
Chapter 7
Other Applications

7.1 When Are an + b and cn + d Simultaneously
Perfect Squares?

In [122] and [123] it is proven that there are infinitely many positive integers n such
that 2n + 1 and 3n + 1 are both perfect squares. The proof relies on the theory of
general Pell’s equations.

In what follows we will present an extension of this result, based on our papers
[13] and [14]. The main result is also cited in [41, Problem 1.13]. Recall that in
Theorem 4.5.2 we proved that if a, c are relatively prime positive integers, not both
perfect squares, and if b, d are integers, then the Diophantine equation

ax2 − cy2 = ad − bc

is solvable if and only if an + b and cn + d are simultaneously perfect squares for
some positive integer n. In this case, the number of such n’s is infinite. If (xm, ym)m≥0

are solutions to ax2 − by2 = ad − bc (see Theorem 4.5.1), then for all nmm m ≥ 0,
where

nm =
y2m − b

a
=

x2m − d
c

,

anm + b and cnm + d are simultaneously perfect squares (see Theorem 4.5.2).
From the previous formulas, we see that the least positive n0 for which an0 + b

and cn0 + d are simultaneously perfect squares is

n0 =
x20 − d

c
=

y20 − b
a

,

where (x0, y0) is the minimal solution to the equation ax2 − cy2 = ad − bc.
The main result in this section is the following:
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170 7 Other Applications

Theorem 7.1.1. Let a, c be relatively prime positive integers, not simultaneously
perfect squares and let b, d be integers. Each of the following conditions is sufficient
for the numbers an + b and cn + d to be both perfect squares for infinitely many
positive integers n:

1) b and d are perfect squares;
2) a + b and c + d are perfect squares;

3)
a
c
=

b − 1

d − 1
.

Proof. Conditions 1) and 2) state that an+ b and cn + d are simultaneously perfect
squares for n = 0 and n = 1, respectively. From Theorem 4.5.2 it follows that they
have this property for infinitely many positive integers n.

Condition 3) is equivalent to a − c = ad − bc, in which case the equation
ax2 − by2 = ad − bc has solution (1, 1) and the conclusion follows from the same
Theorem 4.5.2. ��
Applications

1) The numbers 2n + 3 and 5n + 6 are both perfect squares for infinitely many
positive integers n. Indeed, the equation 2x2 − 5y2 = −3 has solution (1, 1) and
the result follows from Theorem 4.5.2.

2) If k is an arbitrary positive integer different from 3, then n and (k2 − 4)n − 1
cannot be simultaneously perfect squares. Indeed, in Section 3.6 we saw that the
negative Pell’s equation x2 − (k2 − 4)y2 = −1 is not solvable (see also [199])
and the conclusion follows from Theorem 4.5.2.

3) If p and q are relatively prime positive integers and pq is not a perfect square,
then pn + 1 and qn + 1 are simultaneously perfect squares for infinitely many
positive integers n. This property follows from Theorem 7.1.1.1). For p = 2 and
q = 3 we obtain the result in [122]. For p = 3 and q = 4 we obtain Problem 8
in [25, p. 83].

If p = 1 and q = 3 we obtain the first part of the result in [40]. The second part
shows that if n1 < n2 < · · · < nk < . . . are all positive integers satisfying the
above property, then nknk+1+1 is also a perfect square, k = 1, 2, . . . . Indeed, the
equation is 3x2−y2 = 2, which is equivalent to the Pell’s equation u2−3v2 = 1,

where u =
1

2
(3x − y) and v =

1

2
(y − x). The general solution is (uk, vk)k≥1,

where uk + vk

√
3 = (2 +

√
3)k, k ≥ 1, hence

nk = x2k − 1 = (uk + vk)
2 − 1 =

1

6
[(2 +

√
3)2k+1 + (2 −

√
3)2k+1 − 4].

We have

nknk+1 + 1 =

{
1

6
[(2 +

√
3)2k+2 + (2−

√
3)2k+2 − 8]

}2

, k ≥ 1.
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4) For any nonzero integers k and l, the numbers (k2 + 1)n + 2l and 2kn + l2 + 1
are simultaneously perfect squares for infinitely many positive integers n. This
follows from Theorem 7.1.1.2).

5) The following application appeared in [11] (see also [25, p. 82]). The smallest
positive integer m such that 19m + 1 and 95m + 1 are both perfect squares
is 134232. Indeed, setting 19m = n we are looking for the smallest n ≡ 0
(mod 19) such that n + 1 and 5n + 1 are simultaneously perfect square. In this
case, the equation is x2 − 5y2 = −4, whose general solution is given by

1

2
(xk + yk

√
5) =

(
1 +

√
5

2

)k

, k = 1, 3, 5, . . .

(see also Section 4.3.2). It follows that yk = F2k−1, k = 1, 2, . . . , and nk =
F2
2k−1 − 1. The smallest k for which nk ≡ 0 (mod 19) is k = 9, hence the

desired integers is m =
1

19
n9 = 134232.

7.2 Triangular Numbers

Let Tn =
n(n + 1)

2
denote the nth triangular number. In this section we will present

several situations when some properties related to these numbers reduce to solving
Pell-type equations.

7.2.1 Triangular Numbers with Special Properties

There are infinitely many positive integers n for which Tn is a perfect square. Indeed,

if Tn is a perfect square, then so is T4n(n+1), because
n(n + 1)

2
= k2 implies

T4n(n+1) = T8k2 = 4k2(8k2 + 1) = 4k2(4n2 + 4n + 1) = [2k(2n + 1)]2.

Taking into account that T1 = 12, by the above procedure, we generate a
sequence of perfect square triangular numbers. A formula for such integers n has
already been given in (5.4.8).
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It is natural to ask what are all triangular numbers that are perfect squares. We
have [15]:

Theorem 7.2.1. The triangular number Tx is a perfect square if and only if

x =

⎧⎪⎨
⎪⎩

2P2
m, m even[
(1 +

√
2)m + (1−√

2)m

2

]2

, m odd
(7.2.1)

where (Pm)m≥0 is the Pell’s sequence.

Proof. The equation Tx = y2 is equivalent to (2x + 1)2 − 8y2 = 1. The Pell’s
equation u2 − 8v2 = 1 has solutions

um =
1

2
[(1 +

√
2)2m + (1 −

√
2)2m]

and

vm =
1

2
√
2
[(1 +

√
2)2m − (1−

√
2)2m] = P2m

hence the conclusion. ��
Remarks. 1) Every other x satisfying Tx = y2 is a perfect square.
2) Every y satisfying Tx = y2 is a Pell number.
3) The equation Tx = (Ty)

2 is more difficult. It has only solutions (1, 1) and (8, 3).
A complicated proof was given by W. Ljunggren (see [150] for details).

4) Some extensions of the result in Theorem 7.2.1 are given in the paper [223].

Theorem 7.2.2. If k is a positive integer that is not a perfect square, then the
equation

kTx = Ty (7.2.2)

has infinitely many solutions in positive integers.

Proof. Equation (7.2.2) is equivalent to (2y+1)2− k(2x+1)2 = 1− k. Let (u1, v1)
be the fundamental positive integral solution of Pell’s equation u2 − kv2 = 1. If
u1 and v1 are of opposite parity, we obtain infinitely many (but not necessarily all)
positive integral solutions (x, y) by taking

2y + 1 + (2x + 1)
√

k = (1 +
√

k)(u1 + v1
√

k)j, j = 1, 2, 3, . . .

If u1 and v1 are both odd (which can occur only when k ≡ 0 (mod 8), we set

u + v
√

k = (u1 + v1
√

k)2,
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and since u1 is odd and v1 is even, we get infinitely many positive integral solutions
x, y by taking

2y + 1 + (2x + 1)
√

k = (1 +
√

k)(u + v
√

k)j, j = 1, 2, 3, . . .

