
Chapter 4
General Pell’s Equation

This chapter gives the general theory and useful algorithms to find positive integer
solutions (x, y) to general Pell’s equation (4.1.1), where D is a nonsquare positive
integer, and N a nonzero integer. There are five good methods for solving the general
Pell’s equation:

1. The Lagrange–Matthews–Mollin (LMM) method;
2. Brute-force search (which is good only if |N| is small and the minimal positive

solution to Pell’s resolvent is small);
3. Use of quadratic rings;
4. The cyclic method;
5. Lagrange’s system of reductions.

Of these five, we will present only the first three, with two versions for the third
one. These two last algorithms are comparable in terms of effectiveness. For the
cyclic method see [67] and for the Lagrange’s system of reductions see [52] or [142].

4.1 General Theory

In a memoir of 1768, Lagrange gave a recursive method for solving the equation

x2 − Dy2 = N (4.1.1)

with gcd(x, y) = 1, where D > 1 is not a perfect square and N �= 0, thereby
reducing the problem to the situation where |N| < √

D, in which case the positive
solutions (x, y) are found among the pairs (pn, qn), with pn/qn a convergent of the
simple continued fraction for

√
D.

It does not seem to be widely known that Lagrange also gave another algorithm
in a memoir of 1770, which may be regarded as a generalization of the well-known
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56 4 General Pell’s Equation

method of solving Pell’s equation and negative Pell’s equation presented in Sec-
tion 3.3 by using the simple continued fraction for

√
D (see [196]). Quadratic

Reciprocity (see [21, 185] and [179] for various applications)
In what follows we will call (4.1.1) the general Pell’s equation. First we will

present the general method of finding the solutions to this equation following the
presentation in [56, 112, 125, 126, 151] and [161].

Like in Section 3.5 we will consider the Pell’s resolvent

u2 − Dv2 = 1. (4.1.2)

Let (un, vn)n≥0 be the general solution to the equation (4.1.2) given in The-
orem 3.2.1. Assume that equation (4.1.1) is solvable and let (x, y) be one of its
solutions. Then

(un + vn

√
D)(x + y

√
D) = (unx + vnyD) + (uny + vnx)

√
D

and

(unx + vnyD)2 − D(uny + vnx)2 = (x2 − Dy2)(u2n − Dv2n ) = N · 1 = N.

It follows that (xn, yn)n≥0, where

xn = xun + Dyvn and yn = yun + xvn (4.1.3)

satisfies the general Pell’s equation. Hence every initial solution to (4.1.1) generates
its own family of infinitely many solutions.

This method of generating solutions is called the multiplication principle.
The main problem here is to decide whether or not two different initial solutions

generate different general solutions described above.
We say that solution (xn, yn)n≥0 given by (4.1.3) is associated with the solution

(un, vn)n≥0. The set of all solutions associated with each other forms a class of
solutions to (4.1.1).

Next we will show a way to decide whether the two given solutions (x, y) and
(x′, y′) belong to the same class or not. In fact, by using the method given in
Theorem 3.5.2 it is easy to see that the necessary and sufficient condition for these
two solutions to be associated with each other is that the numbers

xx′ − Dyy′

N
and

yx′ − xy′

N

are both integers.
Let K be the class consisting of the solutions (xn, yn)n≥0 defined by (4.1.3). Then

(xn,−yn)n≥0 also constitutes a class, denoted by K. The classes K and K are said
to be conjugates of each other. Conjugate classes are in general distinct, but may
sometimes coincide; in the latter case we speak of ambiguous classes.
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Among all the solutions (x, y) in a given class K we now choose a solution
(x∗, y∗) in the following way: let y∗ be the least nonnegative value of y which occurs
in K. If K is not ambiguous, then the number x∗ is also uniquely determined, for the
solution (−x∗, y∗) belongs to the conjugate class K. If K is ambiguous, then we get
a uniquely determined x∗ by prescribing that x∗ ≥ 0. The solution (x∗, y∗) defined
in this way is said to be the fundamental solution of the class.

In the fundamental solution, the number |x∗| has the least value which is possible
for |x| when (x, y) belongs to K. The case x∗ = 0 can occur when the class is
ambiguous, and similarly for the case y∗ = 0.

If N = ±1, there is only one class and it is ambiguous.
Suppose now that N is positive.

Theorem 4.1.1. If (x, y) is the fundamental solution of the class K of the equation
(4.1.1) and if (u1, v1) is the fundamental solution of the Pell’s resolvent (4.1.2), then
the following inequalities hold:

0 ≤ |x| ≤
√

(u1 + 1)N
2

(4.1.4)

0 < y ≤ v1√
2(u1 + 1)

√
N. (4.1.5)

Proof. If inequalities (4.1.4) and (4.1.5) are true for a class K, they are also true for
the conjugate class K. Thus we may assume that y is positive.

It is clear that

xu1 − Dyv1 = xu1 −
√

(x2 − N)(u21 − 1) > 0. (4.1.6)

Consider the solution (xu1 − Dyv1, yu1 − xv1) which belongs to the same class
as (x, y). Since (x, y) is the fundamental solution of the class and since by (4.1.6)
xu1−Dyv1 is positive, we must have xu1−Dyv1 ≥ x. From this inequality it follows
that

x2(u1 − 1)2 ≥ D2y2v21 = (x2 − N)(u21 − 1)

or

u1 − 1

u1 + 1
≥ 1− N

x2

and finally x2 ≤ 1

2
(u1+1)N. This proves inequality (4.1.4) and it is easily seen that

(4.1.4) implies (4.1.5). ��
Suppose next that N < 0 and call (4.1.1) the general negative Pell’s equation.

With a proof similar to the one in Theorem 4.1.1 we have
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Theorem 4.1.2. If (x, y) is the fundamental solution of the class K of the general
negative Pell’s equation and if (u1, v1) is the fundamental solution of the Pell’s
resolvent (4.1.2), then the following inequalities hold:

0 ≤ |x| ≤
√

(u1 − 1)|N|
2

(4.1.7)

0 < y ≤ v1√
2(u1 − 1)

√
|N|. (4.1.8)

From Theorems 4.1.1 and 4.1.2 we deduce

Theorem 4.1.3. If D is a nonsquare positive integer and N is a nonzero integer, then
the equation (4.1.1) has a finite number of classes of solutions. The fundamental
solutions of all the classes can be found after a finite number of trials by means
of the inequalities (4.1.4), (4.1.5) and (4.1.7), (4.1.8). If (x∗, y∗) is the fundamental
solution of the class K, then all the solutions in K are given by (xn, yn)n≥0, where

xn = x∗un + Dy∗vn and yn = y∗un + x∗vn

and (un, vn)n≥0 represents the general solution of Pell’s resolvent including ±1, if
necessary.

Remark. The upper bounds for fundamental solutions that generate the classes of
solutions of general Pell’s equation (4.1.1) found in Theorems 4.1.1 and 4.1.2 can
still be improved. In [76] it is shown that

0 ≤ |x| ≤
√
ε|N|, 0 < y ≤

√
ε|N|

D

where ε = u1 + v1
√

D.

In the private communication (L. Panaitopol, personal communication, December
2001) the following better upper bounds are mentioned

0 ≤ |x| ≤
√

|N|u1 + N
2

, 0 < y ≤
√

|N|u1 − N
2D

.

In the above delimitations (u1, v1) denotes the fundamental solution to the Pell’s
equation (4.1.2).

We denote by k(D,N) the number of classes of solutions of the equation (4.1.1),
and by K(D,N) the set of the fundamental solutions of all classes.

Theorem 4.1.4. Let p be a prime. Then each of the general Pell’s equations

x2 − Dy2 = ±p (4.1.9)
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has at most one solution (x, y) in which x and y satisfy the inequalities (4.1.4) and
(4.1.5), or (4.1.7) and (4.1.8), respectively, provided that x ≥ 0.

If the equation (4.1.9) is solvable, then it has one or two solutions satisfying the
above conditions, according as the prime p divides 2D or not.

Proof. Suppose that (x, y) and (x1, y1) are two solutions of (4.1.9) satisfying the
conditions in the first part of Theorem 4.1.4. Thus the numbers x, y, x1 and y1 are
nonnegative.

Eliminating D between relations

x2 − Dy2 = ±p, x21 − Dy21 = ±p (4.1.10)

yields x2y21 − x21y2 = ±p(y21 − y2). Thus xy1 ≡ x1y (mod p).
Furthermore, from (4.1.10) we obtain

(xx1 ∓ Dyy1)
2 − D(xy1 ∓ x1y)2 = p2.

