xUtUx + xh(U)

)
.(1.272c)

Hence through Boyer’s formulation of Noether’s theorem [Theorem 1.4.5],
the three symmetries (1.271) yield three conservation laws with multipliers
given by

Λ1[U ] = η̂1[U ] = Ut, Λ2[U ] = η̂2[U ] = Ux, Λ3[U ] = η̂3[U ] = tUt − xUx.

In this example, due to the simplicity of the form of multipliers and the
given PDE, fluxes of the three conservation laws are readily found through
integration by parts. However, in more complicated practical situations when
Noether’s theorem is used, one would normally compute fluxes using the
formula (1.257) which involves no integration. Here we illustrate the use of
this formula.

Denoting x1 = t, x2 = x, we first compute the quantities W i[U, v] (1.237),
i = 1, 2, using the Lagrangian (1.270):

W 1[U, v] = − 1
2vUx, W 2[U, v] = − 1

2vUt.

Then for the three conservation laws, from (1.272), we identify

(A1
1, A

2
1) =

(
−1

2UtUx − h(U), 0
)
,

(A1
2, A

2
2) =

(
0,− 1

2UtUx − h(U)
)
,

(A1
3, A

2
3) =

(
−1

2 tUtUx − th(U), 1
2xUtUx + xh(U)

)
.

Therefore from (1.257), the three conservation laws of PDE (1.268) corre-
sponding to variational symmetries (1.271) have the form
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Dt(h[u]) − Dx

(
1
2u

2
t

)
= 0, (1.273a)

Dt

(
1
2u

2
x

)
− Dx(h[u]) = 0, (1.273b)

Dt

(
1
2xu

2
x + t h[u]

)
− Dx

(
1
2 tu

2
t + xh[u]

)
= 0. (1.273c)

Now consider the Klein–Gordon equation with a power nonlinearity, i.e.,
g(u) = un, for n �= 0, 1. In this case, the corresponding Klein–Gordon equa-
tion (1.268) has an extra scaling symmetry given by the infinitesimal gener-
ator (in evolutionary form)

X̂4 = (u− (1 − n)xux)
∂

∂u
. (1.274)

One can check that the symmetry (1.274) does not yield a variational symme-
try of the action functional J [U ] (1.269). This is considered from three points
of view: Noether’s formulation of Noether’s theorem, Boyer’s formulation of
Noether’s theorem and, finally, the direct method.

(1) Noether’s formulation of Noether’s theorem
First of all, in terms of using Noether’s formulation, the additional infinites-
imal generator (1.274) corresponds to the scaling symmetry x∗ = α1−nx,
t∗ = t, u∗ = αu of the Klein–Gordon PDE utx − un = 0. Now one checks
whether the scaling transformation x∗ = α1−nx, t∗ = t, U∗ = αU is a sym-
metry of the action functional J [U ]. In particular,

J [U∗] = J [αU ] =
∫

L[U∗]dt∗dx∗ = α1−n

∫
L[αU ]dtdx.

But L[αU ] = α1+nL[U ]. Hence J [U∗] = α2J [U ] �= J [U ]. Thus, using
Noether’s formulation of Noether’s theorem, the scaling symmetry (1.274)
does not yield an additional conservation law of the Klein–Gordon equation
utx − un = 0.

(2) Boyer’s formulation of Noether’s theorem
Secondly, in terms of the more general Boyer’s formulation of Noether’s the-
orem, using the extension of the infinitesimal generator (1.274) with u(x)
replaced by an arbitrary function U(x), one obtains the expression

X̂∞
4 L[U ] = Un(U − xUx(1 − n))

− 1
2

[
Ux(Ut − xUxt(1 − n)) + Ut(Ux − xUxx(1 − n))

]
.

(1.275)

The right-hand side of (1.275) cannot be expressed as a divergence expression.
To show this, it is best to directly apply the Euler operator (1.149) with
respect to U to this expression. In particular, one obtains
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EU

(
X̂∞

4 L[U ]
)

= 2(Uxt + Un) �= 0,

which means that X̂∞
4 L[U ] is not a divergence expression, and hence X4 does

not yield a variational symmetry of the action (1.269). Hence, in these power
law cases, the scaling symmetry (1.274) of the Klein–Gordon equation (1.268)
does not yield a variational symmetry of the corresponding action functional
J [U ] (1.269). Thus this scaling symmetry does not yield a conservation law
multiplier in terms of using Boyer’s formulation of Noether’s theorem.

(3) Direct method
Finally, it is easiest to show that the scaling symmetry (1.274) does not yield
a variational symmetry through using the direct method. Here one checks
to see whether (U − (1 − n)xUx) is a multiplier for a conservation law. In
particular, one merely applies the Euler operator (1.149) with respect to U ,
i.e., EU given by (1.149), to the expression (U − (1 − n)xUx)(Utx − Un), to
show that EU [(U − (1 − n)xUx)(Utx − Un)] �≡ 0 for an arbitrary function
U(x, t).

Generalized Korteweg–de Vries equation

Consider the generalized Korteweg–de Vries equation

R[u] = ut + unux + uxxx = 0 (1.276)

with parameter n > 0. For n = 1, 2, the evolution PDE (1.276) reduces to
the KdV and modified KdV equations, respectively.

The Fréchet derivative (linearized equation) of PDE (1.276) is given by

L[u]v = Dtv + unDxv + nun−1uxv + D3
xv = 0 when R[u] = 0, (1.277)

and the adjoint linearized equation by

L∗[u]w = −Dtw − unDxw − D3
xw = 0 when R[u] = 0. (1.278)

Since (1.277) and (1.278) are different, the generalized Korteweg–de Vries
equation (1.276), as written, has no variational principle and thus Noether’s
theorem does not hold. Hence the symmetry and conservation law struc-
ture of the equation are not directly related. A comparison is now made
between the local symmetries and local conservation law multipliers of
PDE (1.276), in terms of seeking symmetry components and local multi-
pliers of the respective comparable forms: η̂[u] = η̂(x, t, u, ux, uxx, uxxx),
Λ[U ] = Λ(x, t, U, Ux, Uxx, Uxxx). In particular, such symmetry components
η̂[u] are solutions of the linearized PDE (1.277), whereas such conservation
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law multipliers Λ[U ] are solutions of the determining equations (1.151), fol-
lowing the direct method. The resulting symmetries and conservation law
multipliers are summarized in Table 1.1.

Table 1.1 Comparison of local symmetries and conservation law multipliers of the
generalized Korteweg–de Vries equation (1.276)

n Symmetries Conservation Law Multipliers

η̂[u] = η̂(x, t, u, ux, uxx, uxxx) Λ[U ] = Λ(x, t, U, Ux, Uxx, Uxxx)

Arbitrary η̂1[u] = ux, η̂2[u] = unux + uxxx, Λ1[U ] = 1, Λ2[U ] = U ,

η̂2[u] = unux + uxxx, Λ3[U ] = Un+1 + (n + 1)Uxx.

η̂3[u] = t(unux + uxxx)

− 1
3n

(2u + nxux).

1 η̂1[u], η̂2[u], η̂3[u] (n = 1), Λ1[U ], Λ2[U ], Λ3[U ] (n = 1),

η̂4[u] = tux − 1. Λ4[U ] = 1
2U2 + Uxx.

2 η̂1[u], η̂2[u], η̂3[u] (n = 2). Λ1[U ], Λ2[U ], Λ3[U ] (n = 2),

Λ5[U ] = t
(1
3U3 + Uxx

)
− 1

3xU .

Note that in the case n = 2, the generalized Korteweg–de Vries equation
(1.276) has one additional conservation law and no additional symmetry of
the same order.

However the non-self-adjoint PDE (1.276) is special in the sense that,
similarly to the KdV equation (1.266), it can be transformed into the self-
adjoint PDE

vxt + (vx)nvxx + vxxxx = 0 (1.279)

by the differential substitution u = vx. One can show [Exercise 1.4.2] that
equation (1.279) is the Euler–Lagrange equation for an extremum of the
action integral with Lagrangian

L[V ] = 1
2 (Vxx)2 − 1

(n+ 1)(n+ 2)
(Vx)n+3 − 1

2VxVt. (1.280)

Now a comparison is made of the local symmetries and conservation law
multipliers of the transformed equation (1.279), using the same ansatz for
symmetry components and conservation law multipliers, respectively: η̂[v] =
η̂(x, t, v, vx, vxx, vxxx, vxxxx), Λ[V ] = Λ(x, t, V, Vx, Vxx, Vxxx, Vxxxx).

From Table 1.2, one sees that:

• For a general n, symmetries η̂i[v], i = 1, 2, 3, are variational, since Λ1[V ] =
η̂i[V ]. Symmetry η̂4[v] is variational only for n = 2.
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Table 1.2 Comparison of local symmetries and conservation law multipliers of the
transformed generalized Korteweg–de Vries equation (1.279)

n Symmetries Conservation Law Multipliers

η̂(x, t, v, vx, vxx, vxxx, vxxxx) Λ(x, t, V, Vx, Vxx, Vxxx, Vxxxx)

Arbitrary η̂1[v] = f(t), η̂2[v] = vx, Λ1[V ] = f(t), Λ2[V ] = Vx,

η̂3[v] =
1

n+1vn+1
x + vxxx, Λ3[V ] = 1

n+1V n+1
x + Vxxx.

η̂4[v] = t
(

1
n+1vn+1

x + vxxx

)
− 1

3n
(nxvx − (n − 2)v).

1 η̂1[v], η̂2[v], η̂3[v] (n = 1), Λ1[V ], Λ2[V ], Λ3[V ] (n = 1),

η̂5[v] = x − tvx. Λ5[V ] = x − tVx.

2 η̂1[v], η̂2[v], η̂3[v] (n = 2), Λ1[V ], Λ2[V ], Λ3[V ] (n = 2),

η̂4[v] (n = 2). Λ4[V ] = t
(1
3V 3

x + Vxxx

)
− 1

3xVx.

• For n = 1, an additional variational symmetry η̂5[v] arises, with a corre-
sponding conservation law multiplier given by Λ5[V ] = η̂5[V ].

Nonlinear telegraph system

Consider the nonlinear telegraph (NLT) PDE system

ut = vx,

vt = F (u)ux +G(u).
(1.281)

One can show that for all forms of the functions F (u) and G(u), the PDE
system (1.281) is not variational. In particular, the linearized PDE system
for (1.281) is given by

Dtṽ
1 = Dxṽ

2,

Dtṽ
2 = F (u)Dxṽ

1 + (F ′(u)ux +G′(u))ṽ1,
(1.282)

holding for any solution of PDE system (1.281), whereas the adjoint linearized
system is given by

Dtw̃1 = F (u)Dxw̃2 −G′(u)w̃2,

Dtw̃2 = Dxw̃1,
(1.283)

holding for any solution of PDE system (1.281). Since in general, for any
F (u) and G(u), F ′(u)ux + G′(u) �= −G′(u) for the solutions u = u(x, t) of
the NLT system (1.281), the PDE system (1.281) is not self-adjoint.
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For a variational PDE system, every conservation law multiplier yields
a local symmetry, and so the number of local conservation laws never ex-
ceeds the number of local symmetries. This situation does not hold for the
non-variational PDE system (1.281) as shown by a comparison [Bluman &
Temuerchaolu (2005b)] between the point symmetries and zeroth order con-
servation law multipliers of the NLT PDE system (1.281) in terms of the
classifying functions F (u) and G(u). Point symmetries

X = ξ(x, t, u, v)
∂

∂x
+τ(x, t, u, v)

∂

∂t
+η(x, t, u, v)

∂

∂u
+κ(x, t, u, v)

∂

∂v
, (1.284)

are considered in characteristic form given by

X̂ = η̂
∂

∂u
+ ω̂

∂

∂v
(1.285)

with η̂ = η − uxξ − utτ , ω̂ = κ − vxξ − vtτ . A comparison is made with
conservation law multipliers of zeroth order

Λi = Λi(x, t, U, V ), i = 1, 2. (1.286)

First note that the PDE system (1.281) has the group of equivalence trans-
formations

x̃ = a1x+ a4, t̃ = a2t+ a5, ũ = a3u+ a6, ṽ = a3v + a2a7t+ a8,

F̃ (ũ) = a2
1a

−2
2 F (u), G̃(ũ) = a1a

−2
2 a3G(u) + a7, (1.287)

where a1, . . . , a8 are arbitrary constants, with a1a2a3 �= 0. Symmetries and
conservation laws of PDE system (1.281) should therefore only be classified
up to equivalence transformations (1.287), i.e., pairs of constitutive functions
(F (u), G(u)) and (F̃ (u), G̃(u)) are equivalent if

F̃ (u) = αF (βu+ γ), G̃(u) = δG(βu+ γ) + λ,

for arbitrary constants α �= 0, β �= 0, γ, δ �= 0, λ. Classification results in Table
1.3 are presented modulo these transformations.

For arbitrary F (u) and G(u), the NLT system (1.281) admits three point
symmetries

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 =

∂

∂v
, (1.288)

and one conservation law with multipliers Λ1 = 1, Λ2 = 0 (i.e., the first
equation of (1.281)). Table 1.3 lists only numbers of additional symmetries
and conservation laws for each classification case.

For the sake of brevity, Table 1.3 includes only cases where G(u) is a power,
logarithmic or exponential function. Additional classification cases arise for
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G(u) = (um ± 1)/(um ∓1), G(u) = tan(α lnu), G(u) = tanu, G(u) = tanhu,
and G(u) = cothu. For details and the complete classification, see Bluman
& Temuerchaolu (2005b).

Table 1.3 Numbers of additional point symmetries and conservation laws of the
NLT system (1.281) arising for some particular forms of constitutive functions F (u)
and G(u)

G(u) F (u) Additional Additional

Symmetries Conservation Laws

const Arbitrary ∞ ∞
u const ∞ ∞

u 1 4

uα (α �= 0, 1) 1 2

eαu (α �= 0) 1 2

u2 + αu + β (α2 �= 4β) 0 4

All other F (u) 0 2

u−1 u−2 ∞ ∞
u−1 1 4

(u + 1)/u2 1 4

(u ± 1)α/u2 (α �= 0, 1) 1 2

uα (α �= −1,−2) 1 2

u−2eαu (α �= 0) 1 2

u−2 + αu−1 + β (α2 �= 4β, β �= 0) 0 4

All other F (u) 0 2

uα uα−1 1 3

(α �= 0, uβ (β �= α − 1) 1 0

± 1) uα−1 + β (β �= 0) 0 2

uα−1 + (uα + β)2 0 2

lnu u−1 1 3

uβ (β �= −1) 1 0

u−1 + α (α �= 0) 0 2

u−1 + α(lnu)2 (α �= 0) 0 2

1/ lnu 1/[u(lnu)2] 1 3

uβ/ lnu (β �= −1) 1 0

1/[u(lnu)2] + α (α �= 0) 0 2

1/[u(lnu)2] + α(1/ lnu + β)2 (α �= 0) 0 2

eu eu 1 4

eαu, (α �= 0, 1) 1 0

eu + α, (α �= 0) 0 4

e2u + αeu + β (α2 �= 4β) 0 4

(eu + α)2 (α �= 0) 0 2

In Table 1.3, α and β are arbitrary constants.
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The case G = u, F = const is a linear case; in cases G(u) = u−1, F (u) =
u−2 and G(u) = const, F (u) arbitrary, the NLT system (1.281) is linearizable
by a point transformation [see Section 3.4.3 and Exercise 3.4.6]. It follows
that in these three cases, PDE system (1.281) has an infinite number of
point symmetries and conservation laws.

Note that from the point of view of Noether’s theorem, a correspondence
between symmetries of the form (1.285) and conservation law multipliers of
the form (1.286) might seem invalid. Indeed, the ansatz for conservation law
multipliers is more restrictive, since the form of the considered multipliers
has no dependence on derivatives and, in particular, involves two arbitrary
functions instead of four arbitrary functions in the case of point symmetries.
However even with this restriction, the complete classification with respect
to constitutive functions F (u) and G(u) shows that for most specific cases,
the number of conservation laws exceeds the number of point symmetries!
[This is never the case for variational PDE systems where the number of
conservation laws is at most equal to the number of symmetries for any
particular form since conservation laws arise from local multipliers that must
be local symmetries.]

Exercises 1.4

1.4.1. Find the linearized equations (Fréchet derivatives) and adjoint lin-
earized equations for the following PDEs.

(a) PDE (1.262) and equivalent PDE (1.263).
(b) PDE (1.264) and equivalent PDE (1.265).
(c) Korteweg–de Vries equation (1.266) and the transformed Korteweg-de

Vries equation (1.267).

1.4.2. Consider the generalized Korteweg–de Vries equation (1.276).

(a) Show that equation (1.276) is not self-adjoint.
(b) Show that the transformed generalized KdV equation (1.279) is self-

adjoint.
(c) Show that the transformed generalized KdV equation (1.279) corre-

sponds to an extremum of the action integral with Lagrangian (1.280).
(d) Find fluxes of the conservation laws arising from multipliers in Tables

1.1 and 1.2. [Hint: For conservation laws in Table 1.2, use formula
(1.257).]

1.4.3. By direct calculation, derive the identity (1.250).

1.4.4. Consider the PDE
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utt − (ux)2uxx = 0. (1.289)

(a) Show that the linearized PDE of (1.289) is self-adjoint.
(b) Show that PDE (1.289) is the Euler–Lagrange equation that arises for

an extremum U(x, t) = u(x, t) of the action integral with Lagrangian
L[U ] = U2

t /2 − U4
x/12.

(c) Show that if the action integral has the local symmetry X = η[U ] ∂/∂U ,
then correspondinglyW 1[U, η[U ]] = −U3

xη[U ]/3,W 2[U, η[U ]] = Utη[U ].
(d) Find the most general scaling symmetry of

(i) the PDE (1.289);
(ii) the action integral.

(e) Use both Noether’s formulation and Boyer’s formulation to find all
conservation laws of (1.289) that result from scaling symmetries of
(1.289).

(f) Show that the PDE (1.289) has the point symmetry t ∂/∂u. Check
whether the point symmetry t ∂/∂u is a variational symmetry and find
the corresponding conservation law if one exists. In doing so, compare
Boyer’s formulation and Noether’s formulation.

1.4.5. Show that the indicated generators for one-parameter groups of local
transformations yield variational symmetries of the corresponding action in-
tegrals for the given Lagrangians. Obtain the resulting conservation laws. In
each case, derive the determining equations for conservation law multipliers
and check that the variational symmetries yield solutions of the determining
equations.

(a) L[U ] = 1
2UxUt − cosU, X =

[
1
2U

3
x + Uxxx

]
∂/∂U ;

(b) L[U, V ] = 2UxVx+i(UVt−V Ut)−U2V 2, X = [3UV Ux + Uxxx] ∂/∂U+
[3UV Vx + Vxxx] ∂/∂V .

1.4.6. Consider the Boussinesq system of PDEs

ut − vxx = 0,
vt − uxx + u+ u2 = 0.

(1.290)

(a) Show that the linearized system of the PDE system (1.290) is self-
adjoint.

(b) By inspection, find three point symmetries of the PDE system (1.290).
Show that each of these symmetries yields a set of conservation law
multipliers and find the corresponding conservation laws through

(i) using the direct method;
(ii) Noether’s theorem.
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(c) Use the direct method and then Boyer’s formulation of Noether’s theo-
rem to find the conservation law of the PDE system (1.290) that results
from the set of conservation law multipliers given by

Λ1[U, V ] = Uxxxx − (3U + 1)Uxx − 3
2 (Ux)2 − 1

2 (Vx)2 + 2
3U

3 + 1
2U

2,

Λ2[U, V ] = −Vxxxx + UVxx + UxVx.

1.4.7. Consider the PDE

utt − c(u)[c(u)ux]x = 0. (1.291)

(a) Show that the linearized equation of PDE (1.291) is self-adjoint and
find a corresponding Lagrangian.

(b) For arbitrary c(u), show that PDE (1.291) only has conservation law
multipliers of the form Λ[U ] = Λ(x, t, U, Ut, Ux) given by Λ[U ] =
Ut, Ux, tUt + xUx. Find the fluxes for the corresponding three linearly
independent conservation laws separately through the direct method
and Noether’s theorem.

(c) Show that the PDE (1.291) admits additional conservation laws result-
ing from multipliers of the form Λ[U ] = Λ(x, t, U, Ut, Ux) if and only if
c(u) = a(u+b)2, for arbitrary constants a �= 0 and b. Find the resulting
three additional conservation laws [Anco & Bluman (2002a)].

1.5 Some Connections Between Symmetries and
Conservation Laws

So far it has been seen that if a PDE system is variational, i.e., its linearization
operator (Fréchet derivative) is self-adjoint, then a set of local conservation
law multipliers directly corresponds to a local symmetry of the PDE system.
In general, the converse does not hold: a local symmetry of a variational PDE
system may not necessarily yield a set of local conservation law multipliers
for a conservation law.

If a PDE system is not variational, then local conservation law multipliers
do not in general correspond to local symmetries of the PDE system.

In this section, it is shown that if a given PDE system R{x ;u} is mapped
into another PDE system S{z ;w} by an invertible transformation (point
or contact transformation) then each conservation law of R{x ;u} is trans-
formed to a corresponding conservation law of S{z ;w}. When the invertible
transformation is a symmetry (discrete or continuous) of R{x ;u}, then the
corresponding conservation law is a conservation law of R{x ;u}. Related
to this, two formulas are presented [Bluman, Temuerchaolu & Anco (2006)].
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The first formula yields the transformed conservation law. The second for-
mula checks a priori whether the action of a symmetry on a conservation law
of a given PDE system R{x ;u} can yield one or more new conservation laws
of R{x ;u}.

Furthermore, for any given PDE system R{x ;u}, it is shown that any
paired set of functions consisting of any solution of its linearizing system
(1.64) (i.e., components of a local symmetry in characteristic form) and a
solution of the adjoint system (1.184) of the linearizing system (1.64) can
yield directly a conservation law of R{x ;u} through a simple algebraic for-
mula [Anco & Bluman (1997a)]. However, it could happen that the resulting
conservation law is trivial. In the important special case when the local sym-
metry is a scaling symmetry and the solution of the adjoint system is a local
multiplier for a conservation law, it is shown that this formula directly yields
the conservation law obtained from the local multiplier [Anco (2003)] (pro-
vided that the conservation law and the given PDE system are homogeneous
under the scaling symmetry, and the conservation law has non-zero scaling
weight).

In the variational (self-adjoint) case, it immediately follows that any pair
of local symmetries of R{x ;u} could yield directly a conservation law of
R{x ;u} [Anco & Bluman (1996)] through this simple formula. Furthermore,
all local conservation laws of R{x ;u} that have non-zero scaling weight are
obtained directly through this simple formula if one of the symmetries of
R{x ;u} is a scaling symmetry and one determines all local multipliers (equiv-
alent to determining all variational symmetries). Note that no Lagrangian is
needed.

In the next chapter, it is shown how one can use either the local symmetries
or local conservation law multipliers of a nonlinear PDE system R{x ;u} to
determine whether it can be invertibly mapped into some linear PDE system
S{z ;w} as well as obtain a specific mapping when one exists.

In subsequent chapters, it is shown that local conservation laws of a given
PDE system R{x ;u} yield nonlocally related PDE systems that in turn can
yield nonlocal symmetries and nonlocal conservation laws of R{x ;u}.

1.5.1 Use of symmetries to find new conservation laws
from known conservation laws

We derive two formulas related to obtaining new conservation laws from
known conservation laws under the action of an invertible (point or contact)
transformation. The first formula shows how to use an invertible transforma-
tion, including a discrete one, that maps any given PDE system R{x ;u} to
another PDE system S{z ;w} to obtain directly a conservation law of S{z ;w}
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from any known conservation law of R{x ;u}. The situation is particularly
interesting when the invertible transformation is a symmetry of the given
PDE system R{x;u} since here one could obtain new conservation laws from
a known conservation law of R{x ;u}. No differential consequences of the
given PDE system R{x ;u} are used in these formulas.

The second formula uses the action of a symmetry of R{x ;u} on the set
of multipliers of a known conservation law of R{x ;u} to construct the sets of
multipliers of conservation laws of R{x ;u}. This allows one to check a priori
whether a new conservation law of R{x ;u} is obtained under the action of
the symmetry of R{x ;u}. It is also shown that if the symmetry is a point
or contact symmetry (i.e., a one-parameter Lie group of point or contact
transformations), then one could obtain more than one new conservation
law.

For the rest of this section, we restrict an invertible transformation to a
point transformation (which must be the situation when R{x ;u} has two or
more dependent variables). The extension to contact transformations in the
case when R{x ;u} is a scalar PDE is straightforward [Bluman, Temuerchaolu
& Anco (2006)].

Consider a system of N PDEs R{x ;u} given by

Rσ[u] = Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N, (1.292)

with n independent variables x = (x1, . . . , xn) and m dependent variables
u = (u1, . . . , um). Let

Rσ[U ] = Rσ(x,U, ∂U, . . . , ∂kU), σ = 1, . . . , N, (1.293)

where U(x) = (U1(x), . . . , Um(x)) is an arbitrary function with U(x) = u(x)
solving the system of PDEs (1.292).

Consider an invertible point transformation

xi = xi(z,W ), i = 1, . . . , n,
Uμ = Uμ(z,W ), μ = 1, . . . ,m,

(1.294)

where U(x) = (U1(x), . . . , Um(x)), z = (z1, . . . , zm), W (z) = (W 1(z), . . . ,
Wm(z)).

Under a point transformation (1.294) and its natural extensions (prolon-
gations) to actions on derivatives, each function Rσ[U ] is mapped to some
function Sσ[W ] = Sσ(z,W, ∂W, . . . , ∂kW ). In particular,

Sσ[W ] = Rσ[U ], (1.295)

where the components of x,U, ∂U, . . . , ∂kU are expressed in terms of the
components of z,W, ∂W, . . . , ∂kW through (1.294). If U(x) = u(x) solves
PDE system R{x ;u} (1.292), then correspondingly W (z) = w(z) solves PDE
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system S{z ;w} given by

Sσ[w] = Sσ(z, w, ∂w, . . . , ∂kw) = 0, σ = 1, . . . , N, (1.296)

with n independent variables z = (z1, . . . , zm), and m dependent variables
w(z) = (w1(z), . . . , wm(z)).

Theorem 1.5.1. Suppose DiΦ
i[u] = 0 is a conservation law of PDE system

R{x ;u} (1.292). Under the point transformation (1.294), there exist func-
tions

{
Ψ i[W ]

}n

i=1
such that the formula

J[W ]DiΦ
i[U ] = D̃iΨ

i[W ] (1.297)

holds, where Ψ i[W ] is given explicitly in terms of the determinant obtained
by replacing the ith column of the Jacobian determinant

J[W ] =
D(x1, . . . , xn)
D(z1, . . . , zn)

(1.298)

by

⎡⎢⎣Φ
1[U ]

...
Φn[U ]

⎤⎥⎦, and where Di, D̃i are total derivative operators, respectively,

given by

Di =
∂

∂xi
+ Uμ

i

∂

∂Uμ
+ Uμ

ii1

∂

∂Uμ
i1

+ · · · ,

D̃i =
∂

∂zi
+Wμ

i

∂

∂Wμ
+Wμ

ii1

∂

∂Wμ
i1

+ · · · , i = 1, . . . , n

with Uμ
i = ∂Uμ

∂xi , Wμ
i = ∂W μ

∂zi , etc.

Proof. Consider the determinants

Ψ1[W ] =

∣∣∣∣∣∣∣∣∣
Φ1[U ] D̃2x

1 · · · D̃nx
1

Φ2[U ] D̃2x
2 · · · D̃nx

2

...
...

...
Φn[U ] D̃2x

n · · · D̃nx
n

∣∣∣∣∣∣∣∣∣ , Ψ2[W ] =

∣∣∣∣∣∣∣∣∣
D̃1x

1 Φ1[U ] · · · D̃nx
1

D̃1x
2 Φ2[U ] · · · D̃nx

2

...
...

...
D̃1x

n Φn[U ] · · · D̃nx
n

∣∣∣∣∣∣∣∣∣ ,

· · · , Ψn[W ] =

∣∣∣∣∣∣∣∣∣
D̃1x

1 · · · D̃n−1x
1 Φ1[U ]

D̃1x
2 · · · D̃n−1x

2 Φ2[U ]
...

...
...

D̃1x
n · · · D̃n−1x

n Φn[U ]

∣∣∣∣∣∣∣∣∣ . (1.299)

Then
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D̃iΨ
i[W ] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣∣∣∣∣∣∣
D̃1Φ

1[U ] D̃2x
1 · · · D̃nx

1

D̃1Φ
2[U ] D̃2x

2 · · · D̃nx
2

...
...

...
D̃1Φ

n[U ] D̃2x
n · · · D̃nx

n

∣∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣
Φ1[U ] D̃1D̃2x

1 D̃3x
1 · · · D̃nx

1

Φ2[U ] D̃1D̃2x
2 D̃3x

2 · · · D̃nx
2

...
...

...
...

Φn[U ] D̃1D̃2x
n D̃3x

n · · · D̃nx
n

∣∣∣∣∣∣∣∣∣

+ · · · +

∣∣∣∣∣∣∣∣∣
Φ1[U ] D̃2x

1 · · · D̃n−1x
1 D̃1D̃nx

1

Φ2[U ] D̃2x
2 · · · D̃n−1x

2 D̃1D̃nx
2

...
...

...
...

Φn[U ] D̃2x
n · · · D̃n−1x

n D̃1D̃nx
n

∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎬⎪⎪⎪⎭

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣∣∣∣∣∣∣
D̃1D̃2x

1 Φ1[U ] D̃3x
1 · · · D̃nx

1

D̃1D̃2x
2 Φ2[U ] D̃3x

2 · · · D̃nx
2

...
...

...
...

D̃1D̃2x
n Φn[U ] D̃3x

n · · · D̃nx
n

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
D̃1x

1 D̃2Φ
1[U ] D̃3x

1 · · · D̃nx
1

D̃1x
2 D̃2Φ

2[U ] D̃3x
2 · · · D̃nx

2

...
...

...
...

D̃1x
n D̃2Φ

n[U ] D̃3x
n · · · D̃nx

n

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
D̃1x

1 Φ1[U ] D̃2D̃3x
1 D̃4x

1 · · · D̃nx
1

D̃1x
2 Φ2[U ] D̃2D̃3x

2 D̃4x
2 · · · D̃nx

2

...
...

...
...

...
D̃1x

n Φn[U ] D̃2D̃3x
n D̃4x

n · · · D̃nx
n

∣∣∣∣∣∣∣∣∣
+ · · · +

∣∣∣∣∣∣∣∣∣
D̃1x

1 Φ1[U ] D̃3x
1 · · · D̃n−1x

1 D̃2D̃nx
1

D̃1x
2 Φ2[U ] D̃3x

2 · · · D̃n−1x
2 D̃2D̃nx

2

...
...

...
...

...
D̃1x

n Φn[U ] D̃3x
n · · · D̃n−1x

n D̃2D̃nx
n

∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎬⎪⎪⎪⎭+ · · ·

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣∣∣∣∣∣∣
D̃1D̃nx

1 D̃2x
1 · · · D̃n−1x

1 Φ1[U ]
D̃1D̃nx

2 D̃2x
2 · · · D̃n−1x

2 Φ2[U ]
...

...
...

...
D̃1D̃nx

n D̃2x
n · · · D̃n−1x

n Φn[U ]

∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣
D̃1x

1 D̃2D̃nx
1 D̃3x

1 · · · D̃n−1x
1 Φ1[U ]

D̃1x
2 D̃2D̃nx

2 D̃3x
2 · · · D̃n−1x

2 Φ2[U ]
...

...
...

...
...

D̃1x
n D̃2D̃nx

n D̃3x
n · · · D̃n−1x

n Φn[U ]

∣∣∣∣∣∣∣∣∣
+ · · · +

∣∣∣∣∣∣∣∣∣
D̃1x

1 D̃2x
1 · · · D̃n−2x

1 D̃n−1D̃nx
1 Φ1[U ]

D̃1x
2 D̃2x

2 · · · D̃n−2x
2 D̃n−1D̃nx

2 Φ2[U ]
...

...
...

...
...

D̃1x
n D̃2x

n · · · D̃n−2x
n D̃n−1D̃nx

n Φn[U ]

∣∣∣∣∣∣∣∣∣
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+

∣∣∣∣∣∣∣∣∣
D̃1x

1 D̃2x
1 · · · D̃n−1x

1 D̃nΦ
1[U ]

D̃1x
2 D̃2x

2 · · · D̃n−1x
2 D̃nΦ

2[U ]
...

...
...

...
D̃1x

n D̃2x
n · · · D̃n−1x

n D̃nΦ
n[U ]

∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (1.300)

In expression (1.300), the pairs of determinants with entries D̃jD̃kx
i, j �= k,

i = 1, . . . , n, cancel each other out since their respective columns are odd
permutations of each other. Hence expression (1.300) reduces to

D̃iΨ
i[W ] =

∣∣∣∣∣∣∣∣∣
D̃1Φ

1[U ] D̃2x
1 · · · D̃nx

1

D̃1Φ
2[U ] D̃2x

2 · · · D̃nx
2

...
...

...
D̃1Φ

n[U ] D̃2x
n · · · D̃nx

n

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
D̃1x

1 D̃2Φ
1[U ] D̃3x

1 · · · D̃nx
1

D̃1x
2 D̃2Φ

2[U ] D̃3x
2 · · · D̃nx

2

...
...

...
...

D̃1x
n D̃2Φ

n[U ] D̃3x
n · · · D̃nx

n

∣∣∣∣∣∣∣∣∣

+ · · · +

∣∣∣∣∣∣∣∣∣
D̃1x

1 D̃2x
1 · · · D̃n−1x

1 D̃nΦ
1[U ]

D̃1x
2 D̃2x

2 · · · D̃n−1x
2 D̃nΦ

2[U ]
...

...
...

...
D̃1x

n D̃2x
n · · · D̃n−1x

n D̃nΦ
n[U ]

∣∣∣∣∣∣∣∣∣ . (1.301)

Let ξj
i denote the cofactor of D̃jx

i for the Jacobian matrix given by⎡⎢⎣ D̃1x
1 · · · D̃nx

1

...
...

D̃1x
n · · · D̃nx

n

⎤⎥⎦ . (1.302)

Then expression (1.301) becomes

D̃iΨ
i[W ] = (D̃jΦ

i[U ])ξj
i . (1.303)

Using the chain rule, one has D̃jΦ
i[U ] = (DkΦ

i[U ])(D̃jx
k). Thus (1.303)

becomes
D̃iΨ

i[W ] = (DkΦ
i[U ])(D̃jx

k)ξj
i . (1.304)

But (D̃jx
k)ξj

i = δk
i J[W ], where J[W ] is the Jacobian determinant given by

(1.298) and δk
i is the Kronecker symbol: δi

i = 1, δk
i = 0 for i �= k.

Consequently, equation (1.304) yields (1.297). ��

From Theorem 1.5.1, one immediately obtains the following important
result.

Corollary 1.5.1. Under a point transformation (1.294), a conservation law
DiΦ

i[u] = 0 of PDE system R{x ;u} (1.292) is transformed to the conserva-
tion law

D̃iΨ
i[w] = 0 (1.305)
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of PDE system S{z ;w} (1.296) with fluxes Ψ i[w] given by (1.299) in terms
of the solutions W (z) = w(z) of PDE system S{z ;w}.

Symmetry action on a conservation law to yield new conservation
laws

We now restrict our attention to the most important situation when the
invertible point transformation (1.294) is a symmetry of PDE system R{x ;u}
(1.292). We show that the action of a symmetry on a conservation law of
R{x ;u} could yield a new conservation law of R{x ;u}. Since any point
transformation that is a symmetry of PDE system R{x ;u} leaves invariant
the solution manifold of R{x ;u}, it follows that there exist specific functions
Aσ

τ [W ] so that (1.295) is of the form

Rσ[U ] = Sσ[W ] = Aσ
τ [W ]Rτ [W ]. (1.306)

Hence through formulas (1.297) and (1.299) one obtains a symmetry mapping
formula for conservation laws.

Corollary 1.5.2. If the invertible point transformation (x, u) → (x̃(x, u),
ũ(x, u)) is a symmetry of the PDE system R{x ;u} (1.292), then a conserva-
tion law DiΦ

i[u] = 0 of R{x ;u} yields the conservation law

DiΨ
i[u] = 0 (1.307)

of R{x ;u} with fluxes given by

Ψ1[u] =

∣∣∣∣∣∣∣∣∣
Φ1[ũ] D2x̃

1 · · · Dnx̃
1

Φ2[ũ] D2x̃
2 · · · Dnx̃

2

...
...

...
Φn[ũ] D2x̃

n · · · Dnx̃
n

∣∣∣∣∣∣∣∣∣ , . . . , Ψ
n[u] =

∣∣∣∣∣∣∣∣∣
D1x̃

1 · · · Dn−1x̃
1 Φ1[ũ]

D1x̃
2 · · · Dn−1x̃

2 Φ2[ũ]
...

...
...

D1x̃
n · · · Dn−1x̃

n Φn[ũ]

∣∣∣∣∣∣∣∣∣ .
Proof. From (1.306), it follows that Sσ[U ] = Aσ

τ [U ]Rτ [U ] holds for arbitrary
functions U(x). Hence Sσ[u] = 0 for any solution U(x) = u(x) of the PDE
system R{x ;u} (1.292). Consequently, from Corollary 1.5.1, one obtains the
conservation law (1.307) with fluxes Ψ i[u] given by formula (1.299) after first
replacing xi by x̃i, uμ by ũμ, etc. and then zi by xi, Wμ(z) by uμ(x), Wμ

i by
uμ

i , etc. ��

Corollary 1.5.2 shows that the action of a symmetry of the PDE system
R{x ;u} (1.292) on a known conservation law DiΦ

i[u] = 0 of R{x ;u} yields
the conservation law (1.307) of R{x ;u} through use of the formula (1.297).
Clearly, any symmetry of R{x ;u} must yield a symmetry of the determining
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equations for conservation law multipliers. The problem is to find how the
multipliers themselves change under symmetries of R{x ;u}.

Now another theorem and immediate corollary are presented that together
yield a second formula that directly allows one to check a priori whether
the action of a symmetry (1.294) on a known conservation law DiΦ

i[u] = 0
of R{x ;u} yields new conservation laws (1.307) of R{x ;u}. In particular,
for each symmetry of R{x ;u} and any given set of conservation law mul-
tipliers {Λσ[U ]}N

σ=1 of R{x ;u}, this formula will yield a transformed set of
conservation multipliers {Λ̂σ[U ]}N

σ=1. If the set of multipliers {Λ̂σ[U ]}N
σ=1 is

independent of the given set of multipliers {Λσ[U ]}N
σ=1, then one obtains a

new conservation law of R{x ;u}.
Theorem 1.5.2. Suppose the point transformation (1.294) is a symmetry
of PDE system R{x ;u} (1.292). If {Λσ[U ]}N

σ=1 is a set of multipliers for a
conservation law of R{x ;u} with fluxes Φi[u], then

Λ̂τ [W ]Rτ [W ] = D̃iΨ
i[W ], (1.308)

where

Λ̂τ [W ] = J[W ]Aσ
τ [W ]Λσ[U(z,W )], τ = 1, . . . , N, (1.309)

with U(z,W ) (and its derivatives) given by the transformation (1.294) (and
its natural extensions). In (1.308), Ψ i[W ] is given by (1.299) and, in (1.309),
the Jacobian determinant J[W ] and Aσ

τ [W ] are given by (1.298) and (1.306),
respectively.

Proof. Since the point transformation (1.294) is a symmetry of PDE system
R{x ;u} (1.292), it follows that equation (1.306) holds for arbitrary functions
W (z). Since {Λσ[U ]}N

σ=1 is a set of multipliers for a conservation law of
R{x ;u} with fluxes Φi[u], the identity

Λσ[U ]Rσ[U ] ≡ DiΦ
i[U ] (1.310)

holds for arbitrary functions U(x). After substituting (1.306) into (1.310),
one obtains

DiΦ
i[U ] = Λσ[U ]Rσ[U ] = Λσ[U ]Aσ

τ [W ]Rτ [W ]. (1.311)

After multiplying (1.311) by J [W ] and using formula (1.297), one finds that

J[W ](DiΦ
i[U ]) = J[W ]Λσ[U ]Aσ

τ [W ]Rτ [W ] = D̃iΨ
i[W ].

Hence
Λ̂τ [W ]Rτ [W ] = D̃iΨ

i[W ],

where Λ̂τ [W ] is given by (1.309). ��
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After replacing the coordinates zi by xi, Wμ(z) by Uμ(x), Wμ
i by Uμ

i ,
etc., in (1.308), the following important corollary is immediately obvious.

Corollary 1.5.3. If {Λσ[U ]}N
σ=1 is a set of multipliers for a conservation

law of PDE system R{x ;u} (1.292) and PDE system R{x ;u} is invariant
under the point transformation (x, u) → (x̃(x, u), ũ(x, u)), then {Λ̂τ [U ]}N

τ=1

yields a set of multipliers for a conservation law of R{x ;u} where Λ̂τ [U ] =
J[Ũ ]Aσ

τ [Ũ ]Λσ[U ].

The following proposition indicates whether a set of multipliers {Λ̂τ [U ]}N
τ=1

yields a new conservation law of PDE system R{x ;u} (1.292).

Proposition 1.5.1. A set of multipliers {Λ̂τ [U ]}N
τ=1 yields a new conserva-

tion law of PDE system R{x ;u} (1.292) if and only if this set is independent
of {Λσ[U ]}N

σ=1 on all solutions U(x) = u(x) of R{x ;u}, i.e., Λ̂τ [U ] �≡ cΛτ [U ],
τ = 1, . . . , N, for any constant c.

Proof. Two conservation laws of a PDE system R{x ;u} are equivalent if
and only if their corresponding fluxes differ by a curl term DjH

ij [u] on all
solutions U(x) = u(x) of R{x ;u} (where Hij [u] = −Hji[u]). For a PDE
system R{x ;u} in Cauchy–Kovalevskaya form, all equivalent conservation
laws have the same set of multipliers when the multipliers are restricted to
solutions U(x) = u(x) of R{x ;u} [Anco & Bluman (2002b)]. Hence two sets
of multipliers are equivalent when they agree on all solutions u(x) of R{x ;u}.
In particular, there is a one-to-one correspondence between nontrivial con-
servation laws (up to equivalence) and sets of nontrivial multipliers. This
establishes the proposition. ��

Formulas (1.297) and (1.308), after the appropriate coordinate substitu-
tions, use finite transformations to yield a new conservation law from a known
conservation law of R{x ;u} and hence are applicable for any group of trans-
formations admitted by R{x ;u}, including discrete symmetries. Now con-
sider the important situation when the point transformation (1.294) is a
one-parameter Lie group of point transformations of PDE system R{x ;u}
(1.292). Using the infinitesimal form of the group, it is now shown that here
it is possible to obtain more than one new conservation law from a known
conservation law.

Suppose the point transformation (1.294) is a one-parameter Lie group of
point transformations. Then in terms of its infinitesimals ξi[W ] = ξi(z,W ),
ημ[W ] = ημ(z,W ), one has

xi = zi + εξi[W ] +O(ε2), i = 1, . . . , n,

Uμ = Wμ + εημ[W ] +O(ε2), μ = 1, . . . ,m.
(1.312)

The corresponding extended infinitesimal generator is given by
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X̃ = ξj [W ]
∂

∂zj
+ ημ[W ]

∂

∂Wμ
+ · · · + ημ

i1···ik
[W ]

∂

∂Wμ
i1···ik

+ · · · (1.313)

with

ημ
i [W ] = D̃iη

μ[W ] − (D̃iξ
j [W ])Wμ

j , i = 1, . . . , n,

ημ
i1···ik

[W ] = D̃ik
ημ

i1···ik−1
[W ] − (D̃ik

ξj [W ])Wμ
i1···ik−1j , μ = 1, . . . ,m,

where il = 1, . . . , n for l = 1, . . . , k, k ≥ 2.
In terms of the infinitesimal generator (1.313), one has

xi = eεX̃zi, Uμ = eεX̃Wμ, Uμ
i = eεX̃Wμ

i , . . . . (1.314)

Let

X = ξj [U ]
∂

∂xj
+ ημ[U ]

∂

∂Uμ
+ · · · + ημ

i1···ik
[U ]

∂

∂Uμ
i1···ik

+ · · · . (1.315)

Now suppose the one-parameter Lie group of point transformations (1.312)
is a point symmetry of PDE system R{x ;u} (1.292). Then

XRσ[U ] = aσ
τ [U ]Rτ [U ] (1.316)

for some specific functions aσ
τ [U ]. Consequently, it is easy to see that

XkRσ[U ] = aσ
τ [U ]k Rτ [U ] (1.317)

where aσ
τ [U ]1 = aσ

τ [U ] and, for k ≥ 1, aσ
τ [U ]k+1 = Xaσ

τ [U ]k + aλ
τ [U ]kaσ

λ[U ].

The Jacobian determinant of the point transformations (1.312) is given by

J[U ; ε] =

∣∣∣∣∣∣∣
D1(eεXx1) · · · D1(eεXxn)
...

...
Dn(eεXx1) · · · Dn(eεXxn)

∣∣∣∣∣∣∣ . (1.318)

Now let

Ψ1[U ; ε] =

∣∣∣∣∣∣∣∣∣
eεXΦ1[U ] D2(eεXx1) · · · Dn(eεXx1)
eεXΦ2[U ] D2(eεXx2) · · · Dn(eεXx2)
...

...
...

eεXΦn[U ] D2(eεXxn) · · · Dn(eεXxn)

∣∣∣∣∣∣∣∣∣ ,
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Ψ2[U ; ε] =

∣∣∣∣∣∣∣∣∣
D1(eεXx1) eεXΦ1[U ] · · · Dn(eεXx1)
D1(eεXx2) eεXΦ2[U ] · · · Dn(eεXx2)
...

...
...

D1(eεXxn) eεXΦn[U ] · · · Dn(eεXxn)

∣∣∣∣∣∣∣∣∣ ,
...

Ψn[U ; ε] =

∣∣∣∣∣∣∣∣∣
D1(eεXx1) · · · Dn−1(eεXx1) eεXΦ1[U ]
D1(eεXx2) · · · Dn−1(eεXx2) eεXΦ2[U ]
...

...
...

D1(eεXxn) · · · Dn−1(eεXxn) eεXΦn[U ]

∣∣∣∣∣∣∣∣∣ .
This leads to the following theorem.

Theorem 1.5.3. Suppose the one-parameter Lie group of point transfor-
mations (1.312) is a point symmetry of PDE system R{x ;u} (1.292) and
{Λσ[U ]}N

σ=1 is a set of multipliers for a conservation law of R{x ;u} with
fluxes {Φj [u]}n

j=1. Let the determinants J[U ; ε] and Ψ i[U ; ε] be defined by ex-
pressions (1.318) and (1.319), respectively. Then

Λ̂τ [U ]p =
∑

n+k+l=p

1
k!l!n!

(aσ
τ [U ]l)(XkΛσ[U ])

dn

dεn
J[U ; ε]

∣∣∣∣
ε=0

,

τ = 1, . . . , N,

(1.319)

defines sets of multipliers for conservation laws of PDE system R{x ;u}
(1.292) with fluxes given by

Ψ i[u]p =
1
p!

dp

dεp
Ψ i[u; ε]

∣∣∣∣
ε=0

, i = 1, . . . , n, (1.320)

for p = 0, 1, 2, . . . ; Λ̂τ [U ]o = Λτ [U ], Ψ i[u]0 = Φi[u], aσ
τ [U ]0 = δσ

τ .

Proof. Since {Λσ[U ]}N
σ=1 is a set of multipliers for a conservation law of PDE

system R{x ;u} (1.292) with fluxes {Φj [u]}n
j=1, the identity (1.310) holds

for arbitrary functions U(x). Under the one-parameter Lie group of point
transformations (1.312), the relation (1.297) holds for arbitrary functions
U(x) and W (z) related through (1.312). Substituting (1.310) into (1.297),
one obtains

J[W ; ε]Λσ[U ]Rσ[U ] = D̃iΨ
i[W ; ε], (1.321)

where J[W ; ε] and Ψ i[W ; ε] are given by (1.318) and (1.319), respectively,
with Di replaced by D̃i, X by X̃, xi by x̃i, Uμ(x) by Wμ(z), Uμ

i by Wμ
i , etc.

After substituting (1.314) into (1.321), one obtains

J[W ; ε]Λσ[eεX̃W ]Rσ[eεX̃W ] = D̃iΨ
i[W ; ε]. (1.322)
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After replacing D̃i by Di, X̃ by X, x̃i by xi, Wμ(z) by Uμ(x), Wμ
i by Uμ

i , etc.
in (1.322), and using the group property F [eεXU ] = eεXF [U ] for any function
F [U ], one obtains

J[U ; ε](eεXΛσ[U ])(eεXRσ[U ]) = DiΨ
i[U ; ε], (1.323)

where J[U ; ε] and Ψ i[U ; ε] are given by (1.318) and (1.319), respectively. Each
term in (1.323) can be expressed by a power series in ε. In particular,

J[U ; ε] =
∞∑

n=0

(
1
n!

(
dn

dεn
J[U ; ε]

∣∣∣∣
ε=0

))
εn, (1.324)

eεXΛσ[U ] =
∞∑

k=0

(
1
k!

XkΛσ[U ]
)
εk, (1.325)

eεXRσ[U ] =
∞∑

l=0

(
1
l!

XlRσ[U ]
)
εl, (1.326)

Ψ i[U ; ε] =
∞∑

p=0

(
1
p!

(
dp

dεp
Ψ i[U ; ε]

∣∣∣∣
ε=0

))
εp. (1.327)

Then using (1.316) and (1.317), one sees that (1.326) becomes

∞∑
l=0

(
1
l!

XlRσ[U ]
)
εl =

∞∑
l=0

(
1
l!

Xlaσ
τ [U ]l

)
εlRτ [U ]. (1.328)

After substituting expressions (1.324)–(1.327) into (1.323), one obtains the
power series identity

∞∑
p=0

εp

⎛⎝ ∑
n+k+l=p

1
k!l!n!

(aσ
τ [U ]l)(XkΛσ[U ])

dn

dεn
J[U ; ε]

∣∣∣∣
ε=0

⎞⎠Rτ [U ]

=
∞∑

p=0

εpDi

(
1
p!

(
dp

dεp
Ψ i[U ; ε]

)∣∣∣∣
ε=0

) (1.329)

that holds for arbitrary functions U(x). Consequently, after comparing coef-
ficients in the power series representation (1.329), one obtains the sequence
of identities

Λ̂τ [U ]pRτ [U ] = Di

(
1
p!

(
dp

dεp
Ψ i[U ; ε]

)∣∣∣∣
ε=0

)
, (1.330)

where Λ̂τ [U ]p is given by (1.319) for each power p = 0, 1, 2, . . . . Thus, for
the PDE system R{x ;u} (1.292), from a given conservation law DiΦ

i[u] = 0
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arising from a set of multipliers {Λσ[U ]}, and a point symmetry (1.312), one
obtains the sequence of conservation laws

Di

(
1
p!

(
dp

dεp
Ψ i[u; ε]

)∣∣∣∣
ε=0

)
= 0, p = 1, 2, . . . , (1.331)

where {Ψ i[u; ε]} is defined by (1.319) for any solution U(x) = u(x) of
R{x ;u}. ��

It is important to note that it can happen that none of the terms of a
sequence (1.331) yields a conservation law that is different from the given
conservation law DiΦ

i[u] = 0.
In the case of two independent variables (x1, x2) = (t, x) and two depen-

dent variables (U1, U2) = (U, V ), one has

X = τ(x, t, U, V )
∂

∂t
+ ξ(x, t, U, V )

∂

∂x

+η(x, t, U, V )
∂

∂U
+ φ(x, t, U, V )

∂

∂V
+ · · · ,

D1 = Dt =
∂

∂t
+ Ut

∂

∂U
+ Vt

∂

∂V
+ · · · ,

D2 = Dx =
∂

∂x
+ Ux

∂

∂U
+ Vx

∂

∂V
+ · · · .

(1.332)

It is left as an exercise to show that here for p = 1, one has

Λ̂τ [U ]1 = (Dtτ + Dxξ)Λτ [U ] + XΛτ [U ] + aσ
τ [U ]Λσ[U ], (1.333)

Ψ1[U ]1 = XΦ1[U ] + Φ1[U ]Dxξ − Φ2[U ]Dxτ,

Ψ2[U ]1 = XΦ2[U ] + Φ2[U ]Dtτ − Φ1[U ]Dtξ,
(1.334)

and for p = 2, one has

Λ̂τ [U ]2 = 1
2{[DtXτ + DxXξ + 2(DtτDxξ − DtξDxτ)]Λτ [U ]

+2(Dtτ + Dxξ)[XΛτ [U ] + aσ
τ [U ]Λσ[U ]] + 2aσ

τ [U ]XΛσ[U ]

+X2Λτ [U ] + Λλ[U ](Xaλ
τ [U ] + aλ

σ[U ]aσ
τ [U ])},

Ψ1[U ]2 = 1
2{X

2
Φ1[U ] + 2XΦ1[U ]Dxξ + Φ1[U ]DxXξ

−Φ2[U ]DxXτ − 2XΦ2[U ]Dxτ},

Ψ2[U ]2 = 1
2{X

2
Φ2[U ] + 2XΦ2[U ]Dtτ + Φ2[U ]DtXτ

−Φ1[U ]DtXξ − 2XΦ1[U ]Dtξ},
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in terms of the set of multipliers {Λ1[U ], Λ2[U ]} for a known conservation law
with fluxes Φ1[u] and Φ2[u].

Examples

Now consider two examples involving nonlinear telegraph (NLT) systems that
illustrate how one can obtain further conservation laws from symmetry action
on a known conservation law. Examples include actions of discrete symmetries
as well as point symmetries and, in the case of a point symmetry, it is shown
that one can obtain more than one further conservation law. The examples
involve two independent and two dependent variables. The following notation
is used. For the two independent variables x1 = t, x2 = x with z1 = t̃, z2 = x̃

and for the two dependent variables u1 = u, u2 = v with U1 = U , U2 = V ,
w1 = ũ, w2 = ṽ, W 1 = Ũ , W 2 = Ṽ .

(1) First NLT system
One can show that the NLT system

R1[u] = vt − (2e2u − 1)ux − eu = 0,
R2[u] = ut − vx = 0,

(1.335)

has a conservation law with fluxes given by

Φ1[u] = −2e−
1
2 (u+t/

√
2) cos

[
1
2

(
v + 1√

2
(x+ 2eu)

)]
,

Φ2[u] = 2e−
1
2 (u+t/

√
2)
(√

2eu cos
[

1
2

(
v + 1√

2
(x+ 2eu)

)]
− sin

[
1
2

(
v + 1√

2
(x+ 2eu)

)])
.

(1.336)

By direction calculation, it is easy to see that the conservation law with fluxes
(1.336) results from the set of multipliers

Λ1[U ] = e−
1
2 (U+t/

√
2) sin

[
1
2

(
V + 1√

2
(x+ 2eU )

)]
,

Λ2[U ] = e−
1
2 (U+t/

√
2)
(√

2eU sin
[

1
2

(
V + 1√

2
(x+ 2eU )

)]
+cos

[
1
2

(
V + 1√

2
(x+ 2eU )

)])
.

(1.337)

Clearly, the NLT system (1.335) has the discrete symmetry (reflection)

t = −t̃, x = x̃, u = ũ, v = −ṽ, (1.338)

and the point symmetry (translations)
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t = t̃, x = x̃, u = ũ, v = ṽ + ε. (1.339)

It is now shown that the symmetries (1.338) and (1.339) acting on the
known conservation law with fluxes (1.336) that arises from the set of mul-
tipliers (1.337), lead to three further conservation laws of the NLT system
(1.335). Through the second formula (1.308), it is shown that the actions of
the reflection symmetry (1.338) and the translation symmetry (1.339), re-
spectively, on this known conservation law, yield two further conservation
laws. Furthermore, it is shown that further action of the reflection symmetry
(1.338) on the conservation law obtained from the action of the translation
symmetry (1.339) on the known conservation law, yields a fourth conservation
law of the NLT system (1.335).

(I) Under the action of the point transformation corresponding to the re-
flection symmetry (1.338), one has J[W ] = −1, S1[W ] = R1[U ] = R1[W ],
S2[W ] = R2[U ] = −R2[W ]. Consequently, in (1.306), one obtains A1

1[W ] = 1,
A2

2[W ] = −1, A2
1[W ] = A1

2[W ] = 0. After applying the point transformation
corresponding to the reflection symmetry (1.338) to the set of multipliers
(1.337), from formula (1.309) and Corollary 1.5.3 one gets a new set of mul-
tipliers

Λ̂1[U ] = e−
1
2 (U−t/

√
2) sin

[
1
2

(
V − 1√

2
(x+ 2eU )

)]
,

Λ̂2[U ] = e−
1
2 (U−t/

√
2)
(
cos
[

1
2

(
V − 1√

2
(x+ 2eU )

)]
−
√

2eU sin
[

1
2

(
V − 1√

2
(x+ 2eU )

)])
.

Then the first formula (1.299) leads to a second conservation law of the NLT
system (1.335) with its fluxes given by

Ψ1[u] = −2e−
1
2 (u−t/

√
2) cos

[
1
2

(
v − 1√

2
(x+ 2eu)

)]
,

Ψ2[u] = −2e−
1
2 (u−t/

√
2)
(√

2eu cos
[

1
2

(
v − 1√

2
(x+ 2eu)

)]
+sin

[
1
2

(
v − 1√

2
(x+ 2eu)

)])
.

(II) Under the action of the point transformation corresponding to the trans-
lation symmetry (1.339), one has J[W ] = 1, S1[W ] = R1[U ] = R1[W ],
S2[W ] = R2[U ] = R2[W ]. Thus, in (1.306), one obtains A1

1[W ] = A2
2[W ] = 1,

A2
1[W ] = A1

2[W ] = 0. After applying the point transformation corresponding
to the translation symmetry (1.339) to the set of multipliers (1.337), from
formula (1.309) and Corollary 1.5.3 one has a new set of multipliers
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Λ̂1[U ] = λ1[U ] = e−
1
2 (U+t/

√
2) cos

[
1
2

(
V + 1√

2
(x+ 2eU )

)]
,

Λ̂2[U ] = λ2[U ] = e−
1
2 (U+t/

√
2)
(√

2eU cos
[

1
2

(
V + 1√

2
(x+ 2eU )

)]
− sin

[
1
2

(
V + 1√

2
(x+ 2eU )

)])
.

(1.340)

Hence, formula (1.299) leads to a third conservation law of the NLT system
(1.335) with fluxes

Ψ1[u] = φ1[u] = 2e−
1
2 (u+t/

√
2) sin

[
1
2

(
v + 1√

2
(x+ 2eu)

)]
,

Ψ2[u] = φ2[u] = −2e−
1
2 (u+t/

√
2)
(√

2eu sin
[

1
2

(
v + 1√

2
(x+ 2eu)

)]
+cos

[
1
2

(
v + 1√

2
(x+ 2eu)

)])
.

(1.341)

(III) Under the action of the point transformation, corresponding to the re-
flection symmetry (1.338), to the set of multipliers (1.340) that leads to the
third conservation law with fluxes (1.341), formula (1.309) and Corollary 1.5.3
yield a third new set of multipliers given by

Λ̂1[U ] = λ̂1[U ] = −e−
1
2 (U−t/

√
2) cos

[
1
2

(
V − 1√

2
(x+ 2eU )

)]
,

Λ̂2[U ] = λ̂2[U ] = e−
1
2 (U−t/

√
2)
(√

2eU cos
[

1
2

(
V − 1√

2
(x+ 2eU )

)]
+sin

[
1
2

(
V − 1√

2
(x+ 2eU )

)])
.

Thus formula (1.299) leads to a fourth conservation law of the NLT system
(1.335) with fluxes

Ψ1[u] = −2e−
1
2 (u−t/

√
2) sin

[
1
2

(
v − 1√

2
(x+ 2eu)

)]
,

Ψ2[u] = 2e−
1
2 (u−t/

√
2)
(

cos
[

1
2

(
v − 1√

2
(x+ 2eu)

)]
−
√

2eu sin
[

1
2

(
v − 1√

2
(x+ 2eu)

)])
.

(2) Second NLT system
One can show that the NLT system

R1[u] = vt − (sech2u)ux − tanhu = 0,

R2[u] = ut − vx = 0,
(1.342)



1.5 Some Connections Between Symmetries and Conservation Laws 105

has a conservation law with fluxes given by

Φ1[u] = ex[2tu− 1
3v

3 + v(t2 + 2x− 2 log(coshu))],

Φ2[u] = ex[(v2 − t2 − 2x+ 2(1 + log(coshu))) tanhu− 2(vt+ u)].
(1.343)

By direction calculation, it is easy to see that the conservation law with fluxes
(1.343) results from the set of multipliers

Λ1[U ] = ex[2x+ t2 − V 2 − 2 log(coshU)],

Λ2[U ] = 2ex[t− V tanhU ].
(1.344)

The NLT system (1.342) has the point symmetry (translations)

t = t̃+ ε, x = x̃, u = ũ, v = ṽ, (1.345)

and the point symmetry [Bluman, Temuerchaolu & Sahadevan (2005)] with
infinitesimal generator

X = v
∂

∂t
+ tanhu

∂

∂x
+

∂

∂u
+ t

∂

∂v
. (1.346)

It is now shown that the actions of the symmetries (1.345) and (1.346)
on the known conservation law with fluxes (1.343) that arises from the set of
multipliers (1.344), lead to three further conservation laws of the NLT system
(1.342). Through the second formula (1.308), it is shown that the action
of the translation symmetry (1.345) on this known conservation law yields
two additional conservation laws resulting from the O(ε) and O(ε2) terms,
respectively. Moreover, it is shown that the action of the point symmetry
(1.346) on the additional conservation law, resulting from the O(ε) term,
yields a fourth conservation law of the NLT system (1.342).

(I) Under the action of the point transformation corresponding to the trans-
lation symmetry (1.345), one has J[W ] = 1, S1[W ] = R1[U ] = R1[W ],
S2[W ] = R2[U ] = R2[W ]. Thus, in (1.306), one obtains A1

1[W ] = A2
2[W ] = 1,

A2
1[W ] = A1

2[W ] = 0. After applying the point transformation corresponding
to the translation symmetry (1.345) to the set of multipliers (1.344), from
formula (1.309) and Corollary 1.5.3 one obtains

Λ̂1[W ] = Λ1[W ] + 2t̃ex̃ε+ ex̃ε2,

Λ̂2[W ] = Λ2[W ] + 2ex̃ε.
(1.347)

Then the first formula (1.299) leads to



106 1 Local Transformations and Conservation Laws

Ψ1[W ] = Φ1[W ] + 2ex̃(t̃Ṽ + Ũ)ε+ ex̃Ṽ ε2,

Ψ2[W ] = Φ2[W ] − 2ex̃(t̃ tanh Ũ + Ṽ )ε− ex̃(tanh Ũ)ε2.
(1.348)

Comparing (1.344) and (1.347), one immediately sees that the O(ε) and
O(ε2) terms in (1.347) yield two additional conservation laws of the NLT sys-
tem (1.342). In particular, the O(ε) terms in (1.347) and (1.348), respectively,
yield a new set of multipliers

Λ̂1[U ]1 = λ1[U ] = tex, Λ̂2[U ]1 = λ2[U ] = ex, (1.349)

and a corresponding conservation law with fluxes

Ψ1[u]1 = φ1[u] = ex(tv + u), Ψ2[u]1 = φ2[u] = −ex(t tanhu+ v); (1.350)

the O(ε2) terms in (1.347) and (1.348), respectively, yield a new set of mul-
tipliers

Λ̂1[U ]2 = ex, Λ̂2[U ]2 = 0,

and a corresponding conservation law with fluxes

Ψ1[u]2 = exv, Ψ2[u]2 = −ex tanhu.

(II) Under the action of the point transformation corresponding to the point
symmetry (1.346), one has

XR1[U ] = −[Vt + (sech2U)Ux + tanhU ]R1[U ],

sgXR2[U ] = −[Vt + (sech2U)Ux]R2[U ].

Thus in (1.316), one has a1
1[U ] = −[Vt + (sech2U)Ux + tanhU ], a2

2[U ] =
−[Vt + (sech2U)Ux], a1

2[U ] = a2
1[U ] = 0. The point symmetry (1.346) is

now applied to the O(ε) term conservation law with fluxes (1.350). Then in
formula (1.333) with Λ1[U ] = λ1[U ] and Λ2[U ] = λ2[U ] given by (1.349), one
has τ = V , ξ = tanhU , Xλ1[U ] = ex(V + tanhU), and Xλ2[U ] = ex tanhU.
Consequently, here formula (1.333) yields a third set of multipliers given by

λ̂1[U ]1 = exV, λ̂2[U ]1 = ex tanhU.

Hence formula (1.334) with Φ1[U ] = φ1[U ] and Φ2[U ] = φ2[U ] given by
(1.350), yields a fourth conservation law of the NLT system (1.342) with
fluxes

φ1[u]1 = ex[ 12v
2 + log(coshu)], φ2[u]1 = −exv tanhu.
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1.5.2 Relationships among symmetries, solutions of
adjoint equations, and conservation laws

Consider a system of PDEs (1.292). The linearizing operator L[U ] associated
with the PDE system (1.292) is given by (1.176), and the corresponding
adjoint operator L∗[U ] is given by (1.177). From integration by parts, it
follows that for arbitrary functions V (x) = (V 1(x), . . . , V m(x)) and W (x) =
(W1(x), . . . ,WN (x)), one has the relation [Exercise 1.3.16]

WσLσ
ρ [U ]V ρ − V ρL∗ σ

ρ [U ]Wσ ≡ DiΨ
i[U ], (1.351)

where Ψ i[U ] is given by formula (1.179).
Suppose also that the PDE system R{x ;u} (1.292) has a local symmetry

with infinitesimal generator, in characteristic form,

X̂ = η̂ρ[u]
∂

∂uρ
. (1.352)

It follows that the symmetry components η̂ρ[u] are solutions of the symmetry
determining equations, i.e., the linearizing system

Lσ
ρ [u]η̂ρ[u] = 0. (1.353)

Now let {ωσ[u]}N
σ=1 be some solution of the adjoint linearizing system

L∗ σ
ρ [u]ωσ[u] = 0 (1.354)

for any solution u(x) of R{x ;u} (1.292). In the literature [Gordon (1986);
Sarlet, Cantrijn & Crampin (1987); Sarlet, Prince & Crampin (1990); Anco
& Bluman [(1998), (2002a,b)]; Bluman & Anco (2002); Anco & Pohjanpelto
[(2001), (2003), (2004)]; Anco & The (2005)], such solutions are often called
adjoint symmetries.

In the divergence identity (1.351), let V ρ = η̂ρ[U ] and Wσ = ωσ[U ]. It
follows that one has the conservation law

DiΨ
i[u] = 0 (1.355)

on solutions U(x) = u(x) of the PDE system R{x ;u} (1.292).
Thus the following theorem holds [Anco & Bluman (1997a)].

Theorem 1.5.4. For a PDE system (1.292), any pair consisting of a symme-
try (1.352) and a solution {ωσ[u]}N

σ=1 of the corresponding adjoint linearizing
system (1.354) yields a conservation law (1.355), with fluxes Ψ i[u] given by
(1.179).
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As an example, consider the NLT system (1.281) for power nonlinearities
G(u) = uα+1, F (u) = G′(u), α �= 0,−1,−2, i.e.,

ut = vx, vt = (α+ 1)uαux + uα+1.

One can show that this system, for a general power α, has four point sym-
metries given by

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂v
, X4 = − 1

2αtu
∂

∂t
+ u

∂

∂u
+ 1

2 (α + 2)v
∂

∂v
.

The infinitesimal generators in characteristic form are given by

X̂j = η̂1
j [u, v]

∂

∂u
+ η̂2

j [u, v]
∂

∂v
, j = 1, . . . , 4,

with components

(η̂1
1 , η̂

2
1) = (−ut,−vt), (η̂1

2 , η̂
2
2) = (−ux,−vx),

(η̂1
3 , η̂

2
3) = (0, 1), (η̂1

4 , η̂
2
4) = (u+ 1

2αtut,
1
2 (α+ 2)v + 1

2αtvt).
(1.356)

The adjoint linearizing system (1.283) also has four solutions (ŵj
1[u, v],

ŵj
2[u, v]), j = 1, . . . , 4, given by

(ŵ1
1, ŵ

1
2) = (1, 0), (ŵ2

1, ŵ
2
2) = (0, ex),

(ŵ3
1, ŵ

3
2) = (ex, tex), (ŵ4

1, ŵ
4
2) = (exuα+1, exv).

(1.357)

Now Theorem 1.5.4 is used to generate corresponding conservation laws
of the NLT system (1.281). In particular, the simplified version (1.378) of
formula (1.179) is used to obtain the fluxes of conservation laws

DtΨ [u, v] + DxΦ[u, v] = 0. (1.358)

One can show that using the symmetry (η̂1
4 , η̂

2
4) and the solution (ŵ3

1, ŵ
3
2)

of the adjoint system (1.283), one obtains the fluxes

Ψ [u, v] = ex
[
u+ 1

2αtut + 1
2 t ((α + 2)v + αtvt)

]
= ex [u+ tv] +Dx

(
1
2αe

xt[v + tuα+1]
)
,

Φ[u, v] = −ex
[
(α+ 1)tuα

(
u+ 1

2αtut

)
+ 1

2 ((α + 2)v + αtvt)
]

= −ex[v + tuα+1] −Dt

(
1
2αe

xt[v + tuα+1]
)
,

corresponding to a non-obvious conservation law (1.358) of the NLT system
(1.281).
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Using the same symmetry (η̂1
4 , η̂

2
4) and another solution (ŵ2

1, ŵ
2
2) of the

adjoint system (1.283), one obtains the conservation law with the fluxes

Ψ [u, v] = u+ 1
2αut = u+ Dx( 1

2αtv),

Φ[u, v] = − 1
2 [(α + 2)v + αtvt] = −v − Dt( 1

2αtv),

which is equivalent to the obvious known conservation law ut − vx = 0 (the
first equation of the NLT system (1.281)).

The conservation law obtained from Theorem 1.5.4 can be trivial. For
example, for the symmetry (η̂1

1 , η̂
2
1) and the solution (ŵ4

1, ŵ
4
2) of the adjoint

system, one obtains fluxes

Ψ [u, v] = −ex
[
uα+1ut + vvt

]
= Dx(exuα+1v),

Φ[u, v] = exuα [(α+ 1)vut + uvt] = Dt(exuα+1v).

Theorem 1.5.4 and formula (1.179) are not commonly used for the compu-
tation of fluxes of conservation laws, since the resulting conservation laws are
sometimes trivial or already known; the resulting fluxes are often unneces-
sarily complicated; and there is the lack of completeness in knowing whether
one has obtained all local conservation laws for sets of multipliers of fixed
form.

However, as shown in the next section, formula (1.179) can be rather useful
to generate fluxes of conservation laws for complicated forms of multipliers
and/or PDE systems, when other methods fail.

Computation of fluxes of a conservation law of scaling-invariant
PDE systems

Suppose the PDE system R{x ;u} (1.292) has a conservation law

Λσ[u]Rσ[u] = DiΦ
i[u] = 0, (1.359)

with a set of multipliers {Λσ[U ] = Λσ(x,U, ∂U, . . . , ∂lU)}N
σ=1. From Corollary

1.3.1, it follows that the multipliers {Λσ[U ]}N
σ=1 are solutions of the adjoint

system
L∗ σ

ρ [u]Λσ[u] = 0 (1.360)

for every solution U(x) = u(x) of PDE system R{x ;u}. Hence a set of
multipliers {Λσ[U ]}N

σ=1 can be used in conjunction with components of local
symmetries in Theorem 1.5.4 to obtain a conservation law (1.355).

It is important to note that in general, for any local symmetry (1.352)
used in Theorem 1.5.4, the conservation law (1.359) corresponding to the
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set of multipliers {Λσ[U ]}N
σ=1 and the conservation law (1.355) arising from

Theorem 1.5.4 are different, i.e., the conservation law arising from Theorem
1.5.4 has a different set of multipliers.

However if the symmetry (1.352) is a scaling symmetry

Xs[u] = p(i)xi ∂

∂xi
+ q(ρ)uρ ∂

∂uρ

p(i) = const, i = 1, . . . , n, q(ρ) = const, ρ = 1, . . . ,m,

(1.361)

i.e.,
xi → x̃i = eεXs[u]xi = eεp(i)

xi,

uρ → ũρ = eεXs[u]uρ = eεq(ρ)
uρ,

then it often happens that conservation laws (1.355) and (1.359) coincide (to
within fluxes of a trivial conservation law). In such cases, for complicated
forms of PDEs R{x ;u} and sets of multipliers Λσ[U ], formula (1.179) can be
the most efficient way to compute fluxes as follows.

Lemma 1.5.1. Suppose the PDE system R{x ;u} (1.292) has a scaling sym-
metry (1.361), and a conservation law (1.359). Let r(σ) = const be the scal-
ing weight of each PDE Rσ[U ] under the scaling symmetry (1.361), i.e.,
X(k)

s [U ]Rσ[U ] = r(σ)Rσ[U ]. If the conservation law (1.359) is homogeneous
under the scaling symmetry (1.361), i.e., X(l)

s [U ]DiΦ
i[U ] = PDiΦ

i[U ], P =
const, then each of the multipliers Λσ[U ] appearing in (1.359) is homogeneous
under the scaling symmetry (1.361). In particular, X(l)

s [U ]Λσ[U ] = s(σ)Λσ[U ],
where s(σ) = P − r(σ) is the scaling weight of each Λσ[U ] �= 0.

Proof. Assuming that the given PDE system R{x ;u} (1.292) can be written
in a solved form (1.152), one notes that the scaling homogeneity of each PDE
of the given system R{x ;u} follows from considering the action of the scaling
symmetry (1.361) on the leading derivative in each Rσ[U ]. Then applying the
operator X(l)

s [U ] (1.361) to both sides of the equality Λσ[U ]Rσ[U ] = DiΦ
i[U ],

for an arbitrary function U(x), yields(
X(l)

s [U ]Λσ[U ]
)
Rσ[U ] + r(σ)Λσ[U ]Rσ[U ] = PDiΦ

i[U ] = PΛσ[U ]Rσ[U ].

Hence [
X(l)

s [U ]Λσ[U ] − (P − r(σ))Λσ[U ]
]
Rσ[U ] = 0.

Since without loss of generality, functions {Rσ[U ]}N
σ=1 can be assumed to be

linearly independent, it follows that

X(l)
s [U ]Λσ[U ] − (P − r(σ))Λσ[U ] = 0
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for each σ such that Λσ[U ] �≡ 0. ��

Definition 1.5.1. Suppose the conditions of Lemma 1.5.1 are satisfied. Then
the conservation law (1.359) is called noncritical with respect to the scaling
symmetry (1.361) if

χ = s(σ) + r(σ) +
n∑

i=1

p(i) �= 0 (1.362)

for each σ such that Λσ[U ] �= 0.

The scaling symmetry generator (1.361) in characteristic form is given by

X̂s[u] = η̂ρ[u]
∂

∂uρ
=
(
q(ρ)uρ − p(i)xiuρ

i

) ∂

∂uρ
. (1.363)

The following theorem holds [Anco (2003)].

Theorem 1.5.5. Suppose the PDE system R{x ;u} (1.292) has a scaling
symmetry (1.363), and a conservation law (1.359) that is homogeneous un-
der the scaling symmetry (1.361), i.e., X(l)

s [U ]DiΦ
i[U ] = PDiΦ

i[U ], P =
const. For each σ such that Λσ[U ] �= 0, let r(σ) be the scaling weight of
the corresponding function Rσ[U ] under the scaling symmetry (1.361), i.e.,
X(k)

s [U ]Rσ[U ] = r(σ)Rσ[U ]. If the conservation law (1.359) is noncritical,
χ �= 0, then it is equivalent to the conservation law (1.355) with fluxes Ψ i[U ]
given by (1.179) with V ρ = η̂ρ[U ] and Wσ = Λσ[U ]. In particular,

Ψ i[U ] = (P − pi)Φi[U ], (P − pi) = const, (1.364)

holds modulo fluxes of a trivial conservation law.

Proof. From the homogeneity of Λσ[U ] and Rσ[U ] under the scaling symme-
try [Lemma 1.5.1], it follows that for the corresponding extensions of X̂s[U ],
one has

X̂(l)
s [U ]Λσ[U ] = s(σ)Λσ[U ] − p(i)xiDiΛσ[U ], (1.365)

X̂(k)
s [U ]Rσ[U ] = r(σ)Rσ[U ] − p(i)xiDiR

σ[U ]. (1.366)

Let
(LR)σ

ρ [U ] ≡ Lσ
ρ [U ] (1.367)

be the linearizing operator associated with the PDE system R{x ;u} (1.292),
with components given by (1.176). Let

(L∗
R)σ

ρ [U ] ≡ (L∗)σ
ρ [U ] (1.368)

be the adjoint operator, with components given by (1.177). Now formally
define the linear operators (LΛ)σ ρ[U ] and (L∗

Λ)σ ρ[U ] by replacing Rσ[U ] by
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Λσ[U ] in the operators (1.367) and (1.368). For these two pairs of linear
operators, following from the identity (1.178), one obtains the relations

Wσ(LR)σ
ρ [U ]V ρ − V ρ(L∗

R)σ
ρ [U ]Wσ ≡ DiΨ

i[U ],

W̃ σ(LΛ)σ ρ[U ]Ṽ ρ − V ρ(L∗
Λ)σ ρ[U ]W̃ σ ≡ DiH

i[U ],

where V (x), W (x), Ṽ (x), and W̃ (x) are arbitrary functions; the functions
Ψ i[U ] are given by (1.179), and the functions Hi[U ] are given by (1.179) with
Rσ[U ] replaced by Λσ[U ].

Moreover, the necessary and sufficient conditions (1.183) for the set of
multipliers {Λσ[U ]}N

σ=1 to yield a divergence expression can be written as a
symmetric expression [Exercise 1.3.17]

(L∗
R)σ

ρ [U ]Λσ[U ] + (L∗
Λ)σ ρR

σ[U ] = 0. (1.369)

Writing equations (1.369) and (1.369) with V ρ = Ṽ ρ = η̂ρ
s [U ], Wσ =

Λσ[U ], and W̃ σ = Rσ[U ], and using (1.369), one obtains

Λσ[U ](LR)σ
ρ [U ]η̂ρ

s [U ] − η̂ρ
s [U ](L∗

R)σ
ρ [U ]Λσ[U ] ≡ DiΨ

i[U ],

Rσ[U ](LΛ)σ ρ[U ]η̂ρ
s [U ] + η̂ρ

s [U ](L∗
R)σ

ρ [U ]Λσ[U ] ≡ DiH
i[U ].