This completes the proof of the theorem. ��
The equation (7.2.2) is also studied in [34].
It is interesting to see what is the asymptotic density of “composite” triangular

numbers among all triangular numbers. In [214] it is shown that this density is zero.
More specifically, if F(n) denotes the number of triples a, b, c such that

TaTb = Tc, 1 < a ≤ b < c ≤ n (7.2.3)

we will show that

F(n) < 4n3/4. (7.2.4)

Denote g(x) = A
√

x2 − d2 for x ≥ d, where A and d are given positive numbers.
Suppose h is a fixed positive number. Then

mh(x) =
1

2x
[g(x + h) + g(x − h)]

is an increasing function of x for x ≥ d + h.
Clearly,

mh(x) =
g(x + h)2 − g(x − h)2

2x{g(x + h)− g(x − h)} =
2A2h

g(x + h)− g(x − h)
.

Thus it suffices to show that g(x+ h)− g(x− h) is a decreasing function of x for
x ≥ d + h. But for x > d + h we have

g′(x + h)− g′(x − h) =
A(x + h)√

(x + h)2 − d2
− A(x − h)√

(x − h)2 − d2
< 0,

since the derivative of x(x2 − d2)−1/2 is −d2(x2 − d2)−3/2.
Because F(n) = 0 for n ≤ 7 we may assume n ≥ 8. For a given a with 1 <

a < n, let s(a, n) denote the number of pairs (b, c) satisfying (7.2.3). If b ≥ a >

21/4n1/2, clearly Tb ≥ Ta >
1

2
· 21/4n1/2(21/4n1/2 + 1) and, hence TaTb >

1

2
(n +

23/4).
Thus s(a, n) = 0 if a > 21/4n1/2, and so

F(n) =
[21/4n1/2]∑

a=2

s(a, n).
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Suppose that a and n are fixed and s(a, n) > 0. Set K = Ta. Then the equation
TaTb = tc is equivalent to K(b2 + b) = c2 + c or

K{(2b + 1)2 − 1} = (2c + 1)2 − 1.

Set u = 2b + 1, v = 2c + 1. Because v2 = (2c + 1)2 ≤ (2n + 1)2, we have

u2 =
v2 − 1

K
+ 1 ≤ 4n2 + 4n

K
+ 1 = 8

n(n + 1)

a(a + 1)
+ 1 < 8

n2

a2
+ 1 < 9

n2

a2
,

so

u < 3n/a. (7.2.5)

On the other hand, u = 2b + 1 ≥ 2a + 1 =
√
8K + 1 >

√
2K and

v2 = Ku2 − K + 1 > K{(2b + 1)2 − 1} ≥ K{(2a + 1)2 − 1} = 8K2,

hence

0 <
√

Ku − v =
K − 1√
Ku + v

<
K

2
√
2K + 2

√
2K

or

0 <
√

Ku − v < 1/(4
√
2). (7.2.6)

Now suppose (bi, ci), i = 1, 2, . . . , s are the solutions to KTb = Tc with a ≤ bj <
cj ≤ n and b1 < b2 < · · · < bs, where s = s(a, n). Set ui = 2bi+1 and vi = 2ci+1
for i = 1, 2, . . . , s. We claim that ui+1 − ui �= uj+1 − uj for 1 ≤ i < j ≤ s − 1.

Suppose to the contrary that ui+1 − ui = uj+1 − uj for some pair (i, j) with
1 ≤ i < j ≤ s − 1. From (7.2.6) we have

−1/(4
√
2) < (

√
Kui+1 − vi+1)− (

√
Kui − vi) < 1/(4

√
2),

so

√
K(ui+1 − ui)− (vi+1 − vi) = θi,

where |θi| < 1/(4
√
2). Similarly,

√
K(uj+1 − uj)− (vj+1 − vj) = θj,

where |θj| < 1/(4
√
2). Hence

vi+1 − vi + θi =
√

K(ui+1 − ui) =
√

K(uj+1 − uj) = vj+1 − vj + θj,

hence

[(vj+1 − vj)− (vi+1 − vi)] = |θi − θj| < 1/(2
√
2).
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Because the left-hand side is an integer, we have

vi+1 − vi = vj+1 − vj. (7.2.7)

On the other hand (ui, vi), (ui+1, vi+1), (uj, vj), (uj+1, vj+1) are points with positive
integral coordinates lying on the hyperbola y2 = Kx2 − (K − 1) and satisfying the
conditions ui+1 − ui = uj+1 − uj > 0, ui < uj. Further,

vi+1 − vi

vj+1 − vj
=

K(u2
i+1 − u2

i )/(vi+1 + vi)

K(u2
j+1 − u2

j )/(vj+1 + vj)
=

(vj+1 + vj)/(uj+1 + uj)

(vi+1 + vi)/(ui+1 + ui)
. (7.2.8)

Applying the monotonicity of function mh with 2h = ui+1 − ui = uj+1 − uj and
g(x) =

√
Kx2 − (K − 1), we find that

(vj+1 + vj)/(uj+1 + uj) > (vi+1 + vi)/(ui+1 + ui),

and then (7.2.8) gives vi+1 − vj > vj+1 − vj. But this contradicts (7.2.7) and so our
assumption that ui+1 − ui = uj+1 − uj is untenable.

Thus we have shown that the gaps u2 − u1, u3 − u2, . . . , us − us−1 are s − 1
different even positive integers. Hence,

us − u1 = (u2 − u1) + (u3 − u2) + · · ·+ (us − us−1)

≥ 2 + 4 + · · ·+ 2(s − 1) = s(s − 1).

Combining this with (7.2.5), we obtain

3n/a > us > us − u1 ≥ (s − 1)2,

so

s(a, n) < 1 +
√
3n/a.

Hence

F(n) =
[21/4n1/2]∑

a=2

s(a, n) <
[21/4n1/2]∑

a=2

(1 +
√

3n/a)

< 21/4n1/2 +
√
3n

∫ 21/4n1/2

1

t−1/2dt

<
√
3n

∫ 21/4n1/2

0

t−1/2dt < 4n3/4.

Thus (7.2.4) is proved. �
The following result was proven in [170].
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Theorem 7.2.3. The equation

Tm = TnTp (7.2.9)

is solvable for infinitely many triples (m, n, p), p ≥ 2, and unsolvable for infinitely
many triples (m, n, p).

Proof. For the first part, we choose p = 2. The equation (7.2.9) becomes Tm = 3Tn.
From Theorem 7.2.2 it follows that the last equation has infinitely many solutions.

For the second part, let m be an odd prime number. The equation (7.2.9) is
equivalent to

2m(m + 1) = n(n + 1)p(p + 1).

Without loss of generality, we may assume that m|n or m|n + 1, i.e., n = km or
n + 1 = km.

Since p(p + 1) ≥ 6, in the first case we obtain

2(m + 1) = k(km + 1)p(p + 1) ≥ 6(m + 1),

a contradiction. In the second case, when n = km − 1, we have

2(m + 1) = (km − 1)kp(p + 1) ≥ 6(m − 1)

which is a contradiction, as well. It follows that equation (7.2.9) is not solvable. ��

7.2.2 Rational Numbers Representable as
Tm

Tn

The following results have been proven in [170]. The proof of the first result is based
on some results contained in our papers [13] and [14].

Theorem 7.2.4. If r is a positive rational number and
√

r is irrational, then there
exist positive integers m, n such that

r =
Tm

Tn
. (7.2.10)

Proof. Let r =
p
q

, where p, q are relatively prime positive integers. Then (7.2.10) is

equivalent to
m(m + 1)

n(n + 1)
=

p
q

, i.e.,
(2m + 1)2 − 1

(2n + 1)2 − 1
=

p
q

. Letting 2m + 1 = x and

2n + 1 = y yields

qx2 − py2 = q − p. (7.2.11)

The irrationality of
√

r implies that pq is not a perfect square.
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Since (7.2.11) is solvable (it has solution x = y = 1), from Theorem 4.5.1 it
follows that it has infinitely many solutions.

