
Chapter 5
Equations Reducible to Pell’s Type Equations

5.1 The Equations x2 − kxy2 + y4 = 1
and x2 − kxy2 + y4 = 4

An interesting problem concerning the Pell’s equation u2 − Dv2 = 1 is to study
when the second component of a solution (u, v) is a perfect square. This question is
equivalent to solving the equation

X2 − DY4 = 1. (5.1.1)

The equation (5.1.1) was intensively studied in a series of papers (see [116–118]).
We begin this section by mentioning the main result about the above equation.

Theorem 5.1.1. For a positive nonsquare integer D there are at most two solutions
to the equation (5.1.1). If two solutions exist, and εD denotes the fundamental unit in
the quadratic field Q(

√
D), then they are given by (x1, y1), (x2, y2), x1 < x2, where

x1 + y21
√

D = εD and x2 + y22
√

D is either ε2D or ε4D, with the latter case occurring
for only finitely many D.

Following the recent paper [221] we first prove a generalization of Theo-
rem 5.1.1. We then use this result to completely solve the equations

x2 − kxy2 + y4 = 1 (5.1.2)

and

x2 − kxy2 + y4 = 4. (5.1.3)

Let D = e2d, with e an integer and d a positive squarefree integer. Then εD =
a + b

√
d

2
, where a and b are positive integers with the same parity, and satisfy
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a2 − db2 = (−1)α4, where α ∈ {0, 1}. Define λD = λd to be the fundamental
solution u+v

√
d to X2−dY2 = 1, with u and v positive integers. Then λD = (εD)

c,
where

c =

⎧
⎪⎪⎨

⎪⎪⎩

1 if a and b are even and α = 0

2 if a and b are even and α = 1

3 if a and b are odd and α = 0

6 if a and b are odd and α = 1.

(5.1.4)

Lemma 5.1.2 ([55]). Let D be a nonsquare positive integer. If the equation X4 −
DY2 = 1 is solvable in positive integers X,Y, then either X2 + Y

√
D = λD

or λ2
D. Solutions to X4 − DY2 = 1 arise from both λD and λ2

D only for D ∈
{1785, 7140, 28560}.

Lemma 5.1.3. If there are two solutions to equation (5.1.1), then they are given by
X + Y2

√
D = εD, ε4D for D ∈ {1785, 28560}, and X + Y2

√
D = εD, ε2D otherwise.

Proof. Let T + U
√

D denote the fundamental solution in positive integers to the
Pell’s equation x2 − Dy2 = 1, and for k ≥ 1 let Tk + Uk

√
D = (T + U

√
D)k.

If there exist two indices k1 and k2 for which Uk1 and Uk2 are squares, then by
Theorem 5.1.1, (k1, k2) = (1, 4) or (k1, k2) = (1, 2). If there are integers x and y
such that U1 = x2 and U4 = y2, then since U4 = 2T2U2, there exist integers w and
z such either (T2,U2) = (w2, 2z2), or (T2,U2) = (2w2, z2). The latter case is not
possible, since it would imply the existence of three solutions to X2 − DY4 = 1,
contradicting Theorem 5.1.1. In the former case, since 2z2 = U2 = 2T1U1, there
are integers u and v > 1 such that T1 = v2 and U1 = u2. We thus have solutions
to X4 − DY2 = 1 arising from both εD and ε2D. By Lemma 5.1.2, we deduce that
D ∈ {1785, 7140, 28560}, and since U1 = 2 and D = 7140, we have finally that
D ∈ {1785, 28560}. ��
Lemma 5.1.4 ([117]). The only positive integer solutions to the equation X2 −
2Y4 = −1 are (X,Y) = (1, 1), (239, 13).

Lemma 5.1.5 ([45]). The only positive integer solutions to the equation 3X4 −
2Y2 = 1 are (X,Y) = (1, 1), (3, 11).

Lemma 5.1.6 ([38]). With the notations in the proof to Lemma 5.1.3, if Tk = 2x2

for some integer x, then k = 1.

Theorem 5.1.7. Let D be a nonsquare positive integer with D �∈ {1785, 7140,
28560}. Then there are at most two positive indices k for which Uk = 2δy2 with
y an integer and δ = 0 or 1. If two solutions k1 < k2 exist, then k1 = 1 and k2 = 2,
and provided that D �= 5, T+U

√
D is the fundamental unit in Q(

√
D), or its square.

For D ∈ {1785, 7140, 28560}, the only solutions to Uk = 2δy2 are k = 1, k = 2,
and k = 4.

Proof. If one of the equation x2 − Dy4 = 1, x2 − 4Dy4 = 1 is not solvable,
then the result follows from Lemma 5.1.3 applied to 4D and D respectively.
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Therefore we may assume that both of these equations are solvable. Let k and l
be indices for which Uk = z2 and Ul = 2w2. It follows from the binomial theorem
that not both of k and l are odd.

Assume first that k and l are both even. We will show that this leads to D ∈
{1785, 7140, 28560}. Letting l = 2m, then there are integers u > 1 and v such that
Tm = u2 and Um = v2. Then by Lemma 5.1.2, either m = 1 or m = 2. Also, by
Lemma 5.1.3, and the fact that k is even, either (k,m) = (2, 1), (k,m) = (4, 1) and
D ∈ {1785, 28560}, or else k = m. The first case is not possible since it would
imply k = l = 2, and this contradicts the assumed forms of Uk and Ul. Thus, for
D �∈ {1785, 28560}, we have that k = m, and furthermore, the only possibility is
k = m = 2. Since U2 = 2T1U1, there are positive integers a, b for which either
(T1,U1) = (a2, 2b2) or (T1,U1) = (2a2, b2). From the identity T2 = 2T2

1 − 1,
these two possibilities yield the respective equations u2 = 2a4 − 1 or u2 = 8a4 − 1.
The equation u2 = 8a4 − 1 is not solvable modulo 4. By Lemma 5.1.4, the only
positive integer solution to the equation u2 = 2a4 − 1, with u > 1, is u = 239 and
a = 13. Therefore, T1 = 169, and U1 = 2b2 for some integer b. The only choice
for b is b = 1, which results in D = 7140.

We can assume that k and l are of opposite parity. First assume that l is even,
l = 2m, and that k is odd. Thus, we have that U2m = 2w2. From the identity
U2m = 2TmUm, and the fact that (Tm,Um) = 1, it follows that there are integers u
and v such that Tm = u2 and Um = v2. By Lemma 5.1.2, either m = 1 or m = 2, and
T1 + U1

√
D = λD. Furthermore, by Lemma 5.1.3, either k = m or k = 1, m = 2. If

k = m, then since k is odd and m = 1 or 2, we have that k = 1 and l = 2, which is
our desired result. On the other hand, if k = 1 and m = 2, then l = 4, and we have
that U4 = 2w2, U2 = v2, and T2 = u2. As in the previous paragraph, this leads to
D = 7140.

Now assume that l is odd and k is even, k = 2m. Therefore, U2m = 2TmUm = z2,
and it follows that there are integers u and v such that either (Tm,Um) = (2u2, v2)
or (Tm,Um) = (u2, 2v2). In the first case, Lemma 5.1.3 implies that (m, k) = (1, 2),
since Um and Uk are both squares. Therefore U1 is a square, and 22α properly divides
U1 for some integer α � 0, Since Ul = 2w2, 22β+1 properly divides Ul for some
integer β � 0. From the fact that l is odd, the binomial theorem exhibits that the
same power of 2 divides U1 and Ul, thus leading to a contradiction. In the case
that (Tm,Um) = (u2, 2v2), Lemma 5.1.2 shows that m = 1 or m = 2, and that
T1 + U1

√
D = λD. Also, by Lemma 5.1.3 applied to 4D, either m = l or (l,m) =

(1, 2). The former possibility leads to l = 1 and k = 2, which is the desired result.
The latter possibility implies that k = 4, and that T2 = u2, U2 = 2v2, Since
U2 = 2T1U1, there are integers a and b such that T1 = a2, and U1 = b2. Therefore,
u2 = T2 = 2T2

1 − 1 = 2a4 − 1, and by Lemma 5.1.4, it follows that T1 = 169, and
hence that D = 1785 or D = 28560.

It remains to prove that for D �= 5, T + U
√

D = T1 + U1

√
D is the fundamental

unit εD in Q(
√

D), or its square. Letting T +U
√

D = εc
d, then we need to prove that

c = 1 or c = 2, where c is defined in (5.1.4).
Let D = l2d with d squarefree. Let λd = t + u

√
d, and for k � 1, define

λk
d = tk + uk

√
d. Then T + U

√
D = λr

d = tr + ur

√
d for some integer r, and
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uir = lUi for each i � 1. We assume now that U1 = 2δ1x2 and U2 = 2δ2y2 for some
integers x and y. Then ur = 2δ1 lx2 and u2r = 2δ2 ly2. Since u2r = 2trur, it follows
that tr = z2 or 2z2 for some integer z. By Lemma 5.1.3 and Lemma 5.1.6, either
r = 1 or r = 2. This implies that c divides 12. We wish to show that 4 does not
divide c. If 4 divides c, then r = 2 and N(εd) = −1, and so there are the integers
V > 1 and W such that V2−W2d = −1, with t2+u2

√
d = λ2

d = (V+W
√

d)4. Since
r = 2, Lemma 5.1.6 shows that t2 = z2. Therefore, t2 = z2 = 8V4 + 8V2 + 1, and
as it was shown in [117] that this equation implies V = 0, we have a contradiction.
Therefore c divides 6, and to complete the proof of the theorem, we need to show
that 3 does not divide c.