(1.370)

Hence

Λσ[U ](LR)σ
ρ [U ]η̂ρ

s [U ] +Rσ[U ](LΛ)σ ρ[U ]η̂ρ
s [U ] = Di(Ψ i[U ] +Hi[U ]). (1.371)

From the definition of a linearizing operator, it follows that

(LΛ)σ ρ[U ]η̂ρ
s [U ] = X̂(k)

s [U ]Λσ[U ],

(LR)σ
ρ [U ]η̂ρ

s [U ] = X̂(k)
s [U ]Rσ[U ].

Then using the scaling relations (1.365) and (1.366), one obtains the equations

(LΛ)σ ρ[U ]η̂ρ
s [U ] = s(σ)Λσ[U ] − p(i)xiDiΛσ[U ],

(LR)σ
ρ [U ]η̂ρ

s [U ] = r(σ)Rσ[U ] − p(i)xiDiR
σ[U ].

Therefore after an integration by parts, the expression (1.371) becomes(
s(σ) + r(σ) +

∑n
i=1 p

(i)
)
Rσ[U ]Λσ[U ]

= Di(Ψ i[U ] +Hi[U ] + p(i)xiRσ[U ]Λσ[U ]).
(1.372)

From Lemma 1.5.1 it follows that the quantity χ = s(σ) + r(σ) +
∑n

i=1 p
(i) =

P +
∑n

i=1 p
(i) is independent of σ. Since the conservation law (1.359) is non-

critical, χ �= 0. Hence the left-hand side of (1.372) has the form χDiΦ
i[U ].
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On the right-hand side of (1.372), the flux parts Hi[U ] and p(i)xiRσ[U ]Λσ[U ]
vanish on solutions U(x) = u(x) of PDE system R{x ;u} (1.292). [In partic-
ular, functions Hi[U ] vanish on solutions of the PDE system R{x ;u}, since
they are given by (1.179) with Rσ[U ] replaced by Λσ[U ], and W̃ σ = Rσ[U ],
with Rσ[U ] = 0 on solutions U(x) = u(x) of R{x ;u}.] Hence the flux parts
Hi[U ] and p(i)xiRσ[U ]Λσ[U ] correspond to fluxes of a trivial conservation
law of the first kind [Section 1.3.2]. ��

As an example, consider the two-dimensional nonlinear G-equation

R[g] = gt − | grad g| ≡ gt −
√
g2

x + g2
y = 0, (1.373)

which describes flame propagation in a static gas [Oberlack, Wenzel & Pe-
ters (2001)]. Here g(t, x, y) = 0 implicitly defines the position of the flame
surface at time t, and the surface advances at a constant speed in the normal
direction. Let (x1, x2) = (x, y).

Assuming the dependence Λ[G] = Λ(t, x, y,G,Gx, Gy, Gxx, Gxy, Gyy), one
can show that the G-equation (1.373) has the following conservation law
multipliers:

Λ(1)[G] =
1
G3

y

(GxGyy −GyGxy),

Λ(2)[G] =
1
G3

x

(GyGxx −GxGxy),

Λ(3)[G] = F (Gx, Gy)(GxxGyy −G2
xy),

(1.374)

where F (Gx, Gy) is an arbitrary function of its arguments. One now seeks
the corresponding densities and fluxes of conservation laws

DtΦ
0
(k)[g] + DxΦ

1
(k)[g] + DyΦ

2
(k)[g] = 0, k = 1, 2, 3. (1.375)

The direct method for finding densities and fluxes [Section 1.3.7] leads to
a complicated PDE system for the densities and fluxes Φ0

(k), Φ
1
(k), Φ

2
(k), for

each of the three conservation laws. The integral formulas (1.218) cannot be
readily used for the multiplier Λ(3)[G] since it contains an arbitrary function.
Moreover, one can show that for the multipliers Λ(1)[G] and Λ(2)[G], formu-
las (1.218) yield a divergent integral when Ũ = 0, and highly complicated
integrals when Ũ �= 0 [Exercise 1.5.2].

It is evident that the PDE (1.373) has a scaling symmetry

X1 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
. (1.376)

Writing (1.376) in characteristic form, one finds η̂[g] = −tgt −xgx − ygy. For
functions F (Gx, Gy) that are homogeneous under scalings in G and that yield
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noncritical conservation laws, the conditions of Theorem 1.5.5 are satisfied
for all three multipliers (1.374). Using a simplified version (1.378) of formula
(1.178) [Exercise 1.5.1], one readily finds three corresponding conservation
laws:

Dt

(
η̂[g]Λ(k)[g]

)
− Dx

⎛⎝ η̂[g]gxΛ(k)[g]√
g2

x + g2
y

⎞⎠− Dy

⎛⎝ η̂[g]gyΛ(k)[g]√
g2

x + g2
y

⎞⎠ = 0,

k = 1, 2, 3.
(1.377)

Exercises 1.5

1.5.1. Many PDE systems arising in applications are of first or second order.
Suppose a given PDE system R{x ;u} (1.292) is of order k ≤ 2. Suppose
it has a local symmetry X = η̂ρ[u] ∂/∂uρ, and {ωσ[u]}N

σ=1 is a solution of
the corresponding adjoint linearizing system (1.354). Show that the formulas
(1.179) for the fluxes Ψ i[u] of the resulting conservation law simplify to

Ψ i[u] = η̂ρ[u]ωσ[u]
∂Rσ[u]
∂uρ

i

+ (Dsη̂
ρ[u])ωσ[u]

∂Rσ[u]
∂uρ

is

−η̂ρ[u]Dj

(
ωσ[u]

∂Rσ[u]
∂uρ

ji

)
,

(1.378)

where i = 1, . . . , n, s ≥ i and j ≤ i. For details, see Anco (2003).

1.5.2. Consider the G-equation (1.373) and its local conservation law multi-
pliers (1.374). Study the applicability of the integral formulas (1.218) to the
computation of the corresponding fluxes of the conservation laws.

1.5.3. Show that in addition to the scaling symmetry (1.376), the G-equation
(1.373) also has the scaling symmetry

X2 = g
∂

∂g
,

the translation symmetries

X3 =
∂

∂t
, X4 =

∂

∂x
, X5 =

∂

∂y
, X6 =

∂

∂g
,

and a “relabeling symmetry”

X7 = H(g)
∂

∂g
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for arbitrary H(g) (which geometrically corresponds to the fact that the flame
surface is, in general, implicitly defined by the equation g(t, x, y) = const, and
may be equivalently defined by K(g(t, x, y)) = const, where K(z) is some
smooth function of its argument).

Use the symmetries X2, . . . ,X7 and multipliers (1.374) in formula (1.378)
to generate fluxes of other local conservation laws of the G-equation (1.373).
Check whether such conservation laws are linearly independent and nontrivial
(up to equivalence).

1.5.4. Derive the expressions (1.333) and (1.334).

1.5.5. Prove that if the linearized system of a given PDE system is self-
adjoint, then any two symmetries (local or nonlocal) can yield a conservation
law (not necessarily a local conservation law) through an appropriate modi-
fication of Theorem 1.5.4 [Anco & Bluman (1996)].

1.5.6. Consider the linear wave equation

uxx − [c(x)]−2utt = 0. (1.379)

(a) Show that the PDE (1.379) is self-adjoint for an arbitrary wave speed
c(x).

(b) Consider the nonlocally related PDE system given by

vt − ux = 0,

vx − [c(x)]−2ut = 0.
(1.380)

Show that the PDE system (1.380) is not self-adjoint for any wave
speed c(x).

(c) Show that if c(x) satisfies the ODE cc′(c/c′)′′ = 1, then the PDE
system (1.380) has two point symmetries given by the infinitesimal
generators [Bluman & Kumei (1987)]

X± = ±2e±t c

c′
∂

∂x
+ 2e±t

[( c
c′
)′

− 1
]
∂

∂t

±e±t

[
2 −

( c
c′
)′]

u
∂

∂u
− e±t c

c′
v
∂

∂v
.

(1.381)

It turns out that the point symmetries (1.381) of the PDE system
(1.380) are nonlocal symmetries of the PDE (1.379). For further details
about this relationship between (1.379) and (1.380), see Chapters 3 and
4.

(d) Clearly, the linear PDE (1.379) has the scaling symmetry X = u ∂/∂u.
Use this scaling symmetry in conjunction with the nonlocal symme-
tries (1.381) to obtain (nonlocal) conservation laws of the PDE (1.379)
[Anco & Bluman (1996)].
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(e) Check that these conservation laws are local conservation laws of the
PDE system (1.380). Find the corresponding sets of local multipliers
that yield these conservation laws.

1.5.7. Consider the NLT system

vt − F (u)ux −G(u) = 0,

ut − vx = 0
(1.382)

for arbitrary F (u) and G(u).

(a) Find a discrete symmetry of (1.382).
(b) Suppose {Λ1(x, t, u, v, ux, ut), Λ2(x, t, u, v, ux, ut)} is a set of conserva-

tion law multipliers of the PDE system (1.382). Use the discrete sym-
metry and the translation symmetries of the PDE system (1.382) to
obtain other sets of conservation law multipliers. Show that it does not
necessarily follow that the resulting conservation laws are linearly inde-
pendent. As examples, consider the PDE systems (1.335) and (1.342).
For further examples, see Bluman & Temuerchaolu (2005b).

1.5.8. Consider the cylindrical KdV PDE given by

ut + 1
2 t

−1u+ uux + uxxx = 0 (1.383)

(a) Show that the point transformation

T = −2t−1/2, X = xt−1/2, U = tu− 1
2x (1.384)

invertibly maps the PDE (1.383) to the KdV equation

UT + UUX + UXXX = 0. (1.385)

(b) The KdV equation has an obvious conservation law resulting from
the multiplier Λ = 1. Find the corresponding conservation law of the
cylindrical KdV equation (1.383) under the action of the point trans-
formation (1.384). For further examples of conservation laws obtained
for PDE (1.383) from those known for PDE (1.385) through the ac-
tion of the point transformation (1.384), see Bluman, Temuerchaolu &
Anco (2006).

(c) Find the multiplier for this conservation law of the cylindrical KdV
equation (1.383). Use obvious symmetries of PDE (1.383) to generate
further conservation law multipliers of PDE (1.383).

(d) Check to see if further conservation laws are obtained from these mul-
tipliers.

(e) Check to see if further conservation laws are obtained from the con-
structed multiplier/symmetry pairs, using Theorem 1.5.4.
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1.6 Discussion

Recursion operators for linear PDEs include, as a special case, ladder opera-
tors (raising and lowering operators) which are used in quantum mechanics
[cf. Wybourne (1974)] and the theory of special functions [Talman (1968);
Vilenkin (1968); Miller (1968)]. For linear PDEs, the existence of recursion
operators is closely related to separation of variables [Miller (1977)]. Win-
ternitz et al. (1967) give a method for finding recursion operators for time-
independent Schrödinger equations. Anderson, Kumei & Wulfman (1972) ap-
pear to have been the first to exhibit nontrivial higher-order symmetries for
PDEs and, in particular, found such symmetries and constructed correspond-
ing recursion operators for linear PDEs.

For a PDE system that can be written in Hamiltonian form in two distinct
ways, i.e., a bi-Hamiltonian PDE system, one can directly obtain recursion
operators [Magri (1978), Olver (1986)].

The origin of much of the significant research activities in the study of non-
linear time evolution equations during the last four decades can be traced to
the discovery of an infinite sequence of higher-order conservation laws for the
Korteweg–de Vries equation by Miura, Gardner & Kruskal (1968) – see also
Miura (1976) for a comprehensive review. These conservation laws were con-
structed with the aid of the Miura transformation [Miura (1968)]. In turn,
this led to the important discovery of the inverse scattering method for initial
value problems of integrable nonlinear evolution equations. The relationship
between conservation laws and symmetries of integrable nonlinear evolution
equations such as the KdV, nonlinear Schrödinger, and sine-Gordon equa-
tions was studied by Steudel (1975a,b) and Kumei [(1975), (1977)]. A list of
known integrable nonlinear equations in 1+1 dimensions and their recursion
operators is presented in Wang (2002). Sanders & Wang [(1998), (2000)] give
general results to determine when a nonlinear evolutionary equation of the
form

ut = uk + f(u, u1, . . . , uk−1) with ui ≡
∂iu

∂xi
,

has an infinite number of higher-order symmetries, assuming knowledge of
one higher-order symmetry of the PDE. Moreover, for such PDEs, the higher-
order symmetries are generated through recursion operators.

A very extensive study of the relationship among conservation laws, sym-
metries and multipliers appears in Olver (1986), especially in terms of La-
grangian and Hamiltonian formulations for Cauchy–Kovalevskaya PDE sys-
tems. Olver’s book includes references to his many important papers on this
subject. A discussion restricted to the action of a local symmetry on a con-
servation law to yield an additional conservation law appears in Kara &
Mohamed (2002) and Olver (1986). The extension to the action of any sym-
metry (continuous or discrete) on a conservation law to yield one or more ad-
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ditional conservation laws appears in Bluman, Temuerchaolu & Anco (2006).
A summary of results connecting symmetries and conservation laws appears
in Bluman (2005).

In practice, the PDE systems of physical interest can be written in a solved
form with respect to some leading derivatives of dependent variables. For any
such PDE system (whether it admits a Cauchy–Kovalevskaya form or not),
essentially all of its local conservation laws arise from multipliers, and the di-
rect method [Anco & Bluman (1997a), (2002a,b)] then reduces the problem of
finding conservation laws to a computation of solving an over-determined sys-
tem of linear equations for multipliers. Physically important conservation law
multipliers, such as those for mass, energy, momentum, and angular momen-
tum, are distinguished by depending on derivatives of dependent variables at
most of order k − 1, in addition to the dependent and independent variables
themselves, for a given kth-order PDE system. In general, one can solve the
multiplier determining equations to obtain all conservation law multipliers
of any order strictly less than the order of the PDE system by means of the
same algorithmic method used to solve the determining equations for point
or contact symmetries [Bluman & Anco (2002)].

Determination of higher-order multipliers requires that one impose some
extra conditions on the form of multipliers. In particular, for any kth order
PDE system, there exist (1) singular multipliers yielding divergence expres-
sions that do not vanish on any solutions of the PDE system and hence fail
to yield a conservation law; and (2) trivial multipliers yielding divergence
expressions with fluxes that vanish for all solutions of the PDE system and
hence yield a trivial conservation law. Such divergences obviously do not pro-
vide any useful information about the PDE system. These difficulties can be
avoided if one seeks multipliers whose form does not involve leading deriva-
tives and differential consequences. Such a restriction, in general, may entail
a loss of completeness in finding all conservation law multipliers except when
the PDE system is of Cauchy-Kovalevskya form. The same considerations
arise for finding conservation laws from higher-order variational symmetries
through Noether’s theorem. A full discussion of these issues is presented in
Anco (2009).

In comparing the direct method with Noether’s theorem, it is important to
reiterate that conservation laws arise from multipliers for both approaches.
But unlike Noether’s theorem, which is restricted to self-adjoint PDE sys-
tems, the direct method can be used on any PDE system. In particular, one
can apply the direct method whether or not a PDE system has a solved form.

Integral (homotopy) formulas to obtain fluxes of conservation laws directly
from multipliers, with the restrictions that u = 0 is a solution of a given
PDE system R{x ;u} and that there is convergence of the integrals in these
formulas, appear in Olver (1986), Anco & Bluman (1997a) and Hereman
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(2005). Integral formulas that do not have such restrictions are presented in
Anco & Bluman (2002b), Anco (2009) and Cheviakov (2009b).

In the case of ODEs, multipliers of local conservation laws are called inte-
grating factors. For a detailed discussion on how to use and find integrating
factors of ODEs, see Anco & Bluman [(1998)]. [See also Bluman & Anco
(2002) where in addition there is a detailed discussion on how to find and use
higher-order symmetries of ODEs.]

All local conservation laws, arising from local multipliers of the form
Λ(x, t, U), have been found for variable-coefficient nonlinear telegraph equa-
tions of the form [Huang & Ivanova (2007)]

f(x)utt − [f(u)ux]x −G(u)ux = 0

and for variable coefficient diffusion-convection equations of the form [Ivanova,
Popovych & Sophocleous (2008a)]

f(x)ut − [g(x)f(u)ux]x −H(x)G(u)ux = 0.

Ivanova & Sophocleous (2008) classify local conservation laws for a class of
diffusion equations of the form

ut = [f(u, v)ux]x,
vt = [g(u, v)ux]x.

All local conservation laws arising from multipliers Λ(x, t, u, ux, uxx) have
been classified [Anco & Bluman (2002a)] for the family of generalized
Korteweg–de Vries equations

ut + unux + uxxx = 0

with parameter n �= 0. Anco & Bluman (2002a) give a complete classification
of nonlinear wave equations

utx = g(u)

that admit higher-order local conservation laws.
Anco & Ivanova (2007) classify all local conservation laws with densities

and fluxes depending on up to first-order spatial derivatives for parametric
families of several types of semilinear radial wave equations in n > 1 spatial
dimensions including a radial nonlinear hyperbolic equation, a radial nonlin-
ear Schrödinger equation and its derivative variant, and radial generalizations
of modified Korteweg–de Vries equations, as well as Hamiltonian variants.

For Maxwell’s equations and other fundamental relativistic wave equations
in Minkowski space, Anco & Pohjanpelto [(2001), (2003), (2004), (2008)] have
classified all local conservation laws with densities and fluxes of arbitrary or-
der, as well as all point symmetries, first- and higher-order local symmetries.
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Cheviakov & Anco (2008) find all local conservation laws arising from mul-
tipliers that are linear in first derivatives for static isotropic and anisotropic
MHD plasma models in three-dimensional space.

For Euler’s equation of incompressible fluid flow with a barotropic equa-
tion of state (for pressure as a constitutive function of density) in n > 1
spatial dimensions, all local conservation laws have been classified in two
cases of physical interest [Anco & Dar (2009)]: (i) kinematic conserved densi-
ties depending on the fluid density and velocity, in addition to the time and
space coordinates; (ii) vorticity conserved densities depending essentially on
the curl of the fluid velocity.

In Chapter 2, it is shown how to use the local symmetries of a given PDE
and a target PDE to determine whether there exists a mapping (invertible or
non-invertible, i.e, an isomorphism or homomorphism) that relates the PDEs.
Two important situations are considered in detail: to determine whether a
given nonlinear PDE system can be mapped invertibly into some linear PDE
system and to determine whether a given linear PDE with variable coeffi-
cients can be mapped invertibly into a linear PDE with constant coefficients.
In particular, for a given nonlinear PDE system, it is shown that knowledge of
its point (contact) symmetries or its local conservation law multipliers deter-
mines whether it can be mapped invertibly to a linear PDE system. Moreover,
when such a linearization mapping exists, it is shown how to find it system-
atically in terms of either the symmetries or conservation law multipliers of
the given PDE system.

In Chapter 3, it is shown how to use local conservation laws of a given PDE
system, with two independent variables, to find equivalent nonlocally related
PDE systems. Applications of such nonlocally related systems are considered
in Chapter 4. Such applications include extending the results presented in
Chapters 1 and 2 to include the computation of nonlocal symmetries and
nonlocal conservation laws of a given PDE system. It is also shown how
to use the nonlocal symmetries and the multipliers yielding the nonlocal
conservation laws to obtain non-invertible mappings to target equations of
interest.

In Chapter 5, it is shown how to use local symmetries of a given PDE
system (and nonlocal symmetries realized as local symmetries of a nonlocally
related PDE system) to find invariant and other specific solutions of the
given PDE system. The use of local symmetries to find invariant solutions
through local symmetry reductions (classical method due to Lie) is extended
to the nonclassical method and further refinements for obtaining solutions
of PDEs. The work presented in Chapter 3 is extended to the situation of a
given PDE system with three or more independent variables. Finally, there is
a discussion of symbolic computation software for symmetry and conservation
law calculations.



Chapter 2

Construction of Mappings Relating
Differential Equations

2.1 Introduction

A symmetry of a PDE is a transformation (mapping) of its solution man-
ifold into itself, i.e., it is a transformation that maps any solution of the
PDE into another solution of the same PDE. Invariant solutions (similarity
solutions) are solutions that map into themselves. If a symmetry of a given
PDE is a point symmetry, then invariant solutions arise constructively from a
reduced differential equation with fewer independent variables [Ovsiannikov
[(1962), (1982)]; Bluman & Cole (1974); Olver (1986); Bluman & Kumei
(1989); Stephani (1989); Bluman & Anco (2002); Cantwell (2002)].

In this chapter, we consider the problem of determining whether there ex-
ists a mapping of a given PDE into a target PDE of interest and to construct
such a mapping when it exists. A target PDE is either a specific PDE or a
member of a class of PDEs. The target PDE is locally equivalent to the given
PDE if the mapping is invertible. The invertible mapping is not necessarily
unique if a target PDE is a member of a class of PDEs. It is shown that the
situation for showing existence and then finding such a mapping is especially
fruitful when the target PDE (or target class of PDEs) is completely charac-
terized by a class of contact symmetries (which only exist as point symmetries
in the case of a system of PDEs).

If the mapping is invertible, then any infinitesimal generator of a symme-
try of the given PDE maps into an infinitesimal generator of a symmetry of
the target PDE. Moreover, the invertible mapping must establish an isomor-
phism between every Lie subalgebra of infinitesimal symmetry generators of
the given PDE and corresponding Lie subalgebras of infinitesimal symmetry
generators of the target PDE.

If the mapping is not invertible, then the mapping is a homomorphism
of the given PDE to the target PDE. Here the mapping must take any in-
finitesimal generator of a symmetry of the given PDE into an infinitesimal
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generator (which could be the null generator) of a symmetry of the target
PDE. In particular, the mapping must establish a homomorphism between
any Lie algebra of infinitesimal generators of the given PDE and a Lie algebra
of infinitesimal generators of the target PDE.

Suppose a Lie algebra of infinitesimal symmetry generators uniquely deter-
mines a target PDE (or target class of PDEs). In this case, if one constructs
an invertible mapping that transforms a subalgebra of the Lie algebra of in-
finitesimal symmetry generators of the given PDE into the Lie algebra of
infinitesimal symmetry generators uniquely determining the target PDE (or
a member of the target class of PDEs), then it naturally follows that such a
mapping transforms any solution of the given PDE to a solution of the target
PDE (or a member of the target class of PDEs).

When a target class of PDEs is uniquely characterized by a Lie algebra
of infinitesimal symmetry generators, there should exist an algorithm to de-
termine whether there exists an invertible mapping of a given PDE to some
PDE in the target class of PDEs. Moreover, such an algorithm should con-
struct the mapping when it exists. From this point of view, algorithms are
presented to determine whether there exists an invertible mapping (as well
as to construct such a mapping when one exists)

(i) of a given nonlinear scalar PDE to a linear scalar PDE;
(ii) of a given nonlinear system of PDEs to a linear system of PDEs;
(iii) of a given linear scalar PDE with variable coefficients to a linear scalar

PDE with constant coefficients.

For a linear PDE that can be mapped invertibly into one with constant
coefficients, the problem of finding the most general invertible mapping is
also considered.

An alternative algorithm is also presented to determine whether a given
nonlinear scalar PDE (or nonlinear system of PDEs) can be mapped invert-
ibly to a linear PDE. This algorithm builds on work presented in the first
chapter on multipliers for conservation laws. In particular, from the form of
the multipliers (playing the analogue of the form of infinitesimal symmetry
generators) yielding conservation laws of a given nonlinear PDE, one can
determine whether an invertible mapping to a nonlinear PDE exists and con-
struct such a mapping when it exists. Here it turns out that the determining
equations for the multipliers yield the adjoint of a target linear PDE (whereas
the determining equations for symmetries yield a target linear PDE) when
such a mapping exists.

In Chapter 3, we consider important extensions of the results in this chap-
ter to include non-invertible mappings through consideration of nonlocally
related but equivalent systems for a given PDE.
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2.2 Notations; Mappings of Infinitesimal Generators

For a given system of PDEs R{x ;u} with n independent variables x =
(x1, . . . , xn) and m dependent variables u = (u1, . . . , um), the following no-
tations are used:

G : the local symmetries of R{x ;u};
L : the Lie algebra of G;
G : a subgroup of G;
L : the Lie algebra of G;
gε : a one-parameter local transformation from G, given by

(x∗)i = xi + εξi(x, u, ∂u, . . . , ∂ku) +O(ε2), (2.1a)

(u∗)ν = uν + εην(x, u, ∂u, . . . , ∂ku) +O(ε2); (2.1b)

X: the infinitesimal generator of gε, X ∈ L, given by

X = ξi[u]
∂

∂xi
+ ην [u]

∂

∂uν
. (2.2)

For a target system of PDEs S{z ;w} with n independent variables z =
(z1, . . . , zn) and m dependent variables w = (w1, . . . , wm), the following no-
tations are used:

H : the local symmetries of S{z ;w};
M : the Lie algebra of H;
H : a subgroup of H;
M : the Lie algebra of H;
hε : a one-parameter local transformation from H, given by

(z∗)i = zi + εζi(z, w, ∂w, . . . , ∂Kw) +O(ε2), (2.3a)

(w∗)ν = wν + εων(z, w, ∂w, . . . , ∂Kw) +O(ε2); (2.3b)

Z: the infinitesimal generator of hε, Z ∈ M, given by

Z = ζi[w]
∂

∂zi
+ ων [w]

∂

∂wν
. (2.4)

Note that one-parameter local transformations of the form (2.1) and (2.3)
(local symmetries) include one-parameter Lie groups of point transforma-
tions (point symmetries), one-parameter Lie groups of contact transforma-
tions (contact symmetries), and one-parameter higher-order local transfor-
mations (higher-order symmetries).

Let μ denote a mapping (assuming that one exists), that transforms any
solution u = U(x) of R{x ;u} to a solution w = W (z) of S{z ;w}. In seeking
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μ (which may not be invertible), a priori μ is restricted to be a local mapping
of the form

z = φ(x, u, ∂u, . . . , ∂lu), (2.5a)

w = ψ(x, u, ∂u, . . . , ∂lu). (2.5b)

Let Tl denote the set of mappings of the form (2.5) that depend at most
on the lth partial derivatives of u. For any u = U(x) for which the transfor-
mation (2.5a) is invertible, equations (2.5a) yield x as a function of z, and
consequently, equations (2.5b) yield w = W (z) and hence the components of
∂w, ∂2w, . . ..

Through the mapping μ ∈ Tl of the form (2.5), a one-parameter local
transformation gε of G of the form (2.1) induces either a one-parameter local
transformation hε of H of the form (2.3) or the identity transformation. The
relationship among gε, μ, and hε is illustrated in Figure 2.1; the relationship
among G, G, H, H, and μ is illustrated in Figure 2.2.

R{x ; u}
(x, u)

R{x∗ ; u∗}

(x∗, u∗)

S{z ; w}

(z, w)
S{z∗ ; w∗}

(z∗, w∗)

μ μ

gε

hε

Fig. 2.1 The relationship amonggε, μ, and hε.

In particular, for the existence of a mapping μ, the relationship between
gε and hε must be such that the composition transformations μ ◦ gε and
hε ◦ μ yield the same action on (x, u)-space. Specifically,

gε(x, u) = (x∗, u∗)

= (x+ εξ(x, u, ∂u, . . . , ∂ku) +O(ε2), (2.6)

u+ εη(x, u, ∂u, . . . , ∂ku) +O(ε2));

μ(x, u) = (z, w) = (φ(x, u, ∂u, . . . , ∂lu), ψ(x, u, ∂u, . . . , ∂lu)), (2.7)

and hence,



2.2 Notations; Mappings of Infinitesimal Generators 125

G

G

gε

H

H

hε

μ

Fig. 2.2 The relationship among G, G, H, H, and μ.

μ ◦ gε(x, u) = μ(x∗, u∗)

= (φ(x∗, u∗, ∂u∗, . . . , ∂lu∗),

ψ(x∗, u∗, ∂u∗, . . . , ∂lu∗)).

(2.8)

Through satisfaction of the contact conditions, a component (u∗)ν
i1···ij

of ∂ju∗

is given by

(u∗)ν
i1···ij

= uν
i1···ij

+ εη
(j)ν
i1···ij

(x, u, ∂u, . . . , ∂k+ju) +O(ε2),

with extended infinitesimals

η
(j)ν
i1···ij

[u] = Dij
η
(j−1)ν
i1···ij−1

[u] − (Dij
ξq[u])uν

i1···ij−1q,

η
(1)ν
i [u] = Diη

ν [u] − (Diξ
q[u])uν

q ,

in terms of total derivative operators

Di =
∂

∂xi
+ uσ

i

∂

∂uσ
+ uσ

ip

∂

∂uσ
p

+ · · · .

Note that

gε(x, u, ∂u, . . . , ∂lu) = (x∗, u∗, ∂u∗, . . . , ∂lu∗)

= (eεX∞
x, eεX∞

u, eεX∞
∂u, . . . eεX∞

∂lu)

in terms of the extension of the infinitesimal generator (2.2) given by
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X∞ = ξi[u]
∂

∂xi
+ησ[u]

∂

∂uσ
+η

(1)σ
i [u]

∂

∂uσ
i

+· · ·+η
(l)σ
i1···il

[u]
∂

∂uσ
i1···il

+· · · . (2.9)

Moreover, from the group property, it follows that

μ(x∗, u∗) = eεX∞
(φ(x, u, ∂u, . . . , ∂lu), ψ(x, u, ∂u, . . . , ∂lu)). (2.10)

On the other hand,

hε ◦ μ(x, u) = hε(z, w)|(z,w)=(φ,ψ)

= (z∗, w∗) = eεZ∞
(z, w)

∣∣
(z,w)=(φ,ψ)

,
(2.11)

in terms of the corresponding extension of the infinitesimal generator (2.4).
Equating the O(ε) terms of (2.10) and (2.11), respectively, one obtains the
following necessary conditions that the mapping μ, given by (2.5), must sat-
isfy:

ξi[u]
∂φ

∂xi
+ ησ[u]

∂φ

∂uσ
+ η

(1)σ
i [u]

∂φ

∂uσ
i

+ · · · + η
(l)σ
i1···il

[u]
∂φ

∂uσ
i1···il

= ζ(φ, ψ, ∂ψ, . . . , ∂Kψ),
(2.12a)

ξi[u]
∂ψ

∂xi
+ ησ[u]

∂ψ

∂uσ
+ η

(1)σ
i [u]

∂ψ

∂uσ
i

+ · · · + η
(l)σ
i1···il

[u]
∂ψ

∂uσ
i1···il

= ω(φ, ψ, ∂ψ, . . . , ∂Kψ).
(2.12b)

The mapping equations (2.12) can be expressed concisely in the form

X(l)φ = Zz|(z,w,∂w,...,∂Kw)=(φ,ψ,∂ψ,...,∂Kψ) , (2.13a)

X(l)ψ = Zw|(z,w,∂w,...,∂Kw)=(φ,ψ,∂ψ,...,∂Kψ) , (2.13b)

where X(l) is the lth extension of X. Note that if X(l)φ ≡ 0, X(l)ψ ≡ 0, then
Z ≡ 0. In this case, the mapping (2.5) is a differential invariant of gε and
thus induces the identity transformation hε ≡ I on (z, w)-space.

The mapping equations (2.13) play the essential role in the mapping algo-
rithms that are presented in the rest of this chapter. For the existence of a
mapping μ of the form (2.5) of a given system of PDEs R{x ;u} to a target
system of PDEs S{z ;w}, it is necessary that for each infinitesimal generator
X of a local symmetry of R{x ;u} there must correspond some infinitesi-
mal generator Z (which could be the null generator) of a local symmetry of
S{z ;w} and, moreover, through such a correspondence the mapping compo-
nents (φ, ψ) of μ must satisfy (2.13). The mapping equations (2.13) are nec-
essary conditions that μ must satisfy in terms of local symmetries of R{x ;u}
and S{z ;w}. In turn, if a mapping μ exists, these conditions significantly re-
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strict how the components of (φ, ψ) can depend on (x, u, ∂u, . . . , ∂lu). In the
absence of such restrictions, it is tedious and usually impossible to determine
systematically whether there exists a mapping μ ∈ Tl of a given system of
PDEs R{x ;u} to a target system of PDEs S{z ;w}. Later in this chapter, it is
shown that if the mapping μ is restricted to being an invertible mapping and
a target system S{z ;w} can be completely characterized in terms of its point
or contact symmetries, then, in terms of such characterizing symmetries, the
mapping equations (2.13) yield a mapping μ when one exists.

2.2.1 Theorems on invertible mappings

If one seeks a one-to-one (invertible) mapping of a given PDE to a target
PDE, then the following two theorems on invertible mappings show that the
mapping (2.5) is restricted to a contact transformation in the case of a scalar
PDE (l = 1) or to a point transformation in the case of a system of PDEs
(l = 0).

Theorem 2.2.1 (Case of one dependent variable u (m = 1), i.e., a scalar
PDE). If m = 1, then a mapping μ defines an invertible mapping of
(x, u, ∂u, . . . , ∂pu)-space to (z, w, ∂w, . . . , ∂pw)- space for any fixed p if and
only if μ is a one-to-one contact transformation of the form

z = φ(x, u, ∂u), (2.14a)

w = ψ(x, u, ∂u), (2.14b)

∂w = ∂ψ(x, u, ∂u). (2.14c)

[Cf. Theorem 1.2.1, i.e., equations (1.15), for the conditions on the compo-
nents of (φ, ψ) so that ∂ψ depends at most on ∂u.]

Proof. The proof depends on showing that if (φ, ψ) has an essential depen-
dence on the components of ∂qu for some q ≥ 2, then ∂rψ has an essential
dependence on the components of ∂q+ru for any r ≥ 1. The completion of
the proof was left to Exercise 1.2.3. ��

Theorem 2.2.1 is due to Bäcklund (1876). Note that if (φ, ψ) does not
depend on the components of ∂u, then (2.14a), (2.14b) define a point trans-
formation.

Theorem 2.2.2 (Case of more than one dependent variable (m ≥ 2), i.e.,
u has at least two components as would normally be the case for a system
of PDEs). If m ≥ 2, then a mapping μ defines an invertible mapping of
(x, u, ∂u, . . . , ∂pu)-space to (z, w, ∂w, . . . , ∂pw)-space for any fixed p if and
only if μ is a one-to-one point transformation of the form
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z = φ(x, u), (2.15a)

w = ψ(x, u). (2.15b)

Proof. Here the proof depends on showing that if (φ, ψ) has an essential de-
pendence on the components of ∂qu for some q ≥ 1, then ∂rψ has an essential
dependence on the components of ∂q+ru for any r ≥ 1. The completion of
the proof was left to Exercise 1.2.3. ��

Theorem 2.2.2 is due to Müller & Matschat (1962).
The proof of the following theorem is left to Exercise 2.2.2.

Theorem 2.2.3. Suppose a given system of PDEs R{x ;u} has r local sym-
metries whose infinitesimal generators form an r-dimensional Lie algebra L
spanned by X1, . . . ,Xr. Let μ be an invertible mapping of R{x ;u} to S{z ;w}.
Then S{z ;w} has r local symmetries whose infinitesimal generators form an
r-dimensional Lie algebra M spanned by Z1, . . . ,Zr. Moreover, the Lie al-
gebra M is isomorphic to the Lie algebra L. In particular, the mapping μ

preserves the commutation relations of L, i.e., if [Xα,Xβ ] = Cγ
αβXγ , then

[Zα,Zβ ] = Cγ
αβZγ , with the same structure constants Cγ

αβ, α, β, γ = 1, . . . , r.

This isomorphism of commutation relations yields a second set of necessary
conditions for an invertible mapping μ from R{x ;u} to S{z ;w}.

Exercises 2.2

2.2.1. Discuss the situation for Theorem 2.2.1 in the case of one independent
variable.

(a) Show that when the mapping is not necessarily an invertible mapping
of an ODE, then the mapping is restricted to a contact transformation.

(b) How can the situation change when one is considering the invertible
mapping of an ODE?

2.2.2. Prove Theorem 2.2.3.

2.3 Mapping of a Given PDE to a Specific Target PDE

Consider the problem of seeking to map a given PDE to a specific target PDE
by a restricted local mapping of the form (2.5) by means of local symmetries
(2.2) and (2.4) of the given and target PDEs, respectively. Through examples,
two types of such mapping problems are considered:

(i) the mapping μ is not invertible;
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(ii) the mapping μ is an invertible point transformation.

2.3.1 Construction of non-invertible mappings

(1) Mapping of the heat equation to Burgers’ equation (a derivation of the
Hopf–Cole transformation)
Hopf (1950) and Cole (1951) independently showed that the non-invertible
mapping μ given by

z1 = φ1 = x1 = x, (2.16a)

z2 = φ2 = x2 = t, (2.16b)

w = ψ = −2u−1u1 = −2u−1ux, (2.16c)

transforms any solution u = Θ(x, t) of the heat equation

ut = uxx (2.17)

to the solution w = −2Θ−1Θx of Burgers’ equation

wt + wwx = wxx. (2.18)

It is now shown how to derive the Hopf–Cole transformation (2.16) with
the aid of the point symmetries of the given heat equation (2.17) and the
target Burgers’ equation (2.18) [Bluman (1974)].

The point symmetries of the given PDE (2.17) have the infinitesimal gen-
erators [Bluman (1967); Bluman & Cole (1969)]

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = x

∂

∂x
+ 2t

∂

∂t
,

X4 = xt
∂

∂x
+ t2

∂

∂t
− [ 14x

2 + 1
2 t]u

∂

∂u
, X5 = t

∂

∂x
− 1

2xu
∂

∂u
,

X6 = u
∂

∂u
, X∞ = f(x, t)

∂

∂u
;

(2.19)

f(x, t) is any function satisfying ft − fxx = 0.
The point symmetries of the target PDE (2.18) have the infinitesimal

generators [Bluman (1974)]

Z1 =
∂

∂x
, Z2 =

∂

∂t
, Z3 = x

∂

∂x
+ 2t

∂

∂t
− w

∂

∂w
,

Z4 = xt
∂

∂x
+ t2

∂

∂t
− [x− tw]

∂

∂w
, Z5 = t

∂

∂x
+

∂

∂w
.

(2.20)
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Since the given PDE (2.17) has more point symmetries than the target
PDE (2.18) and a point transformation maps a point symmetry to a point
symmetry, it immediately follows that no point transformation μ maps the
heat equation (2.17) into Burgers’ equation (2.18). After comparing the co-
efficients of the infinitesimal generators (2.19) and (2.20), one sees that the
infinitesimal generators (2.19) of the given PDE (2.17) have the same action
on (x, t)-space as the infinitesimal generators (2.20) of the target PDE (2.18).
One also sees that the infinitesimal generator X6 must map into the null gen-
erator Z6 ≡ 0. Moreover, one can show that the commutator relations for the
Lie algebra L with basis set {X1, . . . ,X5} are isomorphic to the commutator
relations for the Lie algebra M with basis set {Z1, . . . ,Z5}. In particular, for
these five infinitesimal generators, the commutators

[Zα,Zβ ] = Cγ
αβZγ

and
[Xα,Xβ ] = Cγ

αβXγ

have the same structure constants {Cγ
αβ}. These observations lead one to seek

a transformation μ that could map (2.17) to (2.18). Since the point symme-
tries of these two PDEs have the same group action on their respective spaces
of independent variables and since such a mapping must be non-invertible,
the simplest form for a transformation μ (2.5) that could map the given PDE
(2.17) to the target PDE (2.18) is given by

z1 = x, (2.21a)

z2 = t, (2.21b)

w = ψ(x, t, u, ut, ux). (2.21c)

In terms of each of the point symmetries of the given PDE (2.17) and
the target PDE (2.18), respectively, one now imposes the necessary condition
(2.13b) on the mapping function ψ; the necessary conditions (2.13a) are sat-
isfied by a mapping μ of the form (2.21) from the above remarks about the
common group action on the respective spaces of independent variables. In
order to impose the necessary condition (2.13b) on the mapping function ψ,
one must first determine the once-extended infinitesimal generators {X(1)

i },
i = 1, . . . , 6. In particular,
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X(1)
1 = X1, X(1)

2 = X2, X(1)
3 = X3 − ux

∂

∂ux
− 2ut

∂

∂ut
,

X(1)
4 = X4 − [ 12xu+ ( 3

2 t+ 1
4x

2)ux]
∂

∂ux
− [ 12u+ xux + ( 5

2 t+ 1
4x

2)ut]
∂

∂ut
,

X(1)
5 = X5 − 1

2 [u+ xux]
∂

∂ux
− [ux + 1

2xut]
∂

∂ut
,

X(1)
6 = X6 + ux

∂

∂ux
+ ut

∂

∂ut
.

Then the necessary condition (2.13b) yields

X(1)
α ψ = Zαw|w=φ , α = 1, . . . , 6. (2.22)

with Z6 ≡ 0. Consequently, if a mapping μ of the form (2.21) exists, then
from (2.22) it follows that ψ must satisfy the over-determined system of six
PDEs given by

∂ψ

∂x
= 0, (2.23a)

∂ψ

∂t
= 0, (2.23b)

x
∂ψ

∂x
+ 2t

∂ψ

∂t
− ux

∂ψ

∂ux
− 2ut

∂ψ

∂ut
= −ψ, (2.23c)

xt
∂ψ

∂x
+ t2

∂ψ

∂t
− [12 t+ 1

4x
2]u

∂ψ

∂u
− [ 12xu+ ( 3

2 t+ 1
4x

2)]ux
∂ψ

∂ux

−[ 12u+ xux + ( 1
4x

2 + 5
2 t)ut]

∂ψ

∂ut
= x− tψ,

(2.23d)

t
∂ψ

∂x
− 1

2 tu
∂ψ

∂u
− 1

2 [u+ xux]
∂ψ

∂ux
− [ux + 1

2xut]
∂ψ

∂ut
= 1, (2.23e)

u
∂ψ

∂u
+ ux

∂ψ

∂ux
+ ut

∂ψ

∂ut
= 0. (2.23f)

From equations (2.23a), (2.23b), it follows that ψ = ψ(u, ux, ut). Conse-
quently, equations (2.23c)–(2.23f) reduce to

ψ − ux
∂ψ

∂ux
− 2ut

∂ψ

∂ut
= 0,

u
∂ψ

∂u
+ ux

∂ψ

∂ux
+ ut

∂ψ

∂ut
= 0,

1 + 1
2u

∂ψ

∂ux
+ ux

∂ψ

∂ut
= 0,

u
∂ψ

∂ut
= 0.

(2.24)
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The last equation in (2.24) leads to ψ = ψ(u, ux). Then it is easy to show
that the unique solution of the over-determined system (2.24) is given by the
Hopf–Cole transformation

ψ = −2
ux

u
. (2.25)

[In conversation with George Bluman, Julian Cole indicated that by inspec-
tion he noticed that both the heat equation and Burgers’ equation were in-
variant under translations in x and t as well as scalings and a Galilean trans-
formation. In turn, this led him to consider the mapping (2.25) that satisfies
the property of relating these four symmetries common to the two PDEs.]

(2) Mapping of the modified KdV equation to the KdV equation (a derivation
of the Miura transformation)
Miura (1968) showed that the mapping μ given by

z1 = φ1 = x1 = x, (2.26a)

z2 = φ2 = x2 = t, (2.26b)

w = ψ = u2 ± i
√

6u1 = u2 ± i
√

6ux, (2.26c)

transforms any solution u = Θ(x, t) of the modified KdV equation

ut + u2ux + uxxx = 0 (2.27)

to the solutions w = Θ2 ± i
√

6Θx of the KdV equation

wt + wwx + wxxx = 0. (2.28)

The point symmetries of the given PDE (2.27) are given by the infinitesi-
mal generators

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = x

∂

∂x
+ 3t

∂

∂t
− u

∂

∂u
. (2.29)

The point symmetries of the target PDE (2.28) are given by the infinitesimal
generators

Z1 =
∂

∂x
, Z2 =

∂

∂t
, Z3 = x

∂

∂x
+3t

∂

∂t
−2w

∂

∂w
, Z4 = t

∂

∂x
+

∂

∂w
. (2.30)

Since the given PDE (2.27) has fewer point symmetries than the target
PDE (2.28), it immediately follows that there exists no point transformation
mapping the modified KdV equation (2.27) into the KdV equation (2.28).
Moreover, since the group actions of X1, X2, X3 and Z1, Z2, Z3 are the
same on (x, t)-space, and since such a mapping must be non-invertible, the
simplest form for a transformation μ (2.5) that could map the given PDE
(2.27) to the target PDE (2.28) is given again by (2.21). In terms of each of the
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three point symmetries (2.29) of the given PDE (2.27) and the corresponding
ones (2.30) for the target PDE (2.28), the necessary condition (2.13b) is
now imposed on the mapping function ψ [Note that X(1)

1 = X1, X(1)
2 = X2,

X(1)
3 = X3 − 2ux ∂/∂ux − 4ut ∂/∂ut.]; the necessary conditions (2.13a) are

satisfied by a mapping μ of the form (2.21) from the above remarks about
the common group action of the symmetry generators on their respective
spaces of independent variables. Consequently, if a mapping μ of the form
(2.21) exists, then the mapping function ψ must satisfy the over-determined
system of three PDEs given by

∂ψ

∂x
= 0, (2.31a)

∂ψ

∂t
= 0, (2.31b)

u
∂ψ

∂u
+ 2ux

∂ψ

∂ux
+ 4ut

∂ψ

∂ut
= 2ψ. (2.31c)

The solution of (2.31) yields

ψ = u2F
(ux

u2
,
ut

u4

)
, (2.32)

where F is an arbitrary function of its two arguments. The reader should
check that the substitution of (2.32) into the KdV equation (2.28) yields the
Miura transformation (2.26).

2.3.2 Construction of an invertible mapping by a point
transformation

Now consider the construction of an invertible mapping by a point trans-
formation through establishing an isomorphism of the point symmetries of
a given PDE and a target PDE. [Of course, this only provides necessary
conditions for the existence of such a mapping.] As an example, a point
transformation is found that invertibly relates the cylindrical KdV equation
and the KdV equation.

In 1979, Zal’mez [cf. Korobeinikov (1982)] showed that the point transfor-
mation (t > 0)
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z1 = φ1 = xt−1/2, (2.33a)

z2 = φ2 = −2t−1/2, (2.33b)

w = ψ = tu− 1
2x, (2.33c)

invertibly transforms a solution u = Θ(x, t) of the cylindrical KdV equation

ut + uux + uxxx + 1
2 t

−1u = 0 (2.34)

to the solution

w = Ψ(z1, z2) = 4(z2)−2Θ(−2(z2)−1z1, 4(z2)−2) + (z2)−1z1 (2.35)

of the KdV equation

wz2 + wwz1 + wz1z1z1 = 0. (2.36)

The point symmetries of the given PDE (2.34) have infinitesimal genera-
tors

X1 = 2t1/2 ∂

∂x
+ t−1/2 ∂

∂u
,

X2 = 2t1/2x
∂

∂x
+ 4t3/2 ∂

∂t
+ [t−1/2x− 4t1/2u]

∂

∂u
,

X3 = x
∂

∂x
+ 3t

∂

∂t
− 2u

∂

∂u
, X4 =

∂

∂x
.

(2.37)

The infinitesimal generators for the point symmetries of the target PDE
(2.36) are given by

Z1 =
∂

∂z1
, Z2 =

∂

∂z2
, Z3 = z1 ∂

∂z1
+ 3z2 ∂

∂z2
− 2w

∂

∂w
,

Z4 = z2 ∂

∂z1
+

∂

∂w
.

(2.38)

The nonzero commutators for the Lie algebra arising from (2.37) are given
by

[X1,X3] = − 1
2X1, [X2,X3] = − 3

2X2,

[X2,X4] = −X1, [X3,X4] = −X4,
(2.39)

whereas the nonzero commutators for the Lie algebra arising from (2.38) are
given by

[Z1,Z3] = Z1, [Z2,Z3] = 3Z2,

[Z2,Z4] = Z1, [Z3,Z4] = 2X4.
(2.40)

Now consider the scalings Zi = αiZ̃i, i = 1, . . . , 4. Then the commutators for
the Lie algebra arising from {Z̃i} are the same as (2.39) if and only if
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α3 = −2, α2α4 = −α1. (2.41)

As a special case, let α1 = −1, α2 = 1, and hence α4 = 1. This suggests
seeking a one-to-one point transformation mapping μ of the given PDE (2.34)
to a target PDE such that it maps each Xi to the corresponding Z̃i. In
particular, μ is of the form

z1 = φ1(x, t, u), z2 = φ2(x, t, u), w = ψ(x, t, u), (2.42)

and satisfies the necessary conditions (2.13) which here become the 12 equa-
tions

Xjφi = Z̃jzi

∣∣∣
(z,w)=(φ,ψ)

, Xjψ = Z̃jw
∣∣∣
(z,w)=(φ,ψ)

,

i = 1, 2, j = 1, . . . , 4.
(2.43)

From the commutation relations, one can see that the three equations for
j = 1 are redundant but for convenience they are included. The resulting
explicit equations are given by

2t1/2 ∂φ
1

∂x
+ t−1/2 ∂φ

1

∂u
= −1, (2.44a)

2t1/2x
∂φ1

∂x
+ 4t3/2 ∂φ

1

∂t
+ [t−1/2x− 4t1/2u]

∂φ1

∂u
= 0, (2.44b)

x
∂φ1

∂x
+ 3t

∂φ1

∂t
− 2u

∂φ1

∂u
= − 1

2φ
1, (2.44c)

∂φ1

∂x
= φ2, (2.44d)

2t1/2 ∂φ
2

∂x
+ t−1/2 ∂φ

2

∂u
= 0, (2.44e)

2t1/2x
∂φ2

∂x
+ 4t3/2 ∂φ

2

∂t
+ [t−1/2x− 4t1/2u]

∂φ2

∂u
= 1, (2.44f)

x
∂φ2

∂x
+ 3t

∂φ2

∂t
− 2u

∂φ2

∂u
= − 3

2φ
2, (2.44g)

∂φ2

∂x
= 0, (2.44h)

2t1/2 ∂ψ

∂x
+ t−1/2 ∂ψ

∂u
= 0, (2.44i)

2t1/2x
∂ψ

∂x
+ 4t3/2 ∂ψ

∂t
+ [t−1/2x− 4t1/2u]

∂ψ

∂u
= 0, (2.44j)

x
∂ψ

∂x
+ 3t

∂ψ

∂t
− 2u

∂ψ

∂u
= ψ, (2.44k)

∂ψ

∂x
= 1. (2.44l)
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From equations (2.44e) and (2.44h), one sees that φ2 = φ2(t). Then (2.44f),
(2.44g) reduce to

4t3/2[φ2(t)]′ = 1, 2t[φ2(t)]′ = −φ2(t).

Hence
φ2 = − 1

2 t
−1/2. (2.45)

Substituting (2.45) into (2.44d) and comparing the resulting equation with
equation (2.44a), one sees that

∂φ1

∂u
= 0,

∂φ1

∂x
= − 1

2 t
−1/2.

Consequently, one obtains

φ1 = − 1
2 t

−1/2x+A(t), (2.46)

for arbitrary A(t). Substitution of equation (2.46) into equations (2.44b),
(2.44c) yields A(t) ≡ 0. Hence

φ1 = − 1
2 t

−1/2x. (2.47)

Equation (2.44l) leads to

ψ = x+B(t, u), (2.48)

for arbitrary B(t, u). Substitution of equation (2.48) into equation (2.44i)
yields

ψ = x− 2tu+ C(t), (2.49)

for arbitrary C(t). Substitution of equation (2.49) into equations (2.44j),
(2.44k) yields C(t) ≡ 0. Thus, one obtains

ψ = x− 2tu. (2.50)

From equations (2.45), (2.47) and (2.50), one sees that the point transfor-
mation

z1 = − 1
2 t

−1/2x, z2 = − 1
2 t

−1/2, w = x− 2tu, (2.51)

defines an invertible mapping (t > 0) of the cylindrical KdV equation (2.34)
to a target PDE whose point symmetries are the same as the point symme-
tries of the KdV equation (2.36). It is easy to show that the mapping (2.51)
transforms any solution u = Θ(x, t) of the given PDE (2.34) to the solution

w = Ψ(z1, z2) = (z2)−1z1 − 1
2 (z2)−2Θ((z2)−1z1, 1

4 (z2)−2)



2.3 Mapping of a Given PDE to a Specific Target PDE 137

of the target PDE
wz2 + wwz1 − 1

2wz1z1z1 = 0. (2.52)

Note that the PDE (2.52) is not the KdV equation (2.36). Why? This follows
from showing that the KdV equation (2.36) is not the unique third-order PDE
that has the point symmetries (2.38). In particular, this can be seen from the
fact that there is a two-parameter family of scalings (2.41) that establishes
an isomorphism between the commutator relations for the point symmetries
of the cylindrical KdV equation (2.34) and those of the KdV equation (2.36).
It is easy to see that the scaling

z̃1 = λz1, z̃2 = −1
2
λ3z2, w̃ = −2λ−2w (2.53)

maps the PDE (2.52) into the KdV equation

w̃z̃2 + w̃w̃z̃1 + w̃z̃1z̃1z̃1 = 0, (2.54)

for any λ �= 0. One can show that a scaling (2.53) corresponds to α1 =
−λ, α2 = −1

2λ
3, α4 = −2λ−2 in (2.41). As a consequence, one obtains the

mapping

z̃1 = − 1
2λt

−1/2x, z̃2 = 1
4λ

3t−1/2, w̃ = −2λ−2[x− 2tu], (2.55)

that transforms any solution u = Θ(x, t) of the cylindrical KdV equation
(2.34) to the solution

w = (z̃2)−1z̃1 + 1
4λ

4(z̃2)−2Θ
(
−1

2λ
2(z̃2)−1z̃1, 1

16λ
6(z̃2)−2

)
of the KdV equation (2.54). Zal’mez’s transformation (2.33) corresponds to
the special case λ = 2.

Exercises 2.3

2.3.1. Show that the Hopf–Cole transformation that maps the heat equation
to Burgers’ equation can be determined from the invariances of these two
PDEs under the point symmetries X2,X3,X5 and Z2,Z3,Z5, respectively.

2.3.2. Find the most general second-order PDE of the form

uxx = K(x, t, u, ut, ux, utt, uxt)

that has the point symmetries of Burgers’ equation [Bluman (1974)].
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2.3.3. From the commutation relations of the Lie algebra generated by
(2.19):

(a) Show that the necessary conditions to obtain the Hopf–Cole transfor-
mation reduce to X(1)

α ψ = Zαw|w=φ , α = 1, 2, 4.
(b) Accordingly, reduce the sets of equations (2.23), (2.24).
(c) Derive the Hopf–Cole transformation from these reduced sets of equa-

tions.
(d) Discuss the relationship between this problem and the first problem

[Exercise 2.3.1].

2.3.4. Show that there exists no mapping of the form

z1 = x, z2 = t, w = ψ(x, t, ux, ut),

that maps Burgers’ equation ut +uux = uxx to the heat equation wt = wxx.

2.3.5. Show that if a given PDE is invariant under translations in x1, then
a mapping μ of the form z = φ = x, w = ψ(x, u, ∂u, . . . , ∂ku), from the given
PDE to a target PDE is such that ∂ψ/∂x1 ≡ 0. Find a corresponding result
if a given PDE is invariant under scalings in u and a target PDE is invariant
under scalings in w.

2.3.6. Find the most general third-order PDE of the form

uxxx = K(x, t, u, ux, ut, uxx, utt, uxt, uxxt, uxtt, uttt)

that has the point symmetries of the KdV equation.

2.3.7. Show that there exists no mapping of the form

z1 = x, z2 = t, w = ψ(x, t, u, ux),

that maps the KdV equation ut + uux + uxxx = 0 to the modified KdV
equation wt + w2wx + wxxx = 0.

2.3.8. Show explicitly that the necessary conditions (2.43), restricted to j =
2, 3, 4, yield the mapping equations (2.44).

2.3.9. In the mapping of the cylindrical KdV equation to a target PDE, use
the two-parameter family defined by the relations (2.41) to find the most
general target PDE obtained by a mapping (2.42) that satisfies the corre-
sponding 12 equations arising from the necessary conditions (2.43).
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2.4 Invertible Mappings of Nonlinear PDEs to Linear
PDEs Through Symmetries

Clearly, an important mapping question is: when can a nonlinear system of
PDEs be mapped to some linear system of PDEs? For example, the well-
known hodograph transformation maps any first-order quasilinear system of
two PDEs with two independent and two dependent variables to a linear
system of PDEs.

For any such mapping, one is interested in the situation when any solution
of the linear system yields a solution of the nonlinear system and, conversely,
any solution of the nonlinear system yields a solution of the linear system.
Note that such a situation does not require the mapping to be an invertible
mapping. However, it does require the nonlinear and linear systems to be
equivalent in the sense of having such a relationship between their solutions.

In this section it is shown how to determine whether there exists an invert-
ible mapping of a given nonlinear PDE to some linear PDE from the point
symmetries (systems case) or contact symmetries (scalar case) of the nonlin-
ear PDE. Moreover, it is shown how to construct explicitly such an invertible
mapping when one exists from the symmetries of the nonlinear PDE.

In Section 2.6, it is shown how to consider this question from knowledge
of the local conservation law multipliers of a given nonlinear PDE. In the
next chapter, the work presented in this chapter is extended to include non-
invertible mappings of nonlinear PDEs to linear PDEs where the respective
PDEs are nonetheless equivalent.

In Kumei & Bluman (1982) and Bluman & Kumei (1990a,b), necessary
and sufficient conditions are given for when a given nonlinear PDE system
with n ≥ 2 independent variables and m ≥ 1 dependent variable(s) can be
transformed to some linear PDE system by an invertible mapping μ. These
papers present a symmetry-based algorithm to determine whether these con-
ditions hold for a given nonlinear PDE system and, when these conditions do
hold, another symmetry-based algorithm to construct such a mapping μ. To
apply these algorithms to a given nonlinear PDE system, it is unnecessary
to know a specific target linear PDE system. A specific target linear system
(when one exists) arises naturally from the symmetries of the given nonlinear
PDE system (first algorithm). Moreover, the symmetries yield the equations
to construct a specific mapping μ (second algorithm).

From Theorem 2.2.1, it immediately follows that in the case of a nonlinear
scalar PDE (m = 1), an invertible mapping μ to a linear PDE must be an
invertible contact transformation [cf. Section 1.1]:

2.4  Invertible Mappings Through Symmetries
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z = φ(x, u, ∂u), (2.56a)

w = ψ(x, u, ∂u), (2.56b)

∂w = ∂ψ(x, u, ∂u). (2.56c)

From Theorem 2.2.2, it immediately follows that in the case of a nonlinear
PDE system (m ≥ 2), an invertible mapping μ to a linear PDE system must
be an invertible point transformation:

z = φ(x, u), (2.57a)

w = ψ(x, u). (2.57b)

The starting point, leading to the symmetry-based invertible mapping al-
gorithms relating nonlinear and linear PDEs, is the observation that a linear
PDE system S{z ;w}, defined in terms of a linear operator L[z], i.e.,

L[z]w = g(z), (2.58)

for some inhomogeneous term g(z), which could equal zero, is completely
characterized by its infinite-parameter set of point symmetries of the form

Z = ω
∂

∂w
, (2.59)

where ω = f(z) is any function satisfying

L[z]f = 0. (2.60)

Consequently, here the mapping equations (2.13) become necessary and suf-
ficient conditions for the existence and construction of a mapping from a
nonlinear PDE to a linear PDE in terms of a class of symmetries of the non-
linear PDE (l = 1 in the case of a scalar PDE; l = 0 in the case of a nonlinear
PDE system).

A contact transformation is mapped to another contact transformation
(which could be a point transformation) under any specific contact transfor-
mation whereas a point transformation is mapped to another point transfor-
mation under any specific point transformation. Hence, from the mapping
equations (2.13), in the case of a scalar PDE, the infinite-parameter set of
point symmetries (2.59) (which are point transformations) of a target linear
PDE (2.58) must correspond to an infinite-parameter set of contact symme-
tries of a given nonlinear scalar PDE R{x ;u} for an invertible mapping μ

to exist; in the case of a system of PDEs the infinite-parameter set of point
symmetries (2.59) of a target system of linear PDEs (2.58) must correspond
to an infinite-parameter set of point symmetries of a given nonlinear PDE
system R{x ;u} for an invertible mapping μ to exist.
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Consequently, in the case of a given nonlinear scalar PDE, if the Lie algebra
of the infinitesimal generators of its contact symmetries is at most finite-
dimensional, then there exists no invertible mapping to a linear PDE ; in the
case of a given nonlinear PDE system, if the Lie algebra of the infinitesimal
generators of its point symmetries is at most finite-dimensional, then there
exists no invertible mapping to a linear PDE system.

2.4.1 Invertible mappings of nonlinear PDE systems
(with at least two dependent variables) to linear
PDE systems

Theorem 2.4.1 (Necessary conditions for the existence of an invertible lin-
earization mapping of a nonlinear PDE system). If there exists an invertible
mapping μ of a given nonlinear PDE system R{x ;u} (m ≥ 2) to some linear
PDE system S{z ;w}, then

(i) μ is a point transformation of the form

zj = φj(x, u), j = 1, . . . , n, (2.61a)

wγ = ψγ(x, u), γ = 1, . . . ,m; (2.61b)

(ii) R{x ;u} has an infinite set of point symmetries given by an infinitesi-
mal generator

X = ξi(x, u)
∂

∂xi
+ ην(x, u)

∂

∂uν
(2.62)

with infinitesimals ξi(x, u), ην(x, u) of the form

ξi(x, u) = αi
σ(x, u)Fσ(x, u), (2.63a)

ην(x, u) = βν
σ(x, u)Fσ(x, u), (2.63b)

where αi
σ(x, u), βν

σ(x, u), i = 1, . . . , n; ν;σ = 1, . . . ,m, are specific
functions of x and u, and where F = (F 1, . . . , Fm) is an arbitrary
solution of some linear PDE system

L[X]F = 0 (2.64)

in terms of some linear differential operator L[X] and specific indepen-
dent variables X = (X1(x, u), . . . , Xn(x, u)) = (φ1, . . . , φn).

Proof. Necessary condition (i) follows directly from Theorem 2.2.2. Suppose
there exists an invertible mapping μ from a given nonlinear PDE system
R{x ;u} to some linear system of PDEs S{z ;w}, represented by

2.4  Invertible Mappings Through Symmetries
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L[z]w = g(z), (2.65)

with linear differential operator L[z] in terms of independent variables z =
(z1, . . . , zn) with an allowed inhomogeneous term g(z). Then S{z ;w} has an
infinite set of point symmetries given by the infinitesimal generator

Z = fγ(z)
∂

∂wγ
, (2.66)

where f(z) = (f1(z), . . . , fm(z)) is an arbitrary solution of the linear homo-
geneous system L[z]f(z) = 0. Corresponding to Z, there must exist an infinite
set of point symmetries, in terms of an infinitesimal generator

X = ξi(x, u)
∂

∂xi
+ ην(x, u)

∂

∂uν
, (2.67)

of R{x ;u} such that the components φj(x, u), ψγ(x, u) of an invertible map-
ping μ and the infinitesimal coefficients ξi(x, u), ην(x, u) of X satisfy relations
(2.13) which here become

ξi(x, u)
∂φj

∂xi
+ ην(x, u)

∂φj

∂uν
= 0, j = 1, . . . , n, (2.68a)

ξi(x, u)
∂ψγ

∂xi
+ ην(x, u)

∂ψγ

∂uν
= fγ(φ), γ = 1, . . . ,m. (2.68b)

From the invertibility of μ, it follows that the Jacobian ∂(φ, ϕ)/∂(x, u) �= 0.
Thus one can solve (2.68) for ξi(x, u), ην(x, u), yielding expressions that are
linear homogeneous in the components of f . In particular, the solution of the
relations (2.68) is of the form

ξi(x, u) = αi
σ(x, u)fσ(φ(x, u)), (2.69a)

ην(x, u) = βν
σ(x, u)fσ(φ(x, u)), (2.69b)

where αi
σ(x, u), βν

σ(x, u) are specific functions of x and u. If one sets X(x, u) =
φ(x, u), then

F = (F 1(x, u), . . . , Fm(x, u)) = (f1(X(x, u)), . . . , fm(X(x, u)))

satisfies L[X]F = 0. ��

Theorem 2.4.2 (Sufficient conditions for the existence of an invertible lin-
earization mapping of a nonlinear PDE system). Suppose a given nonlinear
PDE system R{x ;u} (m ≥ 2) has an infinitesimal generator of point sym-
metries (2.62) with infinitesimal coefficients of the form (2.63) where F (X)
is an arbitrary solution of a linear system (2.64) with specific independent
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variables X = (X1(x, u), . . . , Xn(x, u)). If the linear homogeneous system of
m first order PDEs for a scalar Φ given by

αi
σ(x, u)

∂Φ

∂xi
+ βν

σ

∂Φ

∂uν
= 0, σ = 1, . . . ,m, (2.70)

has X1(x, u), . . . , Xn(x, u) as n functionally independent solutions, and the
linear inhomogeneous system of m2 first-order PDEs

αi
σ(x, u)

∂Ψγ

∂xi
+ βν

σ

∂Ψγ

∂uν
= δγ

σ , (2.71)

where δγ
σ is the Kronecker symbol, γ, σ = 1, . . . ,m, has a particular solution

Ψ = ψ = (ψ1(x, u), ψ2(x, u), . . . , ψm(x, u)), then the mapping μ given by

zj = φj(x, u) = Xj(x, u), j = 1, . . . , n, (2.72a)

wγ = ψγ(x, u), γ = 1, . . . ,m (2.72b)

is invertible and transforms R{x ;u} to the linear PDE system S{z ;w} given
by

L[z]w = g(z), (2.73)

which may involve an inhomogeneous term g(z).

Proof. By construction, the mapping μ defined by (2.72) through a solution
of the linear systems (2.70), (2.71) is invertible. Let fσ(z) = F σ(x, u), σ =
1, . . . ,m. Then μ transforms the point symmetry infinitesimal generator X
of the nonlinear PDE system R{x ;u} to the point symmetry infinitesimal
generator Z of a target system S{z ;w} where Z is of the form

Z = fγ(z)
∂

∂wγ
(2.74)

for any solution f(z) = (f1(z), . . . , fm(z)) satisfying the linear PDE system
L[z]f(z) = 0. But since only a linear system of the form (2.73) can be char-
acterized as having a point symmetry of the form (2.74), and the mapping μ

defined by the equations (2.72) is invertible, it follows that a target system
of the mapping μ must be of the form (2.73). ��

Remark 2.4.1. Note that the general solution of (2.71) yields an arbitrary
inhomogeneous term g(z) in (2.73), including g(z) = 0.

Now consider two examples.

(1) Linearization by a hodograph transformation
The first-order quasilinear PDE system (m = n = 2) R{x ;u}, with inde-
pendent variables (x1, x2) = (x, t) and dependent variables (u1, u2) = (u, v),
given by

2.4  I



144 2 Construction of Mappings Relating Differential Equations

a(u, v)ux + b(u, v)ut + c(u, v)vx + d(u, v)vt = 0, (2.75a)

p(u, v)ux + q(u, v)ut + r(u, v)vx + s(u, v)vt = 0, (2.75b)

with Jacobian ∂(u, v)/∂(x, t) �= 0, has an infinite set of point symmetries
given by the infinitesimal generator

X = ξ
∂

∂x
+ τ

∂

∂t
, (2.76)

where
ξ = F 1(u, v), τ = F 2(u, v), (2.77)

is an arbitrary solution of the linear PDE system

d(u, v)
∂F 1

∂u
− b(u, v)

∂F 1

∂v
− c(u, v)

∂F 2

∂u
+ a(u, v)

∂F 2

∂v
= 0, (2.78a)

s(u, v)
∂F 1

∂u
− q(u, v)

∂F 1

∂v
− r(u, v)

∂F 2

∂u
+ p(u, v)

∂F 2

∂v
= 0. (2.78b)

Clearly, the point symmetry given by (2.76), (2.77) and (2.78) satis-
fies the necessary conditions of Theorem 2.4.1 for the existence of an in-
vertible mapping μ that transforms the quasilinear system (2.75) to some
linear system. In particular, from (2.77), one sees that α1

1 = α2
2 = 1,

α2
1 = α1

2 = β1
1 = β2

1 = β1
2 = β2

2 = 0. Moreover, from equations (2.78), it
follows that X1 = u, X2 = v.

The existence and construction of μ follow from applying Theorem 2.4.2.
Here equations (2.70) given by

∂Φ

∂x
= 0,

∂Φ

∂t
= 0, (2.79)

have functionally independent solutions Φ = X1 = u, Φ = X2 = v, and
equations (2.71) become

∂Ψ1

∂x
= 1,

∂Ψ1

∂t
= 0,

∂Ψ2

∂x
= 0,

∂Ψ2

∂t
= 1. (2.80)

Clearly, a particular solution of the PDE system (2.80) is given by

Ψ1 = ψ1 = x, Ψ2 = ψ2 = t. (2.81)

Consequently, the invertible mapping μ given by

z1 = u, z2 = v, w1 = x, w2 = t, (2.82)

transforms the quasilinear PDE system (2.75) to the linear PDE system
S{z ;w} given by
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d(u, v)
∂x

∂u
− b(u, v)

∂x

∂v
− c(u, v)

∂t

∂u
+ a(u, v)

∂t

∂v
= 0, (2.83a)

s(u, v)
∂x

∂u
− q(u, v)

∂x

∂v
− r(u, v)

∂t

∂u
+ p(u, v)

∂t

∂v
= 0. (2.83b)

The mapping (2.82) is the well-known hodograph transformation (involv-
ing an interchange of the roles of dependent and independent variables) that
linearizes the quasilinear PDE system (2.75).

(2) Linearization of a nonlinear telegraph system
The nonlinear telegraph system R{x ;u} given by

ux − vt = 0,

ut − u2vx − u(1 − u) = 0,
(2.84)

with Jacobian ∂(u, v)/∂(x, t) �= 0, has an infinite set of point symmetries
given by the infinitesimal generator

X = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+ ζ

∂

∂v
, (2.85)

where

ξ = ζ = F 1(X1, X2), τ = e−tF 2(X1, X2), η = e−tuF 2(X1, X2) (2.86)

with
X1 = x− v, X2 = t− log u, (2.87)

and F = (F 1, F 2) is any solution of the linear PDE system

∂F 2

∂X2
− eX2 ∂F 1

∂X1
= 0,

∂F 2

∂X1
− eX2 ∂F 1

∂X2
= 0.

(2.88)

Clearly, the point symmetry (2.85)–(2.87) satisfies the necessary conditions
of Theorem 2.4.1 for the existence of an invertible mapping μ that transforms
the nonlinear telegraph system (2.84) to some linear system. In particular,
from (2.86), one sees that α1

1 = β2
1 = 1, α2

2 = e−t, β1
2 = e−tu, α2

1 = α1
2 =

β1
1 = β2

2 = 0.
For the existence and construction of μ through the application of Theorem

2.4.2, one sees that here the equations (2.70) become

∂Φ

∂x
+
∂Φ

∂v
= 0,

∂Φ

∂t
+ u

∂Φ

∂u
= 0. (2.89)

2.4  Invertible Mappings Through Symmetries
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It is easy to see that Φ = X1 = x − v, Φ = X2 = t − log u are functionally
independent solutions of the linear PDE system (2.89). Then equations (2.71)
here become

∂Ψ1

∂x
+
∂Ψ1

∂v
= 1,

∂Ψ1

∂t
+ u

∂Ψ1

∂u
= 0,

∂Ψ2

∂x
+
∂Ψ2

∂v
= 0,

∂Ψ2

∂t
+ u

∂Ψ2

∂u
= et.

(2.90)

A particular solution of (2.90) is given by

Ψ1 = ψ1 = x, Ψ2 = ψ2 = et. (2.91)

Consequently, the invertible mapping μ given by

z1 = x− v, z2 = t− log u, w1 = x, w2 = et, (2.92)

transforms the nonlinear telegraph system (2.84) to the linear PDE system
S{z ;w} given by

∂w2

∂z2
− ez2 ∂w1

∂z1
= 0,

∂w2

∂z1
− ez2 ∂w1

∂z2
= 0.

(2.93)

Varley & Seymour (1985) found a hodograph-type transformation equiv-
alent to (2.92) that linearizes the nonlinear telegraph system (2.84) through
a different procedure than the one presented in this section. Their clever
procedure for linearization is not symmetry-based. It only applies to specific
types of nonlinear PDEs and, in general, cannot determine whether a given
nonlinear PDE system can be linearized by an invertible mapping.

2.4.2 Invertible mappings of nonlinear PDE systems
(with one dependent variable) to linear PDE
systems

The work presented in Section 2.4.1 can be further extended in the case when
a given nonlinear PDE system R{x ;u} has only one dependent variable.
Usually, in this situation R{x ;u} is a nonlinear scalar PDE. This is the case
for the presented examples. For the rest of this section, R{x ;u} is considered
to be a scalar PDE but the presented theorems apply to the situation when
R{x ;u} is a nonlinear PDE system with one dependent variable.

First of all, it is easy to see that Theorems 2.4.1 and 2.4.2 hold for the
existence and construction of invertible mappings of a nonlinear scalar PDE
to a linear PDE when the nonlinear PDE has an infinite number of point
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symmetries that satisfy the criteria of these theorems for the situation where
m = 1 and the mapping μ is restricted to an invertible point transformation.

As an illustrative example, consider the nonlinear diffusion equation

(ux)2ut − uxx. (2.94)

The scalar PDE (2.94) has an infinite set of point symmetries given by the
infinitesimal generator

X = ξ
∂

∂x
, (2.95)

where
ξ = F (u, t) (2.96)

is any solution of the linear heat equation

Ft − Fuu = 0. (2.97)

Clearly, the point symmetries (2.95)–(2.97) satisfy the necessary conditions
of Theorem 2.4.1 for the existence of an invertible point transformation μ that
transforms the nonlinear diffusion equation (2.94) to some linear scalar PDE.
In particular, from (2.96), one sees that α1

1 = 1, α2
1 = β1

1 = 0. From (2.96)
and (2.97), it follows that X1 = u, X2 = t.

For the existence and construction of a mapping μ through the use of
Theorem 2.4.2, here equation (2.70) becomes

∂Φ

∂x
= 0. (2.98)

Clearly, Φ = X1 = u,Φ = X2 = t are functionally independent solutions of
(2.98). Then equation (2.71) becomes

∂Ψ

∂x
= 1, (2.99)

with an obvious particular solution

Ψ = ψ = x. (2.100)

Consequently, the invertible mapping μ given by z1 = u, z2 = t, w = x,
transforms the nonlinear diffusion equation (2.94) to the linear heat equation

xt − xuu = 0.

This result was previously found in Bluman & Cole [1974, Section 2.15]
through the use of symmetry methods in a more ad-hoc manner.

2.4  Invertible Mappings Through Symmetries
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As shown in following two theorems, in the case of a scalar PDE, one can
extend the results presented in Theorems 2.4.1 and 2.4.2 to include lineariza-
tion by a contact transformation.

Theorem 2.4.3 (Necessary conditions for the existence of an invertible lin-
earization mapping of a nonlinear scalar PDE). If there exists an invertible
mapping μ of a given nonlinear scalar PDE R{x ;u} (m = 1) to some linear
scalar PDE S{z ;w}, then

(i) μ is a contact transformation of the form

zj = φj(x, u, ∂u), (2.101a)

w = ψ(x, u, ∂u), (2.101b)

∂w

∂zj
= ∂ψj(x, u, ∂u), j = 1, . . . , n; (2.101c)

(ii) R{x ;u} has an infinite set of contact symmetries given by an infinites-
imal generator

X = ξi(x, u, ∂u)
∂

∂xi
+ η(x, u, ∂u)

∂

∂u
+ η

(1)
i (x, u, ∂u)

∂

∂ui
(2.102)

with infinitesimals ξi(x, u, ∂u), η(x, u, ∂u), and first extended infinites-
imals η(1)

i (x, u, ∂u) of the form

ξi(x, u, ∂u) = αi(x, u, ∂u)F (x, u, ∂u) (2.103a)

+αij(x, u, ∂u)Hj(x, u, ∂u),

η(x, u, ∂u) = β(x, u, ∂u)F (x, u, ∂u) (2.103b)

+βj(x, u, ∂u)Hj(x, u, ∂u), (2.103c)

η
(1)
i (x, u, ∂u) = λi(x, u, ∂u)F (x, u, ∂u) (2.103d)

+λj
i (x, u, ∂u)Hj(x, u, ∂u), (2.103e)

where αi, αij, β, βj, λi, λ
j
i , i, j = 1, . . . , n, are specific functions of x,

u, and the components of ∂u, and F (x, u, ∂u) is an arbitrary solution
of some linear scalar PDE

L[X]F = 0 (2.104)

in terms of some linear differential operator L[X], and specific inde-
pendent variables

X = (X1(x, u, ∂u), . . . , Xn(x, u, ∂u)) = (φ1, . . . φn);
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and Hj(x, u, ∂u) satisfies

Hj =
∂F

∂Xj
, j = 1, . . . , n. (2.105)

Proof. Necessary condition (i) follows directly from Theorem 2.2.1. Suppose
there exists an invertible mapping μ from a given nonlinear scalar PDE
R{x ;u} to some linear scalar PDE S{z ;w}, represented by

L[z]w = g(z),

with linear differential operator L[z] in terms of independent variables z =
(z1, . . . , zn) and an allowed inhomogeneous term g(z). Then S{z ;w} has an
infinite set of point symmetries given by the infinitesimal generator

Z = f(z)
∂

∂w
, (2.106)

where f(z) is an arbitrary solution of the linear homogeneous scalar PDE
L[z]f(z) = 0. Corresponding to Z, there must exist an infinite set of con-
tact symmetries, given by an infinitesimal generator of the form (2.102), of
R{x ;u} such that the components φj , ψ, ψj of an invertible mapping μ and
the infinitesimal coefficients ξi, η, η

(1)
i of X satisfy relations (2.13) which here

become

ξi ∂φ
j

∂xi
+ η

∂φj

∂u
+ η

(1)
i

∂φj

∂ui
= 0, (2.107a)

ξi ∂ψ

∂xi
+ η

∂ψ

∂u
+ η

(1)
i

∂ψ

∂ui
= f(φ), (2.107b)

ξi ∂ψj

∂xi
+ η

∂ψj

∂u
+ η

(1)
i

∂ψj

∂ui
=

∂f(z)
∂zj

∣∣∣∣
z=φ(x,u,∂u)

, (2.107c)

j = 1, . . . , n. From the invertibility of μ, it follows that the Jacobian
∂(φ, ϕ, ∂ψ)/∂(x, u, ∂u) �= 0. Thus one can solve equations (2.107) for ξi, η,
η
(1)
i , yielding expressions that are linear homogeneous in f . In particular, the

solution of the equations (2.107) is of the form

ξi = αi(x, u, ∂u)f(φ) + αij(x, u, ∂u)
∂f(z)
∂zj

∣∣∣∣
z=φ

, (2.108a)

η = β(x, u, ∂u)f(φ) + βj(x, u, ∂u)
∂f(z)
∂zj

∣∣∣∣
z=φ

, (2.108b)

η
(1)
i = λi(x, u, ∂u)f(φ) + λj

i (x, u, ∂u)
∂f(z)
∂zj

∣∣∣∣
z=φ

, (2.108c)

2.4  Invertible Mappings Through Symmetries
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where αi, αij , β, βj , λi, λ
j
i are specific functions of x, u, and the components

of ∂u. If one sets X(x, u, ∂u) = φ(x, u, ∂u), then F (x, u, ∂u) = f(X(x, u, ∂u))
satisfies L[X]F = 0. ��

Theorem 2.4.4 (Sufficient conditions for the existence of an invertible lin-
earization mapping of a nonlinear scalar PDE). Suppose a given nonlinear
scalar PDE R{x ;u} (m = 1) has an infinitesimal generator of contact sym-
metries (2.102) with infinitesimal coefficients of the form (2.103) where F (X)
is an arbitrary solution of a linear scalar PDE (2.104) and Hj = ∂F/∂Xj,
with specific independent variables X = (X1(x, u, ∂u), . . . , Xn(x, u, ∂u)).
Suppose the following four conditions hold.