If (uk, vk)k≥0 is the general solution to the Pell’s equation u2 − pqv2 = 1, then
uk + vk

√
pq = (u0 + v0

√
pq)k, k ≥ 1. It follows that u1 = u2

0 + pqv20, v1 = 2u0v0.
From Theorem 4.5.1, (Xk, Yk)k≥0, where Xk = uk + pvk, Yk = uk + qvk, are

solutions to the equation (7.2.11). Since u2
1 − pqv21 = 1 and v1 is even, it follows

that u1 is odd. Hence X1 and Y1 are both odd and we can choose m =
1

2
(X1 − 1)

and n =
1

2
(Y1 − 1). ��

Theorem 7.2.5. Among the positive rational numbers r for which
√

r is rational,
infinitely many are representable in the form (7.2.10) and infinitely many are not.

Proof. Let p be an odd integer and let r = (2p)2. Choosing m = p2 − 1 and

n =
p − 1

2
, we obtain r =

Tm

Tn
.

If p is an odd prime, we will prove that r =

(
p + 1

p − 1

)2

is not of the form (7.2.10).

Indeed r =
Tm

Tn
would imply

m(m + 1)

n(n + 1)
=

(p + 1)2

(p − 1)2
. Setting 2m + 1 = x and

2n+1 = y, we have
x2 − 1

y2 − 1
=

(p + 1)2

(p − 1)2
, x, y ≥ 3. The last equality is equivalent to

(
p − 1

2
x − p + 1

2
y

)(
p − 1

2
x +

p + 1

2
y

)
= −p

and so

p − 1

2
x − p + 1

2
y = −1 and

p − 1

2
x +

p + 1

2
y = p,

which yields x = 1 and y = 1, a contradiction. ��

7.2.3 When Is
Tm

Tn
a Perfect Square?

In this subsection we are interested in finding all pairs (m, n) for which the ratio of
triangular numbers Tm and Tn is the square of an integer.

In [140] it is shown that pairs (4n(n + 1), n), n ≥ 1, satisfy the above property.
In the recent paper [101] all pairs (m, n) are determined by using a suitable Pell’s
equation.
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The relation
Tm

Tn
= q2 is equivalent to

(2m + 1)2 − 1

(2n + 1)2 − 1
= q2.

Using now the result and notation in Remark 5), subsection 5.6.2, we obtain

2mk + 1 = xk, qk = zk, k ≥ 0. It follows that mk =
xk − 1

2
, qk = zk, where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk =
1

2

[(
2n + 1 + 2

√
n(n + 1)

)k
+
(
2n + 1− 2

√
n(n + 1)

)k
]

zk =
1

4
√

n(n + 1)

[(
2n + 1 + 2

√
n(n + 1)

)k
−
(
2n + 1− 2

√
n(n + 1)

)k
]

k ≥ 0.
It is clear that xk is odd for all k, hence all such pairs (m, n) are given by

(mk, n)k≥0, where n is an arbitrary positive integer.

7.3 Polygonal Numbers

The kth polygonal number of order n (or the kth n-gonal number) Pn
k is given by the

equation

Pn
k =

k
2
[(n − 2)(k − 1) + 2].

Diophantus (c. 250 A.D.) noted that if the arithmetic progression with first term
1 and common difference n − 2 is considered, then the sum of the first k terms
is Pn

k. The usual geometric realization, from which the name derives, is obtained
by considering regular polygons with n sides sharing a common angle and having
points at equal distances along each side with the total number of points being Pn

k .
The first forty pages of Dickson’s History of Number Theory, Vol. II, are devoted

to results on polygonal numbers.
In [201] it is shown that there are infinitely many triangular numbers which at

the same time can be written as the sum, the difference, and the product of other
triangular numbers. It is easy to show that 4(m2 + 1)2 is the sum, difference,
and product of squares. Since then, several authors have proved similar results for
sums and differences of other polygonal numbers. In [85] are considered pentagonal
numbers, in [162] and [163] are considered hexagonal and septagonal numbers, and
in [6] it is proved that for any n infinitely many n-gonal numbers can be written
as the sum and difference of other n-gonal numbers. Although [85] gives several
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examples of pentagonal numbers written as the product of two other pentagonal
numbers, the existence of an infinite class was left in doubt.

In this section we show that for every n there are infinitely many n-gonal numbers
that can be written as the product of two other n-gonal numbers, and in fact show
how to generate infinitely many such products. We suspect that our method does
not generate all of the solutions for every n, but we have not tried to prove this.
Moreover, except for n = 3 and 4, it is still not known whether there are infinitely
many n-gonal numbers which at the same time can be written as the sum, difference,
and product of n-gonal numbers.

Our proof uses the theory of the Pell equation. We also use a result on the
existence of infinitely many solutions of a Pell equation satisfying a congruence
condition, given that one solution exists satisfying the congruence condition. Next
we note some facts about the Pell equation and prove this latter result. Then we
prove the theorem on products of polygonal numbers.

In what follows, Z+ denotes the set of positive integers and (a, b) ≡ (c, d)
(mod m) means that a ≡ c and b ≡ d (mod m).

Theorem 7.3.1. If D ∈ Z+ is not a square, then for any m ∈ Z+ there are infinitely
many integral solutions to the Pell’s equation u2 − Dv2 = 1, with (u, v) ≡ (1, 0)
(mod m).

Proof. Suppose (u1, v1) is the fundamental solution to Pell’s equation

u2 − Dv2 = 1

and that (uj, vj)j≥1 is the general solution given by

uj + vj

√
D = (u1 + v1

√
D)j, j ≥ 1.

Since there are only m2 distinct ordered pairs of integers modulo m, there must
be j, l ∈ Z+ such that (uj, vj) ≡ (ul, vl) (mod m). We notice that, for any k ≥ 2,

uk + vk

√
D = (u1 + v1

√
D)(uk−1 + vk−1

√
D)

so

uk = u1uk−1 + Dv1vk−1 and vk = v1uk−1 + u1vk−1

(see also Section 3.2).
Applying these equations to the above congruence, we deduce

u1uj−1 + Dv1vj−1 ≡ u1ul−1 + Dv1vl−1 (mod m) and
v1uj−1 + u1vj−1 ≡ v1ul−1 + u1vl−1 (mod m).

(7.3.1)
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From (7.3.1) it follows (u2
1 − Dv21)vj−1 ≡ (u2

1 − Dv21)vl−1 (mod m). Since
u2
1 − Dv21 = 1, we obtain vj−1 ≡ vl−1 (mod m).

Similarly, from (7.3.1) we obtain uj−1 ≡ vl−1 (mod m), so (uj−1, vj−1) ≡
(ul−1, vl−1) (mod m).

We can conclude that for i = |j − l|, (1, 0) = (u0, v0) ≡ (usi, vsi) (mod m), for
any i ∈ Z+. ��
Theorem 7.3.2. If a, b,m,D ∈ Z+, D is not a square, and the general Pell’s
equation u2 − Dv2 = M has a solution (u∗, v∗) with (u∗, v∗) ≡ (a, b) (mod m),
then it has infinitely many solutions (u∗

k , v
∗
k )k≥1 such that (u∗

k , v
∗
k ) ≡ (a, b)

(mod m).