Assume that 3 divides c. Then T + U
√

D is the cube of a unit in Q(
√

D) of

the form
a + b

√
D

2
, where a and b are odd, and a2 − b2D = 4. Moreover, T =

a

(
a2 − 3

2

)

is odd, and so either T + U
√

D = X2 + Y2
√

D or T + U
√

D =

X2 + 2Y2
√

D, i.e., T is not of the form 2X2. It follows that a(a2 − 3) = 2X2. If
(a, a2 − 3) = 1, then since a is odd, a = A2 and a2 − 3 = 2B2 for some integers
A,B, which is not possible by considering this last equation modulo 8. Therefore
(a, a2 − 3) = 3, and there are integers A,B for which a = 3A2 and a2 − 3 = 6B2,
which results in the equation 3A4 − 2B2 = 1. By Lemma 5.1.5 the only positive
integer solutions to this equation are (A,B) = (1, 1) and (A,B) = (3, 11). This
shows that either a = 3 or a = 27. The case a = 3 yields D = 5, which we have
excluded. The case a = 27 yields that either D = 29 or D = 725. It is easily
checked that the hypotheses are not satisfied for both of these values of D. ��
Corollary 5.1.8. For k = 169, the only positive integer solutions to x2 − (k2 − 1)
y4 = 1 are (x, y) = (169, 1), (6525617281, 6214).

For k > 1 and k �= 169, the only positive integer solution (x, y) to x2 − (k2 − 1)
y4 = 1 is (x, y) = (k, 1), unless k = 2v2 for some integer v, in which case (x, y) =
(8v4 − 1, 2v) is the only other solution.

For k > 1 there is no positive integer solutions (x, y) to x2 − (k2 − 1)y4 = 4,
unless k = v2 for some integer v, in which case (x, y) = (4v4 − 2, 2v) is the only
solution.

Proof. The particular case k = 169 is easily verified for both equations, and so we
assume that k > 1 and k �= 169. The fundamental solution to x2 − (k2 − 1)y2 = 1
is (k, 1). For i ≥ 1 define Ti + Ui

√
k2 − 1 = (k +

√
k2 − 1)i. There is always the

solution (x, y) = (k, 1) to x2 − (k2 − 1)y4 = 1, and so by Theorem 5.1.7, if there
is another solution, it must come from T2 + U2

√
k2 − 1 = 2k2 − 1 + 2k

√
k2 − 1,

i.e., (x, y) = (2k2 − 1,
√
2k). This entails that 2k is a perfect square, and hence that

k = 2v2 for some integer v, This gives (x, y) = (8v4 − 1, 2v).

We note that if k is odd, then the minimal solution to x2 −
(

k2 − 1

4

)

y2 = 1

is (x, y) = (k, 2), from which it follows that for k even or odd, any solution to
x2 − (k2 − 1)y2 = 4 has both x and y even. Now let (x, y) be a positive integer
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solution to x2 − (k2 − 1)y4 = 4, then x and y are even, and (u, v) = (x/2, y/2) is
a positive integer solution to u2 − 4(k2 − 1)v4 = 1, and hence there is a positive
integer i for which Ui = 2v2. By Theorem 5.1.7, since U1 = 1 is already a square,
i = 2. Therefore u + 2v2

√
k2 − 1 = T2 + U2

√
k2 − 1 = 2k2 − 1 + 2k

√
k2 − 1,

and hence k = v2. This leads to the solution (x, y) = (4v4 − 2, 2v) to the equation
x2 − (k2 − 1)y4 = 4. This completes the proof. ��
Theorem 5.1.9. Let k be an even positive integer.

1) The only solutions to equation (5.1.2) in nonnegative integers (x, y) are (k, 1),
(1, 0), (0, 1), unless either k is a perfect square, in which case there are also the
solutions (1,

√
k), (k2 − 1,

√
k), or k = 338 in which case there are the solutions

(x, y) = (114243, 6214), (13051348805, 6214).
2) The only solution in nonnegative integers x, y to the equation (5.1.3) is (x, y) =

(2, 0), unless k = 2v2 for some integer v, in which case there are also the
solutions (2,

√
2k), (2k2 − 2,

√
2k).

Proof. Letting k = 2s, then we can rewrite the equation x2 − kxy2 + y4 = 1 as

(x − sy2)2 − (s2 − 1)y4 = 1.

Aside from the trivial solution (x, y) = (1, 0), Corollary 5.1.8 implies that the
only solutions are y = 1, x− sy2 = ±s, unless s = 2v2 for some integer v, in which
case there is also the solutions y = 2v and x − sy2 = ±(8v4 − 1), or k = 338.
In either case, the solutions listed in Corollary 5.1.8 lead to the solutions given in
Theorem 5.1.9.

The equation x2 − kxy2 + y4 = 4 can be rewritten as

(x − sy2)2 − (s2 − 1)y4 = 4.

Corollary 5.1.8 shows that, aside from the trivial solution (x, y) = (2, 0), there
is no solution in positive integers unless s = v2 for some integer v, in which case
y = 2v and x− sy2 = ±4v4 − 2. It follows that k = 2v2, y =

√
2k, and either x = 2

or x = 2k2 − 2. ��

5.2 The Equation x2n − Dy2 = 1

In this section we will discuss the solvability of the equation

x2n − Dy2 = 1, (5.2.1)

where D is a nonsquare positive integer and n is an integer greater than 1. When
n = 2 its solvability was discussed in the papers [51, 231, 232] and in the section
above.
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In what follows we also employ the equations

xp − 2y2 = −1, (5.2.2)

and

xp − 2y2 = 1, (5.2.3)

where p is a prime ≥ 5.
They were studied by elementary methods in the paper [51].
We first present two useful results.

Lemma 5.2.1. If the equation (5.2.2) has positive integer solution (x, y) �= (1, 1),
then 2p|y.

Proof. Suppose (x, y) is a positive integer solution of (5.2.2). Then

(x + 1) · xp + 1

x + 1
= 2y2.

Since

(

x + 1,
xp + 1

x + 1

)

= 1 or p, we have

x + 1 = 2y21,
xp + 1

x + 1
= y22, y = y1y2, (5.2.4)

or

x + 1 = 2py21,
xp + 1

x + 1
= py22, y = py1y2. (5.2.5)

By the result of [119],
xp + 1

x + 1
= y22, therefore x = 1. Thus (5.2.4) gives

x = y = 1.
For (5.2.5) clearly p|y. We will prove 2|y with the elementary method given

in [51].
If 2 � y, from (5.2.2), we have x ≡ 1 (mod 8). Put

A(t) =
xp + 1

x + 1
, t ≥ 1 and 2 � t,

and so A(t) ≡ 1 (mod 8). Let 1 < l < p be a positive odd integer. Then there exist
an integer r, odd, 0 < r < l, and 2k such that p = 2kl + r or p = 2kl − r.

If p = 2kl + r, then

A(p) =
((x + 1)A(l)− 1)2kxr + 1

x + 1
≡ xr + 1

x + 1
≡ A(r) (mod A(l)), (5.2.6)
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since xl = (x + 1)A(l)− 1. Now (A(p),A(l)) = A((p, l)) = A(1) = 1. Thus (5.2.6)
gives

A(p)
A(l)

=
A(r)
A(l)

.

If p = 2kl − r, then l − r is even. Thus

A(p)
A(l)

=

(

−xl−r A(r)
A(l)

)

=

(
A(r)
A(l)

)

,

since A(l) ≡ 1 (mod 8) and

A(p) = xl−rA(l(2k − 1)) + A(l)− xl−rA(r).

For l, r, we have

l = 2k1r + ε1r1, 0 < r1 < r,
r = 2k2r1 + ε2r2, 0 < r2 < r1,
. . .

rs−1 = 2ks+1rs + εs+1rs+1, 0 < rs+1 < rs,

rs = ks+2rs+1,

where εi = ±1 (i = 1, . . . , s + 1) and ri (i = 1, . . . , s + 1) are odd integers. Since
(l, p) = 1, we have rs+1 = 1. Hence

(
A(p)
A(l)

)

=

(
A(r)
A(l)

)

=

(
A(l)
A(r)

)

=

(
A(r1)
A(r)

)

=

(
A(r)
A(r1)

)

=

(
A(r2)
A(r1)

)

= · · · =
(

A(rs+1)

A(rs)

)

=

(
A(l)
A(rs)

)

=

(
1

A(rs)

)

= 1.

Now, from
xp + 1

x + 1
= py22, we have

(py2)
2 ≡ pA(p) (mod A(l)).

Thus
(

pA(p)
A(l)

)

=

(
p

A(l)

)

=

(
A(l)

p

)

=

(
l
p

)

= 1,

since x ≡ −1 (mod p) and so A(l) ≡ l (mod p), We have a contradiction if l is
taken as an odd quadratic nonresidue of p. This proves the result. ��



114 5 Equations Reducible to Pell’s Type Equations

Lemma 5.2.2. The equation (5.2.3) has only positive integer solution x = 3, y = 11
(when p = 5).

Proof. From (5.2.3), we have

xp − 1

x − 1
= a2 (5.2.7)

if p � y. By the result of [119], the solution of (5.2.7) is x = 3 (when p = 5). Thus
(5.2.3) has positive integer solution x = 3, y = 11 (when p = 5).

If p|y, then 2|y by Remark 1. From (5.2.3), (1 +
√−2y)(1−√−2y) = xp. With

the assumption (1 +
√−2y, 1−√−2y) = 1, we have

1 +
√

−2y = (a + b
√−2)p, x = a2 + 2b2, (5.2.8)

where a, b are integers. Since 2|y, from (5.2.3), it follows that

x ≡ 1 (mod 8). (5.2.9)

From (5.2.8) and (5.2.9), we have 2|b and b �= 0. Now, (5.2.8) gives

1 = ap +

(
p
2

)

ap−2(b
√−2)2 + · · ·+

(
p

p − 1

)

a(b
√−2)p−1. (5.2.10)

Thus a|1 and so a = ±1.
If a = −1, then (5.2.10) gives

−2 =

(
p
2

)

(b
√−2)2 + · · ·+

(
p

p − 1

)

(b
√−2)p−1,

and so p|2 which is impossible.
If a = 1, then we have

0 =

(
p
2

)

(b
√−2)2 + · · ·+

(
p

p − 1

)

(b
√−2)p−1. (5.2.11)

Since 2|b and b �= 0, let 2sk ||
(

p
2k

)

(b
√−2)2k

(

1 ≤ k ≤ p − 1

2

)

, clearly sk > sj

(k > j). Thus (5.2.11) is impossible. ��
Theorem 5.2.3. If n > 2 and the negative Pell’s equation u2 − Dv2 = −1 is
solvable, then the equation (5.2.1) has only one solution in positive integers: x = 3,
y = 22 (when n = 5, D = 122).