(i) The linear homogeneous system of n+ 1 first-order PDEs for a scalar
Φ(x, u, ∂u) given by

αi ∂Φ

∂xi
+ β

∂Φ

∂u
+ λi

∂Φ

∂ui
= 0,

αij ∂Φ

∂xi
+ βj ∂Φ

∂u
+ λj

i

∂Φ

∂ui
= 0, j = 1, . . . , n,

(2.109)

has X1(x, u, ∂u), . . . , Xn(x, u, ∂u) as n functionally independent solu-
tions.

(ii) The linear inhomogeneous system of n+ 1 first-order PDEs

αi ∂Ψ

∂xi
+ β

∂Ψ

∂u
+ λi

∂Ψ

∂ui
= 1,

αij ∂Ψ

∂xi
+ βj ∂Ψ

∂u
+ λj

i

∂Ψ

∂ui
= 0, j = 1, . . . , n,

(2.110)

has a particular solution Ψ = ψ(x, u, ∂u).
(iii) The linear inhomogeneous system of n(n+ 1) first-order PDEs

αi ∂Ψj

∂xi
+ β

∂Ψj

∂u
+ λi

∂Ψj

∂ui
= 1, j = 1, . . . , n,

αik ∂Ψj

∂xi
+ βk ∂Ψj

∂u
+ λk

i

∂Ψj

∂ui
= δk

j , j, k = 1, . . . , n,
(2.111)

where δk
j is the Kronecker symbol, has a particular solution

(Ψ1, Ψ2, . . . , Ψn) = ∂ψ = (ψ1(x, u, ∂u), ψ2(x, u, ∂u), . . . , ψn(x, u, ∂u)).

(iv) There exists a particular solution ∂ψ of (2.111) such that
(z, w, ∂w) = (X(x, u, ∂u), ψ(x, u, ∂u), ∂ψ(x, u, ∂u)) defines a contact
transformation.

Then the mapping μ given by
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zj = φj(x, u, ∂u) = Xj(x, u, ∂u),

w = ψ(x, u, ∂u),

wj = ψj(x, u, ∂u),

(2.112)

j = 1, . . . , n, is invertible and transforms R{x ;u} to the linear scalar PDE
S{z ;w} given by

L[z]w = g(z), (2.113)

which may involve an inhomogeneous term g(z).

Proof. By construction, the mapping μ defined by (2.112) through a solution
of (2.109)–(2.111) is invertible. Let f(z) = F (x, u, ∂u). Then μ transforms
the contact symmetry infinitesimal generator X of the scalar PDE R{x ;u} to
the point symmetry infinitesimal generator Z, of a target scalar PDE S{z ;w}
where Z is of the form

Z = f(z)
∂

∂w
(2.114)

for any solution f(z) satisfying the linear scalar PDE L[z]f(z) = 0. But
since only a linear PDE of the form (2.113) can be characterized as having
a point symmetry of the form (2.114) and since the mapping μ defined by
the transformation (2.112) is invertible, it follows that a target PDE of the
mapping μ must be of the form (2.113). ��

Remark 2.4.2. Using the properties of a contact transformation (1.15), one
can more readily determine the components of ∂w = ∂ψ of the contact
transformation (2.112) through replacing the sufficiency conditions (iii) and
(iv) in Theorem 2.4.4 by the much simpler equations given by

∂ψ

∂ui
− ψj

∂φj

∂ui
= 0,

∂ψ

∂xi
+ ui

∂ψ

∂u
= ψj

(
∂φj

∂xi + ui
∂φj

∂u

)
,

(2.115)

i = 1, . . . , n. In equations (2.115), one has φj = Xj , j = 1, . . . , n, and ψ is
determined from the sufficiency conditions (i) and (ii), respectively.

Now consider two examples of mapping nonlinear scalar PDEs to linear
PDEs through contact transformations that are not point transformations.

(1) Linearization by a Legendre transformation
The second-order quasilinear PDE R{x ;u}, with independent variables
(x1, x2) = (x, t), given by

a(ux, ut)uxx + 2b(ux, ut)uxt + c(ux, ut)utt = 0, (2.116)

2.4 Invertible Mappings Through Symmetries
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has an infinite set of contact symmetries in terms of the evolutionary in-
finitesimal generator

F (x, u, ∂u)
∂

∂u
, (2.117)

where F (x, u, ∂u) = F (ux, ut) is any solution of the second-order linear PDE

a(ux, ut)
∂2F

∂u2
x

− 2b(ux, ut)
∂2F

∂ux∂ut
+ c(ux, ut)

∂2F

∂u2
t

= 0. (2.118)

From Theorem 1.2.5, it follows that the symmetry given by (2.117) and
(2.118) is uniquely equivalent to an infinitesimal generator of a contact sym-
metry X = ξ ∂/∂x+ τ ∂/∂t+ η ∂/∂u+ ηx ∂/∂ux + ηt ∂/∂ut with

ξ = − ∂F

∂ux
, τ = − ∂F

∂ut
, η = F − ux

∂F

∂ux
− ut

∂F

∂ut
, ηx = ηt = 0. (2.119)

Clearly, the contact symmetry (2.117)–(2.119) satisfies the necessary con-
ditions of Theorem 2.4.3 for the existence of an invertible mapping μ that
transforms the quasilinear PDE (2.116) to some linear PDE. In particular,
from (2.119), one sees that α1 = α2 = α12 = α21 = 0, α11 = α22 = −1, β = 1,
β1 = −ux, β

2 = −ut, λi = λj
i = 0, i, j = 1, 2. Moreover, from the form of

PDE (2.118), it follows that X1 = ux, X2 = ut.

The existence and construction of μ follow from applying Theorem 2.4.4.
Here equations (2.109) become

∂Φ

∂u
= 0,

∂Φ

∂x
+ ux

∂Φ

∂u
= 0,

∂Φ

∂t
+ ut

∂Φ

∂u
= 0, (2.120)

with obvious functionally independent solutions

Φ = φ1 = X1 = ux, Φ = φ2 = X2 = ut, (2.121)

and equations (2.110) become

∂Ψ

∂u
= 1,

∂Ψ

∂x
+ ux

∂Ψ

∂u
= 0,

∂Ψ

∂t
+ ut

∂Ψ

∂u
= 0. (2.122)

It is easy to determine that a particular solution of the linear PDE system
(2.122) is given by

Ψ = ψ = u− xux − tut. (2.123)

Then, after substituting the solutions (2.121) and (2.123) into the correspond-
ing four equations (2.115), one directly obtains

ψ1 = −x, ψ2 = −t. (2.124)
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Consequently, the invertible mapping μ given by the contact transforma-
tion

z1 = ux, z2 = ut, w = u− xux − tut, w1 = −x, w2 = −t, (2.125)

transforms the quasilinear PDE (2.116) to the linear PDE S{z ;w} given by

a(ux, ut)
∂2w

∂u2
x

− 2b(ux, ut)
∂2w

∂ux∂ut
+ c(ux, ut)

∂2w

∂u2
t

= 0. (2.126)

The mapping (2.125) is the well-known Legendre transformation that lin-
earizes the quasilinear PDE (2.116).

(2) Linearization of an equation arising in a fluid flow problem
Sukharev (1967) showed that for any constant p, the first-order nonlinear
PDE system

∂v2

∂t
+
∂v1

∂x
= 0, (2.127a)

v1 ∂v
2

∂t
− (v2)p = 0, (2.127b)

which describes a fluid flow through a long pipeline, has the infinite set of
point symmetries given by the infinitesimal generator

X = g(t, v2)
∂

∂x
+
[
(v2)p ∂g(t, v

2)
∂v2

]
∂

∂v1
, (2.128)

where g(t, v2) is any solution of the linear diffusion equation

∂

∂v2

(
(v2)p ∂g

∂v2

)
=

∂g

∂t
. (2.129)

The use of (2.128) and (2.129) to linearize the nonlinear PDE system (2.127)
by an invertible point transformation is left to Exercise 2.4.2.

Here, the conservation law (2.127a) is used to introduce a potential variable
u through setting

v1 = −ut, v2 = ux. (2.130)

Then the system of PDEs (2.127) is equivalent to the nonlocally related scalar
PDE R{x ;u} given by

utuxx + up
x = 0. (2.131)

[The problem of finding equivalent nonlocally related systems of PDEs
through conservation laws is fully considered in Chapter 3.]

The nonlinear scalar PDE (2.131) has an infinite set of contact symmetries
in terms of an evolutionary infinitesimal generator of the form (2.117) where

2.4  Invertible Mappings Through Symmetries
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F (x, u, ∂u) = F (t, ux) is any solution of the second-order linear PDE

∂F

∂t
− up

x

∂2F

∂u2
x

= 0. (2.132)

Thus the symmetry given by (2.117) and (2.132) is uniquely equivalent to an
infinite set of contact symmetries with an infinitesimal generator

X = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+ ηx ∂

∂ux
+ ηt ∂

∂ut
,

where

ξ = − ∂F

∂ux
, τ = 0, η = F − ux

∂F

∂ux
− ut

∂F

∂ut
, ηx = 0, ηt =

∂F

∂t
. (2.133)

Clearly, the contact symmetries given by (2.117), (2.132), and (2.133) satisfy
the necessary conditions of Theorem 2.4.3 for the existence of an invertible
mapping μ that transforms the nonlinear PDE (2.129) to some linear PDE.
In particular, from equations (2.133), one sees that α1 = α2 = α12 = α21 =
α22 = 0, α11 = −1, β = 1, β1 = −ux, β

2 = 0, λ1 = λ2 = λ1
1 = λ2

1 = λ1
2 = 0,

λ2
2 = 1. Moreover, from (2.132), it follows that X1 = t, X2 = ux.

The existence and construction of μ follow from applying Theorem 2.4.4.
Here equations (2.109) become

∂Φ

∂u
= 0,

∂Φ

∂x
+ ux

∂Φ

∂u
= 0,

∂Φ

∂ut
= 0, (2.134)

with functionally independent solutions

Φ = φ1 = X1 = t, Φ = φ2 = X2 = ux, (2.135)

and equations (2.110) become

∂Ψ

∂u
= 1,

∂Ψ

∂x
+ ux

∂Ψ

∂u
= 0,

∂Ψ

∂ut
= 0. (2.136)

A particular solution of (2.136) is given by

Ψ = ψ = u− xux. (2.137)

Then, after substituting the solutions (2.135) and (2.137) into the correspond-
ing equations (2.115), one directly obtains

ψ1 = ut, ψ2 = −x. (2.138)

Consequently, the invertible mapping μ given by the contact transforma-
tion
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z1 = t, z2 = ux, w = u− xux, w1 = ut, w2 = −x, (2.139)

transforms the nonlinear PDE (2.129) to the linear PDE S{z ;w} given by

up
x

∂2w

∂u2
x

− ∂w

∂t
= 0. (2.140)

The non-invertible transformation given by the composition of μ−1 with
the non-invertible transformation (2.130) maps any solution of the second-
order linear PDE (2.140) to a solution of the nonlinear system of PDEs
(2.127). This linearization first appeared in Kumei (1981).

It should be remarked that the authors are unaware of any example that
satisfies the necessary conditions but does not satisfy the sufficient conditions
of the four theorems presented in this section. The work in this section first
appeared in a less general and less structured form in Kumei & Bluman
(1982). In particular, the work presented in this section follows and updates
the presentations in Bluman & Kumei [(1989), (1990a,b)].

Exercises 2.4

2.4.1. Show that the following nonlinear scalar PDEs have point symmetries
that lead to their linearizations and find the corresponding point transfor-
mations that yield their linearizations. [References to their linearizations are
listed.]

(a) ut + 1
2u

2
x − uxx = 0 [Kumei & Bluman (1982)].

(b) ut + ux − uxt + uxut = 0 [Thomas (1944)].

2.4.2. Show that the point symmetries given by (2.128) and (2.129) satisfy
the criteria of Theorems 2.4.1 and 2.4.2, and hence find an invertible mapping
that linearizes the nonlinear PDE system given by (2.127).

2.4.3. Consider the nonlinear heat conduction equation

ut − (u−2ux)x = 0. (2.141)

(a) Show that the nonlinear scalar PDE (2.141) cannot be linearized by
an invertible contact transformation.

(b) Consider the nonlocally related PDE system [see Chapter 3]

vt = u−2ux,

vx = u.
(2.142)

Show that the nonlinear system (2.142) has the point symmetries given
by the infinitesimal generator

2.4  Invertible Mappings Through Symmetries
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X = g(t, v)
∂

∂x
−
[
u2gv(t, v)

] ∂

∂u
, (2.143)

where g(t, v) is any solution of the linear heat equation

gt − gvv = 0. (2.144)

Use Theorems 2.4.1 and 2.4.2 to linearize the PDE system (2.142) by
an invertible point transformation.

(c) Find a relationship between the PDE systems (2.142) and (2.127).
(d) Show that X = g(t, v) ∂/∂x is an infinitesimal generator of an infinite

set of point symmetries of v2
xvt − vxx when g(t, v) satisfies the linear

heat equation (2.144).
(e) Hence find a mapping that transforms any solution of the linear

heat equation to a solution of the nonlinear heat conduction equa-
tion (2.141). Is the mapping invertible? [Storm (1950); Rosen (1979);
Bluman & Kumei (1980); Bluman, Kumei, & Reid (1988); Bluman &
Kumei (1990b)].

2.4.4. Consider Burgers’ equation

ut + uux − uxx = 0. (2.145)

(a) Show that the nonlocally related nonlinear PDE system [Chapter 3]

vx = 2u,
vt = 2ux − u2,

has an infinite set of point symmetries given by the infinitesimal gener-
ator X = eu2/4{[2gx +ug] ∂/∂u+4g ∂/∂v} where g(x, t) is any solution
of the linear heat equation gt − gxx = 0 [Vinogradov & Krasil’shchik
(1984); Kersten (1987)].

(b) Hence, appropriately apply Theorems 2.4.1 and 2.4.2 to derive the
Hopf–Cole transformation that linearizes Burgers’ equation (2.145).

2.4.5. For the second-order quasilinear PDE (2.116), let v = ux, w = ut.

Now find a first-order quasilinear PDE system that is locally related to the
quasilinear PDE (2.116). Consequently, use an appropriate hodograph trans-
formation to find the Legendre transformation that linearizes (2.116).

2.4.6. Consider the PDE

ut − uxx − uyy − 2(1 − u)−1(u2
x + u2

y) − u+ u2 = 0. (2.146)

(a) Show that the nonlinear PDE (2.146) has the infinite set of point sym-
metries given by the infinitesimal generator X = (1−u)2F (x, y, t) ∂/∂u
where F (x, y, t) is any solution of the linear PDE Ft−Fxx−Fyy−F = 0.
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(b) Use the point symmetries exhibited in (a) to linearize the PDE (2.146).

2.4.7. The nonlinear PDE

x(uxuxy − uyuxx) + y(uxuyy − uyuxy) (2.147)

arises in economics [Wagener (2004)].

(a) Find the point symmetries of the PDE (2.147) that satisfy the neces-
sary conditions for its linearization.

(b) Use these point symmetries to linearize (2.147).
(c) Find the general solution of the PDE (2.147).

2.4.8. Consider the nonlinear reaction-diffusion equation [Bluman (1993)]

ut − u2uxx − 2bu2 = 0, b = const �= 0. (2.148)

(a) Show that the nonlinear PDE (2.148) cannot be linearized by a contact
transformation.

(b) Show that the equivalent nonlocally related system (obtained from a
conservation law of (2.148); see Chapter 3) given by

vx = u−1,

vt = −ux − 2bx,
(2.149)

cannot be linearized by a point transformation.
(c) Show that the equivalent nonlocally related system given by

vx = u−1,

wx = v,

wt = −u− bx2,

(2.150)

has the infinite set of point symmetries given by the infinitesimal gen-
erator

X = eb(w−xv){(F (t, v) − bxH(t, v))
∂

∂x

+(G(t, v) − 2bxF (t, v) + (b2x2 − bu)H(t, v))
∂

∂u

+(vF (t, v) − (1 + bxv)H(t, v))
∂

∂w
},

where (F (t, v), G(t, v),H(t, v)) is an arbitrary solution of the linear
PDE system ∂H(t, v)/∂v = F (t, v), ∂H(t, v)/∂t = G(t, v), ∂F (t, v)/∂v =
G(t, v).

(d) Consequently, use Theorems 2.4.1 and 2.4.2 to linearize the PDE sys-
tem (2.150) by a point transformation.

2.4  Invertible Mappings Through Symmetries
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(e) Use Theorems 2.4.1 and 2.4.2 to find a point transformation that lin-
earizes the equivalent nonlocally related subsystem given by

wx = v,

wt = −
(

1
vx

+ bx2

)
.

(f) Use Theorems 2.4.1 and 2.4.2 to find a contact transformation that
linearizes the equivalent nonlocally related scalar PDE given by

wt = −
(

1
wxx

+ bx2

)
.

2.4.9. Consider the fourth-order nonlinear PDE [Broadbridge & Tritscher
(1994)]

ut = [u−1(u−3ux)x]xx. (2.151)

(a) Show that the PDE (2.151) cannot be linearized by a contact trans-
formation.

(b) Apply Theorems 2.4.1 and 2.4.2 to linearize the equivalent nonlocally
related system given by

vx = u,

vt = [u−1(u−3ux)x]x.

2.5 Invertible Mappings of Linear PDEs to Linear PDEs
with Constant Coefficients

If a linear PDE has constant coefficients, then there is an arsenal of tech-
niques (including use of Fourier series, Fourier and Laplace transforms) to
find appropriate Green’s functions and solve various posed boundary value
problems. This leads to two obvious questions.

(i) Can one map a given linear PDE with variable coefficients to some
linear PDE with constant coefficients by an invertible point transfor-
mation?

(ii) What is the most general point transformation that yields such a map-
ping?

The second question is connected with the problem of finding all domains
that yield the possibility of Fourier or Laplace transform analysis for a given
linear PDE. As in the case for invertible mappings of nonlinear PDEs to lin-
ear PDEs, both of these mapping questions can be formulated in terms of a
class of point symmetries of the given PDE since a target class of constant
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coefficient linear PDEs is completely characterized by the point symmetries
connected with its linearity and invariance under the abelian group of trans-
lations of its independent variables. Consequently, one is able to establish
necessary and sufficient conditions for the existence of a mapping of a given
variable coefficient linear PDE to some constant coefficient linear PDE. In
particular, an algorithm is presented that determines whether such conditions
hold for a given linear PDE, and finds an explicit mapping when one exists.
The presented formulation and examples are restricted to linear scalar PDEs,
but one should be able to extend the presented results to linear systems. This
work first appeared in Bluman (1983) and in a more comprehensive form in
Bluman & Kumei (1990a). In the next chapter, extensions of these results
are made to non-invertible mappings of variable coefficient linear PDEs to
equivalent, but nonlocally related, constant coefficient linear PDEs.

Consider a given pth-order linear PDE R{x ;u} with n independent vari-
ables x = (x1, . . . , xn) and dependent variable u given by

a(x)u+ ai(x)ui + · · · + ai1···ip(x)ui1···ip
= 0, (2.152)

defined on a domain D ⊂ R
n. The aim is to determine whether the vari-

able coefficient linear PDE (2.152) can be mapped invertibly by some point
transformation μ to a constant coefficient linear PDE S{z ;w} of the form

bw + biwi + · · · + bi1···ipwi1···ip
= 0, (2.153)

with independent variables z = (z1, . . . , zn) and dependent variable w, and
find such a mapping μ when one exists.

In order to preserve linearity, such a mapping μ must be a point transfor-
mation of the form

zi = φi(x), i = 1, . . . , n,

w = ψ(x, u) = G(x)u;
(2.154)

G(x) is the multiplier of the mapping. The mapping (2.154) is invertible if
and only if

det
∣∣∣∣∂φi

∂xj

∣∣∣∣ �= 0 in D. (2.155)

A constant coefficient linear PDE S{z ;w} with n independent variables z
is invariant under the n-parameter Lie group H consisting of translations of
its independent variables. Hence, since H is an abelian group, it is necessary
that the given PDE R{x ;u} admit an n-parameter abelian Lie group of point
transformations G for the existence of an invertible mapping of R{x ;u} to
a constant coefficient linear PDE. Moreover, G must also be an n-parameter
abelian Lie group of point transformations when its action is projected onto
the space of n independent variables x since the mapping must preserve the

2.5  Invertible Mappings of Linear PDEs
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commutation relations of the abelian Lie algebra M of the Lie group H. An
algorithm is now presented that yields such a mapping μ through establishing
the existence of an n-dimensional abelian Lie algebra L for a set of n point
symmetries of the given PDE R{x ;u}.

In particular, a constant coefficient linear PDE S{z ;w} with n indepen-
dent variables has n infinitesimal generators of translation symmetries given
by

Zα =
∂

∂zα
, α = 1, . . . , n. (2.156)

Consequently, in order for a mapping μ to exist, the given linear PDE R{x ;u}
must have n point symmetries in terms of n infinitesimal generators of the
form [Bluman (1990)]

Xα = ξj
α(x)

∂

∂xj
+ fα(x)u

∂

∂u
, α = 1, . . . , n, (2.157)

that satisfy the commutation relations [Theorem 2.2.3]

[Xα,Xβ ] = 0, α, β = 1, . . . , n. (2.158)

From the mapping equations (2.13), it follows that the first set of necessary
conditions for a mapping μ is given by

Xαφ
i = Zαz

i = δi
α,

Xα(G(x)u) = Zαw = 0, α, i = 1, . . . , n;
(2.159)

δi
α is the Kronecker symbol. More explicitly, the mapping equations (2.159)

are given by

ξj
α

∂φi

∂xj
= δi

α, α, i = 1, . . . , n; (2.160)

ξj
α

∂G

∂xj
+ fαG = 0, α = 1, . . . , n. (2.161)

From the mapping equations (2.160), it immediately follows that

∂φj

∂xα
ξi
j = δi

α, α, i = 1, , . . . , n. (2.162)

Hence from the invertibility condition (2.155) and the mapping equations
(2.160), one sees that μ is invertible if and only if

det |ξj
i (x)| �= 0 in D. (2.163)

From the commutation relations (2.158), it follows that the second set of
necessary conditions for a mapping μ is given by
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ξk
β

∂ξj
α

∂xk
= ξk

α

∂ξj
β

∂xk
,

ξk
β

∂fα

∂xk
= ξk

α

∂fβ

∂xk
, α, β, j = 1, . . . , n.

(2.164)

The following theorem shows that the first and second sets of necessary
conditions (2.159) and (2.164) are also sufficient conditions to determine the
mapping μ.

Theorem 2.5.1. If a given linear PDE R{x ;u} has n point symmetries with
infinitesimal generators of the form (2.157) whose components {ξj

i (x), fi(x)}
satisfy the equations (2.164) and the invertibility condition (2.163), then there
exists a solution {φi(x), G(x)} of the equations (2.160), (2.161) that defines
an invertible mapping of R{x ;u} to some constant coefficient linear PDE
S{z ;w}.

Proof. The proof is accomplished by showing that any set of functions
{φi(x), G(x)} which solves the equations (2.160), (2.161), whose coefficients
are defined by (2.163) and (2.164), satisfies the integrability conditions given
by

∂2φi

∂xj∂xk
=

∂2φi

∂xk∂xj
, i, j, k = 1, . . . , n; (2.165a)

∂2G

∂xj∂xk
=

∂2G

∂xk∂xj
, j, k = 1, . . . , n. (2.165b)

It is now shown that equations (2.165a) are satisfied; the verification that
equations (2.165b) are satisfied is analogous and left to Exercise 2.5.1.

Taking ∂
∂xk of any equation of (2.160), one obtains ξj

α
∂2φi

∂xk∂xj = − ∂ξj
α

∂xk
∂φi

∂xj .

Consequently, ∂φα

∂xl ξ
j
α

∂2φi

∂xk∂xj = −∂φα

∂xl

∂ξj
α

∂xk
∂φi

∂xj , and hence from equations (2.162),
one has

∂2φi

∂xk∂xl
= −∂φα

∂xl

∂ξj
α

∂xk

∂φi

∂xj
. (2.166)

Furthermore, from equations (2.162), one obtains

∂2φi

∂xk∂xl
=

∂φα

∂xk
ξm
α

∂2φi

∂xm∂xl
. (2.167)

After substituting the right-hand side of equations (2.166) into the right-hand
side of equations (2.167) and rearranging the order of terms, one obtains

∂2φi

∂xk∂xl
= −∂φα

∂xk

∂φβ

∂xl
ξm
α

∂ξj
β

∂xm

∂φi

∂xj
. (2.168)

After appropriately substituting the first set of equations in (2.164) into the
right-hand side of (2.168) and then using (2.162), one finds that

2.5  Invertible Mappings of Linear PDEs
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∂2φi

∂xk∂xl
= −∂φα

∂xk

∂ξj
α

∂xl

∂φi

∂xj
. (2.169)

Comparing equations (2.166) and (2.169), one sees that the integrability con-
ditions (2.165a) are satisfied. ��

Now we summarize the mapping algorithm that firstly determines whether
a given linear PDE R{x ;u} can be mapped invertibly to a constant coefficient
linear PDE S{z ;w} and secondly yields such a mapping μ when one exists.
The procedure is as follows.

(i) Set up the determining equations for the infinitesimals of the point
symmetries of R{x ;u}. [Note that it is unnecessary to solve explicitly
the determining equations!]

(ii) Use the determining equations to check if the coefficients of the given
linear equation R{x ;u} are such that the second set of necessary con-
ditions (2.164) has a nontrivial solution for which det |ξj

i (x)| �= 0 in
some domain D. If the system of equations (2.164) only has trivial
solutions for which det |ξij(x)| ≡ 0, then no such invertible mapping μ

exists.
(iii) Solve the system of equations (2.160) to find φ(x).
(iv) Find the multiplier G(x) by solving either the system of equations

(2.161) or, equivalently, the system of equations given by

G−1 ∂G

∂xk
= −fα

∂φα

∂xk
, k = 1, . . . , n. (2.170)

In the case of two independent variables, we use the notations x = x1,
y = x2, ξ1 = ξ1

1 , ξ2 = ξ1
2 , η1 = ξ2

1 , η2 = ξ2
2 . Then equations (2.164) become

ξ2
∂ξ1
∂x

+ η2
∂ξ1
∂y

= ξ1
∂ξ2
∂x

+ η1
∂ξ2
∂y

,

η1
∂η2

∂y
+ ξ1

∂η2

∂x
= η2

∂η1

∂y
+ ξ2

∂η1

∂x
,

ξ2
∂f1

∂x
+ η2

∂f1

∂y
= ξ1

∂f2

∂x
+ η1

∂f2

∂y
;

(2.171)

equations (2.160) become the mapping equations
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ξ1
∂φ1

∂x
+ η1

∂φ1

∂y
= 1,

ξ2
∂φ1

∂x
+ η2

∂φ1

∂y
= 0,

ξ2
∂φ2

∂x
+ η2

∂φ2

∂y
= 1,

ξ1
∂φ2

∂x
+ η1

∂φ2

∂y
= 0;

(2.172)

equations (2.170) become

G−1 ∂G

∂x
= −

[
f1
∂φ1

∂x
+ f2

∂φ2

∂x

]
,

G−1 ∂G

∂y
= −

[
f1
∂φ1

∂y
+ f2

∂φ2

∂y

]
;

(2.173)

and the determinant condition (2.163) becomes

ξ1η2 �= ξ2η1 in some domain D. (2.174)

2.5.1 Examples of mapping variable coefficient linear
PDEs to constant coefficient linear PDEs
through invertible point transformations

Now consider two examples of mapping variable coefficient linear PDEs to
constant coefficient linear PDEs.

(1) Parabolic equation
For any linear parabolic equation

∂2u′

∂x′2
+ α(x′, y′)

∂u′

∂x′
+ β(x′, y′)

∂u′

∂y′
+ γ(x′, y′)u′ = 0, (2.175)

the transformation x = X(x′, y′) =
∫ x′

[β(t, y′)]1/2dt, y = y′, u = e−C(x,y)u′

where Cx = −1
2 [Xy′ + α(x′, y′)[β(x′, y′)−1/2 + 1

2β
−3/2βx′ ], maps (2.175) to

the standard form
uxx + uy + V (x, y)u = 0 (2.176)

with V (x, y) = Cy + Cxx + C2
x + γ(x′, y′)/β(x′, y′).

In Bluman (1980), it was shown explicitly that a PDE of the form (2.176)
can be mapped by an invertible point transformation to the “backward” heat
equation wz1z1 + wz2 = 0 if and only if V (x, y) is of the form

2.5  Invertible Mappings of Linear PDEs
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V (x, y) = q0(y) + q1(y)x+ q2(y)x2 (2.177)

for arbitrary coefficients qi(y). This was accomplished by mapping the non-
trivial point symmetries of (2.176) into the six nontrivial point symmetries
of the backward heat equation. It is now shown that the mapping algorithm
presented in Section 2.5 achieves this result in a simpler way and in a more
general context.

If a linear PDE (2.176) has two nontrivial point symmetries with infinites-
imal generators Xi = ξi(x, y) ∂/∂x+ ηi(x, y) ∂/∂y + fi(x, y)u ∂/∂u, then one
can show that the determining equations for their infinitesimal components
(ξi, ηi, fi) reduce to

ηi = ηi(y),

ξi = 1
2η

′
i(y)x+Ai(y),

fi = 1
8η

′′
i (y)x2 + 1

2A
′
i(y)x+Bi(y),

(2.178)

where ηi(y), Ai(y), Bi(y), V (x, y) satisfy the identity

1
8η

′′′
i (y)x2 + 1

2A
′′
i (y)x+ 1

4η
′′
i (y) +B′

i(y)

+[ 12η
′
i(y)x+Ai(y)]Vx + ηi(y)Vy + η′i(y)V ≡ 0, i = 1, 2.

(2.179)

In order to satisfy the determinant (invertibility) condition (2.174), one
must have

η2(y)[η′1(y)x+ 2A1(y)] �= η1(y)[η′2(y)x+ 2A2(y)] (2.180)

in some domain D.
The first two equations of (2.171) here become η1η

′
2 = η2η

′
1, A2η

′
1 +

2A′
1η2 = A1η

′
2 + 2A′

2η1, with their general solution given by

η1 = kη2, A1 = kA2 + lη
1/2
2 , (2.181)

for arbitrary constants k, l. In terms of (2.181), the invertibility condition
(2.180) becomes lη3/2

2 �= 0. Hence it is necessary that l �= 0, η2 �= 0. Since the
linear transformation z̄1 = lz1, z̄2 = z2 + kz1, maps any constant coefficient
linear PDE to a constant coefficient linear PDE, without loss of generality, one
can correspondingly use X̄2 = X2, X̄1 = l−1[X1 − kX2] as the infinitesimal
generators of point symmetries of PDE (2.176). Then ξ̄2 = ξ2, η̄2 = η2,
ξ̄1 = l−1[ξ1 − kξ2], η̄1 = l−1[η1 − kη2], φ̄1 = lφ1, φ̄2 = φ2 + kφ1. Moreover,
(ξ̄1, η̄1, ξ̄2, η̄2, φ̄1, φ̄2) satisfy the mapping equations (2.172) if and only if
(ξ1, η1, ξ2, η2, φ

1, φ2) do. Now relabel the barred quantities by unbarring them.
Hence, without loss of generality, in equations (2.181) one can set k = 0, l = 1,
i.e.,

η1 = 0, A1 = η
1/2
2 . (2.182)
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Thus for i = 1, the reduced determining equation (2.179) becomes

A′′
1(y)x+ 2[B′

1(y) +A1(y)Vx] ≡ 0. (2.183)

Hence it is necessary that Vxxx = 0. This yields the quadratic condition
(2.177).

Now assume that V (x, y) is of the form (2.177). Then from the identity
(2.183), one obtains

A′′
1 + 4q2(y)A1 = 0, (2.184a)

B′
1 = −q1(y)A1. (2.184b)

The third equation of (2.171), the third equation of (2.178), and equations
(2.182) lead to

A1A
′
2 −A2A

′
1 = 2B′

1η2 = 2B′
1A

2
1. (2.185)

Consequently,
A2 = 2B1A1 (2.186)

is a solution of (2.185). Finally, for i = 2, equation (2.179) leads to B2(y)
satisfying

B′
2 = − 1

4η
′′
2 − [q0(y)η2]′ − q1(y)A2. (2.187)

If η2(y) is known, then A1(y), A2(y), B1(y), B2(y) can be determined from
equations (2.182), (2.184), (2.186), and (2.187). Hence, from Theorem 2.5.1,
it follows that a linear parabolic PDE (2.176) can be mapped invertibly by
a point transformation to a constant coefficient linear PDE if and only if
V (x, y) is of the quadratic form given by (2.177).

Now the mapping is constructed by solving the mapping equations (2.172)
and (2.173). From equations (2.182), the fourth equation of (2.172) yields
φ2 = φ2(y). Consequently, the third equation of (2.172) leads to

(φ2)′ = η2(y)−1. (2.188)

From equations (2.182), (2.184a), and (2.188), one sees that φ2(y) = T (y) is
any solution of the ODE

2T ′′′T ′ − 3T ′′2 − 16q2(y)T ′2 = 0. (2.189)

Let M(y) = T ′′(y)/T ′(y). Then the solution of the nonlinear third-order ODE
(2.189) reduces to solving the Riccati equation given by

2M ′ = M2 + 16q2(y), (2.190)

followed by two obvious quadratures [Bluman (1980)]. From the Riccati equa-
tion (2.190), one sees that on a domain where q2(y) ≥ 0, it follows that T ′(y)

2.5  Invertible Mappings of Linear PDEs
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is a monotone function. Hence on such a domain, a solution of the ODE
(2.189) yields an invertible point transformation. Note that the Riccati trans-
formation M = 2Y ′/Y maps any solution of the second-order linear ODE
Y ′′ − 4q2(y)Y = 0 to a solution of the Riccati equation (2.190).

Having found T ′(y), one now proceeds as follows. The first two equations of
(2.172) lead to φ1(x, y) = [T ′(y)]1/2x+D(y) where D′(y) = −A2(y)[T ′(y)]3/2.

Finally, equations (2.173) yield the multiplier G(x, y) through the equation

logG(x, y) = −1
4 (A′

1(y)/A1(y))x2 + (B1(y)/A1(y))x+W (y),

where W ′(y) = B2(y)T ′(y) −A2(y)B1(y)[T ′(y)]3/2.

Thus φ1(x, y), φ2(x, y) = φ2(y) and G(x, y) have been determined. One
can then show that the resulting constant coefficient linear PDE S{z ;w} is
given by

∂2w

∂(z1)2
+

∂w

∂z2
+ rw = 0,

where r = 1
2A

′
1(y)A1(y) − [B1(y)]2 +B2(y) + q0(y)[A1(y)]2 = const.

(2) Hyperbolic equation
One can show that the linear hyperbolic PDE R{x ;u} given by

uxy + α(x, y)ux + β(x, y)uy + γ(x, y)u = 0 (2.191)

has two nontrivial point symmetries given by the infinitesimal generators
Xj = ξj(x, y) ∂/∂x+ ηj(x, y) ∂/∂y + fj(x, y)u ∂/∂u if and only if

ξj = ξj(x), (2.192a)

ηj = ηj(y), (2.192b)
∂fj

∂x
= −[βξ′j(x) + βxξj(x) + βyηj(y)], (2.192c)

∂fj

∂y
= −[αη′j(y) + αxξj(x) + αyηj(y)], (2.192d)

∂2fj

∂x∂y
+ α

∂fj

∂x
+ β

∂fj

∂y
+ γ[ξ′j(x) + η′j(y)] + γxξj(x) + γyηj(y) = 0, (2.192e)

j = 1, 2. In order to satisfy the determinant condition (2.174), it is necessary
that ξ1(x)η2(y) �= ξ2(x)η1(y) in some domain D. Here the first two equations
of (2.171) become η2(y) = kη1(y), ξ1(x) = lξ2(x), for arbitrary constants k, l.
Let z̄1 = z1 + kz2, z̄2 = z2 + lz1. Then, without loss of generality, one can
set k = l = 0. Hence one obtains

ξ1(x) = 0, η2(y) = 0. (2.193)

From equations (2.192c), (2.192d) and (2.193), one now has
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∂f1

∂x
= −βyη1(y), (2.194a)

∂f1

∂y
= −[αη′1(y) + αyη1(y)], (2.194b)

∂f2

∂x
= −[βξ′2(x) + βxξ2(x)], (2.194c)

∂f2

∂y
= −αxξ2(x). (2.194d)

Next, the third equation of (2.171) and equations (2.194a), (2.194d) lead to
the first necessary condition

βy = αx. (2.195)

Let
δ(x, y) = αx + αβ − γ. (2.196)

Then after substituting equations (2.194) into equation (2.192e) for j = 1, 2,
and using equation (2.196), one obtains

δyη1(y) + δη′1(y) = 0,

δxξ2(x) + δξ′2(x) = 0.
(2.197)

This yields the second necessary condition [log δ]xy = 0, i.e., δ(x, y) must be
of the separable form

δ(x, y) = mA(x)B(y), (2.198)

for some A(x), B(y) with m = 0 if δ ≡ 0, and m = 1 if δ � ≡0. If m = 1, then
from equations (2.197), one obtains η1(y) = [B(y)]−1, ξ2(x) = [A(x)]−1. If
m = 0, then η1(y) and ξ2(x) can be arbitrary functions of their respective ar-
guments. A solution of equations (2.194) is given by f1(x, y) = −α(x, y)η1(y),
f2(x, y) = −β(x, y)ξ2(x). Consequently, from Theorem 2.5.1, it follows that
the variable coefficient linear PDE (2.191) can be mapped invertibly by a
point transformation to a constant coefficient linear PDE if and only if its
coefficients α(x, y), β(x, y), and γ(x, y) satisfy the equations

βy = αx, αx + αβ − γ = mA(x)B(y), (2.199)

for some functions A(x), B(y), and constant m.
For any coefficients α(x, y), β(x, y), and γ(x, y) satisfying equations (2.199),

we now construct a mapping μ of the linear hyperbolic PDE (2.191) to some
constant coefficient linear PDE S{z ;w}. Here the mapping equations (2.172)
lead to

φ1(x, y) = φ1(y) =
∫

1
η1(y)

dy, φ2(x, y) = φ2(x) =
∫

1
ξ2(x)

dx,

2.5  Invertible Mappings of Linear PDEs
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and the mapping equations (2.173) yield a multiplier G(x, y) satisfying

logG(x, y) =
∫

α(x, y) dy.

Thus z1 = φ1(x, y) = φ1(y), z2 = φ2(x, y) = φ2(x), and the multiplier
G(x, y) have been determined. The corresponding constant coefficient linear
PDE S{z ;w} is given by

wz1z2 −mw = 0. (2.200)

In summary, the following theorem has been proved.

Theorem 2.5.2. The linear hyperbolic PDE (2.191) can be mapped invertibly
by a point transformation to a constant coefficient linear PDE if and only if
its coefficients α(x, y), β(x, y), and γ(x, y) satisfy equations (2.199) for some
functions A(x), B(y), and constant m.

(i) If m = 0, the mapping μ given by the invertible point transformation

z1 = x, z2 = y, w = u exp
[∫

α(x, y)dy
]
,

transforms the PDE (2.191) to the wave equation wz1z2 = 0.
(ii) If m = 1, the mapping μ given by the invertible point transformation

z1 =
∫

B(y) dy, z2 =
∫

A(x) dx, w = u exp
[∫

α(x, y)dy
]
,

transforms the PDE (2.191) to the Klein–Gordon equation wz1z2−w =
0.

2.5.2 Example of finding the most general mapping of
a given constant coefficient linear PDE to some
constant coefficient linear PDE

Now consider the problem of finding the most general invertible point trans-
formation that can map a given constant coefficient linear PDE R{x ;u} to
some constant coefficient linear PDE S{z ;w}. For a given linear PDE, this
allows one to find all domains that yield Fourier or Laplace transform anal-
yses. To accomplish this, one modifies the mapping algorithm presented in
Section 2.5 to find the general solution of the second set of necessary condi-
tions (2.164) and then the general solution of the mapping equations (2.160),
(2.161). As an example, the most general invertible point transformation is
found that maps the biharmonic equation
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Δ2u ≡ ∇2(∇2)u =
(

∂2

∂x2
+

∂2

∂y2

)2

u = 0 (2.201)

to a constant coefficient linear PDE [Bluman & Gregory (1985)]. One can
show that the biharmonic equation (2.201) has the nontrivial point symme-
tries given by the infinitesimal generators

X1 = (x2 − y2)
∂

∂x
+ 2xy

∂

∂y
+ 2xu

∂

∂u
,

X2 = 2xy
∂

∂x
+ (y2 − x2)

∂

∂y
+ 2yu

∂

∂u
, X3 = x

∂

∂x
+ y

∂

∂y
,

X4 = y
∂

∂x
− x

∂

∂y
, X5 =

∂

∂x
, X6 =

∂

∂y
, X7 = u

∂

∂u
.

(2.202)

Let z = x + iy. Then from the set of infinitesimal generators (2.202), one
can determine that the set of nontrivial point symmetries of the biharmonic
equation (2.201) is given by the group of point transformations

z∗ =
az + b

cz + d
, (2.203a)

u∗ =
∣∣∣∣dz∗dz

∣∣∣∣−1

u, (2.203b)

where a, b, c, d are arbitrary complex constants with ad − bc �= 0. Note that
the group of point transformations (2.203a) is the group of bilinear transfor-
mations (Möbius group).

To find the most general mapping of the biharmonic equation (2.201)
to a constant coefficient linear PDE, one first finds the most general two-
parameter abelian group of point transformations that can result from the
set of infinitesimal generators (2.202). Let

Y1 =
6∑

i=1

aiXi, Y2 =
6∑

i=1

biXi,

for arbitrary constants ai, bi. Then one can show that the commutator
[Y1,Y2] = 0 if and only if the constants ai, bi satisfy the bilinear relations

Ba = 0, (2.204)

where

a =

⎡⎢⎢⎢⎣
a1

a2

...
a6

⎤⎥⎥⎥⎦ (2.205)

2.5  Invertible Mappings of Linear PDEs
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and

B =

⎡⎢⎢⎢⎢⎢⎢⎣

−b3 b4 b1 −b2 0 0
−b4 −b3 b2 b1 0 0
b5 −b6 0 0 −b1 b2
b6 b5 0 0 −b2 −b1
0 0 −b5 b6 b3 −b4
0 0 −b6 −b5 b4 b3

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.206)

In order to satisfy the determinant condition (2.174), one must have B �≡ 0.
One can show that rank B = 4, and that two linearly independent solutions
of equation (2.204) are given by

a = a(1) =

⎡⎢⎢⎢⎢⎢⎢⎣

b1
b2
b3
b4
b5
b6

⎤⎥⎥⎥⎥⎥⎥⎦ (2.207)

and

a = a(2) =

⎡⎢⎢⎢⎢⎢⎢⎣

b2
−b1
b4
−b3
b6
−b5

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.208)

Now the mapping equations (2.172) are solved. One can show that in the
case when a = a(2), the mapping functions z1 = φ1(x, y), z2 = φ2(x, y) sat-
isfy the Cauchy-Riemann equations ∂φ1/∂x = ∂φ2/∂y, ∂φ1/∂y = −∂φ2/∂x.

Hence, in this case the mapping μ is conformal. Let

z = x+ iy, ζ = z1 + iz2,

α = a1 + ia2, β = 1
2 (a3 + ia4), γ = a5 + ia6.

Then the mapping equations (2.172) and (2.173) reduce to

dζ

dz
=

1
αz2 + 2βz + γ

, (2.209a)

G(x, y) =
∣∣∣∣dζdz

∣∣∣∣−1

. (2.209b)

One can show that the general solution of equation (2.209a) can be repre-
sented in the form
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ζ = A−1 log(1 +AZ) with Z =
az + b

cz + d
, (2.210)

where {A, a, b, c, d} is a set of arbitrary complex constants with ad− bc �= 0.
The corresponding real constant coefficient linear PDE is given by(

∂2

∂(z1)2
+

∂2

∂(z2)2

)2

w + [A2 + Ā2]
(

∂2

∂(z2)2
− ∂2

∂(z1)2

)
w

+2i[Ā2 −A2]
∂2w

∂z1∂z2
+ |A|4 w = 0,

(2.211)

where Ā is the complex conjugate of A.
Note that in the limiting case A = 0, the mapping (2.210), (2.209b) yields

the conformal mapping (2.203) that leaves invariant the biharmonic equation
(2.201).

Exercises 2.5

2.5.1. Verify the integrability conditions (2.165b) of Theorem 2.5.1.

2.5.2.

(a) Show that if γ ≡ 0, then the linear hyperbolic PDE (2.191) can be
mapped invertibly by a point transformation to the wave equation
wz1z2 = 0 if and only if its coefficients α(x, y) and β(x,y) are of the
form

α(x, y) =
D′(y)

C(x) +D(y)
, β(x, y) =

C ′(x)
C(x) +D(y)

,

where C(x) and D(y) are arbitrary differentiable functions of their
respective arguments.

(b) Find the mapping μ [Bluman (1983)].

2.5.3. Consider the class of linear hyperbolic PDEs given by

utt − c2(x, t)uxx = 0. (2.212)

(a) Show that a PDE (2.212) can be mapped invertibly by a point trans-
formation to the wave equation wz1z1 −wz2z2 = 0 if and only if c(x, t)
is of the form

c(x, t) =
a0 + 2a1x+ a2x

2

b0 + 2b1t+ b2t2
,

where the constants ai, bi are related by a2
1 − a0a2 = b21 − b0b2 = Δ.

2.5  Invertible Mappings of Linear PDEs
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(b) Find the mapping μ [Distinguish between the cases Δ < 0, Δ > 0,
Δ = 0.] [Bluman (1983)].

2.5.4. Consider the class of linear hyperbolic PDEs given by

utt − c2(x)uxx = 0. (2.213)

(a) Show that a PDE (2.213) can be mapped invertibly by a point transfor-
mation to a constant coefficient linear PDE if and only if c(x) satisfies
the fourth-order ODE [

c2c′′′

2cc′′ − c′2

]′
= 0. (2.214)

(b) By inspection, find three point symmetries of the ODE (2.214). Show
that the Lie algebra, formed from their infinitesimal generators, is solv-
able [Bluman & Anco (2002)]. Hence, use these point symmetries to
reduce the ODE (2.214) to a first-order ODE and three quadratures.

(c) Find the mapping μ [Bluman (1983)].

2.5.5. Consider the class of linear elliptic PDEs given by

uxx + uyy + α(x, y)ux + β(x, y)uy + γ(x, y)u = 0. (2.215)

(a) Show that a PDE (2.215) can be mapped invertibly by a point trans-
formation μ to a constant coefficient linear PDE if and only if its
coefficients α(x, y), β(x, y), and γ(x, y) satisfy the equations βx = αy,
2(αx + βy) +α2 + β2 − 4γ = |K(z)|2 , for some analytic function K(z)
of the complex variable z = x+ iy.

(b) Find a mapping μ and show that the resulting constant coefficient
linear PDE is equivalent to

(i) Laplace’s equation wz1z1 + wz2z2 = 0 if K(z) ≡ 0;
(ii) the Helmholtz equation wz1z1 + wz2z2 − w = 0 if K(z) �≡ 0.

2.5.6. Show that the most general invertible point transformation mapping
the biharmonic equation (2.201) into a linear PDE with constant coefficients
is given by

x = X(pz1 + qz2, rz1 + sz2), y = Y (pz1 + qz2, rz1 + sz2),

in terms of any conformal transformation, x = X(z1, z2), y = Y (z1, z2), which
is the inverse of the conformal transformation given by (2.210); p, q, r, s are
arbitrary real constants with ps− qr �= 0. Find the corresponding multiplier
G(x, y) [Bluman & Gregory (1985)].

2.5.7. Find all forms of the coefficient h(x) so that the linear PDE



nvertible Mappings Through Conservation Law Multipliers 173

h(x)ϕxx + ϕx − ϕyy = 0

can be mapped into the linear wave equation by some invertible point trans-
formation [Carbonaro (1991)].

2.6 Invertible Mappings of Nonlinear PDEs to Linear
PDEs Through Conservation Law Multipliers

In this section, an alternative algorithm is presented for invertibly mapping a
given nonlinear PDE system to some linear PDE system by means of a class
of conservation law multipliers of the nonlinear PDE system. The premise
for this algorithm is the observation that a linear PDE system possesses an
infinite set of conservation law multipliers satisfying its adjoint system. This
feature of a linear PDE system isexploited to detect whether a given nonlinear
system can be linearized by an invertible transformation and, when such a
linearization mapping exists, to obtain the explicit form of the linearizing
transformation from an associated conservation law identity.

In particular, using the determining equations for the conservation law
multipliers, one can see whether an invertible linearization mapping exist,
and also find the adjoint of a target linear system as well as the independent
variables of a target linear system whenever a linearization mapping is pos-
sible [Bluman & Doran-Wu (1995)]. Furthermore, it is shown that through
a conservation law identity coming from the multiplier equations of an aug-
mented system consisting of the given nonlinear PDE system and the adjoint
of the target linear system, one can determine the dependent variables of
the target linear system as well as find an explicit invertible linearization
mapping (as is the case, discussed in Section 2.4, for linearization through an
appropriate class of symmetries of a given nonlinear PDE system).

The work presented in this section appears in Anco, Bluman & Wolf
(2008). In particular, this work allows one to detect and construct lineariza-
tion mappings completely by the use of algorithmic methods for obtaining
multipliers of conservation laws that were presented in Chapter 1 [Anco &
Bluman [(1997a), (2002a,b)]; Wolf (2002a,b)].

The starting point, leading to an alternative invertible mapping algorithm
relating nonlinear and linear PDEs through conservation law multipliers, is to
notice that for any linear operator L and its adjoint operator L∗, the formal
relation V LW−WL∗V is a divergence expression. Consider a kth-order linear
PDE system S{z ;w} with n independent variables z = (z1, . . . , zn) and m

dependent variables w = (w1, . . . , wm), given by

Lσ
α[z]wα = 0, (2.216)

2.6  I



174 2 Construction of Mappings Relating Differential Equations

in terms of linear operators

Lσ
α[z] = bσα(z) + bσαi(z)

∂

∂zi
+ · · · + bσαi1···ik

(z)
∂k

∂zi1 · · · ∂zk
,

σ = 1, . . . ,M, α = 1, . . . ,m.

(2.217)

The corresponding adjoint linear system is given by

L∗σ
α [z]vσ = 0, (2.218)

where, for arbitrary functions V (z) = (V1(z), . . . , VM (z)), one has

L∗σ
α [z]Vσ = bσα(z)Vσ − ∂

∂zi
(bσαi(z)Vσ) + · · ·

+(−1)k ∂k

∂zi1 · · · ∂zik
(bσαi1···ik

(z)Vσ), α = 1, . . . ,m.

(2.219)

Then for arbitrary functions V (z) and W (z) = (W 1(z), . . . ,Wm(z)), which
can be viewed as sets of multipliers {Vσ(z)} and {Wα(z)} for the augmented
linear system consisting of the linear system (2.216) and the adjoint system
(2.218), there is a conservation law identity

DziΛi ≡ VσLσ
α[z]Wα −WαL∗σ

α [z]Vσ, (2.220)

holding for some specific functions Λi(z) that have a bilinear dependence on
the components of the two sets of multipliers and their derivatives.

Now consider a nonlinear PDE system R{x ;u} with n independent vari-
ables x = (x1, . . . , xn) and m dependent variables u = (u1, . . . , um) given
by

Rσ[u] = Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,M. (2.221)

Suppose the nonlinear PDE system R{x ;u} (2.221) can be invertibly mapped
to some linear PDE system S{z ;w} by a point transformation (more gener-
ally, a contact transformation if m = 1),

z = φ(x, u), w = ψ(x, u).

Then for some set of nontrivial factors {Qσ
ν [U ]}, one must have

Qσ
ν [U ]Rν [U ] ≡ Lσ

α[z]Wα, σ = 1, . . . ,M, (2.222)

for arbitrary functions U(x) = (U1(x), . . . , Um(x)), where the functions
W (z) = (W 1(z), . . . ,Wm(z)), are given by the linearization mapping

z = φ(x,U(x)), W (z) = ψ(x,U(x)). (2.223)
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Through the point transformation (2.223), the conservation law identity
(2.220) becomes

Dxiλi ≡ J[U ](VσQ
σ
ν [U ]Rν [U ] −WαL∗σ

α [z]Vσ), (2.224)

where Dxiλi = |Dz/Dx|DziΛi in terms of the non-vanishing Jacobian factor

J[U ] =
∣∣∣∣DzDx

∣∣∣∣ = det
(

Dzi

Dxj

)
. (2.225)

[See Bluman (2005) or Section 1.5.1 for the explicit expressions for λi.]
This leads to the following two theorems for linearization from conservation

law multipliers which are the counterparts to Theorems 2.4.1 and 2.4.2 for
linearization through point symmetries.

Theorem 2.6.1 (Necessary conditions for the existence of an invertible lin-
earization mapping). If there exists an invertible point transformation (2.61)
under which a given kth-order nonlinear PDE system R{x ;u} (2.221) is
mapped to some linear PDE system S{z ;w}, then R{x ;u} must have a set
of conservation law multipliers of the form

μν [U ] = J[U ]vσ(X)Qσ
ν [U ], (2.226)

where Qσ
ν [U ], σ, ν = 1, . . . ,M , are specific functions of the components of

x,U , and ∂U ; v(X) = (v1(X), . . . , vM (X)) is any solution of some kth order
linear PDE system

L̃σ
α[X]vσ = b̃σα(X)vσ + b̃σαi(X)

∂vσ

∂Xi

+ · · · + b̃σαi1···ik
(X)

∂kvσ

∂Xi1 · · · ∂Xik
= 0,

(2.227)

α = 1, . . . ,m, in terms of specific independent variables X = (X1(x,U), . . . ,
Xn(x,U)).

Proof. The existence of the set of conservation law multipliers (2.226) follows
from equation (2.224) with X playing the role of z, L̃σ

α[X] playing the role of
L∗σ

α [z] and with Vσ = vσ satisfying the linear PDE system (2.227). ��

Theorem 2.6.2 (Sufficient conditions for the existence of an invertible lin-
earization mapping). Suppose a given nonlinear PDE system R{x ;u} (2.221)
has conservation law multipliers of the form (2.226) where the components
of v are dependent variables of some linear PDE system (2.227) with specific
independent variables X = (X1(x, U), . . . , Xn(x,U)). Let L̃∗[X] be the ad-
joint of the linear operator L̃[X] in (2.227). Consider the augmented system
of PDEs consisting of the given nonlinear PDE system (2.221) and the linear

nvertible Mappings Through Conservation Law Multipliers2.6  I
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PDE system (2.227). Then, from the identity (2.224), there exists an infinite
set of conservation law multipliers

{μν [U ], Λ̃α[U ]} = {J[U ]Vσ(X(x,U))Qσ
ν (x,U, ∂U), −J[U ]Wα(x,U)},

ν = 1, . . . ,M , α = 1, . . . ,m, yielding a conservation law identity

μν [U ]Rν [U ] − Λ̃α[U ]L̃σ
α[X(x,U)]Vσ ≡ DxiΘi (2.228)

for some specific fluxes Θi(x), in terms of the Jacobian determinant

J[U ] =
∣∣∣∣DXDx

∣∣∣∣ = det
(

DXi(x,U)
Dxj

)
. (2.229)

The conservation law identity (2.228) is equivalent to the identity

VσQ
σ
ν (x,U, ∂U)Rν [U ] −Wα(x,U)L̃σ

α[X(x,U)]Vσ ≡ DXiΓ i, (2.230)

holding for some functions Γ i. If the variables Xi, i = 1, . . . , n, are function-
ally independent and if the factors Qσ

ν , ν, σ = 1, . . . ,M , are non-degenerate,
then the point transformation given by

z = X(x, u), w = W (x, u) (2.231)

maps the nonlinear PDE system R{x ;u} (2.221) invertibly into the linear
system S{z ;w} given by

L̃∗σ
α [z]wα = b̃σα(z)wα − ∂

∂zi
(b̃σαi(z)w

α) + · · ·

+(−1)k ∂k

∂zi1 · · · ∂zik
(bσαi1···ik

(z)wα) = 0,

σ = 1, . . . ,M.

(2.232)

Proof. Since L̃[X] is a linear operator, the identity (2.220) yields

Wα(x,U)L̃σ
α[X(x,U)]Vσ ≡ VσL̃∗σ

α [X(x,U)]Wα(x,U) + DXiθi, (2.233)

for some specific functions θi[U, V,W ]. Consequently, the identity (2.230)
becomes

Vσ(Qσ
ν [U ]Rν [U ] − L̃∗σ

α [X(x,U)]Wα(x,U)) ≡ DXi(Γ i + θi). (2.234)

Now apply the Euler operators with respect to Vσ, i.e.,

EVσ
=

∂

∂Vσ
− DXi

∂

∂( ∂Vσ

∂Xi )
+ · · · , σ = 1, . . . ,M,
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to each side of equation (2.234). Each of these Euler operators annihilates
the right-hand side of the identity (2.234) and hence one obtains the identity

Qσ
ν [U ]Rν [U ] ≡ L̃∗σ

α [X(x,U)]Wα(x, U), (2.235)

holding for arbitrary functions U(x). Now suppose U(x) = u(x) solves
the given nonlinear PDE system R{x ;u} (2.221). It then follows that
w = W (x, u(x)) solves the linear system given by (2.232). Consequently, one
obtains the invertible point transformation (2.231) that maps the nonlinear
PDE system (2.221) into the linear PDE system (2.232). ��

2.6.1 Computational steps

We now outline the computational steps involved in applying Theorems 2.6.1
and 2.6.2 to linearize a given nonlinear PDE system through a set of conser-
vation law multipliers.

Step 1: For a given nonlinear system of M PDEs R{x ;u}(2.221) of order k,
solve the determining equations

EUσ (μν [U ]Rν [U ]) = 0, σ = 1, . . . ,m,

to obtain sets of conservation law multipliers {μν [U ]} depending on the in-
dependent variables x = (x1, . . . , xn), the dependent variables replaced by
arbitrary functions U(x) = (U1(x), . . . , Um(x)) and their first derivatives
∂U(x), i.e., μν [U ] = μν(x,U, ∂U), ν = 1, . . . ,M. Two cases arise, depending
on whether R{x ;u} has a set of conservation law multipliers of the form
(2.226) with functions v(X) = (v1(X), . . . , vM (X)) satisfying some linear
PDE system of the form (2.227) in terms of specific independent variables
X = (X1(x,U), . . . , Xn(x,U)).

Case I. There exists no set of conservation law multipliers of the required
form. Here, from Theorem 2.6.1, one concludes that R{x ;u} cannot be
mapped invertibly by any point transformation to a linear PDE system.

Case II. There is an infinite set of conservation law multipliers of the required
form. Typically in this case, the independent variables X(x,U) are found
directly from the specific form of the multiplier determining equations, either
by inspection (see the first two examples of Section 2.6.2) or, more generally,
through integration of the characteristic first-order linear PDEs contained
in the system of multiplier determining equations (see the third example of
Section 2.6.2). Then from the set of conservation law multipliers (2.226), one
can read off (through Theorem 2.6.1):

nvertible Mappings Through Conservation Law Multipliers2.6  I
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(a) the independent variable part of a linearizing point transformation
(2.231);

(b) a specific target linear PDE system which is the adjoint of the linear
system (2.227).

Step 2: Assume that the necessary conditions of Theorem 2.6.1 hold (Case
II). Consider the augmented PDE system consisting of the given nonlin-
ear PDE system R{x ;u} with dependent variables u(x) and the linear sys-
tem (2.227) with dependent variables v(X(x, u)) and independent variables
X = (X1(x, u), . . . , Xn(x, u)). Seek conservation law multipliers for the aug-
mented PDE system to obtain the identity (2.228) in the hypothesis of The-
orem 2.6.2 where a solution u(x) of R{x ;u} is replaced by an arbitrary func-
tion U(x) and a solution v(X(x, u)) of the linear system (2.227) is replaced
by a corresponding arbitrary function V (X(x,U)). Use any method [Anco
& Bluman (2002a,b); Wolf (2002a,b), or see Section 1.3.7] to seek the set of
multipliers that yield the conservation law identity (2.228). From the com-
ponents of the set of multipliers for the linear system (2.227) in this identity,
one directly obtains:

(c) the dependent variable part w = W (x, u) of the linearization mapping
to a target linear system.

In summary, when there exists a linearization of a given nonlinear PDE
system R{x ;u} by an invertible point transformation, then the necessary
conditions stated in Theorem 2.6.1 yield a target linear PDE system along
with the independent variables of this system, whereas the sufficiency con-
ditions stated in Theorem 2.6.2 yield the dependent variables of this target
linear PDE system, which completes the linearizing transformation. Further-
more, if the necessary conditions do not hold, then no linearizing point trans-
formation exists for R{x ;u}.

It is straightforward to extend these results to include the linearization
of scalar PDEs (m = 1) by invertible contact transformations, where X and
W can now depend on first-order derivatives of U(x). Since in this case it
follows that the Jacobian determinant J[U ] and the factors Qσ

ν [U ] may have a
dependence on second-order derivatives of U(x), one must consequently seek
sets of conservation law multipliers {μν [U ]} depending on the components of
x,U, ∂U and ∂2U. Then in Step 1, conservation law multipliers of the form
(2.226) will yield the independent variable part of a linearizing contact trans-
formation, i.e., X(x, u, ∂u); similarly, in Step 2, the resulting conservation law
identity (2.230) will yield the dependent variable part of this mapping, i.e.,
W (x, u, ∂u). If a given scalar PDE R{x ;u} has no such multipliers, then no
linearizing contact transformation exists.
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2.6.2 Examples of linearizations of nonlinear PDEs
through conservation law multipliers

To illustrate the conservation law multiplier approach for obtaining lineariza-
tions, three examples are considered.

(1) Linearization of Burgers’ equation
As a first example, consider the nonlinear system R{x ;u}, with independent
variables (x1, x2) = (x, t) and dependent variables (u1, u2), given by

R1[u] =
∂u2

∂x
− 2u1 = 0,

R2[u] =
∂u2

∂t
− 2

∂u1

∂x
+ (u1)2 = 0.

(2.236)

Then u1 = u satisfies Burgers’ equation

ut + uux − uxx = 0. (2.237)

By a straightforward computation, one can show that the nonlinear system
(2.236) has an infinite set of conservation law multipliers of the form μi[U ] =
μi(x, t, U) given by

μ1[U ] = v1
(

1
2U

1e−U2/4
)

+ v2e−U2/4, μ2[U ] = v1e−U2/4, (2.238)

where v(x, t) = (v1(x, t), v2(x, t)) is any solution of the linear system

∂v1

∂x
− v2 = 0,

∂v2

∂x
+
∂v1

∂t
= 0.

(2.239)

Hence, the necessary conditions for the existence of an invertible mapping of
the nonlinear system (2.236) to a linear PDE system are satisfied, where a
target linear system has the same independent variables as the given system
(2.236).

In the conservation law arising from the set of multipliers (2.238), one
now replaces (u, v) by arbitrary functions (U, V ). This leads to the following
conservation law identity for the augmented system, consisting of the given
nonlinear system (2.236) and the linear system (2.239):

nvertible Mappings Through Conservation Law Multipliers2.6  I
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V 1
(

1
2U

1e−U2/4
)

+ V 2e−U2/4
]
R1[U ] + V 1e−U2/4R2[U ]

−2U1e−U2/4
[
DxV

1 − V 2
]
− 4e−U2/4

[
DxV

2 + DtV
1
]

≡ Dx

[
e−U2/4(−4V 2 − 2U1V 1)

]
+ Dt

[
−4V 1e−U2/4

]
.

(2.240)

Consequently, after directly comparing the identity (2.240) with the identity
(2.228) in Theorem 2.6.2, the sufficiency conditions of Theorem 2.6.2 yield
an invertible mapping of the nonlinear system (2.236) to a linear system that
is the adjoint of the linear system (2.239). In particular, it follows that the
invertible point transformation

w1 = 2u1e−u2/4, w2 = 4e−u2/4, (2.241)

with no change of independent variables, maps the nonlinear Burgers system
(2.236) to the linear system

∂w2

∂x
+ w1 = 0,

∂w2

∂t
+
∂w1

∂x
= 0,

(2.242)

which is the adjoint of the linear system (2.239).
Note that w2(x, t) satisfies the linear heat equation ∂w2/∂t−∂2w2/∂x2 =

0. Consequently, for any solution w2(x, t) of the linear heat equation, one
obtains the Hopf–Cole transformation u = u1 = 1

2w
1eu2/4 = 2w1/w2 =

−2∂w2/∂x/w2 that yields a solution of Burgers’ equation (2.237).

(2) Linearization of a pipeline flow equation
As a second example, consider the pipeline flow equation

R[u] = utuxx + up
x = 0. (2.243)

One can show that the nonlinear scalar PDE (2.243) has an infinite set of
conservation law multipliers of the form μ[U ] = μ(x, t, U, Ux, Ut) given by

μ[U ] = v(X1, X2) = v(Ux, t), (2.244)

where v(X1, X2) is any solution of the linear scalar PDE

∂v

∂X2
+
∂2(Xp

1v)
∂(X1)2

= 0. (2.245)

By inspection, since v depends on two variables, one sees that the necessary
conditions for the existence of an invertible contact transformation that lin-
earizes the nonlinear PDE (2.243) are satisfied with the target linear system
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being the adjoint of (2.245) and having X1 = ux, X2 = t as independent
variables.

In the conservation law arising from the multipliers (2.244), one replaces
(u, v) by arbitrary functions (U, V ). This leads to the following conservation
law identity for the augmented system consisting of the given nonlinear PDE
(2.243) and the linear PDE (2.245):

V G[U ] − J[U ](xUx − U)
[
∂V

∂X2
+
∂2((X1)pV )
∂(X1)2

]
≡ Dx

[
(xUx − U)(UtxV + Up

xVX1) + ((1 − p)xUx + pU)Up−1
x V

]
+Dt [Uxx(U − xUx)V ] ,

(2.246)

where the Jacobian determinant

J[U ] =
∣∣∣∣DXDx

∣∣∣∣ = det
[
Uxx Uxt

0 1

]
= Uxx. (2.247)

For verifying the identity (2.246), note that Vx = VX1Uxx, Vt = VX1Uxt +
VX2 . Consequently, the sufficiency conditions of Theorem 2.6.2 hold for the
existence of an invertible mapping by a contact transformation of the non-
linear PDE (2.243) to a linear PDE which is the adjoint of the linear PDE
(2.245). In particular, from a comparison of the identity (2.246) with the
identity (2.230), it follows that the invertible contact transformation given
by

z1 = X1 = ux, z2 = X2 = t, w = xux − u,

wz1 = wX1 = x, wz2 = wX2 = −ut,
(2.248)

maps the nonlinear pipeline flow equation (2.243) invertibly into the linear
PDE

∂w

∂X2
− (X1)p ∂2w

∂(X1)2
= 0. (2.249)

which is the adjoint of the linear PDE given by (2.245).

(3) Linearization of a nonlinear telegraph system
As a final example, consider the nonlinear telegraph (NLT) system given by

R1[u] =
∂u2

∂t
− ∂u1

∂x
= 0,

R2[u] =
∂u1

∂t
+ u1(u1 − 1) − (u1)2

∂u2

∂x
= 0,

(2.250)

with independent variables (x1, x2) = (x, t) and dependent variables (u1, u2).
Here u1 = u satisfies the nonlinear telegraph equation

(u−2ut + 1 − u−1)t − uxx = 0.

nvertible Mappings Through Conservation Law Multipliers2.6  I
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One can show that the NLT system (2.250) has an infinite set of con-
servation law multipliers of the form μi[U ] = μi(x, t, U1, U2) that yields its
linearization by an invertible point transformation as follows. After some
integrability analysis of the multiplier determining equations (e.g., using a
computer algebra package such as CRACK [Wolf (2004)]), one first obtains

μ1[U ] = fU2 , μ2[U ] = fU1 , (2.251)

in terms of any function f(x, t, U1, U2) satisfying the linear PDE system

fx + fU2 = 0, ft + U1fU1 = 0, (2.252a)

(U1)2fU1U1 + 2U1fU1 − fU2U2 = 0. (2.252b)

To proceed, one integrates the pair of first-order PDEs (2.252a), which yields
a reduction of the number of independent variables in f(x, t, U1, U2). In par-
ticular, an arbitrary function f(x, t, U1, U2) = f(X,T ) yields the general
solution of (2.252a), where

X = x− U2, T = t− logU1. (2.253)

Then the second order linear PDE (2.252b) combined with the equations
(2.251) yields the infinite set of conservation multipliers

μ1[U ] = −fX(X,T ), μ2[U ] = −fT (X,T )/U1, (2.254)

where f(X,T ) is any solution of the linear PDE

fXX − fTT + fT = 0. (2.255)

Let
v = (v1, v2) = (−fX ,−fT ). (2.256)

After comparing (2.254) with (2.226) in Theorem 2.6.1, one sees that the
necessary conditions for the existence of an invertible mapping of the non-
linear PDE system (2.250) to a target linear PDE system are satisfied, with
the adjoint system of the target PDE system being given by

∂v1

∂X
− ∂v2

∂T
+ v2 = 0,

∂v2

∂X
− ∂v1

∂T
= 0. (2.257)

In the conservation law arising from the set of multipliers (2.254)–(2.256),
one now replaces (u, v) by arbitrary functions (U(x, t), V (X,T )). This leads
to the following conservation law identity for the augmented system consisting
of the given NLT system (2.250) and the linear system (2.257):
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V1R
1[U ] + V2(U1)−1R2[U ]

−U1J[U ]
(
∂V1

∂X
− ∂V2

∂T
+ V2

)
− xJ[U ]

(
∂V2

∂X
− ∂V1

∂T

)
≡ Dx

[
−V1

(
x
∂U2

∂t
+
∂U1

∂t
− U1

)
+V2

(
x− x(U1)−1 ∂U

1

∂t
− U1 ∂U

2

∂t

))
+Dt

[
−V1

(
x− x

∂U2

∂x
+
∂U1

∂t

)
+V2

(
x(U1)−1 ∂U

1

∂x
+ U1 ∂U

2

∂x
− U1

))
,

(2.258)

where, from (2.253), one has the Jacobian determinant

J[U ] =
∣∣∣∣D(X,T )

D(x, t)

∣∣∣∣ = (U1)−1

((
1 − ∂U2

∂x

)(
U1 − ∂U1

∂t

)
− ∂U2

∂t

∂U1

∂x

)
.

Consequently, the sufficiency conditions of Theorem 2.6.2 hold for the exis-
tence of an invertible mapping by a point transformation of the nonlinear
PDE system (2.250) to a target linear PDE system which is given by the
adjoint of the linear PDE system (2.257). In particular, from a comparison
of the identity (2.258) with the identity (2.230), it follows that the point
transformation

z1 = x− u2, z2 = t− log(u1), w1 = x, w2 = u1, (2.259)

maps the nonlinear telegraph system (2.250) invertibly to the linear PDE
system

∂w1

∂z1
− ∂w2

∂z2
− w2 = 0,

∂w2

∂z1
− ∂w1

∂z2
= 0.

(2.260)

Note that the point transformation w̃1 = w1, w̃2 = ez2
w2 maps the linear

PDE system (2.260) to the equivalent linear system (2.93) obtained from
the linearization of the NLT system (2.250) through its infinite set of point
symmetries (2.85)–(2.87).

Exercises 2.6

2.6.1. Consider the nonlinear diffusion equation

nvertible Mappings Through Conservation Law Multipliers2.6  I
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R[u] = u2
xut − uxx = 0. (2.261)

(a) Show that μ[U ] = v(X1, X2) = v(U, t) is a conservation law multiplier
of the PDE (2.261) if v(U, t) satisfies the linear PDE

vX1X1 + vX2 = 0.

(b) Show that for arbitrary functions U and V , one has the identity

V R[U ] − xUx

[
∂V

∂X2
+

∂2V

∂(X1)2

]
≡ Dt(xUxV ) + Dx(−xUtV − U−1

x V + xVX1).

(c) Hence derive the point transformation X1 = u, X2 = t, w = x that
maps the nonlinear PDE (2.261) to the linear heat equation

∂2w

∂(X1)2
− ∂w

∂X2
= 0.

2.6.2. Use the method of conservation law multipliers to derive the hodo-
graph transformation that linearizes the quasilinear system (2.75).

2.6.3. Use the method of conservation law multipliers to linearize the non-
linear heat conduction system (2.142).

2.7 Discussion

An interesting discussion on mappings of a given PDE to a specific target
PDE by comparing the symmetry groups of a given PDE and the target PDE
appears in Ibragimov (1980).

Nonlinear PDEs that admit recursion operators invariably seem to be re-
lated to linear PDEs. For many nonlinear evolution equations that exhibit
such behaviour and are not equivalent to linear PDEs through invertible (or
non-invertible [Section 4.3.1]) transformations, one can transform initial value
problems to inverse scattering problems involving linear PDEs [Gardner et al.
(1967); Lax (1968); Zakharov & Shabat (1971)]. In particular, for such non-
linear evolution equations, there exist recursion operators that are related
to linear operators arising in eigenvalue problems of the associated scatter-
ing problems [Ablowitz et al. (1974)]. Konopelchenko (1987) comprehensively
reviews work on recursion operators and such integrability of nonlinear evo-
lution equations.
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Mikhailov, Shabat & Yamilov (1987) [see also Mikhailov, Shabat & Sokolov
(1991)] give an extensive overview of the work of the Russian school on how
to use invariance under local symmetries combined with differential substi-
tutions to obtain wide classes of linearizable equations. Their papers include
extensive lists of integrable PDEs.

Kingston & Sophocleous (1998) consider the problem of finding point
transformations (including discrete ones) that preserve the general form of
a wide class of (1+1)-dimensional PDEs. Their results are generalized in
Tsaousi (2008).

Tsaousi & Sophocleous (2008) [see also Tsaousi (2008)] use equivalence
transformations to derive differential invariants for the general class of hy-
perbolic equations uxt = F (x, t, u, ux, ut) as well as two subclasses. These
invariants are used to construct equations that can be linearized through
local mappings.

Momoniat (2007) uses the methods presented in this chapter to show that
the generalized thin film equation on a moving substrate given by

∂u

∂t
+

∂

∂x

(
αun ∂

mu

∂xm
− v(t)u

)
= 0 (2.262)

can be mapped by an invertible point transformation to the generalized thin
film equation

∂u

∂t
+

∂

∂x

(
αun ∂

mu

∂xm

)
= 0, (2.263)

where m, n, and α are constants. This is accomplished by first showing that
each of the PDEs (2.262) and (2.263) has four point symmetries with the
same Lie algebra commutation structure and then solving the corresponding
mapping equations (2.13) [(2.22)].

An important question to consider is the following. Which of the two meth-
ods presented in Sections 2.4 and 2.6, respectively, is better for linearization?
It would appear that the method [Section 2.6] based on using local conserva-
tion law multipliers is better computationally, since the solution space of the
local multiplier determining equations, in general, is expected to be smaller
than that for point (contact) symmetries. A way of seeing this is to consider
the situation when a given PDE system is variational, i.e., its linearization
operator (Fréchet derivative) is self-adjoint. For such a system, as shown in
Chapter 1, the determining equations for local multipliers that have a linear
dependence on first derivatives are more over-determined than those for point
symmetries since they include the point symmetry determining equations as
a subset; and, in the case of a given scalar PDE, the determining equations for
first-order local multipliers are more over-determined than those for contact
symmetries since they include the contact symmetry determining equations
as a subset.
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In Chapter 4, it is shown how to extend the work presented in this chapter
to include non-invertible mappings of a given nonlinear PDE system to an
equivalent linear PDE system as well as non-invertible mappings of a given
linear PDE with variable coefficients to an equivalent linear PDE with con-
stant coefficients.



Chapter 3

Nonlocally Related PDE Systems

3.1 Introduction

Up to now, for a given PDE system, we have considered the calculation
and application of its local symmetries (point, contact or higher-order) as
well as the calculation of its local conservation laws. In particular, it has
been shown how to use local symmetries to map solutions to other solutions;
how to use local symmetries of given and target PDEs as an aid in relating
them; how to use point or contact symmetries to determine whether a given
PDE system can be mapped invertibly to some PDE system belonging to
a target class of PDE systems that is completely characterized by its point
symmetries as well as determine an explicit mapping when one exists; how to
use multipliers yielding local conservation laws to determine whether a given
nonlinear PDE system can be mapped invertibly to some linear PDE system
as well as determine a specific mapping when one exists. Moreover, as it is
well known, local symmetries can be used to find specific solutions (invariant
solutions) of PDEs; this application is considered and extended in Chapter
5.

In this chapter, a framework is introduced to find nonlocally related sys-
tems for a given PDE system. This framework allows one to extend the cal-
culations and applications of local symmetries and local conservation laws,
that were presented in Chapters 1 and 2, to include nonlocal symmetries
and nonlocal conservation laws which is considered in Chapter 4. In general,
a symmetry of a PDE system is any transformation of its solution mani-
fold into itself, i.e., a symmetry transforms (maps) any solution of a PDE
system to another solution of the same PDE system. Hence continuous sym-
metry transformations (which are essentially deformations of solutions) are
defined topologically and are thus not restricted to local transformations act-
ing on the space of independent and dependent variables and their derivatives
(even if this space is infinite-dimensional as is the case for the global action
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of higher-order symmetries). So, in principle, from this point of view any
nontrivial PDE system has symmetries. The problem is to find systematic
procedures to find and use continuous symmetries beyond the local ones ob-
tained through a direct application of Lie’s algorithm. In particular, a direct
application of Lie’s algorithm only allows one to calculate local symmetries
whose infinitesimals depend at most on a finite number of derivatives of the
dependent variables.

For a given PDE system, the introduced framework leads to nonlocally
related systems with the property that any solution of a nonlocally related
PDE system yields a solution of the given PDE system and, conversely, any
solution of the given PDE system yields a solution of a nonlocally related
PDE system.