Proof. Let (uk, vk)k≥1 be the solutions to the Pell’s equation u2 − Dv2 = 1,
guaranteed by Theorem 7.3.1, i.e., (uk, vk) ≡ (1, 0) (mod m). Then the solution
(u∗

k , v
∗
k )k≥1 to the general Pell’s equation obtained from these solutions are such

that

u∗
k = u∗uk + Dv∗vk ≡ a · 1 + Db · 0 ≡ a (mod m)

and

v∗k = v∗uk + u∗vk ≡ b · 1 + a · 0 ≡ b (mod m), k ≥ 1

(see also Section 4.1). ��
The following Corollary follows by taking m in Theorem 7.3.2 to be the least

common multiple of m1 and m2.

Corollary 7.3.3. If a, b,m1,m2,D ∈ Z+, D is not a square, and a2 − Db2 = M,
then there are infinitely many solutions to the general Pell’s equation u2−Dv2 = M
with u ≡ a (mod m1) and v ≡ b (mod m2).

Next we show that any nonsquare n-gonal number is infinitely often the quotient
of two n-gonal numbers (see [68]). The theorem that n-gonal products are infinitely
often n-gonal and a remark on the solvability of a related equation follow.

Theorem 7.3.4. If the n-gonal number P = Ps is not a square, then there exist
infinitely many distinct pairs (Px,Py) of n-gonal numbers such that

Px = PsPy. (7.3.2)

Proof. Recalling that Px =
x
2
[(n − 2)(x − 1) + 1] and setting n − 2 = r, equation

(7.3.2) becomes

rx2 − (r − 2)x = P[ry2 − (r − 2)y].
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Multiplying by 4r to complete the square gives

(2rx − (r − 2))2 − (r − 2)2 = P[(2ry − (r − 2))2 − (r − 2)2].

Setting

u = 2rx − (r − 2), v = 2ry − (r − 2) (7.3.3)

we get the general Pell’s equation

u2 − Pv2 = M, (7.3.4)

with M = (r − 2)2 − P(r − 2)2.
Thus, in order to ensure infinitely many solution (x, y) to (7.3.2), it suffices to

have infinitely many solutions (u, v) to (7.3.4) for which the pair (x, y) obtained
from (7.3.3) is integral. Put another way, it suffices to show the existence of infinitely
many solutions (u∗, v∗) to (7.3.4) for which the congruence

(u∗, v∗) ≡ (−(r − 2),−(r − 2)) ≡ (r + 2, r + 2) (mod 2r)

holds.
But notice that, since P1 = 1, a particular solution of (7.3.2) is x = s, y = 1, and

these values of x and y give u = (2s− 1)r +2, v = r +2, as a particular solution of
(7.3.4). Thus, we have a solution (u∗, v∗) of (7.3.4) with (u∗, v∗) ≡ (r + 2, r + 2)
(mod 2r). Theorem 7.3.2 guarantees the infinitely many solutions we are seeking.

��
Our final result is now a straightforward corollary.

Theorem 7.3.5. For any n ≥ 3, there are infinitely many n-gonal numbers which
can be written as a product of two other n-gonal numbers.

Proof. The case n = 4 is trivial. By Theorem 7.3.4, we need only show that Ps is
not a square for some s. But for n �= 4, at least one of P2 = n and P9 = 9(4n − 7)
is not a square. ��
Remarks. 1) Trying to prove that

Pk =
k
2
[(n − 2)(k − 1) + 2] = PxPy

infinitely often by setting Px = k and

Py =
1

2
[(n − 2)(Px − 1) + 2]
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and solving the corresponding Pell’s equation that results works if n �= 2t2 + 2,
and thus, for these values of n, there are infinitely many solutions to the equation
Pp = PxPy.

2) There are 51 solutions of P3
x = P3

s P3
y with P3

x < 106. There are 43 solutions of
Pn

x = Pn
s Pn

y with 5 ≤ n ≤ 36 and Pn
x < 106. For 36 < n ≤ 720, there are no

solutions with Pn
x < 106.

3) In [107] are considered the simultaneous equations Pn
x = Pm

y = Pq
z , where

m, n, q, x, y, z are positive integers. By reducing these to systems of simultaneous
Pell equations, one can show that if (m, n, q) is not a permutation of (3, 6, k) (for
k > 3), then all solutions of the above system of equations havemax{x, y, z} < c,
where c is an effectively computable constant depending only on m, n and q. In
fact, the remaining case may also be easily analyzed, upon noting the reduction to

Z2 − jX2 = (j − 1)(j − 4),

if we take (m, n, q) = (3, 6, j + 2). If j is a square, this equation has at most
finitely many solutions, while, if j > 1 is not a square, it has infinitely many,
corresponding to classes of the given Pell’s equation, upon noting that (Z,X) =
(j − 2, 1) gives one such solution.

7.4 Powerful Numbers

Define a positive integer r to be a powerful number if p2 divides r whenever the
prime p divides r. The following list contains all powerful numbers between 1 and
1000: 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144,
169, 196, 200, 216, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 432, 441, 484,
500, 512, 529, 576, 625, 648, 675, 676, 729, 784, 800, 841, 864, 900, 961, 968, 972,
1000. Let k(x) denote the number of powerful numbers not exceeding x. Following
[77] we show that

lim
x→∞

k(x)√
x

= c,

with the constant c =
ζ(3/2)

ζ(3)
, where ζ is the well-known Riemann zeta function.

We also prove that there are infinitely many pairs of consecutive powerful integers,
such as 8, 9 and 288, 289. We conclude with some results and conjectures
concerning the gaps between powerful numbers.



7.4 Powerful Numbers 183

7.4.1 The Density of Powerful Numbers

Let

F(s) =
∏

p

(1 + p−2s + p−3s + . . . ) =
∏

p

(
1 +

1

ps(ps − 1)

)
(7.4.1)

where the products are extended over all primes p. It is evident that

F(s) =
∑
r∈K

r−s, (7.4.2)

where K is the set of powerful numbers. Then, the sum of the reciprocals of the
powerful numbers,

F(1) =
∑
r∈K

1

r
=

∏
p

(
1 +

1

p(p − 1)

)
, (7.4.3)

is seen to be convergent (see [136–138] for the theory of convergent series).
To estimate k(x), the number of powerful numbers up to x, we observe first that

k(x) � [
√

x], since every perfect square is powerful. Next, we observe that every
powerful number r can be represented as a perfect square n2 (including the case
n = 1) times a perfect cube m3 (including m = 1), and that this representation is
unique if we require m to be square-free. That is, we set m equal to the product of
those primes having odd exponents in the canonical factorization of r into powers
of distinct primes, and the representation r = n2m3 is then unique.

Thus,

k(x) = #(n2m2 � x, μ(m) �= 0) =

∞∑
m=1

μ2(m)

[( x
m3

)1/2
]
∼ cx1/2, x → ∞,

(7.4.4)
where

∞∑
m=1

μ2(m)m−3/2 < ζ(3/2) < ∞. (7.4.5)

Explicitly,

c =
∏

p

(1 + p−3/2) =
∏

p

(1− p−3)/(1− p−3/2) = ζ(3/2)ζ(3), (7.4.6)

where ζ(s) is the Riemann zeta function (see [213]). This evaluation of c comes
from setting s = 3/2 in the identity
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∑
m=1

μ2(m)

ms
=

∏
p

(
1 +

1

ps

)

=
∏

p

1− p−2s

1− p−s

=
∏

p

(1− p−2s)
/∏

p

(1− p−s)

= ζ(s)/ζ(2s) (7.4.7)

for all Re(s) > 1, where ζ(s) =
∞∑

n=1

n−s =
∏

p

(1− p−s)−1 for Re(s) > 1.