In the equation

(
xx1 ∓ Dyy1

p

)2

− D

(
xy1 ∓ x1y

p

)2

= 1 (4.1.11)

let us choose the sign such that the congruence xy1 ≡ ±x1y (mod p) is satisfied.
Then the two squares on the left-hand side are integers. If xy1 ∓ x1y �= 0, from
(4.1.11) we conclude that

|xy1 ∓ x1y| ≥ v1p. (4.1.12)

On the other hand, by applying inequalities (4.1.4) and (4.1.5), or (4.1.7) and
(4.1.8), respectively, we obtain |xy1 ∓ x1y| < v1p, which is contrary to (4.1.12).
The remaining case is xy1 ∓ x1y = 0, which is obviously possible only for x = x1
and y = y1. Thus the first part of Theorem 4.1.4.

Consequently, there are at most two classes of solutions. Suppose that (x, y) and
(x,−y) are two solutions which satisfy inequalities (4.1.4) and (4.1.5), or (4.1.7)
and (4.1.8), respectively. These solutions are associated if and only if p divides the
two numbers 2xy and x2 + Dy2 = 2Dy2 ± p. Since y cannot be divisible by p, the
numbers 2x and 2D are divisible by p. But if 2D is divisible by p, then so is 2x. Thus,
the necessary and sufficient condition for (x, y) and (x,−y) to belong to the same
class is that 2D is a multiple of p. Thus proves the second part of the theorem. ��

The following example illustrates how the method described in Theorem 4.1.4
can be applied.

Consider the equation x2 − 2y2 = 119. The fundamental solution of its Pell’s
resolvent u2 − 2v2 = 1 is (3, 2). The following solutions of our equation satisfy
inequalities (4.1.4) and (4.1.5): (11, 1), (−11, 1), (13, 5), (−13, 5). It is not difficult
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to show that these numbers are all fundamental solutions in different classes.
Thus the number of classes is four but only solutions (11,1) and (13,5) satisfy
Theorem 4.1.4. The form of the integer N is very important. For instance, in the
paper [174] are considered the equations x2 − Dy2 = ±c(231 − 1).

We will now present an example which illustrates how one can use
Theorem 4.1.4. We will now rely on the result in our paper [16]. In [37] the
following question is posed: Does the Diophantine equation

8x2 − y2 = 7 (4.1.13)

have infinitely many solutions in positive integers?
Recently, in the paper [114] the more general equation ax2 − by2 = c is

considered. It is shown that if ab is not a square and the above equation has a positive
integer solution (x0, y0), then it has infinitely many positive integer solutions. This
property is a direct consequence of the multiplication principle. In the paper [143]
a simple criterion for solving both equations x2 − Dy2 = c and x2 − Dy2 = −c is
presented.

In what follows, we will find all solutions to the equation (4.1.13). We can write
the equation (4.1.13) in the following equivalent form: y2 − 8x2 = −7. This is a
special case of (4.1.9). In our case, p = 7 and p does not divide 2D = 16. Applying
Theorem 4.1.4 we deduce that the equation (4.1.13) has two classes of solutions and
these are generated by (−1, 1) and (1, 1). The Pell’s resolvent u2 − 8v2 = 1 has the
fundamental solution (u1, v1) = (3, 1) and its general solution (un, vn)n≥0 is given
by (see formulas (3.2.6)):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un =
1

2

[(
3 +

√
8
)n

+
(
3−

√
8
)n]

vn =
1

2
√
8

[(
3 +

√
8
)n

−
(
3−

√
8
)n] (4.1.14)

Applying Theorem 4.1.3 it follows that all solutions to the equation (4.1.13) are
given by (xn, yn)n≥0 and (x′n, y′n)n≥0, where

{
xn = un + vn

yn = un + 8vn
and

{
x′n = un − vn

y′n = −un + 8vn

and (un, vn)n≥0 is defined in (4.1.14). We obtain two classes of solutions:

(x, y) = (1, 1), (4, 11), (23, 65), (134, 379), . . .

and

(x′, y′) = (2, 5), (11, 31), (64, 181), (373, 1055), . . .

respectively.
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Remark. We will describe now the set of rational solutions to the Pell’s equation
u2 − Dv2 = 1. A family of such solutions was given in Remark 4 in Section 3.2.

For fixed positive integers m and n consider the general Pell’s equation x2 −
Dy2 = (mn)2. Consider the set of all its integral solutions (x, y) satisfying n|x and

m|y and let Sm,n be the set of all pairs
(x1

m
,

y1
n

)
, where x = x1n, y = y1m. The set

of all rational solutions to u2 − Dv2 = 1 is then given by S =
⋃

m,n≥1

Sm,n.

The following interesting result was proved in the paper [72].

Theorem 4.1.5. Let D = a2 + (2b)2, with a, b ∈ Z. If D is a prime, the following
hold:

1) The equation x2 − Dy2 = a is solvable.
2) The equation x2 − Dy2 = 4b is solvable.

If D is not prime, then both 1) and 2) can fail. For instance 221 = 102 + 112 =
52 + 142, but for a = ±5 or ±11 the equation x2 − 221y2 = a has no solution mod
13, while for b = ±5 or ±7 the equation x2 − 221y2 = 4b has no solution mod 17.

4.2 Solvability of General Pell’s Equation

Disregarding any time considerations, Theorem 4.1.1 may be used to determine
whether any general Pell equation is solvable or not. Following the reference
[204], let consider the general Pell equation x2 − 43y2 = 35. According to
Theorem 4.1.1, if it is solvable, then any of its fundamental solutions (x, y) must

lie within the following bounds: 0 < |x| ≤
[√

35(3482 + 1)/2
]

= 246 and

0 < v ≤
[
532

√
35/(2(3482 + 1))

]
= 37, where (3482, 532) is the fundamental

solution to the Pell’s resolvent u2 − 43v2 = 1. After checking all 9102 possible
combinations of (x, y) we see that the equation x2 − 43y2 = 35 is not solvable.

With regards to computational efficiency, the question of solvability for the
considered example is no match for modern computers. But, what happens when

N gets large? Clearly,

√
(u1 − 1)|N|

2
→ ∞, as N → ±∞. Thus, Theorem 4.1.1,

though a nice tool, does not allow one to efficiently decide if a particular general Pell
equation is solvable. In the reference [204] is mentioned the equation x2 − 313y2 =
172635965 and the fact that, using the actual computation force, we need about
69806785 years to prove the unsolvability, following the method provided by
Theorem 4.1.1. Thus, in this particular example, with N = 172635965 relatively
small, using the approach in Theorem 4.1.1 will take a considerable amount of time.
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The question of solvability of the general Pell’s equation can be formulated into
two problems:

Pell Decision Problem (PDP). Given a positive integer D ≥ 2 which is not a
perfect square, and an integer N, is there an efficient means to decide if the equation
(4.1.1) is solvable?

In some situations PDP can be reduced to the case when D is a prime (see for
instance Theorem 3.6.2).

Pell Search Problem (PSP). Assuming that the equation (4.1.1) is solvable, can we
find all fundamental solutions in the Pell classes in a reasonable amount of time?

Notice that a general criterion for solvability is, in effect, a solution to a PDP. In
this section we address the problem of finding a general criterion for solvability of
general Pell equation and give a partial solution. Most of the tests that we develop
throughout this section are based on the reference [204] and do not rely on integer
factorization. However, a few of the implementations based on these results will rely
heavily on the efficiency of integer factorization, which is likely no more efficient
than tests based on the Pell class approach.

4.2.1 PDP and the Square Polynomial Problem

In what follows we will show that the PDP is equivalent to the problem of deciding
whether or not a particular second degree polynomial with integer coefficients has a
square integer value. In this respect we formulate the following concrete problem:

Square Polynomial Decision Problem (SPDP). Does there exist an algorithm
that, for any odd prime p and N ∈ Z with gcd(N, p) = 1 decides if there is for

some a with N ≡ a2 (mod p) and n ∈ Z such that pn2 − 2an +
a2 − N

p
is a

square?
The SPDP and the PDP for specific D and N may be formulated in terms of

arithmetical functions. Let p be a prime, N ∈ Z, with

(
N
p

)
= 1 and consider

the equation x2 − py2 = N. Since

(
N
p

)
= 1 we have a2 ≡ N (mod p) for

some positive integer a. Note that, the Tonelli–Shanks algorithm, assuming the
Generalized Riemann Hypothesis, efficiently find an integer a such that a2 ≡ N
(mod p) (see [159, pp. 110–115]).