A way to find such nonlocally related PDE systems, in order to extend
the calculation and use of continuous symmetries to include the calculation
and use of nonlocal symmetries of a given PDE system, is to embed the
given PDE system in an augmented PDE system. In such an embedding, it
is important that each solution of an augmented PDE system projects onto
a solution of the given PDE system and, conversely, that each solution of the
given PDE system yields a solution of the augmented PDE system. Conse-
quently, the solution of any boundary value problem posed for the given PDE
system is embedded in the solution of a boundary value problem posed for
the augmented PDE system and the converse also holds. Moreover, in order
to be able to calculate further conservation laws and/or symmetries of the
given PDE system, it is necessary that the relationship between the given
PDE system and such an augmented PDE system is nonlocal, i.e., there is
not a one-to-one local transformation connecting the solutions of the given
PDE system and the augmented PDE system. Within such a relationship,
it follows that a symmetry (conservation law) of the augmented PDE sys-
tem yields a symmetry (conservation law) of the given PDE system, and the
converse statement also holds. Moreover, since their solutions are not related
by a local mapping, it also follows that a local symmetry or local conserva-
tion law of the augmented PDE system could yield, respectively, a nonlocal
symmetry or nonlocal conservation law of the given PDE system; conversely,
a local symmetry or local conservation law of the given PDE system could
yield, respectively, a nonlocal symmetry or nonlocal conservation law of the
augmented PDE system. More importantly, it turns out that nonlocal sym-
metries of a given PDE system can be calculated through applying Lie’s
algorithm to the calculation of local symmetries of such augmented PDE
systems and, similarly, nonlocal conservation laws of a given PDE system
can be calculated through any local procedure such as the direct method
applied to such augmented PDE systems. Perhaps, most importantly, since
such nonlocally related PDE systems have the same solution sets, it follows
that any general method of analysis (qualitative, perturbation, numerical,
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etc.) that fails to work for a given PDE system, especially a method that is
not coordinate-dependent, could turn out to be successful when applied to
such a nonlocally related PDE system.

In this chapter, the discussion is restricted to finding nonlocally related
PDE systems in the case of two independent variables. [The situation for three
or more independent variables is more complex and is treated in Chapter 5.]

It turns out that a natural way to find such nonlocally related augmented
PDE systems is through the use of local conservation laws of a given PDE
system. In the case of two independent variables, say x and t, a local conser-
vation law of a given PDE system directly yields an augmented PDE system
consisting of the given PDE system and a pair of PDEs with a potential
variable v, arising from the conservation law. Satisfaction of the integrabil-
ity condition vtx = vxt leads to the same solution sets for the given and
augmented PDE systems.

After seeing that each local conservation law of a given PDE system yields
a potential variable and, as a consequence, could yield an equivalent non-
locally related augmented PDE system called a potential system, it turns
out that one can consider the systematic construction of other nonlocally
related, but distinct, PDE systems. In particular, it is shown that if a given
PDE system has n local conservation laws which, in turn, respectively yield n

potential variables, then one could obtain a tree of up to 2n−1 nonlocally re-
lated PDE systems by considering the obtained potential systems one-by-one
(n singlets, each with one potential variable), in pairs (1

2n(n − 1) couplets,
each with two potential variables), . . ., and all together (one n-plet containing
all n potential variables).

Moreover, for any PDE system contained in such a tree of nonlocally re-
lated PDE systems, one can calculate and use its local conservation laws
(which now have multipliers that can depend on the obtained potential vari-
ables) to obtain further potential systems and their combinations. In addition,
in the situation when the given PDE system has precisely n local conserva-
tion laws, one can show that this extending procedure could yield a further
distinct nonlocally related PDE system only if a set of multipliers for such
local conservation laws has an essential dependence on potential (nonlocal)
variables.

Furthermore, it is shown that another way to obtain a nonlocally related
PDE system for a given PDE system is through consideration of subsystems
of the given PDE system. In particular, one can obtain a subsystem from a
given PDE system if one is able to exclude one of the dependent variables
from the given PDE system through some means that connects each solution
of the given PDE system and subsystem. Moreover, such subsystems could
also arise following an interchange of one or more independent and dependent
variables.
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A subsystem is nonlocally related to the given PDE system if the excluded
dependent variable cannot be locally expressed in terms of the independent
variables, the remaining dependent variables and their derivatives in the given
PDE system.

As a consequence of using the various systematic procedures outlined
above, one can obtain an extended tree of nonlocally related PDE systems
for a given PDE system. Moreover, the given PDE system could be any PDE
system within such an extended tree!

The nonlocally related PDE systems within such an extended tree are re-
lated to each other through nonlocal mappings. In particular, such nonlocally
related PDE systems are equivalent in the sense that the solution set of each
PDE system in an extended tree yields the solution set of any other PDE
system within the extended tree.

The above outlined procedures for obtaining nonlocally related PDE sys-
tems are illustrated through many examples. A particularly important exam-
ple is the system of equations for planar gas dynamics. Here it is shown that
for such a PDE system given in its Eulerian formulation, a corresponding
potential system arises from the continuity equation (conservation of mass).
After an interchange of the potential variable (which turns out to be the La-
grangian mass coordinate) and the spatial variable in the potential system
that results from the continuity equation, one obtains a PDE system with
velocity, pressure, density, and the spatial variable as dependent variables
and with the time and the potential variable as independent variables. The
nonlocally related subsystem obtained by excluding the spatial variable turns
out to be the system of planar gas dynamics equations in its Lagrangian for-
mulation. Here a resulting extended tree of nonlocally related PDE systems
includes the Euler and Lagrange systems as well as other nonlocally related
PDE systems. Moreover, for specific constitutive functions (depending on the
pressure and density variables) related to the entropy function, one obtains
further extended trees than in the case of an arbitrary constitutive function.

Through several illustrative examples in Chapter 4, it is shown that
through the study of particular PDE systems in an extended tree of non-
locally related PDE systems that are constructed through each of the above
outlined procedures, one is able to calculate further symmetries as well as
non-invertible linearizations of a given PDE system. In the case of the system
of equations for planar gas dynamics, it is shown that for specific constitutive
functions, one is able to obtain nonlocal symmetries of the Euler (Lagrange)
system from point symmetries of the Lagrange (Euler) system and/or other
nonlocally related PDE systems in an extended tree. In Chapter 4, it is also
shown that through such nonlocally related PDE systems, one can extend the
classes of variable coefficient linear PDEs that can be mapped into constant
coefficient linear PDEs beyond those obtained through invertible mappings.
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Much of the work presented in this chapter has appeared in Bluman &
Kumei [(1987), (1989), (1990a,b)], Bluman, Kumei & Reid (1988), Bluman
(1993), Bluman & Doran-Wu (1995), Bluman & Temuerchaolu (2005a),
Bluman & Cheviakov [(2005), (2007)], and Bluman, Cheviakov & Ivanova
(2006). Closely related work has also appeared in Akhatov, Gazizov & Ibragi-
mov (1991), Pukhnachev (1987), Meirmanov, Pukhnachov & Shmarev (1997),
Sjöberg & Mahomed (2004), Popovych & Ivanova (2005b), and Ma (1991).

3.2 Nonlocally Related Potential Systems and
Subsystems in Two Dimensions

Now we initiate the development of a framework for obtaining nonlocally re-
lated systems of partial differential equations for the case of two independent
variables (x1, x2) = (x, t). In Chapter 5, generalizations are considered for
the case of more than two independent variables.

Consider a scalar PDE R{x, t ;u} of order k with one dependent variable
u and two independent variables (x, t), which is given in the conservation law
form

DtΨ(x, t, u, ∂u, . . . , ∂k−1u) + DxΦ(x, t, u, ∂u, . . . , ∂k−1u) = 0. (3.1)

In equation (3.1), the total derivative operators are given by

Di =
∂

∂xi
+ ui

∂

∂u
+ uij1

∂

∂uj1

+ · · · + uij1j2...jk−1

∂

∂uj1j2...jk−1

, i, jl = 1, 2,

where D1 = Dx, D2 = Dt.

The conservation law (3.1) yields a pair of potential equations S{x, t ;u, v}
given by

P :

{
vx = Ψ(x, t, u, ∂u, . . . , ∂k−1u),

vt = −Φ(x, t, u, ∂u, . . . , ∂k−1u)
(3.2)

for some auxiliary potential variable v = v(x, t).
In (3.2), the potential variable v is a nonlocal variable, i.e. it cannot be

expressed as a local function of the given variables (x, t, u) and partial deriva-
tives of u. In particular, v is determined to within an integration constant by
performing a path integral in the xt-plane.

The potential system S{x, t ;u, v} (3.2) has essentially the same solution
set as that of the scalar PDE R{x, t ;u} (3.1). In particular, if u = Θ(x, t)
is a solution of the PDE R{x, t ;u} (3.1), then due to the satisfaction of the
integrability condition vxt = vtx, it follows that there is a corresponding so-
lution v = Ξ(x, t) of the potential system S{x, t ;u, v} (3.2), unique to within

3.2  N
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an arbitrary constant, i.e., if (u, v) = (Θ(x, t), Ξ(x, t)) is a solution of the po-
tential system S{x, t ;u, v} (3.2), then so is (u, v) = (Θ(x, t), Ξ(x, t) +C) for
any constant C. Conversely, if (u, v) = (Θ(x, t), Ξ(x, t)) solves the potential
system S{x, t ;u, v} (3.2), then by projection, u = Θ(x, t) solves the scalar
PDE R{x, t ;u} (3.1). Consequently, through this relationship between their
solution sets, the potential system S{x, t ;u, v} (3.2) is nonlocally equivalent
to the scalar PDE R{x, t ;u} (3.1) and the mapping that relates the PDE
systems (3.2) and (3.1) is non-invertible.

3.2.1 Potential systems

Consider a given PDE system R{x, t ;u} of order k, with m dependent vari-
ables u = (u1, . . . , um) and two independent variables (x, t), which consists
of N equations

Rσ(x, t, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N.

Suppose a conservation law (3.1) is known for R{x, t ;u}. As discussed pre-
viously, the conservation law (3.1) yields a set of potential equations (3.2).

Definition 3.2.1. A system of PDEs consisting of a given PDE system
R{x, t ;u} and the pair of potential equations P given by (3.2) that follows
from a conservation law (3.1) of R{x, t ;u}, is a potential system denoted by
S{x, t ;u, v} = R{x, t ;u} ∪ P.

Remark 3.2.1. Note that in principle, it is possible for the potential variable
v to depend only on x, t, u and/or partial derivatives of u, and thus be a local
variable. See Exercise 3.2.4 for details.

If the conservation law (3.1) used to yield a pair of potential equations is
itself one of the equations of the given PDE system R{x, t ;u}, then in the
potential system it is clearly not necessary to include this redundant equation.
In contrast, if the conservation law (3.1) arises from a multiplier that has
an essential dependence on u, it may be necessary to retain all equations
of R{x, t ;u} in S{x, t ;u, v} in order to be assured that every solution of
S{x, t ;u, v} projects onto a solution of R{x, t ;u}.

The following important theorem holds, which concerns potential variables
arising from equivalent conservation laws. [See Definition 1.3.3.]

Theorem 3.2.1. Suppose two equivalent conservation laws are known for a
PDE system R{x, t ;u}. Then the corresponding potential variables v1 and v2

are locally related to each other. In particular, v2 = v1+f(x, t, u, ∂u, . . . , ∂su)
holds for some function f(x, t, u, ∂u, . . . , ∂su), s ≥ 0.
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Proof. See Exercise 3.2.1. ��

As an example of potential systems, let R{x, t ;u} be the nonlinear diffu-
sion equation

ut = (L(u))xx, (3.3)

where L(u) is an arbitrary function.
Since the scalar PDE (3.3) is a conservation law as it stands, one can

introduce a potential variable v and obtain the potential system S{x, t ;u, v}
given by

vx = u,

vt = (L(u))x.
(3.4)

Since the second equation of the potential system (3.4) is also a conservation
law, one can introduce a second potential variable w and obtain another
potential system T{x, t ;u, v, w} given by

vx = u,

wx = v,

wt = L(u).

(3.5)

By construction, the three PDE systems R{x, t ;u}, S{x, t ;u, v}, and T{x, t;
u, v, w} are nonlocally related to each other.

3.2.2 Nonlocally related subsystems

Another important way of obtaining PDE systems that are nonlocally related
to a given PDE system R{x, t ;u} is through the construction of appropriate
subsystems. Suppose R{x, t ;u} has m dependent variables u = (u1, . . . , um).
A subsystem of R{x, t ;u} is a PDE system that can be obtained from
R{x, t ;u} by excluding one or more of its dependent variables with the prop-
erties that (1) any solution of the subsystem yields a solution of R{x, t ;u};
and (2) that the solutions of the subsystem yield all solutions of R{x, t ;u}.
Hence in this sense the subsystem is equivalent to R{x, t ;u}. Subsystems can
arise directly through the elimination of one or more of the given dependent
variables of R{x, t ;u} as well as indirectly through the elimination of one or
more of the resulting dependent variables following a point transformation
that involves an interchange of one or more of the dependent and independent
variables of R{x, t ;u}.

As a first example, let R{x, t ;u, v} be the system of nonlinear telegraph
(NLT) equations given by

onlocally Related Potential Systems and Subsystems3.2  N
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ut − vx = 0,

vt − F (u)ux −G(u) = 0,
(3.6)

where (u, v) are dependent variables, (x, t) are independent variables, and
F (u), G(u) are arbitrary constitutive functions. For arbitrary F (u) and G(u),
one cannot exclude u from (3.6). However v may be excluded, using vtx = vxt,
to obtain the subsystem R{x, t ;u} given by

utt − (F (u)ux)x − (G(u))x = 0. (3.7)

The subsystem R{x, t ;u} (3.7) is obviously nonlocally related to R{x, t ;u, v}
(3.6) since R{x, t ;u, v} is a potential system of R{x, t ;u}, with potential
variable v.

As a second example, let R{x, t ;u, v, w} be the system of PDEs given by

vx − u = 0,

wx − v = 0,

wt +
(

1
u

+ bx2

)
= 0,

(3.8)

related to a nonlinear reaction-diffusion equation. Here b = const is an arbi-
trary parameter. Through the first two equations of (3.8), one can eliminate
either one of the dependent variables u and v to obtain, respectively, subsys-
tems R1{x, t ; v, w} given by

wx − v = 0,

wt +
(

1
vx

+ bx2

)
= 0

(3.9)

and R2{x, t ;u,w} given by

wxx − u = 0,

wt +
(

1
u

+ bx2

)
= 0.

(3.10)

The subsystem R1{x, t ; v, w} (3.9) is obviously locally related to R{x, t;
u, v, w} (3.8). In particular, for any solution (v, w) = (Ξ(x, t), Γ (x, t))
of R1{x, t ; v, w}, the corresponding solution of R{x, t ;u, v, w} is locally
expressed through (u, v, w) = (Ξx(x, t), Ξ(x, t), Γ (x, t)), since u = vx,
and, conversely, any solution of R{x, t ;u, v, w} projects onto a solution of
R1{x, t ; v, w}. Similarly, R2{x, t ;u,w} (3.10) is a locally related subsystem
of R{x, t ;u, v, w}.

Moreover, one can eliminate w from the system R{x, t ;u, v, w} (3.8)
through equating the mixed partials wxt = wtx. The resulting subsystem
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R3{x, t ;u, v} given by

vx − u = 0,

vt +
(

1
u

+ bx2

)
x

= 0
(3.11)

is nonlocally related to R{x, t ;u, v, w} since the given system (3.8) is the
potential system resulting from the conservation law expressed by the second
equation of (3.11).

One can obtain additional subsystems of R{x, t ;u, v, w} (3.8) through
elimination of pairs of dependent variables (equivalent to excluding a single
dependent variable from any one of the subsystems (3.9), (3.10), or (3.11)).
This yields the subsystems R

1
{x, t ;u} given by

ut +
(

1
u

+ bx2

)
xx

= 0; (3.12)

R
2
{x, t ; v} given by

vt +
(

1
vx

+ bx2

)
x

= 0; (3.13)

and R
3
{x, t ;w} given by

wt +
(

1
wxx

+ bx2

)
= 0. (3.14)

The subsystems (3.12) and (3.13) are nonlocally related to R{x, t ;u, v, w}
(3.8), whereas the subsystem (3.14) is locally related to R{x, t ;u, v, w} [Ex-
ercise 3.2.2].

The above examples illustrate that such subsystems of a PDE system
R{x, t ;u} may be locally or nonlocally related to it. In applications, one is
interested in nonlocally related subsystems since for a given PDE system only
nonlocally related subsystems could yield new results for a particular method
of analysis. The following theorem is concerned with obtaining nonlocally
related subsystems of a given PDE system.

Theorem 3.2.2. A subsystem R{x, t ;u1, . . . , um−1}, obtained from a sys-
tem of PDEs R{x, t ;u} with m dependent variables by excluding a depen-
dent variable, say um, is nonlocally related to R{x, t ;u} if um cannot be
directly expressed from the equations of R{x, t ;u} in terms of its indepen-
dent variables and its remaining dependent variables u1, . . . , um−1, and their
derivatives. Otherwise the subsystem R{x, t ;u1, . . . , um−1} is locally related
to R{x, t ;u}.

Proof. See Exercise 3.2.3. ��
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So far the exhibited examples of subsystems have been obtained by the
elimination of one or more of the given dependent variables of a given PDE
system R{x, t ;u}. Now examples are considered of nonlocally related subsys-
tems that are obtained directly from potential systems of R{x, t ;u} through
exclusion of a dependent variable of R{x, t ;u} from the potential system; ob-
tained from R{x, t ;u} or potential systems of R{x, t ;u} after an interchange
of one or more independent and dependent variables.

(1) Example of a nonlocally related subsystem obtained from a potential sys-
tem
Let R{x, t ;u} be the linear wave equation with a variable wave speed c(x)
given by

utt = c2(x)uxx. (3.15)

The scalar PDE (3.15) can be rewritten as a conservation law Dt(c−2(x)
×ut) − Dx(ux) = 0, therefore one can introduce a potential variable v and
obtain the potential system S{x, t ;u, v} given by

vx = c−2(x)ut,

vt = ux.
(3.16)

Excluding u from (3.16) after cross-differentiation, one obtains the nonlocally
related subsystem S{x, t ; v} given by

vtt = (c2(x)vx)x. (3.17)

The subsystem S{x, t ; v} (3.17) is clearly nonlocally related to the given PDE
R{x, t ;u} (3.15).

(2) Example of a nonlocally related subsystem obtained after an interchange
of variables
Let U{x, t ;u} be the nonlinear diffusion equation

ut − (K(u)ux)x = 0. (3.18)

Since the PDE (3.18) is a conservation law as written, one can directly
obtain the corresponding potential system UV{x, t ;u, v} given by

vx = u,

vt = K(u)ux.
(3.19)

Two obvious subsystems of UV{x, t ;u, v} include the given PDE U{x, t ;u}
itself and its locally related subsystem UV{x, t ; v} given by

vt = K(vx)vxx. (3.20)
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However, from the potential system UV{x, t ;u, v} (3.19), one can ob-
tain another subsystem that is nonlocally related to U{x, t ;u}. Consider a
point transformation that involves an interchange of a dependent and inde-
pendent variable of UV{x, t ;u, v}. In particular, choose (u, t) as indepen-
dent variables, and x = x(u, t), v = v(u, t) as dependent variables. This
non-degenerate point transformation invertibly maps the potential system
UV{x, t ;u, v} (3.19) to the nonlinear PDE system XV{u, t ;x, v} given by

vu = uxu,

vtxu − xtvu = K(u).
(3.21)

Hence, it is easy to see that the PDE system (3.21) is nonlocally related to
the diffusion equation U{x, t ;u} (3.18).

Observe that from the PDE system XV{u, t ;x, v} (3.21), one can exclude
the dependent variable x through cross-differentiation, and thus obtain the
subsystem V{u, t ; v} given by

vuu =
vu

u2K(u)
(u2K ′(u) + vtvu). (3.22)

The subsystem (3.22) is nonlocally related to both the PDE system XV{u, t;
x, v} (3.21) and the given nonlinear diffusion equation U{x, t ;u} (3.18).

Similarly, one can exclude the dependent variable v from (3.21) through
cross-differentiation, and obtain a nonlocally related subsystem X{u, t ;x}
given by

xuu =
xu

K(u)
(K ′(u) + xtxu). (3.23)

However it is easy to see that the PDE (3.23) is locally related to the
given nonlinear diffusion equation U{x, t ;u} (3.18), since X{u, t ;x} is ob-
tained through elimination of the nonlocal variable v. Indeed, the equation
X{u, t ;x} (3.23), through its indicated notation, is related to U{x, t ;u}
(3.18) by a hodograph-type point transformation, with (u, t) as the inde-
pendent variables, and x = x(u, t) as the dependent variable.

Exercises 3.2

3.2.1. Prove Theorem 3.2.1.

3.2.2. Show that the subsystems (3.12) and (3.13) are nonlocally related to
the PDE system (3.8), and that the subsystem (3.14) is locally related to
(3.8).

3.2.3. Prove Theorem 3.2.2.

onlocally Related Potential Systems and Subsystems3.2  N
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3.2.4.

(a) Consider the PDE system R{x, t ;u, v} given by

ut = vxx,

vt = u−1(v − u)xvx + vxx.
(3.24)

Use the first equation of (3.24) to introduce a potential variable w.
Show that w is a local variable by showing that w is a function of
u− v.

(b) Show that if a PDE system R{x, t ;u} with two independent variables
x, t has a local conservation law (3.1), then the potential variable v(x, t)
in the potential equations (3.2) is a local variable (i.e., v is functionally
dependent on the local variables x, t, u and the partial derivatives of u)
if and only if there exists a function g = g(x, t, u, ∂u, . . . , ∂lu), l ≥ 0,
such that the equation

ΨDtg + ΦDxg = 0 (3.25)

holds, where Ψ and Φ are, respectively, the density and the flux of the
conservation law (3.1).

(c) For the PDE system R{x, t ;u, v} (3.24), find Ψ , Φ and g.
(d) Consider a linear advection equation (conservation law) ut + ux =

0. Using (3.25), show that the resulting potential variable is a local
variable.

3.2.5. Consider a PDE system in 3D space given by

curlB × B = grad p, divB = 0. (3.26)

The system (3.26) has two important physical applications. Firstly, it de-
scribes the static equilibrium of ideal plasmas; here B is the magnetic field,
and p is the plasma pressure. Secondly, the PDE system (3.26) describes a
time-independent (equilibrium) flow of an incompressible fluid; here V = B
is the fluid velocity vector field, and P = −p− V2/2 is the fluid pressure.

(a) In applications, the axially-symmetric reduction of the equations (3.26)
is often considered. Assume that B and p are both independent
of the polar angle φ, i.e., B = b1(r, z)er + b2(r, z)eφ + b3(r, z)ez,
p = p(r, z). Explicitly write down the axially symmetric PDE system
BP{r, z ; b1, b2, b3, p} consisting of four scalar equations.

(b) Show that the system BP{r, z ; b1, b2, b3, p} has a family of conservation
laws

Dr

[
rb1F (rb2)

]
+ Dz

[
rb3F (rb2)

]
= 0, (3.27)

where F is an arbitrary smooth function of rb2. Find a set of multipliers
that yields the conservation law (3.27).
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(c) From (b), it follows that any choice for the arbitrary function F (rb2)
yields a pair of potential equations

vF
z = rb1F (rb2),

vF
r = −rb3F (rb2).

(3.28)

For any two choices for F (rb2) given by F1(rb2), F2(rb2), show that
the corresponding potential variables vF1(r, z) and vF2(r, z) are func-
tionally dependent.

(d) Write down the potential system BPVF{r, z ; b1, b2, b3, p, vF } for an
arbitrary F (rb2).
For any F (rb2), show that b2(r, z) = r−1I(v(r, z)), p(r, z) = P (v(r, z)),
where v(r, z) is the corresponding potential variable in (3.28), and I,
P are arbitrary sufficiently smooth functions of their arguments. Thus
the potential variable v(r, z) is a local variable. Hence the potential
system BPV{r, z ; b1, b2, b3, p, v} is equivalent and locally related to
the given PDE system BP{r, z ; b1, b2, b3, p}.

(e) Let F (rb2) = 1. From the corresponding potential system BPV{r, z;
b1, b2, b3, p, v}, exclude dependent variables b1, b2, b3, p, and obtain the
subsystem V{r, z ; v}. Show that it is given by the scalar PDE

vrr −
vr

r
+ vzz + I(v)I ′(v) = −r2P ′(v), (3.29)

i.e., the famous Bragg–Hawthorne or Grad–Shafranov equation [Bragg
& Hawthorne (1950); Grad & Rubin (1958); Shafranov (1958)]. This
demonstrates that the Bragg–Hawthorne equation (3.29) is locally re-
lated to the given system BP{r, z ; b1, b2, b3, p} (3.26), in spite of the
fact that it involves a potential variable.

3.3 Trees of Nonlocally Related PDE Systems

The framework presented in Section 3.2, for constructing nonlocally related
PDE systems, is now extended. The extended framework leads one to consider
trees of nonlocally related PDE systems. Within each tree, all PDE systems
will be equivalent in the sense that the solution set of any PDE system in a
tree can be obtained from the solution set of any other PDE system in the
same tree.

Consider a given PDE system R{x, t ;u}, with n known local conservation
laws and n corresponding potential systems denoted by Si{x, t ;u, vi} (i =
1, . . . , n). A natural way to extend this set of n nonlocally related systems
for the given PDE system R{x, t ;u} is to consider potential systems for each
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of the potential systems Si{x, t ;u, vi}, obtained from the conservation laws
of the latter to introduce further potential variables. A systematic procedure
that uses this idea is outlined in Section 3.3.1 and illustrated with examples.

In Section 3.5, the extended framework for obtaining nonlocally related
PDE systems that is presented in this section is still further extended. In
particular, it is shown that if a given PDE system R{x, t ;u} has n known lo-
cal conservation laws, then one can immediately obtain up to 2n − 1 distinct
nonlocally related PDE systems from the n local conservation laws. Such
nonlocally related systems are obtained by considering the potential systems
Si{x, t ;u, vi} one-by-one (n singlets, each with one potential variable), in
pairs ( 1

2n(n− 1) couplets, each with two potential variables),. . . , and all to-
gether (one n-plet containing all n potential variables). Moreover, for any such
nonlocally related PDE system, through its local conservation laws (which
have fluxes that depend on the corresponding potential variables, and thus
may be nonlocal conservation laws of the given PDE system R{x, t ;u}; see
Section 3.4), one could obtain additional potential systems and accordingly
still more nonlocally related PDE systems through combinations of potential
systems.

3.3.1 Basic procedure of tree construction

A procedure is now outlined for constructing a hierarchy (tree) of nonlocally
related potential systems and subsystems for a given PDE system R{x, t ;u},
based on the work presented in Section 3.2.

1. Construction of potential systems. Suppose R{x, t ;u} includes
explicit conservation laws. For each explicit conservation law, intro-
duce a potential variable and construct the corresponding potential
system. For any such potential system, use its explicit conservation
laws to obtain further potential systems, etc., until the obtained set
of potential systems includes no more explicit conservation laws. Let
T1 denote the resulting tree of nonlocally related PDE systems. [If
R{x, t ;u} does not include explicit conservation laws as written, then
T1 is simply R{x, t ;u}.]

2. Additional conservation laws. Tree extension. For each PDE sys-
tem in T1, use any method to find further local conservation laws. Use
these additional conservation laws to obtain more potential systems.
Attempt to delete locally related systems. Continue until no further
conservation laws are found for any nonlocally related potential sys-
tem. Assuming that all locally related systems have been deleted, this
yields a tree of nonlocally related PDE systems denoted by T2.
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3. Construction of subsystems. For all PDE systems in the tree T2,
exclude where possible, one by one, dependent variables, to generate
all subsystems of the systems in the tree T2. Eliminate locally related
subsystems. In addition, generate nonlocally related subsystems ob-
tained after an interchange of one or more independent and dependent
variables. [See the last example in Section 3.2.2.] This yields a possibly
larger tree of nonlocally related systems denoted by T3.

4. Continuation. Continue until no further local conservation laws are
found for any nonlocally related potential system or subsystem. This
yields a further extended tree denoted by T4.

In the extended tree T4, all PDE systems are equivalent in the terms of
their related solution sets and typically will be nonlocally related. Moreover,
any PDE system in T4 can serve as a “given” system since the same tree T4

can hold for any PDE system in T4. Furthermore, it should be noted that if a
given PDE system contains one or more constitutive functions with some de-
grees of arbitrariness, then corresponding extended trees of nonlocally related
PDE systems can be further enlarged for different forms of the constitutive
functions since the obtained conservation laws as well as the obtained sub-
systems for the given system could depend on the form of a constitutive
function. In particular, some branches of a tree could be “general” (i.e., hold-
ing for all constitutive functions), whereas other branches could depend on
the specific forms of constitutive functions determined from conservation law
and/or subsystem construction. This construction of further branches is re-
lated to the problem of the classification of conservation laws of PDE systems
with constitutive functions.

It should be noted that sometimes it may be difficult to determine whether
a newly constructed system in an extended tree is nonlocally related to all
other systems in the tree. However, from the point of view of computations
for a particular method of analysis, although redundant (locally related) PDE
systems in a tree will lead to additional computations, they do not lead to
incorrect results.

Note that nonlocally related subsystems do not yield further conservation
laws, since a local conservation law of a subsystem of a PDE system R{x, t ;u}
(obtained directly or after an interchange of one or more independent and in-
dependent variables) must be a local conservation law of R{x, t ;u} [Exercise
3.4.2].
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3.3.2 A tree for a nonlinear diffusion equation

The procedure presented in Section 3.3.1 is now used to construct an extended
tree of potential systems and subsystems for the nonlinear diffusion equation
U{x, t ;u} (3.18) with an arbitrary constitutive function K(u). As shown
previously, the PDE (3.18) has the potential system UV{x, t ;u, v} (3.19).

Let the conductivity K(u) = L′(u) and observe that the second equation
of the potential system UV{x, t ;u, v} (3.19) is also a conservation law. Ac-
cordingly, one obtains another potential variable w and the potential system
UVW{x, t ;u, v, w} given by

vx = u,

wx = v,

wt = L(u).

(3.30)

Since neither UV{x, t ;u, v} (3.19) nor UVW{x, t ;u, v, w} (3.30) have
further obvious local conservation laws, one seeks conservation laws of sys-
tems U{x, t ;u}, UV{x, t ;u, v} and UVW{x, t ;u, v, w} that arise from sets
of multipliers that are functions of their respective dependent and indepen-
dent variables.

For the nonlinear diffusion equation U{x, t ;u} (3.18), for arbitrary K(u),
the only such multipliers are Λ(1) = 1, yielding the potential system UV{x, t;
u, v} (3.19), and Λ(2) = x leading to the conservation law

Dt(xu) − Dx(x(L(u))x − L(u)) = 0. (3.31)

From (3.31), one can introduce a potential variable α and obtain the potential
system UA{x, t ;u, α} given by

αx = xu,

αt = x(L(u))x − L(u).
(3.32)

For the potential system UV{x, t ;u, v} (3.19), for arbitrary K(u), the only
set of multipliers is given by (Λ1, Λ2) = (0, 1) and this yields the known
potential system UVW{x, t ;u, v, w} (3.30).

For the potential system UA{x, t ;u, α} (3.32), for arbitrary K(u), the
only set of multipliers is given by (Λ1, Λ2) = (0, x−2). This yields the conser-
vation law

Dt(x−2α) − Dx(x−1L(u)) = 0. (3.33)

From the conservation law (3.33), one can introduce another potential vari-
able β and obtain the potential system UAB{x, t ;u, α, β} given by
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αx = xu,

βx = x−2α,

βt = x−1L(u).

(3.34)

It turns out that the potential systems UVW{x, t ;u, v, w} (3.30) and
UAB{x, t ;u, α, β} (3.34) are locally related through the transformation

v = x−1α + β, w = xβ (3.35)

[Exercise 3.3.1].
Seeking local conservation laws of the potential system UVW{x, t ;u, v, w}

(3.30), for arbitrary K(u), with multipliers that depend on its dependent
and independent variables, one only finds the trivial set of multipliers
(Λ1, Λ2, Λ3) = (0, 0, 0) . Hence, the construction of local conservation laws
ends at this stage. [In general, there might exist additional local conservation
laws with multipliers depending on derivatives of its dependent variables, but
here such multipliers are not considered.] Note also that local conservation
laws have only been sought that hold for arbitrary K(u). For particular forms
of K(u), additional local conservation laws arise to yield further potential
systems and hence a tree extension [Exercise 3.3.2].

Now consider direct subsystems. Excluding the dependent variable u from
the potential system UV{x, t ;u, v} (3.19), or excluding the dependent vari-
ables u and v from the potential system UVW{x, t ;u, v, w} (3.30), one only
obtains locally related subsystems [Exercise 3.3.3].

Now subsystems are sought that are obtained after an interchange of in-
dependent and dependent variables. As shown previously, the interchange of
a dependent and independent variable in the potential system UV{x, t ;u, v}
(3.19) (namely, treating (u, t) as independent variables, and x = x(u, t), v =
v(u, t) as dependent variables) yields an invertibly equivalent PDE system
XV{u, t ;x, v} (3.21). After separately excluding the dependent variables x
and v through cross-differentiation, the PDE system XV{u, t ;x, v} yields the
subsystems V{u, t ; v} and X{u, t ;x} given by (3.22) and (3.23), respectively.
The PDE V{u, t ; v} is nonlocally related to the given nonlinear diffusion
equation U{x, t ;u} (3.18), whereas the PDE X{u, t ;x} is locally related to
it.

Next, consider a second interchange of variables for the potential system
UV{x, t ;u, v} (3.19): let (u, v) be treated as the independent variables, and
x = x(u, v), t = t(u, v) as the dependent variables. This point transformation
leads to the invertibly equivalent PDE system XT{u, v ;x, t} given by

xu = K(u)tv,

tu(uxv − 1) = uK(u)t2v,
(3.36)
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and hence locally related to UV{x, t ;u, v} (3.19). The PDE system (3.36)
has two subsystems obtained by excluding x and t, respectively: X{u, v ;x}
(not to be confused with X{t, u ;x} (3.23)) and T{u, v ; t}. These subsystems
are nonlocally related to both XT{u, v ;x, t} (3.36) and the given nonlinear
diffusion equation U{x, t ;u} (3.18) [Exercise 3.3.3]. However, since the scalar
PDE T{u, v ; t} is obviously locally related to the PDE V{u, t ; v} (3.22)
[Their sets of variables coincide.], it is not included in the tree of nonlocally
related systems that includes the PDE V{u, t ; v} .

Further subsystems arise after interchanging and then excluding variables
in the potential system UA{x, t ;u, α} (3.32). Consider an interchange of a
dependent and independent variable: treat (x, u) as the independent vari-
ables, and t = t(x, u), α = α(x, u) as the dependent variables. The resulting
PDE system TA{x, u ; t, α} given by

ax − txau

tu
= xu,

au

tu
= −L(u) − xL(u)tx

tu

(3.37)

is locally related to UA{x, t ;u, α} (3.32). The PDE system (3.37) has two
subsystems T{x, u ; t} and A{x, u ;α}, obtained by excluding α and t, respec-
tively. It is obvious that the scalar PDE T{x, u ; t} is invertibly equivalent to
the given nonlinear diffusion equation U{x, t ;u} (3.18). However, the PDE
A{x, u ;α} given by

axx = u+
L(u)
L′(u)

+ (ax − xu)2
(

L′′(u)
L′(u)au

− auu

a2
u

)
+ 2(ax − xu)

axu

au
(3.38)

is nonlocally related to both the potential system TA{x, u ; t, α} (3.37) and
the given nonlinear diffusion equation U{x, t ;u} (3.18).

Other nonlocally related subsystems that may arise after further inter-
changes of variables (in particular, from point transformations that involve
compositions of dependent and independent variables) in potential systems
UV{x, t ;u, v}, UA{x, t ;u, α}, UVW{x, t ;u, v, w} and UAB{x, t ;u, α, β}
are not considered here.

The resulting tree of nonlocally related potential systems and subsystems
is exhibited in Figure 3.1.

3.3.3 A tree for planar gas dynamics (PGD) equations

The two fundamental PDE systems that describe non-stationary planar
(1+1)-dimensional gas motions are the Euler and Lagrange systems. In the
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tmp tmpUVW{x,t; u,v,w} UAB{x,t; u, , }

UV{x,t; u,v}

V{u,t; v}X{u,v; x} U{x,t; u} A{x,u; }

UA{x,t; u, }

Fig. 3.1 A tree of nonlocally related PDE systems for the nonlinear diffusion equa-
tion (3.18) (for arbitrary K(u)).

Eulerian description, x is a cartesian coordinate in a fixed coordinate frame.
The Euler system E{x, t ; v, p, ρ} is given by

ρt + (ρv)x = 0,

ρ(vt + vvx) + px = 0,

ρ(pt + vpx) +B(p, 1/ρ)vx = 0.

(3.39)

In (3.39), v is the gas velocity, ρ is the gas density, and p is the gas pressure.
In terms of the entropy density S(p, ρ), the constitutive function B(p, 1/ρ) is
given by

B(p, 1/ρ) = −ρ2Sρ/Sp.

Following the tree construction procedure, one obtains an extended tree
of nonlocally related PDE systems, with the Euler system (3.39) as the given
system. In particular, it is shown that the Lagrange system of gas dynamics
naturally arises as a nonlocally related system within this tree. Since the first
equation of (3.39) is a conservation law as written, one can introduce a po-
tential variable (mass coordinate) α1 and obtain the corresponding potential
system EA1{x, t ; v, p, ρ, α1} given by

α1
x − ρ = 0,

α1
t + ρv = 0,

ρ(vt + vvx) + px = 0,

ρ(pt + vpx) +B(p, 1/ρ)vx = 0.

(3.40)

Two obvious subsystems arise by excluding the density ρ and the velocity v,
respectively, from the potential system EA1{x, t ; v, p, ρ, α1} (3.40). However,
these subsystems are not of interest since both of them are locally related to
EA1{x, t ; v, p, ρ, α1}. Consider a local (point) coordinate transformation of
the potential system (3.40) with α1 = y, t = s treated as the independent
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variables, and x, v, p, ρ as the dependent variables (an interchange of the vari-
ables α1 and x variables). Without loss of generality, ρ �= 0. Letting q = 1/ρ,
one then obtains the invertibly equivalent PDE system LX{y, s ; v, p, q, x}
given by

q − xy = 0,

v − xs = 0,

vs + py = 0,

ps +B(p, q)vy = 0.

(3.41)

It turns out that the subsystem of LX{y, s ; v, p, q, x}, obtained by exclud-
ing x through the integrability condition xsy = xys, is the Lagrange system
of gas dynamics L{y, s ; v, p, q} given by

qs − vy = 0,

vs + py = 0,

ps +B(p, q)vy = 0.

(3.42)

The Lagrange system (3.42), with the time variable s and the Lagrange mass
coordinate y =

∫ x

x0
ρ(ξ, t)dξ as independent variables, is used in many appli-

cations. The mass coordinate y essentially enumerates the fluid particles; its
domain does not change with time. The time derivative ∂/∂s = ∂/∂t+v∂/∂x

is the material derivative. The use of Lagrange coordinates often significantly
facilitates the formulation of boundary conditions. The Euler and Lagrange
systems of PGD equations arise as nonlocally related PDE systems within a
tree of nonlocally related PDE systems obtained through the tree construc-
tion procedure. Consequently, one can obtain additional equivalent descrip-
tions of the PGD equations.

The construction of a tree of potential systems and subsystems for the
PGD equations for a general constitutive function B(p, 1/ρ) is now contin-
ued. First one seeks further potential systems arising from local conservation
laws of the potential system EA1{x, t ; v, p, ρ, α1} (3.40). Note that for this
system, conservation of momentum holds and is given by the conservation
law equation

Dt(ρv) + Dx(p+ ρv2) = 0. (3.43)

Accordingly, one can introduce a potential variable α2 to obtain the potential
system EA1A2{x, t ; v, p, ρ, α1, α2} given by
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α1
x − ρ = 0,

α1
t + ρv = 0,

α2
x + α1

t = 0,

α2
t + p+ ρv2 = 0,

ρ(vt + vvx) + px = 0,

ρ(pt + vpx) +B(p, 1/ρ)vx = 0.

(3.44)

The third equation of the PDE system (3.44) is a conservation law as written,
hence one can introduce another potential variable α3 to obtain the additional
potential system EA1A2A3{x, t ; v, p, ρ, α1, α2, α3} given by

α1
x − ρ = 0,

α1
t + ρv = 0,

α3
t − α2 = 0,

α3
x + α1 = 0,

α2
t + p+ ρv2 = 0,

ρ(vt + vvx) + px = 0,

ρ(pt + vpx) +B(p, 1/ρ)vx = 0.

(3.45)

Next, one analyzes nonlocally related subsystems. By exclusion of depen-
dent variables, the only direct nonlocally related subsystems of the PDE sys-
tems (3.44) and (3.45) arise from excluding the dependent variable α1. On
the other hand, in the Lagrange system (3.42), one can exclude the velocity
v, to obtain a nonlocally related subsystem L{y, s ; p, q} given by

qss + pyy = 0,

ps +B(p, q)qs = 0.
(3.46)

The resulting tree of nonlocally related PDE systems is shown in Figure
3.2. [Later, this tree is extended through finding further local conservation
laws for the Lagrange system L{y, s ; v, p, q}.]

Exercises 3.3

3.3.1. For the nonlinear diffusion equation (3.18), show that the transforma-
tion of dependent variables

v = x−1α+ β, w = xβ,
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Fig. 3.2 A tree of nonlocally related PDE systems for the planar gas dynamics
equations for an arbitrary constitutive function B(p, q) with q = 1/ρ.

maps its potential system (3.30) into the potential system (3.34) [Bluman &
Doran-Wu (1995)]. Thus the potential systems (3.30) and (3.34) are locally
related, and only one of them should be included in a tree of nonlocally
related PDE systems.

3.3.2. Assuming the dependence of multipliers on only the dependent and
independent variables of a given PDE system, classify the local conservation
laws of the potential systems (3.19) and (3.32) of the nonlinear diffusion equa-
tion (3.18) with respect to the constitutive function K(u). For the cases where
nonlocal conservation laws of the nonlinear diffusion equation (3.18) arise, ob-
tain extensions of the tree of nonlocally related PDE systems constructed in
Section 3.3.2 for the nonlinear diffusion equation (3.18). In particular, show
that for K(u) = u−2, there exists an infinite set of nonlocal conservation laws
that lead to the linearization of the nonlinear diffusion equation (3.18) by a
nonlocal transformation (as described in Chapter 2) [Bluman & Doran-Wu
(1995)].

3.3.3.

(a) Consider the potential systems (3.19) and (3.30) of the nonlinear diffu-
sion equation (3.18). Show that exclusion of the dependent variable u
from the potential system (3.19), as well as exclusion of the dependent
variables u and v from the potential system (3.30), yield only locally
related subsystems.



3.4 Nonlocal Conservation Laws 209

(b) Exclude the dependent variables t and x, respectively, to obtain the
subsystems X{u, v ;x} and T{u, v ; t} of the PDE system (3.36). Show
that these subsystems are nonlocally related to both the PDE system
(3.36) and the nonlinear diffusion equation U{x, t ;u} (3.18).

3.4 Nonlocal Conservation Laws

Suppose a given PDE system R{x, t ;u} has a potential system S{x, t ;u, v}
with potential variable v. An important problem to consider is the comparison
of sets of local conservation laws of R{x, t ;u} (with fluxes and densities
depending on components of x, u, and partial derivatives of u) and local
conservation laws of S{x, t ;u, v} (with fluxes and densities depending on
components of x, u, v, and partial derivatives of u and v).

Clearly every local conservation law of R{x, t ;u} is also a local conserva-
tion law of the potential system S{x, t ;u, v}, since the equations of R{x, t ;u}
that yield this conservation law appear explicitly in S{x, t ;u, v}. Now con-
sider a local conservation law

DtΨ [u, v] + DxΦ[u, v] = 0 (3.47)

of the potential system S{x, t ;u, v}. If neither the density Ψ nor the flux
Φ depends explicitly on the nonlocal variable v, then obviously (3.47) must
be a local conservation law of R{x, t ;u}. On the other hand, if Ψ and/or
Φ explicitly depends on the nonlocal variable v, one of the following two
situations occurs.

1. The conservation law (3.47) of S{x, t ;u, v} can be expressed as a lin-
ear combination of the local conservation laws of the PDE system
R{x, t ;u} and trivial conservation laws.

2. The conservation law (3.47) of S{x, t ;u, v} is not expressible as a linear
combination of the local conservation laws of R{x, t ;u} and trivial
conservation laws, i.e. the flux and/or density in (3.47) have an essential
dependence on the components of the potential variable v.

In the first situation, the conservation law (3.47) can be rewritten so that
neither Φ nor Ψ has an essential dependence on the nonlocal variable v,
and hence this conservation law is not a new conservation law of R{x, t ;u}
(assuming that all of its local conservation laws are known). In the second
situation, the conservation law (3.47) is not equivalent to any local conserva-
tion law and is hence a nonlocal conservation law of the given PDE system
R{x, t ;u}.
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In general, nonlocal conservation laws for a system R{x, t ;u} can be found
from related potential systems, as well as other nonlocally related systems.
This leads to the following definition.

Definition 3.4.1. A conservation law of a PDE system nonlocally related to
a given PDE system R{x, t ;u} is a nonlocal conservation law of R{x, t ;u}
if it is not equivalent to a linear combination of local conservation laws (3.1)
of R{x, t ;u}.

Similar to the situation for local conservation laws of a given PDE system
R{x, t ;u}, nonlocal conservation laws are useful for:

• Direct applications in PDE problem analysis [see Chapters 1, 2].
• Obtaining further PDE systems nonlocally related to R{x, t ;u}.

The second application is considered in detail in Section 3.5.

3.4.1 Conservation laws arising from nonlocally
related systems

Suppose a given PDE system R{x, t ;u}

Rσ[u] = Rσ(x, t, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N, (3.48)

has a local conservation law given by

DtΦ[u] + DxΨ [u] = 0, (3.49)

where Φ[u] = Φ(x, t, u, ∂u, . . . , ∂k−1u), Ψ [u] = Ψ(x, t, u, ∂u, . . . , ∂k−1u).
Introducing the corresponding potential variable v and potential equations

P :

{
vx = Φ[u],

vt = −Ψ [u],
(3.50)

one obtains the potential system S{x, t ;u, v} given by

Rσ[u] = 0, σ = 1, . . . , N ′,

vx = Φ[u],

vt = −Ψ [u].

(3.51)

[Note that if all equations of R{x, t ;u} (3.48) are kept in S{x, t ;u, v} (3.51),
one has N = N ′. If one of the equations of R{x, t ;u} (without loss of gen-
erality, RN [u] = 0) is a differential consequence of the potential equations
(3.50) and is not included in S{x, t ;u, v}, then N ′ = N − 1.]
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Further (nonlocal) conservation laws are now sought for the given system
R{x, t ;u} through applying the direct method or other method for finding
conservation laws of the potential system S{x, t ;u, v}. The following fun-
damental theorem [Kunzinger & Popovych (2008); Bluman, Cheviakov &
Ivanova (2006)] prescribes the form of multipliers needed to obtain nonlocal
conservation laws of R{x, t ;u}, i.e. conservation laws that are not expressible
as a linear combination of local conservation laws of R{x, t ;u}.
Theorem 3.4.1. Each conservation law of any potential system S{x, t ;u, v}
(3.51), arising from multipliers that do not essentially depend on the poten-
tial variable v, is equivalent to a local conservation law of the given system
R{x, t ;u} (3.48).

Theorem 3.4.1 is a particular case of Theorem 5.3.1 that also holds for
equations with three or more independent variables, and that is presented
and proved in Section 5.3.3.

The converse statement to Theorem 3.4.1 is also true: if a conservation
law (3.47) of the potential system S{x, t ;u, v} is equivalent to a local con-
servation law of the given system R{x, t ;u}, then multipliers yielding (3.47)
are independent of V [Exercise 3.4.1].

Note that Theorem 3.4.1 only holds for PDE systems for which all local
conservation laws are found. However, for many PDE systems, this is not
the situation. In particular, for a given PDE system, zeroth- and first-order
conservation laws (i.e., conservation laws with density and flux(es) that de-
pend at most on first derivatives of dependent variables) are usually found,
and higher-order local conservation laws may be unknown or too difficult
to determine. In such a case, through applying the direct method (or other
method) to a potential system S{x, t ;u, v}, one may find previously unknown
local conservation laws of the given PDE system R{x, t ;u} even when a set
of multipliers only has a dependence on local variables.

However, there exist classes of equations for which an upper bound is
known for the order of local conservation laws. In particular, the following
theorem holds [Ibragimov (1985)].

Theorem 3.4.2. For any (1 + 1)-dimensional scalar evolution equation

ut = F (x, t, u, ∂xu, . . . , ∂
2l
x u) (3.52)

of even order 2l with a single dependent variable u and two independent vari-
ables t and x, the flux Φ and the density Ψ of a local conservation law (3.49)
(up to an equivalence transformation) depend only on x, t, u and derivatives
of u with respect to x, and the maximal order of a derivative in a density Ψ

is l.

It follows that one can find all local conservation laws for evolution equa-
tions of the form (3.52).
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In Section 3.4.2, nonlocal conservation laws are considered for diffusion-
convection equations that belong to the class (3.52). For such equations, all
local conservation laws are listed, and several nonlocal ones are presented.
In Section 3.4.3, potential systems are used to find further conservation laws
of nonlinear telegraph (NLT) equations for which several local conservation
laws are known.

A new conservation law of the Lagrange system of planar gas dynamics
equations is obtained in Exercise 3.5.6, from a potential system involving
three potential variables. Nonlocal conservation laws of Maxwell’s equations
in 2 + 1 dimensions are presented in Section 5.3.5.

3.4.2 Nonlocal conservation laws for
diffusion-convection equations

Consider a class of diffusion-convection equations R{x, t ;u} of the form

ut = (A(u)ux)x +B(u)ux, (3.53)

where A(u) and B(u) are arbitrary smooth constitutive functions, andA(u) �=
0. The linear case A = 1, B = 0 is excluded.

(1) Local conservation laws
Using Theorem 3.4.2, one can show that for an equation R{x, t ;u} (3.53),
one must have Φ = Φ(x, t, u), Ψ = Ψ(x, t, u, ux) [Popovych & Ivanova
(2005b)]. Hence one can compute the complete set of local conservation laws
for diffusion-convection equations of the form R{x, t ;u} (3.53), modulo the
seven-parameter group of equivalence transformations given by

t̃ = a4t+a1, x̃ = a5x+a7t+a2, ũ = a6u+a3, Ã =
a2
5

a4
A, B̃ =

a2
5

a4
B−a7,

where a1, . . . , a7 are arbitrary constants, a4a5a6 �= 0.
The classification of linearly independent local conservation laws for

R{x, t ;u} (3.53) yields the following results [Popovych & Ivanova (2005b)]:

1. For arbitrary A(u), B(u), the only local conservation law of (3.53) is
given by

Dt(u) − Dx

(
A(u)ux +

∫
B(u)du

)
= 0. (3.54)

2. For arbitrary A(u), and B(u) = 0, there are two local conservation
laws of (3.53) given by (3.54) and
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Dt(xu) + Dx

(∫
A(u)du− xA(u)ux

)
= 0. (3.55)

3. For arbitrary A(u), and B(u) = A(u), there are four local conservation
laws of (3.53) given by (3.54) and

Dt

(
(ex + ε)u) − Dx

(
ε

∫
A(u)du+ (ex + ε)uA(u)ux

)
= 0,

ε = 0,±1.
(3.56)

The following potential systems arise from the conservation laws (3.54)–
(3.56).

Case 1: Arbitrary A(u), B(u). The conservation law (3.54) yields a potential
variable v1 and corresponding potential system RV1{x, t ;u, v1} given by

v1
x = u,

v1
t = A(u)ux +

∫
B(u)du.

(3.57)

Case 2: Arbitrary A(u), B(u) = 0. The conservation law (3.55) yields an ad-
ditional potential variable v2 and corresponding potential system RV2{x, t;
u, v2} given by

v2
x = xu,

v2
t =

∫
A(u)du− xA(u)ux.

(3.58)

Case 3: Arbitrary A(u), B(u) = A(u). The conservation laws (3.56) yield
three additional potential variables wi, i = 1, 2, 3 and corresponding potential
systems RWi{x, t ;u,wi} given by

wi
x = (ex + ε)u,

wi
t = ε

∫
A(u)du+ (ex + ε)A(u)ux, ε = 0,±1.

(3.59)

(2) Nonlocal conservation laws
From Theorem 3.4.1, it follows that in order to obtain nonlocal conservation
laws of a diffusion-convection equation R{x, t ;u} of the form (3.53), one
should seek conservation laws of the potential systems (3.57), (3.58), or (3.59)
that result from multipliers having an essential dependence on their respective
potential variables. It can be shown that all local conservation laws of any one
of the potential systems (3.57)–(3.59) are of order zero (i.e., their fluxes do
not depend on the derivatives of u and/or the potential variables) [Popovych
& Ivanova (2005a)].

It turns out that nonlocal conservation laws of a diffusion-convection equa-
tion R{x, t ;u} (3.53) only result from local conservation laws of the potential
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system RV1{x, t ;u, v1} (3.57). The four cases that arise are listed in Table
3.1 [Popovych & Ivanova (2005a)].

Table 3.1 Nonlocal conservation laws for the diffusion-convection equations (3.53)

Case A(u) B(u) Multipliers Nonlocal Conservation Law

(1) Arbitrary
∫

Adu + uA Λ1 = −ev
∫

Adu, Dt(ev)−Dx

(
ev
∫

Adu
)
= 0

Λ2 = ev Dt(ev)−Dx

(
ev
∫

Adu
)
= 0

(2) u−2 0 Λ1 = u−1σvv, Dt(σ) + Dx(σvu−1) = 0

Λ2 = σv Dt(σ) + Dx(σvu−1) = 0

(3) u−2 u−2 Λ1 = exu−1σvv, Dt(exσ) + Dx(exσvu−1) = 0

Λ2 = exσv Dt(exσ) + Dx(exσvu−1) = 0

(4) 1 2u Λ1 = (αx − αu)ev, Dt(αev) + Dx

(
(αx − αu)ev

)
= 0

Λ2 = αev Dt(αev) + Dx

(
(αx − αu)ev

)
= 0

In Table 3.1, for Case (1) [A(u) arbitrary, B(u) =
∫
Adu + uA], the

diffusion-convection equation R{x, t ;u} (3.53) is nonlinear and has a sin-
gle nonlocal conservation law. In Cases (2) and (3), infinite sets of nonlocal
conservation laws arise: σ = σ(t, v) is an arbitrary solution to the linear
backward heat equation σt + σvv = 0. It follows that these infinite sets of
conservation laws of system RV1{x, t ;u, v1} (3.57) have sufficient cardinality
to apply Theorem 2.6.2 (sufficient conditions for the existence of an invert-
ible mapping). Thus the PDE systems RV1{x, t ;u, v1} with A(u) = u−2

and B(u) = 0 or B(u) = u−2 are linearizable by point transformations, and
hence the corresponding diffusion-convection equations R{x, t ;u} (3.53) are
linearizable by nonlocal transformations [Exercise 3.4.3].

For Case (4) in Table 3.1, an infinite set of nonlocal conservation laws
arises for the diffusion-convection equation R{x, t ;u} (3.53) for A(u) = 1,
B(u) = 2u: the function α(x, t) is an arbitrary solution of the linear back-
ward heat equation αt + αxx = 0. From Theorem 2.6.2, it follows that the
corresponding potential system RV1{x, t ;u, v1} (3.57) is linearizable by a
point transformation, and correspondingly the diffusion-convection equation
R{x, t ;u} is also linearizable by a nonlocal transformation [Exercise 3.4.3].

3.4.3 Additional conservation laws of nonlinear
telegraph equations

Now consider nonlinear telegraph (NLT) equations U{x, t ;u} of the form
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utt − (F (u)ux)x − (G(u))x = 0, (3.60)

where F (u) and G(u) are arbitrary constitutive functions.

(1) Local conservation laws of (3.60)
For NLT equations U{x, t ;u} of the form (3.60), linearly independent local
conservation laws are constructed through seeking conservation law multipli-
ers of the form Λ(x, t, U).

First note that the class of PDEs of the form (3.60) has the group of
equivalence transformations

x̃ = a1x+ a4, t̃ = a2t+ a5, ũ = a3u+ a6,

F̃ (ũ) = a2
1a

−2
2 F (u), G̃(ũ) = a1a

−2
2 a3G(u) + a7, (3.61)

where a1,. . . ,a7 are arbitrary constants, and a1a2a3 �= 0. Hence conserva-
tion laws of PDEs of the form (3.60) are classified modulo the equivalence
transformations (3.61).

Obviously, the case where G = u and F = const is linear. Here the NLT
equation (3.60) has an infinite number of local conservation laws. Only non-
linear cases are considered.

From the corresponding determining equations for local multipliers, it fol-
lows that Λ = Λ(x, t) [Exercise 3.4.4]. The three distinct cases that arise are
summarized in Table 3.2 [Bluman, Cheviakov & Ivanova (2006)].

Table 3.2 Local conservation laws of NLT equations (3.60)

Case F (u) G(u) Multiplier Λ Local Conservation Law

(a) Arbitrary Arbitrary 1 Dtut −Dx(F (u)ux + G(u)) = 0

t Dt(tut − u)

−Dx

(
t(F (u)ux + G(u))

)
= 0

(b) Arbitrary G′(u) = F (u) ex Dt

(
exut

)
−Dx

(
exF (u)ux

)
= 0

tex Dt

(
ex(tut − u)

)
−Dx

(
texF (u)ux

)
= 0

(c) Arbitrary u x − 1
2 t2 Dt

((
x − 1

2 t2
)
ut + tu

)
−Dx

((
x − 1

2 t2
)
(F (u)ux + u)

+
∫

F (u)du
)
= 0

(F (u) �= xt − 1
6 t3 Dt

((
tx − 1

6 t3
)
ut −

(
x − 1

2 t2
)
u
)

const) −Dx

((
tx − 1

6 t3
)
(F (u)ux + u)

+t
∫

F (u)du
)
= 0
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The following potential systems result from the conservation laws listed in
Table 3.2.

Case (a): Arbitrary F (u), G(u). The two conservation laws yield, respectively,
the potential systems UV1{x, t ;u, v1} given by

v1
x = ut,

v1
t = F (u)ux +G(u);

(3.62)

and UV2{x, t ;u, v2} given by

v2
x = tut − u,

v2
t = t(F (u)ux +G(u)).

(3.63)

Case (b): G ′(u) = F (u), F (u) arbitrary. In addition to the potential systems
(3.62) and (3.63), here one also has the potential systems UB3{x, t ;u, b3}
given by

b3x = exut,

b3t = exF (u)ux;
(3.64)

and UB4{x, t ;u, b4} given by

b4x = ex(tut − u),

b4t = texF (u)ux.
(3.65)

Case (c): G(u) = u, F (u) arbitrary. In addition to the potential systems
(3.62) and (3.63), here one also has the potential systems UC3{x, t ;u, c3}
given by

c3x =
(
x− 1

2 t
2
)
ut + tu,

c3t =
(
x− 1

2 t
2
)
(F (u)ux + u) −

∫
F (u)du;

(3.66)

and UC4{x, t ;u, c4} given by

c4x =
(
xt− 1

6 t
3
)
ut −

(
x− 1

2 t
2
)
u,

c4t =
(
xt− 1

6 t
3
)
(F (u)ux + u) − t

∫
F (u)du.

(3.67)
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(2) Additional conservation laws for NLT equations with power law nonlin-
earities
Further conservation laws are now sought for all singlet potential systems
(3.62) – (3.67) of the NLT equation (3.60). In order to obtain further conser-
vation laws, one requires a set of multipliers to have an essential dependence
on potential variables. For power law nonlinearities F (u) = uα, G(u) = uβ ,
the additional conservation laws found for NLT equations of the form (3.60)
are given in Tables 3.3a–c [Bluman, Cheviakov & Ivanova (2006)]. The re-
sults are presented modulo the corresponding equivalence transformations
[Exercise 3.4.5].

Table 3.3 (a) Additional conservation laws of the NLT equations, arising from po-
tential systems (3.62)–(3.67), for power law nonlinearities F (u) = uα, G(u) = uβ .
Case (a): F (u) = uα, G(u) = uβ

System Subcase Multipliers Conservation Law

UV1 β = −1 Λ1 = x + 1
2 (v

1)2 + uα+2

α+2 , Dt

((
x + uα+2

(α+2)(α+3) + 1
2 (v

1)2
)

u
)

Λ2 = uv1. −Dx

((
x + uα+2

α+2 + 1
6 (v

1)2
)

v1
)
= 0

Λ1 = v1, Λ2 = u. Dt(t − uv1)

+Dx

(
uα+2

α+2 + 1
2 (v

1)2
)
= 0

α = −1 Λ1 = t + 1
3 (v

1)3, Dt

( (
u + 1

3 (v
1)2
)
uv1 + 2xuv1

+2(x + u)v1, −t(2x − u)
)

β = −1 Λ2 = (2x + u + (v1)2)u. −Dx

( 1
12 (v

1)4 + (x + u)(v1)2 + tv1

+tv1 + 1
2u2 + 2xu

)
= 0

Λ1 = x2 + 2xu + 1
2u2 Dt

(
2x − 1

2 t2 + 1
2

(1
3u + (v1)2

)
u2

+ 1
12 (v

1)4 + 1
12u(v1)4 + (t + xv1)uv1 + x2u

)
+(x + u)(v1)2 + tv1, −Dx

(
1
60 (v

1)5 + 1
3 (x + u)(v1)3

Λ2 = (t + (2x + u)v1)u +1
2 (tv

1 + u2)v1

+1
3 (v

1)3. +(x + 2u)xv1 + tu
)
= 0

UV2 β = −1 Λ1 = −v2

t2 , Λ2 = u
t
. Dt

(
uv2−t2

t

)
−Dx

(
(v2)2

2t2 + uα+2

α+2

)
= 0

No additional conservation laws are found for the potential system UC4{x,
t;u, c4} (3.67).

Case (b) with α = −2 is not considered in Table 3.3c since here the system
UV1{x, t ;u, v1} (3.62) is linearizable by a point transformation [Exercise
3.4.6].
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Table 3.3 (b) Additional conservation laws of the NLT equations, arising from
potential systems (3.62)–(3.67), for power law nonlinearities F (u) = uα, G(u) = uβ .
Case (b): F (u) = G′(u), G(u) = uα+1

System Subcase Multipliers Conservation Law

UV1 α �= −1 Λ1 = exuα+1, Dt

(
ex
(

uα+2

α+2 + 1
2 (v

1)2
))

α �= −2 Λ2 = exv1. −Dx

(
exuα+1v1

)
= 0

UV2 α = −4 Λ1 = −ex t
u3 , Λ2 = exv2. Dt

(
ex
(

t2

u2 − (v2)2
))

+Dx

(
ex tv2

u3

)
= 0

UB3 α �= −1 Λ1 = −uα+1, Dt

(
ex uα+2

α+2 + e−x (b3)2

2

)
Λ2 = e−xb3. −Dx

(
uα+1b3

)
= 0

UB4 α = −4 Λ1 = − t
u3 , Λ2 = e−xb4. Dt

(
1
2e−x(b4)2 − ex t2

2u2

)
−Dx

(
tb4

u3

)
= 0

Note that one still needs to check which of the conservation laws presented
in Tables 3.3a–c are nonlocal, and which can be expressed as linear combi-
nations of some (unknown) local conservation laws of the NLT equations.

Table 3.3 (c) Additional conservation laws of the NLT equations, arising from po-
tential systems (3.62)–(3.67), for power law nonlinearities F (u) = uα, G(u) = uβ .
Case (c): F (u) = uα, G(u) = u

System Subcase Multipliers Conservation Law

UV1 α = 1 Λ1 = 1
12 t4 − t2x + x2 Dt

(
− 1

6u3 + ( 1
12 t4 + x2 − xt2 + tv1)u

+tv1 − 1
2u2, +

(
− 1

3 t3 + 2xt − 1
2v
)
v1
)

Λ2 = −1
3 t3 + t(2x + u) +Dx

((
− tx + 1

2v1 + 1
6 (t

3 − 2tu)
)
u2

−v1. −(tv1 + 1
12 t4 − t2x + x2)v1

)
= 0

Λ1 = 1
6 t3 − tx + v1, Dt

(
(1
3 t3 − 2tx)u + (−t2 + 2x + u)v1

)
Λ2 = −1

2 t2 + x + u. +Dx

((1
2 t2 − x − 1

3u
)
u2

−
(1
3 t3 − 2tx + 1

2v1
)
v1
)
= 0

UV2 α = 1 Λ1 = 1
4 t2 − x + v2−x2

t2 , Dt

(
uv2

t
+ (t4−4x(t2+x))u

4t
+ (2x−t2)v2

t

)
Λ2 = t − 2x+u

t
. −Dx

(
1
3u3 − 1

2 (t
2 − 2x)u2 + (v2)2

2t2

+ (t4−4x(t2+x))v2

4t2

)
= 0

UC3 α = 1 Λ1 = − 1
80 (t

2 − 2x) Dt

(
1
64 (t

4 − 4x2)u + 1
96 (u

3 − 3t4u − 6tc3)

+ 2xt2+5u2

40(t2−2x) + t(t5+10c3)u

80(t2−2x) + (t5+5c3)c3

40(t2−2x)2

)
+ 4x3+5tc3

10(t2−2x)2 , +Dx

(
− 1

64 (t
2 − 2x)(tu2 + 2c3)

Λ2 = 3t5−20c3

40(t2−2x)2 . + 1
48 t(u3 + 3tc3)

− t(2x+u)
4(t2−2x) . + t4(tu2−10c3)+20u2c3

160(t2−2x) + t(t5+5c3)c3

40(t2−2x)2

)
= 0
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(3) Additional conservation laws following from the potential system UV1{x, t;
u, v1} (general nonlinearities)
The above classification of conservation laws of the NLT equation U{x, t ;u}
(3.60) can be significantly extended in the case of general nonlinearities.
Here one considers a classification of the conservation laws of NLT equa-
tions U{x, t ;u} of the form (3.60) that arise as local conservation laws of
the potential system UV1{x, t ;u, v1} (3.62) from multipliers depending on
x, t, U , and V 1 [Bluman & Temuerchaolu (2005a)].

First note that the potential system UV1{x, t ;u, v1} (3.62) has the group
of equivalence transformations (3.61) with in addition

ṽ = a3v + a2a7t+ a8.

The following results are given modulo the above equivalence transforma-
tions.

One can show that the potential system UV1{x, t ;u, v1} is linearizable
by a point transformation if and only if

F (u) = u−2, G(u) = u−1, or F (u) arbitrary, G(u) = const

[Exercise 3.4.6]. For both of these cases, as well as for the linear case
(F (u) = const, G(u) = u), the potential system UV1{x, t ;u, v1} (3.62) has
an infinite number of local conservation laws [Bluman & Doran-Wu (1995)].
These linearization cases are not included in the following computations.

The obvious conservation law of the system UV1{x, t ;u, v1} given by its
first equation

Dt(u) − Dx(v1) = 0,

is excluded from further consideration.
Let Λ1(x, t, U, V ) and Λ2(x, t, U, V ) be conservation law multipliers for the

first and second equations of the system UV1{x, t ;u, v1} (3.62), respectively.
From the determining equations for Λ1 and Λ2, additional nontrivial conser-
vation laws of the potential system UV1{x, t ;u, v1} arise in the following
cases.

1. F (u) arbitrary and G(u) = 0, u, or 1/u.
2. F (u) and G(u) taking on one of the forms listed in Table 3.4.
3. F (u) −G′(u) = G2(u).
4. F (u) −G′(u) = μ for some constant μ.

Note that due to scaling invariance of the potential system UV1{x, t ;u, v1},
for Case 4 it suffices to consider μ = 0, 1.

For example, if F (u)−G′(u) = G2(u), the system UV1{x, t ;u, v1} (3.62)
has the two local conservation laws
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Table 3.4 F (u) and G(u) which yield additional conservation laws for the system
UV1{x, t ;u, v1} (3.62) of NLT equations (Case 2)

F (u) G(u)

β1u2 + β2u + β3 u

β1/u2 + β2/u + β3 1/u

β1e2u + β2eu + β3 eu

β1 sech2 u + β2 tanhu + β3 tanhu

β1 sec2 u + β2 tanu + β3 tanu

Dt

(
A(x, u)e±v1

)
∓ Dx

(
G(u)A(x, u)e±v1

)
= 0, (3.68)

arising from the two sets of multipliers

Λ1 = A(x,U)G(U)e±V 1
, Λ2 = ±A(x,U)e±V 1

, (3.69)

where A(x,U) = exp
(
x+

∫
G(U)dU

)
. The conservation laws (3.68) do

not arise as local conservation laws of the corresponding NLT equations
U{x, t ;u} (3.60) from a multiplier of the form Λ(x, t, U) [Section 3.4.3 (1)].
Since the sets of multipliers (3.69) explicitly depend on the nonlocal variable
V , from Theorem 3.4.1 it follows that the conservation laws (3.68) may be
nonlocal for the NLT equation U{x, t ;u} (3.60). For another example, see
Exercise 3.4.7.

This example shows that the seeking of local conservation laws of a poten-
tial system can yield a much richer set of conservation laws for a given PDE
system than through local conservation analysis of the given PDE system
itself.

Exercises 3.4

3.4.1. Prove the converse statement to Theorem 3.4.1: If a conservation law
(3.47) of the potential system S{x, t ;u, v} (3.51) is equivalent to a local
conservation law of the given system R{x, t ;u} (3.48), then the multipliers
yielding the conservation law (3.47) are independent of the nonlocal variable
V . [Provide the proof for cases N ′ = N and N ′ = N − 1 in (3.51).]

3.4.2. Let R{x, t ;u} be a given PDE system, and suppose R{x, t ;u} is a
subsystem of R{x, t ;u} obtained either directly by exclusion of a depen-
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dent variable or indirectly by exclusion of a dependent variable after a point
transformation of its variables (including interchanges of dependent and in-
dependent variables). Prove that each local conservation law of R{x, t ;u} is
a local conservation law of R{x, t ;u}.
3.4.3. In each of the cases (2), (3) and (4) of Table 3.1, the potential system
UV1{x, t ;u, v1} (3.62) of the NLT equation U{x, t ;u} (3.60) has an infinite
number of local symmetries. Show that these conservation laws meet the
sufficiency conditions for the existence of an invertible point transformation
that maps the potential system UV1{x, t ;u, v1} (3.62) into a linear PDE
system [Theorem 2.6.2]. For each of the cases (2), (3) and (4), find an explicit
linearizing transformation.

3.4.4. For an NLT equation U{x, t ;u} of the form (3.60), show that the
ansatz Λ = Λ(x, t, U) for a conservation law multiplier reduces to Λ = Λ(x, t).

3.4.5. Find the equivalence transformations of the class of potential NLT sys-
tems UV1{x, t ;u, v1} of the form (3.62). Compare these equivalence trans-
formations with the equivalence transformations of the class of NLT equations
U{x, t ;u} of the form (3.60).

3.4.6.

(a) Show that if

F (u) =
c

(au+ b)2
, G(u) =

d

au+ b
+ f,

or
F (u) arbitrary, G(u) = const,

the potential system UV1{x, t ;u, v1} (3.62) of the nonlinear telegraph
equation has an infinite number of point symmetries.

(b) Show that in these two cases, UV1{x, t ;u, v1} can be mapped into a
linear system by a point transformation.

(c) For each of these two cases, find a corresponding linearizing transfor-
mation and the resulting linear PDE system [Bluman & Kumei (1989),
Bluman & Doran-Wu (1995)].

3.4.7.

(a) Show that for the case F (u) − G′(u) = 1, the potential NLT system
UV1{x, t ;u, v1} (3.62) has local conservation laws arising from the
multipliers Λ1 = ∓Λ2 = ex±t.

(b) Find the fluxes and densities of the two conservation laws arising from
these multipliers.

(c) Use Theorem 3.4.1 to show that these two conservation laws are equiv-
alent to local conservation laws of the NLT equation U{x, t ;u} (3.60).
Find these local conservation laws.
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3.5 Extended Tree Construction Procedure

We now simplify and further extend the framework for constructing a tree of
nonlocally related PDE systems that was presented in Section 3.3.

Suppose a given PDE system R{x, t ;u} has n known linearly independent
and inequivalent local conservation laws, with corresponding potential equa-
tions Pi in terms of nonlocal (potential) variables vi, i = 1, . . . , n. In the tree
construction procedure outlined in Section 3.3.1, these n potential variables
were used to generate n potential systems S(1){x, t ;u, vi} = R{x, t ;u} ∪Pi.
Through these n potential systems S(1){x, t ;u, vi}, using the n potential
variables vi, one can directly generate more PDE systems, nonlocally re-
lated to R{x, t ;u}, by taking combinations of two or more potential systems
S(1){x, t ;u, vi} to obtain a set of 2n−1 potential systems with 1 to n potential
variables.

Definition 3.5.1. A potential system

S(k){x, t ;u, vi1 , . . . , vik} = R{x, t ;u} ∪ Pi1 ∪ · · · ∪ Pik , 1 ≤ k ≤ n,

with k potential variables, is called a k-plet potential system. In particular, for
k = 1, 2, 3, 4, we refer to such k-plet potential systems as singlets, couplets,
triplets, and quadruplets, respectively.

Thus for a PDE system R{x, t ;u} with n known linearly independent local
conservation laws, a corresponding set of 2n − 1 potential systems (k-plets)
arises.

• n singlets: S(1){x, t ;u, vi}, i = 1, . . . , n.
• 1

2n(n− 1) couplets: S(2){x, t ;u, vi, vj}, i = 1, . . . , j − 1, j = 2, . . . , n.

•
... .

• One n-plet: S(n){x, t ;u, v1, . . . , vn}.
Definition 3.5.2. Suppose n linearly independent local conservation laws
are known for a given PDE system R{x, t ;u}. In terms of the resulting
potential variables v1, . . . , vn, the set of all corresponding 2n − 1 potential
systems is called a combination potential system Pv1...vn .

Now assume that one is able to obtain n linearly independent local con-
servation laws and hence the corresponding combination potential system
Pv1...vn . In order to obtain further potential systems, one could seek nonlocal
conservation laws of R{x, t ;u} through the consideration of local conserva-
tion laws for each of the potential systems in Pv1...vn . Clearly, in the consid-
eration of all potential systems in Pv1...vn , , in order to avoid redundancies,
one should apply a conservation law construction algorithm to the n-plet
S(n){x, t ;u, v1, . . . , vn} since it contains R{x, t ;u} and all known potential
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equations, and thus has all local conservation laws of each of the potential
systems in Pv1...vn .

If the complete set of linearly independent local conservation laws of
R{x, t ;u} is found, one may use the following generalization of Theorem
3.4.1 in order to avoid obtaining conservation laws linearly dependent on the
known local ones.

Theorem 3.5.1. Each conservation law of any potential system in Pv1...vn ,
arising from multipliers that depend only on local variables (i.e., x, t, u, and
derivatives of u) of the given PDE system R{x, t ;u}, is linearly dependent
on the local conservation laws of the given system R{x, t ;u}.

Proof. The proof parallels that of Theorem 3.4.1 and is left to Exercise 3.5.1.
��

Consequently, the following holds.

Corollary 3.5.1. Suppose one finds the complete set of n local conservation
laws for a given PDE system R{x, t ;u} and then constructs the combination
potential system Pv1...vn . It follows that if one starts with any one of the 2n−
1 potential systems in Pv1...vn and seeks conservation laws from multipliers
depending only on x, t, u, and derivatives of u, each of the resulting potential
systems is locally equivalent to one of the 2n −1 potential systems in Pv1...vn .

However, often the complete set of linearly independent local conser-
vation laws of a given PDE system R{x, t ;u} is not known. In particu-
lar, when seeking local conservation laws through the direct method, one
normally limits oneself to considering to rth-order multipliers of the form
Λ = Λ(x, u, ∂u, . . . , ∂ru) for some fixed r.

From Theorem 3.5.1, it follows that further conservation laws of S(n){x, t;
u, v1, . . . , vn}, are more likely to arise from multipliers which have an essen-
tial dependence on the potential variables v1, . . . , vn. This is confirmed by
experience. Indeed, in all studied examples, conservation laws of the n-plet
S(n){x, t; u, v1, . . . , vn}, arising from multipliers depending only on indepen-
dent and the dependent variables of the given PDE system R{x, t ;u} and
derivatives of u, are linear combinations of known local conservation laws of
R{x, t ;u}, as one might expect.

3.5.1 An extended tree construction procedure

The above discussion leads to the following extension of the tree construction
procedure presented in Section 3.3.1.

Consider a given PDE system R{x, t ;u}.
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1. Construction of local conservation laws. Find a set {Ki} of lin-
early independent and inequivalent local conservation laws for the
given PDE system R{x, t ;u}. Let n be the number of such conser-
vation laws that are found.

2. Construction of potential systems. Use the set of known local con-
servation laws {Ki} to introduce n potential variables vi. Construct
the corresponding combination potential system Pv1...vn which con-
tains 2n − 1 potential systems. Together with the given PDE system
R{x, t ;u}, this yields a tree T1 with up to 2n nonlocally related sys-
tems.

3. Additional conservation laws. In the tree T1, consider the n-plet
potential system S(n){x, t ;u, v1, . . . , vn}. For this n-plet, seek linearly
independent conservation laws. [If using the direct method, normally
seek multipliers that have an essential dependence on the potential
variables v1, . . . , vn.] Eliminate conservation laws that are linearly de-
pendent on the set of known local conservation laws {Ki} of R{x, t ;u}.
Let the number of newly obtained linearly independent conservation
laws of S(n){x, t ;u, v1, . . . , vn} be n′. Introduce corresponding poten-
tial variables vj , j = n+1, . . . , n+n′. [By construction, the full set of
potentials {v1, . . . , vn+n′} is linearly independent.]

4. Tree extension. Use the n+n′ potentials {vi} to construct the corre-
sponding combination potential system Pv1...vn+n′ . Together with the
given system R{x, t ;u}, this yields an extended tree T2.

5. Continuation. Repeat Steps 3 and 4 for the tree T2, until no further
linearly independent conservation laws are found for any nonlocally
related potential system. This yields a possibly larger extended tree
T3.

6. Construction of subsystems. For all systems in the tree T3, exclude
where possible, one by one, dependent variables, to generate subsys-
tems of the systems in the tree T3. Eliminate locally related subsystems.
In addition, in the same manner generate nonlocally related subsystems
obtained after an interchange of one or more independent and depen-
dent variables. This yields a possibly larger extended tree of nonlocally
related systems denoted by T4.