Proof. Let Ω = u0+v0
√

D be the smallest solution to the equation u2−Dv2 = −1,
Ω = u0−v0

√
D, and let η = U0+V0

√
D be the fundamental solution of the equation

U2 − DV2 = 1, η = U0 − V0

√
D. Then, we have η = Ω2.
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Suppose (x, y) is any positive integer solution of (5.2.1). Then

xn =
ηm + ηm

2
=

Ω2m +Ω
2m

2
, m > 0. (5.2.12)

Clearly, without loss of generality, we may assume that n = 4 or n = p (p is odd
prime).

(a) If n = 4, then (5.2.12) gives

x4 = 2

(
Ωm +Ω

m

2

)2

− (−1)m,

and so x = 1, m = 0, which is impossible since m > 0.
(b) If n = p (p is odd prime), then (5.2.12) gives

xp = 2

(
Ωm +Ω

m

2

)2

− (−1)m. (5.2.13)

(b.1) When 2|m, let m = 2s, s > 0; then (5.2.13) gives

xp + 1 = 2

(
Ω2s +Ω

2s

2

)2

. (5.2.14)

Suppose p = 3. Then by (5.2.14), we have (see [218])

x =
Ω2s +Ω

2s

2
= 1, (5.2.15)

and

x = 23,
Ω2s +Ω

2s

2
= 78. (5.2.16)

Clearly (5.2.15) is impossible, since s > 0, and (5.2.16) is also
impossible since

Ω2s +Ω
2s

2
= 2

(
Ωs +Ω

s

2

)2

− (−1)s

is odd.
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Thus p > 3. For (5.2.14) we have 2p|Ω
2s +Ω

2s

2
by Lemma 5.2.1.

However, 2|Ω2s+Ω
2s

2 is impossible.
(b.2) When 2 � m, we have

xp − 1 = 2

(
Ωm +Ω

m

2

)2

, (5.2.17)

and so x = 1, (Ωm + Ω
m
)/2 = 0 when p = 3 (see [218]). If p > 3, then

(5.2.17) gives x = 3, (Ωm + Ω
m
)/2 = 11 (when p = 5) by Lemma 5.2.2.

Thus (5.2.1) has only positive integer solution x = 3, y = 22 (when
n = 5, D = 122). ��

Theorem 5.2.4. If η = U1 + V1

√
D is the fundamental solution to Pell’s equation

U2 − DV2 = 1, then the positive integer solutions to equation (5.2.1) do not satisfy

xn + y
√

D = η4m, n > 2, m > 0.

Proof. If

xn + y
√

D = η4m, n > 2,m > 0,

then we have

xn =
η4m + η4m

2
= 2

(
η2m + η2m

2

)2

− 1. (5.2.18)

By Lemma 5.2.1, the equality (5.2.18) is impossible since 2 � (η2m + η2m)/2 and
m > 0. ��

As applications of the above results we will discuss now some interesting
problems in number theory.

In 1939 (see [70]) it was conjectured that the equation

(
n
m

)

= yk, n > m ≥ 2, k ≥ 3 (5.2.19)

has no integer solution. In [70] it is proved that the conjecture is right when m > 4,
leaving the cases m = 2 and m = 3 unsolved. Now, we can deduce the following
result:

Corollary 5.2.5. The equation
(

n
2

)

= y2k

has no positive integer solution (n, y) with n ≥ 3 and k ≥ 2.
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Proof. From

(
n
2

)

=
n(n − 1)

2
= y2k, we have

n − 1 = 2y2k
1 , n = y2k

2 , y = y1y2,

or

n − 1 = y2k
2 , n = 2y2k

1 , y = y1y2.

Hence

y2k
2 ∓ 1 = 2y2k

1 . (5.2.20)

If 2|k, then (5.2.20) clearly gives |y1y2| ≤ 1; on the other hand, n ≥ 3 and(
n
2

)

= y2k imply |y| = |y1y2| > 1. Here we have a contradiction. If 2 � k, k ≥ 2,

we may conclude from Theorem 5.2.3 and Lemma 5.2.1 that (5.2.20) is impossible.
��

Define the generalized Pell sequence by

x0 = 1, x1 = a, xn+2 = 2axn+1 − xn, (5.2.21)

where a is an integer greater than 1.

Corollary 5.2.6. The equation

x4n = ym

has no positive integer solution (n, y), when m ≥ 3.

Proof. From (5.2.21) we have xn =
αn + αn

2
, n ≥ 0, where α = α+

√
a2 − 1 and

α = α−√
α2 − 1 are roots of the trinomial z2 − 2az+1. Let a2 − 1 = Db2, where

D > 0 is squarefree and b is positive integer. Then

α = a + b
√

D, α = a − b
√

D and αα = 1.

Thus yn =
αn − αn

2
√

D
satisfies

x2n − Dy2n = 1. (5.2.22)

By Theorem 5.2.4, the relation (5.2.22) is impossible when 4|n, xn = ym and
m ≥ 3. ��
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Clearly, if a = 2u2 + 1 (u > 0), then Db2 = a2 − 1 = 4u2(u2 + 1). Thus 2u|b.
Letting b = 2uv, we have u2 + 1 = Dv2. Hence, using Theorem 5.2.3, we obtain

Corollary 5.2.7. For the generalized Pell sequence

x0 = 1, x1 = 2u2 + 1, xn+2 = 2(2u2 + 1)xn+1 − xn,

where u is positive integer, xn is never an mth power if m ≥ 3, except for x1 =
2 · 112 + 1 = 35.

Remarks. 1) In the paper [129] it is studied the equation (5.2.1), where n = p is a
prime. The main two results given there are:

1. If p = 2 and D > exp(64), then (5.2.1) has at most one positive integer
solution (x, y).

2. If p > 2 and D > exp(exp(exp(exp(10)))), then 2 � m, where (x, y) is a
solution to (5.2.1) expressed as

xp + y
√

D = εm
1

and ε1 = u1 + v1
√

D is the fundamental solution to the Pell’s equation
u2 − Dv2 = 1.

2) In the paper [189] it is studied the equation m4 − n4 = py2, where p ≥ 3 is a
prime, and then the equations x4+6px2y2+p2y4 = z2, ck(x4+6px2y2+p2y4)+
4pdk(x3y + pxy3) = z2, for p ∈ {3, 7, 11, 19} and (ck, dk) is a solution to the
Pell’s equation c2 − pd2 = 1 or to the negative Pell’s equation c2 − pd2 = −1.

3) In the paper [190] is considered the equation x4 − q4 = py3, with the following
conditions: p and q are distinct primes, x is not divisible by p, p ≡ 11 (mod 12),
q ≡ 1 (mod 3), x is not divisible by p, p ≡ 11 (mod 12), q ≡ 1 (mod 3), p
is a generator of the group (Z∗

q , ·), and 2 is a cubic residue mod q. This equation
has been solved in the general case in the paper [121].

5.3 The Equation x2 + (x + 1)2 + · · · + (x + n − 1)2

= y2 + (y + 1)2 + · · · + (y + n + k − 1)2

In the paper [2] the relation 52 = 32 + 42 was considered as the simplest solution
in positive integers to various Diophantine equations, in particular, as the simplest
solution for the case n = 1 to

x2 + (x + 1)2 + (x + 2)2 + · · ·+ (x + n − 1)2

= y2 + (y + 1)2 + (y + 2)2 + · · ·+ (y + n)2, (5.3.1)
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i.e., the case where the sum of n consecutive squares equals the sum of n + 1
consecutive squares. The complete set of solutions of (5.3.1) for all positive integers
n, for which n and n + 1 are squarefree, was given in [2] and [4].

The relation 52 = 32 + 42 may also be considered as the simplest solution in
positive integers for the case k = 2 of the sum of k consecutive squares is a perfect
square. This problem is treated in [5].

In this section, we consider the equation (5.3.1) as the special case for k = 1 of

x2 + (x + 1)2 + (x + 2)2 + · · ·+ (x + n − 1)2

= y2 + (y + 1)2 + (y + 2)2 + · · ·+ (y + n + k − 1)2, (5.3.2)

i.e., the case where the sum of n consecutive squares equals the sum of n + k
consecutive squares, and present results for k ≥ 2. We will use the approach in [3].

Theorem 5.3.1. The equation (5.3.2) is not solvable for k ≡ 3, 4, or 5 (mod 8).

Proof. The sum S of squares of n consecutive integers, modulo 4, is listed in the
table:

n 1 2 3 4 5 6 7 8

S (mod 4) 0 or 1 1 1 or 2 2 2 or 3 3 0 or 3 0

Clearly, beginning with n = 9, the row for S (mod 4) must repeat itself and
continue to do so with the length of the period equal to 8. Now, if the sum of n
consecutive squares is to equal the sum of n + 3 consecutive squares, there must
be, for some n, a number in the S-row which also appears in the S-row for n + 3.
This, however, is not the case for any value of n. Since the column of entries in the
S-row repeats with period 8, the same is true for any value of k ≡ 3 (mod 8). The
same argument can be used to prove the nonexistence of solutions for k ≡ 4 or 5
(mod 8). ��
Theorem 5.3.2. The equation (5.3.2) is not solvable for k ≡ 7, 11, 16, or 20
(mod 27).

