
Chapter 6
Diophantine Representations of Some Sequences

In 1900, David Hilbert asked for an algorithm to decide whether a given Diophantine
equation is solvable or not and put this problem tenth in his famous list of 23.

In 1970, it was proved that such an algorithm cannot exist, i.e., the problem is
recursively undecidable. Proof was supplied by Yu. V. Matiyasevich [133], heavily
leaning on results arrived at by M. Davis, J. Robinson, and H. Putnam [60]. This
was accomplished by proving that any enumerable set A ⊆ N = {0, 1, 2, . . . } can
be represented in the following form: There exists a polynomial p(x, x1, . . . , xn) with
n ≥ 0 such that a ∈ A if and only if p(a, x1, . . . , xn) = 0 is solvable for particular
nonnegative integers x1, . . . , xn, i.e.,

a ∈ A ⇔ ∃ x1, . . . , xn ≥ 0 : p(a, x1, . . . , xn) = 0.

Therefore, the set A equals the set of parameters for which the equation p = 0 is
solvable. Employing an idea of H. Putnam [178] this can be reformulated as follows.
If q(x, x1, . . . , xn) = x(1−p(x, x1, . . . , xn)

2), then A equals the set of positive values
of q, where its variables range over the nonnegative integers. Among the recursively
enumerable sets there are many for which such representation is surprising. We will
name some examples which are of importance in number theory.

(1) The primes and their recursively enumerable subsets, most outstanding Fermat-,
Mersenne-, and Twin-primes.

(2) The set of partial denominators of the continued fraction expansion of numbers
as e, π and 3

√
2. (Whereas for e this is known to equal {1}∪ {2, 4, 6, . . . }, there

is only computer-based research regarding the other numbers.

In this chapter we will introduce a Diophantine representation concept for
sequences of integers that refines the idea of Diophantine set. This concept proves
helpful in solving several types of Diophantine equations.
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146 6 Diophantine Representations of Some Sequences

6.1 Diophantine r-Representable Sequences

The sequence (xm)m≥1 is Diophantine r-representable if there exists a sequence
(Pn)n≥1 of polynomials of degree r, Pn ∈ Z[X1, . . . ,Xr], such that for any positive
integer n the following equality holds:

Pn(xn−r+1, . . . , xn) = 0. (6.1.1)

This means that the sequence (xm)m≥1 has the above property if and only if
among the solutions to the Diophantine equation

Pn(y1, y2, . . . , yr) = 0

there are some for which y(n)
1 = xn−r+1, y(n)

2 = xn−r+2, . . . , y(n)
r = xn, for all

positive integers n.
The main result of this section is that any sequence defined by a linear recurrence

of order r is Diophantine r-representable. Our approach follows the method given
in [27] and [47] (see also [28] in the case r = 2).

Consider the sequence (xn)n≥1 defined recursively by

⎧
⎪⎨

⎪⎩

xi = αi, i = 1, 2, . . . , r

xn =

r∑

k=1

akxn−r−1+k, n ≥ r + 1
(6.1.2)

where α1, α2, . . . , αr and a1, a2, . . . , ar are integers with a1 	= 0.
For n ≥ r, let

Dn = det

⎡

⎢
⎢
⎣

xn−r+1 xn−r+2 . . . xn−1 xn

xn−r+2 xn−r+3 . . . xn xn+1

. . . . . . . . . . . . . . .

xn xn+1 . . . xn+r−2 xn+r−1

⎤

⎥
⎥
⎦ (6.1.3)

Lemma 6.1.1. For all integers n ≥ r, the following equality holds:

Dn = (−1)(r−1)(n−r)an−r
1 Dr. (6.1.4)

Proof. Following the method of [104, 135] and [202] we introduce the matrix

An =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xn−r+1 xn−r+2 . . . xn−1 xn

xn−r+2 xn−r+3 . . . xn xn+1

. . . . . . . . . . . . . . .

xn−1 xn . . . xn+r−3 xn+r−2

xn xn+1 . . . xn+r−2 xn+r−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.
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It is easy to see that

An+1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 . . . 0 0 0

0 0 1 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 1 0

0 0 0 0 . . . 0 0 1

a1 a2 a3 a4 . . . ar−2 ar−1 ar

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

· An

and so that

An =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 . . . 0 0 0

0 0 1 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 1 0

0 0 0 0 . . . 0 0 1

a1 a2 a3 a4 . . . ar−2 ar−1 ar

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

n−r

· Ar. (6.1.5)

Passing to determinants in (6.1.5), we obtain ((−1)r−1a1)n−rDr = Dn for n ≥ r,
that is the relation (6.1.4). 
�
Theorem 6.1.2. Any sequence defined by a linear recurrence of order r is Diophan-
tine r-representable.

Proof. Consider the sequence (xn)n≥1 defined by (6.1.2) and let Pn ∈ Z[X1, . . . ,Xr]
be the polynomial given by

Pn(y1, . . . , yr) = Fr(y1, . . . , yr)− (−1)(r−1)(n−r)an−r
1 Fr(α1, . . . , αr) (6.1.6)

where Fr ∈ Z[X1, . . . ,Xr] is obtained from the determinant (6.1.3) and the recursive
relation (6.1.2).