For purposes of estimation, we have the inequalities

cx1/2 � k(x) � cx1/2 − 3x1/3 for x � 1, (7.4.8)

because cx1/2 =

∞∑
m=1

μ2(m)(x/m3)1/2 �
∞∑

m=1

μ2(m)[(x/m3)1/2] = k(x), and

cx1/2 − k(x) =
∞∑

m=1

|μ(m)|
{( x

m3

)1/2

−
[( x

m3

)1/2
]}

�
[x1/3]−1∑

m=1

|μ(m)| · 1 +
∞∑

m=[x1/3]

|μ(m)|
( x

m3

)1/2

� ([x1/3]− 1) +

(
1 +

√
x
∫ ∞

[x1/3]
u−3/2du

)

� x1/3 + 2x1/2x−1/6 = 3x1/3.

Numerically, c = 2 · 173 . . .
We have the further identities:

F(s) =
∑
r∈K

(1/rs)

=

∞∑
n=1

n−2s
∞∑

m=1

μ2(m)m−2s

=
∞∑

i=1

t−2s
∑
m|t

|μ(m)|/ms
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=

∞∑
t=1

t−2s
∏
p|t

(1 + p−s), (7.4.9)

where we used the substitution t = mn;

F(s) =
∞∑

n=1

n−2s
∞∑

m=1

μ2(m)m−2s = ζ(2s)ζ(3s)/ζ(6s), (7.4.10)

and

F(1) = ζ(2)ζ(3)/ζ(6) =

∞∑
i=1

Ψ(t)/t3, (7.4.11)

where

Ψ(t) = t
∏
p|t

(
1 +

1

p

)
, (7.4.12)

by setting s = 1 in the previous identities (7.4.9) and (7.4.10).
Since ζ(2) = π2/6 and ζ(6) = π6/945, we observe

F(1) =
315

2π4
ζ(3). (7.4.13)

7.4.2 Consecutive Powerful Numbers

Four consecutive integers cannot all be powerful, since one of them is twice an odd
number. No example of three consecutive powerful numbers is known, unless one
is willing to accept -1, 0, 1. If such an example exists, it must be of the form

4k − 1, 4k, 4k + 1.

No case of 4k − 1 and 4k + 1 both being powerful is known. In fact, the only
known example of consecutive odd numbers 2k− 1 and 2k+1 both being powerful
is 2k − 1 = 25, 2k + 1 = 27.

There are two infinite families of examples where two consecutive integers are
powerful which correspond to the solutions of the Pell equations x2 − 2y2 = 1 and
x2 − 2y2 = −1.

Let x1, y1 satisfy x21 − 2y21 = ±1. Then 8x21y21 = A and (x21 + 2y21)
2 = B

are consecutive powerful numbers. The following table gives several examples of
consecutive powerful numbers from solutions of the equations x2 − 2y2 = ±1.
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x y A B
1 1 8 = 23 9 = 32

3 2 288 = 25 · 32 289 = 172

7 5 9800 = 23 · 52 · 72 9801 = 34 · 112
17 12 332928 = 25 · 32 · 172 332929 = 5772√
B0

√
A0/2 4A0B0 4A0B0 + 1

If A and B = A + 1 are consecutive powerful numbers, and if B is a perfect
square, B = u2, then A = (u − 1)(u + 1). If u is even, then (u − 1, u + 1) = 1,
and both u − 1 and u + 1 are odd powerful numbers. As already remarked, the only
known instance of this occurrence is u− 1 = 25, u+1 = 27, leading to the isolated
example A = 675 = 33 · 52, B = 676 = 22 · 132. If u is odd, then (u − 1)/2 and
(u + 1)/2 are consecutive integers, with ((u − 1)/2, (u + 1)/2) = 1. For u2 − 1 to
be powerful, (u − 1)/2 and (u + 1)/2 must be a powerful odd number and twice
a powerful number, in either order. The two Pell equations produce examples in
both orders. However, an example satisfying neither of these Pell equations is also
known, with (u − 1)/2 = 242 = 2 · 112 and (u + 1)/2 = 243 = 35. This leads to
A = 235.224 = 23 · 35 · 112 and B = 235.225 = 52 · 972.

Whenever A and B are consecutive powerful numbers, so too are A′ = 4AB and
B′ = 4AB+1 = (2A+1)2. The solution x0 = 1, y0 = 1, of x2−2y2 = −1 generates
all solutions of the Pell equations x2 − 2y2 = ±1, in the sense that xn + yn

√
2 =

(x0 + y0
√
2)n yields the complete set of solutions (xn, yn) such that x2n − 2y2n = ±1.

Note that the consecutive powerful numbers A = 675, B = 676, come from the
solution x = 26, y = 15, of the Pell equation x2 − 3y2 = 1, with A = 3y2 and
B = x2. Similarly, the example A = 235.224, B = 235.225 of consecutive powerful
numbers arises from the Pell equation x2 − 6y2 = 1 with x = 485, y = 198. More
generally, any solution (x1, y1) of the Pell equation x2 − dy2 = ±1, with the extra
condition that d|y21, leads to an infinite family of consecutive powerful numbers,
starting with A1 = x21, B1 = dy21 = A1 ± 1, and continuing with An = x2n , Bn = dy2n ,
where (xn, yn) are obtained from the computation (x1 +

√
dy1)n = xn +

√
dyn.

Conversely, whenever we have two consecutive powerful integers, if one of them
is a perfect square x2, we can write the other in the form n2m3 = my2, with m
square-free, and we have a solution to the Pell equation x2 − my2 = ±1.

In all cases given thus far consecutive powerful numbers, the larger number is a
perfect square. However, the Pell equation x2−5y2 = −1 with 5|y leads to infinitely
many powerful numbers x2 + 1 = 5y2, such as x2 = (682)2 = 465124; 5y2 =
5(305)2 = 53 · 612 = 465125.

One example consisting of two consecutive powerful numbers where neither is a
perfect square is given by A = 233 = 12167 and B = 23 · 32 · 132 = 12168. An
interesting method based on the equation ax2−by2 = 1 to generate such consecutive
powerful numbers is presented in the paper [220]. For instance, in this paper is found
A = 7(2637362)2 = 48689748233308 and B = 3(4028637)2 = 48689748233307.
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7.4.3 Gaps Between Powerful Numbers

The set K of powerful numbers is closed under multiplication. Since there are
infinitely many pairs of powerful numbers which differ by 1, there are infinitely
many pairs of powerful numbers differing by r, for any r ∈ K.

Every positive integer not of the form 2(2b + 1) is difference of two powerful
numbers in at least one way (specifically, as a difference of two perfect squares). For
numbers of the form 2(2b + 1), b � 0, such representations may also exist. Thus:

2 = 33 − 52 30 = 832 − 193

6 =? 34 =?

10 = 133 − 37 38 = 372 − 113

14 =? 42 =?

18 = 192 − 73 = 32(33 − 52) 46 = 172 − 35

22 = 72 − 33 = 472 − 37 50 = 52(33 − 52)

26 = 33 − 12 = 72 · 35 − 1092 54 = 34 − 33 = 33(33 − 52) = 73 − 172.

If u and v are both powerful numbers, (u, v) = 1, and a = u − v, we say that a
has a proper representation as a difference of powerful numbers. We observe that

2b + 1 = (b + 1)2 − b2

8c = (2c + 1)2 − (2c − 1)2

so that all odd numbers, as well as all multiples of 8, have proper representations.
Among the numbers 2(2b + 1), b = 0, 1, . . . , 13 for which representations were
found, there were proper representations included in every case except 2(2b+1) =
50. Finally, for numbers 4(2b + 1), b = 0, 1, . . . , 12, we observe the following
proper representations:

4 = 53 − 112 60 =?

12 = 472 − 133 68 = 33 · 54 − 75

20 =? 76 = 53 − 72

28 =? 84 =?

36 =? 92 =?

44 = 53 − 34 = 132 − 53 100 = 73 − 35

52 =?