Proof. Using the formula for the sum of the first n squares, (5.3.2) can be
rewritten as

nx2 + n(n − 1)x + n(n − 1)(2n − 1)/6

= (n + k)y2 + (n + k)(n + k − 1)y + (n + k)(n + k − 1)(2n + 2k − 1)/6

or

n(2x + n− 1)2 = (n + k)(2y + n + k − 1)2 + kn2 + k2n+ k(k2 − 1)/3. (5.3.3)
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Letting

z = 2x + n − 1 and w = 2y + n + k − 1,

we can rewrite (5.3.3) as

nz2 = (n + k)w2 + kn2 + k2n + k(k2 − 1)/3. (5.3.4)

Considering first the case where k ≡ (mod 27), we substitute into (5.3.4) k =
27λ+ 7 and obtain

nz2 = (n + 27λ+ 7)w2 + (27λ+ 7)n2 + (27λ+ 7)2n

+ (27λ+ 7)(243λ2 + 126λ+ 16). (5.3.5)

If n ≡ 0 (mod 3), the left-hand side is congruent to 0, modulo 3, while the right-
hand side is congruent to w2+1, modulo 3, so that w2 ≡ 2, which is a contradiction.
If n ≡ 2 (mod 3), a contradiction is similarly obtained as the left-hand side is
congruent to 2z2, modulo 3, and the right-hand side congruent to 1, modulo 3.

If in (5.3.5), n ≡ 1 (mod 3), we obtain

z2 ≡ 2w2 (mod 3),

which is satisfies only if z ≡ w ≡ 0 (mod 3), so that we can set

z = 3z′ and w = 3w′, n = 3m + 1,

which, when substituted into (5.3.5) yields

(3m + 1)9z′2 = (3m+27λ+8)9w′2+(27λ+7)(3m+1)2+(27λ+7)2(3m+1)

+(27λ+ 7)(243λ2 + 126λ+ 16),

which immediately leads to a contradiction, since the left-hand side is congruent to
0, modulo 9, while the right-hand side is congruent to 6, modulo 9.

By substituting into (5.3.4) k = 27λ+11, k = 27λ+16, and k = 27λ+20, and
using the procedure shown above for k = 27λ+7, we can similarly show that there
are no solutions for (5.3.2) if k ≡ 11, 16, or 20 (mod 27). ��

We now turn to the question of finding values of k for which solutions to (5.3.2)
exist. Such solutions can be obtained either by an analysis of (5.3.4) which is
equivalent to (5.3.2) or by programming a computer to find solutions directly from
(5.3.2). Using both methods, all values of k ≤ 100, not excluded by Theorems 5.3.1
and 5.3.2, were considered and solutions found for the values of k indicated in the
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following table. In each case, we also list a solution for the indicated value of n and
give x and y, as defined by (5.3.2).

k n x y k n x y k n x y
6 5 28 15 39 2 25169 5539 64 16 740 294

8 3 137 67 40 5 378 104 71 2 378 23

9 3 23 6 41 11 1551 690 72 10 163 13

10 5 25 8 42 25 77 18 73 73 217 102

15 2 2743 933 46 1 3854 539 78 5 754 143

17 17 33 11 48 2 2603 496 79 79 312 166

18 3 127 38 49 2 210 14 80 3 2196 376

22 11 38 7 50 3 243 30 81 3 1257 195

23 2 8453 2379 54 39 160 67 86 43 188 51

24 2 24346 6740 55 55 128 51 87 2 510565 76493

25 25 123 70 56 14 151 33 89 89 227 97

26 3 1417 442 57 19 183 56 90 3 3521 586

31 4 196 49 58 11 36927 14712 94 33 608 253

32 3 239723 70167 62 25 5316 2813 95 2 716 51

33 11 313 137 63 2 236 5 96 1 679 15

Thus the first entry in the table means that

282 + 292 + 302 + 312 + 322 = 152 + 162 + · · ·+ 252.

In the table above, no attempt was made to list for each given value of k the
smallest value of n for which there exists a solution, since, as is evident from an
inspection of the table, small values of n are frequently associated with very large
values of x and y.

For each pair of values (k, n) for which a solution is given in the above table,
infinitely many additional solutions can be obtained as follows.

Letting

kn2 + k2n +
k(k2 − 1)

3
= A

equation (5.3.4) can be rewritten as nz2 − (n + k)w2 = A or, multiplying both sides
by n,

u2 − Dw2 = N, (5.3.6)

where u = nz, D = n(n + k), N = nA.
Now if (hm, km) is the general solution of Pell’s equation

h2 − Dk2 = 1 (5.3.7)
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and (u1,w1) is any solution to the general Pell’s equation (5.3.6), then

um = u1hm ± Dw1km, wm = u1km ± w1hm, m ≥ 0 (5.3.8)

are solutions to the equation (5.3.6). For details we refer to Section 4.3.
On the other hand, equations (5.3.8) do not necessarily give all solutions for a

given pair of values (k, n). Indeed, any attempt to find all solutions for given n and
k is bound to lead to presently unsurmountable difficulties as complete solutions
of (5.3.6) are available only for n <

√
D, and this condition will generally not be

satisfied for k > 1 (see Section 4.3.4).
While in the case k = 1 (see [4] and [5]) it was shown that solutions exist for

all values of n, for which n and n + 1 are squarefree, it can easily be shown that
for k > 1, even if there exists a solution for some n, there may be none for others.
Thus, for example, it can be shown that for k = 6, solutions can exist only if n ≡ 1
or 5 (mod 6). Such facts can be established by arguments similar to those used in
the proof of Theorem 5.3.1, making use of the facts that the sequence of values of
S (mod 4) in the table of that proof has period 8 and that, if a similar table were
constructed for the sequence of values of S (mod 3), it would have period 9.

It is of interest to note that Theorems 5.3.1 and 5.3.2, together with the table of
solutions of equation (5.3.2) for k ≤ 100, presented above, answers for all but 6
values of k the question as to whether or not a solution of (5.3.2) exists for values of
k � 100. These 6 values are k = 2, 14, 30, 66, 82, 98. No general method for proving
the existence or nonexistence of solutions in individual cases seems to suggest itself.
To illustrate typical proofs, we show below the ones for the case k = 2, where the
knowledge of the Jacobi symbol is involved leads to a solution, and k = 14, where
an analysis of the highest power of 2 dividing the constant term of (5.3.4) solves the
problem.

Theorem 5.3.3. The equation (5.3.2) is not solvable for k = 2.

Proof. The sum S of the squares of n consecutive integers, modulo 12, is listed in
the following table.

n S (mod 12)

1 0, 1, 4, or 9
2 1 or 5
3 2 or 5
4 2 or 6
5 3, 6, 7, or 10
6 7

7 4, 7, 8, or 11
8 0 or 8
9 0 or 9

10 1 or 9
11 1, 2, 5, or 10
12 2
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Obviously, for 13 � n � 24, the values of S (mod 12) are those of the above
table increased by 2, while those for 25 � n � 36 are those of the above table
increased by 4, etc. From this, it is immediately seen that all values of n except
n ≡ 5 or 11 (mod 12) cannot give solutions.

Now substituting n = 12m + 5 into (5.3.4) yields

(12m + 5)z2 = (12m + 7)w2 + 72(2m + 1)2,

so that

−2z2 ≡ 72(2m + 1)2 (mod 12m + 7)

or

z2 ≡ −36(2m + 1)2 (mod 12m + 7),

which means that the Jacobi symbol (−1/12m + 7) must have the value +1, which
is a contradiction.

An entirely similar analysis for the case n = 12m + 11 leads to another
contradiction. ��
Theorem 5.3.4. The equation (5.3.2) is not solvable for k = 14.

Proof. By simple congruence analysis we find that all values of n except n ≡ 1
(mod 4) can be excluded. Now substituting n = 4m + 1 into (5.3.4) yields

(4m + 1)z2 = (4m + 15)w2 + 14(4m + 1)2 + 196(4m + 1) + 910. (5.3.9)

Considering the above equation, modulo 4, we obtain z2 ≡ 3w2 (mod 4), which
shows that z and w must both be even.

Now, if m is even, then (5.3.9) can be rewritten by letting m = 2m′ as

(8m′ + 1)z2 = (8m′ + 15)w2 + 224(4m′2 + 8m′ + 5).

Since letting z = 2z′, w = 2w′ leads exactly as shown above to the conclusion
that z′ and w′ must be even, we let z = 4z′ and w = 4w′ and divide by 16 to obtain

(8m′ + 1)z′2 = (8m′ + 15)w′2 + 14(4m′2 + 8m′ + 5).

Considering this equation modulo 8, we obtain

z′2 = −w′2 + 6 (mod 8),

which is a contradiction, since the left-hand side is congruent to 0,1, or 4 (mod 8),
while the right-hand side is congruent to 2,5, or 6 (mod 8).
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Now m is odd, then (5.3.9) can be rewritten by letting m = 2m′ + 1 as

(8m′ + 5)z′2 = (8m′ + 19)w′2 + 448(2m′2 + 6m′ + 5)

or, diving both sides by 64 and letting w = 8w′, z = 8z′, as

(8m′ + 5)z′2 = (8m′ + 19)w′2 + 7(2m′2 + 6m′ + 5).

Considering this equation modulo 4, we obtain

z′2 ≡ 3w′2 + 3 (mod 4),

which again is a contradiction. ��

5.4 The Equation x2 +2(x+1)2 + · · ·+ n(x+n−1)2 = y2

In this section, following [229], we will discuss the equation

x2 + 2(x + 1)2 + · · ·+ n(x + n − 1)2 = y2 (5.4.1)

determining the values of n for which it has finitely or infinitely many positive
integer solutions (x, y).

Theorem 5.4.1. For each n ≥ 2 the equation (5.4.1) is solvable and it has infinitely

many solutions unless
n(n + 1)

2
is a perfect square.