From the relation (6.1.4) it follows that for all n ≥ r the following equalities hold

Pn(xn−r+1, . . . , xn)=Fr(xn−r+1, . . . , xn)− (−1)(r−1)(n−r)an−r
1 Fr(α1, . . . , αr)

= Dn − (−1)(r−1)(n−r)an−r
1 Dr = 0,

i.e., the sequence (xn)n≥1 is Diophantine r-representable. 
�
Remarks. 1) When r = 2, the polynomial Fr in (6.1.6) is given by

F2(x, y) = x2 − a2xy − a1y2 (6.1.7)

and it follows that, for the sequence (xn)n≥1 defined by
{

x1 = α1, x2 = α2

xn = a1xn−2 + a2xn−1, n ≥ 3
(6.1.8)
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the relation F2(xn−1, xn) = (−1)nan−2
1 F2(α1, α2) holds, i.e.,

x2n − a2xn−1xn − a1x2n−1 = (−1)nan−2
1 (α2

2 − a2α1α2 − a1α
2
1). (6.1.9)

The relation (6.1.9) is the first relation of [35] and [36].
2) In the particular case r = 3, after elementary calculation, we obtain

F3(x, y, z) = −x3−(a1 + a2a3)y
3 − a21z3 + 2a3x2y + a2x2z

−(a22 + a1a3)y
2z − (a23 − a2)xy2

−a1a3xz2 − 2a1a2yz2 + (3a1 − a2a3)xyz,

hence we get that, for the linear recurrence

{
x1 = α1, x2 = α2, x3 = α3

xn = a1xn−2 + a2xn−2 + a3xn−1, n ≥ 4
(6.1.10)

the relation

F3(xn−2, xn−1, xn) = an−3
1 F3(α1, α2, α3) (6.1.11)

is true.
3) If in the proof of Theorem 6.1.2, the equation Pn(xn−r+1, . . . , xn) = 0 can be

solved with respect to xn, then xn can be written as a function in r − 1 variables
xn−r+1, . . . , xn−1.

4) Note that the polynomial Fr ∈ Z[X1, . . . ,Xr] can be viewed as an “invariant” to
the sequence (xn)n≥1 defined by (6.1.2).

5) For additional informations about the special case r = 2 we refer to [92].

6.2 A Property of Some Special Sequences

If a1 = a2 = 1 and α1 = α2 = 1, then (6.1.8) defines the Fibonacci sequence
(Fn)n≥1 (see [105, 114, 187]) and [217] for many interesting properties). From
(6.1.9) we obtain

F2
n − FnFn−1 − F2

n−1 = (−1)n−1. (6.2.1)

If a1 = a2 = 1 and α1 = 1, α2 = 3, then (6.1.8) defines the Lucas sequence
(Ln)n≥1 (see [105]) and from (6.1.9) it follows that

L2
n − LnLn−1 − L2

n−1 = 5(−1)n. (6.2.2)
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If a1 = 1, a2 = 2 and α1 = 1, α2 = 3, then (6.1.8) gives the Pell sequence
(Pn)n≥1 (see [106]) and the relation (6.1.9) becomes

P2
n − 2PnPn−1 − P2

n−1 = (−1)n−1. (6.2.3)

From the relations (6.2.1), (6.2.2), (6.2.3) we deduce

Fn =
1

2

(

Fn−1 +
√

5F2
n−1 + 4(−1)n−1

)

(6.2.4)

Ln =
1

2

(

Ln−1 +
√

5L2
n−1 + 20(−1)n

)

(6.2.5)

Pn = Pn−1 +
√

2P2
n−1 + (−1)n−1. (6.2.6)

These identities give the possibility for writing computer programs that facilitate
the computation of the terms of each of the three sequences (Fn)n≥1, (Ln)n≥1,
(Pn)n≥1.

In [183] it is given a method for obtaining the relation (6.2.4) by using hyperbolic
functions. Similar results are also presented in [90].

Proposition 6.2.1. If the sequence (xn)n≥1 is given by (6.1.8), then for all integers
n ≥ 3, the integer

(a22 + 4a1)x
2
n−1 + 4(−1)n−1an−2

1 (a1α
2
1 + a2α1α2 − α2

2)

is a perfect square.

Proof. From (6.1.9) we obtain

(a22 + 4a1)x
2
n−1 + 4(−1)n−1an−2

1 (a1α
2
1 + a2α1α2 − α2

2) = (2xn − a2xn−1)
2

which finishes the proof. 
�

Proposition 6.2.2. Let α1, α2 and k be nonzero integers. The general Pell’s
equations

x2 − (k2 + 4)y2 = 4(α2
1 + kα1α2 − α2

2)

and

(k2 + 4)u2 − v2 = 4(α2
1 + kα1α2 − α2

2)

are solvable.

Proof. In (6.1.8) consider a1 = 1 and a2 = k. From Proposition 6.2.1 it follows that
(x, y) = (2xn − kxn−1, xn−1) is a solution to the first equation whenever n is odd. If
n is even, then (u, v) = (xn−1, 2xn −kxn−1) is a solution to the second equation. 
�
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Remark. Note that the first equation in Proposition 6.2.2 has solution (2α1 +
kα2, α2). From Theorem 4.5.1 it follows that it has infinitely many integral
solutions.

Similarly, the second equation in Proposition 6.2.2 has solution (kα1 + (k2 +
2)α2, α1 + kα2), and by applying Theorem 4.5.1 we deduce that it has infinitely
many integral solutions.

6.3 The Equations x2 + axy + y2 = ±1

The result in Theorem 5.6.1 shows that if |a| > 2 the pairs (−vn, vn+1), (vn,−vn+1),
(−vn+1, vn), (vn+1,−vn) of consecutive terms in the sequence given by

vn =
1√

a2 − 4

[(
a +

√
a2 − 4

2

)n

−
(

a −√
a2 − 4

2

)n]

can be characterized as solutions to the equation x2 + ax + y2 = 1.
On the other hand, the sequence (vn)n≥0 satisfies the linear recurrence of order 2

vn+1 = avn − vn−1, n ≥ 1, where v0 = 0 and v1 = 1.