It is interesting that if u and v = u+4 are both powerful, then so too are u′ = uv
and v′ = u′ + 4 = (u + 2)2. Thus, from the example 4 = 53 − 112, an infinite
number of proper representations of 4 are obtainable. It would be interesting to
determine whether or not any numbers other than 1 and 4 have infinitely many
proper representations.
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Among the powerful numbers which are not perfect squares, the smallest
difference known to occur infinitely often is 4. Specifically, the equation 3x2−2y2 =
1 has infinitely many solutions for which 3|x, such as x = 9, y = 11. For any
such solution, we have 12x2 − 8y2 = 4, where 12x2 and 8y2 are both powerful,
and neither is a square. The only known instances where the difference between
nonsquare powerful numbers is less than 4 are: 27 − 53 = 3, and (as previously
mentioned) 23 · 32 · 132 − 233 = 1.

It has been conjectured that 6 cannot be represented in any way as a difference
between two powerful numbers. It is further conjectured that there are infinitely
many numbers which cannot be so represented. Other interesting properties and
open problems concerning powerful numbers are mentioned in [141].

7.5 The Diophantine Face of a Problem Involving
Matrices in M2(Z)

Let R be a ring with identity. An element a ∈ R is called unit-regular if a = bub
with b ∈ R and a unit u in R, clean if a = e+u with an idempotent e and a unit u, and
nil-clean if a = e + n with an idempotent e and a nilpotent n. A ring is unit-regular
(or clean, or nil-clean) if all its elements are so. In [48], it was proved that every
unit-regular ring is clean. However, in [103], it was noticed that this implication,
for elements, fails. In the paper, plenty of unit-regular elements which are not clean

are found among 2× 2 matrices of the type

[
a b
0 0

]
with integer entries.

While it is easy to prove that any nil-clean ring is also a clean ring, the question
whether nil-clean elements are clean, was left open (see [63] and restated in [64])
for some 7 years. In this section, following the paper [29], we answer in the negative
this question.

7.5.1 Nil-Clean Matrices in M2(Z)

As this was done (in a special case) in [103], we investigate elements in the 2 × 2
matrix ring M2(Z). Since Z and direct sums of Z are not clean (not even exchange
rings), it makes sense to look for elements which are not clean in this matrix ring.

We first recall some elementary facts.
Let R be an integral domain and A ∈ Mn(R). Then A is a zero divisor if and only

if detA = 0. Therefore idempotents (excepting the identity matrix) and nilpotents
have zero determinant.

For A ∈ Mn(R), rk(A) < n if and only if detA is a zero divisor in R. A matrix
A is a unit in Mn(R) if and only if detA ∈ U(R). Thus, the units in M2(Z) are the
2× 2 matrices of det = ±1.
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Lemma 7.5.1. Nontrivial idempotents in M2(Z) are matrices

[
α+ 1 u
v −α

]

with α2 + α+ uv = 0.

Proof. One way follows by calculation. Conversely, notice that excepting I2, such
matrices are singular. Any nontrivial idempotent matrix in M2(Z) has rank 1. By
Cayley–Hamilton Theorem, E2 − tr(E)E + det(E)I2 = 0. Since det(E) = 0 and
E2 = E we obtain (1 − tr(E)).E = 02 and so, since there are no zero divisors in Z,
tr(E) = 1. ��
Lemma 7.5.2. Nilpotents in M2(Z) are matrices

[
β x
y −β

]

with β2 + xy = 0.

Proof. One way follows by calculation. Conversely, just notice that nilpotent
matrices in M2(Z) have the characteristic polynomial t2 and so have trace and
determinant equal to zero. ��

Therefore the set of all the nil-clean matrices in M2(Z), which use a nontrivial
idempotent in their nil-clean decomposition, is

{[
α+ β + 1 u + x

v + y −α− β

]
|α, β, u, v, x, y ∈ Z, α2 + α+ uv = 0 = β2 + xy

}
.

Remarks. 1) Nil-clean matrices in M2(Z) which use a nontrivial idempotent, have
the trace equal to 1. Otherwise, this is 2 or 0.

2) Since only the absence of nonzero zero divisors is (essentially) used, the above
characterizations hold in any integral domain.

It is easy to discard the triangular case.

Proposition 7.5.3. Upper triangular nil-clean matrices, which are neither unipo-
tent nor nilpotent, are idempotent, and so (strongly) clean.

Proof. Such upper triangular idempotents are

[
α+ 1 u
0 −α

]
with

− det = α2 + α = 0,
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so have α ∈ {−1, 0}, that is,

[
1 u
0 0

]
or

[
0 u
0 1

]
. Upper triangular nilpotents have

the form

[
0 x
0 0

]
, and so upper triangular nil-clean matrices have the form

[
1 u
0 0

]
or

[
0 u
0 1

]
. As noticed before, these are idempotent. ��

In the sequel we shall use the quadratic equation (3.1.1)

ax2 + bxy + cy2 + dx + ey + f = 0,

where a, b, c, d, e, f and are integers.
Denote D =: b2 − 4ac, g =: gcd(b2 − 4ac; 2ae − bd) and

Δ =: 4acf + bde − ae2 − cd2 − fb2.

Then the equation reduces to

−D
g

Y2 + gX2 + 4a
Δ

g
= 0

which (if D > 0) is a general Pell equation. Here

Y = 2ax + by + d and X =
D
g

y +
2ae − bd

g
.

Notice that this equation may be also written as −DY2 + X2 + 4aΔ = 0 replacing
X by gX (and so X = Dy + 2ae − bd).

7.5.2 The General Case

In order to find a nil-clean matrix in M2(Z) which is not clean, we need integers
α, β, u, v, x, y with α2 +α+ uv = 0 = β2 + xy, such that for every γ, s, t ∈ Z, with
γ2 + γ + st = 0, the determinant

det

[[
α+ β − γ u + x − s
v + y − t −α− β + γ

]]
=−(α+ β− γ)2− (u+ x− s)(v+ y− t) /∈{±1}.

That is, subtracting any idempotent

[
γ + 1 s

t −γ

]
from
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[
α+ 1 u
v −α

]
+

[
β x
y −β

]
,

the result should not be a unit in M2(Z).

Remark. Notice that above we have excepted the trivial idempotents. However, this
will not harm since, in finding a counterexample, we ask for the nil-clean example
not to be idempotent, nilpotent nor unit (and so not unipotent).

In the sequel, to simplify the writing, the following notations will be used: firstly,
m := 2α+2β+1 (m is odd and so nonzero) and n := (u+x)(v+y)+(α+β)2+1,
and secondly, r := α+ β and δ := r2 + r + (v + y)(u + x). Then

m = 2r + 1, n = (u + x)(v + y) + r2 + 1 = δ − r + 1.

This way an arbitrary nil-clean matrix which uses no trivial idempotents is now
written

C =

[
r + 1 u + x
v + y −r

]

and δ = − detC. To simplify the wording such nil-clean matrices will be called
nontrivial nil-clean.

Theorem 7.5.4. Let

C =

[
r + 1 u + x
v + y −r

]

be a nontrivial nil-clean matrix and let

E =

[
γ + 1 s

t −γ

]

be a nontrivial idempotent matrix. With above notations, C − E is invertible in
M2(Z) with det(C − E) = 1 if and only if

X2 − (1 + 4δ)Y2 = 4(v + y)2(2r + 1)2(δ2 + 2δ + 2)

with

X = (2r + 1)[−(1 + 4δ)t + (2δ + 3)(v + y)]

and

Y = 2(v + y)2s + (2r2 + 2r + 1 + 2δ)t − (2δ + 3)(v + y).