If the given PDE system R{x, t ;u} includes arbitrary constitutive func-
tion(s), one may be able to still further extend the above procedure: in Steps
1, 3 and 6, classify conservation laws with respect to the constitutive func-
tion(s) to isolate cases for which additional conservation laws and/or ad-
ditional nonlocally related subsystems arise. Trees for particular forms of
the constitutive functions could be significantly different, although sharing
branches that hold for arbitrary constitutive function(s).
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The extended procedure outlined above is practically efficient. It improves
and extends the framework presented in Section 3.3 in the following ways.

• One obtains a larger set (2n −1 compared to n) of potential systems from
n known local conservation laws for any PDE system in a tree, at no extra
computational cost.

• The extended tree does not contain PDE systems with linearly dependent
potential variables.

• In computing conservation laws of potential systems of R{x, t ;u}, the
number of computations is reduced since multipliers depending only on in-
dependent variables and designated dependent variables and their deriva-
tives [Theorem 3.5.1] may not need to be considered.

• Normally, one can generate nonlocally related subsystems with minimal
computational cost.

The extended tree construction procedure presented in this section as-
sumes that the n known local conservation laws of a given PDE system
R{x, t ;u} are inequivalent and linearly independent. Indeed, equivalent con-
servation laws should not be considered since they yield locally related po-
tential variables [Theorem 3.2.1].

For a given PDE system, often it seems to turn out that its simplest
conservation laws are of greatest use to obtain new results.

3.5.2 An extended tree for a nonlinear diffusion
equation

Again consider the example of Section 3.3.2. In particular, the extended tree
construction procedure of Section 3.5.1 is applied to the nonlinear diffusion
equation U{x, t ;u} given by

ut − (K(u)ux)x = 0 (3.70)

with an arbitrary constitutive function K(u).
One begins by seeking local conservation laws. The nonlinear diffusion

equation U{x, t ;u} (3.70) is a second-order evolution equation, a subcase
of the family of nonlinear diffusion-convection equations (3.53) with A(u) =
K(u), B(u) = 0. As shown in Section 3.4.2, for arbitrary K(u) = L′(u), the
nonlinear diffusion equation (3.70) has exactly n = 2 linearly independent
local conservation laws given by
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Dt(u) − Dx

(
(L(u))x

)
= 0, (3.71)

Dt(xu) − Dx

(
x(L(u))x − L(u)

)
= 0 (3.72)

[Bluman & Doran-Wu (1989)].
Next, one can construct the corresponding most general combination po-

tential system Pvα for U{x, t ;u} (3.70) since all of its local conservation
laws are known. In particular, Pvα consists of the singlet potential systems
UV{x, t ;u, v} (3.19) and UA{x, t ;u, α} (3.32) and the couplet potential
system UVA{x, t ;u, v, α} given by

vx = u,

vt = (L(u))x,

αx = xu,

αt = x(L(u))x − L(u).

(3.73)

Note that the given nonlinear diffusion equation U{x, t ;u} (3.70) need not
be appended to the potential systems UV{x, t ;u, v}, UA{x, t ;u, α} and
UVA{x, t ;u, v, α} since both conservation laws (3.71) and (3.72) arise from
multipliers that do not vanish off of the solution space of the nonlinear dif-
fusion equation U{x, t ;u}. Consequently, one obtains the trees

T1 = T2 = T3

= {U{x, t ;u},UV{x, t ;u, v},UA{x, t ;u, α},UVA{x, t ;u, v, α}}.

[The system UVA{x, t ;u, v, α} (3.73) could be analyzed for further conser-
vation laws to obtain additional potential systems. Comparing with Section
3.3.2, one notes that the potential systems UVW{x, t ;u, v, w} (3.30) and
UAB{x, t ;u, α, β} (3.34) are locally related to the system UVA{x, t ;u, v, α}
(3.73). In particular, from the transformation (3.35) it follows that w =
xv − α, β = v − x−1α.]

Now one constructs nonlocally related subsystems for the potential systems
in T3. Nonlocally related subsystems arising from the singlet potential systems
UV{x, t ;u, v} (3.19) and UA{x, t ;u, α} (3.32) were obtained in Sections
3.2.2 and 3.3.2. These include the scalar PDEs V{u, t ; v} (3.22), X{u, v ;x}
[Exercise 3.3.3] and A{x, u ;α} (3.38). Subsystems arise from the couplet
potential system UVA{x, t ;u, v, α} (3.73) as follows. In general, exclusion
of the dependent variable u is not possible. [In cases when this is possible,
one obtains a locally related subsystem VA{x, t ; v, α}.] The exclusions of
α and v, respectively, yield the known systems UV{x, t ;u, v} (3.19) and
UA{x, t ;u, α} (3.32). Consider interchanges of dependent and independent
variables. For example, let x = x(u, v), t = v(u, v), α = α(u, v) be treated as
dependent variables and (u, v) as independent variables. This yields the PDE
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system XTA{u, v ;x, t, α} given by

tu =
ux2

u

L′(u)(uxv − 1)
,

tv =
xu

L′(u)
,

αu = −K(u)tu,

αv = x− L′(u)x− L(u)
L′(u)

xu

(3.74)

that is invertibly related to UVA{x, t ;u, v, α} (3.73). Exclusion of the depen-
dent variable x does not yield a nonlocally related subsystem, since x appears
explicitly in the PDE system (3.74). Exclusion of α leads to the known subsys-
tem XT{u, v ;x, t} (3.36) that is obviously locally related to UV{x, t ;u, v}.
However, exclusion of the dependent variable t through cross-differentiation
does lead to a new PDE system XA{u, v ;x, α} that is nonlocally related to
all previously considered PDE systems [Exercise 3.5.3]. The only nonlocally
related subsystems of the PDE system XA{u, v ;x, α} are the known PDEs
X{u, v ;x} [Exercise 3.3.3] and A{x, u ;α} (3.38).

Other interchanges of variables could yield additional nonlocally related
subsystems.

In summary, one has obtained an extended tree of nonlocally related PDE
systems given by

T4 = T3 ∪ {XA{u, v ;x, α},V{u, t ; v},X{u, v ;x},A{x, u ;α}}, (3.75)

illustrated in Figure 3.3.

UVA{x,t; u,v,α}

UV{x,t; u,v}

X{u,v; x}V{u,t; v} U{x,t; u} A{x,u;α}

UA{x,t; u,α} XA{u,v; x,α}

Fig. 3.3 An extended tree of nonlocally related PDE systems for the nonlinear dif-
fusion equation (3.70) (for arbitrary K(u)).
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Note that the tree T4 may be still further extended through considering
conservation laws for particular forms of the constitutive function K(u). In
particular, for the case K(u) = u−2, the system UA{x, t ;u, α} has an addi-
tional conservation law [Bluman & Doran-Wu (1995)].

3.5.3 An extended tree for a nonlinear wave equation

As another example, a tree of nonlocally related PDE systems is constructed
for the nonlinear wave equation U{x, t ;u} given by

utt = (c2(u)ux)x, (3.76)

holding for an arbitrary constitutive function c(u).
First, local conservation laws are sought. Unlike the nonlinear diffusion

equation (3.70), the nonlinear wave equation (3.76) is not a scalar evolution
equation, and hence Theorem 3.4.2 does not hold. Conservation laws of the
nonlinear wave equation (3.76) are sought that arise from multipliers of the
form Λ = Λ(x, t, U). For an arbitrary c(u), there are exactly four such mul-
tipliers Λ = 1, t, xt, x, with a corresponding set of linearly independent local
conservation laws given by

Dt(ut) − Dx(c2(u)ux) = 0, (3.77)

Dt(tut − u) − Dx(tc2(u)ux) = 0, (3.78)

Dt

(
x[tut − u]

)
− Dx

(
t
[
xc2(u)ux −

∫
c2(u)du

])
= 0, (3.79)

Dt(xut) − Dx

(
xc2(u)ux −

∫
c2(u)du

)
= 0 (3.80)

[Bluman & Cheviakov (2007)].
Since none of the multipliers vanishes off of the solution space of the non-

linear wave equation (3.76), it is redundant to retain the original nonlinear
wave equation in corresponding potential systems. Introducing the potential
variables v, w, α, β, one obtains four singlet potential systems:
UV{x, t ;u, v} given by

vx = ut,

vt = c2(u)ux;
(3.81)

UW{x, t ;u,w} given by
wx = tut − u,

wt = tc2(u)ux;
(3.82)

UA{x, t ;u, α} given by
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αx = x[tut − u],

αt = t
[
xc2(u)ux −

∫
c2(u)du

]
; and

(3.83)

UB{x, t ;u, β} given by

βx = xut,

βt = xc2(u)ux −
∫
c2(u)du.

(3.84)

The four conservation laws (3.77)–(3.80) yield up to 24−1 = 15 nonlocally
related PDE systems:

• Four singlet potential systems (3.81), (3.82), (3.83) and (3.84) involving
single potential variables.

• Six couplets UVW{x, t ;u, v, w}, UVA{x, t ;u, v, α}, UVB{x, t;u, v, β},
UWA{x, t ;u,w, α}, UWB{x, t ;u,w, β} and UAB{x, t ;u, α, β}, respec-
tively, given by [(3.81), (3.82)], [(3.81), (3.83)], [(3.81), (3.84)], [(3.82),
(3.83)], [(3.82), (3.84)] and [(3.83), (3.84)] that involve all pairs of po-
tential variables.

• Four triplets UVWA{x, t ;u, v, w, α}, UVWB{x, t ;u, v, w, β},
UVAB{x, t; u, v, α, β}, and UWAB{x, t ;u,w, α, β}, respectively, given
by (3.81)–(3.83), [(3.81), (3.82), (3.84)], [(3.81), (3.83), (3.84)] and (3.82)–
(3.84) that involve all triplets of potential variables.

• One quadruplet UVWAB{x, t ;u, v, w, α, β} given by (3.81)–(3.84) that
involves all four potential variables.

No nonlocally related subsystem other than the nonlinear wave equation
(3.76) itself arises from the four singlet potential systems (3.81), (3.82), (3.83)
or (3.84) through direct exclusion of dependent variables.

Now consider subsystems obtained from the potential systems after in-
terchanges of dependent and independent variables. Here only one such in-
terchange is considered. It leads to the linearization of the nonlinear wave
equation (3.76) for an arbitrary nonlinearity c(u). In particular, the point
(hodograph) transformation x = x(u, v), t = t(u, v) transforms the PDE
system (3.81) into an invertibly equivalent linear PDE system XT{u, v ;x, t}
given by

xv = tu,

xu = c2(u) tv.
(3.85)

The PDE system XT{u, v ;x, t} (3.85) yields two linear subsystems: X{u, v;
x} given by

xvv = (c−2(u)xu)u (3.86)

and T{u, v ; t} given by
tuu = c2(u)tvv (3.87)
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which are nonlocally related to both the potential system XT{u, v ;x, t}
(3.85) and the nonlinear wave equation (3.76) (as well as to each other). The
equations X{u, v ;x} (3.86) and T{u, v ; t} (3.87) are two standard forms of
the linear wave equation with a variable wave speed.

Let Ta denote the tree of nonlocally related systems obtained so far. To fur-
ther extend the tree Ta one could follow Steps 3 and 4 of the tree construction
procedure described in Section 3.5.1:

• Find additional linearly independent (most likely nonlocal) conservation
laws of the given nonlinear wave equation (3.76) by seeking local conserva-
tion laws of the quadruplet potential system UVWAB{x, t; u, v, w, α, β}
given by (3.81)-(3.84).

• Introduce corresponding potential variables and singlet potential systems
arising from each additional conservation law.

• Introduce additional k-plet potential systems involving previously known
potentials v, w, α, β and the additional potentials, k = 2, 3, . . ..

• Consider further nonlocally related subsystems.

In order to simplify computations, a slightly different procedure of tree
extension is chosen as follows. Local conservation laws of the linear wave
equation T{u, v ; t} (3.87) are sought in terms of multipliers of the form Λ =
Λ(u, v, T ). Since the PDE T{u, v ; t} (3.87) is linear for any wave speed c(u),
there exists an infinite number of such conservation laws. Moreover, such
multipliers Λ(u, v, T ) satisfy the same linear wave equation, i.e.,

Λuu(u, v) = c2(u)Λvv(u, v),

since the PDE (3.87) is self-adjoint. However, it is easy to see that only four
multipliers hold for all wave speeds (i.e, do not depend on the form of the
wave speed c(u)), namely Λ = 1, u, v, uv. These local multipliers yield the
four linearly independent local conservation laws respectively given by

Du(tu) − Dv

(
c2(u)tv

)
= 0, (3.88)

Du(utu − t) − Dv

(
uc2(u)tv

)
= 0, (3.89)

Du(vtu) − Dv

(
c2(u)(vtv − t)

)
= 0, (3.90)

Du (v[utu − t]) − Dv

(
uc2(u)[vtv − t]

)
= 0. (3.91)

The conservation law (3.88) leads to the known potential system XT{u, v ;x, t}
(3.85). The other three conservation laws (3.89), (3.90) and (3.91), re-
spectively, yield singlet potential systems TP{u, v ; t, p}, TQ{u, v ; t, q} and
TR{u, v ; t, r} given by

pv = utu − t,

pu = uc2(u)tv;
(3.92)
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qv = vtu,

qu = c2(u)(vtv − t);
(3.93)

rv = v(utu − t),

ru = uc2(u)(vtv − t).
(3.94)

Thus the extended tree Tb that arises from the conservation laws (3.77)–
(3.80) of the linear wave equation (3.87) includes the following PDE systems:

• Three additional singlet potential systems TP{u, v ; t, p} (3.92), TQ{u, v;
t, q} (3.93) and TR{u, v ; t, r} (3.94).

• Six couplets XTP{u, v ;x, t, p}, XTQ{u, v ;x, t, q}, XTR{u, v ;x, t, r},
TPQ{u, v ; t, p, q}, TPR{u, v ; t, p, r} and TQR{u, v ; t, q, r}, given by
[(3.85), (3.92)], [(3.85), (3.93)], [(3.85), (3.94)], [(3.82), (3.83)], [(3.82),
(3.84)] and [(3.83), (3.84)], respectively, involving pairs of potential vari-
ables.

• Four triplets XTPQ{u, v ;x, t, p, q}, XTPR{u, v ;x, t, p, r}, XTQR{u, v;
x, t, q, r} and TPQR{u, v ; t, p, q, r} given by [(3.85), (3.92), (3.93)], [(3.85),
(3.92), (3.94)], [(3.85), (3.93), (3.94)] and [(3.92), (3.93), (3.94)], respec-
tively.

• One quadruplet XTPQR{u, v ;x, t, p, q, r} given by [(3.85), (3.92)–(3.94)].

Let Tc = Ta ∪ Tb denote the resulting extended tree.
Now one looks for redundancies, i.e., for locally related systems in the

tree Tc. Treating x, t as independent variables and u, v as dependent vari-
ables in the potential systems XTP{u, v ;x, t, p}, XTQ{u, v ;x, t, q} and
XTR{u, v ;x, t, r}, one obtains the corresponding invertibly related systems
UVP{x, t ;u, v, p}, UVQ{x, t ;u, v, q} and UVR{x, t ;u, v, r}. A comparison
of these systems with the couplets UVW{x, t ;u, v, w}, UVA{x, t ;u, v, α}
and UVB{x, t ;u, v, β} shows that the potential p is locally related to w, and
the potential q is locally related to β [Exercise 3.5.4]. Hence the PDE systems
XTP{u, v ;x, t, p}, XTQ{u, v ;x, t, q} and XTPQ{u, v ;x, t, p, q} in the tree
Tc are redundant. The resulting extended tree

Td = Tc \ {XTP{u, v ;x, t, p},XTQ{u, v ;x, t, q},XTPQ{u, v ;x, t, p, q}}

is exhibited in Figure 3.4.
None of the PDE systems in the tree Td is obviously redundant (i.e., lo-

cally related). However, from the point of view of applications, even if some
potential variables in a tree are linearly or functionally dependent, so that the
corresponding systems are locally related, it may be worthwhile to analyze
such redundant systems, since sometimes it may be too difficult computation-
ally to determine whether two systems within a tree are nonlocally related
(and the worst that could happen is repeated results).
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In Section 4.2.2, nonlocal symmetries are sought for the nonlinear wave
equation (3.76) through seeking local symmetries of PDE systems in the tree
Td. It turns out that many nonlocal symmetries arise for the nonlinear wave
equation (3.76) from point symmetries of distinct PDE systems within Td.

H2V

U TX

TQTPUWUBUA

UAB UAW UAV UBW UBV UVW

UABV UABW UBVWUAVW

TR

XTP XTQ XTR TPQ TPR TQR

XTPR XTPQ TPQRXTQR

UV ⇔ XT

UABVW XTPQR

Fig. 3.4 An extended tree Td of PDE systems for the nonlinear wave equation (3.76)
(for arbitrary c(u)). The sets of dependent and independent variables are not shown.
Redundant systems are outlined by dashed lines.

3.5.4 An extended tree for the planar gas dynamics
equations

The tree construction procedure described in Section 3.5.1 is now used to
extend the tree of nonlocally related systems for the planar gas dynamics
(PGD) equations presented in Section 3.3.3 and exhibited in Figure 3.2. In
particular, for both the Euler PGD system E{x, t ; v, p, ρ} (3.39) and the
Lagrange PGD system L{y, s ; v, p, q} (3.42), the tree constructed in Section
3.3.3 is extended through finding local conservation laws to obtain resulting
combination potential systems and nonlocally related subsystems.

In Section 3.3.3, it was shown that the potential systems (3.40) and (3.41)
for the nonlocally related Euler and Lagrange systems, respectively, are re-
lated by a point transformation involving an interchange of dependent and
independent variables. In this section, there is no consideration of nonlocally
related subsystems arising from interchanges of dependent and independent
variables.

(1) Nonlocally related systems arising from the Lagrange PGD system
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Consider the Lagrange PDE system L{y, s ; v, p, q} given by (3.42):

qs − vy = 0,

vs + py = 0,

ps +B(p, q)vy = 0,

(3.95)

where B(p, q) = Sq/Sp is the constitutive function.
Note that the PDE system (3.95) has the group of equivalence transfor-

mations

s̃ = a1s+ a4, ỹ = a2y + a5, ṽ = a3v + a6,

p̃ =
a2a3

a1
p+ a7, q̃ =

a1a3

a2
q + a8, B̃(p̃, q̃) =

a2
2

a2
1

B(p, q) (3.96)

for arbitrary constants a1, . . . , a8 with a1a2a3 �= 0. As usual, all further anal-
ysis is done modulo these equivalence transformations.

To construct PDE systems nonlocally related to L{y, s ; v, p, q} (3.95) for
an arbitrary constitutive function B(p, q), one seeks conservation law multi-
pliers of the form Λi = Λi(y, s), i = 1, 2, 3. This leads to the three linearly
independent conservation laws listed in Table 3.5.

Table 3.5 Local conservation laws and resulting potential equations for the La-
grange PGD system (3.42), arising from multipliers that are functions of independent
variables

Multipliers Conservation Law Potential Potential Equations

(Λ1, Λ2, Λ3) Variable

(1, 0, 0) Ds(q)−Dy(v) = 0 w1 w1
y = q, w1

s = v

(0, 1, 0) Ds(v) + Dy(p) = 0 w2 w2
y = v, w2

s = −p

(y, s, 0) Ds(sv + yq) + Dy(sp − yv) = 0 w3 w3
y = sv + yq,

w3
s = −sp + yv

The three singlet potential systems that arise from these conservation laws
are obtained as follows. The potential equations arising from the first conser-
vation law replace the first equation of the Lagrange system (3.95); the po-
tential equations arising from the second conservation law replace the second
equation of (3.95); the potential equations arising from the third conservation
law can equivalently replace either the first or second equation of (3.95).

The combination potential system Pw1w2w3 that follows from these three
conservation laws contains the following seven nonlocally related systems.
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• Three singlets: LW1{y, s ; v, p, q, w1} given by

w1
y = q,

w1
s = v,

vs + py = 0,

ps +B(p, q)vy = 0;

(3.97)

LW2{y, s ; v, p, q, w2} given by

qs − vy = 0,

w2
y = v,

w2
s = −p,

ps +B(p, q)vy = 0;

(3.98)

and LW3{y, s ; v, p, q, w3} given by

w3
y = vs+ qy,

w3
s = −sp+ vy,

vs + py = 0,
ps +B(p, q)vy = 0.

(3.99)

• Three couplets: LW1W2{y, s ; v, p, q, w1, w2} given by

w1
y = q,

w1
s = v,

w2
y = v,

w2
s = −p,

ps +B(p, q)vy = 0;

(3.100)

LW1W3{y, s ; v, p, q, w1, w3} given by

w1
y = q,

w1
s = v,

w3
y = vs+ qy,

w3
s = −sp+ vy,

ps +B(p, q)vy = 0;

(3.101)

and LW2W3{y, s ; v, p, q, w2, w3} given by
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w2
y = v,

w2
s = −p,

w3
y = vs+ qy,

w3
s = −sp+ vy,

ps +B(p, q)vy = 0.

(3.102)

• One triplet LW1W2W3{y, s ; v, p, q, w1, w2, w3} given by

w1
y = q,

w1
s = v,

w2
y = v,

w2
s = −p,

w3
y = vs+ qy,

w3
s = −sp+ vy,

ps +B(p, q)vy = 0.

(3.103)

The tree T1 = L{y, s ; v, p, q} ∪ Pw1w2w3 contains eight nonlocally related
PDE systems. The only nonlocally related subsystem arising from the di-
rect exclusion of a dependent variable (for an arbitrary constitutive function
B(p, q)) is the subsystem L{y, s ; p, q} of the Lagrange system L{y, s ; v, p, q}
given by

qss + pyy = 0,

ps +B(p, q)qs = 0.
(3.104)

In considering subsystems, after relabelling w1 = x = α1, note that the
potential system LW1{y, s ; v, p, q, w1} (3.97) is the PDE system LX{y, s;
v, p, q, x}(3.41), and hence is locally equivalent (through an interchange of
variables) to the system EA1{x, t ; v, p, ρ, α1} (3.40) (w1 = x = α1). The
Euler PGD system E{x, t ; v, p, ρ} (3.39) is a nonlocally related subsystem of
EA1{x, t ; v, p, ρ, α1}.

Consequently, one obtains the extended tree

Ta = T1 ∪ {L{y, s ; p, q},E{x, t ; v, p, ρ}} (3.105)

that contains ten nonlocally related PDE systems arising from the Lagrange
system (3.95). This extended tree is exhibited in Figure 3.5 and extends the
tree exhibited in Figure 3.2.
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Fig. 3.5 The extended tree Ta of nonlocally related systems for the planar gas
dynamics equations for an arbitrary constitutive function B(p, q) with q = 1/ρ.

(2) Nonlocally related systems arising from the Euler PGD system
Now local conservation laws are sought for the Euler PGD system E{x, t;
v, p, ρ} given by

ρt + (ρv)x = 0,

ρ(vt + vvx) + px = 0,

ρ(pt + vpx) +B(p, 1/ρ)vx = 0.

(3.106)

For multipliers of the form Λi = Λi(x, t, V ), i = 1, 2, 3, one can show that
the Euler system E{x, t ; v, p, ρ} (3.106) has the three linearly independent
local conservation laws listed in Table 3.6.

Table 3.6 Local conservation laws and resulting potential equations for the Euler
PGD system (3.106) arising from multipliers of the form Λi = Λi(x, t, V )

Multipliers Conservation Law Potential Potential Equations

(Λ1, Λ2, Λ3) Variable

(1, 0, 0) Dt(ρ) + Dx(ρv) = 0 α1 α1
x = ρ, α1

t = −ρv

(V, 1, 0) Dt(ρv) + Dx(p + ρv2) = 0 α2 α2
x = ρv, α2

t = −(p + ρv2)

(tV − x, t, 0) Dt

(
ρ(tv − x)

)
α3 α3

x = ρ(tv − x),

+Dx

(
tp + ρv(tv − x)

)
= 0 α3

t = −
(
tp + ρv(tv − x)

)
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The first two conservation laws in Table 3.6 were used in the initial tree
constructed in Section 3.3.3 to yield nonlocally related systems involving the
potentials α1 and α2, respectively. At a first glance, the third conservation
law appears to be new. However, it is equivalent (up to the addition of a
trivial conservation law) to the known conservation law

Dt(α1) + Dx(α2) = 0 (3.107)

in the potential system EA1A2{x, t ; v, p, ρ, α1, α2} (3.44) [Exercise 3.5.7].
It is left to Exercise 3.5.8 to show that the potential variables α1, α2 and α3

of the Euler PGD system coincide with the previously introduced potential
variables w1, w2, w3 of the Lagrange system and hence are redundant for a
further extension of the tree exhibited in Figure 3.5.

(3) Additional conservation laws of the Lagrange PGD system leading to a
further tree extension
To further extend the tree Ta, one seeks additional linearly independent lo-
cal conservation laws for the Lagrange PGD system L{y, s ; v, p, q} (3.95). In
order to accomplish this, one searches for conservation law multipliers of the
more general form Λi = Λi(y, s, V, P,Q), i = 1, 2, 3, with an essential depen-
dence on V , P , and/or Q. One can show that the solution of the multiplier
determining equations yields the additional multipliers [Exercise 3.5.9]:

Λ1 = −βP +B(P,Q)Λ3,

Λ2 = βV,

Λ3 = Λ3(y, P,Q),

(3.108)

where β is an arbitrary real constant, and Λ3(y, p, q) is an arbitrary solution
of the linear PDE

(Λ3)Q = (B(P,Q)Λ3)P − β. (3.109)

One can show that these multipliers yield two new linearly independent
local conservation laws. Indeed, since multipliers can always be scaled, in the
equation (3.109) it suffices to consider three cases: β = 0,±1.

In particular, the conservation law arising from β = 0 corresponds to the
adiabatic process in Lagrangian coordinates:

Ds(S(p, q)) = 0, (3.110)

where the entropy S(p, q) is a solution of the equation

Sq(p, q) = B(p, q)Sp(p, q). (3.111)

The set of multipliers that yields the conservation law (3.110) is given by
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Λ1 = SQ(P,Q), Λ2 = 0, Λ3 = SP (P,Q).

A second conservation law (β = 1) represents the conservation of energy
and is given by

Ds

(
1
2v

2 +K(p, q)
)

+ Dy(pv) = 0, (3.112)

where K(p, q) is any solution of the equation

Kq(p, q) = B(p, q)Kp(p, q) − p. (3.113)

The set of multipliers that yields the local conservation law (3.112) is given
by

Λ1 = KQ(P,Q), Λ2 = V, Λ3 = KP (P,Q).

The conservation law arising from β = −1 is given by

Ds

(
− 1

2v
2 + K̃(p, q)

)
− Dy(pv) = 0, (3.114)

where K̃(p, q) satisfies the equation

K̃q(p, q) = B(p, q)K̃p(p, q) + p. (3.115)

Each solution K̃(p, q) of (3.115) is of the form K̃(p, q) = S(p, q)−K(p, q),
where S(p, q) is a solution of (3.111) and K(p, q) is a particular solution of
(3.113). Consequently, the conservation law (3.114) is redundant since it is a
linear combination (difference) of the conservation laws (3.110) and (3.112).

In principle, for any form of B(p, q), the conservation laws (3.110) and
(3.112), respectively, yield new linearly independent potential variables w4

and w5, defined by potential equations P4, given by

w4
y = S(p, q),

w4
s = 0,

Sq(p, q) = B(p, q)Sp(p, q);

(3.116)

and P5, given by

w5
y = 1

2v
2 +K(p, q),

w5
s = −pv,

Kq(p, q) = B(p, q)Kp(p, q) − p.

(3.117)

In combination with the previous potential variables w1, w2 and w3, this
yields a correspondingly larger combination potential system Pw1...w5 ⊃
Pw1w2w3 containing up to 31 nonlocally related potential systems.
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Note that the singlet potential system LW4{y, s ; v, p, q, w4} = P4 ∪
L{y, s ; v, p, q}, obtained by excluding the dependent variable v, yields the
nonlocally related subsystem LW4{y, s ; p, q, w4} given by

qss + pyy = 0,

w4
y = S(p, q),

w4
s = 0,

ps +B(p, q)qs = 0,

Sq(p, q) = B(p, q)Sp(p, q).

(3.118)

Consequently, the tree Ta of 10 nonlocally related PGD equations given
by (3.105), that is exhibited in Figure 3.5, can be significantly extended for
an arbitrary constitutive function B(p, q). In particular, one now has the
extended tree

Tb =
{
L{y, s ; v, p, q},L{y, s ; p, q},E{x, t ; v, p, ρ},

LW4{y, s ; p, q, w4}
}

∪ Pw1...w5

(3.119)

containing up to 35 nonlocally related PDE systems, including the Lagrange
and Euler systems. This tree is exhibited in Figure 3.6.

It is important to note that the tree Tb can be extended even further, if ad-
ditional independent conservation laws are found for the PDE systems within
the tree Tb. For example, one may show that for any form of the constitu-
tive function B(p, q), the Lagrange potential system LW1W2W3{y, s ; v, p,
q, w1, w2, w3} (3.103) has an additional conservation law that is independent
of the five conservation laws that lead to the potential variables w1, . . . , w5

[Exercise 3.5.6].

(4) Example: An extended tree for a polytropic gas
In the case of a polytropic gas, B(p, q) = γp/q, where γ is an arbitrary
constant, explicit computations can be performed. For the conservation law
(3.110), one readily finds that

Λ1 = γPQγ−1, Λ2 = 0, Λ3 = Qγ , and S(p, q) = S(pqγ).

It suffices to take S(p, q) = pqγ [Exercise 3.5.10]. The corresponding singlet
potential system LW4{y, s ; v, p, q, w4} is given by

qs − vy = 0,

vs + py = 0,

w4
y = pqγ ,

w4
s = 0.

(3.120)
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Fig. 3.6 The further extended tree Tb of up to 35 nonlocally related systems for
the planar gas dynamics equations for an arbitrary constitutive function B(p, q) with
q = 1/ρ [cf. the extended tree Ta exhibited in Figure 3.5].

[Here one can replace the third equation of the Lagrange system L{y, s ; v, p, q}
(3.95) by the potential equations since the multiplier Λ3 = Qγ does not vanish
for an arbitrary function Q(y, s) �= 0.]

For the conservation law (3.112), one has

K(p, q) =

{ pq

γ − 1
+ T (pqγ), γ �= 1;

pq ln p+ T (pq), γ = 1.
(3.121)

Taking into account the potential equations for w4, one can set T (pqγ) = 0
[Exercise 3.5.10]. Hence, the singlet potential system LW5{y, s ; v, p, q, w5}
resulting from the conservation law (3.112) becomes

qs − vy = 0,

vs + py = 0,

ps + γ
p

q
vy = 0,

w5
y = 1

2v
2 +K(p, q),

w5
s = −pv,

(3.122)

with K(p, q) given by (3.121).
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The nonlocally related subsystem LW4{y, s ; p, q, w4} (3.118) here takes
the form

qss + pyy = 0,

w4
y = pqγ ,

w4
s = 0.

(3.123)

Note that in the case γ = −1, i.e., when a polytropic gas is a Chaplygin
gas, both the Euler and Lagrange PGD systems are nonlinear as they stand.
But here the nonlocally related system (3.123) for γ = −1 becomes a linear
PDE system in terms of the dependent variables p and q (w4 = w4(y) is an
arbitrary function of y):

p = w4(y)q, qss + (w4(y)q)yy = 0.

Exercises 3.5

3.5.1. Prove Theorem 3.5.1.

3.5.2. Suppose a PDE system R{x, t ;u} has two linearly independent local
conservation laws K1 and K2 that yield respective potential variables v1 and
v2. Show that

(a) the linear combination of conservation laws K1 + cK2, c = const �= 0,
yields a potential variable w = v1 + cv2;

(b) the potential systems RV1{x, t ;u, v1}, RV2{x, t ;u, v2}, and RW{x, t;
u,w} are nonlocally related to each other, to the couplet potential sys-
tem RV1V2{x, t ;u, v1, v2}, and to the given PDE system R{x, t ;u}.

3.5.3. Consider the potential system UVA{x, t ;u, v, α} (3.73) of the non-
linear diffusion equation [Section 3.5.2].

(a) Find the PDE system XTA{u, v ;x, t, α} (3.74) and the subsystem
XA{u, v ;x, α}.

(b) Consider all other possible interchanges of dependent and independent
variables for the potential system UVA{x, t ;u, v, α} (3.73). Find the
corresponding PDE systems and additional nonlocally related subsys-
tems.

3.5.4. Consider potential systems of the nonlinear wave equation (3.76) [Sec-
tion 3.5.3]. Show that the potential system XTP{u, v ;x, t, p} [(3.85), (3.92)]
is locally related to the potential system UVW{x, t ;u, v, w} [(3.81), (3.82)]
[In particular, p = −w.], and the potential system XTQ{u, v ;x, t, p} [(3.85),
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(3.93)] is locally related to the potential system UWB{x, t ;u,w, β} [(3.81),
(3.84)].

3.5.5. Construct an extended tree of nonlocally related PDE systems for the
nonlinear reaction-diffusion equation ut −u2uxx −2bu2 = 0 (b = const). Here
u = u(x, t). Show that for any value of b, this nonlinear reaction-diffusion
equation can be linearized by a nonlocal transformation [Bluman (1993)].

3.5.6. Show that for any form of the constitutive function B(p, q), the La-
grange potential system LW1W2W3{y, s ; v, p, q, w1, w2, w3} (3.103) has the
infinite set of local conservation laws

Ds

(
w1F (yw1 + sw2 − w3)

)
− Dy

(
w2F (yw1 + sw2 − w3)

)
= 0, (3.124)

where F is an arbitrary function of its argument. Find the set of multipliers
that yields the conservation laws (3.124). Prove that the conservation laws
(3.124) are linearly independent of the set of five conservation laws that in-
clude the three conservation laws exhibited in Table 3.5 and the conservation
laws given by equations (3.110) and (3.112). [Hint: Compute multipliers and
compare with those for the five known conservation laws.]

3.5.7. Prove that the third conservation law listed in Table 3.6 for the Euler
PGD system (3.106) is equivalent to the previously known conservation law
Dt(α1) + Dx(α2) = 0 of the potential system EA1A2{x, t ; v, p, ρ, α1, α2}
(3.44). [Hint: Use the proof sequence of Theorem 3.5.1.]

3.5.8. Show that the potential variables α1, α2 and α3 of the Euler PGD
system (3.106) [Table 3.6] coincide with the potential variables w1, w2 and
w3 of the Lagrange system (3.95) [Table 3.5].

3.5.9. For the Lagrange PGD system (3.95), show that the sets of conserva-
tion law multipliers of the form Λi = Λi(y, s, V, P,Q), i = 1, 2, 3, are given
by (3.108) and (3.109).

3.5.10. Show that the potential w̃4 arising from the conservation law (3.110)
with S(p, q) = S(pqγ) (polytropic case) is functionally dependent on the
potential w4 arising from S(p, q) = pqγ . Hence it is sufficient to consider
S(p, q) = pqγ .

3.6 Discussion

For diffusion-convection equations of the form

ut − [f(u)ux + k(u)]x = 0,
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Popovych & Ivanova (2005a,b) classify conservation laws and find resulting
trees of potential systems.

In the procedure presented in Section 3.2.2, nonlocally related subsys-
tems are obtained by excluding dependent variables of a given PDE system
R{x, t ;u} as written, or after the exclusion of one or more dependent vari-
ables following an interchange of its given independent and dependent vari-
ables. More generally, any invertible point transformation U = U(x, t, u),
X = X(x, t, u), T = T (x, t, u) could be used to exclude one or more of the m
components of the resulting m dependent variables in U to obtain additional
nonlocally related subsystems.

Note that the extended tree construction procedure [Section 3.5] can be
generalized even further, as follows. Suppose one has a set of n ≥ 2 linearly
independent conservation laws of a PDE system R{x, t ;u}, yielding corre-
sponding singlet potential systems RV1{x, t ;u, v1}, . . . , RVn{x, t ;u, vn}.
One can consider a linear combination of such conservation laws to yield a
potential variable

w = α1v
1 + · · · + αnv

n. (3.125)

As shown in Exercise 3.5.2, the singlet potential system RW{x, t ;u,w} is
nonlocally related to R{x, t ;u} as well as RV1{x, t ;u, v1}, . . . , RVn{x, t;
u, vn}, for any choice of the constants α1, . . . , αn (unless one of these con-
stants is one and the others are zero). It follows that, in general, a set of
n conservation laws directly yields a spectrum of singlet potential systems,
rather than just n nonlocally related singlet potential systems. However, to
date, there are few examples of useful applications of such potential systems.
[One example is given in Remark 4.2.1 in Section 4.2.2.]

Applications of nonlocally related systems to obtain nonlocal symmetries
and nonlocal conservation laws of a given PDE system are considered in
the next chapter. In the following chapter it is also shown how to extend
the work presented in Chapter 2, on the use of local symmetries and/or
local conservation law multipliers to find an invertible mapping of a given
PDE system to an equivalent target PDE system of interest, to include non-
invertible mappings that result from consideration of local symmetries and/or
local conservation law multipliers of nonlocally related systems.

The situation for PDE systems with three or more independent variables
is much more complex and considered in Chapter 5. It is shown that in order
to obtain an interesting potential system (i.e., one that yields nonlocal sym-
metries and/or nonlocal conservation laws through calculations of its local
symmetries and/or local conservation laws, respectively) from a divergence-
type conservation law of a given PDE system, one must introduce gauge
constraints that relate the potential variables resulting from local conserva-
tion laws. To date it is not obvious which gauge constraint is of value for a
particular application. However, it is shown that potential systems following
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from lower-degree conservation laws require fewer or no gauge constraints
and can yield interesting results. Moreover, the use of subsystems of a given
PDE system to obtain interesting nonlocally related PDE systems carries
through for PDE systems with three or more independent variables.



Chapter 4

Applications of Nonlocally Related PDE
Systems

4.1 Introduction

In Chapter 3, it was shown how one can systematically construct a set (tree)
of PDE systems nonlocally related to a given PDE system. In particular, local
conservation laws of a PDE system lead to augmented nonlocally related (po-
tential) systems that explicitly include nonlocal (potential) variables. More-
over, further nonlocally related PDE systems (nonlocally related subsystems)
arise when one or more dependent variables (including dependent variable(s)
arising after a point transformation that involves an interchange of dependent
and independent variable(s)) are excluded from a PDE system or its potential
systems, through differential relations. In Section 3.5, an algorithm for the
construction of an extended tree of nonlocally related systems was outlined.
In particular, n local conservation laws of a given PDE system lead to a tree
of up to 2n−1 nonlocally related potential systems. A tree is further extended
by considering subsystems of both the given PDE system and its nonlocally
related potential systems as well as by considering potential systems arising
from conservation laws (whose multipliers have an essential dependence on
potential variables) of its nonlocally related potential systems.

Nonlocally related systems in such extended trees are important for ap-
plications since they are constructed systematically and each solution of any
PDE system in such a tree yields a solution of any other PDE system in
the tree, including the given PDE system. More importantly, there is not
a one-to-one mapping between solutions of such nonlocally related systems.
Consequently, the usefulness of standard methods of analysis, especially co-
ordinate independent methods, can be enhanced when directly applied to
different nonlocally related PDE systems. In particular, a method of analysis
could be successful in achieving results when applied directly to a nonlocally
related system in a tree even if it is unsuccessful in achieving results when
directly applied to the given PDE system. Furthermore, from the simplicity
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of the construction of the mappings that relate PDE systems in an extended
tree, it is usually simple to transfer results achieved for a PDE system in such
a tree to other PDE systems in the tree, including the given PDE system.

Applications that naturally can arise from the use of such nonlocally re-
lated systems include:

(1) The construction of nonlocal conservation laws of a given PDE system
that arise as local conservation laws of nonlocally related PDE systems
This application was illustrated in Chapter 3 in the construction of nonlo-
cally related PDE systems arising from local conservation laws of potential
systems that in themselves arose from local conservation laws of the given
PDE system. Such local conservation laws of potential systems can yield
nonlocal conservation laws of the given PDE system, i.e., conservation laws
whose fluxes and/or densities have an essential dependence on potential vari-
ables. Furthermore, such local conservation laws of potential systems may
actually yield further local conservation laws of the given PDE system that
had not been previously determined due to lack of completeness in the direct
calculation of its local conservation laws.

(2) The construction of nonlocal symmetries of a given PDE system
In this chapter it is shown that point symmetries of a PDE system in a tree
of nonlocally related systems can systematically yield nonlocal symmetries of
a given PDE system.

A symmetry of a PDE system is defined topologically as a mapping (defor-
mation) of its solution manifold into itself. From this point of view, essentially
every PDE system has symmetries. The problem is to find such symmetries
and to find those that have applications. In particular, to find explicit sym-
metries it is necessary to calculate them in some fixed coordinate system.
Moreover, such calculations are simple to perform and the resulting symme-
tries are directly applicable if obtained through a direct application of Lie’s
algorithm, which yields only local symmetries of a PDE system. The infinites-
imals of local symmetries depend at most on a finite number of derivatives of
the dependent variables of the PDE system. However, such local symmetries
constitute at most a small subset of the total set of symmetries of a PDE
system.

In this chapter, it is shown that additional (nonlocal) symmetries of a
given PDE system can be found by a direct application of Lie’s algorithm to
PDE systems in a tree of nonlocally related systems. For the computation of
such nonlocal symmetries, it turns out that both nonlocally related potential
systems and subsystems can separately yield new symmetries (contrary to the
situation in the computation of nonlocal conservation laws, where all local
conservation laws of a subsystem are included in the local conservation laws
of a PDE system yielding the subsystem).



4.1 Introduction 247

A point symmetry of a potential system yields a nonlocal symmetry of a
given PDE system if at least one of its infinitesimal generator components
for the dependent and independent variables of the given PDE system has an
essential dependence on a potential (nonlocal) variable. On the other hand,
in the case of a nonlocally related subsystem, in order to isolate a nonlocal
symmetry of the given PDE system that arises from a point symmetry of the
subsystem, one has to compare the local symmetries of both the given PDE
system and the nonlocally related subsystem to determine whether a point
symmetry of the subsystem yields a nonlocal symmetry of the given PDE
system.

For a given PDE system that includes arbitrary constitutive functions
and/or parameters, one is interested in the classification of its local and non-
local symmetries with respect to such functions and/or parameters. In order
to do this, one can classify the local symmetries (with respect to such func-
tions and/or parameters) of PDE systems in a tree of nonlocally related sys-
tems constructed for a given PDE system. In this chapter, nonlinear diffusion
equations, nonlinear wave equations and the equations of planar gas dynamics
are considered as illustrative examples for such classifications. Comparisons
are made of the point symmetries of various nonlocally related PDE systems
in their respective trees to determine the point symmetries yielding nonlocal
symmetries of particular systems in trees.

(3) The construction of solutions of a given PDE system that arise from
symmetry reductions due to nonlocal symmetries but do not arise as invariant
solutions from symmetry reductions due to point symmetries
For a given PDE system, an important application of nonlocal symmetries
that arise from point symmetries of a nonlocally related system in a tree
results from the construction of the corresponding invariant solutions of the
nonlocally related system. In particular, such solutions are especially inter-
esting when the corresponding solutions of the given PDE system are not
invariant solutions that can be constructed from the point symmetries of the
given PDE system. This application is considered in the next chapter [Section
5.2.3].

In Section 5.2.3, such solutions are constructed for the linear wave equation
with a variable wave speed c(x). It is shown that a potential system of such
a linear wave equation has point symmetries that are nonlocal symmetries
of the linear wave equation for an interesting special form of the constitu-
tive function c(x) corresponding to wave propagation in two-layered media
with smooth transitions. These symmetries yield a countable infinite set of
invariant solutions for initial value problems. Moreover, this set of solutions
is complete and can be used to obtain Fourier series solutions for initial value
problems with arbitrary piecewise smooth data in the infinite space domain.
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A second example yields physical solutions for the Lagrange system of the
planar gas dynamics equations that arise as invariant solutions obtained from
nonlocal symmetries that are point symmetries of nonlocally related systems.

(4) The construction of non-invertible mappings relating PDEs
In Chapter 2, two important mapping problems were considered systemati-
cally: the invertible mapping of a given nonlinear PDE system to some linear
PDE system (in terms of the point/contact symmetries or local conservation
law multipliers of the nonlinear PDE system) and the invertible mapping of a
given linear PDE with variable coefficients to a linear PDE with constant co-
efficients (in terms of the point symmetries of abelian type of the linear PDE
with variable coefficients). Here these results are extended systematically to
include non-invertible mappings.

Firstly, if a nonlocally related PDE system in a tree can be linearized by a
point transformation whereas the given PDE system cannot be linearized by
a point (contact) transformation, then one obtains a non-invertible mapping
of the given PDE system to some linear system. Such non-invertible map-
pings arise from computing the point symmetries or local conservation law
multipliers of a nonlocally related PDE system.

Secondly, suppose a given linear PDE system with variable coefficients
cannot be mapped invertibly to a linear PDE system with constant coeffi-
cients. It turns out that for any given linear PDE system, it is straightforward
to construct an infinite number of potential systems since any solution of the
adjoint system of a given linear PDE system yields a set of conservation law
multipliers. If one of the corresponding potential systems can be invertibly
mapped into a constant coefficient linear PDE system, then as a consequence
the given linear PDE is mapped non-invertibly to a constant coefficient lin-
ear PDE system. Such non-invertible mappings are constructed for linear
parabolic equations with variable coefficients and lead to a significant exten-
sion of the classes of linear parabolic equations that can be mapped into the
heat equation beyond those found in Section 2.5.1.

The results presented in this chapter have appeared in Bluman & Kumei
[(1987), (1988), (1989)], Akhatov, Gazizov & Ibragimov (1991), Ames, Lohner
& Adams (1981), Bluman & Cheviakov (2007), Kingston & Sophocleous
(2001), Bluman, Temuerchaolu & Sahadevan (2005), Bluman, Cheviakov &
Ivanova (2006), and Bluman & Shtelen [(1996a), (2004)].

4.2 Nonlocal Symmetries

Local symmetries of a nonlocally related system can yield explicit symmetries
(nonlocal symmetries) of a given system of PDEs that do not arise as local
symmetries by a direct application of Lie’s algorithm to the given system. In
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particular, such nonlocal symmetries arise as local symmetries of nonlocally
related systems with infinitesimal generators having an essential dependence
on nonlocal potential variables in the case of nonlocally related systems that
are not subsystems. It is shown that this significantly enhances the applica-
bility of symmetry methods.

A symmetry of a system of differential equations is defined topologically
as any transformation of its solution manifold into itself. Hence, symmetry
transformations are not restricted to local transformations arising from in-
finitesimal generators whose coefficients are functions of the given system’s
independent and dependent variables and their derivatives to some finite or-
der. Through many examples, it is demonstrated that local symmetries do not
include all calculable (as well as useful) symmetries of a given PDE system.

Suppose a system of PDEs R{x, t ;u} has a potential system (k-plet)
S{x, t ;u, v} that is invariant under the one-parameter (ε) Lie group of point
transformations

x∗ = x+ εξS(x, t, u, v) +O(ε2),

t∗ = t+ ετS(x, t, u, v) +O(ε2),

u∗ = u+ εηS(x, t, u, v) +O(ε2),

v∗ = v + εζS(x, t, u, v) +O(ε2),

(4.1)

with corresponding infinitesimal generator

X = ξi
S(x, t, u, v)

∂

∂xi
+ ημ

S(x, t, u, v)
∂

∂uμ
+ ζp

S(x, t, u, v)
∂

∂vp
; (4.2)

ξi
S , i = 1, 2, are the infinitesimals corresponding to the independent variables

(x1, x2) = (x, t), ημ
S are the infinitesimals corresponding to the dependent

variables uμ of R{x, t ;u}, μ = 1, . . . ,m, and ζp
S are the infinitesimals cor-

responding to the potential variables vp, p = 1, . . . , k of the k-plet potential
system S{x, t ;u, v}.

The point symmetry (4.1) maps any solution of S{x, t ;u, v} to a solution of
S{x, t ;u, v}, and hence through projection, induces a mapping of any solution
of R{x, t ;u} to a solution of R{x, t ;u}. Thus (4.1) yields a symmetry of
R{x, t ;u}. However, if the infinitesimals (ξS(x, t, u, v), ηS(x, t, u, v)) do not
depend explicitly on the nonlocal potential variables v, i.e.,

∂ξi
S

∂v
≡ 0,

∂ημ
S

∂v
≡ 0, i = 1, 2; μ = 1, . . . ,m, (4.3)

then (4.1) only yields a point symmetry of R{x, t ;u}, in terms of the in-
finitesimal generator given by

X = ξi
S(x, t, u)

∂

∂xi
+ ημ

S(x, t, u)
∂

∂uμ
. (4.4)
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On the other hand, if the infinitesimals (ξS(x, t, u, v), ηS(x, t, u, v)) have an
essential dependence on v, then the point symmetry (4.1) defines a nonlocal
symmetry of R{x, t ;u}, since the potential variables v are nonlocal variables.
This leads to the following definition and the proof of the subsequent theorem.

Definition 4.2.1. The point symmetry (4.1) of the potential system S{x, t;
u, v} defines a potential symmetry of a PDE system R{x, t ;u} if and only
if the infinitesimals (ξS(x, t, u, v), τS(x, t, u, v), ηS(x, t, u, v)) depend explicitly
on one or more components of v.

Theorem 4.2.1. A potential symmetry of R{x, t ;u} is a nonlocal symmetry
of R{x, t ;u}.

Nonlocal symmetries of PDE systems can arise as potential symmetries
(i.e., point symmetries of singlet or k-plet potential systems), as well as sym-
metries of nonlocally related subsystems, as discussed below. Related to this,
it is important to note that a local symmetry of R{x, t ;u} could yield a non-
local symmetry of S{x, t ;u, v}. [By construction, R{x, t ;u} is an obvious
nonlocally related subsystem of S{x, t ;u, v}.]

Suppose R{x, t ;u} is a given PDE system with m dependent variables, and
R{x, t ;uμ1 , . . . , uμm−p} is a subsystem with m− p dependent variables that
is obtained by excluding p dependent variables uα in R{x, t ;u}. Consider
the problem of comparing the local symmetries of R{x, t ;u} with those of
its subsystem R{x, t ;uμ1 , . . . , uμm−p}.

If the subsystem R{x, t ;uμ1 , . . . , uμm−p} is locally related to R{x, t ;u}
(in the sense of Theorem 3.2.2), then there is a one-to-one correspondence
between solutions of the two systems. Consequently, the following theorem
holds.

Theorem 4.2.2. A local symmetry of a locally related subsystem R{x, t ;
uμ1 , . . . , uμm−p}of a PDE system R{x, t ;u} is a projection of some corre-
sponding local symmetry of R{x, t ;u} onto the space of variables of R{x, t ;
uμ1 , . . . , uμm−p}.

Note that a point symmetry of a PDE system R{x, t ;u} could project
onto a point or contact (or, more generally, higher-order (local)) symmetry
of a locally related subsystem R{x, t ;uμ1 , . . . , uμm−p}.

The situation is different for a nonlocally related subsystem. Here, there
is not a one-to-one correspondence between the solutions of a given PDE
system and a nonlocally related subsystem. In particular, numerous ex-
amples exist where a local symmetry X of a nonlocally related subsys-
tem R{x, t ;uμ1 , . . . , uμm−p} does not correspond to any local symmetry of
R{x, t ;u}, and conversely, a local symmetry Y of R{x, t ;u} does not cor-
respond to a local symmetry of R{x, t ;uμ1 , . . . , uμm−p}. For the rest of this
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chapter we only consider point symmetries of PDE systems. Correspond-
ingly, one can modify the statements in this paragraph through replacing
“local symmetry” by “point symmetry”.

Summarizing the above discussion, one can isolate three different types of
nonlocal symmetries that can be sought for a given PDE system R{x, t ;u}.

1. Nonlocal symmetries arising from point symmetry analysis of nonlo-
cally related subsystems of R{x, t ;u} obtained by excluding one or
more of its dependent variables. [Recall that such nonlocally related
subsystems could also arise through exclusion of a dependent variable
that arises after an interchange of one or more independent and de-
pendent variables of R{x, t ;u}.]

2. Nonlocal symmetries (potential symmetries) that arise as point sym-
metries of potential systems (including k-plet potential systems) of
R{x, t ;u}.

3. Nonlocal symmetries that arise as point symmetries of nonlocally re-
lated subsystems of potential systems of R{x, t ;u}.

More generally, such nonlocal symmetries of R{x, t ;u} can arise from seeking
local symmetries of any PDE system in an extended tree of nonlocally related
systems that includes R{x, t ;u}.

Among all such nonlocal symmetries of a PDE system R{x, t ;u}, the
ones that explicitly involve nonlocal variables (Type 2 and, in part, Type 3)
are easier to distinguish. In the case of finding Type 1 (and the remaining
ones of Type 3) nonlocal symmetries of a PDE system R{x, t ;u}, in order
to isolate nonlocal symmetries arising from a subsystem whose infinitesimal
components for (x, t, u) do not involve nonlocal variables, one must find all
point symmetries of R{x, t ;u}, and then see if a point symmetry of a consid-
ered nonlocally related system is included in the complete point symmetry
analysis of R{x, t ;u}.

It often turns out, as is illustrated by several examples, that a given sys-
tem R{x, t ;u} with an arbitrary constitutive function(s) can have nonlocal
symmetries for special forms of the constitutive function(s), arising as point
symmetries of one or more systems in an extended tree of nonlocally related
systems.

4.2.1 Nonlocal symmetries of a nonlinear diffusion
equation

As a first example, consider a symmetry classification problem for the non-
linear diffusion equation U{x, t ;u} given by
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ut − (K(u)ux)x = 0, (4.5)

with an arbitrary constitutive function K(u) = L′(u) [Bluman & Kumei
(1989); Akhatov, Gazizov & Ibragimov (1991)]. All computations below are
presented modulo the group of equivalence transformations of the class of
PDEs (4.5), given by

t̃ = a4t+ a1, x̃ = a5x+ a2, ũ = a6u+ a3,

K̃(ũ) =
a2
5

a4
K(u), L̃(ũ) =

a2
5a6

a4
K(u) + a7,

(4.6)

where a1, . . . , a7 are arbitrary constants with a4a5a6 �= 0.
An extended tree T4 of nonlocally related PDE systems for the nonlin-

ear diffusion equation U{x, t ;u} (4.5), holding for an arbitrary K(u), was
constructed in Section 3.5.2, and shown in Figure 3.3. This tree contains
nine nonlocally related PDE systems that have equivalence transformations
similar to those in (4.6) [Exercise 4.2.1]. It is also important to note that
some of the systems within the tree T4, namely, UVA{x, t ;u, v, α} (3.73),
UV{x, t ;u, v} (3.19), V{u, t ; v} (3.22), X{u, v ;x} [Exercise 3.3.3] have an
additional (projective) equivalence transformation

t̃ = t, x̃ = x− bv, ũ =
u

1 − bu
, K̃(ũ) = (1 + bũ)−2K

(
ũ

1 + bũ

)
,

L̃(ũ) = L

(
ũ

1 + bũ

)
;

(4.7)

whereas the remaining nonlocally related systems, UA{x, t ;u, α} (3.73),
U{x, t ;u} (4.5), and A{x, u ;α} (3.38) do not have the equivalence trans-
formation (4.7). [It is a nonlocal transformation of these systems!]

Before seeking nonlocal symmetries of U{x, t ;u} (4.5), we present its point
symmetry classification [Table 4.1] [Ovsiannikov (1959)]. One can show that
no contact symmetries arise for any form of K(u).

Table 4.1 Local (point) symmetries of the nonlinear diffusion equation U{x, t ;u}
(4.5)

K(u) # Point Symmetries

Arbitrary 3 X1 = ∂
∂x

, X2 = ∂
∂t

, X3 = x ∂
∂x

+ 2t ∂
∂t

.

uν 4 X1, X2, X3, X4 = x ∂
∂x

+ 2
ν

u ∂
∂u

.

eu 4 X1, X2, X3, X5 = x ∂
∂x

+ 2 ∂
∂u

.

u−4/3 5 X1, X2, X3, X4

(
ν = −4

3

)
, X6 = x2 ∂

∂x
− 3xu ∂

∂u
.
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In principle, nonlocal symmetries of the nonlinear diffusion equation
U{x, t ;u} (4.5) can arise from any nonlocally related system within the tree
T4 given by (3.75). In Table 4.2, we present the point symmetry classification
of the two singlet potential systems UV{x, t ;u, v} (3.19) and UA{x, t ;u, α}
(3.32).

In comparison with Table 4.1, it is obvious that the point symmetry clas-
sification of the singlet potential system UA{x, t ;u, α} (3.32) yields no non-
local symmetries of the nonlinear diffusion equation U{x, t ;u} (4.5). On the
other hand, the point symmetry classification of the singlet potential system
UV{x, t ;u, v} (3.19) yields potential symmetries of U{x, t ;u}.

In particular, when K(u) = u−2, the system UV{x, t ;u, v} has an infi-
nite number of point symmetries that lead to the linearization of the sys-
tem UV{x, t ;u, v} by a point transformation [Section 2.4]; when K(u) =
eλ tan−1 u/(u2 + 1) (corresponding to L(u) = λ−1eλ tan−1 u), the system UV{x,
t ;u, v} has the point symmetry Y9 that is obviously a nonlocal symmetry of
the nonlinear diffusion equation U{x, t ;u}.

For all other distinguished cases, the point symmetry classification of
UV{x, t ;u, v} (3.19) is greatly simplified through use of the equivalence
transformation (4.7). This readily leads to an additional point symmetry
of UV{x, t ;u, v} for

K(u) = uν(1 + bu)−(ν+2), K(u) =
1

(1 + bu)2
eu/(1+bu),

and for

K(u) =
1

u2 + (1 + bu)2
exp

(
λ tan−1 u

1 + bu

)
.

These additional point symmetries of UV{x, t ;u, v} are obviously nonlocal
symmetries of U{x, t ;u}. Note that since K̃(ũ) = ũ−2 when K(u) = u−2, no
additional symmetries arise in the linearization case. The symmetry classifi-
cation of system UV{x, t ;u, v} first appeared in a different form in Bluman,
Kumei & Reid (1988). This paper did not make use of the important simpli-
fying equivalence transformation (4.7).

The symmetry classification of the couplet potential system UVA{x, t;
u, v, α} (3.73) is presented in Table 4.3.

Compared to the situation for the singlet potential system UV{x, t ;u, v}
(3.19), the couplet UVA{x, t ;u, v, α} (3.73) contains three additional dis-
tinguished cases: K(u) = u−2/3, K(u) = u−4/3(1 + bu)−2/3, and K(u) =
u−2/3(1 + bu)−4/3, with the respective point symmetries Z9, Z15 and Z16,
which are nonlocal symmetries of all other PDE systems in the tree.

One can show that the point symmetry classification of each of the
three remaining nonlocally related subsystems A{x, u ;α}, V{u, t ; v} and
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Table 4.2 Point symmetries of singlet potential systems of the nonlinear diffusion
equation (4.5)

K(u) UV{x, t ;u, v} UA{x, t ;u, α}
# Point Symmetries # Point Symmetries

Arbitrary 4 Y1 = X1, Y2 = X2, 3 Ŷ1 = X2,

Y3 = X3 + v ∂
∂v

, Y4 = ∂
∂v

. Ŷ2 = X3 + 2α ∂
∂α

,

Ŷ3 = ∂
∂α

.

uν 5 Y1,Y2,Y3,Y4, 4 Ŷ1, Ŷ2, Ŷ3, Ŷ4 = X4

Y5 = X4 +
(
1 + 2

ν

)
v ∂

∂v
. +2

(
1 + 1

ν

)
α ∂

∂α
.

eu 5 Y1,Y2,Y3,Y4, 4 Ŷ1, Ŷ2, Ŷ3, Ŷ5 = X5

Y6 = X5 + (2x + v) ∂
∂v

. +
(
x2 + 2α

)
∂

∂α
.

u−4/3 5 Y1,Y2,Y3,Y4,Y5 (ν = −4/3). 5 Ŷ1, Ŷ2, Ŷ3, Ŷ4,

Ŷ6 = X6.

u−2 ∞ Y1,Y2,Y3,Y4,Y5 (ν = −2), 4 Ŷ1, Ŷ2, Ŷ3, Ŷ4.

Y7 = −xv ∂
∂x

+ (xu + v)u ∂
∂u

+ 2t ∂
∂v

,

Y8 = −x(2t + v2) ∂
∂x

+ 4t2 ∂
∂t

+u(6t + 2xuv + v2) ∂
∂u

+ 4tv ∂
∂v

,

Y∞ = F 1(v, t) ∂
∂x

− u2F 2(v, t) ∂
∂u

,

(F 1(v, t), F 2(v, t)) is an arbitrary

solution of the linear system

F 1
t = F 2

v , F 1
v = F 2.

(u2 + 1)−1 5 Y1,Y2,Y3,Y4, 3 Ŷ1, Ŷ2, Ŷ3.

×eλ tan−1 u Y9 = v ∂
∂x

+ λt ∂
∂t

−(u2 + 1) ∂
∂u

− x ∂
∂v

.

uν(1 + bu)−(ν+2) 5 Y1,Y2,Y3,Y4, 3 Ŷ1, Ŷ2, Ŷ3.

Y10 = bv ∂
∂x

+ νt ∂
∂t

−(1 + bu)u ∂
∂u

− v ∂
∂v

.

(1 + bu)−2 5 Y1,Y2,Y3,Y4, 3 Ŷ1, Ŷ2, Ŷ3.

×eu/(1+bu) Y11 = b(2x + bv) ∂
∂x

+(1 + 2b)t ∂
∂t

−(1 + bu)2 ∂
∂u

− x ∂
∂v

.

(u2 + (1 + bu)2)−1 5 Y1,Y2,Y3,Y4, 3 Ŷ1, Ŷ2, Ŷ3.

× exp
(
λ Y12 = (2bx + (b2 + 1)v) ∂

∂x

× tan−1 u
1+bu

)
+(λ + 2b)t ∂

∂t

−((1 + bu)2 + u2) ∂
∂u

− x ∂
∂v

.
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Table 4.3 Symmetries of the couplet potential system UVA{x, t ;u, v, α} (3.73) of
the nonlinear diffusion equation (4.5)

K(u) # Point Symmetries

Arbitrary 5 Z1 = X1 + v ∂
∂α

, Z2 = X2, Z3 = Ŷ3, Z4 = Y4,

Z5 = X3 + v ∂
∂v

+ 2α ∂
∂α

.

uν 6 Z1,Z2,Z3,Z4,Z5, Z6 = X4 +
(
1 + 2

ν

)
v ∂

∂v
+ 2

(
1 + 1

ν

)
α ∂

∂α
.

eu 6 Z1,Z2,Z3,Z4,Z5, Z7 = X5 + (2x + v) ∂
∂v

+
(
x2 + 2α

)
∂

∂α
.

u−4/3 7 Z1,Z2,Z3,Z4,Z5,Z6 (ν = −4/3), Z8 = X6 − α ∂
∂v

.

u−2/3 7 Z1,Z2,Z3,Z4,Z5,Z6 (ν = −2/3),

Z9 = (xv − α) ∂
∂x

− 3uv ∂
∂u

− v2 ∂
∂v

− vα ∂
∂α

.

u−2 ∞ Z1,Z2,Z3,Z4,Z5,Z6 (ν = −2),

Z10 = −(xv + α) ∂
∂x

+ (2xu + v)u ∂
∂u

+ 2t ∂
∂v

− vα ∂
∂α

,

Z11 = −(6xt + xv2 + 2va) ∂
∂x

+ 4t2 ∂
∂t

+u(10t + 2u(2xv + a) + v2) ∂
∂u

+ 4tv ∂
∂v

− (2t + v2)α ∂
∂α

,

Z∞ = F 1(v, t) ∂
∂x

− u2F 2(v, t) ∂
∂u

+ F 3(v, t) ∂
∂α

,

(F 1(v, t), F 2(v, t), F 3(v, t)) is an arbitrary solution

of the linear system F 3
v = F 1, F 3

t = F2, F 1
v = F2.

(u2 + 1)−1eλ tan−1 u 6 Z1,Z2,Z3,Z4,Z5, Z12 = Y9 + v2−x2

2
∂

∂α
.

uν(1 + bu)−(ν+2) 6 Z1,Z2,Z3,Z4,Z5,

Z13 = bv ∂
∂x

+ νt ∂
∂t

− (1 + bu)u ∂
∂u

− v ∂
∂v

+ ( bv2

2 − α) ∂
∂α

.

(1 + bu)−2 6 Z1,Z2,Z3,Z4,Z5,

×eu/(1+bu) Z14 = b(2x + bv) ∂
∂x

+ (1 + 2b)t ∂
∂t

− (1 + bu)2 ∂
∂u

−x ∂
∂v

+ ( b2v2−x2

2 + 2bα) ∂
∂α

.

u−4/3(1 + bu)−2/3 7 Z1,Z2,Z3,Z4,Z5,Z13 (ν = −4/3),

Z15 = (3b2v2 + 2b(2xv + α) + 2x2) ∂
∂x

−6(x + bv)(1 + bu)u ∂
∂u

− (bv2 + 2α) ∂
∂v

+ (b2v+2bα)v ∂
∂α

.

u−2/3(1 + bu)−4/3 7 Z1,Z2,Z3,Z4,Z5,Z13 (ν = −2/3),

Z16 = (3bv2 + 2(xv − α)) ∂
∂x

− 6(1 + bu)uv ∂
∂u

−2v2 ∂
∂v

+ (bv2 − 2α)v ∂
∂α

.

1

u2 + (1 + bu)2
× 6 Z1,Z2,Z3,Z4,Z5, Z17 = (2bx + (b2 + 1)v) ∂

∂x
+ (λ + 2b)t ∂

∂t

exp
(
λ tan−1 u

1+bu

)
− ((1 + bu)2 + u2) ∂

∂u
− x ∂

∂v
+ ( (b2+1)v2−x2

2 + 2bα) ∂
∂α

.
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X{u, v ;x} yields no new nonlocal symmetries of the nonlinear diffusion equa-
tion U{x, t ;u} [Exercise 4.2.1].

Thus in this particular example, the point symmetry classification of the
“grand” couplet potential system UVA{x, t ;u, v, α} yields all point symme-
tries of each of the other PDE systems in the tree T4.

4.2.2 Nonlocal symmetries of a nonlinear wave
equation

As a second example, consider a symmetry classification problem for the
nonlinear wave equation U{x, t ;u} given by

utt = (c2(u)ux)x, (4.8)

with an arbitrary constitutive function c(u) [Ames, Lohner & Adams (1981);
Bluman & Kumei [(1987), (1988)]; Bluman & Cheviakov (2007)].

The group of equivalence transformations of U{x, t ;u} (4.8) is given by

x̃ = a1x+ a4, t̃ = a2t+ a5, ũ = a3u+ a6, c̃(ũ) = a1a
−1
2 c(u), (4.9)

where a1, . . . , a6 are arbitrary constants with a1a2a3 �= 0. The point sym-
metry classification of the nonlinear wave equation U{x, t ;u} (4.8) [Ames,
Lohner & Adams (1981)] is presented in Table 4.4 (modulo the equivalence
transformations (4.9)).

Table 4.4 Point symmetries of the nonlinear wave equation U{x, t ;u} (4.8)

c(u) # Point Symmetries

Arbitrary 3 X1 = t ∂
∂t

+ x ∂
∂x

, X2 = ∂
∂t

, X3 = ∂
∂x

.

uν 4 X1,X2,X3,X4 = νx ∂
∂x

+ u ∂
∂u

.

eu 4 X1,X2,X3,X5 = x ∂
∂x

+ ∂
∂u

.

u−2 5 X1,X2,X3,X4 (ν = −2), X6 = t2 ∂
∂t

+ tu ∂
∂u

.

u−2/3 5 X1,X2,X3,X4 (ν = −2/3), X7 = x2 ∂
∂x

− 3xu ∂
∂u

.

An extended tree Td of nonlocally related PDE systems for the nonlinear
wave equation U{x, t ;u} (4.8), holding for an arbitrary wave speed c(u), was
constructed in Section 3.5.3, and exhibited in Figure 3.4.

We now classify nonlocal symmetries of the nonlinear wave equation
U{x, t ;u} (4.8) arising as point symmetries of any of the seven singlet poten-
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tial systems UA{x, t ;u, α}, UB{x, t ;u, β}, UV{x, t ;u, v}, UW{x, t ;u,w},
TP{u, v ; t, p}, TQ{u, v ; t, q} and TR{u, v ; t, r} given by (3.81)–(3.84) and
(3.92)–(3.94), respectively, or as point symmetries of the two nonlocally re-
lated subsystems X{u, v ;x} (3.86) and T{u, v ; t} (3.87) [Bluman & Chevi-
akov (2007); references therein].

In Tables 4.5a,b, for each of the nine above-mentioned nonlocally related
systems, the situations are summarized where nonlocal symmetries arise for
the nonlinear wave equation U{x, t ;u} (4.8) from point symmetries of any
of these nine systems. The results are given modulo the equivalence transfor-
mations (4.9).

Table 4.5 (a) Cases for which nonlocal symmetries of the nonlinear wave equation
U{x, t ;u} (4.8) arise

System Poten- Condition on c(u) Symmetries; Remarks
tial(s)

UA (3.83) α No special cases Nonlocal symmetries
do not arise.

UB (3.84) β c(u) = u−2/3 Linearizable by a
point transformation.

F ′′(u)
(F ′(u))2 = 4F (u)+C1

(F (u)+C2)2+C3
, One nonlocal symme-

try.
(F (u) =

∫
c2(u)du, C1, C2, C3 = const)

UV (3.81) v Arbitrary Infinite number of
nonlocal symmetries;
there exists an in-
vertible mapping to
linear system XT
(3.85) (hodograph
transformation).[

c′(u)
c3(u)

(
c(u)
c′(u)

)′′]′
= 0 One or two additional

nonlocal symmetries.

UW (3.82) w c(u) = (u + B)−2 Linearizable by a
point transformation.

c′(u)
c(u) = −2u+C1

u2+C2
(C1, C2 = const) One nonlocal symme-

try.

The nonlocal symmetries for the cases listed in Tables 4.5a,b arise as fol-
lows.

(1) The potential system UB{x, t ;u, β}
The potential system UB{x, t ;u, β} (3.84), i.e.,
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Table 4.5 (b) Cases for which nonlocal symmetries of the nonlinear wave equation
U{x, t ;u} (4.8) arise

System Poten- Condition on c(u) Symmetries; Remarks
tial(s)

TP (3.92) v, p −(2uc2+u2cc′)c′′′+2u2c(c′′)2

c3(uc′+2c)2 One or two nonlocal
symmetries.

+−(4c2+u2(c′)2−8ucc′)c′′+6(c′)2(c−uc′)
c3(uc′+2c)2

= λ2, λ = const

c(u) = u−2 Infinite number of
nonlocal symmetries;
there exists a point
mapping to a linear
system with constant
coefficients.

TQ (3.93) v, q c(u) = u−2/3; c(u) = u−2 Two nonlocal symme-
tries.

TR (3.94) v, r ucc′′+c′(c−uc′)
(uc′+2c)2 = γ2 = const Two nonlocal symme-

tries.

X (3.86) v (−2cc′′+5(c′)2)c2c′′′′+3c3(c′′′)2+16c2(c′′)3

c3(2cc′′−5(c′)2)2 One or two nonlocal
symmetries.

+−24c2c′′′c′′c′+12c(c′c′′)2−10(c′)4c′′

c3(2cc′′−5(c′)2)2

= σ2, σ = const

T (3.87) v (α ′ + Hα) ′ = σ2αc2(u), σ = const. One or two nonlocal
symmetries.

(H = c′(u)/c(u), α2 = (H2 − 2H′)−1)

c(u) = u−2 Infinite number of
nonlocal symmetries;
there exists an in-
vertible mapping to
a linear system with
constant coefficients.

βx = xut,

βt = xc2(u)ux −
∫
c2(u)du,

has the group of equivalence transformations

x̃ = a1x, t̃ = a2t+ a4, ũ = a3u+ a5,

b̃ = a2
1a

−1
2 a3b− a2a7t+ a6, F̃ (ũ) = a2

1a
−2
2 a3F (u) + a7,

(4.10)

where F (u) =
∫
c2(u)du; a1, . . . , a7 are arbitrary constants with a1a2a3 �= 0.

For an arbitrary wave speed c(u), the system UB{x, t ;u, β} has three
point symmetries given by
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Y1 =
∂

∂t
, Y2 =

∂

∂β
, Y3 = x

∂

∂x
+ t

∂

∂t
+ β

∂

∂β
.

These point symmetries project onto point symmetries of the nonlinear wave
equation U{x, t ;u} (4.8).

If the wave speed c(u) satisfies the ODE

F ′′(u)
(F ′(u))2

=
4F (u) + C1

(F (u) + C2)2 + C3
, (4.11)

where F (u) =
∫
c2(u)du and C1, C2, C3 are arbitrary constants, then the

system UB{x, t ;u, β} has an additional point symmetry

Y4 =
(
F (u) + 1

2C1

)
x
∂

∂x
+ β

∂

∂t
+

(F (u) + C2)2 + C3

F ′(u)
∂

∂u

+
(
2C2β − (C2

2 + C3)t
) ∂

∂β
,

which is a nonlocal symmetry of the nonlinear wave equation U{x, t ;u} (4.8).
For c(u) = u−2/3, the potential system UB{x, t ;u, β} has an infinite num-

ber of point symmetries that lead to the linearization of the potential system
UB{x, t ;u, β} by a point transformation, and thus a linearization of the non-
linear wave equation U{x, t ;u} (4.8) by a nonlocal transformation [Exercise
4.2.3].

(2) The potential system UV{x, t ;u, v}
The potential system UV{x, t ;u, v} (3.81), i.e.,

vx = ut,

vt = c2(u)ux,

has the group of equivalence transformations

x̃ = a1x+ a4v + a5, t̃ = a2t+ a−1
1 a2a4u+ a6,

ũ = a3u+ a7t+ a8, ṽ = a1a
−1
2 a3v + a1a

−1
2 a7x+ a9,

c̃(ũ) = a1a
−1
2 c(u),

(4.12)

where a1, . . . , a9 are arbitrary constants with a1a2a3 �= 0.
The nonlinear PDE system UV{x, t ;u, v} is locally related to the lin-

ear PDE system XT{u, v ;x, t} (3.85) through an interchange of depen-
dent and independent variables in terms of the hodograph transformation
x = x(u, v), t = t(u, v). Hence these two systems have the same point sym-
metries. In particular, the infinite number of point symmetries of the PDE
system XT{u, v ;x, t}, due to its linearity, yields an infinite number of non-
local symmetries of the nonlinear wave equation U{x, t ;u}.
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The point symmetries of the PDE system UV{x, t ;u, v} are summarized
in Table 4.6.

For an arbitrary wave speed c(u), in addition to the infinite number of
point symmetries arising from the linearity of XT{u, v ;x, t}, the system
UV{x, t ;u, v} has four additional point symmetries that project onto the
three point symmetries of the nonlinear wave equation U{x, t ;u} (4.8) [Table
4.4]. Further point symmetries arise when c(u) satisfies the ODE

c′(u)
c3(u)

(
c(u)
c′(u)

)′′
= λ2 = const. (4.13)

For several classes of wave speeds c(u) satisfying (4.13), these point symme-
tries yield nonlocal symmetries of U{x, t ;u}.

Table 4.6 Point symmetries of the potential system UV{x, t ;u, v} of the nonlinear
wave equation U{x, t ;u} (4.8)

c(u) # Point Symmetries

Arbitrary ∞ Infinite number of point symmetries following
from the linearity of the invertibly related system
XT{u, v ;x, t}.

Arbitrary 4 W1 = ∂
∂t

, W2 = ∂
∂x

, W3 = ∂
∂v

, W4 = t ∂
∂t

+ x ∂
∂x

.

uν (ν �= 0,−1) 6 W1, W2, W3, W4,

W5 = νt ∂
∂t

− u ∂
∂u

− (1 + ν)v ∂
∂v

,

W6 = −((2ν + 1)tv + xu) ∂
∂t

− (tu1+2ν + xv) ∂
∂x

+2uv ∂
∂u

+
[
(1 + ν)v2 + u2+2ν

1+ν

]
∂

∂v
.

eu 6 W1, W2, W3, W4, W7 = x ∂
∂x

+ ∂
∂u

+ v ∂
∂v

,

W8 = − (2vt + x) ∂
∂t

− 2eut ∂
∂x

+ 4v ∂
∂u

+(4eu + v2) ∂
∂v

.

u−1 6 W1, W2, W3, W4, W5 (ν = −1),

W9 = (tv − xu) ∂
∂t

− (tu−1 + xv) ∂
∂x

+ 2uv ∂
∂u

+2 log u ∂
∂v

.

c(u) satisfies (a), (b) or (c): 6 W1, W2, W3, W4,

(a) c′ = c2ν−1 sinh(ν log c) W10,11 = e±v
{
((2 + Γ ′)t ± Γx) ∂

∂t

(b) c′ = c2ν−1 sin(ν log c) +(Γ ′x ± c2Γt) ∂
∂x

− 2Γ ∂
∂u

∓ 2(Γ ′ + 1) ∂
∂v

}
,

(c) c′ = c2ν−1 cosh(ν log c) where Γ = c/c′.
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The point symmetries W6,W8,W9,W10,W11 of the potential system
UV{x, t ;u, v} correspond to nonlocal symmetries of the nonlinear wave equa-
tion U{x, t ;u} (4.8).

(3) The potential system UW{x, t ;u,w}
The potential system UW{x, t ;u,w} (3.82), i.e.,

wx = tut − u,

wt = tc2(u)ux,

has the group of equivalence transformations that includes the transforma-
tions

x̃ = a1x+ a4, t̃ = a2t, ũ = a3u+ a6t+ a7,

w̃ = a1a3w − a1a7x+ a5, c̃(ũ) = a1a
−1
2 c(u),

(4.14)

where a1, . . . , a7 are arbitrary constants with a1a2a3 �= 0, and the projective
transformation

x̃ = x− bw, t̃ =
t

1 + bu
, ũ =

u

1 + bu
, w̃ = w,

c̃(ũ) = (1 + bũ)−2 c
( ũ

1 + bũ

)
.

(4.15)

For an arbitrary c(u), the potential system UW{x, t ;u,w} has the point
symmetries

Z1 =
∂

∂x
, Z2 =

∂

∂w
, Z3 = x

∂

∂x
+ t

∂

∂t
+ w

∂

∂w
.

These point symmetries project onto point symmetries of U{x, t ;u}.
If the wave speed c(u) satisfies the ODE

c′(u)
c(u)

= −2u+ C1

u2 + C2
, (4.16)

where C1, C2 are arbitrary constants, then the potential system UW{x, t;
u,w} has an additional point symmetry

Z4 = w
∂

∂x
+ (u+ C1)t

∂

∂t
+ (u2 + C2)

∂

∂u
− C2x

∂

∂w
,

which is obviously a nonlocal symmetry of U{x, t ;u}.
The general solution of (4.16) is found to be as follows:
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C2 = ω2 > 0 : c(u) =
c0

u2 + ω2
exp

{
−C1

ω
tan−1 u

ω

}
;

C2 = −ω2 < 0 : c(u) =
c0

u2 − ω2

∣∣∣∣u+ ω

u− ω

∣∣∣∣C1/2ω

;

C2 = 0 : c(u) =
c0
u2

eC1/u.