Therefore the solutions to the discussed equation consists of all pairs of
consecutive terms in a sequence defined by a second order recursive linear relation.

In what follows, we will study the equation

x2 + axy + y2 = −1, (6.3.1)

which is also a special case of (4.8.1).

Theorem 6.3.1. The equation (6.3.1) is solvable in integers if and only if a = ±3.
If a = −3, then the solutions are

(−F2n−1,−F2n+1), (−F2n+1,−F2n−1),

(F2n−1,F2n+1), (F2n+1,F2n−1), n ≥ 1.

If a = 3, then the solutions are

(−F2n−1,F2n+1), (−F2n+1,F2n−1),

(F2n−1,−F2n+1), (F2n+1,−F2n−1), n ≥ 1,

where (Fm)m≥1 is the Fibonacci sequence.
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Proof. First consider a < 0. If there is a solution (x, y), then xy > 0. Therefore, we
may assume that x > 0, y > 0 and we may consider that x is minimal.

If a 	= −3, then x 	= y, for otherwise (a + 2)x2 = −1, which is impossible,
because a + 2 	= −1. We have

0 = x2 + axy + y2 + 1 = (x + ay)2 − axy − a2y2 + y2 + 1

= (−x − ay)2 + a(−x − ay)y + y2 + 1,

hence (−x − ay, y) is also a solution. It follows that −x − ay > 0.
If we prove that −x − ay < x, then we contradict the minimality of x. Indeed,

from the symmetry of the equation, we may assume that x > y. Then x2 > y2+1 =
x(−x − ay), so x > −x − ay. It follows that in this case the equation (6.3.1) is not
solvable.

Consider now a > 0 and let (x, y) be a solution. Then xy < 0 and we may assume
for example that x > 0 and y < 0. Setting z = −y, we obtain the equivalent equation
x2 + (−a)xz + z2 = −1, with x > 0, z > 0, which we examined above. It follows
that the equation (6.3.1) is not solvable if −a 	= −3, i.e., a 	= 3.

It remains to solve the equation when a = ±3. First, consider the case a =
−3 and write the equation x2 − 3xy + y2 = −1 in the following equivalent form
(2x − 3y)2 − 5y2 = −4. This is a special Pell’s equation:

u2 − 5v2 = −4. (6.3.2)

Its minimal solution is (1, 1). By the results in Section 4.3.2, it follows that the
general solution (um, vm) to (6.3.2) is given by

um + vm

√
5 = 2

(
1 +

√
5

2

)m

, m = 1, 3, 5, . . .

Since

um − vm

√
5 = 2

(
1−√

5

2

)m

, m = 1, 3, 5, . . .

we obtain

um =

(
1 +

√
5

2

)m

+

(
1−√

5

2

)m

and

vm =
1√
5

[(
1 +

√
5

2

)m

−
(
1−√

5

2

)m]

= Fm

where m = 1, 3, 5, . . .
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It follows that 2x − 3Fm = um, hence

x =

(
3

2
√
5
+

1

2

)(
1 +

√
5

2

)m

−
(

3

2
√
5
− 1

2

)(
1−√

5

2

)m

=
(1 +

√
5)2

4
√
5

(
1 +

√
5

2

)m

− (1−√
5)2

2
√
5

(
1−√

5

2

)m

=
1√
5

⎡

⎣

(
1 +

√
5

2

)m+2

−
(
1−√

5

2

)m+2
⎤

⎦ = Fm+2.

We obtain the solutions (F2n+1,F2n−1), n ≥ 1, and by the symmetries (x, y) →
(y, x) and (x, y) → (−x,−y) we find the others.

If a = 3, the substitution y = −z transforms the equation into

x2 − 3xz + z2 = −1.

From the above considerations we obtain the solutions

(x, z) = (F2n+1,F2n−1)

and by using the same symmetries we get the four families of solutions given in the
Theorem. 
�
Remarks. 1) The conclusion in Theorem 6.3.1 can be also obtained by considering

the more general equation (see [200] or [25]):

x2 + y2 + 1 = xyz.

The integral solutions (x, y, z) to this equation are given by

(−F2n−1,−F2n+1, 3), (−F2n+1,−F2n−1, 3), (F2n−1,F2n+1, 3),

(F2n+1,F2n−11, 3), (−F2n−1,F2n+1,−3), (−F2n+1,F2n−1,−3),

(F2n−1,−F2n+1,−3), (F2n+1,−F2n−1,−3), n ≥ 1.

2) In [150] it is considered the more general equation

f1(x, y) = zf2(x, y)

where f1(x, y) = ax2 + bxy + cy2 + dx + ey + f , f2(x, y) = pxy + qx + ry +
s are quadratic forms with integer coefficients and ac 	= 0, a| gcd(b, d, p, q),
c| gcd(b, e, p, r).
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3) In the paper [188] is considered the equation

x4 − 6x2y2 + 5y4 = 16Fn−1Fn+1, (6.3.3)

when one of the Fibonacci numbers Fn−1, Fn+1 is prime and another is prime
or it is a product of two different prime numbers. There are such Fibonacci
numbers, for example F5 = 5 and F7 = 13; F11 = 89 and F13 = 233; F17 =
1597 and F19 = 165580141 = F29 = 514229 and F31 = 1346269 = 557·2147;
F41 = 165580141 = 2789 · 59369 and F43 = 433494437.