Proof. The equation (5.4.1) can be written immediately into the form

n(n + 1)

2
x2 +

2(n − 1)n(n + 1)

3
x +

(n − 1)n(n + 1)(3n − 2)

12
= y2. (5.4.2)

The substitutions

k =
n(n + 1)

2
, u = 3x + 2(n − 1), v =

3y
k

along with the observation

(n − 1)n(n + 1)(n + 2)

4
= k(k − 1)

reduce (5.4.2) to the general Pell’s equation

u2 − kv2 = 1− k. (5.4.3)
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For all positive integral values of k, the equation (5.4.3) admits the solution u0 =
2n + 1, v0 = 3, corresponding to the solution x = 1, y = k of (5.4.1) which is the
familiar formula for the sum of the first n cubes. Thus (5.4.1) has always at least one
solution.

Now, let k =
n(n + 1)

2
be a nonsquare. In this case the Pell’s equation

U2 − kV2 = 1 (5.4.4)

has the solutions (Um,Vm)m≥0 given in Sections 3.2, 3.3, 3.4.
By using the theory of general Pell’s equation developed in Chapter 4, it follows

that if (u0, v0) is a solution of (5.4.3), then

um = u0Um + kv0Vm, vm = v0Um + u0Vm, m = 0, 1, . . . (5.4.5)

are solutions to (5.4.3).
These will give solutions to (5.4.1) in all cases where

x =
um + 2− 2n

3
and y =

kvm

3
(5.4.6)

are integers. We proceed to examine these.
If n ≡ 1 (mod 3), then k ≡ 1, u0 ≡ 0, v0 ≡ 0 (mod 3), and each um, vm given

in (5.4.5) will satisfy um ≡ 0, vm ≡ 0 (mod 3), which imply that x and y in (5.4.6)
are integers.

If n ≡ 2 (mod 3), then k ≡ 0, u0 ≡ 2, v0 ≡ 0, U2
0 ≡ 1 (mod 3) hence

U0 ≡ 1 or 2 (mod 3). For U0 ≡ 1 (mod 3) the relations (5.4.5) show that um ≡ 2,
um + 2 − 2n ≡ 0, kvm ≡ 0 (mod 3), hence x and y in (5.4.6) are integers. For
U0 ≡ 2 (mod 3) we have um ≡ 1 (mod 3), and x is not an integer. However, in
this case, from (5.4.5), um+1 ≡ 2 (mod 3) so that the corresponding x and y are
integers.

Analogous study of the case n ≡ 0 (mod 3) gives a similar result. Hence, in all
cases, at least alternate members of the infinite sequence of solutions to (5.4.3) give
integral values of x, y which satisfy the equation (5.4.1). ��
Remark. One may determine explicitly (see [15]) the integers n for which k =
n(n + 1)

2
is a perfect square. This reduces to finding the solutions to the equations

n(n + 1) = 2s2 or, equivalently, (2n + 1)2 − 8s2 = 1. The last Pell’s equation has
solutions (2nl + 1, sl)l≥1, where

2nl + 1 =
1

2

[(
3 +

√
8
)l

+
(
3−

√
8
)l
]

. (5.4.7)
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From (5.4.7) it follows that all positive integers n with the above property are
given by

nl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[(√
2 + 1

)l − (√
2− 1

)l

2

]2

if l is odd

2

[(
1 +

√
2
)l − (

1−√
2
)l

2
√
2

]2

if l is even

(5.4.8)

5.5 The Equation (x2 + a)(y2 + b) = F2(x, y, z)

In this section we study the general class of Diophantine equations

(x2 + a)(y2 + b) = F2(x, y, z) (5.5.1)

where F : Z+ × Z+ × Z → Z∗ is a given function and a, b are nonzero integers
satisfying |a|, |b| ≤ 4.

It is clear that if only one of x2+a or y2+b is a perfect square, then the equation
(5.5.1) is not solvable. In the given hypothesis, x2+a and y2+b are simultaneously
nonzero perfect squares only if |a| = 3 and |b| = 3 in which situation (x, y) is one
of the pairs (1,1), (1,2), (2,1), (2,2). For these pairs we must have

F(1, 1, z) = ±4, F(1, 2, z) = ±2, F(2, 1, z) = ±2, F(2, 2, z) = ±1.
(5.5.2)

It remains to find z from the corresponding equations in (5.5.2), a problem that is
strictly dependent upon the function F.

In order to have a unitary presentation of our general method, we may assume
that x ≥ 3 and y ≥ 3.

From the above considerations we may assume that none of x2 + a and y2 + b is
a perfect square. From (5.5.1) it follows that x2 + a = du2 and y2 + b = dv2 for
some positive integers d, u, v. The last two equations can be written as

x2 − du2 = −a and y2 − dv2 = −b (5.5.3)

which are general Pell’s equations of the form X2 − dY2 = N, where |N| ≤ 4.
Define the set

P(a, b) = {d ∈ Z : d is nonsquare ≥ 2 and (5.5.3) are solvable} (5.5.4)

and for any d in P(a, b) consider the general solutions (x(d), u(d)) and (y(d), v(d))
to the equations (5.5.3) (see Chapter 4 for details).
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We have x2(d) + a = du2(d) and y2(d) + b = dv2(d) hence

F(x(d), y(d), z) = ±du(d)v(d). (5.5.5)

Denote by Zd the set of all integers z satisfying the equation (5.5.5).
The solutions to the equation (5.5.1) are (x(d), y(d), z), where d ∈ P(a, b) and

z ∈ Zd.
To illustrate this method let us consider the following concrete examples.

5.5.1 The Equation x2 + y2 + z2 + 2xyz = 1

In the book [25] the above equation is solved in integers. Indeed, it is equivalent to

(x2 − 1)(y2 − 1) = (xy + z)2, (5.5.6)

an equation of the form (5.5.1), where a = b = −1 and F(x, y, z) = xy + z.
In this case P(−1,−1) = {d > 0 : d nonsquare}, as we have seen in Chapter 3.
Let (sl(d), tl(d))l≥0 be the general solution to Pell’s equation s2− dt2 = 1. From

the general method, it follows that the integral solutions to the given equation are

(±sm(d),±sn(d),−sm(d)sn(d)± dtm(d)tn(d)), (5.5.7)

for all m, n ≥ 0 and d ∈ P(−1,−1).
Using either of relations (3.2.2), (3.2.5), or (3.2.6), one can prove the following

equalities

sm(d)sn(d) + dtm(d)tn(d) = sm+n(d), m, n ≥ 0

sm(d)sn(d)− dtm(d)tn(d) = sm−n(d), m ≥ n ≥ 0.

The triples (5.5.7) become

(±sm(d),±sn(d),−sm+n(d)), m, n ≥ 0

(±sm(d),±sn(d),−sm−n(d)), m ≥ n ≥ 0,
(5.5.8)

where the signs + and – correspond.
Given the symmetry of the equation in x, y, z, in order to obtain all of its solutions,

we need to also consider the triples obtained from (5.5.8) by cyclic permutations.
We mention that the solutions found in [216] are not complete.

Remark. The equation

x2 + y2 + z2 + 2xyz = 1 (5.5.9)
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has an interesting history. Its geometric interpretation has been pointed out in [30],
where it is shown that it reduces to finding all triangles whose angles have rational
cosines.

The general solution in rational numbers of this equation is given [33]:

x =
b2 + c2 − a2

2bc
, y =

a2 + c2 − b2

2ac
, z =

a2 + b2 − c2

2ab
.

In the paper [167] it is noted that apart from the trivial solutions (±1, 0, 0),
(0,±1, 0), (0, 0,±1), all integral solutions to the equation (5.5.9) are given by the
following rule: if p, q, r are any integers with greatest common divisor 1 such that
one of them is equal to the sum of the other two and if u ≥ 1 is any integer, then

x = ±ch(pθ), y = ±ch(qθ), z = ±ch(rθ)

where θ = ln
(
u +

√
u2 − 1

)
and u ≥ 1 is an arbitrary integer.

In the papers [148, 149] it is studied the more general Diophantine equation

x2 + y2 + z2 + 2xyz = n. (5.5.10)

It is proved that this equation has no solutions in integers if n ≡ 3 (mod 4),
n ≡ 6 (mod 8), n ≡ ±3 (mod 9), n = 1− 4k2 with k �≡ 0 (mod 4) and k has no
prime factors of the form 4j+3, or n = 1−3k2 with (k, 4) = 2, (k, 3) = 1 and k has
no prime factors of the form 3j + 2. On the other hand, one solution to the equation
(5.5.10) implies infinitely many such solutions, except possibly when n is a perfect
square having no prime factors of the form 4j + 1. Also, there are infinitely many
solutions if n = 2r and r is odd, but only the solution x = y = 0, z = 2

r
2 and its

cyclic permutations when r is even.

5.5.2 The Equation x2 + y2 + z2 − xyz = 4

The problem of finding all triples of positive integers (x, y, z) with the property
mentioned above appears in [7]. These triples were found by using our general
method described at the beginning of this section. Indeed, writing the equation in
the equivalent form

(x2 − 4)(y2 − 4) = (xy − 2z)2

we note that in (5.5.1) we have a = b = −4 and F(x, y, z) = xy − 2z. Both of
the equations (5.5.3) reduce to the special Pell’s equation s2 − dt2 = 4, which was
extensively discussed in Section 4.3.2. Let (sl(d), tl(d))l≥0 be the general solution
to the equation s2 − dt2 = 4 given in (4.4.2) or (4.4.5). From (5.5.5) we obtain
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z1 =
1

2
(sm(d)sn(d) + dtm(d)tn(d)) = sm+n(d)

and

z2 =
1

2
(sm(d)sn(d)− dtm(d)tn(d)) = s|m−n|(d).

The general positive integral solutions to the equation x2 + y2+ z2− xyz = 4 are

(sm(d), sn(d), sm+n(d)), m, n ≥ 0 and (sm(d), sn(d), sm−n(d)), m ≥ n ≥ 0

along with the corresponding permutations.