Following the reference [204], define the functions

φ(p,N) =

⎧⎪⎪⎨
⎪⎪⎩

1 if pn2 − 2an +
a2 − N

p
is a square for some

integers n and a with a2 ≡ N (mod p)
−1 otherwise
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and

ψ(p,N) =

{
1 if x2 − py2 = N is solvable

−1 otherwise.

Clearly, in the definition of φ(p,N) we can assume that a ∈ Zp.
Now, we have the proper terminology to prove the following result.

Theorem 4.2.1. Let p be an odd prime and N ∈ Z with

(
N
p

)
= 1. Then,

ψ(p,N) = 1 if and only if φ(p,N) = 1.

Proof. If ψ(p,N) = 1, then we have u2−pm2 = N for some integers u,m. Observe
that y2 ≡ N (mod p). To prove φ(p,N) = 1 we must show that there is an integer

n such that pn2 − 2un +
u2 − N

p
is a square. But, we have

u2 − N
p

= m2, hence we

choose n = 0. Therefore φ(p,N) = 1.
Suppose φ(p,N) = 1. That is, there are integers n,m and u ∈ Zp such that

u2 ≡ N (mod p) and pn2 − 2un +
u2 − N

p
= m2. The last relation is equivalent

to (u + pn)2 − pm2 = N, so the pair (u + pn,m) is a solution to the general Pell’s
equation x2 − py2 = N. Thus, the relation ψ(p,N) = 1 holds. ��

The result in Theorem 4.2.1 proves that SPDP is equivalent to PDP.

4.2.2 The Legendre Test

The Legendre symbol and the Quadratic Reciprocity Law provide the first test for
the solvability of general Pell’s equation.

Theorem 4.2.2. If

(
N
p

)
= −1 then ψ(p,N) = −1, that is x2 − py2 = N is not

solvable.

Proof. If the equation x2 − py2 = N were solvable, then u2 − pv2 = N for some
integers u and v. Therefore, u2 − N = pv2, hence u2 ≡ N (mod p), implying(

N
p

)
= 1, contradicting our assumption. ��

Corollary 4.2.3. If

(
N
p

)
= 1 and

(
M
p

)
= −1, then the equation

x2 − py2 = MN

is not solvable.
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Example 1. Consider the general Pell’s equation x2 − 17y2 = −46. Using the
properties of the Legendre symbol, we have

(−46

17

)
=

(−1

17

)(
46

17

)
=

(
12

17

)
=

(
4

17

)(
3

17

)

=

(
3

17

)
=

(
17

3

)
=

(
2

3

)
= −1,

hence, according to Theorem 4.2.2, the considered equation is not solvable.

4.2.3 Legendre Unsolvability Tests

This subsection uses the Quadratic Reciprocity Law and some properties of the
Legendre symbol to obtain some tests for the unsolvability of general Pell’s
equation.

Theorem 4.2.4. Let p be an odd prime and N a positive integer. If p ≡ 3 (mod 4)

and

(
N
p

)
= 1, then the equation x2 − py2 = −N is not solvable.

Proof. If the equation is solvable, then we have r2 − ps2 = −N, for some integers

r, s. It follows r2 ≡ −N (mod p), hence

(−N
p

)
= 1. Using the standard

properties of the Legendre symbol we get

1 =

(−N
p

)
=

(−1

p

)(
N
p

)

and
(−1

p

)
=

(−1

p

)
· 1 =

(−1

p

)(
N
p

)
=

(−N
p

)
= 1.

By the Quadratic Reciprocity Law, this only happens when p ≡ 1 (mod 4),
contradicting our assumption. ��
Example 2. Consider the equation x2 − 11y2 = −5. Since (4,1) is a solution to

x2 − 11y2 = 5, we have

(
5

11

)
= 1. Since 11 ≡ 3 (mod 4), by Theorem 4.2.4, we

obtain that the considered equation is not solvable.
The next result is given in [204] and it yields a general test for the unsolvability

of a large class of general Pell’s equations.

Theorem 4.2.5. Let p be a prime, p ≡ 3 (mod 4), and N = m2n with n square
free. If x2 − py2 = N is solvable, then n ≡ 1 (mod 4).
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Proof. Suppose that n ≡ 3 (mod 4). Since x2 − py2 = N is solvable, there are
u, v ∈ Z such that u2 − pv2 = m2n. We shall collect the following three facts:

(i)

(
n
p

)
= 1.

(ii) If q is a prime divisor of n with q ≡ 3 (mod 4), then

(
q
p

)
= −1.

(iii) Let r = |{q : q|n and q is an odd prime and q ≡ 3 (mod 4)}|. Then r is odd.

Since u2 − pv2 = m2n, we have u2 − m2n = pv2. So, X2 ≡ N (mod p) is

solvable. Thus,

(
n
p

)
=

(
m2n

p

)
= 1. This proves (i).

Now suppose that q is a prime divisor of n. So, n = qn0 for some n0 ∈ Z. Thus,

u2 − pv2 = qn0 and so X2 ≡ pv2 (mod p) is solvable. So,

(
p
q

)
=

(
pv2

q

)
=

1. By the Quadratic Reciprocity Law, we know that, since p ≡ q ≡ 3 (mod 4),(
p
q

)
= −

(
q
p

)
. So, −

(
q
p

)
= 1. This proves (ii).

Let n = q1 . . . qr · qr+1 . . . ql, where q1 ≡ . . . ≡ qr ≡ 3 (mod 4) and qr+1 ≡
. . . ≡ ql ≡ 1 (mod 4). If r is even, then we may arrange these first r primes in
pairs as follows: (q1 · q2), (q3 · q4), . . ., (qr−1 · qr). Then, for i even with 1 ≤ i ≤ r,
(qi−1 · qi) ≡ 9 ≡ 1 (mod 4). But, then n = (q1 · q2) · (q3 · q4) . . . (qr−1 · qr) ·
qr+1 . . . ql ≡ 1 (mod 4) contrary to assumption. This proves (iii).

Again let n = q1 . . . qrqr+1 . . . ql, where q1 ≡ . . . ≡ qr ≡ 3 (mod 4) and
qr+1 ≡ . . . ≡ ql ≡ 1 (mod 4). Because r is odd, by (ii) we have

(
q1
p

)
. . .

(
qr

p

)
= (−1) . . . (−1) = (−1)r = −1.

Also,

(
qr+1

p

)
. . .

(
ql

p

)
= 1 . . . 1 = 1l−r = 1.

Therefore, by (i) we obtain

1 =

(
n
p

)
=

(
q1 . . . qrqr+1 . . . ql

p

)

=

(
q1
p

)
. . .

(
qr

p

)(
qr+1

p

)
. . .

(
ql

p

)
= (−1)r · 1 = −1,

a contradiction. ��
The result in Theorem 4.2.5, when expressed using the contrapositive, yields a

nice test for unsolvability. We state this as the following consequence.
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Corollary 4.2.6. Let N = m2n with n square free. If p is a prime with p ≡ n ≡ 3
(mod 4), then the equation x2 − py2 = N is not solvable.

The next consequence follows immediately.

Corollary 4.2.7. If p ≡ N ≡ 3 (mod 4) and M ≡ 1 (mod 4), then the equation
x2 − py2 = MN is not solvable.

Example 3. Consider the equation x2 − 31y2 = 1008. We have 1008 = 122 · 7
and 7 ≡ 3 (mod 4). Corollary 4.2.6 allows us to conclude that the equation is not
solvable.

The next result requires that we know a prime factor ≥ 3 of N.

Theorem 4.2.8. Let q be an odd prime divisor of N. If the equation x2 − py2 = N

is solvable, then

(
p
q

)
= 1.

Proof. Assume that u2−pv2 = N, for some integers u, v. Because N ≡ 0 (mod q),
it follows u2 ≡ pv2 (mod q).

Therefore,

(
pv2

q

)
= 1, hence

(
p
q

)
= 1. ��

In the case when we can find an odd prime divisor of N, the contrapositive to
Theorem 4.2.8 provides a nice test for unsolvability.