Using the equivalent form (x2−5y2)(x2−y2) = 16Fn−1Fn+1 to the equation,
and the result in Theorem 4.1.1, in the paper [188] is shown that all integral
solutions (x, y, n) to (6.3.3) are (x, y, n) = (±L6l,±F6l, 6l), l ≥ 1, when 6l − 1
are prime numbers, F6l+1 is a product of two different primes, and L6l is the
Lucas number.

6.4 Diophantine Representations of the Sequences
Fibonacci, Lucas, and Pell

In this section we will consider some special cases of the Diophantine equation

x2 + axy − y2 = b (6.4.1)

where a and b are integers and we will show that all nontrivial positive solutions to
(6.4.1) are representable by pairs of consecutive terms in the sequences (Fn)n≥1,
(Ln)n≥1, (Pn)n≥1. These results are given in [47] but the method used there is
different and more complicated. Note that this equation is a special case of (4.8.1).

Theorem 6.4.1. (i) The nontrivial positive integer solutions to the equation

x2 + xy − y2 = −1 (6.4.2)

are given by (F2n,F2n+1), n ≥ 1.
(ii) The nontrivial positive integer solutions to the equation

x2 + xy − y2 = 1 (6.4.3)

are given by (F2n−1,F2n), n ≥ 1.

Proof. (i) The equation is equivalent to

(2x + y)2 − 5y2 = −4.
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This is a special Pell’s equation of the form u2 − 5v2 = −4 and has solution

1

2
(um + vm

√
5) =

(
1 +

√
5

2

)m

, m = 3, 5, . . .

(see Theorem 4.4.1). It follows that

um =

(
1 +

√
5

2

)m

+

(
1−√

5

2

)m

and

vm =
1√
5

[(
1 +

√
5

2

)m

−
(
1−√

5

2

)m]

, m = 3, 5, . . .

Hence ym = vm and

xm =
1

2
(um − vm) =

1

2

[(

1− 1√
5

)(
1 +

√
5

2

)m

+

(

1 +
1√
5

)(
1−√

5

2

)m]

=
1√
5

⎡

⎣

(
1 +

√
5

2

)m−1

−
(
1−√

5

2

)m−1
⎤

⎦ , m = 3, 5, . . .

Thus (xn, yn) = (F2n,F2n+1), n ≥ 1.
(ii) Similarly, we obtain the equivalent equation

(2x + y)2 − 5y2 = 4

which is a special Pell’s equation of the form u2 − 5v2 = 4 and has solution

un =

(
3 +

√
5

2

)n

+

(
3−√

5

2

)n

,

vn =
1√
5

[(
3 +

√
5

2

)n

−
(
3−√

5

2

)n]

,

where n ≥ 1 (see (4.3.2)).
It follows that

yn = vn =
1√
5

⎡

⎣

(
1 +

√
5

2

)2n

−
(
1−√

5

2

)2n
⎤

⎦ = F2n
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and

xn =
1

2
(un − vn) =

1

2

⎡

⎣

(

1− 1√
5

)(
1 +

√
5

2

)2n

+

(

1 +
1√
5

)(
1−√

5

2

)2n
⎤

⎦

=
1√
5

⎡

⎣

(
1 +

√
5

2

)2n−1

−
(
1−√

5

2

)2n−1
⎤

⎦ = F2n−1.


�
Theorem 6.4.2. (i) The nontrivial positive integer solutions to the equation

x2 + xy − y2 = −5 (6.4.4)

are given by (L2n−1,L2n), n ≥ 1.
(ii) The nontrivial positive integer solutions to the equation

x2 + xy − y2 = 5 (6.4.5)

are given by (L2n,L2n+1), n ≥ 1.

Proof. Recall that the general term of the Lucas sequence is given by

Lm =

(
1 +

√
5

2

)m

+

(
1−√

5

2

)m

, m ≥ 1. (6.4.6)

(i) Write the equation in the equivalent form

(2x + y)2 − 5y2 = −20

and let 2x+ y = 5u, y = v. We obtain the special Pell’s equation v2 − 5u2 = 4,
whose solutions are

vn =

(
3 +

√
5

2

)n

+

(
3−√

5

2

)n

,

un =
1√
5

[(
3 +

√
5

2

)n

−
(
3−√

5

2

)n]

, n ≥ 1.

It follows that

yn = vn =

(
1 +

√
5

2

)2n

+

(
1−√

5

2

)2n

= L2n
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and

xn =
1

2
(5un − vn) =

⎡

⎣(
√
5− 1)

(
1 +

√
5

2

)2n

− (
√
5 + 1)

(
1−√

5

2

)2n
⎤

⎦

=

(
1 +

√
5

2

)2n−1

+

(
1−√

5

2

)2n−1

= L2n−1.

(ii) Similarly, the equivalent equation (2x + y)2 − 5y2 = 20 reduces to v2 − 5u2 =
−4, where 2x + y = 5u and y = v. We have

1

2
(vm + um

√
5) =

(
1 +

√
5

2

)m

, m = 1, 3, 5, . . .

(see Theorem 4.4.1), hence

ym = vm =

(
1 +

√
5

2

)m

+

(
1−√

5

2

)m

= Lm, m = 1, 3, 5, . . .

and

xm =
1

2
(5um − vm) =

1

2

[

(
√
5− 1)

(
1 +

√
5

2

)m

− (
√
5 + 1)

(
1−√

5

2

)m]

=

(
1 +

√
5

2

)m−1

+

(
1−√

5

2

)m−1

= Lm−1, m = 1, 3, 5, . . .