192 7 Other Applications

Further, C − E is invertible in M2(Z) with det(C − E) = −1 if and only if

X2 − (1 + 4δ)Y2 = 4(v + y)2(2r + 1)2δ(δ − 2)

with

X = (2r + 1)[−(1 + 4δ)t + (2δ − 1)(v + y)]

and

Y = 2(v + y)2s + (2r2 + 2r + 1 + 2δ)t − (2δ − 1)(v + y).

Proof. For given α, β, u, v, x, y, det(C − E) = ±1 amounts to a general inhomo-
geneous equation of the second degree with two unknowns, which we reduce to a
canonical form, as mentioned in the previous section. Here are the details.

−γ2 − st − (α+ β)2 + 2(α+ β)γ + (v + y)s + (u + x)t − (u + x)(v + y)

= (2α+ 2β + 1)γ + (v + y)s + (u + x)t − (u + x)(v + y)− (α+ β)2 = ±1.

The case det = 1. Since

−mγ = (v+y)s+(u+x)t−(u+x)(v+y)−(α+β)2−1 = (v+y)s+(u+x)t−n,

we obtain from (−mγ)2 − m(−mγ) + m2st = 0, the equation

[(v + y)s+ (u + x)t− n]2 − m[(v + y)s+ (u + x)t− n] + m2st = 0,

or

(v + y)2s2 + [2(v + y)(u + x) + m2]st+ (u + x)2t2

−(m + 2n)(v + y)s− (m + 2n)(u + x)t+ (m + n)n = 0.

Thus, with the notations of the previous section

a = (v + y)2, b = [2(v + y)(u + x) + m2], c = (u + x)2

and

d = −(m + 2n)(v + y), e = −(m + 2n)(u + x), f = (m + n)n.

Further

D = [2(v + y)(u + x) + m2]2 − 4(v + y)2(u + x)2
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= m4 + 4m2(v + y)(u + x) = m2[m2 + 4(v + y)(u + x)],

2ae− bd = m2(m + 2n)(v + y) for g = gcd(D, 2ae − bd)

(notice that m2|g) and

Δ = 4acf + bde − ae2 − cd2 − fb2

= 4(v + y)2(u + x)2(m + n)n + [2(v + y)(u + x) + m2](m + 2n)2(v + y)(u + x)

−(v + y)2(m + 2n)2(u + x)2 − (u + x)2(m + 2n)2(v + y)2

−(m + n)n[2(v + y)(u + x) + m2]2

= m4[(v + y)(u + x)− (m + n)n].

The case det = −1. Formally exactly the same calculation, but n is slightly
modified: here

n′ = (u + x)(v + y) + (α+ β)2 − 1,

i.e., n′ := n − 2.
These equations reduce to the canonical form

gX2 − D
g

Y2 = −4a
Δ

g

with

D = m2[m2 + 4(v + y)(u + x)],

g = gcd(D,m2(m + 2n)(v + y)), a = (v + y)2

and

Δ = m4[(v + y)(u + x)− (m + n)n].

Since clearly g = m2g′, in the above equation we can replace D and Δ by
D
m2

and
Δ

m2
(and g = gcd(m2 + 4(v + y)(u + x); (m + 2n)(v + y))), that is D =

m2 + 4(v + y)(u + x) and Δ = m2[(v + y)(u + x)− (m + n)n].
Further, this amounts to g2X2 − DY2 = −4aΔ and so we can eliminate g (by

taking a new unknown: X′ = gX). Hence we reduce to the equation

X2 − [m2 + 4(v + y)(u + x)]Y2 = −4(v + y)2m2[(v + y)(u + x)− (m + n)n].
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which we can rewrite as

X2 − (1 + 4δ)Y2 = 4(v + y)2(2r + 1)2(δ2 + 2δ + 2).

Further, for det = −1, we obtain a similar equation replacing n by n − 2, i.e.,
n = δ − r − 1:

X2 − (1 + 4δ)Y2 = 4(v + y)2(2r + 1)2δ(δ − 2).

The linear systems in s and t corresponding to det = 1 and det = −1, are
respectively:

{
2(v + y)2s + (2r2 + 2r + 1 + 2δ)t − (2δ + 3)(v + y) = Y

(2r + 1)[−(1 + 4δ)t + (2δ + 3)(v + y)] = X

for det = 1
(here −(2r +1)γ = (v+ y)s+(u+ x)t − n = (v+ y)s+(u+ x)t − δ+ r − 1), and

{
2(v + y)2s + (2r2 + 2r + 1 + 2δ)t − (2δ − 1)(v + y) = Y

(2r + 1)[−(1 + 4δ)t + (2δ − 1)(v + y)] = X

for det = −1
(here −(2r+1)γ = (v+ y)s+(u+ x)t − n′ = (v+ y)s+(u+ x)t− δ+ r+1). ��

7.5.3 The Example

Since 1 + 4δ ≥ 1 if δ ≥ 0, in this case, from the general theory of Pell equations,
it is known that the equations emphasized in Theorem 7.5.4 have infinitely many
solutions, and so we cannot decide whether all the linear systems corresponding to
these equations have (or not) integer solutions. However, if δ ≤ −1, then 1+4δ < 0
and we have elliptic type of Pell equations, which clearly have only finitely many
integer solutions.

Take r = 2, δ = −57 and v+y = −7, u+x = 9, that is, the matrix we consider is

[
3 9

−7 −2

]
; 1 + 4δ = −227.

More precisely α = −1, β = 3, u = 0, v = −6, x = 9, and y = −1, i.e., the
nil-clean decomposition

[
3 9

−7 −2

]
=

[
0 0

−6 1

]
+

[
3 9

−1 −3

]
.
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The (elliptic) Pell equation which corresponds to a unit with det = 1 is X2 +
227Y2 = 15.371.300 with X = 3(227t + 777) (we shall not need Y).

Since X = 227(3t + 10) + 61 we deduce X2 = 227k + 89 for a suitable integer
k. However, since 15.371.300 = 67.715× 227− 5 from the Pell equation we obtain
X2 = 227l − 5 (for a suitable integer l) and so there are no integer solutions.

As for the equation which corresponds to det = −1, X2 + 227Y2 = 16.478.700
with X = 3(227t+805). Analogously, X = 227(3t+10)+145and X2 = 227p+141
(for some integer p). Since from the Pell equation (16.478.700 = 72.593×227+89)
we obtain X2 = 227q+89 (for an integer q), and again we have no integer solutions.

7.5.4 How the Example Was Found

A deceptive good news is that both equations (in Theorem 7.5.4) are solvable (over
Z): the first equation admits the solutions

X = ±(v + y)(2r + 1)(2δ + 3) and Y = ±(v + y)(2r + 1),

and the second equation admits the solutions:

X = ±(v + y)(2r + 1)(2δ − 1) and Y = ±(v + y)(2r + 1).

Therefore, the main problem which remains with respect to the solvability of the
initial equations in s and t (γ is determined by s and t) is whether the linear systems
above (in s and t) also have solutions (over Z). Here is an analysis of this problem,
just for the solutions given above.

For a unit with det = 1 we have four solutions:
for +X = +(v + y)(2r + 1)(2δ + 3) we obtain t = 0.
Then for +Y = +(v + y)(2r + 1) we obtain

s = u + x +
r2 + 2r + 2

v + y
and γ = −1

and for −Y = −(v + y)(2r + 1) we obtain

s = u + x +
r2 + 1

v + y
and γ = 0.
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The corresponding clean decompositions are

[
r + 1 u + x
v + y −r

]
=

[
0 u + x + r2+2r+2

v+y

0 1

]
+

[
r + 1 − r2+2r+2

v+y

v + y −r − 1

]

=

[
1 u + x + r2+1

v+y

0 0

]
+

[
r − r2+1

v+y

v + y −r

]
.