(4.17)

In (4.17), c0 is an arbitrary constant of integration.
For c(u) = (u + B)−2, where B is an arbitrary constant, the system

UW{x, t ;u,w} has an infinite number of point symmetries. One can show
that here UW{x, t ;u,w} is linearizable by a point transformation, and thus
the nonlinear wave equation U{x, t ;u} is linearizable by a nonlocal transfor-
mation [Exercise 4.2.2].

(4) The potential system TP{u, v ; t, p}
The potential system TP{u, v ; t, p} (3.92), i.e.,

pv = utu − t,

pu = uc2(u)tv,

has the group of equivalence transformations that includes the transforma-
tions

ũ = a1u, ṽ = a2v + a4, t̃ = a−1
2 a3t+ a6 + a7u,

p̃ = a3p+ a5 − a2a6v, c̃(ũ) = a−1
1 a2c(u),

(4.18)

where a1, . . . , a7 are arbitrary constants with a1a2a3 �= 0, and the projective
transformation

ũ =
u

1 + bu
, ṽ = v, t̃ =

t

1 + bu
, p̃ = p,

c̃(ũ) = (1 + bũ)−2 c
( ũ

1 + bũ

) (4.19)

similar to (4.15).
The point symmetry classification of the linear PDE system TP{u, v ; t, p}

(modulo its obvious infinite number of point symmetries due to its linearity)
is as follows.

Case 1. For an arbitrary wave speed c(u), the system TP{u, v ; t, p} has the
three point symmetries

L1 =
∂

∂v
, L2 = t

∂

∂t
+ p

∂

∂p
, L3 =

∂

∂p
,

that project onto point symmetries of the nonlinear wave equation U{x, t ;u}
(4.8).
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Case 2. For c(u) = u−2, the system TP{u, v ; t, p} has an infinite number
of point symmetries that are related to point symmetries of the system
UV{x, t ;u, v} with c(u) = const, since here the system TP{u, v ; t, p} is
mapped by the point transformation y = −1/u, γ = t/u into the system with
constant coefficients given by

pv − γy = 0,

py − γv = 0.

Remark 4.2.1. Note that the PDE system TP{u, v ; t, p} is obviously not
invariant under the translations u → u+B, and thus it does not have an infi-
nite number of point symmetries when c(u) = (u+B)−2. However, by taking
a linear combination of potential systems TP{u, v ; t, p} and XT{u, v ;x, t}
(3.85) with weights 1 and B, and denoting a “combination” potential variable
by z = p+Bx, one obtains a potential system TZ{u, v ; t, z} which does have
an infinite number of point symmetries when c(u) = (u+B)−2

Case 3. For c(u) �= u−2, and c(u) satisfying the ODE

−(2uc2 + u2cc′)c′′′ + 2u2c(c′′)2 − (4c2 + u2(c′)2 − 8ucc′)c′′

c3(uc′ + 2c)2

+
6(c′)2(c− uc′)
c3(uc′ + 2c)2

= λ2,

(4.20)

with λ a real or imaginary constant, the system TP{u, v ; t, p} has additional
point symmetries as follows.

Case 3a. When λ �= 0 in (4.20), two additional point symmetries are given by

L4, 5 = e±λv

{[
± λ2u2c

2(2c+ uc′)
t

−
(
λ
c+ uc′

2c+ uc′
− u2(cc′′ − 3(c′)2) − 4ucc′ − 2c2

(2c+ uc′)2

)
p

]
∂

∂p

±
[

λ2c

2(2c+ uc′)
p+

(
u2(cc′′ − 3(c′)2) − 4ucc′ − 2c2

2(2c+ uc′)2

)
t

]
∂

∂t

− λuc

2c+ uc′
∂

∂u
±
[
u2(cc′′ − 2(c′)2) − 2ucc′ − 2c2

(2c+ uc′)2

]
∂

∂v

}
which yield nonlocal symmetries of the nonlinear wave equation U{x, t ;u}.
Case 3b. When λ = 0 in (4.20), the general solution of ODE (4.20) involves
three distinguished classes given by
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c(u) = Auν(u+B)−2−ν ; (4.21)

c(u) = Auν ; (4.22)

c(u) = Au−2eB/u; (4.23)

A,B, ν are nonzero constants with ν �= −2.
From the equivalence transformations (4.18), it follows that a system

TP{u, v ; t, p} with wave speed (4.21) is invertibly equivalent to a sys-
tem TP{u, v ; t, p} with wave speed (4.22). Hence one only considers the
non-equivalent cases (4.22), (4.23) (modulo the equivalence transformations
(4.18)).

Case 3b(1). For wave speeds c(u) = uν with ν �= −1, the system TP{u, v ; t, p}
has two additional point symmetries given by

L6 = νt
∂

∂t
− u

∂

∂u
− (1 + ν)v

∂

∂v
− p

∂

∂p
,

L7 = −((2ν + 1)tv + p)
∂

∂t
+ 2uv

∂

∂u

+
[
(1 + ν)v2 +

u2+2ν

1 + ν

]
∂

∂v
+ (tu2+2ν − vp)

∂

∂p
.

Note that the symmetry L7 is nonlocal for U{x, t ;u} but local for the system
UV{x, t ;u, v}; the symmetries L6 and L7 correspond to the symmetries W5

and W6, respectively, in Table 4.6.

Case 3b(2). For c(u) = u−1, the system TP{u, v ; t, p} again has two addi-
tional point symmetries given by

L6 (ν = −1), L8 = (tv − p)
∂

∂t
+ 2uv

∂

∂u
+ 2 log u

∂

∂v
− (t− pv)

∂

∂p
.

The point symmetry L8 is nonlocal for U{x, t ;u} but local for the system
UV{x, t ;u, v}. These symmetries correspond to W5 (ν = −1) and W7, re-
spectively, in Table 4.6.

Case 3b(3). For c(u) = u−2e1/u, the system TP{u, v ; t, p} has two additional
point symmetries given by

L9 = (pu− 2tv(u+ 1))
∂

∂t
− 2u2v

∂

∂u
+ (u2 + e2/u)

∂

∂v
+ t

e2/u

u

∂

∂p
,

L10 = t(u+ 1)
∂

∂t
+ u2 ∂

∂u
− v

∂

∂v
.

The symmetries L9 and L10 are nonlocal for both U{x, t ;u} and the system
UV{x, t ;u, v}.
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(5) The potential system TQ{u, v ; t, q}
The potential system TQ{u, v ; t, q} (3.93), i.e.,

qv = vtu,

qu = c2(u)(vtv − t),

has the group of equivalence transformations

ũ = a1u+ a4, ṽ = a2v, q̃ = a3q + a5 + 1
3a

2
2a7v

3,

t̃ = a1a
−2
2 a3t+ a2a6v + a1a7uv, c̃(ũ) = a−1

1 a2c(u),
(4.24)

where a1, . . . , a8 are arbitrary constants with a1a2a3 �= 0.
The point symmetry classification of the linear potential system TQ{u, v;

t, q} is given in Table 4.7.

Table 4.7 Point symmetries of the potential system TQ{u, v ; t, q} (3.93)

c(u) # Point Symmetries

Arbitrary ∞ Infinite number of point symmetries following from the linearity.

Arbitrary 2 M1 = ∂
∂q

, M2 = t ∂
∂t

+ q ∂
∂q

.

uν 3 M1, M2, M3 = (2ν + 1)t ∂
∂t

− u ∂
∂u

− (ν + 1)v ∂
∂v

.

eu 3 M1, M2, M4 = 2t ∂
∂t

− ∂
∂u

− v ∂
∂v

.

u−2 5 M1, M2, M3, M5 = u2

u2v2−1

[
t ∂

∂t
+ u ∂

∂u
+ v ∂

∂v

]
,

M6 = 1
u2

[
(4u3q − 5tv2u2 − 3t) ∂

∂t
− (3u2v2 + 1)u ∂

∂u
+ (u2v2 + 3)v ∂

∂v

+ 2
u
(2tv2 + (u2v2 + 1)uq) ∂

∂q

]
.

u−2/3 5 M1, M2, M3, M7, M8 [Exercise 4.2.4]

For c(u) = u−2 or c(u) = u−2/3, the system TQ{u, v ; t, q} has five point
symmetries; the symmetries (M5,M6) and (M7,M8), respectively, yield non-
local symmetries of the nonlinear wave equation U{x, t ;u} (4.8).

(6) The potential system TR{u, v ; t, r}
The potential system TR{u, v ; t, r} (3.94), i.e.,

rv = v(utu − t),

ru = uc2(u)(vtv − t),

has the group of equivalence transformations that includes the transforma-
tions
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ũ = a1u, ṽ = a2v, r̃ = a3r + a4 − 1
3a

2
2a6v

3,

t̃ = a−2
2 a3t+ a5uv + a6v

∗, c̃(ũ) = a−1
1 a2c(u),

(4.25)

where a1, . . . , a6 are arbitrary constants with a1a2a3 �= 0, and the projective
transformation

ũ =
u

1 + bu
, ṽ = v, t̃ =

t

1 + bu
, r̃ = r,

c̃(ũ) = (1 + bũ)−2 c
( ũ

1 + bũ

)
.

(4.26)

It follows that for the system TR{u, v ; t, r}, the wave speeds

c(u) = uν and c(u) = uν(u+B)−2−ν (ν �= −2), (4.27)

are equivalent. In particular, the following wave speeds are equivalent.

1. c(u) = u−1 and c(u) = u−1(Au+B)−1.
2. c(u) = u−4/3 and c(u) = u−4/3(Au+B)−2/3.
3. c(u) = 1 and c(u) = (Au+B)−2.

A,B are nonzero constants. The wave speed c(u) = u−2 yields invariance
under the equivalence transformation (4.27).

The point symmetry classification of the linear potential system TR{u, v;
t, r} (modulo its equivalence transformations (4.25), (4.26)) is given in Table
4.8.

Note that the system TR{u, v ; t, r} has an additional point symmetry
when c(u) satisfies the ODE

ucc′′ + c′(c− uc′)
(uc′ + 2c)2

= γ2 = const. (4.28)

The general solution of the ODE (4.28) for γ �= 0 (modulo the equivalence
transformations (4.25), (4.26)) consists of two families of solutions: (a) c(u) =
uν (ν = const) and (b) c(u) = u−2e1/u. For c(u) satisfying the ODE (4.28)
with γ = 0, i.e., c(u) = u−4/3 (modulo the equivalence transformations (4.25),
(4.26)), the system TR{u, v ; t, r} has two additional point symmetries.

Comparing Tables 4.4 and 4.8, one observes that the point symmetries
N4,. . . ,N10 of the potential system TR{u, v ; t, r} yield nonlocal symmetries
of the nonlinear wave equation U{x, t ;u} (4.8). Of course, when c(u) = 1,
U{x, t ;u} is linear and TR{u, v ; t, r} is a nonlinear system.

Note that at a first glance the symmetries N4 and N7 of the potential sys-
tem TR{u, v ; t, r} seem to project onto point symmetries of the nonlinear
wave equation U{x, t ;u}. But since x is a nonlocal variable for the potential
system TR{u, v ; t, r}, and the symmetry generators N4 and N7 do not con-
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Table 4.8 Point symmetries of the potential system TR{u, v ; t, r} (3.94)

c(u) # Point Symmetries

Arbitrary ∞ Infinite number of point symmetries following from the linearity.

Arbitrary 2 N1 = ∂
∂r

, N2 = t ∂
∂t

+ r ∂
∂r

.

uν , ν �= −2 3 N1, N2, N3 = 2(ν + 1)t ∂
∂t

− u ∂
∂u

− (ν + 1)v ∂
∂v

.

u−2e1/u 3 N1, N2, N4 = (u + 1)t ∂
∂t

+ u2 ∂
∂u

− v ∂
∂v

− r ∂
∂r

.

u−4/3 4 N1, N2, N5, N6 [Exercise 4.2.4.]

u−2 5 N1, N2, N3 (ν = −2), N7 = tu ∂
∂t

+ u2 ∂
∂u

,

N8 = 1
u

[
(tu2v2 + 2t − u2r) ∂

∂t
+ 2v ∂

∂v
+ (tv2 + r) ∂

∂r

]
−(1 + u2v2) ∂

∂u
.

1 5 N1, N2, N3 (ν = 0), N9 = 1
u2−v2

(
u ∂

∂u
− v ∂

∂v

)
,

N10 = 2[t(u2 + v2) + 2r] ∂
∂t

− u(u2 + 3v2) ∂
∂u

− v(3u2 + v2) ∂
∂v

+2[2tu2v2 − r(u2 + v2)] ∂
∂r

.

tain an explicit x-component, it turns out that the actual transformation of
x is nonlocal under the actions of both N4 and N7.

(7) The nonlocally related subsystem X{u, v ;x}
The linear wave equation X{u, v ;x} (3.86), i.e.,

xvv = (c−2(u)xu)u,

has the group of equivalence transformations

ũ = a1u+ a4, ṽ = a2v + a5, x̃ = a3x+ a6v + a7,

c̃(ũ) = a−1
1 a2c(u),

(4.29)

where a1, . . . , a7 are arbitrary constants with a1a2a3 �= 0.
For the wave speed c(u) = u−2/3, the PDE X{u, v ;x} has an infinite

number of point symmetries [Exercise 4.2.5] (in addition to those due to its
linearity), which suggests that it can be mapped by a point transformation
into a constant coefficient linear PDE.

The PDE X{u, v ;x} has two additional point symmetries when c(u) sat-
isfies the ODE

(−2cc′′ + 5(c′)2)c2c′′′′ + 3c3(c′′′)2 + 16c2(c′′)3 − 24c2c′′′c′′c′

c3(2cc′′ − 5(c′)2)2

+
12c(c′c′′)2 − 10(c′)4c′′

c3(2cc′′ − 5(c′)2)2
= σ2 = const.

(4.30)
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The point symmetries of the PDE X{u, v ;x} are summarized in Table 4.9.

Table 4.9 Point symmetries of the PDE X{u, v ;x} (3.86)

c(u) # Point Symmetries

Arbitrary ∞ Infinite number of point symmetries following from
the linearity.

Arbitrary 3 J1 = x ∂
∂x

, J2 = ∂
∂v

, J3 = ∂
∂x

.

u−2/3 ∞ Exercise 4.2.5

(4.30) (σ �= 0) 5 J1, J2, J3, J4, 5 = e±σv
{

1
2xFH ∂

∂x
+ F (v) ∂

∂u

±σ−1[F ′ + FH] ∂
∂v

}
.

(4.30) (σ = 0) 5 J1, J2, J3, J6 = v
{1

2xFH ∂
∂x

+ F ∂
∂u

}
+
{
K v2

2 +
∫

c2Fdu
}

∂
∂v

,

J7 = 1
2xFH ∂

∂x
+ F ∂

∂u
+ Kv ∂

∂v
.

Particular case (a) for σ = 0: 5 J
(a)
6 = ν(ν + 1)xv ∂

∂x
+ 2(ν + 1)uv ∂

∂u

+[u2ν+2 + v2(ν + 1)2] ∂
∂v

,

c(u) = uν (ν = const) J
(a)
7 = u ∂

∂u
+ (ν + 1)v ∂

∂v
.

Particular case (b) for σ = 0: 5 J
(b)
6 = xv ∂

∂x
+ 2v ∂

∂u
+ [e2u + v2] ∂

∂v
,

c(u) = eu J
(b)
7 = ∂

∂u
+ v ∂

∂v
.

In Table 4.9, F (u) = (3H2(u) − 2H ′(u))−1/2, H(u) = c′(u)/c(u).
From the symmetry commutator relations, one can show that

(F ′ +HF )2 − (σc(u)F )2 = K2 = const,

and hence for σ = 0, F ′ +HF = K = const [Bluman & Kumei (1987)].
Comparing Tables 4.4 and 4.9, one observes that the symmetries J4, J5

and J6 yield nonlocal symmetries of U{x, t ;u} (4.8); the symmetry J7 yields
a nonlocal symmetry of U{x, t ;u} except for the two listed particular cases.
For the case c(u) = u−2/3, the PDE X{u, v ;x} has an infinite number of
point symmetries that are nonlocal symmetries of the nonlinear wave equation
U{x, t ;u}.

(8) The nonlocally related subsystem T{u, v ; t}
The linear wave equation T{u, v ; t} (3.87), i.e.,

tuu = c2(u)tvv,
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has the group of equivalence transformations that includes the transforma-
tions

ũ = a1u+ a4, ṽ = a2v + a5,

t̃ = a3t+ a6 + a7u+ a8v + a9uv, c̃(ũ) = a−1
1 a2c(u),

(4.31)

and the projective transformation

ũ =
u

1 + bu
, ṽ = v, t̃ =

t

1 + bu
, c̃(ũ) = (1 + bũ)−2 c

( ũ

1 + bũ

)
, (4.32)

where a1, . . . , a9 and b are arbitrary constants with a1a2a3 �= 0.
The point symmetry classification of the PDE T{u, v ; t}, modulo the

equivalence transformations (4.31), (4.32), is given in Table 4.10.
Comparing with the point symmetry classification of the nonlinear wave

equation U{x, t ;u} [Table 4.4], one observes that the symmetries K5, K7,
K8, K9, K10, K11 and K12 yield nonlocal symmetries of the nonlinear wave
equation U{x, t ;u} (4.8).
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Table 4.10 Point symmetries of the PDE T{u, v ; t} (3.87) nonlocally related to the
nonlinear wave equation U{x, t ;u} (3.76)

c(u) # Symmetries

Arbitrary ∞ Infinite number of point symmetries following
from the linearity.

Arbitrary 3 K1 = t ∂
∂t

, K2 = ∂
∂v

, K3 = ∂
∂t

.

uν , ν �= 0,−1,−2 5 K1, K2, K3, K4 = u ∂
∂u

+ (1 + C)v ∂
∂v

,

K5 = −1
2Ctv ∂

∂t
+ uv ∂

∂u

+
[

u2+2C

1+C
+ 1

2 (1 + C)v2
]

∂
∂v

.

eu 5 K1, K2, K3, K6 = ∂
∂u

+ v ∂
∂v

,

K7 = −1
2 tv ∂

∂t
+ v ∂

∂u
+ 1

2 [e2u + v2] ∂
∂v

.

u−1 5 K1, K2, K3, K4 (C = −1),

K8 = 1
2 tv ∂

∂t
+ uv ∂

∂u
+ (log u) ∂

∂v
.

u−2 ∞ Infinite number of nonlocal symmetries; there

exists a point transformation into a linear PDE

with constant coefficients [Exercise 4.2.6].[
(Bu2 + C) 5 K1, K2, K3,

× exp{A
∫
(Bu2 + C)−1du}

]−1
K9 = 1

2 t(A + 2Bu) ∂
∂t

+ (Bu2 + C) ∂
∂u

− Av ∂
∂v

,

K10 = 1
2 t(A + 2Bu)v ∂

∂t
+ (Bu2 + C)v ∂

∂u

(A, B, C = const) +
[
−1

2Av2 +
∫

c2(u)(Bu2 + C)du
]

∂
∂v

.

c(u) satisfies 5 K1, K2, K3,

(α ′ + Hα) ′ = σ2c2(u)α, K11,12 = e±σv
[
− 1

2 tαH ∂
∂t

+ α ∂
∂u

where σ = const �= 0, ±σ−1(α ′ + Hα) ∂
∂v

]
.

H(u) = c ′(u)/c(u),

α2(u) = (H2(u)− 2H′(u))−1

4.2.3 Classification of nonlocal symmetries of
nonlinear telegraph equations arising from point
symmetries of potential systems

Consider the nonlinear telegraph (NLT) equation U{x, t ;u} given by

utt − (F (u)ux)x − (G(u))x = 0. (4.33)
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The complete point symmetry classification of the PDE (3.60) with respect to
the constitutive functions F (u) and G(u) [Kingston & Sophocleous (2001)],
modulo the equivalence transformations (3.61), is presented in Table 4.11.

Table 4.11 Point symmetries of the nonlinear telegraph equation U{x, t ;u} (3.60)

F (u) G(u) # Point Symmetries

Arbitrary Arbitrary 2 X1 = ∂
∂t

, X2 = ∂
∂x

.

e(α+1)u eu 3 X1,X2,X3 = (α − 1)t ∂
∂t

+ 2αx ∂
∂x

+ 2u ∂
∂u

.

uα uα+β+1 3 X1,X2,X4 = (α + 2β)t ∂
∂t

+ 2βx ∂
∂x

− 2u ∂
∂u

.

u−2 u−1 4 X1,X2,X4,X5 = ex ∂
∂x

− uex ∂
∂u

.

uα lnu 3 X1,X2,X6 = (α + 2)t ∂
∂t

+ 2(α + 1)x ∂
∂x

+ 2u ∂
∂u

.

eαu u 3 X1,X2,X7 = αt ∂
∂t

+ 2αx ∂
∂x

+ 2 ∂
∂u

.

u−4 u−3 4 X1,X2,X4,X8 = t2 ∂
∂t

+ ut ∂
∂u

.

The complete point symmetry classification of the nonlocally related po-
tential system UV1{x, t ;u, v1} (3.62), i.e.,

v1
x = ut,

v1
t = F (u)ux +G(u),

yielding nonlocal symmetries of the NLT equation (4.33), is presented in
Table 4.12 for G′(u) �= 0 [Bluman, Temuerchaolu & Sahadevan (2005)]. Part
of this classification appears in Reid (1991b).

Observe that the point symmetries of the potential system UV1{x, t ;u, v1}
yield one nonlocal symmetry of the NLT equation U{x, t ;u} for eight classes
of constitutive functions. In the cases F (u) = u−2, G(u) = u−1, and F (u)
arbitrary, G(u) = const, the potential system UV1{x, t ;u, v1} (3.62) is lin-
earizable by a point transformation, and thus the corresponding NLT equa-
tion U{x, t ;u} (4.33) is linearizable by a nonlocal transformation.

4.2.4 Nonlocal symmetries of nonlinear telegraph
equations with power law nonlinearities

In this section, local conservation laws of the nonlinear telegraph equation
U{x, t ;u} (4.33) [Section 3.4.3] are used to construct extended trees of non-
locally related PDE systems for the three cases that arise. For the special
situation of power law nonlinearities, F (u) = uα, G(u) = uβ , nonlocal sym-
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Table 4.12 Point symmetries of the potential system UV1{x, t ;u, v1} (3.62) that
yield nonlocal symmetries of the NLT equation U{x, t ;u} (4.33)

F (u) G(u) # Point Symmetries Yielding Nonlocal Symmetries

Arbitrary const ∞ Infinite number of symmetries; there exists a point

mapping of the potential system UV1{x, t ;u, v1}
u−2 u−1 (3.62) to a linear system [Exercise 3.4.6].

± 4u2α+β−1

(u2α±1)2
(u2α∓1)
(u2α±1) 1 Y1 = [(β + 1)t + 2αv] ∂

∂t
+ 2[βx + α

∫
F (u)du] ∂

∂x

+2u ∂
∂u

+ [2αt + (β + 1)v] ∂
∂v

.

uβ−1 sec2(α lnu) tan(α lnu) 1 Y2 = [(β + 1)t − 2αv] ∂
∂t

+ 2[βx − α
∫

F (u)du] ∂
∂x

+2u ∂
∂u

+ [2αt + (β + 1)v] ∂
∂v

.

−uβ−1(lnu)−2 (lnu)−1 1 Y3 = [(β + 1)t + 2v] ∂
∂t

+ 2[βx +
∫

F (u)du] ∂
∂x

+2u ∂
∂u

+ (β + 1)v ∂
∂v

.

e2βu sec2 u tanu 1 Y4 = (βt − v) ∂
∂t

+ 2[βx −
∫

F (u)du] ∂
∂x

+ ∂
∂u

+(t + βv) ∂
∂v

.

e2βusech2u tanhu 1 Y5 = (βt + v) ∂
∂t

+ 2[βx +
∫

F (u)du] ∂
∂x

+ ∂
∂u

−e2βucsch2u cothu +(t + βv) ∂
∂v

.

−u−2e2βu u−1 1 Y6 = (βt + v) ∂
∂t

+ 2[βx +
∫

F (u)du] ∂
∂x

+ ∂
∂u

+ βv ∂
∂v

.

metries are classified that arise as point symmetries of nonlocally related
PDE systems within these extended trees.

(1) Trees of nonlocally related systems for the NLT equation
The extended tree construction procedure [Section 3.5] is applied to the NLT
equation U{x, t ;u}, through use of the local conservation laws obtained in
Section 3.4.3. Note that the exclusion of dependent variables leads only to
locally related subsystems. [Here there is no consideration of nonlocally re-
lated subsystems arising from interchanges of independent and dependent
variables.] Three cases arise.

Case (a): Arbitrary F (u), G(u). Here, the NLT equation (4.33) has two local
conservation laws. The corresponding extended tree Ta consists of 22 = 4
PDE systems.

• The NLT equation U{x, t ;u} (4.33).
• Two singlet potential systems UV1{x, t ;u, v1} (3.62) and UV2{x, t ;u, v2}

(3.63).
• One couplet UV1V2{x, t ;u, v1, v2} [(3.62), (3.63)].
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Case (b): G ′(u) = F (u), F (u) arbitrary. Here, the NLT equation (4.33) has
four local conservation laws. The corresponding extended tree Tb consists of
16 PDE systems.

• The NLT equation U{x, t ;u} (4.33).
• Four singlet potential systems UV1{x, t ;u, v1} (3.62), UV2{x, t ;u, v2}

(3.63), UB3{x, t ;u, b3} (3.64) and UB4{x, t ;u, b4} (3.65).
• Six couplets UV1V2{x, t ;u, v1, v2} [(3.62), (3.63)], UV1B3{x, t ;u, v1, b3}

[(3.62), (3.64)], UV1B4{x, t ;u, v1, b4} [(3.62), (3.65)], UV2B3{x, t;u,
v2, b3} [(3.63), (3.64)], UV2B4{x, t ;u, v2, b4} [(3.63), (3.65)] and
UB3B4{x, t ;u, b3, b4} [(3.64), (3.65)].

• Four triplets UV1V2B3{x, t ;u, v1, v2, b3}, UV1V2B4{x, t ;u, v1, v2, b4},
UV1B3B4{x, t ;u, v1, b3, b4} and UV2B3B4{x, t ;u, v2, b3, b4}, given by
the unions (3.62)–(3.64), [(3.62), (3.63), (3.65)], [(3.62), (3.64), (3.65)] and
(3.63)–(3.65), respectively.

• One quadruplet UV1V2B3B4{x, t ;u, v1, v2, b3, b4} (3.62)–(3.65), involv-
ing all four potentials.

Case (c): G(u) = u, F (u) arbitrary. Here the NLT equation (4.33) again has
four local conservation laws. The corresponding extended tree Tc of nonlocally
related PDE systems consists of 16 PDE systems.

• The NLT equation U{x, t ;u} (4.33).
• Four singlet potential systems UV1{x, t ;u, v1} (3.62), UV2{x, t ;u, v2}

(3.63), UC3{x, t ;u, c3} (3.66) and UC4{x, t ;u, c4} (3.67).
• Six couplets UV1V2{x, t ;u, v1, v2} [(3.62), (3.63)], UV1C3{x, t ;u, v1, c3}

[(3.62), (3.66)], UV1C4{x, t ;u, v1, c4} [(3.62), (3.67)], UV2C3{x, t;u, v2,

c3}[(3.63), (3.66)], UV2C4{x, t ;u, v2, c4} [(3.63), (3.67)] and UC3C4{x, t;
u, c3, c4} [(3.66), (3.67)].

• Four triplets UV1V2C3{x, t ;u, v1, v2, c3}, UV1V2C4{x, t ;u, v1, v2, c4},
UV1C3C4{x, t ;u, v1, c3, c4}, and UV2C3C4{x, t ;u, v2, c3, c4}, given by
the unions [(3.62), (3.63), (3.66)], [(3.62), (3.63), (3.67)], [(3.62), (3.66),
(3.67)] and [(3.63), (3.66), (3.67)], respectively.

• One quadruplet UV1V2C3C4{x, t ;u, v1, v2, c3, c4} [(3.62), (3.63), (3.66),
(3.67)], involving all four potential variables.

(2) Symmetries of the NLT equation and nonlocally related systems for power
law nonlinearities

Case (a): F (u) = uα, G(u) = uβ ; α, β �= 0. The classification of the point
symmetries of the four PDE systems within the tree Ta is presented in Table
4.13.

From the form of the point symmetries listed in Table 4.13, it follows that
no nonlocal symmetries are obtained for the systems U{x, t ;u} (4.33) and
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Table 4.13 Point symmetries of the NLT equation (4.33) and nonlocally related
systems in the general power law nonlinearity case (a): F (u) = uα, G(u) = uβ

(α, β �= 0)

System # Point Symmetries

UV1V2 5 X1 = (α − β + 1)x ∂
∂x

+ (α
2 − β + 1)t ∂

∂t
+ u ∂

∂u

UV1,UV2, +α+2
2 v1 ∂

∂v1 + (α − β + 2)v2 ∂
∂v2 ,

U X2 = ∂
∂x

, X3 = ∂
∂t

+ v1 ∂
∂v2 , X4 = ∂

∂v1 , X5 = ∂
∂v2 .

UV1{x, t ;u, v1} (3.62). The infinitesimal generator X3 yields a nonlocal sym-
metry of the system UV2{x, t ;u, v2} (3.63) (i.e., the system UV2{x, t ;u, v2}
is not invariant under translations in t) and a point symmetry of the other
systems. All other infinitesimal generators define point symmetries of all sys-
tems in Table 4.13.

Case (b): G ′(u) = F (u), i.e., F (u) = (α+1)uα, G(u) = uα+1, α �= 0,−1,−2.
From the equivalence relation (3.61), this case is equivalent to the situation
when F (u) = uα, G(u) = uα+1. The point symmetry classifications of the 16
PDE systems within the tree Tb are presented in Table 4.14.

Table 4.14 Point symmetries of the potential NLT systems for case (b): F (u) =
(α + 1)uα, G(u) = uα+1 (α �= 0,−1,−2)

System F (u) G(u) # Point Symmetries

UV1V2B3B4, (α + 1)uα uα+1 7 Y1 = −α
2 t ∂

∂t
+ u ∂

∂u
+ v2 ∂

∂v2 + α+2
2 v1 ∂

∂v1

UV1V2B3, +α+2
2 b3 ∂

∂b3 + b4 ∂
∂b4 ,

UV1V2B4, Y2 = ∂
∂x

+ b3 ∂
∂b3 + b4 ∂

∂b4 ,

UV1B3B4, Y3 = ∂
∂t

+ b3 ∂
∂b4 + v1 ∂

∂v2 , Y4 = ∂
∂v1 ,

UV2B3B4, Y5 = ∂
∂v2 , Y6 = ∂

∂b3 , Y7 = ∂
∂b4 .

UV1V2,UV1B3, −3u−4 u−3 8 Y1, Y2, Y3, Y4, Y5, Y6, Y7,

UV1B4,UV2B3, Y8 = t2 ∂
∂t

+ tu ∂
∂u

− v2 ∂
∂v1 − b4 ∂

∂b3 .

UV2B4,UB3B4,

UV1,UV2,

UB3,UB4,

U

UV1V2 3u2 u3 8 Y1, Y2, Y3, Y4, Y5, Y6, Y7,

Y9 = 3v1 ∂
∂x

+ (tv1 − v2 + 3u) ∂
∂t

− uv1 ∂
∂u

−(v1)2 ∂
∂v1 − v1v2 ∂

∂v2 .



4.2 Nonlocal Symmetries 275

The case α = −2 is not included in Table 4.14 since here the system
UV1{x, t ;u, v1} is linearizable by a point transformation [Bluman & Kumei
(1989)] [Section 4.2.3].

From Table 4.14, it follows that for the case when F (u) = 3u2, G(u) =
u3, the potential system UV1V2{x, t ;u, v1, v2} [(3.62), (3.63)] has the point
symmetry Y9 which yields a nonlocal symmetry of the NLT equation U{x, t;
u} (4.33). Moreover, this is the only case yielding a nonlocal symmetry of the
NLT equation U{x, t ;u}.

Note that the infinitesimal generator Y3 yields a nonlocal symmetry
of each of the systems UV1V2B4{x, t ;u, v1, v2, b4} [(3.62), (3.63), (3.65)],
UV2B3B4{x,t ;u,v2,b3,b4}(3.63)–(3.65),UV1B4 1 4

UV2B3{x, t ;u, v2, b3} [(3.63), (3.64)], UV2B4{x, t ;u, v2, b4} [(3.63), (3.65)],
UV2{x, t ;u, v2} (3.63) and UB4{x, t ;u, b4} (3.65), and a point symmetry
of the other nine systems; the infinitesimal generator Y8 yields a nonlo-
cal symmetry of the systems UV1V2B3{x, t ;u, v1, v2, b3} (3.62) – (3.64),
UV1B3B4{x, t ;u, v1, b3, b4} [(3.62), (3.64), (3.65)], UV1B3{x, t ;u, v1, b3}
[(3.62), (3.64)], UV1B4{x, t ;u, v1, b4} [(3.62), (3.65)], UV2B3{x, t ;u, v2, b3}
[(3.63), (3.64)], UV1{x, t ;u, v1} (3.62) and UB3{x, t ;u, b3} (3.64), and a
point symmetry of the other nine systems; the infinitesimal generator Y9

yields a point symmetry of the system UV1V2{x, t ;u, v1, v2} [(3.62), (3.63)]
and a nonlocal symmetry of the other 15 listed nonlocally related systems.

Case (c): F (u) = uα, G(u) = u (α �= 0). The corresponding classification of
the point symmetries is found in Table 4.15. The linear case α = 0 is not con-
sidered. The entries in Table 4.15 for the triplets UV1C3C4{x, t ;u, v1, c3, c4}
[(3.62), (3.66), (3.67)], UV2C3C4{x, t ;u, v2, c3, c4} [(3.63), (3.66), (3.67)],
and the couplets V1C4{x, t ;u, v1, c4} [(3.62), (3.67)], UC3C4{x, t ;u, c3, c4}
[(3.66), (3.67)] are missing since they are not known.

From the form of the known point symmetries listed in Table 4.15, it fol-
lows that no nonlocal symmetries arise for the systems U (4.33) and UV1

(3.62); the infinitesimal generator Z2 yields a nonlocal symmetry of the sys-
tems UV2C3 [(3.63), (3.66)], UC3 (3.66) and UC4 (3.67), and a point sym-
metry of the other listed systems; the infinitesimal generator Z3 yields a
nonlocal symmetry of the systems UV1V2C4 [(3.62), (3.63), (3.67)], UV1C3

[(3.62), (3.66)], UV2C3 [(3.63), (3.66)], UV2C4 [(3.63), (3.67)], UV2 (3.63),
UC3 (3.66) and UC4 (3.67), and a point symmetry of the other listed sys-
tems. All other infinitesimal generators yield point symmetries of each of the
systems listed in Table 4.15.

{x,t ;u,v ,b }[(3.62),(3.65)],
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Table 4.15 Point symmetries of the potential NLT systems for case (c): F (u) = uα,
G(u) = u (α �= 0)

System Case # Point Symmetries

UV1V2C3C4 α �= −1 7 Z1 = α
2 t ∂

∂t
+ αx ∂

∂x
+ u ∂

∂u
+ α+2

2 v1
∂

∂v1

UV1V2C3 +v2(a + 1) ∂
∂v2

+ 3α+2
2 c3 ∂

∂c3 + (2α + 1)c4 ∂
∂c4 ,

UV1V2C4 Z2 = ∂
∂x

+ v1
∂

∂c3 + v2
∂

∂c4 ,

UV1V2, UV1C3, Z3 = ∂
∂t

+ v1
∂

∂v2
− v2

∂
∂c3 + c3 ∂

∂c4 ,

UV2C3, UV2C4, Z4 = ∂
∂v1

, Z5 = ∂
∂v2

, Z6 = ∂
∂c3 , Z7 = ∂

∂c4 .

UV1,UV2, α = −1 8 Z2, Z3, Z4, Z5, Z6, Z7,

UC3,UC4, Z8 = −1
2 t ∂

∂t
− x ∂

∂x
+ u ∂

∂u
+ 1

2v1
∂

∂v1

U −
(
t + 1

2 c3
)

∂
∂c3 −

(
t2

2 + c4
)

∂
∂c4 .

UV1C3C4, ?

UV2C3C4

UV1C4,UC3C4

4.2.5 Nonlocal symmetries of the planar gas dynamics
equations

In Section 3.5.4, an extended tree Tb of nonlocally related PDE systems was
constructed for the planar gas dynamics equations. One should do a point
symmetry classification for each PDE system in the tree Tb with respect to
the constitutive function B(p, q). In this section, it is shown that in many
cases a point symmetry of one system in the tree yields a nonlocal symmetry
of one or more other systems.

(1) A comparison of point symmetries of three nonlocally related PGD sys-
tems
In Table 4.16, for several representative classes of constitutive functions
B(p, q), there is a comparison of the point symmetries of three nonlocally
related PGD systems: the Euler system E{x, t ; v, p, ρ} (3.39), the Lagrange
system L{y, s ; v, p, q} (3.42), and the potential system EA1{x, t ; v, p, ρ, α1}
(3.40) of the Euler system. [For a full classification, see Akhatov, Gazizov &
Ibragimov (1991).]

Observe that the symmetry X7 is local for the systems E{x, t ; v, p, ρ}
and EA1{x, t ; v, p, ρ, α1} but yields a nonlocal symmetry of the system
L{y, s ; v, p, q}; the symmetries Z7,Z8 and ZΘ are local for L{y, s ; v, p, q} but
yield nonlocal symmetries of the systems E{x, t ; v, p, ρ} and EA1{x, t; v, p, ρ,
α1}; the symmetries Y8,Y10,Y11 and Y12 are local for the systems EA1{x, t;
v, p, ρ, α1} and L{y, s ; v, p, q} but yield nonlocal symmetries of the sys-
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Table 4.16 A comparison of point symmetries of the PGD systems E{x, t ; v, p, ρ},
EA1{x, t ; v, p, ρ, α1} and L{y, s ; v, p, q}

B(p, q) Point Symmetries

E{x, t ; v, p, ρ} EA1{x, t ; v, p, ρ, α1} L{y, s ; v, p, q}
Arbitrary X1 = ∂

∂x
, X2 = ∂

∂t
, Y1 = ∂

∂x
, Y2 = ∂

∂t
, Z1 = ∂

∂s
,

X3 = t ∂
∂t

+ x ∂
∂x

, Y3 = X3 + α1 ∂
∂α1 , Z2 = s ∂

∂s
+ y ∂

∂y
,

X4 = t ∂
∂x

+ ∂
∂v

. Y4 = X4, Z3 = ∂
∂v

,

Y5 = ∂
∂α1 . Z4 = ∂

∂y
.

3p/q X1,X2,X3,X4, Y1,Y2,Y3,Y4,Y5, Z1,Z2,Z3,Z4,

X5 = x ∂
∂x

+ v ∂
∂v

Y6 = X5 − α1 ∂
∂α1 , Z5 = −y ∂

∂y
+ v ∂

∂v

−2ρ ∂
∂ρ

, +2q ∂
∂q

,

X6 = p ∂
∂p

+ ρ ∂
∂ρ

, Y7 = X6 + α1 ∂
∂α1 , Z6 = y ∂

∂y
+ p ∂

∂p

−q ∂
∂q

.

X7 = t2 ∂
∂t

+ tx ∂
∂x

Y8 = X7. Nonlocal

+ (x − tv) ∂
∂v

− 3tp ∂
∂p

− tρ ∂
∂ρ

.

−p/q X1,X2,X3,X4, Y1,Y2,Y3,Y4, Z1,Z2,Z3,Z4,

X5,X6. Y5,Y6,Y7, Z5,Z6,

Nonlocal Nonlocal Z7 = ∂
∂p

+ q
p

∂
∂q

,

Nonlocal Nonlocal Z8 = s ∂
∂v

− y ∂
∂p

−yq
p

∂
∂q

.

pF (peq) X1,X2,X3,X4, Y1,Y2,Y3,Y4,Y5, Z1,Z2,Z3,Z4,

Nonlocal Y8 = t ∂
∂t

+ 2α1 ∂
∂x

− v ∂
∂v

Z9 = s ∂
∂s

− v ∂
∂v

− 2p ∂
∂p

+ 2ρ2 ∂
∂ρ

. − 2p ∂
∂p

+ 2 ∂
∂q

.

F (q) X1,X2,X3,X4, Y1,Y2,Y3,Y4,Y5, Z1,Z2,Z3,Z4,

X8 = ∂
∂p

. Y9 = ∂
∂p

, Z10 = ∂
∂p

,

Nonlocal Y10 = t2

2
∂

∂x
+ t ∂

∂v
− α1 ∂

∂p
. Z11 = s ∂

∂v
− y ∂

∂p
.

F (p + nq) X1,X2,X3,X4. Y1,Y2,Y3,Y4,Y5, Z1,Z2,Z3,Z4,

n �= 0 Nonlocal Y11 = nα1 ∂
∂x

− ∂
∂p

− ρ2 ∂
∂ρ

, Z12 = ∂
∂q

− n ∂
∂p

,

Nonlocal Y12 = nt2+(α1)2

2
∂

∂x
+ nt ∂

∂v
Z13 = ns ∂

∂v

− nα1 ∂
∂p

− ρ2α1 ∂
∂ρ

. −ny ∂
∂p

+ y ∂
∂q

.

F (p) X1,X2,X3,X4. Y1,Y2,Y3,Y4,Y5, Z1,Z2,Z3,Z4,

Nonlocal YΨ = Ψ(α1) ∂
∂x

− ρ2Ψ ′(α1) ∂
∂ρ

. Nonlocal

Nonlocal Nonlocal ZΘ = Θ
(
y, q

+
∫

dp
F (p)

)
∂

∂q
,

Ψ(α1) arbitrary. Θ(y, z) arbitrary.
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tem E{x, t ; v, p, ρ}; the infinite number of symmetries YΨ are local for the
system EA1{x, t; v, p, ρ, α1} but yield nonlocal symmetries of the systems
E{x, t ; v, p, ρ} and L{y, s ; v, p, q}.

(2) Nonlocal symmetries of polytropic PGD equations
Now consider symmetries of the nonlocally related PDE systems of planar
gas dynamics equations in the tree Tb for the polytropic case B(p, q) =
γp/q, γ �= 0. Comparisons are made for the complete point symmetry
classifications of several such PDE systems: systems E{x, t ; v, p, ρ} (3.39),
L{y, s ; v, p, q} (3.42) and L{y, s ; p, q} (3.46) [Table 4.17], as well as for the
potential systems LW1{y, s ; v, p, q, w1} (3.97), LW4{y, s ; v, p, q, w4} (3.120)
and LW4{y, s ; p, q, w4} (3.123) [Table 4.18].

Table 4.17 Point symmetries of the PGD systems E{x, t ; v, p, ρ}, L{y, s ; v, p, q} and
L{y, s ; p, q} in the polytropic case

γ Point Symmetries

E{x, t ; v, p, ρ} L{y, s ; v, p, q} L{y, s ; p, q}

Arbitrary X1 = ∂
∂x

,

X2 = ∂
∂t

, Z1 = ∂
∂s

, Ẑ1 = Z1,

X3 = t ∂
∂t

+ x ∂
∂x

, Z2 = s ∂
∂s

+ y ∂
∂y

, Ẑ2 = Z2,

X4 = t ∂
∂x

+ ∂
∂v

, Z3 = ∂
∂v

,

X5 = x ∂
∂x

+ v ∂
∂v

Z4 = v ∂
∂v

+ p ∂
∂p

+ q ∂
∂q

, Ẑ3 = p ∂
∂p

+ q ∂
∂q

,

+p ∂
∂p

− ρ ∂
∂ρ

,

X6 = p ∂
∂p

+ ρ ∂
∂ρ

. Z5 = y ∂
∂y

+ p ∂
∂p

− q ∂
∂q

, Ẑ4 = Z5,

Z6 = ∂
∂y

. Ẑ5 = Z6,

Ẑ6 = y2 ∂
∂y

+ yp ∂
∂p

−3yq ∂
∂q

.

3 X1,X2,X3,X4,X5,X6, Z1,Z2,Z3,Z4,Z5,Z6. Ẑ1, Ẑ2, Ẑ3, Ẑ4, Ẑ5, Ẑ6,

X7 = xt ∂
∂x

+ t2 ∂
∂t

Ẑ7 = s2 ∂
∂s

− 3sp ∂
∂p

+(x − vt) ∂
∂v

+sq ∂
∂q

.

−3tp ∂
∂p

− tρ ∂
∂ρ

.

−1 X1,X2,X3,X4,X5,X6. Z1,Z2,Z3,Z4,Z5,Z6, Ẑ1, Ẑ2, Ẑ3, Ẑ4, Ẑ5, Ẑ6,

Z7 = ∂
∂p

+ q
p

∂
∂q

, Ẑ8 = Z7,

Z8 = −s ∂
∂v

+ y ∂
∂p

Ẑ9 = y ∂
∂p

+ yq
p

∂
∂q

,

+yq
p

∂
∂q

. Ẑ10 = s ∂
∂p

+ sq
p

∂
∂q

,

Ẑ11 = sy ∂
∂p

+ syq
p

∂
∂q

.

Observe that the symmetry Ẑ7 yields nonlocal symmetries of each of
the systems L{y, s ; v, p, q} and LW4{y, s ; v, p, q, w4} but yields local sym-
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Table 4.18 Point symmetries of the PGD systems LW4{y, s ; p, q, w4}, LW4{y, s;
v, p, q, w4} and LW1{y, s ; v, p, q, w1} in the polytropic case

γ Point Symmetries

LW4{y, s ; p, q, w4} LW4{y, s ; v, p, q, w4} LW1{y, s ; v, p, q, w1}

Arbitrary Ĵ1 = ∂
∂w4 , J1 = Ĵ1, Y1 = ∂

∂w1 ,

Ĵ2 = ∂
∂s

, J2 = Ĵ2, Y2 = Ĵ2,

Ĵ3 = y ∂
∂y

+ s ∂
∂s

J3 = Ĵ3, Y3 = y ∂
∂y

+ s ∂
∂s

+w4 ∂
∂w4 , +w1 ∂

∂w1

J4 = ∂
∂v

, Y4 = ∂
∂v

+ s ∂
∂w1 ,

Ĵ4 = p ∂
∂p

+ q ∂
∂q

J5 = v ∂
∂v

+ Ĵ4, Y5 = v ∂
∂v

+ p ∂
∂p

+ q ∂
∂q

+(γ + 1)w4 ∂
∂w4 +w1 ∂

∂w1 ,

Ĵ5 = y ∂
∂y

+ p ∂
∂p

− q ∂
∂q

, J6 = Ĵ5, Y6 = y ∂
∂y

+ p ∂
∂p

− q ∂
∂q

,

+(2− γ)w4 ∂
∂w4 ,

Ĵ6 = ∂
∂y

. J7 = Ĵ6. Y7 = Ĵ6.

3 Ĵ1, Ĵ2, Ĵ3, Ĵ4, J1, J2, J3, J4, Y1,Y2,Y3,Y4,

Ĵ5, Ĵ6, J5, J6, J7. Y5,Y6,Y7,

Ĵ7 = s2 ∂
∂s

− 3sp ∂
∂p

Y8 = Ĵ7 + (w1 − sv) ∂
∂v

+sq ∂
∂q

. +sw1 ∂
∂w1 .

−1 Ĵ1, Ĵ2, Ĵ3, Ĵ4, J1, J2, J3, J4, Y1,Y2,Y3,Y4,

Ĵ5, Ĵ6, J5, J6, J7, Y5,Y6,Y7.

Ĵ7 = Z7, J8 = Z7,

Ĵ8 = Z8, J9 = Z8.

Ĵ9 = Ẑ10,

Ĵ10 = Ẑ11.

1 Ĵ1, Ĵ2, Ĵ3, Ĵ4, J1, J2, J3, J4, Y1,Y2,Y3,Y4,

Ĵ5, Ĵ6, J5, J6, J7. Y5,Y6,Y7.

Ĵ11 = Ẑ6.

metries of the other four considered systems E{x, t ; v, p, ρ}, L{y, s ; p, q},
LW1{y, s ; v, p, q, w1} and LW4{y, s ; p, q, w4}; the symmetries Z7 and Z8

yield nonlocal symmetries of the systems E{x, t ; v, p, ρ} and LW1{y, s;
v, p, q, w1} but local symmetries of the other four considered systems L{y, s;
v, p, q}, L{y, s ; p, q}, LW4{y, s ; v, p, q, w4} and LW4{y, s ; p, q, w4}; the sym-
metries Ẑ10 and Ẑ11 are local symmetries of the Lagrange subsystem L{y, s;
p, q} and the subsystem LW4{y, s ; p, q, w4} but yield nonlocal symme-
tries of the other four considered systems E{x, t ; v, p, ρ}, L{y, s ; v, p, q},
LW1{y, s; v, p, q, w1} and LW4{y, s ; v, p, q, w4}. Interestingly, the symme-
try Ẑ6, a local symmetry of the Lagrange subsystem L{y, s ; p, q} for any
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value of the polytropic constant γ, yields a local symmetry of the sub-
system LW4{y, s ; p, q, w4} only in the case γ = 1 (and yields a nonlocal
symmetry otherwise), and is a nonlocal symmetry of the other four consid-
ered PGD systems E{x, t ; v, p, ρ}, L{y, s ; v, p, q}, LW1{y, s ; v, p, q, w1} and
LW4{y, s ; v, p, q, w4} for all values of γ.

(3) Nonlocal symmetries of generalized polytropic PGD equations
As another example, consider a nonlocal symmetry classification problem for
PGD equations with a generalized polytropic equation of state

B(p, q) =
M(p)
q

, M ′′(p) �= 0, (4.34)

which excludes the polytropic case considered in the previous example.
For the sake of brevity, consideration is only given for the extended tree Ta

(3.105) of PDE systems of planar gas dynamics equations. [These follow from
local conservation laws of the Lagrange PGD system L{y, s ; v, p, q} that arise
from zeroth-order multipliers Λi = Λi(y, s, v, p, q); see Section 3.5.4, Figure
3.5.]

The extended tree T ′
a includes ten nonlocally related PDE systems.

• The Euler system E{x, t ; v, p, ρ} (3.39).
• The Lagrange system L{y, s ; v, p, q} (3.42).
• Three singlet potential systems LW1{y, s ; v, p, q, w1} (3.97), LW2{y, s;

v, p, q, w2}(3.98), and LW3{y, s ; v, p, q, w3} (3.99).
• Three couplets LW1W2{y, s ; v, p, q, w1, w2} (3.100), LW1W3{y, s; v, p, q,

w1, w3} (3.101), and LW2W3{y, s ; v, p, q, w2, w3} (3.102).
• One triplet LW1W2W3{y, s ; v, p, q, w1, w2, w3} (3.103).
• The nonlocally related subsystem L{y, s ; p, q} (3.46).

The point symmetry classification of each of the above seven potential sys-
tems (modulo the equivalence transformations (3.96)), i.e., the three singlets,
three couplets and one triplet, yields Table 4.19 that lists point symmetries
and nonlocal symmetries for the Lagrange PGD system L{y, s ; v, p, q} with
the equation of state (4.34).

In Table 4.19, the symmetries of each PDE system arise as projections of
infinitesimal generators presented in the right-hand column on the space of
variables of that system.

From Table 4.19, observe that the Euler system E{x, t ; v, p, ρ} has the
same symmetries for any M(p). The infinitesimal generators Z9, . . . ,Z12 yield
point symmetries of the systems L{y, s ; p, q}, L{y, s ; v, p, q} and LW2{y, s;
v, p, q, w2}, and nonlocal symmetries of all other systems; the infinitesimal
generators Z13,Z14 yield point symmetries of the systems L{y, s ; p, q} and
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Table 4.19 Symmetries of the generalized polytropic planar gas dynamics equations

System M(p) Point Symmetries

E Arbitrary X1 = ∂
∂t

, X2 = ∂
∂x

, X3 = t ∂
∂x

+ ∂
∂v

,

X4 = x ∂
∂x

+ v ∂
∂v

− 2ρ ∂
∂ρ

,

X5 = x ∂
∂x

+ t ∂
∂t

.

L, L, (i) Arbitrary Z1 = ∂
∂s

+ w2 ∂
∂w3 , Z2 = ∂

∂y
+ w1 ∂

∂w3 ,

LW1, LW2, LW3, Z3 = ∂
∂v

+ s ∂
∂w1 + y ∂

∂w2 + sy ∂
∂w3 ,

LW1W2, LW1W3, Z4 = −y ∂
∂y

+ 2q ∂
∂q

+ v ∂
∂v

+ w1 ∂
∂w1 ,

LW2W3, Z5 = s ∂
∂s

+ y ∂
∂y

+ w1 ∂
∂w1 + w2 ∂

∂w2

LW1W2W3 +2w3 ∂
∂w3 ,

Z6 = ∂
∂w1 , Z7 = ∂

∂w2 , Z8 = ∂
∂w3 .

L, L, LW2 (ii) −p ln p Z9 = y ∂
∂y

+ 2p ∂
∂p

+ 2q
ln p

∂
∂q

+ v ∂
∂v

+ 2w2 ∂
∂w2 .

(iii) γp + δp
γ+1

γ Z10 = (γ+1)y

2γ
∂

∂y
+ p ∂

∂p
− q

δp1/γ+γ
∂

∂q

γ �= 0,−1 + (γ−1)v

2γ
∂

∂v
+ w2 ∂

∂w2 .

(iv) 1 + αep, Z11 = ∂
∂p

+ αep

1+αep q ∂
∂q

− s ∂
∂w2 ,

α = ±1 Z12 = y ∂
∂p

+ αep

1+αep yq ∂
∂q

− s ∂
∂v

− sy ∂
∂w2 .

L, LW2 (ii) −p ln p Z13 = y2 ∂
∂y

+ yp ∂
∂p

−
(
3− 1

ln p

)
yq ∂

∂q

−(yv − w2) ∂
∂v

+ yw2 ∂
∂w2 .

(iii) γp + δp
γ+1

γ Z14 = y2 ∂
∂y

+ yp ∂
∂p

−
(
3− δ

γ
p1/γ

δp1/γ+γ

)
yq ∂

∂q

γ �= 0,−1 −(yv − w2) ∂
∂v

+ yw2 ∂
∂w2 .

L (iii) with γ = 3: Ẑ15 = 1
3s2 ∂

∂s
− sp ∂

∂p
+ 1

δp4/3+3spq ∂
∂q

.

3p + δp
4
3

LW2{y, s ; v, p, q, w2}, and nonlocal symmetries of all other systems, includ-
ing the Euler system E{x, t ; v, p, ρ} and the Lagrange system L{y, s ; v, p, q}.

The point symmetries of the Lagrange subsystem L{y, s ; p, q} include
all corresponding point symmetries of the system LW2{y, s ; v, p, q, w2}; for
M(p) = 3p + δp4/3, one additional symmetry Ẑ15 is obtained that is a non-
local symmetry of the Euler system E{x, t ; v, p, ρ}, the Lagrange system
L{y, s ; v, p, q} and all its seven potential systems considered in this example.

All other infinitesimal generators in Table 4.19 project onto point sym-
metries for both the Euler system E{x, t ; v, p, ρ} and the Lagrange system
L{y, s ; v, p, q}.
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Exercises 4.2

4.2.1. Find equivalence transformations of the nonlocally related systems in
the extended tree T4 for the nonlinear diffusion equation (3.18). Determine the
point symmetry classifications of each of the nonlocally related subsystems
A{x, u ;α}, V{u, t ; v} and X{u, v ;x} within the extended tree T4 for the
nonlinear diffusion equation (3.18).

4.2.2. Find the infinite set of point symmetries of the potential system
UW{x, t ;u,w} (3.82) of the nonlinear diffusion equation (3.18). Find a point
transformation that maps UW{x, t ;u,w} into a linear PDE system.

4.2.3. Show that the potential system UB{x, t ;u, β} (3.84) of the nonlinear
wave equation utt = (c2(u)ux)x (3.76), in the case c(u) = u−2/3, has an
infinite number of point symmetries. For this case, find an explicit form of
the linearizing transformation. [Hint: In this case, instead of computing an
infinite number of point symmetries and applying Theorem 2.4.2, one may
start by introducing new independent variables s = x−1, β = x3u. The
resulting PDE system is linearizable by a hodograph transformation.]

4.2.4.

(a) Find the point symmetries M7 and M8 of the potential system TQ{u, v;
t, q} (3.93) of the wave equation utt = (c2(u)ux)x (3.76) [Table 4.7].

(b) Find the point symmetries N5 and N6 of the potential system TR{u, v;
t, r} (3.94) of the wave equation (3.76) [Table 4.8].

4.2.5. Find the point symmetries of the linear wave equation X{u, v ;x}
(3.86). Deduce whether this linear wave equation can be mapped by a point
transformation into a constant coefficient linear PDE.

4.2.6. Calculate the components of the nontrivial infinite-parameter set of
point symmetries of the linear wave equation

qtt = x2qxx (4.35)

(equivalent to the equation (3.87) after a suitable renaming of the variables).
Show that the scalar PDE (4.35) can be mapped into the constant coefficient
linear wave equation QXT = 0 by the point transformation

X = 1/x+ t, T = 1/x− t, Q = q/x+ t

[Bluman (1983); Bluman & Kumei (1987)].

4.2.7. Show that the symmetry Ẑ6 [Table 4.17], which yields a nonlocal sym-
metry of both the polytropic Euler and Lagrange PGD systems and a local
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symmetry of the Lagrange subsystem L{y, s ; p, q}, also yields a local symme-
try of both the potential Lagrange system LW2{y, s ; v, p, q, w2} (3.98) and
the triplet potential Lagrange system LW1W2W3{y, s ; v, p, q, w1, w2, w3}
(3.103). Find the components of the infinitesimal symmetry generator corre-
sponding to each of v, w1, w2, and w3.

4.3 Construction of Non-invertible Mappings Relating
PDEs

In this section, nonlocally related systems are used to extend the work pre-
sented in Sections 2.4–2.6 on the invertible mapping of a given PDE system
to one of a simpler type that can draw on an arsenal of well-known solution
techniques. In particular, it is shown how to find useful nonlocal mappings
relating PDEs through the use of nonlocally related potential systems.

Firstly, the invertible mapping algorithm presented in Section 2.4 is ex-
tended to include nonlocal mappings of nonlinear PDEs to linear PDEs. Here,
if a nonlocally related potential system has a point symmetry that satisfies
the criteria of Theorems 2.4.1 and 2.4.2 and yields a nonlocal (potential) sym-
metry of a given PDE system, then one can construct an invertible mapping
of the potential system to a linear system that in turn yields a nonlocal map-
ping of the given nonlinear PDE system to a linear PDE system. A similar
extension occurs when such a nonlocal mapping exists of a nonlinear PDE
system to a linear PDE system when the nonlocally related potential system
of the nonlinear PDE system has a set of local conservation law multipliers
that satisfies the criteria of Theorems 2.6.1 and 2.6.2.

Secondly, it is shown how to extend the invertible mapping algorithm
presented in Section 2.4 to include nonlocal mappings of linear PDEs with
variable coefficients to linear PDEs with constant coefficients. Here one starts
from the observation that each solution set of the adjoint PDE system of a
given linear PDE system is a set of conservation law multipliers of the given
PDE system and correspondingly yields a nonlocally related linear potential
system of the given PDE system. The aim is to find a particular solution
set of the adjoint PDE system that yields an invertible mapping of its corre-
sponding nonlocally related linear potential system to a constant coefficient
linear system. In turn this yields a non-invertible (nonlocal) mapping of the
given linear PDE with variable coefficients to a linear PDE with constant co-
efficients. As examples, we consider nonlocal transformations of Kolmogorov
equations to the backward heat equation [Bluman & Shtelen (2004)]. There
also exists related work on nonlocal transformations of Schrödinger equations
to the free particle equation [Bluman & Shtelen (1996a)].
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4.3.1 Non-invertible mappings of nonlinear PDE
systems to linear PDE systems

Suppose a given nonlinear PDE system does not have local (point or contact)
symmetries (or, equivalently, does not have local conservation law multipli-
ers) that yield an invertible mapping to a linear PDE system. In particular,
this means that its local symmetries do not satisfy the criteria of Theorems
2.4.1, 2.4.2 (or, equivalently, that its local conservation law multipliers do
not satisfy the criteria of Theorems 2.6.1, 2.6.2) so that there does not ex-
ist an invertible mapping of the nonlinear PDE system to any linear PDE
system. However, it could happen that a nonlocally related system has an
infinite set of local symmetries (an infinite set of local conservation law mul-
tipliers) that yields an invertible mapping of the nonlocally related system
to some linear PDE system. Consequently, through the invertible mapping
of the nonlocally related system to a linear system, one obtains a nonlocal
(non-invertible) mapping of the given nonlinear PDE system to a linear PDE
system. Of course, the local symmetries (local conservation law multipliers)
yielding such a linearization of the nonlocally related system, must have an
essential dependence on nonlocal variables.

For illustration, the following examples are considered.

(1) Linearization of Burgers’ equation
As a first example, consider Burgers’ equation

ut + uux − uxx = 0. (4.36)

One can show that equation (4.36) has at most a finite number of contact
symmetries. Hence there exists no point or contact transformation that lin-
earizes Burgers’ equation. As written (for convenience, after multiplication
by the factor 2), the PDE (4.36) can be expressed as the conservation law
Dt(2u)+Dx(u2−2ux) = 0. Correspondingly, one obtains the potential system

vx = 2u,

vt = 2ux − u2.
(4.37)

The potential system (4.37) has an infinite number of point symmetries given
by the infinitesimal generator

X = ev/4

{
[2h(x, t) + g(x, t)u]

∂

∂u
+ 4g(x, t)

∂

∂v

}
, (4.38)

where (g(x, t), h(x, t)) is an arbitrary solution of the linear PDE system
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h = gx,

hx = gt

(4.39)

[Vinogradov & Krasil’shchik (1984); Kersten (1987)]. Consequently, one can
apply Theorems 2.4.1, 2.4.2 to obtain the well-known nonlocal Hopf–Cole
transformation that linearizes Burgers’ equation (4.36) [Exercise 2.4.4].

Note that from the form of the infinitesimal generator (4.38), one can
immediately see that the locally related subsystem of (4.37), known as the
integrated form of Burgers’ equation, given by

vt = vxx − 1
4 (vx)2, (4.40)

has the linearizing point symmetries

X = ev/4g(x, t)
∂

∂v
,

where g(x, t) is any solution of the linear heat equation

gt − gxx = 0.

(2) Linearization of a nonlinear heat conduction equation
The nonlinear heat conduction equation

ut − (u−2ux)x = 0, (4.41)

which arises directly as a conservation law, does not have linearizing contact
symmetries. However, one can show that the corresponding potential system
given by

vt = u−2ux,

vx = u,
(4.42)

has the infinite set of linearizing point symmetries

X = g(t, v)
∂

∂x
− h(t, v)u2 ∂

∂u
, (4.43)

where (g(t, v), h(t, v)) is an arbitrary solution of the linear system

h = gv,

hv = gt

(4.44)

[Bluman, Kumei, & Reid (1988)]. See Exercise 2.4.3 for the corresponding
transformation to a linear system.

Again, note that from the form of the infinitesimal generator (4.43), it
follows that the locally related subsystem of (4.42), given by
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vt = (vx)−2vxx, (4.45)

has the infinite set of linearizing point symmetries

X = g(t, v)
∂

∂x
,

where g(t, v) is an arbitrary solution of the linear heat equation

gt = gvv.

See Exercise 2.4.3 for the corresponding linearizing transformation.

(3) Linearization of the Thomas equations
As a third example, consider the nonlinear system of Thomas equations given
by

vt − ux = 0,

vt − uv − u− v = 0,
(4.46)

that describes a fluid flow through a reacting medium [Thomas (1944); see
also Whitham (1974)] and also can be related to the equations for two-wave
interaction [Hasegawa (1974); Hashimoto (1974); Yoshikawa & Yamaguti
(1974)]. Since the nonlinear PDE system (4.46) does not have an infinite
number of point symmetries, it cannot be linearized by a point transforma-
tion. The first equation of (4.46) is written as a conservation law, which in
turn leads directly to the corresponding potential system given by

wx = v,

wt = u,

vt − uv − u− v = 0.

(4.47)

One can show [Bluman & Kumei (1990b)] that the potential system (4.47)
has the infinite set of point symmetries

X = ew
{

[F (x, t)u+H(x, t)]
∂

∂u
+ [F (x, t)v +G(x, t)]

∂

∂v

+F (x, t)
∂

∂w

}
,

(4.48)

where (F (x, t), G(x, t), H(x, t)) is an arbitrary solution of the linear PDE
system

Fx = G,

Ft = H,

Gt = G+H.

(4.49)

Applying Theorems 2.4.1 and 2.4.2, one obtains the point transformation
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z1 = x,

z2 = t,

w1 = e−w,

w2 = e−wv,

w3 = e−vu,

(4.50)

that invertibly maps the nonlinear system (4.47) to the linear system given
by

∂w1

∂z1
= w2,

∂w1

∂z2
= w3,

∂w2

∂z2
= w2 + w3.

(4.51)

Consequently, any solution (w1(z1, z2), w2(z1, z2), w3(z1, z2)) of the linear
system (4.51) yields the solution

(u(x, t), v(x, t)) = −
(
w3(x, t)
w1(x, t)

,
w2(x, t)
w1(x, t)

)
,

of the Thomas equations (4.47).
Note that from the form of the infinitesimal generator (4.48), it follows

that the locally related subsystem of (4.47), given by

wxt − wtwx − wt − wx = 0, (4.52)

has the linearizing infinite set of point symmetries

X = F (x, t)ew ∂

∂w
(4.53)

where F (x, t) is any solution of the linear PDE

Fxt − Ft − Fx = 0.

In particular, one obtains the point transformation W = e−w that maps
the nonlinear PDE (4.52) to the linear PDE Wxt −Wt −Wx = 0.

(4) Linearization of a nonlinear reaction-diffusion equation
Consider the nonlinear reaction-diffusion equation given by

ut − u2uxx − 2u2 = 0. (4.54)

One can show that the PDE (4.54) has no linearizing set of contact sym-
metries and hence cannot be linearized by an invertible transformation. Mul-
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tiplying the PDE (4.54) by u−2 yields the conservation law

Dt(u−1) + Dx(ux + 2x) = 0,

and the corresponding potential system (u �= 0)

vx = u−1,

vt = −(ux + 2x) = −(u+ x2)x.
(4.55)

The nonlinear PDE system (4.55) also has no linearizing set of point sym-
metries. However, since the second PDE in (4.55) is written as a conservation
law, one can accordingly introduce a second potential variable w to obtain
the nonlocally related potential system

vx = u−1,

wx = v,

wt = −(u+ x2).

(4.56)

On can show [Exercise 2.4.8] that the potential system (4.56) has an infinite
number of linearizing point symmetries given by the infinitesimal generator

X = e(w−xv)
{

(F (t, v) − xH(t, v))
∂

∂x

+(G(t, v) − 2xF (t, v) + (x2 − u)H(t, v))
∂

∂u

+(vF (t, v) − (1 + xv)H(t, v))
∂

∂w

}
,

(4.57)

where (F (t, v), G(t, v),H(t, v)) is an arbitrary solution of the linear system

∂H(t, v)
∂v

= F (t, v),
∂H(t, v)

∂t
= G(t, v),

∂F (t, v)
∂v

= G(t, v). (4.58)

Consequently, one can show that the application of Theorems 2.4.1, 2.4.2
to the point symmetries (4.57) yields the point transformation

z1 = t,

z2 = v,

w1 = xe(xv−w),

w2 = (x2 + u)e(xv−w),

w3 = e(xv−w) − 1,

that invertibly maps the nonlinear PDE system (4.56) to the linear system
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∂w1

∂z2
= w2,

∂w3

∂z2
= w1,

∂w3

∂z1
= w2.

Correspondingly, one can show that any solution (w1, w2, w3) �= (0, 0,−1)
of this linear system yields the solution

u =
w2(w3 + 1) − (w1)2

(w3 + 1)2

of the nonlinear reaction-diffusion equation (4.54).

(5) Linearization of a nonlinear telegraph equation
As a final example, consider the nonlinear telegraph equation [Varley & Sey-
mour (1985)]

φtt = (φt)2φxx + φt(1 − φt). (4.59)

One can show that PDE (4.59) does not have contact symmetries yielding
its linearization by an invertible point or contact transformation.

Let u = φt, v = φx. Then the corresponding PDE system

u = φt,

v = φx,

ut = u2vx + u(1 − u),

(4.60)

is equivalent to and locally related to the scalar PDE (4.59), and hence (4.60)
is also not linearizable by an invertible transformation.

Clearly, the nonlinear PDE system (4.60) has a nonlocally related subsys-
tem given by

ux = vt,

ut = u2vx + u(1 − u).
(4.61)

As shown in Section 2.4.1, the nonlinear telegraph system (4.61) has an
infinite set of point symmetries yielding its linearization by the point trans-
formation (2.92) to the linear PDE system given by (2.93). In turn, this yields
the linearization of the nonlinear telegraph equation (4.59) by a non-invertible
(nonlocal) transformation.

Of course, one could consider the nonlinear PDE system (4.61) as the given
PDE system with the nonlocally related potential system (4.60) arising from
its first equation written as a conservation law. In turn, the scalar equation
(4.59) is a locally related subsystem of the potential system (4.60).
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4.3.2 Non-invertible mappings of linear PDEs with
variable coefficients to linear PDEs with
constant coefficients

In Section 2.5, there was consideration of the problem of determining whether
a given linear PDE with variable coefficients can be mapped invertibly to a
linear PDE with constant coefficients. The basis of the presented algorithm
was the observation that a linear PDE with constant coefficients is com-
pletely characterized by its point symmetries connected with its linearity
and invariance under the abelian group of translations of its independent
variables. This led to a definitive answer to the posed problem and also to
the construction of such an invertible mapping when one exists. Parabolic
and hyperbolic equations were considered as specific examples.

Now suppose a given linear PDE with variable coefficients cannot be
mapped invertibly to a linear PDE with constant coefficients. Using the lin-
ear parabolic PDE as a canonical example, it is shown how to construct
non-invertible mappings to extend the class of linear PDEs with variable co-
efficients that can be mapped to linear PDEs with constant coefficients. This
is accomplished through consideration of an appropriate potential system.
In particular, for any given linear PDE, any solution of its adjoint equation
is a multiplier for a conservation law that yields an equivalent nonlocally
related potential system. The aim is to find such a multiplier so that the
corresponding potential system can be mapped invertibly into a linear PDE
system with constant coefficients. As a consequence, the given linear PDE
could be mapped, non-invertibly, into an equivalent constant coefficient lin-
ear PDE. When the given PDE is a linear parabolic equation (without loss
of generality, PDE (2.176)), then the constant coefficient PDE can be taken
to be the backward heat equation.

The explicit relationship between the solutions of any given linear PDE
system and its local conservation law multipliers (which satisfy the adjoint
system of the given system) is exhibited by equations (2.219) and (2.220) in
Section 2.6.

Now suppose the given PDE is the linear parabolic PDE in the standard
form (see Section 2.5.1 and the discussion following equation (2.176)) given
by

Lu = uxx + uy + V (x, y)u = 0. (4.62)

The results presented in Section 2.5.1 can be summarized in terms of the
following theorem [Bluman & Shtelen (2004)] which can be proven by direct
calculation.

Theorem 4.3.1. A linear parabolic PDE (4.62) can be mapped invertibly by
a point transformation to the backward heat equation
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wz1z1 + wz2 = 0 (4.63)

if and only if V (x, y) is of the form

V (x, y) = a(y)x2 + b(y)x+ c(y) (4.64)

for some functions a(y), b(y), c(y). The point transformation that yields the
mapping is given by

z1 = σ(y)x+ ρ(y),

z2 =
∫ y

σ2(ŷ)dŷ,

w = u exp 1
4 [σ−1σ′(y)x2 + 2σ−1ρ′(y)x+ λ(y)],

(4.65)

where (σ(y), ρ(y), λ(y)) is a solution of the nonlinear system of ODEs

σ−2(σσ′′ − 2σ′2) = 4a(y),

(σρ′′ − 2σ′ρ′) = 2σ2b(y),

λ′ = σ−2(ρ′2 − 2σσ′) + c(y).

(4.66)

The solution of ODE system (4.66) appears in Bluman & Shtelen (2004).
Now the result of Theorem 4.3.1 is extended to include nonlocal (non-

invertible) transformations of linear parabolic equations of the form (4.62)
to the backward heat equation (4.63), i.e., through nonlocal transformations
arising from related potential systems, one can widen the class of functions
V (x, y) for which a linear PDE (4.62) can be mapped into the backward
heat equation (4.63). The work presented here appears in Bluman & Shtelen
(2004).

A multiplier φ(x, y) that yields a local conservation law of the linear
parabolic PDE (4.62) is any solution φ(x, y) of its adjoint PDE

L∗φ = φxx − φy + V (x, y)φ = 0. (4.67)

In particular, for arbitrary functions (U(x, y), Φ(x, y)), one has the rela-
tionship

ΦLU − UL∗Φ

= Φ[Uxx + Uy + V (x, y)U ] − U [Φxx − Φy + V (x, y)Φ]

= Dx(ΦUx − ΦxU) + Dy(ΦU).

(4.68)

Consequently, for any solution φ(x, y) of the adjoint equation (4.67), the
given linear parabolic scalar PDE (4.62) is nonlocally equivalent to the cor-
responding linear potential system
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vx = φu,

vy = φxu− φux.
(4.69)

By direct calculation, one can prove the following extended theorem.

Theorem 4.3.2. Let ψ(x, y) be any solution of the linear PDE

ψxx + ψy + [a(y)x2 + b(y)x+ c(y)]ψ = 0, (4.70)

for some specific coefficients a(y), b(y), c(y). Let φ(x, y) = ψ−1. For the same
coefficients a(y), b(y), c(y), consider the linear parabolic PDE (4.62) with

V (x, y) = −2
∂2

∂x2
log |φ(x, y)| + a(y)x2 + b(y)x+ c(y). (4.71)

The corresponding potential system (4.69) can be mapped invertibly by a point
transformation to the backward heat potential system

∂w2

∂z1
= w1,

∂w2

∂z2
= −∂w1

∂z1
,

(4.72)

for which each component satisfies the backward heat equation, i.e., wi
z1z1 +

wi
z2 = 0, i = 1, 2. In particular, such a mapping is given by

z1 = σ(y)x+ ρ(y),

z2 =
∫ y

σ2(ŷ)dŷ,

w1 = σ−1eg(x,y)
{
u+

(
1
2σ

−1(σ′(y)x+ ρ′(y)) − ψ−1ψx

)
ψv
}
,

w2 = eg(x,y)ψv,

(4.73)

where (σ(y), ρ(y), λ(y)) is a solution of the corresponding nonlinear ODE
system (4.66) and

g(x, y) = 1
4 [σ−1σ′(y)x2 + 2σ−1ρ′(y)x+ λ(y)].

The mapping (4.73) defines a point transformation acting on (x, t, u, v)-
space that projects onto a nonlocal transformation acting on (x, t, u)-space if
the coefficient of v is nonzero in the third equation of the mapping.

It is easy to see that the mapping (4.73) yields a nonlocal transformation
of the linear PDE (4.62) to the backward heat equation if and only if V (x, y)
is of the form (4.71), V (x, y) is not quadratic in x, and φ(x, y) satisfies the
condition



4.3 Construction of Non-invertible Mappings Relating PDEs 293

∂5

∂x5
log |φ(x, y)| � ≡ 0.

Let ψ̂(z1, z2) be any solution of the backward heat equation ψ̂z1z1 + ψ̂z2 =
0. Then from the mapping equations (4.65) it follows that

ψ(x, y) = ψ̂(z1, z2) exp{− 1
4 [σ−1σ′(y)x2 + 2σ−1ρ′(y)x+ λ(y)]}

is a solution of the linear parabolic PDE (4.70), and accordingly, V (x, y)
given by the equation (4.71) becomes

V (x, y) = a(y)x2 + b(y)x+ c(y) − 2σ2

⎡⎣ ψ̂z2

ψ̂
+

(
ψ̂z1

ψ̂

)2
⎤⎦− σ′(y)

σ(y)
, (4.74)

where z1 = σ(y)x+ρ(y), z2 =
∫ y

σ2(ŷ)dŷ, with σ(y), ρ(y) related to a(y), b(y)
through the first two ODEs of the system (4.66). Hence every solution of the
backward heat equation yields a coefficient V (x, y) given by (4.74) for which
the corresponding linear parabolic PDE (4.62) can be mapped to the back-
ward heat equation. Moreover, one can prove the following theorem [Exercise
4.3.3].

Theorem 4.3.3. Let w = ψ̂(z1, z2) be a solution of the backward heat equa-
tion wz1z1 + wz2 = 0. Such a solution yields a coefficient V (x, y) given by
(4.74). The corresponding linear parabolic PDE (4.62) can be mapped to the
backward heat equation only through a nonlocal transformation if and only if
ψ̂(z1, z2) is not one of the forms

(I) ψ̂(z1, z2) = e(Pz1−P 2z2),

(II) ψ̂(z1, z2) =
1√

(z2 − ẑ2)
exp

{
(z1 − ẑ1)2

4(z2 − ẑ2)

}
,

where P, ẑ1, ẑ2 are arbitrary constants.

In Bluman & Shtelen (2004), a recycling procedure [See also Bluman &
Reid (1989).] is described that can further extend the class of linear parabolic
equations that can be mapped into the heat equation by explicit nonlocal
transformations. Interesting special cases include d-Bessel processes of the
form

∂u

∂t
+

∂2u

∂R2
+

(d− 1)
R

∂u

∂R
= 0, d = 2k + 1, k = 1, 2, . . . .

For related work on classes of Schrödinger equations that can be mapped
into the free particle equation by nonlocal transformations, see Bluman &
Shtelen (1996a).
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Exercises 4.3

4.3.1. Consider the potential system UW{x, t ;u,w} (3.82) of the nonlinear
wave equation (4.8) in the case c(u) = (u+B)−2.

(a) Find an infinite set of point symmetries of the potential system
UW{x, t ;u,w} (3.82).

(b) Find a point transformation that maps UW{x, t ;u,w} into a linear
PDE system.

4.3.2. Show that the potential system UB{x, t ;u, β} (3.84) of the nonlinear
wave equation utt = (u−4/3ux)x has an infinite number of point symmetries.
Find the explicit form of a linearizing transformation.

4.3.3. Prove Theorem 4.3.3.

4.4 Discussion

Pucci & Saccomandi (1993) give some necessary conditions for the existence
of potential symmetries that arise from the potential system for a given scalar
PDE written as a conservation law.