�
Theorem 6.4.3. (i) The nontrivial positive integer solutions to the equation

x2 + 2xy − y2 = −1 (6.4.7)

are given by (P2n,P2n+1), n ≥ 0.
(ii) The nontrivial positive integer solutions to the equation

x2 + 2xy − y2 = 1

are given by (P2n−1,P2n), n ≥ 1.

Proof. The general term of the Pell’s sequence is given by

Pm =
1

2
√
2
[(1 +

√
2)m − (1−

√
2)m], m ≥ 1. (6.4.8)
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(i) Write the equation in the equivalent form (x+y)2−2y2 = −1. This is a negative
Pell’s equation of the form u2 − 2v2 = −1, whose solutions are given by

un =
1

2
[(1 +

√
2)2n+1 + (1−

√
2)2n+1]

and

vn =
1

2
√
2
[(1 +

√
2)2n+1 − (1−

√
2)2n+1], n ≥ 0.

It follows that

yn = vn = P2n+1

and

xn − un − vn =
1

2

[(

1− 1√
2

)

(1 +
√
2)2n+1 +

(

1 +
1√
2

)

(1−
√
2)2n+1

]

=
1

2
√
2
[(1 +

√
2)2n − (1−

√
2)2n] = P2n.

(ii) We obtain the Pell’s equation (x + y)2 − 2y2 = 1, whose solutions are

xn + yn =
1

2
[(1 +

√
2)2n + (1−

√
2)2n],

yn =
1

2
√
2
[(1 +

√
2)2n − (1−

√
2)2n], n ≥ 1.

It follows that yn = P2n and

xn =
1

2

[(

1− 1√
2

)

(1 +
√
2)2n +

(

1 +
1√
2

)

(1−
√
2)2n

]

=
1

2
√
2
[(1 +

√
2)2n−1 − (1−

√
2)2n−1] = P2n−1.


�
The results in Theorems 6.4.1–6.4.3 can be summarized in the following

Theorem proven by the infinite descent method in [47].

Theorem 6.4.4. Let a be a positive integer and let (αn)n≥1 be the sequence defined
recursively by

{
α1 = 1, α2 = a
αn+1 = aαn + αn−1, n ≥ 2.

(6.4.9)
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Then all positive integer solutions to the equation

|x2 + axy − y2| = 1 (6.4.10)

are given by (αn, αn+1), n ≥ 1.

Proof. The general term of the sequence (αn)n≥1 in (6.4.9) is given by

αn =
1√

a2 + 4

[(
a +

√
a2 + 4

2

)n

−
(

a −√
a2 + 4

2

)n]

, n ≥ 1. (6.4.11)

The equation x2+axy−y2 = −1 is equivalent to (2x+ay)2−(a2+4)y2 = −4, which
is a special Pell’s equation of the form u2 − (a2 +4)v2 = −4. From Theorem 4.4.1
it follows that

1

2
(um + vm

√
a2 + 4) =

(
a +

√
a2 + 4

2

)m

, m = 1, 3, 5, . . .

Hence

um =

(
a +

√
a2 + 4

2

)m

+

(
a −√

a2 + 4

2

)m

and

vm =
1√

a2 + 4

[(
a +

√
a2 + 4

2

)m

−
(

a −√
a2 + 4

2

)m]

.

Therefore ym = vm = αm, m = 1, 3, 5, . . . , and

xm =
1

2
(um − avm)

=
1

2

[(

1− a√
a2 + 4

)(
a +

√
a2 + 4

2

)m

+

(

1 +
a√

a2 + 4

)(
a −√

a2 + 4

2

)m]

=
1√

a2 + 4

⎡

⎣

(
a +

√
a2 + 4

2

)m−1

−
(

a −√
a2 + 4

2

)m−1
⎤

⎦ = αm−1.

The equation x2+axy−y2 = 1 is equivalent to (2x+ay)2−(a2+4)y2 = 4. From
Theorem 4.4.1 it follows that the general solution to the equation u2−(a2+4)v2 = 4
is given by
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1

2
(un + vn

√
a2 + 4) =

(
a2 + 2 + a

√
a2 + 4

2

)n

=

(
a +

√
a2 + 4

2

)2n

.

We obtain

un =

(
a +

√
a2 + 4

2

)2n

+

(
a −√

a2 + 4

2

)2n

,

vn =
1√

a2 + 4

⎡

⎣

(
a +

√
a2 + 4

2

)2n

−
(

a −√
a2 + 4

2

)2n
⎤

⎦ .

Hence yn = vn = α2n and

xn =
1

2
(un − avn)

=
1

2

⎡

⎣

(

1− a√
a2 + 4

)(
a +

√
a2 + 4

2

)2n

+

(

1+
a√

a2 + 4

)(
a −√

a2 + 4

2

)2n
⎤

⎦

=
1√

a2 + 4

⎡

⎣

(
a +

√
a2 + 4

2

)2n−1

−
(

a −√
a2 + 4

2

)2n−1
⎤

⎦ = α2n−1.


�
Remarks. 1) Theorem 6.4.4 characterizes the pairs of consecutive terms of the

sequence (αn)n≥1 defined by the linear recurrence (6.4.9).
2) The set consisting of α2k, k ≥ 1, is included in the set of positive values of the

polynomial

P1(x, y) = x[1− (x2 + axy − y2 − 1)2]

and the set consisting of α2k+1, k ≥ 0, is included in the set of positive values of
the polynomial

P2(x, y) = x[1− (x2 + axy − y2 + 1)2].