Corollary 4.2.9. Let q be an odd prime divisor of N. If

(
p
q

)
= −1, then the

equation x2 − py2 = N is not solvable.

Now, we are in position to discuss the solvability of the equation

x2 − 313y2 = 172635965,

considered at the beginning of this section. Because 5 is a prime divisor of

172635965 and

(
313

5

)
= −1, we may use Corollary 4.2.9 to conclude the

unsolvability of the equation.

Corollary 4.2.10. Let q be an odd prime divisor of N. If p or q ≡ 1 (mod 4) and(
q
p

)
= −1, then the equation x2 − py2 = N is not solvable.

Proof. Because p or q ≡ 1 (mod 4), we have

(
p
q

)
=

(
q
p

)
= −1, and we can

use the result in Corollary 4.2.9.

Corollary 4.2.11. Let N = m2n, where n is square free. If p is a prime with p ≡ 5
(mod 8), and n is even, then the equation x2 − py2 = N is not solvable.
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Proof. Suppose that u2 − pv2 = N, for some integers u, v. It follows

(
N
p

)
= 1,

hence

(
n
p

)
=

(
m2n

p

)
= 1. Since n is even, we have n = 2n0, n0 ∈ Z, and(

2n0
p

)
= 1. Because p ≡ 5 (mod 8), we have

(
2

p

)
= −1. Therefore, n has

a prime factor q such that

(
q
p

)
= −1. But, n is square free, so q must be odd.

Moreover, from p ≡ 5 (mod 8), it follows p ≡ 1 (mod 4) and the conclusion
follows from Corollary 4.2.9. ��

The following application is given in the reference [204].

Example 4. Consider the equation x2 − 181y2 = 1908360. We have 181 ≡ 5
(mod 8) and 1908360 = 182 · 5890 with 5890 = 2 · 5 · 19 · 31 even and square free.
Applying Corollary 4.2.11, it follows the unsolvability of the equation.

4.2.4 Modulo n Unsolvability Tests

We will describe a simple but useful way to test the unsolvability of general Pell’s
equation.

Theorem 4.2.12. If the equation x2 − Dy2 = N is not solvable in Zn, for some
positive integer n ≥ 2, then it is not solvable in integers.

Proof. Assume that u2 − Dv2 = N for some integers u, v. The remainder upon
dividing u2 − Dv2 by n will be the same as the remainder in the division of N by n.
Therefore, the equation x2−Dy2 = N is solvable in Zn. Thus, by the contrapositive,
the result follows. ��

Note that if the equation x2−Dy2 = N is solvable in Zn for some positive integer
n ≥ 2, then it is not necessarily the case that it is solvable in integers.

Theorem 4.2.13. Let p be a prime with p ≡ 3 (mod 4), and N an odd integer. If
the equation x2 − py2 = N is solvable, then N ≡ 1 (mod 4).

Proof. We have a2 ≡ 0 1 (mod 4), and by direct calculation, we see that x2−oy2 ≡
x2 − 3y2 ≡ 0, 1, or 2 (mod 4). Therefore, if N ≡ 3 (mod 4), the equation is not
solvable in Z4, and, by mod 4 test, the equation is not solvable in integers. ��

Using the same argument, but in Z8, we can prove the following result.

Theorem 4.2.14. Let p be a prime with p ≡ 1, 3, or 5 (mod 8), and N an integer
with N ≡ 2 (mod 4). Then the equation x2 − py2 = N is not solvable.



68 4 General Pell’s Equation

4.2.5 Extended Multiplication Principle

We now give some tests for the solvability of general Pell’s equation, using an
extension of the multiplication principle discussed in Section 4.1.

Extended Multiplication Principle. If u2 − Dv2 = M and r2 − Ds2 = N, then
(ur ± Dvs)2 − D(us ± vr)2 = MN, where the signs + and − correspond.

The above identity is also called the Bhaskara identity, according to the name of
the Hindu mathematician mentioned in Section 3.1.

We can reformulate this algebraic property as follows: If the general Pell’s
equations u2 − Dv2 = M and r2 − Ds2 = N are solvable, then the equation
x2 − Dy2 = MN is also solvable.

As an application to the Extended Multiplication Principle, we present an
extension of the result involving the negative Pell’s equation, and contained in
Theorem 3.6.2.

Theorem 4.2.15. Let p be a prime with p ≡ 1 (mod 4). The equation

x2 − py2 = −N

is solvable if and only if the equation x2 − py2 = N is solvable.

Proof. By Theorem 3.6.2, we know that the negative Pell’s equation

u2 − pv2 = −1

is solvable. Now, the result directly follows from the Extended Multiplicative
Principle. ��
Remark. Notice that if we can factor N, say N = N1 . . .Ns and show, for all i =
1, . . . , s, that the equation x2 − Dy2 = Ni is solvable, then using successively the
Extended Multiplication Principle we obtain that the equation x2 − Dy2 = N is
solvable.

The converse of the above remark need not hold, as the next example illustrates.

Example 5. Considering the equation x2 − 37y2 = 192, we have 192 = 42 · 12 =
82 · 3. The equations x2 − 37y2 = 12 and x2 − 37y2 = 42 are clearly solvable,
hence according to the Extended Multiplication Principle, it follows the considered
equation is solvable. On the other hand, if we use the second factorization of 192,
we see that x2 − 37y2 = 3 is not solvable (apply Theorem 4.1.1 where (u1, v1) =
(73, 12). Thus, we may not conclude that the unsolvability of x2−37y2 = 3 implies
the unsolvability of x2 − 37y2 = 192.
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4.3 An Algorithm for Determining the Fundamental
Solutions Based on Simple Continued Fractions
(The LMM Method)

We will describe an almost forgotten algorithm due to Lagrange, for deciding the
solvability of general Pell’s equation (4.1.1), where gcd(x, y) = 1 and D > 0 is
not a perfect square. In the case of solvability, the fundamental solutions are also
constructed.

The main purpose of this section is to present a version of Lagrange’s algorithm
which uses only the technique of simple continued fractions.

A related algorithm is given in [158] but each of the cases D = 2 or D = 3 and
N < 0 needs separate consideration. Also, unlike our algorithm, the approach in
[158] requires the calculation of the fundamental solution of Pell’s resolvent.

Lagrange’s algorithm has been rediscovered in [141]. The method there is more
complicated than ours, as it uses the language of ideals and semi-simple continued
fractions, in addition to that of simple continued fractions.

First we need a result which is an extension of Theorem 172 in [88].

Lemma 4.3.1. If ω =
Pζ + R
Qζ + S

, where ζ > 1 and P,Q,R, S are integers such that

Q > 0, S > 0 and PS − QR = ±1, or S = 0 and Q = R = 1, then P/Q is a
convergent to ω. Moreover if Q �= S > 0, then

R
S
=

pn−1 + kpn

qn−1 + kqn
, k ≥ 0.

Also, ζ + k is the (n + 1)-th complete convergent to ω. Here k = 0 if Q > S, while
k ≥ 1 if Q < S.

Proof. In [88] only the case Q > S > 0 is considered. We write

P
Q

= 〈a0; a1, . . . , an〉 = pn

qn

and assume PS − QR = (−1)n−1. Then

pnS − qnR = PS − QR = pnqn−1 − pn−1qn,

so pn(S − qn−1) = qn(R − pn−1).
Hence qn|(S − qn−1). Then from qn = Q > S > 0 and qn ≥ qn−1 > 0, we

deduce |S − qn−1| < qn and hence S − qn−1 = 0. Then S = qn−1 and R = pn−1.
Also

ω =
Pζ + R
Qζ + S

=
pnζ + pn−1

qnζ + qn−1
= 〈a0; a1, . . . , an, ζ〉.
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If S = 0 and Q = R = 1, then ω = [P, ζ] and P/Q = P/1 = p0/q0.
If Q = S, then Q = S = 1 and P − R = ±1. If P = R + 1, then ω = [R, 1, ζ],

so P/Q = (R + 1)/1 = p1/q1. If P = R − 1, then ω = [R − 1, 1 + ζ] and
P/Q = (R − 1)/1 = p0/q0.