For diffusion-convection equations of the form

ut − [f(u)ux + k(u)]x = 0,

Sophocleous (1996) classifies all functions f(u) and k(u) for which there exist
potential symmetries through analyzing the potential system that arises from
the equation as written. He also finds the corresponding potential symmetries.

Chou & Qu (1999) consider the potential system and potential equation,
respectively given by

vx = u,

vt = D(u)(ux)n + E(u)
(4.75)

and
vt = D(vx)(vxx)n + E(vx) (4.76)

for the class of diffusion-convection equations of the form

ut − [D(u)(ux)n + E(u)]x = 0. (4.77)

They classify the cases when the potential system (4.75) yields a potential
symmetry of (4.77) and classify the point symmetries of the potential equa-
tion (4.76). It is not noted in this paper that (1) each point symmetry of
(4.76) yields a local symmetry of (4.75); and (2) each potential symmetry of
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(4.77) that results from a point symmetry of (4.75), must yield a local sym-
metry (not necessarily a point symmetry) of (4.76). [It is easy to see that the
potential system (4.75) and the potential equation (4.76) are locally related.]

Sophocleous (2005) finds potential symmetries of the class of nonlinear
diffusion equations with variable coefficients of the form

ut = [g(x)unux]x (4.78)

by considering the potential system that arises from the equation as written.
In particular, he shows that such potential symmetries arise in two cases:
(i) n = −2, g(x) = x2; (ii) n = −2, g(x) = x−2. For the first case, he
obtains potential symmetries that yield the linearization of PDE (4.78) and
also exhibits invariant solutions of (4.78), arising from potential symmetries.

Ivanova, Popovych & Sophocleous (2008a,b) classify potential systems and
resulting nonlocal conservation laws and potential symmetries for variable
coefficient diffusion-convection equations of the form

f(x)ut − [g(x)f(u)ux]x −H(x)G(u)ux = 0.

Ivanova & Sophocleous (2008) classify potential systems and find resulting
potential symmetries of systems of diffusion equations of the form

ut = [f(u, v)ux]x,

vt = [g(u, v)ux]x.

Senthilvelan & Torrisi (2000) find potential symmetries and resulting in-
variant solutions for a nonlinear PDE system representing a simplified model
for reacting mixtures. Potential symmetries are exhibited that yield the lin-
earization of the given PDE system by a nonlocal transformation.

Bluman, Cheviakov, & Ganghoffer (2008) consider the complete set of
equations of nonlinear elasticity in a dynamical context. A tree of nonlocally
related systems is constructed that includes both the Lagrange and Euler
PDE systems. As a consequence, nonlocal symmetries are found for both
systems. Invariant solutions are constructed from such a nonlocal symmetry
of the Euler system.

Formally, nonlocal symmetries have been found for PDEs through infinites-
imals depending on nonlocal variables that are integrals of the given depen-
dent variables of a given PDE system [Konopelchenko & Mokhnachev [(1979),
(1980)]; Kumei (1981); Kapcov (1982); Pukhnachev (1987)]. In these works
nonlocal symmetries are not realized as local symmetries of potential systems.

A particular way of obtaining nonlocal symmetries of PDEs is to seek
recursion operators, depending on inverse differentiation (integral) operators,
that generate sequences of nonlocal symmetries from local symmetries. For
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further details, see Kapcov (1982), Bluman & Kumei (1989), and Guthrie
(1994).

In Krasil’shchik & Vinogradov (1984) [see also Vinogradov & Krasil’shchik
(1984); Kersten (1987); Vinogradov (1989); Krasil’shchik & Kersten (2000)],
nonlocal symmetries are defined as local symmetries of an associated auxil-
iary PDE system whose integrability conditions yield the given PDE system.
A rather general form is assumed for the auxiliary system which involves un-
specified functions. In principle, these unspecified functions are determined
by requiring that the integrability conditions of the auxiliary PDE system
yield the given PDE system. In order to apply their method (related to an
idea introduced by Wahlquist and Estabrook (1975)) it seems that one has
to impose very strong assumptions on the form of the unspecified functions.

In the final chapter, the complexity in finding nonlocal symmetries and
nonlocal conservation laws of a given PDE system in the case of three or
more independent variables is considered. It is seen that in order that such
nonlocal symmetries and/or nonlocal conservation laws can arise from local
symmetries and/or local conservation laws, respectively, of a potential sys-
tem, it is necessary to append the potential system with gauge constraints
that relate the potential variables. On the other hand, it is shown that local
symmetries of nonlocally related systems arising as subsystems of a given
PDE system can yield nonlocal symmetries of the given PDE system as in
the situation for two independent variables. Moreover, unlike potential sys-
tems arising from divergence-type conservation laws, potential systems aris-
ing from lower-degree (e.g., curl-type) conservation laws may require fewer or
no gauge constraints in order to yield nonlocal symmetries and/or nonlocal
conservation laws.



Chapter 5

Further Applications of Symmetry
Methods: Miscellaneous Extensions

5.1 Introduction

In this chapter, we consider three further topics on symmetry methods for
PDEs. In particular, it is shown how symmetry methods can be used and
further adapted to systematically construct particular solutions of a PDE
system, how to find nonlocally-related systems that could yield nonlocal sym-
metries and/or nonlocal conservation laws in the case of a PDE system with
three or more independent variables, and how to find local symmetries and
local conservation laws through symbolic manipulation software.

In Chapter 1, it was shown how to find local symmetries of a given
PDE system. A local symmetry maps solutions of the PDE system into one-
parameter families of solutions. However, there can exist solutions that map
into themselves, i.e., are invariant, under the action of a local symmetry
of the PDE system. Such solutions are called invariant solutions (similarity
solutions) and include the well-known self-similar solutions (automodel solu-
tions) that result from scaling symmetries. Invariant solutions of PDEs were
first considered by Lie (1881) and then more extensively by Ovsiannikov
[(1959), (1962), (1982)], Bluman (1967), Bluman & Cole [(1969), (1974)],
Olver (1986), and Bluman & Kumei (1989). The method of finding invariant
solutions is commonly referred to as the classical method [Bluman (1967);
Bluman & Cole (1969)]. The construction of invariant solutions to solve
boundary value problems (BVPs) posed for PDEs was presented in Bluman
(1967). [See also Bluman & Cole [(1969), (1974)]; Bluman & Kumei (1989);
Bluman & Anco (2002).]

Self-similar solutions (as well as traveling wave invariant solutions aris-
ing from translation symmetries in space and time) play an essential role in
asymptotic analysis. Often, the asymptotic solution of a BVP for a nonlinear
PDE is either a self-similar solution or traveling wave solution. Such a solution
that also arises from reduction through a dimensional analysis argument is
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called a self-similar solution of the first kind whereas one arising strictly as an
invariant solution is called a self-similar solution of the second kind [Baren-
blatt & Zel’dovich (1972) and Barenblatt [(1979), (1987), (1996)]]. Compre-
hensive reviews of self-similar asymptotics appear in Newman (1984), Galak-
tionov et al. (1988), and Galaktionov & Svirshchevskii (2007). For applica-
tions of self-similar and traveling wave asymptotics to physical problems, see
Barenblatt & Zel’dovich (1972) and Barenblatt [(1979), (1987), (1996)] and
Goldenfeld (1992). Barenblatt & Zel’dovich (1972), and Barenblatt [(1979),
(1987), (1996)] consider examples of “intermediate asymptotics” where, in an
intermediate space-time domain, the solution of a BVP is approximated by
a similarity solution that satisfies neither the given nor asymptotic bound-
ary conditions. In such examples the similarity solution is not an equilib-
rium state. Kamin (1975) rigorously justified the evolution of the solution
of a porous medium equation to a self-similar solution. There are many pa-
pers that rigorously justify self-similar asymptotics [e.g., Atkinson & Peletier
(1974); Friedman & Kamin (1980); and Galaktionov & Samarskii (1984)]. A
wealth of examples appears in the excellent book by Galaktionov & Svir-
shchevskii (2007).

An invariant solution of a given PDE system arises from invariants of a lo-
cal symmetry of the PDE that satisfy an auxiliary PDE system (which plays
the role of a constraint called the invariant surface condition). The resulting
invariant solution satisfies both the invariant surface condition and the given
PDE system. The classical method to find invariant solutions can be general-
ized to the nonclassical method. Here one considers an augmented system of
PDEs consisting of the given PDE system and an unknown constraint system
and seeks symmetries that leave invariant this augmented system such that
the invariant surface condition is the unknown constraint system itself. In
general, such “symmetries” do not map solutions of the given PDE system
into one-parameter families of solutions but are useful to find further specific
solutions beyond those obtained by the classical method. However, in the
nonclassical method, the (over-determined) system of determining equations
for symmetries is nonlinear unlike the situation in the calculations for local
symmetries. By construction, solutions obtained by the nonclassical method
include those obtained by the classical method. The nonclassical method
was introduced in Bluman (1967) and Bluman & Cole (1969) with the re-
striction that the invariant surface condition is of the form arising for point
symmetries. Further discussions of the nonclassical method appear in Levi
& Winternitz (1989), Olver & Rosenau [(1986), (1987)], Nucci & Clarkson
(1992) and Clarkson & Mansfield (1994a,b). In Fokas & Liu (1994), the non-
classical method is extended to include an invariant surface condition of the
form that arises for local symmetries without restriction to the form arising
for point symmetries.

5  F
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It is shown that further solutions can arise for a given PDE system through
consideration of invariant solutions of nonlocally related systems. In partic-
ular, an invariant solution of a nonlocally related system that arises from
a nonlocal symmetry of the given PDE system could yield solutions of the
given PDE system that arise neither as invariant solutions (classical method)
nor from use of the nonclassical method. Moreover, a direct application of
the nonclassical method to a nonlocally related system can yield still further
solutions of a given PDE system [Bluman & Yan (2005)].

Other extensions that attempt to seek further solutions of a given PDE
system include

• the use of the invariant form arising from a potential symmetry (without
seeking specific solutions of the related potential system) to seek solutions
of the given PDE system [Pucci & Saccomandi (1993)];

• the use of a one-to-one change of the variables in a potential system to the
canonical coordinates arising from a potential symmetry of the potential
system. Solutions of the given PDE system are then sought in which one of
the dependent variables is allowed to have a dependence on the translated
canonical coordinate (which is not an invariant of the potential symmetry).
This modification has been shown to yield new solutions that are not
obtainable by the above-listed procedures [Cheviakov (2008)]. A related
method was suggested in Sjöberg & Mahomed (2004).

However, it often happens that a seemingly distinct solution arising from
one of the above-mentioned methods is not distinct [Bluman & Yan (2005),
Cheviakov (2008)].

A second important topic considered in this chapter is the study of non-
locally related systems in n ≥ 3 dimensions (i.e., at least three independent
variables). It is shown that the direct (and obvious) way of constructing po-
tential systems in n ≥ 3 dimensions, arising from local conservation laws,
leads to PDE systems that are under-determined, i.e., subject to gauge free-
dom. It turns out that a useful potential system requires the appending of
gauge constraints that relate the potential variables in such a way that any
solution of the appended potential system yields a solution of the given PDE
system and, vice versa, any solution of the given PDE system yields a so-
lution of the appended potential system. In particular, it is impossible to
obtain nonlocal symmetries or nonlocal conservation laws for such potential
systems, without introducing gauge constraints [Anco & Bluman (1997b);
Anco & The (2005)]. In general, for a given PDE system, the selection of
appropriate gauge constraints remains an open problem.

In spite of being systematic, the computation of local symmetries and lo-
cal conservation laws of PDE systems presents a significant computational
challenge. For many real problems, the over-determined linear systems of de-
termining equations for finding multipliers of conservation laws or infinitesi-
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mals of local symmetries often include hundreds (or thousands) of equations;
those for the nonclassical method are even worse since here one has to deal
with nonlinear systems of determining equations. Therefore various symbolic
computation software packages have been developed.

A complete symbolic package for computations of symmetries and/or con-
servation laws naturally consists of two parts. The first part contains user
routines that interpret equations, use a specified ansatz for symmetry com-
ponents or conservation law multipliers, generate determining equations, and
split them into an over-determined linear (or, in the nonclassical method, non-
linear) PDE system. The second part contains routines for effective symbolic
reduction (and possibly the solution) of large over-determined PDE systems.
Since PDE systems often contain arbitrary constitutive functions and/or pa-
rameters, it is highly beneficial when the reduction algorithm includes options
for case splitting, i.e., the isolation of special forms of constitutive functions
and/or parameters, for which additional symmetries or conservation laws
arise.

Two popular approaches for the symbolic solution of large over-determined
PDE systems are based on differential Gröbner bases and the characteristic
set method, respectively. To name a few, the programs DIFFGROB2 [Mans-
field (1993)], standard_form [Reid (1991a)], rif [Reid, Wittkopf & Boulton
(1996)], CRACK [Wolf & Brand (1992)] belong to the first class; a program
developed for computer algebra system (CAS) Mathematica [Temuerchaolu
(2003), see also Wu (1984)] and a package diffalg for Maple [Boulier et
al. (1995)] belong to the second class. For a detailed review, see Hereman
[(1996), (1997), (2005)].

To date, a variety of packages for the computation of symmetries and/or
conservation laws has been developed for different computer algebra sys-
tems. For example, a set of programs LiePDE, ApplySym and ConLaw [Wolf
(2002)] provides a user interface for local conservation law and symmetry
computation in CAS REDUCE, subsequently using CRACK for the reduction
and solution of linear over-determined systems. The package GeM [Chevi-
akov (2007)] for Maple offers a set of routines that generates the splitting
of the over-determined systems of determining equations for the computa-
tions of local conservation laws, symmetries and approximate symmetries. It
subsequently uses rif for solving over-determined systems, and contains an-
other set of routines for the computations of fluxes of conservation laws and
conservation law/symmetry output. In his programs [Temuerchaolu (2003)]
for Mathematica for symmetry and conservation law computations, Temuer-
chaolu uses his own over-determined systems solver, which, unlike rif and
CRACK, requires continuous user input.

urther Applications of Symmetry Methods5  F
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5.2 Applications of Symmetry Methods to the
Construction of Solutions of PDEs

Consider a PDE system R{x ;u} of N PDEs of order k with n independent
variables x = (x1, . . . , xn) and m dependent variables u = (u1, . . . , um), given
by

Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N, (5.1)

that has the point symmetry with the infinitesimal generator

X = ξi(x, u)
∂

∂xi
+ ημ(x, u)

∂

∂uμ
, (5.2)

or, equivalently, in evolutionary form, the infinitesimal generator

X̂ = (ημ(x, u) − ξi(x, u)uμ
i )

∂

∂uμ
. (5.3)

Let ξ(x, u) = (ξ1(x, u), . . . , ξn(x, u)) and assume that ξ(x, u) �≡ 0.

Definition 5.2.1. u = Θ(x), with components uν = Θν(x), v = 1, . . . ,m,

is an invariant solution of the PDE system R{x ;u} (5.1) resulting from the
point symmetry (5.2) if and only if

(i) uν = Θν(x) is an invariant surface of the point symmetry (5.2) for
each ν = 1, . . . ,m.

(ii) u = Θ(x) is a solution of R{x ;u} (5.1).

It follows that u = Θ(x) is an invariant solution of the PDE system
R{x ;u} resulting from the point symmetry (5.2), if and only if u = Θ(x)
satisfies

(i)

X(uν −Θν(x)) = 0 when u = Θ(x), ν = 1, . . . ,m (5.4a)

↔ X(uν −Θν(x))|u=Θ(x) , ν = 1, . . . ,m (5.4b)

↔ ην(x,Θ(x)) − ξi(x,Θ(x))
∂Θν(x)
∂xi

= 0, ν = 1, . . . ,m (5.4c)

↔ X̂uν
∣∣∣
u=Θ(x)

= 0, ν = 1, . . . ,m; (5.4d)
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(ii)

Rσ(x, u, ∂u, . . . , ∂ku) = 0 when u = Θ(x), σ = 1, . . . , N (5.5a)

↔ Rσ(x,Θ(x), ∂Θ(x), . . . , ∂kΘ(x)) = 0, σ = 1, . . . , N (5.5b)

↔ Rσ(x, u, ∂u, . . . , ∂ku)
∣∣
u=Θ(x)

= 0, σ = 1, . . . , N. (5.5c)

In (5.5b), ∂jΘ(x) denotes the components ∂jΘμ(x)/(∂xi1 . . . ∂xij ), μ =
1, . . . ,m, for ij = 1, . . . , n with j = 1, . . . , k. The solutions of equations (5.4)
are invariant surfaces of the point symmetry (5.2). Equations (5.4) and (5.5)
define the classical method to obtain particular solutions of a PDE system
R{x ;u} (5.1).

5.2.1 The classical method

In summary, u = Θ(x) is a solution (invariant solution) of the PDE system
R{x ;u} (5.1) obtained through the classical method [Lie (1881)] if and only if
there exists a Lie group of point transformations with infinitesimal generator
X given by (5.2) [X̂ given by (5.3)], with its kth extension X(k) given by
(1.12), such that

(i)
X(k) Rσ(x, u, ∂u, . . . , ∂ku)

∣∣
{Rλ(x,u,∂u,...,∂ku)=0}N

λ=1
= 0,

σ = 1, . . . , N ;
(5.6)

(ii)
X̂uν

∣∣∣
u=Θ(x)

= 0, ν = 1, . . . ,m; (5.7)

(iii)
Rσ(x, u, ∂u, . . . , ∂ku)

∣∣
u=Θ(x)

= 0, σ = 1, . . . , N. (5.8)

Having found a point symmetry with infinitesimal generator X given by
(5.2) through solving the linear system of determining equations (5.6), one
can proceed in two ways to solve the systems of equations (5.7) and (5.8) to
find an invariant solution u = Θ(x), as follows.

(1) Invariant form method
Here one first solves the invariant surface conditions (5.7) by explicitly solving
the corresponding characteristic equations for u = Θ(x) given by

dx1

ξ1(x, u)
= · · · =

dxn

ξn(x, u)
=

du1

η1(x, u)
= · · · =

dum

ηm(x, u)
. (5.9)
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If z1(x, u), . . . , zn−1(x, u), h1(x, u), . . . , hm(x, u), are n+m−1 functionally
independent constants of integration that arise from solving the characteristic
system of ODEs (5.9) with the Jacobian ∂(h1, . . . , hm)/∂(u1, . . . , um) �= 0,
then the general solution u = Θ(x) of the invariant surface condition equa-
tions (5.7) is given implicitly by the invariant form

hν(x, u) = Hν(z1(x, u), . . . , zn−1(x, u)), (5.10)

where Hν is an arbitrary differentiable function of its arguments, ν =
1, . . . ,m. Note that z1(x, u), . . . , zn−1(x, u), h1(x, u), . . . , hm(x, u), are n +
m − 1 functionally independent invariants of the one-parameter Lie group
of point transformations with the infinitesimal generator X given by (5.2),
and hence are n + m − 1 canonical coordinates for the one-parameter Lie
group of point transformations with the infinitesimal generator X given by
(5.2). Let zn(x, u) be the (n+m)th canonical coordinate satisfying Xzn = 1.
If the PDE system R{x ;u} (5.1) is transformed by the corresponding in-
vertible point transformation into a PDE system S{z ;h} with independent
variables z = (z1, . . . , zn) and dependent variables h = (h1, . . . , hm), then the
transformed PDE system S{z ;h} has the translation point symmetry given
by

(z∗)i = zi, i = 1, . . . , n− 1,

(z∗)n = zn + ε,

(h∗)ν = hν , ν = 1, . . . ,m.

Thus the variable zn does not appear explicitly in the transformed PDE sys-
tem S{z ;h}, and hence the transformed PDE system has particular solutions
of the form (5.10) that in turn define, implicitly, specific functions u = Θ(x)
which are invariant solutions of the PDE system R{x ;u} (5.1), i.e., the PDE
system R{x ;u} (5.1) has invariant solutions implicitly given by the invari-
ant form (5.10). In particular, these invariant solutions are found by solving
a reduced system of DEs with n− 1 independent variables z1, . . . , zn−1 and
m dependent variables h1, . . . , hm. The variables z1, . . . , zn−1 are commonly
called similarity variables. The reduced system of DEs is found by substi-
tuting the invariant form (5.10) into the given PDE system R{x ;u} (5.1).
It is assumed that this substitution does not lead to a DE system with a
singular equation. Note that if ∂ξ/∂u ≡ 0, as is commonly the case, then
zi = zi(x), i = 1, . . . , n − 1. In the case when R{x ;u} (5.1) has two inde-
pendent variables, i.e., n = 2, the reduced system of DEs is an ODE system
with independent variable z = z1.

(2) Direct substitution method
This procedure is essential if one is unable to solve explicitly the invariant
surface condition equations (5.7), i.e., if one is unable to obtain the general
solution of the characteristic ODE system (5.9). Without loss of generality,

onstruction of Solutions of PDEs5.2  C
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one can assume that ξn(x, u) �= 0. Then the first-order PDE system (5.7) can
be written as

∂uν

∂xn
=

ην(x, u)
ξn(x, u)

−
n−1∑
i=1

ξi(x, u)
ξn(x, u)

∂uν

∂xi
, ν = 1, . . . ,m. (5.11)

From (5.11) and its differential consequences, it follows that any term involv-
ing derivatives of components of u with respect to the independent variable
xn can be expressed in terms of components of x and u as well as derivatives
of components of u with respect to the independent variables x1, . . . , xn−1.

Hence, after directly substituting (5.11) and its differential consequences for
any partial derivative with respect to xn appearing in the given PDE system
R{x ;u} (5.1), one obtains a reduced DE system directly involving the m de-
pendent variables u1, . . . , um, the n − 1 independent variables x1, . . . , xn−1,

derivatives of u1, . . . , um with respect to x1, . . . , xn−1, and the parameter xn.
A solution u = Φ(x1, . . . , xn−1;xn) of this reduced DE system yields an in-
variant solution u = Θ(x) of the given PDE system R{x ;u} (5.1) provided
that the invariant surface condition equations (5.7) or, equivalently, the given
PDE system R{x ;u} (5.1) itself, are also satisfied. In the case when R{x ;u}
(5.1) has two independent variables, i.e., n = 2, the reduced system of DEs is
an ODE system. Here the constants of integration that appear in the general
solution of the reduced ODE system are arbitrary functions of the parameter
xn, and these arbitrary functions are then determined by substituting the
general solution into either the invariant surface condition equations (5.7) or
the given PDE system R{x ;u} (5.1).

For examples of invariant solutions of PDEs, the reader is referred to the
books of Ovsiannikov [(1962), (1982)], Bluman & Cole (1974), Olver (1986),
Bluman & Kumei (1989), Stephani (1989), Hydon (2000), Bluman & Anco
(2002) and Cantwell (2002).

Extension of the classical method to higher-order symmetries

The classical method to find invariant solutions can be easily extended to find
invariant solutions arising from reductions due to higher-order symmetries of
a given PDE system R{x ;u} (5.1). Here it is assumed that R{x ;u} is a
scalar PDE of order k with two independent variables (x, t) and dependent
variable u, given by

R(x, t, u, ∂u, . . . , ∂ku) = 0, (5.12)

that has the local symmetry, with the infinitesimal generator
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X̂ = η(x, t, u, ∂u, . . . , ∂su)
∂

∂u
. (5.13)

Note that the authors are unaware of the existence of higher-order symme-
tries (s ≥ 2) of scalar PDEs, or “non-degenerate” PDE systems, with more
than two independent variables. It has been suggested by Vinogradov (1989)
that higher-order symmetries cannot exist for PDEs with more than two
independent variables.

Definition 5.2.2. u = Θ(x, t) is an invariant solution of the PDE R{x ;u}
(5.12) resulting from the local symmetry (5.13) if and only if

(i) u = Θ(x, t) is an invariant surface of the local symmetry (5.13).
(ii) u = Θ(x, t) is a solution of R{x ;u} (5.12).

Hence, u = Θ(x, t) is a solution (invariant solution) of the PDE system
R{x ;u} (5.12) obtained through the extended classical method if and only if
there exists a one-parameter group of local transformations with infinitesimal
generator X̂ given by (5.13) (with its extension X̂∞ given by (1.38)), such
that

(i)
X̂∞ R(x, t, u, ∂u, . . . , ∂ku)

∣∣
R(x,t,u,∂u,...,∂ku)=0,

= 0; (5.14)

(ii)
X̂u
∣∣∣
u=Θ(x,t)

= 0; (5.15)

(iii)
R(x, t, u, ∂u, . . . , ∂ku)

∣∣
u=Θ(x,t)

= 0. (5.16)

Note that equation (5.15) corresponds to the invariant surface condition equa-
tion

η(x, t, Θ(x, t), ∂Θ(x, t), . . . , ∂kΘ(x, t)) = 0. (5.17)

At first sight it would appear that if the local symmetry (5.13) is not a
point symmetry, one is likely unable to solve (5.17) and hence the extended
classical method would appear not to be useful to find invariant solutions
resulting from local symmetries that are not point symmetries. However, as
it is now seen, the situation is not so bleak in the case when the PDE (5.12)
is an evolutionary PDE of the form

ut = G(x, t, u, u(1), . . . , u(k)) (5.18)

with u(1) = ux, u
(2) = uxx, etc. Through the evolutionary PDE (5.18) and

its differential consequences, it follows that the t-derivatives of u can be
expressed as functions of t, x, u, and x-derivatives of u. Hence, without loss
of generality, each local symmetry of the evolutionary PDE (5.18) can be
represented by an infinitesimal generator of the form
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X̂ = η(x, t, u, u(1), . . . , u(p))
∂

∂u
, (5.19)

for some integer p. Consequently, here the invariant surface condition equa-
tion (5.17) for an invariant solution u = Θ(x, t) becomes

η

(
x, t, u,

∂u

∂x
, . . . ,

∂pu

∂xp

)
= 0. (5.20)

Equation (5.20) is a pth-order ODE with respect to the dependent variable u
and the independent variable x; t can be treated as a parameter in the ODE
(5.20). The general solution of the ODE (5.20) is an invariant form

Φ(x, t, u, c1(t), . . . , cp(t)) = 0, (5.21)

where Φ is a specific function of its arguments; the p integration constants
c1(t), . . . , cp(t) are arbitrary functions of the parameter t. After solving (5.21)
for u to obtain an expression

u = φ(x, t, c1(t), . . . , cp(t)), (5.22)

one substitutes (5.22) for u in the evolution equation (5.18) to determine these
p arbitrary functions: c1 = C1(t), . . . , cp = Cp(t), to obtain the corresponding
invariant solution u = Θ(x, t) = φ(x, t, C1(t), . . . , Cp(t)).

5.2.2 The nonclassical method

The nonclassical method, introduced in Bluman (1967) [cf. Bluman & Cole
(1969)], generalizes and includes Lie’s classical method for obtaining solutions
of PDEs. Here one first seeks functions ξi(x, u), ημ(x, u), i = 1, . . . , n, μ =
1, . . . ,m, so that (5.2) is a “symmetry” (“nonclassical symmetry”) of the
augmented PDE system A{x ;u} consisting of the given PDE system R{x ;u}
(5.1), the invariant surface condition equations

Iν(x, u, ∂u) = ην(x, u) − ξi(x, u)
∂uν

∂xi
= 0, ν = 1, . . . ,m, (5.23)

and the differential consequences of (5.23). Consequently, one obtains an over-
determined set of nonlinear determining equations for the unknown functions
ξi(x, u), ημ(x, u), i = 1, . . . , n, μ = 1, . . . ,m. It is straightforward to show
that, for any set of ξi(x, u), ημ(x, u), i = 1, . . . , n, μ = 1, . . . ,m, (5.2) is
a symmetry of the invariant surface condition equations (5.23), and from
this it follows that the nonclassical method includes Lie’s classical method
[Exercise 5.2-1]. The resulting set of determining equations is nonlinear due
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to the substitution of the equations (5.23) (each written in solved form with
respect to some derivative term) and their differential consequences into the
symmetry determining equations (5.6) that now hold only for solutions of the
augmented PDE system. In the nonclassical method, the invariant surface
condition equations (5.23) are essentially a set of constraint equations of a
specific form. In particular, the nonclassical method is equivalent to seeking
all solutions of the PDE system (5.1) of the form (5.23) for any possible
set of ξi(x, u), ημ(x, u), i = 1, . . . , n, μ = 1, . . . ,m. The set of determining
equations satisfied by ξi(x, u), ημ(x, u), i = 1, . . . , n, μ = 1, . . . ,m, are the
compatibility conditions for the existence of solutions of the augmented PDE
system A{x ;u} that includes the PDE system R{x ;u} and the constraint
equations (5.23).

A “nonclassical symmetry” is not a symmetry of a given PDE system
R{x ;u} (5.1) unless the infinitesimals yielding an infinitesimal generator
(5.2) yield a point symmetry of R{x ;u}. Otherwise, a mapping resulting
from such an infinitesimal generator maps no solution of R{x ;u} (5.1) into
a different solution of R{x ;u}. It just maps the solution obtained by the
nonclassical method into itself! This is why in the paper of Bluman & Cole
(1969), the phrase “nonclassical symmetry” was never used in conjunction
with the presentation of the nonclassical method. [Unfortunately, the phrase
“nonclassical group” was used in the PhD thesis of Bluman (1967).] In other
words, strictly speaking, the nonclassical method is not a “symmetry” method
but an extension of Lie’s symmetry method (“classical method”) for the
purpose of finding specific solutions of PDEs.

Definition 5.2.3. A solution of a given PDE system R{x ;u} (5.12) is a
nonclassical solution if it arises as an invariant solution of the augmented
PDE system A{x ;u} (consisting of the PDE system R{x ;u} (5.12), the
constraint equations (5.23) and their differential consequences), and does not
arise as an invariant solution of the given PDE system R{x ;u} (5.12) with
respect to its local symmetries.

[Note that the existence of a “nonclassical symmetry” does not guarantee
that the corresponding invariant solution is a nonclassical solution of the
PDE system R{x ;u} (5.12). The invariant solution might also arise as an
invariant solution of R{x ;u} (5.12) with respect to some point symmetry of
R{x ;u} (5.12).]

The situation for a scalar PDE with two independent variables

Now consider the situation of a scalar PDE (5.12) with two independent
variables. Let x1 = x, x2 = t, ξ1 = ξ(x, t, u), ξ2 = τ(x, t, u). Then the set
of invariant surface condition equations (5.23) becomes the invariant surface
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condition equation

ξ(x, t, u)ux + τ(x, t, u)ut = η(x, t, u). (5.24)

For a specific set of (ξ(x, t, u), τ(x, t, u), η(x, t, u)), the general solution of the
invariant surface condition (5.24) can be represented in the form

z(x, t, u) = const = c1, (5.25a)

H(x, t, u) = const = c2 = h(z), (5.25b)

where z(x, t, u) is a similarity variable. After solving equation (5.25b) for u,
one obtains an ansatz

u = φ(x, t, h(z(x, t, u))) (5.26)

for solutions of the scalar PDE (5.12).
If a specific set of (ξ(x, t, u), τ(x, t, u), η(x, t, u)) is a set of infinitesimals

for a point symmetry of the PDE (5.12), then the dependence of φ on x,
t, and h(z) is explicit in the ansatz (5.26); h(z) is an arbitrary function of
the similarity variable z. Here, the substitution of the ansatz (5.26) into the
scalar PDE (5.12) yields a reduced ODE of order at most k with independent
variable z and dependent variable h(z). Each solution of this ODE yields an
invariant solution, obtainable by the classical method, of the PDE (5.12).

If ξu = τu ≡ 0, then z(x, t, u) ≡ z(x, t), and the ansatz (5.26) reduces to
the form

u = φ(x, t, h(z(x, t))). (5.27)

If ξu = τu = ηuu ≡ 0, the ansatz (5.26) further reduces to the form

u = A(x, t) +B(x, t)h(z(x, t)). (5.28)

In the ansatz (5.28), the functions A(x, t) and B(x, t) are explicitly known
for a specific set of functions (ξ(x, t), τ(x, t), η(x, t, u)).

Now suppose that one is able to obtain the sets of all infinitesimals
(ξ(x, t, u), τ(x, t, u), η(x, t, u)) of the symmetries X = ξ(x, t, u) ∂/∂x + τ(x, t,
u) ∂/∂t + η(x, t, u) ∂/∂u of the augmented system A{x ;u} consisting of the
PDE (5.12), the constraint invariant surface condition equation (5.24), and
the differential consequences of (5.24). From the above discussion, it follows
that the set of all solutions u = Φ(x, t) of the PDE (5.12), arising from the
nonclassical method, includes the set of all solutions of PDE (5.12) that are
of the form u = φ(x, t, h(z(x, t, u))) where h(z) satisfies a reduced ODE.

Hence the solutions of the PDE (5.12), obtained by the nonclassical
method, include all solutions of the PDE obtained by the direct method of
Clarkson & Kruskal (1989) since the direct method aims to find all solutions
of the PDE (5.12) that are of the ansatz (5.26) with the restriction that
z(x, t, u) ≡ z(x, t) [Nucci & Clarkson (1992)].
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From the nature of the constraint invariant surface condition equation
(5.24), without loss of generality, in using the nonclassical method, two sim-
plifying cases need only be considered when solving the determining equations
for (ξ(x, t), τ(x, t), η(x, t, u)), namely, τ ≡ 1; τ ≡ 0, ξ ≡ 1. This follows from
the observations that if τ �= 0, then the constraint invariant surface condi-
tion equation (5.24) can be divided through by τ , and hence, without loss of
generality, one can set τ ≡ 1, so that there are really only two independent
infinitesimals; similarly if τ ≡ 0, ξ �= 0, then the constraint invariant surface
condition equation (5.24) can be divided through by ξ, and hence, without
loss of generality, one can set ξ ≡ 1, so that here there is really only one
independent infinitesimal.

Note that for a given set of infinitesimals (ξ(x, t), τ(x, t), η(x, t, u)) that
satisfies the nonlinear determining equations, one can use either the invariant
form or direct substitution method to find the resulting solutions of the scalar
PDE (5.12).

Examples

Now consider examples of using the nonclassical method to obtain solutions
of PDEs.

(1) Heat equation
The first PDE considered through the nonclassical method was the linear
heat equation [Bluman (1967), Bluman & Cole (1969)]

ut − uxx = 0. (5.29)

Case 1. The classical method
The classical method determining equation (5.6) that yields the point sym-
metries X = ξ(x, t, u) ∂/∂x+τ(x, t, u) ∂/∂t+η(x, t, u) ∂/∂u of the linear heat
equation (5.29) is given by

τuuu
2
xut + ξuuu

3
x + 2τuuxtux + 2(τxu + ξu)uxut

+(2ξxu − ηuu)u2
x + 2τxuxt + (τxx − τt + 2ξx)ut

+(ξxx − ξt − 2ηxu)ux + (ηt − ηxx) = 0.

(5.30)

In the determining equation (5.30), one treats x, t, u, ut, ux, uxt as indepen-
dent variables. Since (5.30) has the form of a polynomial in ut, ux, uxt, it
consequently splits into nine equations that result from equating to zero the
coefficients of like polynomial terms involving derivatives of u. This yields
the well-known general solution of (5.30) given by
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ξ(x, t, u) ≡ ξ(x, t) = α1 + α2x+ α3t+ α4xt,

τ(x, t, u) ≡ τ(t) = 2α2t+ α4t
2 + α5,

η(x, t, u) = [− 1
2α3x− α4( 1

4x
2 + 1

2 t) + α6]u+ g(x, t),

(5.31)

where α1, . . . , α6 are arbitrary constants and, due to the linearity of PDE
(5.29), g(x, t) is an arbitrary solution of the heat equation, i.e., gt − gxx = 0.
The resulting invariant solutions of the heat equation appeared in Bluman
(1967) and Bluman & Cole (1969).

Case 2. The nonclassical method: τ ≡ 1
If u = Φ(x, t) satisfies the augmented PDE system A{x ;u} consisting of the
linear heat equation (5.29), the corresponding constraint invariant surface
condition

ut = η(x, t, u) − ξ(x, t, u)ux, (5.32)

and the differential consequences of (5.32), it follows that all t-derivatives of u
and all higher-order x-derivatives of u in the classical symmetry determining
equation (5.30) can be expressed as polynomials in ux, with coefficients that
are functions of x, t, and u. In particular, after differentiating (5.32) with
respect to x, and then replacing uxx (= ut) by the right-hand side of (5.32),
one obtains

uxt = (ηx − ξη) + (ηu − ξx + ξ2)ux − ξuu
2
x. (5.33)

Consequently, after replacing ut by the right-hand side of (5.32), and uxt

by the right-hand side of (5.33), the classical method determining equation
(5.30) for the infinitesimals (ξ(x, t, u), τ(x, t, u), η(x, t, u)) becomes the non-
classical method determining equation for the infinitesimals (ξ(x, t, u), η(x, t,
u)) given by

ξuuu
3
x + (2ξxu − ηuu − 2ξξu)u2

x

+(ξxx − ξt − 2ηxu − 2ξξx + 2ηξu)ux

+(ηt − ηxx + 2ηξx) = 0.

(5.34)

Equation (5.34) is a polynomial equation in ux, and hence splits into four
equations whose solution is given by

ξ = ξ(x, t),

η = C(x, t)u+D(x, t),
(5.35)

where {ξ(x, t), C(x, t), D(x, t)} is any solution of the nonlinear system

ξt − ξxx + 2ξξx + 2Cx = 0,

Ct − Cxx + 2ξxC = 0,

Dt −Dxx + 2ξxD = 0.

(5.36)
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This case was considered in more detail in Bluman & Cole (1969). Note that
due to the form of (5.35), it follows that here all obtained solutions of the
linear heat equation (5.29) are of the form (5.28).

Case 3. The nonclassical method: τ ≡ 0, ξ ≡ 1
Here it is easy to show that after using the conditional invariant surface
condition equation ux = η and its differential consequences, the classical
method determining equation (5.30) for the infinitesimals (ξ(x, t, u), τ(x, t, u),
η(x, t, u)) becomes the nonclassical method determining equation for the in-
finitesimal η(x, t, u) given by

η2ηuu + 2ηηxu + ηxx − ηt = 0. (5.37)

Note that
η = −1

2σ(x, t)u (5.38)

solves the determining equation (5.37) if v = σ(x, t) is any solution of the
Burgers equation

vt + vvx − vxx = 0. (5.39)

Consequently, equation (5.38) together with the conditional invariant surface
condition equation ux = η, yields the Hopf–Cole transformation

v = −2
ux

u

that relates solutions of the Burgers equation (5.39) and the linear heat equa-
tion (5.29) through the nonclassical method. This case was first considered in
Fushchich et al. (1992). [See also Appendix 7 in Fushchich, Shtelen & Serov
(1993).]

Note that in this case, due to the form of an obtained infinitesimal that
satisfies the determining equation (5.37), a resulting solution of the linear
heat equation (5.29) is of the form

u = φ(x, t, h(t)). (5.40)

where h(t) satisfies a reduced ODE.

(2) Boussinesq equation
The nonclassical method essentially lay dormant for two decades. A signif-
icant discussion of it appeared in the papers of Olver & Rosenau [(1986),
(1987)] in the context of finding solutions of PDEs subject to differential
constraints. A revived interest in the nonclassical method was ignited by
the remarkable paper of Clarkson & Kruskal (1989), in which they exhibited
solutions of the Boussinesq equation

utt + uuxx + u2
x + uxxxx = 0, (5.41)
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that are not obtainable by the classical method. In this paper, a direct method
was introduced to find solutions of the Boussinesq equation (5.41) that are
of the form (5.27). These were obtained by directly substituting the ansatz
(5.27) into the Boussinesq equation (5.41) to find all cases leading to a reduced
ODE for some h(z(x, t)). In a tour de force, Clarkson and Kruskal found all
such solutions of (5.41). For example, their solutions of (5.41), given by

u(x, t) = t2h(z) − t−2(x+ λt5)2, z = xt+ 1
6λt

6, λ = const, (5.42)

with h(z) satisfying the reduced ODE

(w′′′ + ww′ + 5λw − 50λ2z)′ = 0, (5.43)

are not obtainable by the classical method, i.e., as invariant solutions from
the well-known point symmetries of the Boussinesq equation (5.41) [Nishitani
& Tajiri (1982); Rosenau & Schwarzmeier (1986); Clarkson & Kruskal (1989)]
with infinitesimals

ξ(x, t, u) = ξ(x) = α1x+ α2,

τ(x, t, u) = τ(t) = 2α1t+ α3,

η(x, t, u) = η(u) = −2α1u,

(5.44)

where α1, α2, α3, are arbitrary constants.
As mentioned above, all solutions arising from the direct method must

arise from the nonclassical method. In their seminal paper, Levi & Winternitz
(1989) indeed showed how to use the nonclassical method to obtain all of
the Clarkson and Kruskal solutions of the Boussinesq equation (5.41). In
particular, they considered the nonclassical method for the case τ ≡ 1, and
showed that the resulting infinitesimals are given by

ξ(x, t) = α(t)x+ β(t),

η(x, t, u) = −2α(t)u− [2α(t)(α′(t) + 2α2(t))x2 + 2([α(t)β(t)]′

+4α2(t)β(t))x+ 2β(t)(β′(t) + 2α(t)β(t))],

(5.45)

where α(t) and β(t) are solutions of the ODE system

α′′ + 2αα′ − 4α3 = 0,

β′′ + 2αβ′ − 4α2β = 0.
(5.46)

The general solution of the ODE system (5.46) is easily obtained, and for any
solution of the ODE system (5.46), the general solution of the constraining
invariant surface condition equation (5.24) is given by

u = K2(t)h(z) − (α(t)x+ β(t))2, z = K(t)x−
t∫

0

β(s)K(s)ds, (5.47)
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where

K(t) = exp

⎡⎣− t∫
0

α(s)ds

⎤⎦ .
The substitution of the form (5.47) into the Boussinesq equation (5.41)

yields the reduced ODE

w(4) + ww′′ + w′2 + (Az +B)w′ + 2Aw = 2(Az +B)2, (5.48)

where

A =
α2(t) − α′(t)

K4(t)
= const, B =

α(t)β(t) − β′(t)
K3(t)

+A

t∫
0

β(s)K(s)ds = const.

Note that the solutions obtained by the classical method result from the
two particular sets of solutions

α(t) =
1

2t+ C
, β(t) =

D

2t+ C
, C = const, D = const,

and
α(t) = 0, β(t) = E = const

of the ODE system (5.46).
The reader is referred to Levi & Winternitz (1989) for further details.

Many other examples have illustrated the usefulness of the nonclassical
method to obtain solutions of PDEs that are not obtainable by Lie’s classical
method. Nucci & Clarkson (1992) use the nonclassical method to obtain
solutions of the Fitzhugh–Nagumo equation

ut − uxx + u(u− 1)(u− a), a = const, (5.49)

that can be found by neither the classical nor direct methods. These solu-
tions result from the ansatz (5.26) but not from the ansatz (5.27). Clarkson
& Mansfield (1994a) apply the nonclassical method to the nonlinear heat
equation

ut − uxx = f(u), (5.50)

to find forms of the reaction term f(u) that yield solutions of the PDE (5.50)
not obtainable by Lie’s classical method.

onstruction of Solutions of PDEs5.2  C



314

5.2.3 Invariant solutions arising from nonlocal
symmetries that are local symmetries of
nonlocally related systems

For a given PDE system R{x ;u} (5.1), nonlocal symmetries arising as lo-
cal symmetries (usually point symmetries) of nonlocally related systems can
yield further solutions of the given PDE system that do not arise as invariant
solutions from point symmetries of R{x ;u} (5.1). To find further solutions
arising from such nonlocal symmetries, one first constructs the invariant so-
lutions resulting from Lie’s classical method applied to the corresponding
local symmetries of nonlocally related systems. From the relationship be-
tween R{x ;u} (5.1) and the nonlocally related system, for a constructed
invariant solution of the nonlocally related system, normally one can readily
find the corresponding solution of R{x ;u} (5.1). Such a solution of R{x ;u}
(5.1) is obtained directly through projection when the nonlocally related sys-
tem results from a conservation law of R{x ;u} (5.1). The situation is more
complicated, and involves integration, when the nonlocally related system is
a subsystem of R{x ;u} (5.1).

In particular, let R{x, t ;u} be a given PDE system, and let S{y, z ;w} be a
PDE system nonlocally related to R{x, t ;u}. Due to the relationship between
their solution sets, to every solution w = w(y, z) of the nonlocally related
system S{y, z ;w} there corresponds a solution u = u(x, t) of R{x, t ;u},
and the converse is also true [Section 3.2]. Suppose Y is a point symmetry
of S{y, z ;w} that yields a nonlocal symmetry of R{x, t ;u}. If w = w̃(y, z)
is an invariant solution of S{y, z ;w} arising from its point symmetry Y,
one can find a corresponding solution u = Θ(x, t) of the given PDE system
R{x, t ;u}. In the case when S{y, z ;w} = RV{x, t ;u, v} is a potential system
of R{x, t ;u} with potential variable v, the situation is straightforward since
for any solution (u, v) = (Θ(x, t), Ξ(x, t)) of S{y, z ;w} = RV{x, t ;u, v}, the
corresponding solution u = Θ(x, t) of R{x, t ;u} is found by projection.

For PDE systems that have nontrivial nonlocal symmetries, one can often
construct exact solutions, with a transparent physical meaning, that do not
arise as invariant solutions from local symmetries. From the point of view of
applications, being able to find a previously unknown class of exact solutions
for a nonlinear PDE system can be of great importance.

Mathematically, the following question is of significance. Suppose u =
Θ(x, t) is a solution of R{x, t ;u} arising from an invariant solution of a
nonlocally related system with respect to a nonlocal symmetry Y. Is this
solution directly obtainable as an invariant solution of R{x, t ;u} from the
point symmetries of R{x, t ;u}? [Note that two distinct point symmetries
could yield the same invariant solution of a given PDE system.] A direct
way to answer this question is to check if u = Θ(x, t) is invariant under some
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nontrivial linear combination of point symmetries {X1, . . . ,Xq} of R{x, t ;u}:[(
q∑

i=1

αiXi

)
(u−Θ(x, t))

] ∣∣∣
u−Θ(x,t)=0

= 0,

with at least one of the constants αi �= 0. For an example, see Exercise 5.2.5.
Here, two examples are considered that illustrate the use of finding further

solutions (beyond those obtainable as invariant solutions of local symmetries)
of given PDE systems from nonlocal symmetries arising as point symmetries
of nonlocally related PDE systems. In the first example, such solutions are
found for the variable-coefficient linear wave equation utt = c2(x)uxx for wave
speeds c(x) corresponding to two-layered media with smooth transitions from
layer to layer [Bluman & Kumei (1988)]. Exact solutions are constructed for
wave speeds c(x) that have four free parameters to fit a given medium; in
particular, solutions are obtained for initial value problems for data with
compact support. In the second example, such solutions are obtained for the
system of planar gas dynamics equations (3.42) in their Lagrange formula-
tion, with a generalized polytropic equation of state [Bluman, Cheviakov &
Ivanova (2006)]. In both examples, the obtained exact solutions do not arise
as solutions invariant with respect to point symmetries of the corresponding
given PDE systems.

(1) Linear wave equations for two-layered media with smooth transitions
Consider the linear wave equation U{x, t ;u} given by

utt = c2(x)uxx, −∞ < x < ∞. (5.51)

The PDE (5.51) has the obvious conservation law Dt(c−2(x)ut)−Dx(ux) = 0,
which yields the potential system UV{x, t ;u, v} given by

vt = ux,

ut = c2(x)vx.
(5.52)

[Note that through the substitution

x, t, u, v, c(x) → u, v, t, x, c−1(u),

equations (5.51) and (5.52), respectively, coincide with the PDE T{u, v ; t}
(3.87) and its potential system XT{u, v ;x, t} (3.85) considered in Section
3.5.3.]

Consider the wave speeds c(x) given by solutions of the first-order ODE

c′(x) = m sin(ν log c(x)) (5.53)
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corresponding to Case (b) in Table 4.6. The corresponding wave equa-
tions (5.51) and (5.52) describe wave propagation in two-layered media with
smooth transitions, with the properties

lim
x→−∞ c(x) = 1, lim

x→+∞ c(x) = eπ/ν = γ, γ > 0, (5.54)

max
x∈(−∞,∞)

c′(x) = m > 0, (5.55)

where γ, m are independent parameters with γ representing the ratio of
asymptotic wave speeds. [One can easily adapt the results presented here to
the situation where

lim
x→−∞ c(x) = c1 > 0, lim

x→+∞ c(x) = eπ/ν = c2 (5.56)

through appropriate scalings.] Typical profiles for c(x) are shown in Figure
5.1. Without loss of generality c′(0) = m.

Fig. 5.1 Profiles of c(x) for m = 1/ν; ν = 1, 1.3, 2 (top to bottom).

Let W̃10,11 denote the infinitesimal symmetry generators W10,11 in Table
4.6 after the substitution (u, v, t, x, c−1(u)) → (x, t, u, v, c(x)). One can show
that invariant solutions of the potential system UV{x, t ;u, v} arising from
its invariance under the point symmetry
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W = W̃10 + W̃11 + 4νni
[
u
∂

∂u
+ v

∂

∂v

]
are given by (u, v) = (un(x, t), vn(x, t)) for n = 0, 1, 2, . . .:

[
un(x, t)
vn(x, t)

]
=

√
sin y e−2in arctan cot y

α(t)

[√
c(x) 0

0 1/
√
c(x)

]

×
[√

α(t) + β(t) cos y
√
α(t) − β(t) cos y√

α(t) + β(t) cos y −
√
α(t) − β(t) cos y

] [
fn(z)
gn(z)

]
,

(5.57)

where
y = ν log c(x), α(t) = coshmνt,

β(t) = sinhmνt, z = β(t) sin y,[
fn(z)
gn(z)

]
= Mn(z)

[
f0(z)
g0(z)

]
,

with [
f0(z)
g0(z)

]
=

1√
z2 + 1

[
cosψ(z) sinψ(z)
− sinψ(z) cosψ(z)

] [
Pn

Qn

]
,

ψ(z) =
1
2ν

log
(
z +

√
z2 + 1

)
,

Mn(z) = Rn(z) ×Rn(z) × · · · ×R1(z) ×R0(z),

R0(z) =
[

1 0
0 1

]
,

and for n ≥ 1,

Rn(z) =

⎡⎢⎢⎣
(
n2 − 1

4

)(z − i

z + i

)
− 1

4ν2

i− 2nz
2ν

√
z2 + 1

i+ 2nz
2ν

√
z2 + 1

(
n2 − 1

4

)(z + i

z − i

)
− 1

4ν2

⎤⎥⎥⎦ ;

Pn and Qn are arbitrary constants chosen separately for each invariant solu-
tion pair (un, vn). For n < 0, it is convenient to define invariant solutions for
the potential system (5.52) through[

un(x, t)
vn(x, t)

]
=
[
u−n(x, t)
v−n(x, t)

]
,
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where a bar denotes the complex conjugate.
The solution of the potential system (5.52) with the initial conditions given

by
u(x, 0) = U(x), v(x, 0) = V (x) (5.58)

can be represented formally in the form[
u(x, t)
v(x, t)

]
=

∞∑
n=−∞

[
un(x, t)
vn(x, t)

]
=
[
u0(x, t)
v0(x, t)

]
+ 2Re

{ ∞∑
n=1

[
un(x, t)
vn(x, t)

]}

with the constants Pn, Qn determined from the initial conditions (5.58). In
particular, since

un(x, 0) = (−1)n
√
c(x) sin y (Pn +Qn)e2iny,

vn(x, 0) = (−1)n

√
sin y
c(x)

(Pn −Qn)e2iny,

and 0 < y < π, from the above Fourier series representation it follows that
the Fourier coefficients are given by

Pn, Qn =
(−1)n

2π

∫ π

0

e−2iny

√
sin y

[
e−y/2νU(x(y)) ± ey/2νV (x(y))

]
dy.

For a given initial value problem, after determining the constants {Pn, Qn},
one can directly compute the solution for any time t, −∞ < t < ∞. Note
that no step-by-step marching in the time variable t is required as would be
the case for numerical procedures based on the method of characteristics.

Full details of the derivation of these solutions and their properties are
given in Bluman & Kumei (1988). It is easy to check that the corresponding
projected solutions of the linear wave equation (5.51) do not arise as invariant
solutions for any of its point symmetries.

(2) Generalized polytropic planar gas dynamics equations
Symmetries of nonlocally related systems of generalized polytropic PGD
equations with the equation of state (4.34) were presented in Section 4.2.5.
Here it is shown how to construct solutions of the Lagrange system arising
from nonlocal symmetries that cannot arise as invariant solutions from point
symmetries of the Lagrange system. In particular, the construction of such
solutions is considered for the constitutive function M(p) = −p ln p.

Among the potential systems of the Lagrange system L{y, s ; v, p, q} (3.42)
considered in Section 4.2.5, as seen in Table 4.19, the potential system
LW2{y, s ; v, p, q, w2} (3.98) has the largest number of point symmetries. [In
particular, its point symmetries include all point symmetries of L{y, s ; v, p, q}.]
Thus the potential system LW2{y, s ; v, p, q, w2} (3.98) has the largest set
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of invariant solutions that can be constructed from the symmetries exhib-
ited in Table 4.19. In particular, for M(p) = −p ln p, the Lie algebra of
symmetry generators for this constitutive function is spanned by the pro-
jections of the eight operators Z1, . . . , Z5, Z7, Z9, Z13 on the space of
variables {y, s, v, p, q, w2} of LW2{y, s ; v, p, q, w2}. To find all solutions of
LW2{y, s ; v, p, q, w2} invariant with respect to these point symmetries, one
proceeds as follows [Ovsiannikov (1982)].

1. Find optimal systems of one-dimensional invariant symmetry subal-
gebras, and construct invariant solutions with respect to each such
subalgebra.

2. Use the transformation groups corresponding to the infinitesimal gen-
erators of the point symmetries to extend the set of solutions.

The optimal system of one-dimensional symmetry subalgebras for the point
symmetries of the potential system LW2{y, s ; v, p, q, w2} appears in Bluman,
Cheviakov & Ivanova (2006).

Solutions of the Lagrange system L{y, s ; v, p, q} are obtained from the
solutions of the potential system LW2{y, s ; v, p, q, w2} by simply excluding
the potential variable w2.

For the case M(p) = −p ln p, a solution of the Lagrange system L{y, s;
v, p, q} (3.42) is constructed that arises from an invariant solution of the
potential system LW2{y, s ; v, p, q, w2} (3.98) with respect to the point sym-
metry

X = Z9 + Z13 (5.59)

[Table 4.19]. The resulting solution does not arise as an invariant solution
with respect to a local symmetry of L{y, s ; v, p, q}, since the symmetry (5.59)
belongs to the invariant subalgebra

A8 = Z13 + ε1Z1 + ε2Z2 + ε3Z7 + αZ9, εi = 0,±1, α ∈ R,

which essentially involves the nonlocal symmetry Z13.
In particular, the invariant solution has the form

p(y, s) =
β2γ

α2

y2

y + α
(1 + tan2(βs)),

q(y, s) = − γ

(y + α)3
ln
[
γβ2

α2

y2

y + α
(1 + tan2(βs))

]
, (5.60)

v(y, s) = −βγ

α2

y(y + 2α)
(y + α)2

tan(βs), w(y, s) = −q0β

α2

y2

y + α
tan(βs),

where α, β, γ are arbitrary constants [Exercise 5.2.4]. One can show that the
solution (5.60) does not arise as an invariant solution with respect to a point
symmetry of the Lagrange system L{y, s ; v, p, q} [Exercise 5.2.5].
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Setting α = 1, β = i, γ = −2 and applying the equivalence transformation
(3.96) with a1 = a2 = 1, a3 = −1, a4 = a5 = a6 = 0, a7 = p0, a8 = q0, one
obtains the solution

p′(y, s) = p0 −
2y2

y + 1
1

cosh2 s
,

q′(y, s) = q0 −
2

(y + 1)3
ln
[

2y2

y + 1
1

cosh2 s

]
, (5.61)

v′(y, s) = 2
y(y + 2)
(y + 1)2

tanh s

of the Lagrange system L{y, s ; v, p, q}, for the constitutive function

B(p′, q′) =
(p0 − p′) ln (p0 − p′)

q0 − q′
.

The solution (5.61) is regular, bounded, and satisfies the physical conditions
p > 0, ρ > 0 for all times s ≥ 0 for the material space interval 0 ≤ y ≤ 5.
For full details of the derivation and properties of the presented solution, see
Bluman, Cheviakov & Ivanova (2006).

5.2.4 Further extensions of symmetry methods for
construction of solutions of PDEs connected
with nonlocally related systems

In this section, other ansätze, based on symmetry extensions, are presented
that could lead to further solutions of a given PDE system R{x, t ;u}. Each
presented ansatz results from consideration of a nonlocally related system.
The focus is on the situation when R{x, t ;u} is a second-order scalar PDE.
Extensions to higher-order PDE systems with two or more independent vari-
ables are straightforward.

Suppose U{x, t ;u} is a given scalar PDE

R(x, t, u, ∂u, ∂2u) = Dxf(x, t, u, ux, ut) − Dtg(x, t, u, ux, ut) = 0 (5.62)

that can be written as a conservation law. Correspondingly, the PDE (5.62)
has the nonlocally related potential system UV{x, t ;u, v} given by

vt = f(x, t, u, ux, ut),

vx = g(x, t, u, ux, ut).
(5.63)
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For many physical equations, one can eliminate u from the potential system
UV{x, t ;u, v} (5.63) to obtain a potential equation (which is a subsystem)
V{x, t ; v} given by

S(x, t, v, ∂v, ∂2v) = 0. (5.64)

By construction, the potential equation V{x, t ; v} (5.64) is a nonlocally re-
lated system of U{x, t ;u} (5.62) and may or may not be a nonlocally related
subsystem of the potential system UV{x, t ;u, v} (5.63). [One can show that
the potential equation V{x, t ; v} (5.64) is (1) locally related to the potential
system UV{x, t ;u, v} (5.63) if the given PDE U{x, t ;u} (5.62) is parabolic;
(2) nonlocally related to the potential system UV{x, t ;u, v} (5.63) if the
given PDE U{x, t ;u} (5.62) is hyperbolic or elliptic [Exercise 5.2-7].]

For a point symmetry of the potential system UV{x, t ;u, v} (5.63) with
the infinitesimal generator

X = ξ(x, t, u, v)
∂

∂x
+ τ(x, t, u, v)

∂

∂t
+ η(x, t, u, v)

∂

∂u
+ ζ(x, t, u, v)

∂

∂v
, (5.65)

the corresponding invariant surface condition (5.4) becomes

ξ(x, t, u, v)ux + τ(x, t, u, v)ut = η(x, t, u, v),

ξ(x, t, u, v)vx + τ(x, t, u, v)vt = ζ(x, t, u, v).
(5.66)

For a specific set of ξ(x, t, u, v), τ(x, t, u, v), η(x, t, u, v), ζ(x, t, u, v), the
general solution of the invariant surface condition (5.66) can be represented
in the form

z(x, t, u, v) = const = c1, (5.67a)

H1(x, t, u, v) = const = c2 = h1(z),

H2(x, t, u, v) = const = c3 = h2(z),
(5.67b)

where z(x, t, u, v) is a similarity variable. After solving equations (5.67b) for
u and v, one obtains the ansatz

u = φ(x, t, h1(z(x, t, u, v)), h2(z(x, t, u, v))), (5.68a)

v = ψ(x, t, h1(z(x, t, u, v)), h2(z(x, t, u, v))), (5.68b)

for solutions of the potential system UV{x, t ;u, v} (5.63).
If a specific set of (ξ(x, t, u, v), τ(x, t, u, v), η(x, t, u, v), ζ(x, t, u, v)) is a set

of infinitesimals for a point symmetry of the potential system UV{x, t ;u, v}
(5.63), then the respective dependencies of φ and ψ on x, t, h1(z) and h2(z)
are both explicit in the ansatz (5.68); h1(z) and h2(z) are both arbitrary
functions of the similarity variable z. Here, the substitution of the ansatz
(5.68) into the potential system UV{x, t ;u, v} (5.63), yields a reduced ODE
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system of at most second order with independent variable z and dependent
variables h1(z) and h2(z). Each solution of this ODE system yields an invari-
ant solution,

u = Φ(x, t, h1(z(x, t, u, v)), h2(z(x, t, u, v))), (5.69a)

v = Ψ(x, t, h1(z(x, t, u, v)), h2(z(x, t, u, v))), (5.69b)

obtainable by the classical method, of the potential system UV{x, t ;u, v}
(5.63). In turn, the invariant solution (5.69) of the nonlocally related PDE
system (5.63), yields the solution

u = Φ(x, t, h1(z(x, t, u, v)), h2(z(x, t, u, v))) (5.70)

of the given scalar PDE U{x, t ;u} (5.62). If the point symmetry (5.65) of
the potential system UV{x, t ;u, v} (5.63) is not a potential symmetry of the
PDE (5.62), i.e., ξv = τv = ηv ≡ 0, then the solution (5.70) is an invariant so-
lution of the PDE (5.62) obtainable from reduction under the corresponding
projected point symmetry of the PDE (5.62). [The converse does not neces-
sarily hold, i.e., even if the point symmetry (5.65) is a potential symmetry
of the given scalar PDE U{x, t ;u} (5.62), it is still possible that the solu-
tion (5.70) can be obtained as an invariant solution resulting from a point
symmetry of (5.62).]

In the following sections, other ansätze for solutions of a given scalar PDE
U{x, t ;u} (5.62) are presented that are based on further consideration of the
nonlocally related system UV{x, t ;u, v} (5.63) and the potential equation
V{x, t ; v} (5.64) (when it exists).

An ansatz based on a first refinement of the potential system
ansatz (5.68)

The ansatz (5.68) is the invariant form for invariant solutions of the poten-
tial system UV{x, t ;u, v} (5.63) obtained from its point symmetry (5.65).
Instead of substituting this ansatz into UV{x, t ;u, v} (5.63) to obtain an
invariant solution (5.69) and hence the solution (5.70) of a given scalar PDE
U{x, t ;u} (5.62), more generally one could just directly substitute the ansatz
(5.68) into U{x, t ;u} (5.62). This method, introduced by Pucci & Sacco-
mandi (1993), is a generalization of the classical method. Indeed, here both u

and v are sought in the invariant form; u satisfies the given PDE U{x, t ;u},
but the pair (u, v) may not satisfy the potential system UV{x, t ;u, v} (5.63).

As an example, Pucci & Saccomandi considered the Fokker–Planck equa-
tion

ut − uxx − (xu)x = 0. (5.71)
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The scalar PDE (5.71) is directly written as a conservation law, hence one
obtains the corresponding potential system

vx = u,

vt = ux + xu.
(5.72)

One can show that the potential system (5.72) has six nontrivial point sym-
metries including the point symmetry with the infinitesimal generator

X = e2t

[
x
∂

∂x
+

∂

∂t
− [(x2 + 2)u+ 2xv]

∂

∂u
− (x2 + 1)v

∂

∂v

]
(5.73)

that yields a potential symmetry of (5.71). It is easy to show that the general
solution of the corresponding invariant surface condition is given by

z(x, t) = x−1et = const = c1,

H1(x, v) = ex2/2xv = const = c2 = h1(z),

H2(x, u, v) = ex2/2(x2u+ x3v) = const = c3 = h2(z),

(5.74)

which yields the ansatz

u = e−x2/2(x−2h2(z) − h1(z)), (5.75a)

v = e−x2/2x−1h1(z), (5.75b)

for solutions of the potential system (5.72).
After substituting (5.75) into the potential system (5.72), one finds that

h1(z), h2(z) satisfy the first order ODE system

h2(z) + (zh1(z))′ = 0,

z(h2(z))′ + 2h2(z) = 0,
(5.76)

whose general solution yields the solution

u = e−x2/2[a1(1 − x2)e−2t + a2xe
−t], (5.77)

with arbitrary constants a1, a2 of the Fokker–Planck equation (5.71).
On the other hand, if one directly substitutes the ansatz (5.75a) into the

Fokker–Planck equation (5.71), then one obtains the equation

z2[z2(h2(z))′′ + 6z(h2(z))′ + 6h2(z)]

−e2t[z2(h1(z))′′ + 2z(h1(z))′ − 2h2(z)] = 0.
(5.78)

Hence the ansatz (5.75a) yields a solution of the Fokker–Planck equation
(5.71) if and only if h1(z), h2(z) satisfy the second-order ODE system
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z2(h2(z))′′ + 6z(h2(z))′ + 6h2(z) = 0,

z2(h1(z))′′ + 2z(h1(z))′ − 2h2(z) = 0.
(5.79)

From the previous remarks, it follows that each solution of the ODE system
(5.76) must satisfy the ODE system (5.79). The general solution of the ODE
system (5.79) yields the solution

u = e−x2/2[a1(1 − x2)e−2t + a2xe
−t] + e−x2/2[b1(3x− x3)e−3t + b2], (5.80)

with arbitrary constants a1, a2, b1, b2 of the Fokker–Planck equation (5.71).
The solution (5.77) corresponds to the situation where b1 = b2 = 0.

However, it is easy to check that the solution u = e−x2/2 can be obtained
from the invariance of the PDE (5.71) under translations in t, and the solu-
tion u = e−x2/2(3x − x3)e−3t can be obtained by applying the infinitesimal
generator e−t ∂/∂x of a point symmetry of the PDE (5.71) to the solution
u = e−x2/2(1 − x2)e−2t in (5.77).

An ansatz based on a second refinement of the potential system
ansatz (5.68)

Here the ansatz (5.68) is modified as follows [Cheviakov (2008)]. Let z(x, t, u,
v), ẑ(x, t, u, v) be the canonical coordinates for the point symmetry X (5.65)
of the potential system UV{x, t ;u, v} (5.63), i.e, Xz = 0, Xẑ = 1. Then
the ansatz (5.68) is changed to allow one of h1(z), h2(z) to depend on the
translated variable ẑ, i.e., say h2(z) is replaced by h2(z, ẑ). Finally, one di-
rectly substitutes the corresponding ansatz into U{x, t ;u} (5.62) to obtain
a reduced PDE system satisfied by h1(z), h2(z, ẑ). Any solution that can be
found for this reduced PDE system yields a solution of the given scalar PDE
U{x, t ;u} (5.62). The second refinement ansatz directly generalizes both the
classical ansatz [Section 5.2.1] and the first refinement of the potential sys-
tem ansatz. In particular, in the second refinement of the potential system
ansatz, u is a solution of PDE U{x, t ;u} (5.62) that has an invariant form,
whereas v does not have an invariant form (since it depends on ẑ), and the
pair (u, v) is generally not a solution of the potential system UV{x, t ;u, v}
(5.63).

As an example, Cheviakov (2008) considered the Lagrange planar gas
dynamics system L{y, s ; v, p, q} (3.42) in the particular polytropic case
B(p, q) = 3p/q. In this case, as seen from Table 4.18, this PDE system has
the nonlocal symmetry (potential symmetry)

Y8 = s2
∂

∂s
+ (w1 − sv)

∂

∂v
− 3sp

∂

∂p
+ sq

∂

∂q
+ sw1 ∂

∂w1
, (5.81)
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which is a point symmetry of the potential system LW1{y, s ; v, p, q, w1}
(3.97). The invariants of the point symmetry (5.81) are given by

z = y = const = c1,

H1(s, p) = s3p = const = c2 = h1(z),

H2(s, q) =
q

s
= const = c3 = h2(z),

H3(s, w1) =
w1

s
= const = c4 = h3(z),

H4(s, v, w1) = sv − w1 = const = c5 = h4(z),

(5.82)

and as the translated canonical coordinate, one can choose

ẑ = 1/s. (5.83)

The corresponding invariant solutions of the potential system LW1{y, s ;
v, p, q, w1}(3.97) result from the ansatz

p(y, s) = s−3h1(y), q(y, s) = sh2(y),

v(y, s) = s−1h4(y) + h3(y), w1(y, s) = sh3(y).
(5.84)

Substitution of (5.84) into LW1{y, s ; v, p, q, w1} (3.97) yields the reduced
ODE system

(h1(y))′ = 0, (h3(y))′ = h2(y), h4(y) = 0,

h1(y)(h4(y))′ = 0, h1(y)h2(y) = h1(y)(h3(y))′
(5.85)

with its general solution (h1(y) �= 0) given by

h1(y) = C, h2(y) = f ′(y), h3(y) = f(y), h4(y) = 0, (5.86)

where f(y) is an arbitrary differentiable function and C is an arbitrary con-
stant. The corresponding solutions of the Lagrange system L{y, s ; v, p, q}
(3.42) are given by

v(y, s) = f(y), p(y, s) = Cs−3, q(y, s) = sf ′(y). (5.87)

On the other hand, using the second refinement of the potential system
ansatz, if one directly substitutes [Without loss of generality one can replace
ẑ = 1/s by s.]) the ansatz

p(y, s) = s−3h1(y), q(y, s) = sh2(y), v(y, s) = s−1h4(y)+h3(y, s) (5.88)
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into the given Lagrange system L{y, s ; v, p, q} (3.42), one obtains the reduced
PDE system

s
∂h3(y, s)

∂y
= sh2(y) − (h4(y))′, s3

∂h3(y, s)
∂s

= −sh4(y) − (h1(y))′. (5.89)

The solution of the reduced PDE system (5.89) is given by

h1(y) = 2By + C, h2(y) = f ′(y),

h3(y, s) = f(y) +Bs−2 + s−1g(y), h4(y) = −g(y),
(5.90)

where f(y), g(y) are arbitrary differentiable functions and B, C are arbitrary
constants. The corresponding solutions of the Lagrange system L{y, s ; v, p, q}
(3.42) are given by

v(y, s) = f(y) +Bs−2, p(y, s) = s−3(2By + C), q(y, s) = sf ′(y), (5.91)

generalizing the solutions (5.87).

Nonclassical potential solutions of PDEs

The nonclassical method is now applied to the potential system UV{x, t ;u, v}
(5.63) of a given scalar PDE U{x, t ;u} (5.62) written as a conservation law.
The situation is considered where a subsystem (potential equation) V{x, t ; v}
(5.64) exists.

Definition 5.2.4. A solution of a given scalar PDE U{x, t ;u}(5.62) ob-
tained by applying the nonclassical method with τ ≡ 1 to either a potential
system UV{x, t ;u, v} (5.63) or a potential equation V{x, t ; v} (5.64) is called
a nonclassical potential solution of (5.62) if it is neither a nonclassical solu-
tion obtained by directly applying the nonclassical method with τ ≡ 1 to
(5.62) nor a solution arising as an invariant solution from a point symme-
try of U{x, t ;u} (5.62), of the potential system UV{x, t ;u, v} (5.63) or the
potential equation V{x, t ; v} (5.64).

The nonlinear heat conduction equation U{x, t ;u} given by

ut − (K(u)ux)x = 0, K ′(u) �≡ 0, (5.92)

is considered as a prototypical example [Bluman & Yan (2005)]. The potential
system UV{x, t ;u, v} given by

vx = u,

vt = K(u)ux,
(5.93)
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naturally arises from the conservation law (5.92). The dependent variable u
can be eliminated from (5.93) to yield the subsystem (potential equation)
V{x, t ; v} given by

vt −K(vx)vxx = 0, (5.94)

which is nonlocally related to the given scalar PDE (5.92) but locally related
to the potential system (5.93).

For arbitrary K(u), the determining equations for the infinitesimals in the
nonclassical method are set up for the given scalar PDE (5.92) in terms of the
invariant surface condition (5.24), for the potential system (5.93) in terms of
the invariant surface condition (5.66), and for the potential equation (5.94)
in terms of the invariant surface condition

ξ(x, t, v)vx + τ(x, t, v)vt = ζ(x, t, v), (5.95)

respectively, for τ ≡ 1 and for τ ≡ 0, ξ ≡ 1.
As a particular example,

K(u) =
1

u2 + u
(5.96)

is considered, following Bluman & Yan (2005).

Case 1. The nonclassical method applied to the given scalar PDE (5.92)

(1) τ ≡ 1. Here the nonclassical method applied directly to the nonlinear heat
conduction equation (5.92) yields the following system of four determining
equations for the infinitesimals ξ(x, t, u), η(x, t, u):

K ′(u)ξu −K(u)ξuu = 0,[
K(u)K ′′(u) − (K ′)2(u)

]
η +K(u)K ′(u)ηu

+2K(u)ξξu +K2(u)(ηuu − 2ξxu) = 0,

K(u)(ξt − 2ξuη + 2ξξx) −K ′(u)ξη

+K2(u)(2ηxu − ξxx) + 2K(u)K ′(u)ηx = 0,

K(u)(2ξxη + ηt) −K ′(u)η2 −K2(u)ηxx = 0.

(5.97)

One can show [Exercise 5.2.10] that for K(u) given by (5.96), equations (5.97)
yield one “nonclassical symmetry”, which, however, only yields a classical
solution of the PDE (5.92).

(2) τ ≡ 0, ξ ≡ 1. Here the nonclassical method yields the following deter-
mining equation for the infinitesimal η(x, t, u).

K(u)(ηxx+2ηηxu+η2ηuu)+K ′′(u)η3+K ′(u)(3ηηx+2η2ηu)−ηt = 0. (5.98)
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In principle, any K(u) yields solutions of the determining equation (5.98). In
practice, for a given K(u), one must use a specific ansatz for η(x, t, u) to seek
particular solutions of (5.98).

The systems of determining equations (5.97) and (5.98) appear in Bluman
& Shtelen (1996b). To date it appears that the direct application of the
nonclassical method to the PDE (5.97) has only yielded solutions that are
obtainable by Lie’s classical method.

Case 2. The nonclassical method applied to the potential system (5.93)

(1) τ ≡ 1. Here the nonclassical method applied to the potential system (5.93)
yields the following system of two determining equations for the infinitesimals
ξ(x, t, u, v), η(x, t, u, v), ζ(x, t, u, v).

(ζ − uξ)(ζu − uξu) + [u(ζv − ξx) − ξvu
2 − η + ζx]K(u) = 0,

(ζu − uξu)[ηK(u) − ξ(ζ − uξ)]

+[(ζv − uξv)(ζ − uξ) − (ηvK(u) + ξt)u− ηxK(u)]K(u)

+(ζ − uξ)[(ξx + ξvu− ηu)K(u) − ηK ′(u)]

+ξu(ζu − uξu)2 + ζtK(u) = 0.

(5.99)

The set of determining equations (5.99) is clearly under-determined since
it involves two equations for the three infinitesimals ξ(x, t, u, v), η(x, t, u, v),
ζ(x, t, u, v). Consequently, in principle, any K(u) yields an infinite number
of solutions. So far no nonclassical potential solution has been found in this
case.

(2) τ ≡ 0, ξ ≡ 1. Here it is easy to show [Exercise 5.2.11] that the nonclassical
method only yields solutions of the potential system (5.93) of the form u =
f(x), i.e., invariant solutions of the given scalar PDE (5.92) that are derivable
from its invariance under translations in t.

Case 3. The nonclassical method applied to the potential equation (5.94)

(1) τ ≡ 1. Here the nonclassical method applied to the potential equa-
tion (5.94) yields the following determining equation for the infinitesimals
ξ(x, t, v), ζ(x, t, v).

[−ξξvv
3
x + (ξvζ − ξξx + ξζv)v2

x + (ξxζ − ζζv + ξζx)vx − ζζx]K ′(vx)

+[−2ξξvv
2
x + (2ξvζ − 2ξξx − ξt)vx + 2ζξx + ζt]K(vx)

+[ξvvv
3
x + (2ξxv − ζvv)v2

x + (ξxx − 2ζxv)vx − ζxx]K2(vx) ≡ 0.

(5.100)

Since the determining equation (5.100) must hold for all values of x, t, v, vx,

it follows that K(u) = K(vx) is restricted to satisfying a first-order Bernoulli
equation (with variable coefficients) of the form
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[A1v
3
x +A2v

2
x +A3vx +A4]K ′(vx) + [B1v

2
x +B2vx +B3]K(vx)

+[C1v
3
x + C2v

2
x + C3vx + C4]K2(vx) = 0,

(5.101)

for some constants Ai, Bj , Ck. Consequently, K(u) depends at most on 11
parameters. The solution of the determining equation (5.100) is further dis-
cussed in Bluman & Yan (2005). In particular, it can be shown [Exercise
5.2.12] that for K(u) given by (5.96), equations (5.101) do yield nonclassical
potential solutions of the given nonlinear heat conduction equation (5.92).

(2) τ ≡ 0, ξ ≡ 1. Here the invariant surface condition (5.95) becomes vx =
ζ(x, t, v), and the nonclassical method applied to the potential equation (5.94)
yields the following determining equation for the infinitesimal ζ(x, t, v).

[2ζζxζv + ζ2ζ2
v + ζ2

x]K ′(ζ) + [ζ2ζvv + 2ζζxv + ζxx]K(ζ) − ζt = 0. (5.102)

In principle, any K(u) = K(ζ) yields solutions of (5.102). In practice, one
must use an ansatz for ζ(x, t, v) to seek particular solutions of (5.102).

Exercises 5.2

5.2.1. Show that any PDE solution obtained by Lie’s classical method can
be obtained by the nonclassical method.

5.2.2. Show that the solution of the infinitesimal equations (5.36) includes
the classical case as a special case. In particular, find necessary and sufficient
conditions so that ξ(x, t), C(x, t), D(x, t) yield only solutions obtainable by
Lie’s classical method.

5.2.3. Consider the Euler PDE system E{x, t ; v, σ, ρ} for the system of non-
linear one-dimensional elasticity equations in the Eulerian framework, given
by

ρt + (ρv)x = 0,

σx + ρf(x) = ρ(vt + vvx),

σ = K(ρ).

(5.103)

In (5.103), ρ is the density of a given material, σ is the Cauchy stress, v is
the physical (material) velocity, f(x) is the force per unit mass, and K(ρ) is
a constitutive function.

(a) Use the first equation of the PDE system (5.103) to introduce a nonlo-
cal variable w. Show that the resulting nonlocally related PDE system
EW{x, t ; v, σ, ρ, w} is locally equivalent to the nonlinear elasticity sys-
tem L{y, t ; v, σ, q, x} in the Lagrangian framework, given by

onstruction of Solutions of PDEs5.2  C
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q = xy,

v = xt,

vt = σy + f(x),

σ = K(1/q),

(5.104)

where q = 1/ρ, and y = w.
(b) Show that for K(ρ) = (1/2)[arctan(1/ρ) + ρ/(ρ2 + 1), f(x) = x, the

potential Euler (Lagrange) system EW{x, t ; v, σ, ρ, w} (5.104) has the
point symmetry

Y =
et

ρ

[
∂

∂t
+ (v + ρw)

∂

∂x
+ (x+ ρw)

∂

∂v
− ρ(ρ2 + 1)

∂

∂ρ
− ρ(x− v)

∂

∂w

]
,

which yields a nonlocal symmetry of the Euler system E{x, t ; v, σ, ρ}
(5.103).

(c) Find invariant solutions of the Euler system E{x, t ; v, σ, ρ} (5.103) aris-
ing from the nonlocal symmetry Y [Bluman, Cheviakov & Ganghoffer
(2008)].