3) The result in Theorem 6.4.4 also appears in the paper [134].
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6.5 Diophantine Representations of Generalized
Lucas Sequences

We define the generalized Lucas sequence (γn)n≥0, γn = γn(a, b), with parameters
a, b ∈ Z

∗ by

γn+1 = f (a, b)γn − γn−1, n ≥ 1 (6.5.1)

where f : Z∗ × Z
∗ → Z is a given function and γ0 = γ0(a, b), γ1 = γ1(a, b) are

given integers.
The following theorems generalize all results in Section 6.4.

Theorem 6.5.1. Let a, b be nonzero integers such that b 	= 1 and a2 − 4b > 0 is a
nonsquare. All integral solutions to the equation

x2 + axy + by2 = 1 (6.5.2)

are given by (αn, βn)n≥1, (−αn,−βn)n≥1, where (αn)n≥1, (βn)n≥1 are the general-
ized Lucas sequences defined by

αn+1 = u0αn − αn−1, α0 = 2, α1 = u0 and

βn+1 = u0βn − βn−1, β0 = 1, β1 =
1

2
(u0 − av0).

(6.5.3)

Here u0 = u0(a, b), v0 = v0(a, b) are the minimal solutions to the special Pell’s
equation

u2 − (a2 − 4b)v2 = 4. (6.5.4)

Proof. The general terms of the sequences (αn)n≥0 and (βn)n≥0 are given by

αn =

(
u0 + v0

√
a2 − 4b

2

)n

+

(
u0 − v0

√
a2 − 4b

2

)n

and

βn =
1

2

[(

1− a√
a2 − 4b

)(
u0 + v0

√
a2 − 4b

2

)n

+

(

1 +
a√

a2 − 4b

)(
u0 − v0

√
a2 − 4b

2

)n]

.
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The equation (6.5.2) is equivalent to (2x + ay)2 − (a2 − 4b)y2 = 4, i.e., to the
general Pell’s equation (6.5.3). From Theorem 4.4.1 its general solution is given by

1

2
(un + vn

√
a2 − 4b) =

(
u0 + v0

√
a2 − 4b

2

)n

, n ≥ 1.

It follows that

un =

(
u0 + v0

√
a2 − 4b

2

)n

+

(
u0 − v0

√
a2 − 4b

2

)n

and

vn =
1√

a2 − 4b

[(
u0 + v0

√
a2 − 4b

2

)n

−
(

u0 − v0
√

a2 − 4b
2

)n]

, n ≥ 1.

Thus yn = vn = αn and xn =
1

2
(un − avn) = βn. 
�

Remark. Theorems 6.5.1 and 6.5.2 give an useful method for solving the Diophan-
tine equations of degree three in four variables

x2 + uxy + vy2 = ±1.

Indeed, setting u = a, v = b, with a, b ∈ Z, the above equations are equivalent to

(2x + ay)2 − (a2 − 4b)y2 = ±4.

If a2 − 4b < 0, there are at most finitely many solutions.
If a2 − 4b = 0, the equations reduce to (2x + ay)2 = ±4, and for a even we

obtain solutions

(

−ka
2

± 1, k

)

, k ∈ Z.

If a2 − 4b > 0 is a perfect square, there are at most finitely many solutions.
If a2−4b > 0 is not a square, then all solutions to the equation x2+uxy+vy2 = 1

are given by (x, y, u, v) = (±αm,±βm, a, b), m ≥ 1, where (αm), (βm) are the
generalized Lucas sequences defined in Theorem 6.5.1.

All solutions to the equation x2 + uxy + vy2 = −1 are given by

(x, y, u, v) = (±α2n+1,±β2n+1, a, b), n ≥ 0,

where (αm), (βm) are defined in Theorem 6.5.2.
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For some particular values of a and b the generalized Lucas sequences (αn)n≥0

and (βn)n≥0 defined by (6.5.3) coincide with some classical sequences. In the
following table we will give a few such situations (see also Section 6.4).

a b Equation (6.5.2) Solutions

1 −1 x2 + xy − y2 = 1 (F2n−1,F2n), (−F2n−1,−F2n)

−1 −1 x2 − xy − y2 = 1 (F2n+1,F2n), (−F2n+1,−F2n)

2 −1 x2 + 2xy − y2 = 1 (P2n−1,P2n), (−P2n−1,−P2n)

−2 −1 x2 − 2xy − y2 = 1 (P2n+1,P2n), (−P2n+1,−P2n)

Theorem 6.5.2. Let a, b be nonzero integers such that b 	= 1 and a2 − 4b > 0 is a
nonsquare. Assume that the special Pell’s equation

s2 − (a2 − 4b)t2 = −4 (6.5.5)

is solvable and its minimal solution is (s0, t0), s0 = s0(a, b), t0 = t0(a, b). Then all
integral solutions to the equation

x2 + axy + by2 = −1 (6.5.6)

are given (α2n+1, β2n+1), (−α2n+1,−β2n+1), n ≥ 1, where (αm)m≥0, (βm)m≥0 are
the generalized Lucas sequences defined by

αm+1 = s0αm − αm−1, α0 = 2, α1 = s0 and

βm+1 = s0βm − βm−1, β0 = 1, β1 =
1

2
(s0 − at0).