If Q < S, then from qn|(S − qn−1) and

S − qn−1 > Q − qn−1 = qn − qn−1 ≥ 0,

we have S − qn−1 = kqn, where k ≥ 1. Then

ω =
Pζ + R
Qζ + S

=
pnζ + pn−1 + kpn

qnζ + qn−1 + kqn
=

pn(ζ + k) + pn−1

qn(ζ + k) + qn−1

and ω = 〈a0; a1, . . . , an, ζ + k〉. ��
Theorem 4.3.2. Suppose x2 − Dy2 = N is solvable in integers x > 0, y > 0, with
gcd(x, y) = 1 and let Q0 = |N|. Then gcd(Q0, y) = 1. Define P0 by x ≡ −P0y
(mod Q0), where D ≡ P2

0 (mod Q0) and −Q0/2 < P0 ≤ Q0/2.
Let ω = (P0 +

√
D)/Q0 and let x = Q0X − P0y. Then

(i) X/y is a convergent An−1/Bn−1 of ω if x > 0;
(ii) Qn = (−1)nN/|N|.
Proof. With Q0 = |N|, x = Q0X − P0y and x2 − Dy2 = N, we have

P0x + Dy ≡ −P2
0y + Dy ≡ (−P2

0 + D)y ≡ 0 (mod Q0).

Hence the matrix

[
P R
Q S

]
=

[
X P0x+Dy

Q0

y x

]

has integer entries and determinant Δ = ±1. For

Δ = Xx − y(P0x + Dy)
Q0

=
(x + P0y)x

Q0
− y(P0x + Dy)

Q0

=
x2 − Dy2

Q0
= ±1.

Also, if ζ =
√

D and ω = (P0 +
√

D)/Q0, it is easy to verify that ω =
Pζ + R
Qζ + S

.

Then the lemma implies that X/y is a convergent to ω.



4.3 An Algorithm for Determining the Fundamental Solutions Based... 71

Finally, x = Q0X − P0y = Q0An−1 − P0Bn−1 = Gn−1 and

N = x2 − Dy2 = G2
n−1 − DB2

n−1 = (−1)nQ0Qn.

Hence Qn = (−1)nN/|N|. ��
Remark. The solutions u of u2 ≡ D (mod Q0) come in pairs ±u1, . . . ,±ur, where
0 < ui ≤ Q0/2, together with possibly ur+1 = 0 and ur+2 = Q0/2. Hence we can
state the following:

Corollary 4.3.3. Suppose x2 − Dy2 = N is solvable, with x > 0 and y > 0,
gcd(x, y) = 1 and Q0 = |N|. Let x ≡ −P0y (mod Q0), where P0 ≡ ±ui

(mod Q0) and x = Q0X − P0y. Then X/y is a convergent An−1/Bn−1 of ωi =
(ui +

√
D)/Q0 or ω′

i = (−ui +
√

D)/Q0 and Qn = (−1)nN/|N|.

4.3.1 An Algorithm for Solving the General Pell’s Equation
(4.1.1)

In view of the Corollary 4.3.3 we know that the primitive solutions to x2−Dy2 = N
with y > 0 will be found by considering the continued fraction expansions of both
ωi and ω′

i for 1 ≤ i ≤ r + 2.
One can show that each equivalence class contains solutions (x, y) with x > 0

and y > 0, so the necessary condition Qn = (−1)nN/|N| occurs in both ωi and ω′
i .

Hence we need only consider ωi.
Suppose that ωi = (ui +

√
D)/Q0 = [a0, . . . , at, at+1, . . . , at+l].

If x2 − Dy2 = N is solvable, there are infinitely many solutions and hence Qn =
±1 holds for ωi for some n in the range t + 1 ≤ n ≤ t + l. Any such n must have
Qn = 1, as (Pn +

√
D)/Qn is reduced for n in this range and so Qn > 0. Moreover,

if l is even, then the condition (−1)n = N/|N| is preserved.
In addition, there can be at most one such n. For if Pn =

√
D is reduced, then

Pn = [
√

D] and hence two such occurrences of Qn = 1 within a period would give
a smaller period.

We also remark that l is odd if and only if the fundamental solution of Pell’s
equation has norm equal to −1. Consequently, a solution of x2−Dy2 = N gives rise
to a solution of x2 − Dy2 = −N; indeed we see that if t + 1 ≤ n ≤ t + l and k ≥ 1,
then Gn+kl−1 + Bn+kl−1

√
D = ηk

0(Gn−1 + Bn−1

√
D), where η0 is the fundamental

solution of x2 − Dy2 = ±1. Hence G2
n+l−1 − DB2

n+l−1 = −(G2
n−1 − DB2

n−1) if
N(η0) = −1.

Putting these observations together, we have the following:

Theorem 4.3.4. For 1 ≤ i ≤ r + 2, let

ωi = (ui +
√

D)/Q0 = 〈a0, . . . , at, at+1, . . . , at+l〉.
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(a) Then a necessary condition for x2 − Dy2 = N, gcd(x, y) = 1, to be solvable is
that for some i in i = 1, . . . , r+2, we have Qn = 1 for some n in t+1 ≤ n ≤ t+l,
where if l is even, then (−1)nN/|N| = 1.

(b) Conversely, suppose for ωi, we have Qn = 1 for some n with t + 1 ≤ n ≤ t + l.
Then

(i) If l is even and (−1)nN/|N| = 1, then x2−Dy2 = N is solvable and it has
solution Gn−1 + Bn−1

√
D.

(ii) If l is odd, then Gn−1 + Bn−1

√
D is a solution of x2 − Dy2 = (−1)n|N|,

while Gn+l−1 + Bn+l−1

√
D is a solution of x2 − Dy2 = (−1)n+1|N|.

(iii) At least one of the Gn−1 + Bn−1

√
D with least Bn−1 satisfying Qn =

(−1)nN/|N|, which arise from continued fraction expansions of ωi and
ω′

i , is a fundamental solution.

Remarks. 1) Unlike the case of Pell’s equation, Qn = ±1 can also occur for n <
t + 1 and can contribute to a fundamental solution. If N(η) = 1, one sees that to
find the fundamental solutions for both x2 − Dy2 = ±N, it suffices to examine
only the cases Qn = ±1, n ≤ t + l. However if N(η) = −1, one may have to
examine the range t + l + 1 ≤ n ≤ t + 2l as well.

2) It can happen that l is even and that x2 − Dy2 = N is solvable and has solution
x ≡ ±uiy (mod Q0), while x2 − Dy2 = −N is solvable and has solution x ≡
±ujy (mod Q0), with i �= j. (Of course, if |N| = p is prime, this cannot happen,
as the congruence u2 ≡ D (mod p) has two solutions if p does not divide D and
one solution if p divides D.)

An example of this is D = 221, N = 217 (see Example 2 later). Then u1 = 2,
u2 = 33. Also, l = 6 and (2+

√
221)/217 produces the solution −2+

√
221 of x2−

221y2 = −217, whereas (33−√
221)/217 produces the solution −179 + 12

√
221

of x2 − 221y2 = 217.

Example 1 (Lagrange). x2 − 13y2 = ±101.
We find the solutions of P2

0 ≡ 13 (mod 101) are ±35.

(a) We have
35 +

√
13

101
= [0, 2, 1, 1, 1, 1, 1, 6].

i 0 1 2 3 4 5 6 7 8

Pi 35 −35 11 −2 3 1 2 1 3

Qi 101 −12 9 1 4 3 3 4 1

Ai 0 1 1 2 3 5 8 13 86

Bi 1 2 3 5 8 13 21 34 225

We observe that Q3 = Q8 = 1. The period length is odd, so both the
equations x2 − 13y2 = ±101 are solvable. With Gn = Q0An − P0Bn, we have

G2=101 · 1− 34 · 3=− 4, x+y
√
13=− 4+3

√
13, x2 − 13y2=− 101;

G7=101 · 13−35 · 34=123, x+y
√
13=123+34

√
13, x2−13y2=101.
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(b) We have
−35 +

√
13

101
= [−1, 1, 2, 4, 1, 1, 1, 1, 6].

i 0 1 2 3 4 5 6 7 8

Pi −35 −66 23 1 3 1 2 1 3

Qi 101 −43 12 1 4 3 3 4 1

Ai −1 0 −1 −4 −5 −9 −14 −23 −152

Bi 1 1 3 13 16 29 45 74 489

We observe that Q3 = Q8 = 1. Hence

G2=101 · (−1)−(−35) · 3=4, x+y
√
13=A + 3

√
13, x2 − 13y2 = −101;

G7=101 · (−23)−(−35) · 74=267, x+y
√
13=267+74

√
13, x2−13y2=101.