5.5.3 The Equation (x2 + 1)(y2 + 1) = z2

In order to solve this equation in positive integers x, y, z note that a = b = 1 and
F(x, y, z) = z. The equations (5.5.3) become the negative Pell’s equation s2− dt2 =
−1. As we have seen in Section 3.6 the set P(1, 1) is far from easy to describe. The
general solution of this equation is

(sm, sn, dtmtn),

where m, n ≥ 0 and d ∈ P(1, 1).
In a similar way one can solve the equations in (k + 1) variables:

(x21 ± 1)(x22 ± 1) . . . (x2k ± 1) = y2 (5.5.11)

for any choice of the signs + and −.

5.5.4 The Equation (x2 − 1)(y2 − 1) = (z2 − 1)2

The problem of finding all solutions in positive integers to the equation

(x2 − 1)(y2 − 1) = (z2 − 1)2 (5.5.12)

is still open [82]. Partial results concerning this equation were published in [120,
222, 227], and [228].

In what follows we will describe the set of solutions to the equation (5.5.12). Our
description will show the complexity of the problem of finding all of its solutions.
The equation (5.5.12) is of the type (5.5.1), where a = b = −1 and F(x, y, z) =
z2 − 1. By using the general method presented at the beginning of this section,
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we can describe the set of solutions to (5.5.12) in the following way: Fix a nonsquare
d ≥ 2 and consider the Pell’s equation s2 − dt2 = 1. It is clear that the solutions to
(5.5.12) are of the form (sm, sn, zm,n)m,n≥0, where (sk, tk)k≥0 is the general solution
to the above Pell’s equation, zm,n =

√
1 + dtmtn, m, n ≥ 0 and 1 + dtmtn is a perfect

square.
Let

Cd = {(sm, sn, zm,n) : 1 + dtmtn is a square, m, n ≥ 0}.

The set of all solutions to (5.5.12) is

C =
⋃

d≥2√
d �∈Q

Cd.

Note that for all nonsquare d ≥ 2, Cd contains the infinite family of solutions
(sm, sm, sm), m ≥ 0, but this is far from determining all elements in Cd.

5.6 Other Equations with Infinitely Many Solutions

5.6.1 The Equation x2 + axy + y2 = 1

In the book [26] we determine all integers a for which the equation

x2 + axy + y2 = 1 (5.6.1)

has infinitely many integer solutions (x, y). In case of solvability, we find all such
solutions. Clearly, (5.6.1) is a special case of the general equation (4.8.1).

Theorem 5.6.1. The equation (5.6.1) has infinitely many integer solutions if and
only if |a| ≥ 2.

If a = −2, the solutions are (m,m+1), (m+1,m), (−m,−m−1), (−m−1,−m),
m ∈ Z.

If a = 2, the solutions are (−m,m+1), (m+1,−m), (m,−m−1), (−m−1,m),
m ∈ Z.

If |a| > 2, the solutions are

(−vn, vn+1), (vn,−vn+1), (−vn+1, vn), (vn+1,−vn), (5.6.2)

where

vn =
1√

a2 − 4

[(
a +

√
a2 − 4

2

)n

−
(

a −√
a2 − 4

2

)n]

, n ≥ 0. (5.6.3)
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Proof. Rewrite the given equation in the form

(2x + ay)2 − (a2 − 4)y2 = 4. (5.6.4)

If |a| < 2, then the curve described by (5.6.4) is an ellipse, and so only finitely
many integer solutions occur.

If |a| = 2 then the equation (5.6.1) has infinitely many solutions, since it can be
written as (x ± y)2 = 1.

If |a| > 2, then a2 − 4 is not perfect square. In this case we have a special Pell’s
equation of the form

u2 − (a2 − 4)v2 = 4. (5.6.5)

This type of equations was extensively studied in Section 4.3.2.
Note that a nontrivial solution to (5.6.5) in (a, 1). Using the formula (4.4.2) we

obtain the general solution (un, vn)n≥1 to (5.6.5), where

un =

(
a +

√
a2 − 4

2

)n

+

(
a −√

a2 − 4

2

)n

,

vn =
1√

a2 − 4

[(
a +

√
a2 − 4

2

)n

−
(

a −√
a2 − 4

2

)n]

, n ≥ 1.

From formulas (4.4.3) the sequences (un)n≥1, (vn)n≥1 satisfy the recursive
system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un+1 =
1

2
[aun + (a2 − 4)vn]

vn+1 =
1

2
(un + avn), n ≥ 1.

(5.6.6)

From (5.6.4) it follows that the nontrivial integer solutions (x, y) to the equation
(5.6.1) satisfy

2x + ay = ±un and y = ±vn, n ≥ 1 (5.6.7)

where the signs + and − correspond.
If 2x + ay = un and y = vn, then from (5.6.6) it follows that

x =
1

2
(un − avn) =

1

4
[aun−1 + (a2 − 4)vn−1 − aun−1 − a2vn−1] = −vn−1.

We obtain the solution (−vn, vn+1)n≥1. The choice 2x + ay = −un and y =
−vn yield the solution (vn,−vn+1)n≥1 which in fact reflects the symmetry (x, y) →
(−x,−y) of (5.6.1).



132 5 Equations Reducible to Pell’s Type Equations

The last two solutions in (5.6.2) follow from the symmetry (x, y) → (y, x) of the
equation (5.5.1). ��
Remark. In the case a = −m, where m is a positive integer, the equation (5.6.1)
was solved in positive integers by using a complicated method involving planar
transformations in [31, pp. 70–73].

5.6.2 The Equation
x2 + 1

y2 + 1
= a2 + 1

We will prove that if a is any fixed positive integer, then there exist infinitely many
pairs of positive integers (x, y) such that

x2 + 1

y2 + 1
= a2 + 1. (5.6.8)

This means that the set {Jm = m2 + 1 : m = 1, 2, . . . } contains infinitely many
pairs (Jx, Jy) such that Jx = JaJy.

The equation (5.6.8) is equivalent to the general Pell’s equation

x2 − (a2 + 1)y2 = a2. (5.6.9)

We notice that equation (5.6.9) has particular solutions (a2 − a + 1, a − 1) and
(a2 + a + 1, a + 1). Let (un, vn)n≥0 be the general solution of its Pell’s resolvent
u2 − (a2 + 1)v2 = 1. The fundamental solution to the Pell’s resolvent equation is
(u1, v1) = (2a2 + 1, 2a).

Following (4.1.3), we construct the sequences of solutions (xn, yn)n≥0 and
(x′n, y′n)n≥0 to the equation (5.6.8):

{
xn = (a2 − a + 1)un + (a − 1)(a2 + 1)vn

yn = (a − 1)un + (a2 − a + 1)vn
(5.6.10)

and

{
x′n = (a2 + a + 1)un + (a + 1)(a2 + 1)vn

y′n = (a + 1)un + (a2 + a + 1)vn
(5.6.11)

We will show now that for all a ≥ 3 the solutions (xn, yn)n≥0, (x′n, y′n)n≥0 are all
distinct. In this respect, following the criterion given in Section 4.1 it suffices to see
that at least one of the numbers

xx′ − yy′d
N

and
yx′ − xy′

N
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is not an integer. Here (x, y) and (x′, y′) are solutions to the general Pell’s equation
X2 − dY2 = N. Indeed,

xx′ − yy′d
N

=
(a2 − a + 1)(a2 + a + 1)− (a − 1)(a + 1)(a2 + 1)

a2
=

=
a4 + a2 + 1− a4 + 1

a2
= 1 +

2

a2
�∈ Z.

Remarks. 1) The equation

(x2 + 1)(y2 + 1) = z2 + 1 (5.6.12)

was known even to Diophantus. It was him who pointed out the solutions
(k, 0, k), (k, k ± 1, k2 ± k + 1), where k is a positive integer and the signs +
and – correspond.

The problem of finding all solutions to (5.6.12) in positive integers appears in
[173]. Unfortunately, the solution presented there was incorrect.

2) It is clear that if y = x + 1, then (x2 + 1)(y2 + 1) = (x2 + 1)(x2 + 2x + 2) =
(x2 + x + 1)2 + 1, hence the equation (5.6.12) has infinitely solutions (x, y, z),
where x and y are consecutive positive integers.

In the case when x is fixed, the problem of finding infinitely many y and
z satisfying (5.6.12) also appears in [205] and it is solved by using a suitable
negative Pell’s equation.

3) A weaker version of the same problem appears in [89] as follows: the sequence
of numbers Jl = l2 + 1, l = 1, 2, . . . contains an infinity of composite numbers
JN = Jm · Jn. In fact, in the mentioned reference, for an arbitrary fixed m, only
three pairs of corresponding n,N are found:

Jm2−m+1 = Jm · Jm−1, Jm2+m+1 = Jm · Jm+1 and J2m2+m = Jm · J2m2 .

4) The equation (5.6.8) is completely solved in rational numbers in [50]. Its general
solution is given by

x = f (a)

y = ±a − 1 +
2

r2(a) + 1
− 2r(a)

r2(a) + 1
f (a),

where

f (a) = −a ± (a2 + 1)(r(a)± 1)2

r2(a) + 2ar(a)− 1

and r(a) is any rational function of a.
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5) A slightly modified equation is given by

x2 − 1

y2 − 1
= z2. (5.6.13)

This equation can be solved completely [139]. Indeed, it is equivalent to

x2 − (y2 − 1)z2 = 1.