5.2.4. Derive the invariant solutions (5.60) and (5.61) of the Lagrange PGD
system L{y, s ; v, p, q} (3.42). In particular, show that the invariants of the
symmetry (5.59) are given by

I1 = s, I2 ≡ P (s) = p(y, s)y−2(y + α),

I3 ≡ Q(s) = q(y, s)(y + α)3
(

ln
P (s)y2

y + α

)−1

,

I4 ≡ W (s) = w2(y, s)y−2(y + α),

I5 ≡ V (s) = v(y, s)y−1(y + α)2 − yW (s).

(5.105)

After substitution of the dependent variables in terms of the invariants
(5.105), show that the potential system LW2{y, s ; v, p, q, w2} yields a sys-
tem of ODEs

Q′(s) = 0, W ′(s) = −P (s), P ′(s) = 2α2P (s)W (s)
Q(s)

, (5.106)

whose solution is given by (5.60).

5.2.5. Consider the invariant solution (5.60) of the potential system LW2{y,
s ; v, p, q, w2} (3.98) with M(p) = −p ln p. Explicitly verify that the corre-
sponding solution of the Lagrange system L{y, s ; v, p, q} (3.42) does not arise
as an invariant solution with respect to a point symmetry of L{y, s ; v, p, q}
[Bluman, Cheviakov & Ivanova (2006)].
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5.2.6. Consider the symmetry Y8 [Table 4.18], which yields a nonlocal sym-
metry of the polytropic Lagrange PGD system (3.42) (γ = 3), and a point
symmetry of the potential system LW1{y, s ; v, p, q, w1} (3.97).

(a) Find solutions of the potential system LW1{y, s ; v, p, q, w1} invariant
with respect to Y8.

(b) Find the corresponding solution of the Lagrange system L{y, s ; v, p, q}.

5.2.7.

(a) Show that if a scalar PDE (5.62) is a linear parabolic PDE, then the po-
tential equation (5.64) is locally related to the potential system (5.63).

(b) Show that if a scalar PDE (5.62) is either a linear elliptic or linear
hyperbolic PDE, then the PDE (5.62), the potential equation (5.64),
and the potential system (5.63) are three distinct nonlocally related
systems.

5.2.8. Consider the wave equation in an inhomogeneous medium, given by

utt − xuxx = 0. (5.107)

(a) Show that x−1 is a multiplier for a conservation law of (5.107).
(b) Find the resulting potential system and find the potential symmetry

of (5.107) that arises as a point symmetry of the potential system.
(c) Find the invariant solution of the potential system arising from the

obtained potential symmetry and find the corresponding solution of
the PDE (5.107).

(d) Use the first refinement of the potential system ansatz, in conjunction
with the found potential symmetry, to find a wider class of solutions
of the PDE (5.107).

(e) Show that all of the solutions of the PDE (5.107) obtained through
(c) and (d) [Pucci & Saccomandi (1993)] arise from the invariant solu-
tions of the PDE (5.107) resulting from its invariance under particular
scalings and translations.

5.2.9. The Lagrange PDE system L{y, s ; v, p, q} for the planar gas dynam-
ics equations in the general polytropic case with the constitutive function
B(p, q) = γp/q for some constant γ, is given by

qs − vy = 0,

vs + py = 0,

ps + γ
p

q
vy = 0.

(5.108)

Consider the potential system LW2{y, s ; v, p, q, w2} given by
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qs − vy = 0,

w2
y = v,

w2
s = −p,

ps + γ
p

q
vy = 0.

(5.109)

(a) Show that the potential system (5.109) has the point symmetry

Z = y2 ∂

∂y
+ yp

∂

∂p
− 3yq

∂

∂q
+ (w2 − yv)

∂

∂v
+ yw2 ∂

∂w2
(5.110)

which yields a potential symmetry of the Lagrange PDE system
(5.108).

(b) Show that invariants of the point symmetry (5.110) are given by

z = s, H1(y, p) =
p

y
, H2(y, q) = y3q,

H3(y, w2) =
w2

y
, H4(y, v, w2) = yv − w2.

(c) Show that the invariant solutions of the potential system (5.109) cor-
responding to the point symmetry (5.110) arise from the ansatz

p(y, s) = yh1(s), q(y, s) =
h2(s)
y3

,

v(y, s) =
h4(s)
y

+ h3(s), w2(y, s) = yh3(s).
(5.111)

(d) Find the solutions of the Lagrange PDE system (5.108) that arise from
the ansatz (5.111).

(e) Use the second refinement of the potential system ansatz in which one
replaces h3(s) by h3(y, s) in the ansatz (5.111). Find the corresponding
families of solutions of the Lagrange PDE system (5.108) that arise
from this refined ansatz, and do not arise as invariant solutions of the
Lagrange PDE system (5.108) or the potential system (5.109) with
respect to any of their point symmetries [Cheviakov (2008)].

5.2.10. Show that for K(u) given by (5.96), the determining equations (5.97)
yield only one “nonclassical symmetry” of the nonlinear heat conduction
equation (5.92), given by

Y =
c3x+ c2
2c3t+ c1

∂

∂x
+

∂

∂t
.

Show that the corresponding invariant solution is a classical invariant solution
of the PDE (5.92) [Bluman & Yan (2005)].
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5.2.11. Consider the potential system (5.93) of the nonlinear heat conduction
equation (5.92). In the case where τ ≡ 0, ξ ≡ 1, show that the nonclassical
method applied to the potential system (5.93) only yields solutions of (5.92)
of the form u = f(x).

5.2.12. Consider the potential equation (5.94) of the nonlinear heat conduc-
tion equation (5.92). For K(u) given by (5.96), in the case where τ ≡ 1, show
that the determining equations (5.101) yield two “nonclassical symmetries”

Y1 =
∂

∂t
+ b tanh

[
b
(
2γ − 1

2

)
v + bγx+ c

]( ∂

∂x
− 2γ

∂

∂v

)
,

Y2 =
∂

∂t
+ b coth

[
b
(
2γ − 1

2

)
v + bγx+ c

]( ∂

∂x
− 2γ

∂

∂v

)
,

(5.112)

where b �= 0, c and γ are arbitrary constants. Show also that invariant solu-
tions arising from generators (5.112) include nonclassical potential solutions
of the given nonlinear heat conduction equation (5.92). [See Bluman & Yan
(2005). In this paper, an asymptotic analysis was used to show that the ex-
hibited solutions were indeed nonclassical potential solutions.]

5.3 Nonlocally Related PDE Systems in Three or More
Dimensions

For PDE systems with n > 2 independent variables, the situation for obtain-
ing and using nonlocally related PDE systems is considerably more complex
than in the two-dimensional case. In particular, every divergence-type con-
servation law gives rise to several potential variables, which are only defined
to within arbitrary functions of the independent variables. The corresponding
potential system is thus under-determined, and is said to have gauge freedom.
Additional equations involving potential variables, called gauge constraints,
are needed to make such potential systems determined [Section 5.3.1]. In
contrast, nonlocally related subsystems do not require additional gauge con-
straints [Section 5.3.2].

In Section 5.3.3, trees of nonlocally related PDE systems are constructed
for a given PDE system and several important theorems are presented. In
particular, it is shown that only determined nonlocally related systems can
yield nonlocal symmetries of a given PDE system.

An important difference between two-dimensional and higher-dimensional
PDE systems is that in higher dimensions, there exist several different types
of conservation laws. For example, in three dimensions, one may have a van-
ishing divergence or a vanishing curl; for n > 3, n − 1 types of conservation
laws exist. The consideration of such conservation laws and their use for the
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construction of nonlocally related potential systems are both discussed in
Section 5.3.4.

Finally, in Section 5.3.5, several instructive higher-dimensional examples
are considered where the use of nonlocally related PDE systems leads to new
results.

5.3.1 Divergence-type conservation laws and resulting
potential systems

In the case of n ≥ 3 independent variables, divergence-type conservation laws
are given by expressions of the form

divΦ[u] ≡ DiΦ
i(x, u, ∂u, . . . , ∂k−1u) = 0. (5.113)

For a given PDE system, as shown in Chapter 1, such conservation laws can be
constructed systematically, e.g. by finding multipliers through annihilations
by Euler operators, as in the two-dimensional case.

A conservation law (5.113) directly yields potential equations. For exam-
ple, consider a divergence-type conservation law in three-dimensional space

divΦ = Φ1
x + Φ2

y + Φ3
z = 0 (5.114)

with a flux vector Φ = (Φ1(x, y, z), Φ2(x, y, z), Φ3(x, y, z)) and independent
variables (x, y, z). From (5.114) it immediately follows that Φ = curlΨ , where
Ψ = (Ψ1(x, y, z), Ψ2(x, y, z), Ψ3(x, y, z)) is a vector potential, involving three
scalar potential variables. Explicitly, the potential equations are given by

Ψ3
y − Ψ2

z = Φ1,

Ψ1
z − Ψ3

x = Φ2,

Ψ2
x − Ψ1

y = Φ3.

(5.115)

However, unlike in the two-dimensional situation, the system of potential
equations (5.115) is under-determined. In particular, the system of potential
equations (5.115) is invariant under the transformations

Ψ → Ψ + gradφ(x, y, z), (5.116)

where φ(x, y, z) is an arbitrary smooth function of its arguments. Thus the
system of potential equations (5.115) has gauge freedom.

An additional equation involving the potential variables is required in order
to complete the system of potential equations (5.115) to eliminate its gauge
freedom. For example, one can have the gauges:
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• divergence (Coulomb) gauge: divΨ ≡ Ψ1
x + Ψ2

y + Ψ3
z = 0,

• spatial gauge: Ψk = 0, k = 1 or 2 or 3,
• Poincaré gauge: xΨ1 + yΨ2 + zΨ3 = 0,

or other gauges, provided that all solutions of (5.115) can be obtained from
the solutions of the corresponding gauge-constrained (determined) potential
system.

If one of the coordinates in a given PDE system is time t, special gauges
are frequently used, such as

• Lorentz gauge (in (2+1) dimensions): Ψ1
t − Ψ2

y − Ψ3
z = 0,

• Cronstrom gauge (in (2+1) dimensions): tΨ1 − xΨ2 − yΨ3 = 0.

For example, for the (2+1)-dimensional variable-coefficient wave equation

utt = (K(x, y)ux)x + (K(x, y)uy)y, (5.117)

the determined potential system S{x, y, t ;u, Ψ1, Ψ1, Ψ3} with the Lorentz
gauge is given by

Ψ3
y − Ψ2

t = K(x, y)ux,

Ψ1
t − Ψ3

x = K(x, y)uy,

Ψ2
x − Ψ1

y = −ut,

Ψ1
t − Ψ2

y − Ψ3
z = 0.

(5.118)

Each of the above-listed gauge constraints eliminates gauge freedom, in the
sense that the potential variables no longer depend on arbitrary functions of
the independent variables. A choice of gauge constraint will depend on a
particular application. In many cases the choice of gauge constraint is an
open problem.

The same situation applies in the general case of n ≥ 3 independent vari-
ables. Consider a PDE system R{x ;u} of N PDEs of order k with n in-
dependent variables x = (x1, . . . , xn), n ≥ 3, and m dependent variables
u = (u1, . . . , um), given by

Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N, (5.119)

which has a divergence-type conservation law (5.113). From Poincaré’s lemma
it follows that there exist 1

2n(n−1) functions vjk = −vkj(x) (j, k = 1, . . . , n),
components of an n×n antisymmetric tensor, such that the system of n PDEs

Φi[u] = Djv
ij , i = 1, . . . , n, (5.120)

is equivalent to the divergence expression (5.113). The PDE system (5.120)
generalizes the three-dimensional curl expression (5.115). Note that for n > 3,
the number of potential variables is 1

2n(n − 1) > n. Hence here the PDE
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system (5.120) is even more under-determined than in the situation for the
three-dimensional PDE system (5.115). In particular, here the gauge freedom
is exhibited by invariance under the transformations

vij → vij + Dkw
ijk, (5.121)

where wijk are 1
6n(n−1)(n−2) arbitrary functions that are components of a

totally antisymmetric tensor. [In particular, for n = 3, there is only one such
free function, which corresponds to the gauge invariance condition (5.116)
for curls.] In other words, the system of potential equations (5.120) has an
infinite number of point symmetries (gauge symmetries)

Xgauge = Dkw
ijk ∂

∂vij
. (5.122)

The corresponding potential system S{x ;u, v} is given by

Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N ′,

Φi[u] = Djv
ij , i = 1, . . . , n.

(5.123)

[If all equations of R{x ;u} (5.119) are in S{x ;u, v} (5.123), one has N = N ′.
If one of the equations of R{x ;u} (without loss of generality, RN [u] = 0) is
a differential consequence of the system of potential equations (5.123) and
thus not included in S{x ;u, v} due to redundancy, then N ′ = N − 1.]

As in the two-dimensional case, it follows that the solution sets of a given
system R{x ;u} and its potential system S{x ;u, v} are equivalent. In general,
the potential variables v are nonlocal variables relative to R{x ;u}, and the
PDE system S{x ;u, v} is nonlocally related to R{x ;u}.

As it stands, the potential system S{x ;u, v} is under-determined due to
its gauge freedom (5.121). A determined potential system is a union of a
potential system S{x ;u, v} and a set of one or more gauge constraints that
eliminates the gauge freedom.

5.3.2 Nonlocally related subsystems

Another important way of finding nonlocally related PDE systems in higher
dimensions is through subsystems that are obtained after elimination of
dependent variables by differential operations. Similar to the situation in
the two-dimensional case, in order to obtain a nonlocally related subsystem
U{x ;u} of a given PDE system UV{x ;u, v}, it is obviously necessary that a
dependent variable v only occurs in UV{x ;u, v} in terms of its derivatives.
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It should be noted that the construction of nonlocally related subsystems
requires no gauge constraints, which (as shown later) is of great value for
nonlocal symmetry computations.

As a first example, consider the time-independent PDE system VP{x, y, z;
v1, v2, v3, p} of Euler equations of an inviscid, constant density fluid flow in
three dimensions, which can be written as

v × (curlv) = grad
(p
ρ

+ 1
2 |v|

2
)
,

divv = 0.
(5.124)

Here v = (v1, v2, v3) is the fluid velocity vector and ρ = const the fluid
density. In the PDE system (5.124), one can exclude the pressure p by taking
the curl of the vector equation. The resulting subsystem V{x, y, z ; v1, v2, v3}
given by

curl
[
v × (curlv)

]
= 0,

divv = 0
(5.125)

is equivalent and nonlocally related to the Euler system VP{x, y, z; v1, v2, v3,

p}.
As a second example, consider the PDE system UV{x, y, t ;u, v1, v2} in

one time and two space dimensions, given by

vt = gradu,

ut = K(|v|) divv.
(5.126)

In (5.126), v = (v1, v2) is a vector function, and K(|v|) is a constitutive
function of the indicated scalar argument. The PDE system (5.126) has the
nonlocally related subsystem V{x, y, t ; v1, v2}, given by

vtt = grad [K(|v|) divv] . (5.127)

In Section 5.3.5, the subsystem (5.127) is used to obtain a nonlocal symmetry
of the PDE system (5.126).

5.3.3 Tree construction, nonlocal conservation laws,
and nonlocal symmetries

Similar to the situation for two independent variables, for a given PDE system
with n > 2 independent variables, the construction of a tree of nonlocally
related systems involves:
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• Finding nonlocally related determined potential systems arising from con-
servation laws.

• Finding nonlocally related subsystems of the given PDE system and its
determined potential systems by exclusion of dependent variables.

As in the case of two independent variables, a tree of nonlocally related
systems can be further extended through:

• Obtaining subsystems following an interchange of dependent and indepen-
dent variables (or a more general point transformation).

• Finding additional local or nonlocal conservation laws, arising as local con-
servation laws of determined potential systems, and introducing further
potential variables as well as additional gauge constraints.

Two important theorems are now presented that are concerned with
nonlocal conservation laws arising from potential systems in higher di-
mensions. The first theorem generalizes Theorems 3.4.1 and 3.5.1 to the
higher-dimensional case [Cheviakov & Bluman (2009); see also Kunzinger
& Popovych (2008) and Bluman, Cheviakov & Ivanova (2006)].

Theorem 5.3.1. Suppose R{x ;u} (5.119) is a PDE system for which K ≥ 1
local conservation laws (5.113) are known. Let S{x ;u, v} be the potential sys-
tem given by the union of R{x ;u} and the corresponding K systems of po-
tential equations (5.120). Then each conservation law of the potential system
S{x ;u, v}, arising from multipliers that do not depend on potential variables
v, is linearly dependent on local conservation laws of R{x ;u}.

Proof. For simplicity, we consider a singlet potential system S{x ;u, v} (5.123)
following from some divergence-type conservation law (5.113) of a R{x ;u}
(5.119). [The proof directly carries over to K-plet potential systems, K > 1.]

Consider a local conservation law

DkF
k[u, v] = 0 (5.128)

of the potential system S{x ;u, v}, arising from multipliers independent of
the potential variables v. A conservation law (5.128) corresponds to the di-
vergence expression

DkF
k[U, V ] = Ai[U ](DjV

ij − Φi[U ]) +
N ′∑

σ=1

Λσ[U ]Rσ[U ], (5.129)

where Ai[U ] are multipliers of the potential equations, and Λσ[U ] are multi-
pliers of the equations of R{x ;u} (5.119) that are present in the potential
system S{x ;u, v}. [Without loss of generality, summation in σ can be taken
from 1 to N .]
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Now apply Euler operators EV αβ (1.149) with respect to V αβ (α, β =
1, . . . , n, α �= β) to the equation (5.129). The divergence and terms not
involving V αβ vanish identically. Using the antisymmetry of V ij , one obtains

∂Aα[U ]
∂xβ

− ∂Aβ [U ]
∂xα

≡ 0.

By a basic lemma in variational calculus [Wald (1990)], it follows that

Ai[U ] =
∂B[U ]
∂xi

,

and the equation (5.129) can be rewritten as

Di

(
F i[U, V ] −B[U ](DjV

ij − Φi[U ])
)

= B[U ]DiΦ
i[U ] + Λσ[U ]Rσ[U ].

(5.130)

[Here the identity DiDjV
ij ≡ 0 has been used.]

Now consider the conservation law DiΦ
i[u] = 0 (5.113). Assuming that

R{x ;u} (5.119) can be written in a solved form (1.152) with respect to some
leading derivatives {ujσ

iσ,1...iσ,s
}, it follows that by adding trivial fluxes (of the

first type), one can assume that each flux Φi[U ] contains no leading deriva-
tives nor their differential consequences. Thus the only leading derivatives
(and their differential consequences) that can arise in the expression DiΦ

i[U ]
will come from subleading derivatives {U jσ

iσ,1...iσ,s−1
} (and their differential

consequences). Hence, the divergence expression DiΦ
i[U ] must be a linear

combination of Rσ[U ] and their differential consequences:

DiΦ
i[U ] = Γ(0) σ[U ]Rσ[U ]+Γ i

(1) σ[U ]DiR
σ[U ]+· · ·+Γ i1...iq

(q) σ [U ]Di1 . . .DiqR
σ[U ].

for some coefficients Γ(0) σ[U ], . . . , Γ i1...iq

(q) σ [U ] which are non-singular functions
of x,U and derivatives of U . Then one has

B[U ]DiΦ
i[U ] = Γσ[U ]Rσ[U ] + DiQ

i[U ],

where {Qi[U ]}n
i=1 are linear combinations involving Rσ[U ] and its differential

consequences. Moreover, each Qi[U ] vanishes on all solutions U(x) = u(x) of
R{x ;u}. Therefore (5.130) becomes

Di

(
F i[U, V ] −B[U ](DjV

ij − Φi[U ]) −Qi[U ]
)

= (Λσ[U ] + Γσ[U ])Rσ[U ].
(5.131)

Since expressions B[U ](DjV
ij−Φi[U ]) and Qi[U ] vanish on solutions (U, V ) =

(u, v) of the potential system S{x ;u, v} (5.123), the left-hand side of (5.131)
is a divergence expression corresponding to a conservation law equivalent to
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the conservation law (5.128). The right-hand side of (5.131) is a linear com-
bination of equations of the given system R{x ;u} (5.119), with multipliers
depending only on local variables of R{x ;u}. Therefore the conservation law
(5.128) of the potential system S{x ;u, v} (5.123) is equivalent to a local
conservation law of the given system R{x ;u}. ��

Note that Theorem 5.3.1 generally does not hold when a potential system
includes a gauge constraint(s) [Exercise 5.3.1].

It is important to remark that nonlocal conservation laws can exist for
both determined and under-determined potential systems. In particular, the
following theorem holds [Anco & The (2005)].

Theorem 5.3.2. Suppose a given PDE system R{x ;u} has an under-
determined potential system S{x ;u, v} with gauge freedom given by the point
symmetry Xgauge (5.122). Then all divergence-type conservation laws

divΦ[u, v] = DiΦ
i[u, v] = 0

of S{x ;u, v} are gauge-invariant under (5.122). In particular, div (XgaugeΦ) ≡
0 on solutions of S{x ;u, v}.

Theorem 5.3.2 states the invariance of fluxes under gauge symmetries but
does not rule out the possible explicit dependence of fluxes Φi[u, v] on poten-
tials v. In particular, there exist examples of nonlocal conservation laws that
arise from both determined and under-determined potential systems [Anco
& The (2005)].

Unlike the situation for nonlocal conservation laws, nonlocal symmetries
can only arise from determined potential systems. The following essential
theorem holds [Anco & Bluman (1997b)].

Theorem 5.3.3. Each local symmetry of an under-determined potential sys-
tem S{x ;u, v} (5.123) projects onto a local symmetry of the given system
R{x ;u} (5.119).

Proof. Suppose the potential system S{x ;u, v} (5.123) has a local symmetry
that has a characteristic form

X̂ = η̂μ[u, v]
∂

∂uμ
+ ζ̂ν [u, v]

∂

∂vν
, (5.132)

where η̂μ[u, v] and ζ̂ν [u, v] are functions of x, u, v and derivatives of u, v. Since
the potential system S{x ;u, v} (5.123) is under-determined, it has an infinite
number of point symmetries Xgauge (5.122). The local symmetries form a Lie
algebra, hence it follows that the commutator

[Xgauge, X̂] = X∞
gaugeX̂ − X̂Xgauge = X∞

gaugeX̂ (5.133)

urther Applications of Symmetry Methods5  F



5.3 Nonlocally Related PDE Systems in Three or More Dimensions 341

is also a local symmetry of S{x ;u, v}. [Here X∞
gauge is a prolongation of Xgauge

given by (1.38).] The projection of (5.133), given by

Y =

(
(Dkw

ijk)
∂η̂μ[u, v]
∂vij

+ (Dk1Dkw
ijk)

∂η̂μ[u, v]
∂vij

k1

+(Dk1Dk2Dkw
ijk)

∂η̂μ[u, v]
∂vij

k1k2

+ · · ·
)

∂

∂uμ
,

is a local symmetry of the PDE system R{x ;u} (5.119). Since the PDE
system R{x ;u} (5.119) is determined, its symmetries do not include free
functions of all variables. Moreover, derivatives of the functions wijk are
linearly independent. Therefore one concludes that

∂η̂μ[u, v]
∂vij

=
∂η̂μ[u, v]
∂vij

k1

=
∂η̂μ[u, v]
∂vij

k1k2

= · · · = 0,

which implies that the symmetry (5.132) is a local symmetry of the given
PDE system R{x ;u} (5.119). ��

As mentioned above, in the case of n ≥ 3 independent variables, potential
systems arising from divergence-type conservation laws (5.113) are always
under-determined so that gauge constraints are necessary in order to find
nonlocal symmetries. In general, it remains an open question as to what type
of gauge constraints one should choose in order to obtain nonlocal symmetries
for a given PDE system. An example using the Lorentz gauge for Maxwell’s
equations is presented in Section 5.3.5.

In the following subsection, it is seen that potential systems arising from
lower-degree (curl-type) conservation laws can require fewer or no gauge con-
straints to be determined. Examples of such potential systems are considered
in Section 5.3.5.

Another way of finding nonlocal symmetries of a given PDE system is
through the consideration of its nonlocally related subsystemsthat also re-
quire no gauge constraints. An example of a nonlocal symmetry arising from
a nonlocally related subsystem is presented in Section 5.3.5.

5.3.4 Lower-degree conservation laws and related
potential systems

In three or more dimensions, conservation laws are not limited to independent
divergence expressions (5.113). For example, in three-dimensional space, a
PDE system R{x, y, z ;u} can have a conservation law
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curlΨ [u] = 0, (5.134)

where Ψ = (Ψ1, Ψ2, Ψ3) is some flux vector depending on independent vari-
ables (x, y, z) and dependent variables u. Such a curl-type conservation law
is often referred to as a lower-degree conservation law.

Of course, a conservation law (5.134) can be viewed as three divergence-
type conservation laws corresponding to the three projections of a curl. Ac-
cordingly, one can introduce a total of nine potential variables, with gauge
constraints to be chosen. However, another (and in many ways more efficient)
representation of a curl-free vector field is in terms of the gradient of a scalar
function, i.e. the conservation law (5.134) is equivalent to the set of potential
equations

Ψ1[u] = wx,

Ψ2[u] = wy,

Ψ3[u] = wz.

(5.135)

In (5.135), the nonlocal potential variable w(x, y, z) is defined to within a
constant. Therefore the corresponding potential system is determined and
requires no gauge constraints.

For PDE systems with three independent variables, the only possible types
of conservation laws are of divergence-type and curl-type. Divergence-type
conservation laws occur more frequently, but curl-type conservation laws
also arise in physical applications. Examples include PDE systems describing
static electromagnetic fields, irrotational gas and fluid dynamics, and ideal
plasma equilibria. An example of the application of a curl-type conservation
law to generate a useful nonlocally related potential system is presented in
Section 5.3.6.

In addition to divergence-type and curl-type conservation laws, PDE sys-
tems with n > 3 independent variables can have other types of lower-degree
conservation laws. In particular, PDE systems with n independent variables
can have n − 1 types of conservation laws. Similar to the conservation law
(5.134), lower-degree conservation laws are expressed by several components,
i.e., vanishing divergence expressions. It is important to note that lower-
degree conservation laws can yield a smaller number of potential variables
than divergence-type conservation laws, and thus require fewer gauge con-
straints. In particular, conservation laws of degree one (which generalize
curl-type conservation laws in n ≥ 3 dimensions) can be shown to always
yield determined potential equations, requiring no gauge constraints. Several
examples of potential systems following from lower-degree conservation laws
that arise in applications are presented in Section 5.3.5.

For a detailed description of lower-degree conservation laws and arising po-
tential systems, it is convenient to use differential form notation. For further
details, see Anderson & Torre (1996).
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5.3.5 Examples of applications of nonlocally related
systems in higher dimensions

A nonlocal symmetry arising from a nonlocally related subsystem

The first example illustrates the use of nonlocally related subsystems to ob-
tain nonlocal symmetries of PDE systems in higher dimensions.

Let the (2+1)-dimensional PDE system UV{x, y, t ;u, v1, v2} (5.126) be
a given PDE system with a scalar constitutive function K(|v|). The PDE
system UV{x, y, t ;u, v1, v2} (5.126) has the nonlocally related subsystem
V{x, y, t ; v1, v2} (5.127). Consider the one-parameter class of constitutive
functions given by

K(|v|) = |v|2k =
(
(v1)2 + (v2)2

)k

. (5.136)

It is interesting to compare the symmetry classifications of the systems
(5.126) and (5.127) with respect to the constitutive parameter k �= 0.

For arbitrary k in (5.136), one can show that the given PDE system
UV{x, y, t ;u, v1, v2} (5.126) has seven point symmetries

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
, X4 =

∂

∂u
,

X5 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
,

X6 = −y ∂

∂x
+ x

∂

∂y
− v2 ∂

∂v1
+ v1 ∂

∂v2
,

X7 = m

(
x
∂

∂x
+ y

∂

∂y

)
+ (m+ 1)u

∂

∂u
+ v1 ∂

∂v1
+ v2 ∂

∂v2
,

(5.137)

and the subsystem V{x, y, t ; v1, v2} (5.127) has the corresponding six point
symmetries

Y1 = X1, Y2 = X2, Y3 = X3, Y4 = X5, Y5 = X6,

Y6 = m

(
x
∂

∂x
+ y

∂

∂y

)
+ v1 ∂

∂v1
+ v2 ∂

∂v2
.

(5.138)

In the case k = −1, one can show that both systems have an infinite
number of point symmetries. Finally, in the case k = −2, one can show that
the subsystem V{x, y, t ; v1, v2} (5.127) has an additional point symmetry

Y7 = t2
∂

∂t
+ tv1 ∂

∂v1
+ tv2 ∂

∂v2
, (5.139)
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whereas the given PDE system UV{x, y, t ;u, v1, v2} (5.126) still has the same
point symmetries (5.137). It follows that (5.139) yields a nonlocal symmetry
of the PDE system UV{x, y, t ;u, v1, v2} (5.126).

Nonlocal symmetries arising from a lower-degree conservation law

As a second example, consider the time-independent PDE system H{x, y, z;
h1, h2, h3} in three space dimensions, given by

curl
(
K(|h|)(curlh) × h

)
= 0, div h = 0. (5.140)

In (5.140), h = (h1, h2, h3) is a vector of dependent variables. The first equa-
tion in PDE system (5.140) is a curl-type conservation law as it stands. The
corresponding potential system HW{x, y, z ;h1, h2, h3, w} is given by

K(|h|)(curlh) × h = gradw, div h = 0, (5.141)

where w(x, y, z) is a scalar potential variable. The potential system (5.141)
is determined as written and hence needs no gauge constraints.

Now a comparison is made of the classifications of nonlocal symmetries
of the PDE systems H{x, y, z ;h1, h2, h3} and HW{x, y, z ;h1, h2, h3, w} for
the one-parameter family of constitutive functions K(|h|) given by

K(|h|) = |h|2k ≡
(
(h1)2 + (h2)2 + (h3)2

)k

, (5.142)

where k is a parameter. For k �= −1, the potential system HW{x, y, z;h1, h2,

h3, w} has nine point symmetries, corresponding to four translations (in x, y, z
and w), three rotations, one scaling and one dilation [Exercise 5.3.2], spanned
by X1, . . . ,X9. Correspondingly, the given PDE system H{x, y, z ;h1, h2, h3}
has eight point symmetries (projections of X1, . . . ,X9). For k = −1, the point
symmetries of H{x, y, z ;h1, h2, h3} remain the same, whereas the potential
system HW{x, y, z ;h1, h2, h3, w} has an additional infinite number of point
symmetries given by

X∞ = F (w)
( ∂

∂w
+ h1 ∂

∂h1
+ h2 ∂

∂h2
+ h3 ∂

∂h3

)
(5.143)

depending on an arbitrary smooth function F (w). The symmetries (5.143) are
nonlocal symmetries of the given PDE system H{x, y, z ;h1, h2, h3} (5.140).

Note that the symmetries (5.143) cannot be used for the construction of
invariant solutions since they do not involve spatial components. However,
one can use the symmetries (5.143) to map any known solution of the PDE
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system (5.140) (with a corresponding potential variable w) to an infinite
family of solutions of (5.140).

Nonlocal symmetries of the two-dimensional linear wave equation

Consider the linear wave equation U{t, x, y ;u} given by

utt = uxx + uyy. (5.144)

Equation (5.144) is a divergence-type conservation law as it stands. A vec-
tor potential v = (v0, v1, v2) is introduced and a Lorentz gauge is appended
to the corresponding under-determined potential system. The resulting de-
termined potential system UV{t, x, y ;u, v0, v1, v2} is given by

ut = v2
x − v1

y,

−ux = v0
y − v2

t ,

−uy = v1
t − v0

x,

v0
t − v1

x − v2
y = 0.

(5.145)

A comparison is now made of the point symmetries of the PDE systems
U{t, x, y ;u} (5.144) and UV{t, x, y ;u, v0, v1, v2} (5.145). Modulo the infi-
nite number of point symmetries of any linear PDE system, the linear wave
equation (5.144) has ten point symmetries:

• three translations X1,X2,X3 given by

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
;

• one dilation given by

X4 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
;

• one rotation and two space-time rotations (boosts) given by

X5 = x
∂

∂y
− y

∂

∂x
, X6 = t

∂

∂x
+ x

∂

∂t
, X7 = t

∂

∂y
+ y

∂

∂t
;

• three additional conformal transformations given by
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X8 = (t2 + x2 + y2)
∂

∂t
+ 2tx

∂

∂x
+ 2ty

∂

∂y
− tu

∂

∂u
,

X9 = 2tx
∂

∂t
+ (t2 + x2 − y2)

∂

∂x
+ 2xy

∂

∂y
− xu

∂

∂u
,

X10 = 2ty
∂

∂t
+ 2xy

∂

∂x
+ (t2 − x2 + y2)

∂

∂y
− yu

∂

∂u
.

The potential system UV{t, x, y ;u, v0, v1, v2} (5.145) has seven point
symmetries Y1, . . . ,Y7 that project onto the point symmetries X1, . . . ,X7

of the wave equation (5.144). However the three additional conformal sym-
metries of the potential system (5.145) have the form

Y8 = X8 − (yv1 − xv2 + tu)
∂

∂u
− (2tv0 + xv1 + yv2)

∂

∂v0

−(xv0 + 2tv1 + yu)
∂

∂v1
+ (yv0 + 2tv2 − xu)

∂

∂v2
,

Y9 = X9 − (−yv0 − tv2 + xu)
∂

∂u
− (2xv0 + tv1 + yu)

∂

∂v0

−(xv0 + 2tv1 + yu)
∂

∂v1
+ (yv0 + 2tv2 − xu)

∂

∂v2
,

Y10 = X10 − (xv0 + tv1 + yu)
∂

∂u
− (2yv0 + tv2 − xu)

∂

∂v0

−(2yv1 − xv2 + tu)
∂

∂v1
+ (tv0 + xv1 + 2yv2)

∂

∂v2
,

(5.146)

and, from their forms, clearly yield nonlocal symmetries of the wave equation
U{t, x, y ;u} (5.144). In addition, the potential system (5.145) has three point
symmetries of duality-type given by

Y11 = v0 ∂

∂u
− u

∂

∂v0
+ v2 ∂

∂v1
− v1 ∂

∂v2
,

Y12 = v1 ∂

∂u
− v2 ∂

∂v0
+ u

∂

∂v1
− v0 ∂

∂v2
,

Y13 = v2 ∂

∂u
+ v1u

∂

∂v0
+ v0 ∂

∂v1
+ u

∂

∂v2
,

(5.147)

that yield nonlocal symmetries of the wave equation U{t, x, y ;u} (5.144).
In summary, the potential system UV{t, x, y ;u, v0, v1, v2} (5.145) with the
Lorentz gauge yields six nonlocal symmetries of the linear wave equation
(5.144).

It turns out that no nonlocal symmetries of the wave equation arise from
the potential system UV{t, x, y ;u, v0, v1, v2} if the Lorentz gauge is replaced
by any one of the algebraic gauges vk = 0 for k ∈ {0, 1, 2}, the divergence
gauge, the Poincaré gauge, or the Cronstrom gauge [Exercise 5.3.3].
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Nonlocal symmetries and nonlocal conservation laws of Maxwell’s
equations in (2+1) dimensions

Maxwell’s equations in a vacuum are given by

divB = 0,

divE = 0,

Et = curlB,

Bt = − curlE,

(5.148)

where B = B1ex +B2ey +B3ez is a magnetic field, E = E1ex +E2ey +E3ez

is an electric field, (x, y, z) are cartesian coordinates, and t is time.
In this example, nonlocal symmetries and nonlocal conservation laws

of the PDE system (5.148) are sought in three-dimensional Minkowski
space (x, y, t). It is assumed that B = B(x, y)ez, E = E1(x, y)ex +
E2(x, y)ey. Then Maxwell’s equations (5.148) can be written as the PDE
system M{t, x, y ;B,E1, E2} in terms of the four equations given by

E1
x + E2

y = 0, (5.149a)

E1
t = By, (5.149b)

E2
t = −Bx, (5.149c)

Bt = −E2
x + E1

y . (5.149d)

Note that each of the four equations (5.149) is a divergence expression as
it stands. Hence for each equation in (5.149), one can introduce a three-
component vector potential. This yields 12 potential variables. From Theorem
5.3.3, it follows that in order to obtain nonlocal symmetries of Maxwell’s
equations (5.148), gauge constraints are required. Since the form of gauge
constraints that could yield nonlocal symmetries is not known a priori, a
different approach is chosen. In particular, it is shown that the system of
Maxwell’s equations (5.149) is equivalent to the union of a divergence-type
conservation law and a curl-type lower-degree conservation law, with the
latter requiring no gauge constraints.

Let ηij = ηij = diag(−1, 1, 1) be the standard space-time metric tensor in
three-dimensional Minkowski space. The electromagnetic field tensor Fij and
its raised version F ij = ηipηjlFpl are, respectively, given by the antisymmetric
matrices

F =
(
Fij

)
=

⎛⎝ 0 −E1 −E2

E1 0 B

E2 −B 0

⎞⎠ ,
(
F ij
)

=

⎛⎝ 0 E1 E2

−E1 0 B

−E2 −B 0

⎞⎠ . (5.150)



348

In (5.150), the indices i, j take on the values 0, 1, 2, with 0 corresponding to
a t-component, and 1, 2 to x- and y-components, respectively.

The dual of Fij is the vector given by ∗Fp = 1
2εijpF

ij , where εijp is the
Levi–Civita symbol. In particular,

∗F = (∗Fk) = (B,−E2, E1).

As is well-known, using F and ∗F , one can express Maxwell’s equations
(5.149) in the elegant form

∂pFij + ∂jFpi + ∂iFip = 0 ⇔ ηij∂i∗F j = 0, (5.151a)

∂iF
ij = 0 ⇔ εpij∂i∗F j = 0, (5.151b)

where ∂0, ∂1 and ∂2 denote partial derivatives with respect to t, x and y,
respectively. Note that (5.151a) is equivalent to the scalar equation (5.149d),
and (5.151b) is equivalent to the remaining three scalar equations (5.149a)–
(5.149c). Consequently, equations (5.151) have the form of divergence and
curl conservation laws, if one identifies εpij∂i and ηij∂i as Minkowski space
versions of curl and divergence operators that are taken with respect to the
variables (t, x, y) [Exercise 5.3.4].

The conservation laws (5.151) are now used to construct potential sys-
tems for Maxwell’s equations (5.149). The curl-type conservation law (5.151b)
yields a scalar potential variable W satisfying the potential equations

PW :

⎧⎪⎨⎪⎩
B = Wt,

−E2 = Wx,

E1 = Wy.

(5.152)

Consequently, one obtains the potential system

MW{t, x, y ;B,E1, E2,W} = M{t, x, y ;B,E1, E2} ∪ PW , (5.153)

which is determined and hence requires no gauge constraints.
Through the divergence conservation law (5.151a), one introduces a vector

potential (A0, A1, A2) satisfying the system of under-determined potential
equations

PA :

⎧⎪⎨⎪⎩
B = A2

x −A1
y,

E2 = A0
y −A2

t ,

−E1 = A1
t −A0

x.

(5.154)

Using the Lorentz gauge, one obtains a determined potential system

MA{t, x, y ;B,E1, E2, A0, A1, A2}
= M{t, x, y ;B,E1, E2} ∪ PA ∪ {A0

t −A1
x −A2

y = 0}.
(5.155)
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A couplet potential system MAW{t, x, y ;A0, A1, A2,W} is given by

Wt = A2
x −A1

y,

−Wx = A0
y −A2

t ,

−Wy = A1
t −A0

x,

A0
t −A1

x −A2
y = 0,

(5.156)

where the components of the electric and magnetic fields are excluded through
appropriate substitutions.

A nonlocally related subsystem E{t, x, y ;E1, E2} is obtained directly from
Maxwell’s equations (5.149) by eliminating the magnetic field B:

E1
x + E2

y = 0,

E1
tt = E1

xx + E1
yy,

E2
tt = E2

xx + E2
yy.

(5.157)

In summary, a tree

TM = {M{t, x, y ;B,E1, E2},MW{t, x, y ;B,E1, E2,W},
MA{t, x, y ;B,E1, E2, A0, A1, A2},MAW{t, x, y ;A0, A1, A2,W},
E{t, x, y ;E1, E2}}

(5.158)
of nonlocally related PDE systems has been constructed for Maxwell’s equa-
tions (5.149) in three-dimensional Minkowski space. This tree is presented in
Figure 5.2.

MA{t,x,y; E
1
,E

2
,B, A

0
, A

1
, A

2}

E{t,x,y; E
1
,E

2}

M{t,x,y; E
1
,E

2
,B}

MAW{t,x,y; E
1
,E

2
,B, A

0
,A

1
,A

2
,W}

MW{t,x,y; E
1
,E

2
,B,W}

Fig. 5.2 A tree of nonlocally related systems for Maxwell’s equations (5.149) in 3D
Minkowski space.
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Maxwell’s equations (5.149) have eight point symmetries: three transla-
tions, one rotation, two space-time rotations (boosts), and two scalings [Ex-
ercise 5.3.5].

Using nonlocally related systems in the tree TM , one can find nonlocal
symmetries of Maxwell’s equations (5.149). In particular, the potential system
MW{t, x, y ;B,E1, E2,W} (5.153) has three additional conformal-type point
symmetries given by

Y1 = (t2 + x2 + y2)
∂

∂t
+ 2tx

∂

∂x
+ 2ty

∂

∂y
− (3tE1 + 2yB)

∂

∂E1

−(3tE2 − 2xB)
∂

∂E2
− (2yE1 − 2xE2 + 3tB +W )

∂

∂B
− tW

∂

∂W
,

Y2 = 2tx
∂

∂t
+ (t2 + x2 − y2)

∂

∂x
+ 2xy

∂

∂y
− (3xE1 + 2yE2)

∂

∂E1

+(2yE1 − 3xE2 + 2tB +W )
∂

∂E2
+ (2tE2 − 3xB)

∂

∂B
− xW

∂

∂W
,

Y3 = 2ty
∂

∂t
+ 2xy

∂

∂x
+ (t2 − x2 + y2)

∂

∂y
− (3yE1 − 2xE2 + 2tB +W )

∂

∂E1

−(2xE1 + 3yE2)
∂

∂E2
− (2tE1 + 3yB)

∂

∂B
− yW

∂

∂W
,

that obviously yield nonlocal symmetries of Maxwell’s equations (5.149).
Moreover, since the potential system MAW{t, x, y ;A0, A1, A2,W} (5.156)

coincides with the potential system (5.145) for the wave equation (with
W = u,Ai = vi), it follows that it also has the duality-type symmetries
(5.147). These symmetries yield three nonlocal symmetries of Maxwell’s equa-
tions (5.149) [Anco & Bluman (1997b)].

A similar analysis can be done for Maxwell’s equations (5.148) in four-
dimensional Minkowski space. For this PDE system, local conservation laws
and point symmetries of the determined PDE system consisting of the set
of potential equations arising from a lower-degree conservation law and the
four-dimensional Lorentz gauge, respectively yield nonlocal conservation laws
and nonlocal symmetries of Maxwell’s equations (5.148) [Anco & The (2005)].

5.3.6 Symmetries and exact solutions of the
three-dimensional MHD equilibrium equations

Consider the PDE system of ideal magnetohydrodynamics (MHD) equilib-
rium equations in three space dimensions given by

div(ρV) = 0, divB = 0, (5.159a)
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ρV × curlV − B × curl B − grad P − 1
2ρ grad |V|2 = 0, (5.159b)

curl V × B = 0. (5.159c)

In (5.159), the dependent variables are the plasma density ρ, the plasma
velocity V = (V 1, V 2, V 3), the pressure P and the magnetic field B =
(B1, B2, B3); the independent variables are the spatial coordinates (x, y, z).
For closure, one must add an appropriate equation of state that relates pres-
sure and density to the MHD equations (5.159).

It is now shown that an infinite number of nonlocal symmetries exist for
the MHD equations (5.159) for two different equations of state. Moreover,
the applications of these nonlocal symmetries are considered. For additional
details and examples, see Bogoyavlenskij [(2001), (2002)] and Galas (1993).

(1) Incompressible MHD equilibria
As a first simplified example, consider the incompressible MHD equilibrium
system I{x, y, z ;B,V, P} with constant density (without loss of generality,
ρ = 1), given by

divV = 0, divB = 0, (5.160a)

V × curlV − B × curl B − grad P − 1
2 grad |V|2 = 0, (5.160b)

curl V × B = 0. (5.160c)

Using the lower-degree conservation law (5.160c), one introduces a potential
variable Ψ :

V × B = gradΨ. (5.161)

[Note that Ψ has the direct physical meaning of a function enumerating
magnetic surfaces, i.e., two-dimensional surfaces to which streamlines and
magnetic field lines are tangent. In general, every three-dimensional plasma
domain is spanned by such surfaces.]

The resulting potential system IΨ{x, y, z ;B,V, P, Ψ} is determined (i.e.,
has no gauge freedom) and is given by

divV = 0, divB = 0, V × B = gradΨ, (5.162a)

ρV × curlV − B × curl B − grad P − 1
2 grad |V|2 = 0. (5.162b)

Now a comparison is made between the point symmetries of the PDE
systems (5.160) and (5.162). The incompressible MHD equilibrium system
(5.160) has 10 point symmetries: translations in pressure and two scalings,
given, respectively, by

XP =
∂

∂P
, XD = x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
, XS = Bi ∂

∂Bi
+ V i ∂

∂V i
+ 2P

∂

∂P
,
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the interchange symmetry given by

XI = V i ∂

∂Bi
+Bi ∂

∂V i
− (B · V)

∂

∂P
,

and the Euclidean group (three space translations and three rotations) given
by

XE = ζ� ∂

∂x
+ (B · grad)ζ� ∂

∂B
,

where the hook symbol denotes summation over vector components, x =
(x, y, z), ζ = a + b × x, and a, b are arbitrary constant vectors in R

3.
The first nine symmetries of the MHD system (5.160) directly yield point

symmetries of the potential system (5.162). In addition, the potential system
(5.162) has the obvious potential shift symmetry given by

XΨ =
∂

∂Ψ
,

as well as an infinite number of point symmetries given by

X∞ = M(Ψ)
(
V i ∂

∂Bi
+Bi ∂

∂V i
− (B · V)

∂

∂P

)
, (5.163)

where M(Ψ) is an arbitrary smooth function of its argument. The point sym-
metries (5.163) yield nonlocal symmetries of the incompressible MHD equi-
librium system (5.160). One can show that globally the symmetries (5.163)
transform a given solution (B,V, P ) to a family of solutions (B′,V′, P ′) given
by

x′ = x, y′ = y, z′ = z,

B′ = B coshM(Ψ) + V sinhM(Ψ),

V′ = V coshM(Ψ) + B sinhM(Ψ),

P ′ = P +
(
|B|2 − |B′|2

)
/2

(5.164)

[Bogoyavlenskij (2001), Cheviakov (2004)].
Since the transformations (5.164) depend on an arbitrary function that is

constant on magnetic surfaces, they can be used to obtain families of phys-
ically interesting solutions from a known MHD equilibrium solution. The
transformations (5.164) preserve magnetic surfaces: B′ × V′ is parallel to
B × V.

As a simple example, consider the well-known simple “transverse flow”
solution of the MHD equilibrium system (5.160) given by

B = H(r)ez, V = ω(r)(−yex + xey),

P (r) = F (r) −H2(r)/2, F (r) =
∫ r

0
qω2(q)dq

(5.165)
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depending on two arbitrary functions H(r), ω(r). This solution describes the
differential rotation of a constant-density ideal gas plasma around the z-axis,
for the vertical magnetic field; r =

√
x2 + y2 is a cylindrical radius. The

magnetic surfaces Ψ = const are cylinders r = const around the z-axis. In
Figure 5.3(a), field lines of the solution (5.165) tangent to the cylinder r = 1
are shown for H(r) = e−r, ω(r) = 2e−2r. Using the transformations (5.164)
with an arbitrary function M(Ψ) = f(r), one obtains an infinite family of
solutions (5.165) for a noncollinear magnetic field and velocity

B = H(r) cosh(f(r))ez + V sinh(f(r)),

V = cosh(f(r))V +H(r) sinh(f(r))ez.
(5.166)

Here the magnetic field lines and plasma streamlines are helices that are
tangent to cylindrical magnetic surfaces r = const, with slopes depending
on r. For f(r) = e−r2

, original and transformed magnetic field lines and
streamlines tangent to the cylinder r = 1 are shown in Figure 5.3.

One can show that for incompressible plasma equilibria with nonconstant
plasma density, there exist infinite sets of transformations that generalize
(5.164) [Bogoyavlenskij [(2001), (2002)]; see Exercise 5.3.7].

(2) Compressible adiabatic MHD equilibria
Now consider the system of compressible MHD equilibrium equations C{x, y,
z;B,V, P, ρ} given by

div(ρV) = 0, divB = 0, (5.167a)

V · grad P + γP divV = 0, (5.167b)

ρV × curlV − B × curl B − grad P − 1
2ρ grad |V|2 = 0, (5.167c)

curl V × B = 0. (5.167d)

The PDE system (5.167) describes plasmas following the ideal gas equation
of state and undergoing an adiabatic process. Here the entropy S = P/ργ is
constant throughout the plasma domain.

A determined potential system CΨ{x, y, z ;B,V, P, ρ, Ψ} is obtained, as
before, through replacing the conservation law (5.167d) by the potential equa-
tions (5.161).

The potential system CΨ{x, y, z ;B,V, P, ρ, Ψ} has an infinite number of
point symmetries given by the infinitesimal generator

XC = N(Ψ)
(
V i ∂

∂V i
− 2ρ

∂

∂ρ

)
+
(∫

N(Ψ)dΨ
)

∂

∂Ψ
, (5.168)

whereN(Ψ) is an arbitrary smooth function [Galas (1993)]. The point symme-
tries (5.168) yield nonlocal symmetries of the compressible MHD equilibrium
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(a) original

(b) transformed

Fig. 5.3 Magnetic field lines and streamlines of the “transverse flow” MHD equilib-
rium solution (5.165) (a) and its transformed version (5.166) (b). Magnetic field lines
are shown with thick lines and plasma streamlines with thin lines.

urther Applications of Symmetry Methods5  F

–2

–1

0

1

2

–2

–1

0

1

2

0

0.5

1

1.5

2

–2

–1

0

1

2

–2

–1

0

1

2

0

2

4

6

8

10



5.3 Nonlocally Related PDE Systems in Three or More Dimensions 355

system (5.167). The finite form of the transformations of physical variables
is readily found to be given by

x′ = x, y′ = y, z′ = z, B′ = B, P ′ = P,

V′ = f(Ψ)V, ρ′ = ρ/f2(Ψ).
(5.169)

Some generalizations of the symmetry transformations (5.169) are considered
in Exercise 5.3.9.

Exercises 5.3

5.3.1. Show that, in general, Theorem 5.3.1 does not hold when a potential
system is appended with a gauge constraint.

5.3.2. Classify the point symmetries of the PDE systems (5.140) and (5.141)
with respect to the parameter k in the constitutive function (5.142).

5.3.3. Find the point symmetries of the potential system (5.145) of the (2+1)
- dimensional wave equation (5.144), using the algebraic (spatial), divergence
(Coulomb), Cronstrom, and Poincaré gauges, respectively.

5.3.4. Check that the PDE system (5.151) is equivalent to the PDE system

div (t,x,y)[B,E2,−E1] = 0, (5.170a)

(5.170b)

curl (t,x,y)[B,−E2, E1] = 0, (5.170c)

where both the curl and divergence are formally taken with respect to the
variables (t, x, y). Show that the PDE system (5.170) in turn is equivalent to
Maxwell’s equations (5.149) in three-dimensional Minkowski space.

5.3.5.

(a) Find the point symmetries of Maxwell’s equations (5.149) in three-
dimensional Minkowski space.

(b) Find the point symmetries of the other PDE systems in the tree TM

(5.158). Isolate those symmetries that yield nonlocal symmetries of
Maxwell’s equations (5.149).

5.3.6. Show that other common choices of gauges such as spatial, divergence
or Cronstrom gauges appended to the potential systems (5.155), (5.156) of
Maxwell’s equations in three-dimensional Minkowski space, yield no nonlocal
symmetries of the Maxwell system (5.149).

5.3.7. The incompressible MHD equilibrium equations with non-constant
density are given by (5.159) with divV = 0.
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(a) Show that if the density ρ is constant on magnetic surfaces, i.e.

grad ρ · B = grad ρ · V = 0,

then the infinite set of transformations

x′ = x, y′ = y, z′ = z,

B′ = b(Ψ)B + c
√
ρV, V′ =

c(Ψ)
a(Ψ)

√
ρ
B +

b(Ψ)
a(Ψ)

V,

ρ′ = a2(Ψ)ρ, P ′ = CP +
(
C|B|2 − |B′|2

)
/2,

(5.171)

maps a given solution (B,V, P, ρ) of the PDE system (5.159) into a
family of solutions (B′,V′, P ′, ρ′) with the same set of magnetic field
lines. In (5.171), a(Ψ), b(Ψ) are arbitrary functions constant on mag-
netic surfaces Ψ = const, and b2(Ψ)− c2(Ψ) = C = const [Bogoyavlen-
skij [(2001), (2002)]].

(b) Show that the function Ψ does not have to be defined as Ψ = V × B,
but may be more generally defined as a function constant on magnetic
field lines and streamlines: gradΨ · V = 0, gradΨ · B = 0. The latter
definition makes the transformations (5.171) usable for the field-aligned
case V || B.

5.3.8. Consider the incompressible MHD equilibrium equations with non-
constant density that are considered in Exercise 5.3.7. Show that solutions
invariant with respect to the Bogoyavlenskij symmetries (5.171) are given by

B = ±√
ρV, P + |B|2/2 = const. (5.172)

The solutions (5.172) are known as Chandrasekhar equipartition equilibria
[Chandrasekhar (1956)].

5.3.9.

(a) Show that the symmetries (5.169) hold in the more general adiabatic
case where the entropy S(P, ρ) is constant on each plasma streamline.
In particular, here the equations (5.167c) are replaced by the pair of
equations

S = P/ργ , V · grad S = 0.

(b) Show that the function Ψ does not have to be defined by Ψ = V × B,
but can be more generally defined by a function constant on magnetic
field lines and streamlines, i.e., gradΨ ·V = 0, gradΨ ·B = 0. This defi-
nition takes care of the field-aligned case V||B [Bogoyavlenskij [(2001),
(2002)]].
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5.4 Symbolic Software

In this section, several brief examples of the use of symbolic software for
local symmetry and conservation law analysis and classification are given.
The program sequence for local symmetry or conservation law analysis is
similar for most symbolic packages and typically includes the following steps.

1. Declaration of variables and the given PDE system.
2. Construction of a set of symmetry or conservation law determining

equations.
3. If necessary (e.g., for finding symmetries or solutions of the adjoint

linearized system), in the set of determining equations, the dependent
variables arising from the given PDE system are restricted to solutions
of the given PDE system.

4. Simplification (e.g., elimination of redundancies, partial solution) of
the over-determined set of determining equations.

5. Solution of the simplified set of determining equations. Output of the
point symmetries or conservation law multipliers.

6. For conservation laws: generation of fluxes.

If the given PDE system contains constitutive function(s) and/or constant
parameter(s), a classification and case splitting is performed at Step 4, and
Steps 5 and 6 are performed separately for each case that arises.

As a sample package containing necessary routines for such analyses, the
GeM (version 031) package for CAS Maple (version 12) is now described
[Cheviakov (2008), (2009a)]. Note that similar to the situation for many other
packages, the GeM package does not distinguish between PDEs and ODEs,
and hence may be used for finding symmetries and integrating factors/first
integrals of ODE systems.

In addition to local symmetry and conservation law analyses, some pack-
ages contain routines for further analysis, such as the computation of approx-
imate and adjoint symmetries.

5.4.1 An example of symbolic computation of point
symmetries

As a first example, consider the polytropic Euler PDE system E{x, t ; v, p, ρ}
of planar gas dynamics equations, given by

ρt + (ρv)x = 0,

ρ(vt + vvx) + px = 0,

pt + vpx + γpvx = 0,

(5.173)
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for the particular case where the polytropic exponent γ = 3 [Section 4.2.5,
Table 4.17]. First, the package is initialized using the command

with(GeM):

Second, one defines variables and differential equations, as follows.

gem_decl_vars(indeps=[x,t], deps=[V(x,t),P(x,t),R(x,t)]);
gem_decl_eqs([
diff(R(x,t),t)+diff(R(x,t)*V(x,t),x),
R(x,t)( diff(V(x,t),t)+V(x,t)*diff(V(x,t),x) )
+ diff(P(x,t),x)=0,
diff(P(x,t),t)+V(x,t)*diff(P(x,t),x)
+ 3*P(x,t)*diff(V(x,t),x)=0
],

solve_for=[diff(R(x,t),t), diff(V(x,t),t), diff(P(x,t),t)]);

Note that it is necessary that a given PDE system can be written in a solved
form with respect to a set of leading derivatives specified in the solve_for
parameter. [The expressions for these leading derivatives will later be au-
tomatically substituted into the symmetry determining equations so that
the determining equations are considered on the solutions of the given PDE
system.] It is also important to note that if the differential orders of the
PDEs in the given system differ, the software automatically computes differ-
ential consequences of the lower-order PDEs, up to the order equal to the
maximal differential order of the PDEs in the given system. [For example,
consider a PDE system R{t, x ;u, v} in solved form, given by two equations
utt = xuvx, vt = v2 + uux. For this system, the maximal differential order
is two. Hence for the second equation, differential consequences up to second
order will be automatically computed: vtt = 2v(v2 + uux) + utux + uutx,
vtx = 2vvx + uuxx + u2

x.]
Third, one generates the symmetry determining equations, using the com-

mand

det_eqs:=gem_symm_det_eqs([x,t, R(x,t),V(x,t),P(x,t)]);

The arguments of the command define the dependence of symmetry compo-
nents. In the considered case of seeking point symmetries, symmetry com-
ponents depend on x, t, ρ, v and p. The procedure gem_symm_det_eqs yields
the over-determined system of symmetry determining equations obtained by
setting up the determining equations (1.51), (1.52), restricting the depen-
dent variables of the given PDE system (5.173) appearing in the determining
equations to the solution set of the PDE system (5.173), and equating all
coefficients of like partial derivative terms to zero (since symmetry compo-
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nents do not depend on derivatives). In the current example, the split over-
determined system of symmetry determining equations stored in det_eqs
contains 27 equations.

Next, the over-determined system is simplified, as follows.

sym_components:=gem_symm_components();
simplified_eqs:=DEtools[rifsimp](det_eqs, sym_components,
mindim=1);

[In particular, the option mindim=1 forces the output of the number of linearly
independent solutions of equations simplified_eqs, i.e., the number of point
symmetries of the PDE system (5.173).] In this example, there are seven
linearly independent solutions.

Finally, the determining equations are solved, using the command

symm_sol:=pdsolve(simplified_eqs[Solved]);

Here this yields symmetry components containing seven arbitrary constants.
The command

gem_output_symm(symm_sol);

prints the seven point symmetries separately:

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = t

∂

∂t
+ x

∂

∂x
,

X4 = t
∂

∂x
+

∂

∂v
, X5 = x

∂

∂x
+ v

∂

∂v
+ p

∂

∂p
− ρ

∂

∂ρ
, X6 = p

∂

∂p
+ ρ

∂

∂ρ
,

X7 = xt
∂

∂x
+ t2

∂

∂t
+ (x− vt)

∂

∂v
.

5.4.2 An example of point symmetry classification

As a second example, consider the classification of point symmetries of the
nonlinear diffusion equation U{x, t ;u} given by

ut − (K(u)ux)x = 0 (5.174)

with respect to the constitutive function K(u), K ′(u) �= 0 [Section 4.2.1,
Table 4.1]. One defines variables using the commands

with(GeM):
gem_decl_vars(indeps=[x,t], deps=[U(x,t)],

freefunc=[K(U(x,t))]);
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where the optional parameter freefunc=[...] contains arbitrary func-
tion(s). (Arbitrary constants are specified using another optional parameter
freeconst=[...].)

The given equation (5.174) is defined using the command

gem_decl_eqs([diff(U(x,t),t)=diff(K(U(x,t))
*diff(U(x,t),x),x)], solve_for=[diff(U(x,t),t)]);

The symmetry determining equations are generated using the command

det_eqs:=gem_symm_det_eqs([x,t, U(x,t)]);

which yields 10 determining equations.
Next, one performs the automatic reduction and case splitting of the over-

determined linear PDE system stored in det_eqs.

sym_components:=gem_symm_components();
split_eqs:=DEtools[rifsimp](det_eqs, sym_components,

casesplit, mindim=1);

The Maple variable split_eqs now contains a table of different computed
cases. The case tree can be plotted using the command

caseplot(split_eqs,pivots);

[Note that depending on the version of Maple that is used, case splitting can
occur differently, and moreover, some cases can yield the same symmetries.
However, the complete analysis of a tree always yields complete results.] For
the PDE (5.174), the case tree is shown in Figure 5.4. The pivot expressions
are given by

p1 = K(u), p2 = K(u), p2 = K ′(u), p3 = 4K(u)K ′′(u) − 7(K ′(u))2,
p4 = K(u)K ′(u)K ′′′(u) − 2K(u)(K ′′(u))2 + (K ′(u))2K ′′(u).

In particular, at each pivot, the left branch of the case tree in Figure 5.4
corresponds to the case where the pivot expression vanishes, and the right
branch to the case when the pivot expression is nonzero. Numbers below the
branches denote case numbers.

For each case m in Figure 5.4 (1 ≤ m ≤ 5), the corresponding simplified set
of determining equations is accessed by calling split_eqs[m][Solved], and
the number of independent solutions is given by split_eqs[m][dimension].

Case 1. This is the most general case. Here one uses the commands

symm_sol:=pdsolve(split_eqs[1][Solved]);
gem_output_symm(symm_sol);
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Fig. 5.4 The tree of cases in the classification of point symmetries of the nonlinear
diffusion equation (5.174).

which yield the three symmetries

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = x

∂

∂x
+ 2t

∂

∂t
, (5.175)

holding for an arbitrary constitutive function K(u).

Case 2. In this case, the solution set has dimension four. This case is char-
acterized by a restricted ODE satisfied by K(u), contained in split_eqs[2]
[Solved]:

K ′′′(u) =
2K(u)(K ′′(u))2 − (K ′(u))2K ′′(u)

K(u)K ′(u)
. (5.176)

Modulo equivalence transformations (4.6), the equation (5.176) has two dif-
ferent solutions: K(u) = uν (ν = const) and K(u) = eu.

Case 2a. For K(u) = uν , one obtains the corresponding point symmetries
using commands

case2a_symm_sol:=pdsolve(subs(K(U)=U^nu,
split_system[2][Solved]));

gem_output_symm(case2a_symm_sol);
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This yields the three generic symmetries (5.175), and the additional symme-
try

X4 = x
∂

∂x
+

2
ν
u
∂

∂u
. (5.177)

Case 2b. For K(u) = eu, one uses commands

case2b_symm_sol:=pdsolve(subs(K(U)=exp(U),
split_system[2][Solved]));

gem_output_symm(case2b_symm_sol);

This yields the three generic symmetries (5.175), and the additional symme-
try

X5 = x
∂

∂x
+ 2

∂

∂u
. (5.178)

Case 3. In this case, the solution set has dimension five, and K(u) is restricted
to satisfying the ODE

K ′′(u) =
7
4

(K ′(u))2

K(u)
. (5.179)

Modulo equivalence transformations (4.6), the only solution of the equation
(5.179) is K(u) = u−4/3. The corresponding point symmetries are computed
using commands

case3_symm_sol:=pdsolve(subs(K(U)=U^(-4/3),
split_system[3][Solved]));

gem_output_symm(case3_symm_sol);

This yields the three symmetries (5.175), the symmetry (5.177) (with ν =
−4/3), and the additional symmetry

X6 = x2 ∂

∂x
− 3xu

∂

∂u
. (5.180)

Cases 4 and 5. These cases correspond to linear diffusion equations (K(u) =
const and K(u) = 0, respectively), and hence the PDE (5.174) has an in-
finite number of point symmetries in these cases. Indeed, split_eqs[m]
[dimension] = ∞ for m = 4, 5. This completes the classification of point
symmetries of the nonlinear diffusion equation U{x, t ;u} (5.174).
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5.4.3 An example of symbolic computation of
conservation laws

A symbolic implementation of the direct method is now used to compute
several lower-order local conservation laws of the Korteweg–de Vries (KdV)
equation

ut + uux + uxxx = 0 (5.181)

[Section 1.3.5].
First, the local conservation law multipliers are computed. Let the multi-

pliers have the dependence

Λ[U ] = Λ(t, x, U, Ux, Uxx, Uxxx). (5.182)

One defines variables and the PDE (5.181) using the commands

with(GeM):
gem_decl_vars(indeps=[x,t], deps=[U(x,t)]);
gem_decl_eqs([diff(U(x,t),t)=U(x,t)*diff(U(x,t),x)
+diff(U(x,t),x,x,x)],
solve_for=[diff(U(x,t),t)]);

(5.183)

[Note that in order to compute multipliers, the specification of the option
solve_for in gem_decl_eqs is not required, since the conservation law mul-
tipliers are solutions of the conservation law determining equations (1.151)
for arbitrary functions U(x). However in (5.183), the option solve_for is
specified. It is used later in the flux computation routine, which automati-
cally verifies the correctness of flux computations by explicitly checking that
DiΦ

i[U ] = 0 on solutions U(x) = u(x) of the given PDE (5.181).]
The set of determining equations for the local conservation law multipliers

is obtained and simplified using the routines

det_eqs:=gem_conslaw_det_eqs([x,t, U(x,t),
diff(U(x,t),x), diff(U(x,t),x,x),
diff(U(x,t),x,x,x)]):

CL_multipliers:=gem_conslaw_multipliers();
simplified_eqs:=DEtools[rifsimp](det_eqs,
CL_multipliers, mindim=1);

(5.184)

The first command of (5.184) sets up the set of local conservation law mul-
tiplier determining equations (1.151), and splits them. [The splitting is done
using the fact that the determining equations (1.151) are polynomial ex-
pressions in terms of derivatives of U of orders four and higher, and such
derivatives are linearly independent.] This yields an over-determined system
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of 19 determining equations for the unknown local multiplier Λ[U ]. After
using the rif reduction algorithm, the system reduces to the nine equations

∂2Λ[U ]
∂x2

=
∂2Λ[U ]
∂x∂U

=
∂2Λ[U ]
∂x∂Uxx

=
∂2Λ[U ]
∂U∂Uxx

=
∂2Λ[U ]
∂2Uxx

=
∂Λ[U ]
∂Ux

=
∂Λ[U ]
∂Uxxx

= 0,

∂2Λ[U ]
∂U2

=
∂Λ[U ]
∂Uxx

,
∂Λ[U ]
∂t

= −U ∂Λ[U ]
∂x

.

The four linearly independent solutions of these determining equations are
obtained using the command

multipliers_sol:=pdsolve(simplified_eqs[Solved]);

and are given by

Λ1[U ] = 1, Λ2[U ] = U, Λ3[U ] = x− tU, Λ4[U ] = 1
2U

2 − Uxx.

The corresponding fluxes can be computed using one of the available methods.
For example, using the homotopy method [Section 1.3.7] with the command

gem_get_CL_fluxes(multipliers_sol, method="Homotopy1");

one obtains fluxes corresponding to the conservation laws

Dt(u) + Dx

(
1
2u

2 + uxx

)
= 0,

Dt

(
1
2u

2
)

+ Dx

(
1
3u

3 + uuxx − 1
2u

2
x

)
= 0,

Dt

(
1
2 tu

2 − xu
)

+ Dx

(
−1

2xu
2 + tuuxx − 1

2 tu
2
x − xuxx + ux

)
= 0,

Dt

(
1
3u

3 + uuxx

)
+ Dx

(
1
4u

4u2uxx + u2
xx − uuxt + uxut

)
= 0,

which are equivalent to the conservation laws given by (1.142), (1.144).

5.5 Discussion

Clarkson & Winternitz (1991) use the nonclassical method to obtain solutions
of the Kadomtsev–Petviashvili equation

(ut + uux + uxxx)x ± uyy = 0

that do not result from reductions under Lie’s classical method. Clarkson &
Mansfield (1993) obtain nonclassical solutions for the nonlinear heat equation

ut − uxx = u3
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and the real Landau–Ginzburg PDE system

ut + uxx + 2u2v = γu,

vt + vxx + 2v2u = γv,

where γ is a real constant. Lou (1992) obtains nonclassical solutions for the
system of dispersive wave equations in shallow water given by

vt + (uv)x = 0,

ut + uux + vx + κvxxx = 0, κ = const.

Clarkson & Mansfield (1994c) find nonclassical solutions for the generalized
shallow water wave equation given by

uxxxt + αuxuxt + βutuxx − uxt − uxx = 0, α, β = const.

Arrigo & Hill (1995) obtain nonclassical solutions for nonlinear diffusion equa-
tions with source terms given by

ut = [D(u)ux]x +Q(u)

for D(u) = um, eu. Wiltshire & El-Kafri (2004) find nonclassical solutions
for Richard’s equation for water flow in an unsaturated uniform soil, i.e., for
diffusion-convection equations of the form

ut = [D(u)ux +K(u)]x.

Bradshaw-Hajek et al. (2007) use the nonclassical method to seek solu-
tions, not obtainable by Lie’s classical method, for reaction-diffusion equa-
tions with explicit spatial dependence of the form

ut − uxx = k(x)u2(1 − u). (5.185)

In particular, they find that nonclassical solutions exist for (5.185) if and only
if k(x) = x2, tanh2 x, or tan2 x, modulo scalings given by t → α2t, x → αx

and translations in x.
The nonclassical method has been used to obtain solutions of the reaction-

diffusion-convection equation [Cherniha & Serov (1998)]

ut − uxx = λuux + u(α− βu), λ, α, β = const,

as well as [Cherniha (2007)] the generalized Fitzhugh–Nagumo equation

ut −uxx = λuux +αu(u− δ)(1−u), λ, δ, α = const with 0 < δ < 1, α > 0,

and the generalized Kolmogorov–Petrovskii–Piskunov equation
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ut − uxx = λuux + αu(1 − u)2, λ, α = const with α > 0.

Clarkson & Priestley (1998) discuss the difficulties and extensions needed
in using either the direct method or nonclassical method to obtain solutions
for PDEs with nonlocal terms and, as examples, use various systems that
represent the shallow water wave equation.

Burde (1996) uses the nonclassical method (and his own extension of it) to
obtain further solutions of the boundary layer equations describing steady-
state flow over a flat plate, given by

uux + vuy − U(x)U ′(x) = νuyy,

ux + vy = 0.
(5.186)

In particular, Burde obtains his solutions by applying the nonclassical method
(and his generalization of it) to the subsystem (a scalar PDE) that one obtains
after introducing the stream function (potential) ψ(x, y) resulting from the
conservation law expressed by the second equation of (5.186), namely the
PDE

ψyψxy − ψxψyy − U(x)U ′(x) + νψyyy = 0. (5.187)

Further nonclassical solutions of the PDE (5.187) are found by Saccomandi
(2004). In particular, Saccomandi shows that the von Mises transformation
that reduces the boundary layer equations (5.186) to a second-order evolution
equation is a Bäcklund transformation related to the nonclassical method.

The nonclassical method extends to an ansatz related to contact sym-
metries (conditional Lie–Bäcklund symmetries; also called generalized condi-
tional symmetries) [Fokas & Liu (1994); Liu & Fokas (1996)]. Such an ansatz
is used by Qu, Ji & Wang (2007) to obtain solutions for quasi-linear diffusion
equations with convection and source terms of the form

ut = [um(ux)n]x + P (u)ux +Q(u),

and by Ji & Qu (2007) to obtain solutions for radially symmetric nonlinear
diffusion equations with a spatially dependent source term of the form

ut = [B(u)(ur)m+1]r +
(m+ 1)(n− 1)

r
B(u)(ur)m+1 +Q(r, u).

A very good overview of several reduction methods, including the higher-
order direct method (method of “nonlinear separation”) due to Galaktionov
(1990), to find special solutions of PDEs appears in Olver (1994). An ansatz
technique (group foliation method) to solve a first-order PDE system whose
independent variables and dependent variables are, respectively, the classical
and differential invariants of a point symmetry of the PDE system appears
in Ovsiannikov (1982), with interesting examples in the papers of Martina,
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Sheftel & Winternitz (2001), Sheftel (2002), Nutku & Sheftel (2001), Golovin
(2004) and Anco & Liu (2004).

Cheviakov & Bogoyavlenskij (2004) generalize the infinite set of transfor-
mations (5.171) to the PDE system of anisotropic (Chew–Goldberger–Low)
plasma equilibrium equations in three dimensions, and use these transforma-
tions for the construction of families of exact solutions modelling anisotropic
plasma equilibria. [See also Cheviakov (2005).]

King (1989) uses potential symmetries to construct solutions of boundary
value problems for a class of nonlinear diffusion equations.

The Lorentz gauge is due to Ludvig Lorenz! It is commonly called the
“Lorentz gauge” because of confusion with Hendrik Lorentz, after whom
Lorentz invariance is named. We have used the common spelling in the text.

A computational way of checking for the possibility of the linearization of a
given nonlinear PDE system [Sections 2.4 and 2.6], especially for classification
problems, is to apply the work in Reid, Wittkopf & Boulton (1996) [See also
Wittkopf (2004).] to find the size of the solution space of a given system
of determining equations without actually obtaining any of its solutions. In
particular, if the size of the solution space of the determining system either for
local multipliers or for point (contact) symmetries is finite-dimensional, then
no linearization by an invertible mapping is possible. But the converse (that
the solution space is infinite-dimensional) is not sufficient for the existence of
a linearization by a point or contact transformation. Specifically, the solution
space must have a sufficiently large number of “parameters” such that the
number of functions and independent variables, as well as the number of linear
PDEs they satisfy, matches the corresponding number (i.e., the cardinality) in
the given nonlinear PDE system. This counting is performed algorithmically
[Reid, Wittkopf & Boulton (1996); Wittkopf (2004)] if a differential Gröbner
basis is available.
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Math. USSR Sbornik 37, 205–226.

Ibragimov, N.H. (1985). Transformation Groups Applied to Mathematical
Physics. Reidel, Boston.

Ibragimov, N.H. (1995). CRC Handbook of Lie Group Analysis of Differential
Equations, Vol. 2, Chap. 11, pp. 269–293 (N.H. Ibragimov, Ed.). CRC Press,
Boca Raton, FL.

Ibragimov, N.H., Torrisi, M., and Valenti, A. (1991). Preliminary group classifi-
cation of equations vtt = f(x, vx)vxx + g(x, vx). J. Math. Phys. 32, 2988–2995.

Ivanova, N.M., Popovych, R.O., and Sophocleous, C. (2008a). Group analy-
sis of variable coefficient diffusion-convection equations. III. Conservation laws.
Preprint.

Ivanova, N.M., Popovych, R.O., and Sophocleous, C. (2008b). Group analysis
of variable coefficient diffusion-convection equations. IV. Potential symmetries.
Preprint.

Ivanova, N.M. and Sophocleous, C. (2008). Conservation laws and potential sym-
metries of systems of diffusion equations. Preprint.

Ji, L. and Qu, C. (2007). Conditional Lie–Bäcklund symmetries and solutions to
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Ähnlichkeitslösungen partieller Differentialgleichungssysteme unter Be-
nutzung von Transformationsgruppen, mit Anwendungen auf Probleme
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special functions, 117

specific heat, 39

spectrum of singlet potential systems,
243

standard form, 300

stream function, 366

streamline, 351, 353, 354, [356]

structure constants, 128, 130

subalgebra(s), 121

optimal system, 319

subgroup, 123

subsystem(s), 189, 193, 200, [220], 224,
246, 314, 321, 326, 336, 366

local conservation law, 201, [220]

locally related, 194, [197], [199], 201,
224, 285

nonlocally related, 190, 193, 195,
[197], 201, 224, 243, 245, 250, 336,
341

surfaces

mapping of, 11

symbolic manipulation software, 120,
297, 300, 357

computation of conservation laws,
300, 363

computation of symmetries, 300, 357

group classification, 359

symmetry, 1, 16, 20, 248

adjoint, 107

approximate, 300

Bogoyavlenskij, [356]

classification, 21

computation through symbolic ma-
nipulation software, see symbolic
manipulation software

conditional Lie–Bäcklund, 366

conformal, 346

contact, see contact symmetry

continuous, 1, 89, 117, 187

dilation, 344, 345

discrete, 89, 97, 117

duality-type, 346, 350

gauge, 336, 340

generalized conditional, 366

higher-order, see higher-order
symmetry

local, see local symmetry

nonclassical, 306, 307

nonlocal, see nonlocal symmetry

point, see point symmetry

potential, see potential symmetry

potential shift, 352

rotation, 344, 345

scaling, see scaling(s)

translation, see translation(s)

variational, see variational symmetry

symmetry reduction, 247, 303, 304, 322

target class of equations, 159

target PDE (system), 120, 121, 123, 126,
[138], 173, 178, 179, 187

tensor

antisymmetric, 335, 336

electromagnetic field, 347

space-time metric, 347

Thomas equations, 286

total derivative operator, 7, 26, 92, 125,
191

transformation

Bäcklund, 366

bilinear, 169

conformal, 170, [172], 345

contact, see contact transformation

equivalence, 21

extended, 6

Galilean, 132

higher-order, see higher-order
transformation

hodograph, see hodograph transfor-
mation

Hopf–Cole, see Hopf–Cole transfor-
mation

Legendre, 151

Lie–Bäcklund, see higher-order
transformation

local, see local transformation

Miura, see Miura transformation

Noether, see higher-order transforma-
tion
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nonlocal, see non-invertible (nonlocal)
mapping

point, see point transformation
projective, see projective transforma-

tion
von Mises, 366

translation(s), 13, 102, [138], 160, 290,
297, 303, 344, 345

traveling wave solution, 297
tree construction procedure, 200, 337

extended, 223, 243
tree of nonlocally related systems, 189,

199, 245, 337
extended, 190, 199, 245, 251, 338
further extended, 201, 224, 240, 245,

338
triplet, 222
trivial conservation law, 42, 209
two-layered medium, 315

under-determined, 299, 328, 333, 334,
336, 340

variational principle, 4, 70, 77

variational symmetry, 4, 75, 77, [88],
118

variational system, 185
vector potential, 334
velocity, 39, 49, 120, 190, [198], 205, 207,

[329], 337, 351
von Mises transformation, 366

wave equation, [115], 168, [171], [173],
196, 230, 247, [282], 315, [331], 335,
345, 350, [355]

conservation law multiplier, [331]
invariant solutions, 317, [331]
nonlinear, see nonlinear wave equation
nonlocal symmetries, 247, 345, 346
point symmetries, 345
potential symmetry, [331]
potential system, 247, 315, [331], 350,

[355]
relativistic, 119
semilinear, 119

wave propagation, 316
wave speed, 230, 259–262, 266, 267

variable, 196, 247, 315