Hence −4 + 3
√
13 and 123 + 34

√
13 are fundamental solutions for the

equations x2 − 13y2 = −101 and x2 − 13y2 = 101 respectively.
We have η = 649+180

√
13, so the complete solution of x2− 13y2 = −101

is given by x + y
√
13 = ±ηn(±4 + 3

√
13), n ∈ Z, while the complete solution

of x2 − 13y2 = 101 is given by x + y
√
13 = ±ηn(±123 + 34

√
13), n ∈ Z.

Example 2. x2 − 221y2 = ±217.
We find the solutions of P2

0 ≡ 221 (mod 217) are ±2 and ±33.

(a) We have
2 +

√
221

217
= [0, 12, 1, 6, 2, 6, 1, 28].

i 0 1 2 3 4 5 6 7

Pi 2 −2 14 11 13 13 11 14

Qi 217 1 25 4 13 4 25 1

Ai 0 1 1 7 15 97 112 3233

Bi 1 12 13 90 193 1248 1441 41596

We observe that Q1 = Q7 = 1. The period length is even and (−1)7 = −1.
Hence the equation x2 − 221y2 = −217 is solvable.

G0 = 217 · 0− 2 · 1 = −2, x + y
√
221 = −2 +

√
221, x2 − 221y2 = −217.

i 0 1 2 3 4 5 6 7 8

Pi 33 −33 13 5 7 8 7 3 4

Qi 101 −10 9 6 5 3 10 7 9

We see that the condition Qn = 1 does not holds for 3 ≤ n ≤ 8.
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4.4 Solving the General Pell’s Equation

4.4.1 The PQa Algorithm for Solving Pell’s and Negative
Pell’s Equations

This algorithm is at the heart of all the algorithms to solve Pell’s equations presented
here. The input to the algorithms is three integers, D,P0,Q0, where D > 0 is not a
square, Q0 > 0, and P2

0 ≡ D (mod Q0). Recursively compute, for i ≥ 0

ai = int(Pi +
√

D)/Qi,

Pi+1 = aiQi − Pi,

and

Qi+1 = (D − P2
i+1)/Qi.

Also compute Gi and Bi as follows. Begin with G−2 = −P0, G−1 = Q0, B−2 =
1, and B−1 = 0. Then for i ≥ 0, set Gi = aiGi−1+Gi−2, and set Bi = aiBi−1+Bi−2.
Sometimes one also computes Ai as A−2 = 0, A−1 = 1, and Ai = aiAi−1+Ai−2 for
i ≥ 0. Then Gi = Q0Ai − P0Bi.

Note that G2
i − DB2

i = (−1)i+1Qi+1Q0. This relation will be important to us
because all of the methods of solution we discuss will involve setting Q0 = |N|,
and finding those i so that (−1)i+1Qi+1 = N/|N|. Then (Gi,Bi) will be a solution
to the equation being considered. From a computational viewpoint, also note that,
in some sense, Gi and Bi will typically be large, while Q0 and Qi+1 will be small.
So this equation sometimes allows accurate computation of the left-hand side when
numbers on the left-hand side exceed the machine accuracy available. Exactly how
far to carry these computations is discussed with each use below.

The sequence ai is the simple continued fraction expansion of (P0 +
√

D)/Q0,
and the Ai/Bi are the convergents to this continued fraction. Each of the sequences
Pi,Qi, and ai is periodic from some point, although not necessarily the same point
for all three. Starting from the right point, the periodic part of the sequence Pi is
palindromic. For each of the sequences Qi and ai, the periodic part, less the last
term, is palindromic.

To solve the equation x2 −Dy2 = ±1, apply the PQa algorithm with P0 = 0 and
Q0 = 1. There will be a smallest i with ai = 2a0, which will also be the smallest
i > 0 so that Qi = 1. There are two cases to consider: this i is odd, or this i is even.

If this i is odd, then the equation x2 − Dy2 = −1 has solutions. The minimal
positive solution is given by x = Gi−1, y = Bi−1. For any positive integer k, if k
is odd then x = Gki−1, y = Bki−1 is a solution to the equation x2 − Dy2 = −1,
and all solutions to this equation with x and y positive are generated this way. If k
is an even positive integer, then x = Gki−1, y = Bki−1 is a solution to the equation
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x2 − Dy2 = 1, and all solutions to this equation with x and y positive are generated
this way. The minimal positive solution to x2 − Dy2 = 1 is x = G2i−1, y = B2i−1.

If the smallest i so that ai = 2a0 is even, then the equation x2 − Dy2 = −1 does
not have any solutions. For any positive integer k, x = Gki−1, y = Bki−1 is a solution
to the equation x2−Dy2 = 1, and all solutions to this equation with x and y positive
are generated this way. In particular, the minimal positive solution to x2 − Dy2 = 1
is x = Gi−1, y = Bi−1.

The sequences Pj and aj are periodic with period i after the zero-th term, i.e.,
the first period is P1 to Pi for the sequences Pj, and a1 to ai for the sequence aj.
The sequence Qj is periodic starting at the zero-th term, i.e., the first period is Q0 to
Qi−1.

In Sections 3.2–3.5 and 3.6, respectively, we give several methods to generate
all solutions to either Pell’s and negative Pell’s equations once the minimal positive
solution is found.

4.4.2 Solving the Special Equations x2 − Dy2 = ±4

In some ways, solutions to the equation x2 − Dy2 = ±4 are more fundamental than
solutions to the equation x2 − Dy2 = ±1. The most interesting case is when D ≡ 1
(mod 4), so we cover that first.

When D ≡ 1 (mod 4), apply the PQa algorithm with P0 = 1 and Q0 = 2. There
will be a smallest i > 0 so that ai = 2a0 − 1. This will also be the smallest i > 0
so that Qi = 2. The minimal positive solution to x2 − Dy2 = ±4 is then x = Gi−1,
y = Bi−1. If i is odd, it will be a solution to the −4 equation, while if i is even it
will be a solution to the +4 equation and the −4 equation will not have solutions.
Periodicity of the sequences Pi,Qi, and ai is similar to that for the ±1 equation.

If D ≡ 0 (mod 4), then for any solution to x2 − Dy2 = ±4, x must be even.
Set X = x/2, set Y = y, and solve X2 − (D/4)Y2 = ±1. If (X,Y) is the minimal
positive solution to this equation, then x = 2X, y = Y is the minimal positive
solution to x2 − Dy2 = ±4. Alternatively, one can apply the PQa algorithm with
P0 = 0 and Q0 = 2. If i is the smallest index so that ai = 2a0, then the minimal
positive solution is (Gi−1,Bi−1).

If D ≡ 2 or 3 (mod 4), then by considerations modulo 4 one can that both x
and y must be even. Set X = x/2, set Y = y/2, and solve X2 − DY2 = ±1. If
(X,Y) is the minimal positive solution to this equation, then x = 2X, y = 2Y is the
minimal positive solution to x2 − Dy2 = ±4. Alternatively, use the PQa algorithm
with P0 = 0 and Q0 = 1, but set G−2 = 0, G−1 = 2, B−2 = 2, and B−1 = 0.
If i is the smallest index so that ai = 2a0, then the minimal positive solutions is
(Gi−1,Bi−1).

As with the ±1 equation, all solutions can be generated from the minimal positive
solution. Consider first the equation x2−Dy2 = 4. If (x1, y1) is the minimal positive
solution to this equation, then for the n-th solution we have
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xn + yn

√
D =

1

2n−1
(x1 + y1

√
D)n

xn − yn

√
D =

1

2n−1
(x1 − y1

√
D)n.

(4.4.1)

Therefore

xn =

(
x1 + y1

√
D

2

)n

+

(
x1 − y1

√
D

2

)n

yn =
1√
D

[(
x1 + y1

√
D

2

)n

−
(

x1 − y1
√

D
2

)n]
.