(6.5.7)

Proof. We proceed like in the previous theorem and take into account the results in
Theorem 4.4.1 concerning the general solution to the equation (6.5.5). 
�

In some special cases, the generalized Lucas sequences defined by (6.5.7) yield
to solutions involving well-known sequences. We will illustrate this by presenting
the following table (see also Section 6.5).

a b Equation (6.5.6) Solutions

1 −1 x2 + xy − y2 = −1 (F2n,F2n+1), (−F2n,−F2n+1)

−1 −1 x2 − xy − y2 = −1 (F2n,F2n−1), (−F2n,−F2n−1)

2 −1 x2 + 2xy − y2 = −1 (P2n,P2n+1), (−P2n,−P2n+1)

−2 −1 x2 − 2xy − y2 = −1 (P2n,P2n−1), (−P2n,−P2n−1)

5 5 x2 + 5xy + 5y2 = −1 (L2n,−F2n+1), (−L2n,F2n+1)
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Remarks. 1) The solvability condition for the general Pell’s equation (6.5.5) in
Theorem 6.5.2 is necessary. Indeed, for example, for a = 5, b = 1 the equation

s2 − 21t2 = −4

is not solvable (the left-hand side is congruent to 0 or 1 (mod 3)). The
corresponding equation (6.5.6):

x2 + 5xy − y2 = −1

is also not solvable.
2) The special case b = −1 is studied in [134]. Particular Diophantine repre-

sentations for the Fibonacci and Lucas sequences are given in [96] and [97].
We also mention the connection with the general Pell’s equation given in [61].
A particular definition for generalized Lucas sequences appears in [91].

An interesting special case for the equation (6.5.2) is a = b. We obtain the
Diophantine equation

x2 + axy + ay2 = 1. (6.5.8)

The general Pell’s equation (6.5.4) becomes u2 − (a2 − 4a)v2 = 4, whose
minimal solution is (u0, v0) = (a − 2, 1).

With the notations in Theorem 6.5.1 the generalized Lucas sequences
(αn)n≥0, (βn)n≥0 are given by

αn+1 = (a − 2)αn − αn−1, α0 = 2, α1 = a − 2

βn+1 = (a − 2)βn − βn−1, β0 = 1, β1 = −1.

From Theorem 6.5.1 we obtain the following Corollary:

Corollary 6.5.3. The equation (6.5.8) is always solvable and all of its solutions are
given by (αn, βn)n≥0.

Next we study when the solutions to the equation (6.5.8) are linear combinations
over Q of the classical Fibonacci and Lucas sequences. The results are obtained in
the paper [20].

For other results we refer to the papers [61, 91, 96–98] and [134]. Also, the
problem is connected to the Y.V. Matiasevich and J. Robertson way to solve
the Hilbert’s Tenth Problem, and it has applications to the problem of singlefold
Diophantine representation of recursively enumerable sets. In the recent paper [102]
the equations x2−kxy+y2 = 1, x2−kxy−y2 = 1 are solved in terms of generalized
Fibonacci and Lucas numbers. Let us mention that in the paper [83] is defined
the Hankel matrices involving the Pell, Pell-Lucas and modified Pell sequences,
is computed their Frobenius norm, and it is investigated some spectral properties of
them.
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Recall the Binet’s formulas for Fn and Ln:

Fn =
1√
5

[(
1 +

√
5

2

)n

−
(
1−√

5

2

)n]

,

Ln =

(
1 +

√
5

2

)n

+

(
1−√

5

2

)n

.

These formulas can be extended to negative integers n in a natural way. We have
F−n = (−1)n−1Fn and L−n = (−1)nLn, for all n.

Theorem 6.5.4. The solutions to the positive equation (6.5.8) are linear combina-
tions with rational coefficients of at most two Fibonacci and Lucas numbers if and
only if a = an = ±L2n + 2, n ≥ 1.

For each n, all of its integer solutions (xk, yk) are given by

⎧
⎪⎨

⎪⎩

xk =
εk

2
L2kn ∓ an

2F2n
F2kn

yk = ± 1

F2n
F2kn,

(6.5.9)

where k ≥ 1, signs + and − depend on k and correspond, while εk = ±1.

Proof. The equation x2 + axy + ay2 = 1 is equivalent to the positive special Pell’s
equation

(2x + ay)2 − (a2 − 4a)y2 = 4. (6.5.10)

From formula (4.4.6) it follows that

2xn + aym = εm

[(
u1 + v1

√
D

2

)m

+

(
u1 − v1

√
D

2

)m]

and

ym =
εm√

D

[(
u1 + v1

√
D

2

)m

−
(

u1 − v1
√

D
2

)m]

,

where m ∈ Z, εm = ±1, D = a2 − 4a, and (u1, v1) is the minimal positive solution
to u2 − Dv2 = 4. we have (u1, v1) = (a − 2, 1), and combining the above relations
it follows
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xm =
εm

2

[(

1− a√
a2 − 4a

)(
a − 2 +

√
a2 − 4a

2

)m

+

(

1 +
a√

a2 − 4a

)(
a − 2−√

a2 − 4a
2

)m]

(6.5.11)

and

ym =
εm√

a2 − 4a

[(
a − 2 +

√
a2 − 4a

2

)m

−
(

a − 2−√
a2 − 4a

2

)m]

.

(6.5.12)

Taking into account Binet’s formulas, solution (xm, ym) is representable in terms
of Fm and Lm only if a2 − 4a = 5s2, for some positive integer s. This is equivalent
to the special Pell’s equation

(a − 2)2 − 5s2 = 4, (6.5.13)

whose minimal solution is (a1 − 2, s1) = (3, 1). The general integer solution to
(6.5.13) is

an − 2 = εn

[(
3 +

√
5

2

)n

+

(
3−√

5

2

)n]

= εnL2n,

and

sn =
εn√
5

[(
3 +

√
5

2

)n

−
(
3−√

5

2

)n]

= εnF2n,

where n is an integer and εn = ±1.
From (2x + ay)2 − (a2 − 4a)y2 = 4 we find (2x + any)2 − 5(sny)2 = 4, with

integer solution (xm, ym) given by

2xm + anym = ε2mL2m and snym = ±F2m.