It is not difficult to see that (y, 1) is the fundamental solution to this equation
and that all solutions are given by (xn, y, zn)n≥0, where y is any integer greater
than 1 and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn =
1

2

[(
y +

√
y2 − 1

)n
+
(

y −
√

y2 − 1
)n]

zn =
1

2
√

y2 − 1

[(
y +

√
y2 − 1

)n
−
(

y −
√

y2 − 1
)n]

6) Another equation related to (5.6.12) is

x2 + 1

y2 + 1
= z2. (5.6.14)

This equation can be solved completely as well. We write it under the form

x2 − (y2 + 1)z2 = −1,

a negative Pell’s equation with minimal solution (y, 1). Using formulas (3.6.3)
we obtain the general solution (xn, zn)n≥0,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xn =
1

2

[(
y +

√
y2 + 1

)2n+1

+
(

y −
√

y2 + 1
)2n+1

]

yn =
1

2
√

y2 + 1

[(
y +

√
y2 + 1

)2n+1

−
(

y −
√

y2 + 1
)2n+1

]

All solutions to (5.6.14) are given by (xn, y, zn)n≥0, where y is any positive
integer.
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5.6.3 The Equation (x + y + z)2 = xyz

Generally, integer solutions to equations of three or more variables are given in
various parametric forms. In this section we will construct different families of
infinite nonzero integer solutions to the equation:

(x + y + z)2 = xyz. (5.6.15)

Following our paper [8] we will indicate a general method of generating such
families of solutions. We start by performing the transformations

x =
u + v

2
+ a, y =

u − v

2
+ a, z = b (5.6.16)

where a and b are nonzero integer parameters that will be determined in a convenient
manner. The equation becomes

(u + 2a + b)2 =
b
4
(u2 − v2) + abu + a2b.

Imposing the conditions 2(2a + b) = ab and b(b − 4) > 0 yields the general
Pell’s equation

(b − 4)u2 − bv2 = 4[(2a + b)2 − a2b]. (5.6.17)

The imposed conditions are equivalent to (a − 2)(b − 4) = 8, and b < 0 or b > 4.
A simple case analysis shows that the only pairs of integers (a, b) satisfying them
are: (1,−4), (3, 12), (4, 8), (6, 6), (10, 5).

The following table contains the general Pell’s equations (5.6.17) corresponding
to the above pairs (a, b), their Pell’s resolvents, both equations with their fundamen-
tal solutions.

(a, b) General Pell’s equation (5.6.17) Pell’s resolvent and its
and its fundamental solution fundamental solution

(1,−4) 2u2 − v2 = −8, (2, 4) r2 − 2s2 = 1, (3, 2)

(3, 12) 2u2 − 3v2 = 216, (18, 12) r2 − 6s2 = 1, (5, 2)

(4, 8) u2 − 2v2 = 128, (16, 8) r2 − 2s2 = 1, (3, 2)

(6, 6) u2 − 3v2 = 216, (18, 6) r2 − 3s2 = 1, (2, 1)

(10, 5) u2 − 5v2 = 500, (25, 5) r2 − 5s2 = 1, (9, 4)

By using the formula (4.5.2) we obtain the following sequences of solutions to
the equations (5.6.17):

u(1)m = 2r(1)m + 4s(1)m , v(1)m = 4r(1)m + 4s(1)m
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where r(1)m + s(1)m
√
2 = (3 + 2

√
2)m, m ≥ 0;

u(2)m = 18r(2)m + 36s(2)m , v(2)m = 12r(2)m + 36s(2)m

where r(2)m + s(2)m
√
6 = (5 + 2

√
6)m, m ≥ 0;

u(3)m = 16r(3)m + 16s(3)m , v(3)m = 8r(3)m + 16s(3)m

where r(3)m + s(3)m
√
2 = (3 + 2

√
2)m, m ≥ 0;

u(4)m = 18r(4)m + 18s(4)m , v(4)m = 6r(4)m + 18s(4)m

where r(4)m + s(4)m
√
3 = (2 +

√
3)m, m ≥ 0;

u(5)m = 25r(5)m + 25s(5)m , v(5)m = 5r(5)m + 25s(5)m

where r(5)m + s(5)m
√
5 = (9 + 4

√
5)m, m ≥ 0.

Formulas (5.6.16) yield the following five families of nonzero integer solutions
to the equation (5.6.15):

x(1)m = 3r(1)m + 4s(1)m + 1, y(1)m = −r(1)m + 1, z(1)m = −4, m ≥ 0

x(2)m = 15r(2)m + 36s(2)m + 3, y(2)m = 3r(2)m + 3, z(2)m = 12, m ≥ 0

x(3)m = 12r(3)m + 16s(3)m + 4, y(3)m = 4r(3)m + 4, z(3)m = 8, m ≥ 0

x(4)m = 12r(4)m + 18s(4)m + 6, y(4)m = 6r(4)m + 6, z(4)m = 6, m ≥ 0

x(5)m = 15r(5)m + 25s(5)m + 10, y(5)m = 10r(5)m + 10, z(5)m = 5, m ≥ 0.

Remark. In the recent paper [78] the following approach to generates solutions to
the equation (5.6.15) is indicated. Taking z = kx−y, for some integer k, our equation
is equivalent to y2 − kxy + x(k + 1)2 = 0, which is a quadratic equation in y, hence

y =
1

2

(
kx ±

√
k2x2 − 4(k + 1)2x

)
.

Now, let k2x2 − 4(k + 1)2x = a2, for some integer a. Treat this relation as a
quadratic equation in x, we have

x = 2(k + 1)2 ±
√

4(k + 1)4 + k2a2.

Again, consider 4(k + 1)4 + k2a2 = b2, for some integer b. Considering the last
equation as (2(k+1)2)2+(ka)2 = b2, which is a Pythagorean, we get the following
two possible situations
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⎧
⎨

⎩

b = u2 + v2

ka = u2 − v2

(k + 1)2 = uv
and

⎧
⎨

⎩

b = u2 + v2

ka = 2uv
2(k + 1)2 = u2 − v2

where u, v ∈ Z. Therefore, in order to generate solutions to equation (5.6.15), we

start with two integers u, v such that uv or
u2 − v2

2
is a perfect square (k + 1)2.

Then, we find a =
u2 − v2

k
or a =

2uv
k

, and b = u2 + v2. Finally, we obtain

x = 2(k + 1)2 ± b, y =
1

2
(kx ± a), z = kx − y.

Clearly, every pair (u, v) generates at most two values of k for each system
considered above. Let us illustrate the method by the following special situation.

Example. Let ka =
3

2
(k + 1)2, b =

5

2
(k + 1)2, be the special solutions to the

equation (2(k + 1)2)2 + (ka)2 = b2. Then we obtain from families (x, y) the
solutions:

(
9(k + 1)2

2k2
,
6(k + 1)2

k

)

,

(
9(k + 1)2

2k2
,
3(k + 1)2

k

)

,

(

− (k + 1)2

2k2
,
(k + 1)2

k

)

,

(

− (k + 1)2

2k2
,−2(k + 1)2

k

)

.

In order to get integer solutions, the only possibilities are k = −3, −1, 1, 3, giving
the solutions (0, 0, 0), (18, 12, 6), (8, 16, 8), (−2, 2− 4), (−2,−8, 6).

5.6.4 The Equation (x + y + z + t)2 = xyzt

Using the method described in Section 5.6.3 we will generate nine infinite families
of positive integer solutions to the equation

(x + y + z + t)2 = xyzt. (5.6.18)

We will follow the paper [9].
The transformations

x =
u + v

2
+ a, y =

u − v

2
+ a, z = b, t = c (5.6.19)

where a, b, c are positive integers, bring the equation (5.6.18) to the form

(u + 2a + b + c)2 =
bc
4
(u2 − v2) + abcu + a2bc.
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Setting the conditions 2(2a + b + c) = abc and bc > 4, we obtain the following
general Pell’s equation

(bc − 4)u2 − bcv2 = 4[(2a + b + c)2 − a2bc]. (5.6.20)

There are nine triples (a, b, c) up to permutations satisfying the above conditions:
(1,6,4), (1,10,3), (2,2,6), (3,4,2), (3,14,1), (5,2,3), (4,1,9), (7,1,6), (12,1,5).

The following table contains the general Pell’s equations (5.6.20) corresponding
to the above triples (a, b, c), their Pell’s resolvent, both equations with their
fundamental solutions.

(a, b, c) General Pell’s equation (5.6.20) Pell’s resolvent
and its fundamental solution and its fundamental solution

(1, 6, 4) 5u2 − 6v2 = 120, (12, 10) r2 − 30s2 = 1, (11, 2)

(1, 10, 3) 13u2 − 15v2 = 390, (15, 13) r2 − 195s2 = 1, (14, 1)

(2, 2, 6) 2u2 − 3v2 = 96, (12, 8) r2 − 6s2 = 1, (5, 2)

(3, 4, 2) u2 − 2v2 = 72, (12, 6) r2 − 2s2 = 1, (3, 2)

(3, 14, 1) 5u2 − 7v2 = 630, (21, 15) r2 − 35s2 = 1, (6, 1)

(4, 1, 9) 5u2 − 9v2 = 720, (42, 30) r2 − 45s2 = 1, (161, 24)

(5, 2, 3) u2 − 3v2 = 150, (15, 5) r2 − 3s2 = 1, (2, 1)

(7, 1, 6) u2 − 3v2 = 294, (21, 7) r2 − 3s2 = 1, (2, 1)

(12, 1, 5) u2 − 5v2 = 720, (30, 6) r2 − 5s2 = 1, (9, 4)

By using the formula (4.4.2) we obtain the following sequences of solutions to
equations (5.6.20):

u(1)m = 12r(1)m + 60s(1)m , v(1)m = 10r(1)m + 60s(1)m ,

where r(1)m + s(1)m
√
30 = (11 + 2

√
30)m, m ≥ 0;

u(2)m = 15r(2)m + 195s(2)m , v(2)m = 13r(2)m + 195s(2)m ,

where r(2)m + s(2)m
√
195 = (14 +

√
195)m, m ≥ 0;

u(3)m = 12r(3)m + 24s(3)m , v(3)m = 8r(3)m + 24s(3)m ,

where r(3)m + s(3)m
√
6 = (5 + 2

√
6)m, m ≥ 0;

u(4)m = 12r(4)m + 12s(4)m , v(4)m = 6r(4)m + 12s(4)m ,
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where r(4)m + s(4)m
√
2 = (3 + 2

√
2)m, m ≥ 0;

u(5)m = 21r(5)m + 105s(5)m , v(5)m = 15r(5)m + 105s(5)m ,

where r(5)m + s(5)m
√
35 = (6 +

√
35)m, m ≥ 0;

u(6)m = 42r(6)m + 270s(6)m , v(6)m = 30r(6)m + 210s(6)m ,

where r(6)m + s(6)m
√
45 = (161 + 24

√
45)m, m ≥ 0;

u(7)m = 15r(7)m + 15s(7)m , v(7)m = 5r(7)m + 15s(7)m ,

where r(7)m + s(7)m
√
3 = (2 +

√
3)m, m ≥ 0;

u(8)m = 21r(8)m + 21s(8)m , v(8)m = 7r(8)m + 21s(8)m ,

where r(8)m + s(8)m
√
3 = (2 +

√
3)m, m ≥ 0;

u(9)m = 30r(9)m + 30s(9)m , v(9)m = 6r(9)m + 30s(9)m ,

where r(9)m + s(9)m
√
5 = (9 + 4

√
5)m, m ≥ 0.