(4.4.2)

We also have the recursion

xn+1 =
1

2
(x1xn + Dy1yn)

yn+1 =
1

2
(y1xn + x1yn)

(4.4.3)

The relations (4.4.3) could be written in the following useful matrix form

(
xn+1

yn+1

)
=

1

2

(
x1 Dy1
y1 x1

)(
xn

yn

)
(4.4.4)

from where

(
xn

yn

)
=

1

2n

(
x1 Dy1
y1 x1

)n (
x0
y0

)
(4.4.5)

where (x0, y0) = (2, 0) is the trivial solution.
We can express all integer solutions to the positive equation by the following

formula

1

2
(un + vn

√
D) = εn

(
u1 + v1

√
D

2

)n

, n ∈ Z, (4.4.6)

where εn is 1 or −1. Indeed, for n > 0 and εn = 1 we get all negative solutions.
For n > 0 and εn = −1 we obtain all solutions (un, vn) with un and vn negative.
For n < 0 and εn = 1 we have (un, vn) with un > 0 and vn < 0, while n < 0
and εn = −1 gives un < 0 and vn > 0. The trivial solutions (2, 0) and (−2, 0) are
obtained for n = 0.
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Formula (4.4.6) captures all symmetries of equation (u, v) → (−u,−v),
(u, v) → (u,−v), (u, v) → (−u, v). Therefore, in 2D the points (un, vn) represents
the orbits of the action of the Klein four-group Z2 × Z2, i.e., points obtained by the
180 degree rotation, the vertical reflection, and by the horizontal reflection.

Now suppose the equation x2 − Dy2 = −4 has solutions, let (x1, y1) be the
minimal positive solution, and define xn, yn by the equation xn + yn

√
D = [(x1 +

y1
√

D)n]/(2n−1). Then if n is odd, (xn, yn) is a solution to the equation x2 − Dy2 =
−4, and if n is even then (xn, yn) is a solution to the equation x2 − Dy2 = 4. All
positive solutions to these two equations are so generated. The pair (xn, yn) in (4.4.2)
also alternately generates solutions to the +4 and −4 equation.

The set of solutions can be summarized as follows.

Theorem 4.4.1. Let (x1, y1) be the minimal positive solution to x2 − Dy2 = ±4.
Then for any solution to x2 −Dy2 = ±4, there is a choice of signs + and −, and an
integer n such that

1

2
(x + y

√
D) = ±

(
x1 + y1

√
D

2

)n

. (4.4.7)

In some ways, the equation x2−Dy2 = ±4 is more fundamental than the equation
x2−Dy2 = ±1. The numbers 1 and 4 are the only N’s so that, for any D, if you know
the minimal positive solution to the equation x2 − Dy2 = ±N, you can generate all
solutions, and you can do this without solving any other Pell’s equation. Also, if
you know the minimal positive solution to x2 − Dy2 = ±4, you can generate all the
solutions to x2−Dy2 = ±1. But the converse does not hold. The best that can be said
as a converse is that for D not 5 or 12, the solutions to the equation x2 − Dy2 = ±4
can be derived from the intermediate steps when the PQa algorithm is used to solve
the equation x2 − Dy2 = ±1.

When D ≡ 1 (mod 4), considerations modulo 4 show that for any solution to
x2 − Dy2 = ±4, x and y are both odd or both even. If the minimal positive solution
has both x and y even, then all solutions have both x and y even. In this case, every
solution to x2 − Dy2 = ±1 is just one-half of a solution to x2 − Dy2 = ±4. If the
minimal positive solution to x2 − Dy2 = ±4 has both x and y odd, then D ≡ 5
(mod 8), every third solution has x and y even, and all other solutions have x and
y odd. In this case, every solution to x2 − Dy2 = ±1 is just one-half of one of the
solutions to x2 − Dy2 = ±4 that has both x and y even. When D ≡ 1 (mod 4), the
equation x2 − Dy2 = −4 has solutions if and only if the equation x2 − Dy2 = −1
has solutions.

When D ≡ 0 (mod 4), considerations modulo 4 show that for any solution to
x2 − Dy2 = ±4, x is even. If the minimal positive solution has y even, then all
solutions have y even (and x is always even). In this case, every solution to x2 −
Dy2 = ±1 is just one-half of a solution to x2 − Dy2 = ±4. If the minimal positive
solution to x2 − Dy2 = ±4 has y odd, then every other solution has y even, and
every other solution has y odd. In this case, every solution to x2 − Dy2 = ±1 is
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just one-half of one of the solutions to x2 − Dy2 = ±4 that has x and y both even.
When D ≡ 0 (mod 4), it is possible for these to be solutions to x2 − Dy2 = −4,
but not solutions to x2 − Dy2 = 1. This happens for D = 8, 20, 40, 52 and many
more values. Of course, x2 − Dy2 = −1 never has solutions when D ≡ 0 (mod 4).

When D ≡ 2 (mod 4) or D ≡ 3 (mod 4), all solutions to x2 − Dy2 = ±4 have
both x and y even. Every solution to x2 − Dy2 = ±1 is just one-half of a solution
to x2 − Dy2 = ±4. The equation x2 − Dy2 = −4 has solutions if and only if the
equation x2 − Dy2 = −1 has solutions.

The cases D ≡ 1 (mod 4) for D squarefree, and D = 4r for r ≡ 2 or 3
(mod 4), r squarefree, are treated in [53]. The material we have presented above
is not addressed directly in either [159] or [142]. For example, the proof that the
method for solving the equation works in the case d ≡ 1 (mod 4) is not trivially
derived from the material in one or both of these sources.

Remark. Concerning the equation x2 − Dy2 = −4 the following conjecture is still
open: Let p be a prime ≡ 1 (mod 4) and let (x1, y1) be the fundamental solution to
the equation x2 − py2 = −4. Then y1 �≡ 0 (mod p).

This has been verified for all primes p < 2000 with p ≡ 5 (mod 8) and for
all primes p < 100000 with p ≡ 1 (mod 8). Also, it has been shown that y1 �≡ 0
(mod p) if and only if B p−1

4
�≡ 0 (mod p), where the Bernoulli numbers Bn are

defined by the series

t
et − 1

= 1− t
2
+

∞∑
n=1

(−1)n−1Bn

(2n)!
t2n.

4.4.3 Structure of Solutions to the General Pell’s Equation

As we have seen in Section 4.1, if (r, s) is a solution to x2 − Dy2 = N, and (t, u)
is any solution to its Pell’s resolvent, then for x = rt + Dsu, y = ru + st, (x, y)
is a solution to the equation x2 − Dy2 = N. This follows from the multiplication
principle:

(r2 − Ds2)(t2 − Du2) = (rt + Dsu)2 − D(ru + st)2.

This fact can be used to separate solutions to x2 − Dy2 = N into equivalence
classes. Two solutions (x, y) and (r, s) are equivalent if there is a solution (t, u) to
t2 − Du2 = 1 so that x = rt + Dsu and y = ru + st.

It may help to view the set of solutions geometrically. If N > 0, then, as an
equation in real numbers, x2 − Dy2 = N is a hyperbola with the x-axis as its axis,
and the y-axis as an axis of symmetry. The asymptotes are the lines x ± y

√
D = 0.

Let (t, u) be the minimal positive solution to x2 − Dy2 = 1. Draw the graph of
x2 − Dy2 = N over the reals. Mark the point (

√
N, 0), which is on this graph.
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Now mark the point (t
√

N, u
√

N), which is also on the graph. Continue marking
points so that if (x, y) is the most recent point marked, then the next point marked is
(xt + Dyu, xu + yt). All of the points marked so far, apart from the first, have x > 0
and y > 0. Now, for each point (x, y) that has been marked, mark all of the points
(±x,±y) not yet marked.

The marked points divide the graph into intervals. Make the interval
((
√

N, 0), (t
√

N, u
√

N)] a half-open interval, and then make the other intervals
on this branch half-open by assigning endpoints to one interval. Make the intervals
on the other half-open by mapping (x, y) in the right branch to (−x,−y) on the left
branch. If there are integer solutions to x2 − Dy2 = N, then

1) No two solutions within the same (half-open) interval are equivalent,
2) Every interval has exactly one solution in each class, and
3) The order of solutions by class is the same in every interval.

Instead of starting with the point (
√

N, 0), we could have started with any point
(r, s) on the graph, and marked off the points corresponding to ±(r + s

√
D)(t +

u
√

D)n. The above three comments still apply.
The situation is similar in the case N < 0, except that the graph has the y-axis

as its axis, and the x-axis is an axis of symmetry. If the negative Pell’s equation
x2 − Dy2 = −1 is solvable, then any of its solutions can be used to generate a
correspondence between solutions to x2 − Dy2 = N and x2 − Dy2 = −N.