Notice that r2 + 1 and r2 + 2r + 2 = (r + 1)2 + 1 are nonzero.
For −X = −(v + y)(2r + 1)(2δ + 3) we obtain

t = (v + y)(1 +
5

1 + 4δ
)

which is an integer if and only if 1 + 4δ divides 5(v + y). However, this has to be
continued with conditions on s.

For a unit with det = −1 we also have four solutions:
for +X = (v+ y)(2r +1)(2δ− 1) we obtain t = 0. Then for +Y = (v+ y)(2r +1)
we obtain

s = u + x +
r2 + 2r
v + y

and γ = −1

and for −Y = −(v + y)(2r + 1) we obtain

s = u + x +
r2 − 1

v + y
and γ = 0.

The corresponding clean decompositions are

[
r + 1 u + x
v + y −r

]
=

[
0 u + x + r2+2r

v+y

0 1

]
+

[
r + 1 − r2+2r

v+y

v + y −r − 1

]

=

[
1 u + x + r2−1

v+y

0 0

]
+

[
r − r2−1

v+y

v + y −r

]
.

Notice that r2 − 1 = 0 if and only if r ∈ {±1} and r2 + 2r = 0 if and only if
r ∈ {0, 2}.

For −X = −(v+y)(2r+1)(2δ−1) we obtain t = (v+y)

(
1 +

1

1 + 4δ

)
which

is an integer if and only if 1+ 4δ divides v+ y. Again, this has to be continued with
conditions on s.

Generally the relations α2+α+uv = 0 and β2+xy = 0, do not imply that v+y
divides any of r2 +1, r2 − 1, r2 +2r = (r +1)2 − 1 or r2 +2r +2 = (r + 1)2 +1
(recall that r = α + β), nor that 1 + 4δ divides 5(v + y) (and so does not divide
v + y).
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Searching for a counterexample, we need integers α, β, u, v, x, y such that α2 +
α+ uv = 0 = β2+ xy, and v+ y does not divide any of the numbers: r2+1, r2− 1,
(r + 1)2 − 1 or (r + 1)2 + 1.

Further, 1 + 4δ should not divide 5(v + y) and, moreover, to cover the trivial
idempotents, we add two other conditions.

Since idempotents and units are clean in any ring, we must add:

det

[
r + 1 u + x
v + y −r

]
�= 0

(this way the nil-clean matrix is not idempotent, nor nilpotent) and

det

[
r + 1 u + x
v + y −r

]
�= ±1,

(it is not a unit, and so nor unipotent), that is δ /∈ {0,±1}.
Notice that if r ∈ {−2,−1, 0, 1}, then 0 appears among our two numbers (r2−1,

(r + 1)2 − 1) and the fraction is zero (i.e., an integer).
Since a matrix is nil-clean if and only if its transpose is nil-clean, we should have

symmetric conditions on the corners v+ y and u+ x, respectively. That is why, u+ x
should not divide any of the numbers: r2 + 1, r2 − 1, (r + 1)2 − 1, or (r + 1)2 + 1,
and further, 1 + 4δ should not divide 5(u + x).

Further, we exclude clean decompositions which use an idempotent of type

[
0 0

k 1

]
.

In this case the unit (supposed with det = −1) should be

[
r + 1 u + x

(v + y)− k −r − 1

]

and if its determinant equals −1 then u + x divides r2 + r. Since idempotent,
nilpotent, unit and so nil-clean matrices have the same property when transposed, to
the conditions above we add u + x and v + y do not divide r2 + r.

By inspection, one can see that there are no selections of u + x and v + y
less than ±7 and ±9, at least for r ∈ {2, 3, . . .10}, which satisfy all the above
nondivisibilities.

Therefore v + y = −7, u + x = 9 is some kind of minimal selection. In order
to keep numbers in the Pell equation as low as possible we choose r = 2 and so
δ = −57.

Indeed, our matrix verifies all these exclusion conditions: −7 and 9 do not divide
any of r2 ± 1 = 3, 5, (r + 1)2 ± 1 = 8, 10 nor r2 + r = 6; 1 + 4δ = −227 (prime
number) does not divide 5× (−7) = −35 nor 5× 9 = 45, and δ /∈ {0,±1}.
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Remark. We found this example in terms of r, δ, u + x, and v + y. It was not
obvious how to come back to the nil-clean decomposition, that is, to α, β, u, v, x,
and y (indeed, this reduces to another elliptic Pell equation!). However, the following
elementary argument showed more: there is only one solution, given by (u, v) =
(0,−6).

The system α+ β = 2, u + x = 9, v + y = −7, α2 + α+ uv = 0 = β2 + xy is
equivalent to (7u− 9v− 59)(7u− 9v− 54)+ 25uv = 0. Denote t = 7u− 9v− 59,

hence u =
1

7
(9v + t + 59). We obtain the equation

t(t + 5) + 25uv = 0.

Looking mod 5, it follows t = 5k, for some integer k. The equation simplifies to
k(k + 1) + uv = 0. That is

k(k + 1) +
1

7
(9v + 5k + 59)v = 0.

Considering the last equation as a quadratic equation in k, we have

7k2 + (5v + 7)k + 9v2 + 59v = 0.

The discriminant of the last equation is

Δ = (5v + 7)2 − 28(9v2 + 59v) = −227v2 − 1582v + 49.

In order to have integer solutions for our last equation it is necessary Δ ≥ 0 and Δ
to be a perfect square. The quadratic function

f (v) = −227v2 − 1582v + 49

has the symmetry axis of the equation vmax = − 1582

2 · 227 < 0, and f (1) < 0, hence

there are no integers v ≥ 1 such that f (v) ≥ 0.
On the other hand, we have f (−7) = 0, giving k = 2, hence t = 10. Replacing in

the equation (1) we obtain 6− 7u = 0, equation with no integer solution. Moreover,
we have f (v) < 0 for all v < −7.

From the above remark, it follows that all possible integer solutions for v are −6,
−5, −4, −3, −2, −1, 0. Checking all these possibilities we obtain f (−6) = 372 and
then k = −1. We get t = −5, and equation (1) becomes −6u = 0, hence u = 0.
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7.6 A Related Question

Since both unit-regular and nil-clean rings are clean, a natural question is whether
these two classes are somehow related. First Z3 (more generally, any domain with
at least 3 elements) is a unit-regular ring which is not nil-clean, and, Z4 (more
generally, any nil clean ring with nontrivial Jacobson radical) is nil-clean but not
unit-regular.

Finally, we give examples of nil-clean matrices in M2(Z) which are not unit-
regular, and unit-regular matrices which are not nil-clean.

Recall that the set of all the nontrivial nil-clean matrices in M2(Z) is

{[
α+ β + 1 u + x

v + y −α− β

]
|α, β, u, v, x, y ∈ Z, α2 + α+ uv = 0 = β2 + xy

}
,

and that the only nonzero unit-regular matrices with a zero second row are

[
a b
0 0

]
,

with (a, b) unimodular (i.e., a row whose entries generate the unit ideal) [see [103]).

Hence

[
2 1

0 0

]
is unit-regular but not nil-clean (nil-clean matrices have trace equal

to 2,1 or 0; in the first case

[
2 1

0 0

]
− I2 is not nilpotent). Conversely, first notice that

the nil-clean matrices with a zero second row are exactly the matrices

[
1 b
0 0

]
, b ∈ Z.

Being idempotent, these are also unit-regular (so not suitable).
However, consider the nil-clean matrix (with our notations α = β = v = x = 0,

u = 1, y = 2)

A =

[
1 1

2 0

]
.

Suppose A is unit-regular. Then, using an equivalent definition, A = EU with E =
E2 and U ∈ GL2(Z). Since detA = −2 �= ±1, A is not a unit and so E �= I2. Hence
detE = 0 and from detA = detE · detU, we obtain a contradiction.
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