Formulas (5.6.19) yield the following nine families of positive integers solutions
to the equation (5.6.18):

x(1)m = 11r(1)m + 60s(1)m + 1, y(1)m = r(1)m + 1, z(1)m = 6, t(1)m = 4

x(2)m = 14r(2)m + 195s(2)m + 1, y(2)m = r(2)m + 1, z(2)m = 10, t(2)m = 3

x(3)m = 10r(3)m + 24s(3)m + 2, y(3)m = 2r(3)m + 2, z(3)m = 2, t(3)m = 6

x(4)m = 12r(4)m + 12s(4)m + 3, y(4)m = 3r(4)m + 3, z(4)m = 4, t(4)m = 2

x(5)m = 18r(5)m + 105s(5)m + 3, y(5)m = 3r(5)m + 3, z(5)m = 14, t(5)m = 1

x(6)m = 36r(6)m + 240s(6)m + 4, y(6)m = 6r(6)m + 30s(6)m + 4, z(6)m = 1, t(6)m = 9

x(7)m = 10r(7)m + 15s(7)m + 5, y(7)m = 5r(7)m + 5, z(7)m = 2, t(7)m = 3

x(8)m = 14r(8)m + 21s(8)m + 7, y(8)m = 7r(8)m + 7, z(8)m = 1, t(8)m = 6

x(9)m = 18r(9)m + 30s(9)m + 12, y(9)m = 12r(9)m + 12, z(9)m = 1, t(9)m = 5.

Remarks. 1) In [194] only solution (x(7)m , y(7)m , z(7)m , t(7)m ) is found.
2) Note the atypical form of solution (x(6)m , y(6)m , z(6)m , t(6)m )m≥0.



140 5 Equations Reducible to Pell’s Type Equations

5.6.5 The Equation (x + y + z + t)2 = xyzt + 1

The equation

(x + y + z + t)2 = xyzt + 1 (5.6.21)

is considered in the paper [79], where the method to generate families of solutions
is similar to the one described in the previous section. Introduction of the linear
transformations

x = u + v + a, y = u − v + a, z = b, t = c, (5.6.22)

where a, b, c are positive integers, leads (5.6.21) to the form

(bc − 4)u2 − bcv2 = (2a + b + c)2 − a2bc − 1, (5.6.23)

in which bc > 4 and 2(2a+b+c) = abc. There are six triples (a, b, c) satisfying the
above conditions, namely (5,2,3), (7,1,6), (12,1,5), (1,10,3), (3,14,1), (4,1,9). The
following table contains the general Pell’s equations (5.6.23) corresponding to the
above triples (a, b, c), their Pell’s resolvent, both equations with their fundamental
solutions.

(a, b, c) General Pell’s equation (5.6.23) Pell’s resolvent
and its fundamental solution and its fundamental solution

(5, 2, 3) u2 − 3v2 = 37, (7, 2) r2 − 3s2 = 1, (2, 1)

(7, 1, 6) u2 − 3v2 = 73, (10, 3) r2 − 3s2 = 1, (2, 1)

(12, 1, 5) u2 − 5v2 = 179, (28, 11) r2 − 5s2 = 1, (9, 4)

(1, 10, 3) 13u2 − 15v2 = 97, (7, 6) r2 − 195s2 = 1, (14, 1)

(3, 14, 1) 5u2 − 7v2 = 157, (10, 7) r2 − 35s2 = 1, (6, 1)

(4, 1, 9) 5u2 − 9v2 = 179, (50, 37) r2 − 45s2 = 1, (161, 24)

In view of the formula (4.4.2), the following sequences are six families of positive
integer solutions to the corresponding general Pell’s equations (5.6.22):

u(1)m = 7r(1)m + 6s(1)m , v(1)m = 2r(1)m + 7s(1)m ,

where r(1)m + s(1)m
√
3 = (2 +

√
3)m, m ≥ 0.

u(2)m = 10r(2)m + 9s(2)m , v(2)m = 3r(2)m + 10s(2)m ,

where r(2)m + s(2)m
√
3 = (2 +

√
3)m, m ≥ 0.
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u(3)m = 28r(3)m + 55s(3)m , v(3)m = 11r(3)m + 28s(3)m ,

where r(3)m + s(3)m
√
5 = (9 + 4

√
5)m, m ≥ 0.

u(4)m = 7r(4)m + 90s(4)m , v(4)m = 6r(4)m + 91s(4)m ,

where r(4)m + s(4)m
√
195 = (14 +

√
195)m, m ≥ 0.

u(5)m = 10r(5)m + 49s(5)m , v(5)m = 7r(5)m + 50s(5)m ,

where r(5)m + s(5)m
√
35 = (6 +

√
35)m, m ≥ 0.

u(6)m = 50r(6)m + 333(6)m , v(6)m = 37r(6)m + 250s(6)m ,

where r(6)m + 3s(6)m
√
5 = (161 + 72

√
5)m, m ≥ 0.

Formulas (5.6.22) yield the following six families of positive integers solutions
to the equation (5.6.21):

x(1)m = 9r(1)m + 13s(1)m + 5, y(1)m = 5r(1)m − s(1)m + 5, z(1)m = 2, t(1)m = 3

x(2)m = 13r(2)m + 19s(2)m + 7, y(2)m = 7r(2)m − s(2)m + 7, z(2)m = 1, t(2)m = 6

x(3)m = 39r(3)m + 83s(3)m + 12, y(3)m = 17r(3)m + 27s(3)m + 12, z(3)m = 1, t(3)m = 5

x(4)m = 13r(4)m + 181s(4)m + 1, y(4)m = r(4)m − s(4)m + 1, z(4)m = 10, t(4)m = 3

x(5)m = 17r(5)m + 99s + 3, y(5)m = 3r(5)m − s(5)m + 3, z(5)m = 14, t(5)m = 1

x(6)m = 87r(6)m + 583s(6)m + 4, y(6)m = 13r(6)m + 83s(6)m + 4, z(6)m = 1, t(6)m = 9.

5.6.6 The Equation x3 + y3 + z3 + t3 = n

We will prove that if the equation

x3 + y3 + z3 + t3 = n (5.6.24)

has an integral solution (a, b, c, d) such that a �= b or c �= d and −(a+b)(c+d) > 0
is not a perfect square, then it has infinitely many integral solutions.

For this, let us perform the transformations:

x = X + a, y = −X + b, z = Y + c, t = −Y + d.

Then (a + b)X2 + (a2 − b2)X + (c + d)Y2 + (c2 − d2)Y = 0. The last equation
is equivalent to
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(a + b)

(

X +
a − b
2

)2

+ (c + d)

(

Y +
c − d
2

)2

=
(a + b)(a − b)2

4
+

(c + d)(c − d)2

4
. (5.6.25)

From the hypothesis, (5.6.25) is a general Pell’s equation:

AU2 − BV2 = C (5.6.26)

where A = a + b, B = −(c + d), C =
1

4
[(a + b)(a − b)2 + (c + d)(c − d)2] and

U = X +
a − b
2

, V = Y +
c − d
2

.

We note that (U0,V0) =

(
a − b
2

,
c − d
2

)

satisfies the equation (5.6.26) and

consider the Pell’s resolvent r2 − Ds2 = 1, where D = −(a + b)(c + d), with
the general solution (rm, sm)m≥0. From the formula (4.5.2), we obtain the solutions
(Um,Vm)m≥0 where

Um =
a − b
2

rm − (c + d)
c − d
2

sm

Vm =
c − d
2

rm + (a + b)
a − b
2

sm.

It follows that

Xm =
a − b
2

rm − c2 − d2

2
sm − a − b

2

Ym =
c − d
2

rm +
a2 − b2

2
sm − c − d

2
.

From these formulas we generate an infinite family of solutions (xm, ym,
zm, tm)m≥0 to the equation (5.6.24):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xm =
a − b
2

rm − c2 − d2

2
sm +

a + b
2

ym = −a − b
2

rm +
c2 − d2

2
sm +

a + b
2

zm =
c − d
2

rm +
a2 − b2

2
sm +

c + d
2

tm = −c − d
2

rm − a2 − b2

2
sm +

c + d
2

.

(5.6.27)
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Remarks. 1) The main idea of the approach described above comes from [150] and
all computations are given in [10].

2) A special case of equation (5.6.24) appears in the book [24]: Prove that the
equation

x3 + y3 + z3 + t3 = 1999

has infinitely many integral solutions (1999 Bulgarian Mathematical Olym-
piad). In this case, one simple solution to the given equation is (a, b, c, d) =
(10, 10,−1, 0). By using formulas (5.6.27), we obtain the following infinite
family of solutions:

(xm, ym, zm, tm) =

(

−1

2
sm + 10,

1

2
sm + 10,−1

2
(rm + 1),

1

2
(rm − 1)

)

,

where rm + sm

√
20 = (9 + 2

√
20)m, m ≥ 0. It is not difficult to see that the

integers rm are all odd and that sm are all even.
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