Hence

xm =
1

2

[

ε2mL2m ∓ an
F2m

F2n

]

, ym = ±F2m

F2n
, (6.5.14)

where signs + and − correspond, and ε2m = ±1.
Taking into account that F2n divides F2m if and only if n divides m (see [21,

p. 180] and [90, p. 39]), it is necessary that m = kn, for some positive integer k.
Formula (6.5.14) becomes (6.5.9).
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A parity argument shows that in the equation

(x + ay)2 − (a2 − 4a)y2 = 4,

X is even, so xk in (6.5.9) is always an integer. 
�
The following two tables give the integer solutions to equation (6.5.8) at level k,

including the trivial solution obtained for k = 0.

n an = L2n + 2 Equation (6.5.8) Solutions

1 5 x2 + 5xy + 5y2 = 1 x = εk
2

L2k ∓ 5
2

F2k, y = ±F2k

2 9 x2 + 9xy + 9y2 = 1 x = εk
2

L4k ∓ 5
6

F4k, y = ± 1
3

F4k

3 20 x2 + 20xy + 20y2 = 1 x = εk
2

L6k ∓ 5
4

F6k, y = ± 1
8

F6k

4 49 x2 + 49xy + 49y2 = 1 x = εk
2

L8k ∓ 7
6

F8k, y = ± 1
21

F8k

5 125 x2 + 125xy + 125y2 = 1 x = εk
2

L10k ∓ 25
22

F10k, y = ± 1
55

F10k

6 324 x2 + 324xy + 324y2 = 1 x = εk
2

L12k ∓ 9
8

F12k, y = ± 1
144

F12k

n an = −L2n + 2 Equation (6.5.8) Solutions

1 −1 x2 − xy − y2 = 1 x = εk
2

L2k ± 1
2

F2k, y = ±F2k

2 −5 x2 − 5xy − 5y2 = 1 x = εk
2

L4k ± 5
6

F4k, y = ± 1
3

F4k

3 −16 x2 − 16xy − 16y2 = 1 x = εk
2

L6k ± F6k, y = ± 1
8

F6k

4 −45 x2 − 45xy − 45y2 = 1 x = εk
2

L8k ± 15
14

F8k, y = ± 1
21

F8k

5 −121 x2 − 121xy − 121y2 = 1 x = εk
2

L10k ∓ 11
10

F10k, y = ± 1
55

F10k

6 −320 x2 − 320xy − 320y2 = 1 x = εk
2

L12k ∓ 10
9

F12k, y = ± 1
144

F12k

Next we will consider the “negative” equation of the type (6.5.8):

x2 + axy + ay2 = −1. (6.5.15)

Unlike the result in Theorem 6.5.4, there are only two values of a for which the
corresponding property holds.

Theorem 6.5.5. The solutions to the negative equation (6.5.15) are linear combi-
nations with rational coefficients of at most two Fibonacci and Lucas numbers if
and only if a = −1 or a = 5.

If a = −1, all of its integer solutions (xm, ym) are given by

xm =
εm

2
L2m+1 ± 1

2
F2m+1, ym = ±F2m+1, m ≥ 0. (6.5.16)

If a = 5, all integer solutions (xm, ym) are

xm =
εm

2
L2m+1 ∓ 5F2m+1, ym = ±F2m+1, m ≥ 0. (6.5.17)

The signs + and − depend on m and correspond, while εm = ±1.
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Proof. As in the proof of Theorem 6.5.4 the equation is equivalent to

(2x + ay)2 − (a2 − 4a)y2 = −4.

Suppose that this negative special Pell’s equation is solvable. Its solution (xm, ym)
is representable in terms of Fibonacci and Lucas numbers as a linear combination
with rational coefficients only if a2 − 4a = 5s2. As in the proof of Theorem 6.5.4
we obtain an = ±L2n + 2 and sn = ±F2n, n ≥ 1.

The equation (2x + ay)2 − (a2 − 4a)y2 = −4 becomes

(2x + ay)2 − 5(sny)2 = −4,

whose integer solutions are 2xm + aym = εmL2m+1 and snym = ±F2m+1. It
follows that

ym = ±F2m+1

F2n
, m ≥ 1.

If n ≥ 2, then F2n ≥ 2, and since 2n does not divide 2m + 1, it follows that
F2n does not divide F2m+1 (see [21, pp. 180] and [90, pp. 39]), hence ym is not an
integer.

Thus n = 1 and so a = ±L2 + 2, i.e., a = −1 or a = 5.
For a = −1, it follows ym = ±F2m+1 and 2xm − ym = εmL2m+1, and we obtain

solutions (6.5.16).
If a = 5, then ym = ±F2m+1 and 2xm + 5ym = εmL2m+1, yielding the solutions

(6.5.17). 
�
Remark. On the other hand, it is more or less known Zeckendorf’s theorem in
[230], which states that every positive integer can be represented uniquely as the
sum of one or more distinct Fibonacci numbers in such a way that the sum does
not include two consecutive Fibonacci numbers. Such a sum is called Zeckendorf
representation and it is related to the Fibonacci coding of a positive integer. Our
results are completely different, because the number of terms is reduced to at most
two, and the sum in the representation of solutions is a linear combination with
rational coefficients.
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