Within a class there is a unique solution with x and y nonnegative, but smaller
than any nonnegative solution. This is the minimal nonnegative solution for the
class. There is also either one or two solutions so that y is nonnegative, and is less
than or equal to any other nonnegative y in any solution (x, y) within the class. If
there is one such solution, it is called the fundamental solution. If there are two such
solutions, then they will be equivalent and their x-values will be negatives of each
other. In this case, the solution with the positive x-value is called the fundamental
solution for the class.

When tabulating solutions, it is usually convenient to make a list consisting of
one solution from each class. Often, this list will consist of the minimal nonnegative
solutions, or the fundamental solutions. Given any solution in a class, it is easy to
find the fundamental solution or the minimal nonnegative solution for that class.

The results are summarized in the following

Theorem 4.4.2. Given any solution in a class, all solutions in that class are derived
from solutions to the equation x2 − Dy2 = 1. If (r, s) is any particular solution to
x2 −Dy2 = N, (x, y) is any other solution to the same equation in the same class as
(r, s) and if (t1, u1) is the fundamental solution to the Pell’s resolvent, then for some
choice of signs + and −, and for some integer n

x + y
√

D = ±(r + s
√

D)(t1 + u1
√

D)n. (4.4.8)

We can write formulas similar to those presented for cases N = ±1 and N = ±4
in Section 4.4.2.
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4.4.4 Solving the Equation x2 − Dy2 = N for N <
√

D

When 1 < N2 < D, apply the PQa algorithm with P0 = 0, Q0 = 1. Continue the
computations until you reach the first i > 0 with G2

i − DB2
i = 1 (i.e., Qi+1 = 1 and

i + 1 is even). For 1 ≤ j ≤ i, if G2
j − DB2

j = N/f 2 for some f > 0, add fGj, fBj to
the list of solutions. When done, the list of solutions will have the minimal positive
member of each class.

The list of all solutions can be generated using the methods of the previous
section. Alternatively, all positive solutions can be generated by extending the PQa
algorithm indefinitely.

4.4.5 Solving the Equation x2 − Dy2 = N by Brute-Force
Search

Let (t, u) be the minimal positive solution to x2 − Dy2 = N. If N > 0, set y1 = 0,

and y2 =

√
(t − 1)N

2D
. If N < 0, set y1 =

√
|N|
2

, and y2 =

√
(t + 1)|N|

2D
. For

y1 ≤ y ≤ y2, if N+Dy2 is a square, set x =
√

N + Dy2. If (x, y) is not equivalent to
(−x, y), add both to the list of solutions, otherwise just add (x, y) to the list. When
finished, this list gives the fundamental solutions.

This method works well if y2 is not too large, which means that

√
(t ± 1)|N|

2D
is

not too large. Hence it suffices to search between the bounds y1 and y2.
To generate all solutions be performing this algorithm, refer to the structure of

solutions of general Pell’s equation given in Section 4.4.3.

4.4.6 Numerical Examples

In order to see how the algorithms that we have presented work, we will examine a
few numerical examples. Computations were done by using MATHEMATICA.

Example 1. Consider the equations

x2 − 109y2 = ±1.

Apply the PQa algorithm with P0 = 0 and Q0 = 1. The following table gives the
index, i, and then the several calculated quantities for i = −2 to 30.
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i Pi Qi ai Gi Bi G2 − 109B2

−2 0 1 −109

−1 1 0 1

0 0 1 10 10 1 −9

1 10 9 2 21 2 5

2 8 5 3 73 7 −12

3 7 12 1 94 9 7

4 5 7 2 261 25 −4

5 9 4 4 1138 109 15

6 7 15 1 1399 134 −3

7 8 3 6 9532 913 3

8 10 3 6 58591 5612 −15

9 8 15 1 68123 6525 4

10 7 4 4 331083 31712 −7

11 9 7 2 730289 69949 12

12 5 12 1 1061372 101661 −5

13 7 5 3 3914405 374932 9

14 8 9 2 8890182 851525 −1

15 10 1 20 181718045 17405432 9

16 10 9 2 372326272 35662389 −5

17 8 5 3 1298696861 124392599 12

18 7 12 1 1671023133 160054988 −7

19 5 7 2 4640743127 444502575 4

20 9 4 4 20233995641 1938065288 −15

21 7 15 1 24874738768 2382567863 3

22 8 3 6 169482428249 16233472466 −3

23 10 3 6 1041769308262 99783402659 15

24 8 15 1 1211251736511 116016875125 −4

25 7 4 4 5886776254306 563850903159 7

26 9 7 2 12984804245123 1243718681443 −12

27 5 12 1 18871580499429 18075659584602 5

28 7 5 3 69599545743410 6666427435249 −9

29 8 9 2 158070671986249 15140424455100 1

30 10 1 20 3231012985468390 309474916537249 −9

We have a0 = 10, and the first i so that ai = 2a0 is i = 15, at which point
a15 = 20. Hence the period of ai is 15, which is odd, and so the equation x2 −
109y2 = −1 has solutions. The minimal positive solution to x2 − 109y2 = −1 is
x = 8890182, y = 851525. The minimal positive solution to x2 − 109y2 = 1 is
x = 158070671986249, y = 15140424455100.

Example 2. Let us examine now the equations

x2 − 109y2 = ±4.

As D ≡ 1 (mod 4), apply the PQa algorithm with P0 = 1 and Q0 = 2. The
following table gives the index, i, and the standard quantities for i = −2 to 14.
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i Pi Qi ai Gi Bi G2 − 109B2

−2 −1 1 −108

−1 2 0 4

0 1 2 5 9 1 −28

1 9 14 1 11 1 12

2 5 6 2 31 3 −20

3 7 10 1 42 4 20

4 3 10 1 73 7 −12

5 7 6 2 188 18 28

6 5 14 1 261 25 −4

7 9 2 9 2537 243 28

8 9 14 1 2798 268 −12

9 5 6 2 8133 779 20

10 7 10 1 10931 1047 −20

11 3 10 1 19064 1826 12

12 7 6 2 49059 4699 −28

13 5 14 1 68123 6535 4

14 9 2 9 662166 63424 −28

We have a0 = 5, and the first i so that ai = 2a0−1 is i = 7, at which point a7 = 9.
Hence the period of ai is 7, which is odd, and so the equation x2 − 109y2 = −4 has
solutions. The minimal positive solution to x2 − 109y2 = −4 is x = 261, y = 25.
The minimal positive solution to x2 − 109y2 = 4 is x = 68123, y = 6525.

Note that the third solution to x2 − 109y2 = ±4 can be computed from

1

4
(261 + 25

√
109)3 = 17780364 + 1703050

√
109.

Upon dividing by 2, we get the minimal positive solution x = 8890182,
y = 851525 to negative Pell’s equation x2 − 109y2 = −1.

Example 3. Consider the equation

x2 − 129y2 = −5.

From Theorem 4.1.4 it follows that if this equation is solvable, then it has exactly
two classes of solutions.

Here N <
√

D. Apply the PQa algorithm with P0 = 0, Q0 = 1.

i Pi Qi ai Gi Bi G2 − 129B2

−2 0 1 −129
−1 1 0 1
0 0 1 11 11 1 −8
1 11 8 2 23 2 13
2 5 13 1 34 3 −5
3 8 5 3 125 11 16
4 7 16 1 159 14 −3
5 9 3 6 1079 95 16
6 9 16 1 1238 109 −5
7 7 5 3 4793 422 13
8 8 13 1 6031 531 −8
9 5 8 2 16855 1484 1

10 11 1 22 376841 33179 −8
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The only f > 0 so that f 2 divides −5 is f = 1. Reviewing the above for G2
j −

129B2
j = −5, we find solutions (x, y) equal to (34,3) and (1238,109). Thus, there

are two classes of solutions, and these are the minimal positive solutions for these
classes.

Example 4. Let us use the brute-force search method to find the fundamental
solutions of

x2 − 61y2 = 15.

The minimal positive solution to Pell’s resolvent x2 − 61y2 = 1 is x =
1766319049, y = 226153980. As N = 15 is positive, the lower search limit for
y is 0, and the upper limit is

√
15(1766319049− 1)

2 · 61 ≈ 14736, 702.

So we search on y from 0 to 14736. Only y = 11 and y = 917 yield solutions, so
the four fundamental solutions are x = ±86, y = 11, and x = ±7162, y = 917.

Example 5. For the same equation above, we will apply now the LMM algorithm
given in Section 4.3.

The only f > 0 so that f 2 divides 15 is f = 1. Set m = 15. The z’s with
−15/2 < z ≤ 15/2 and z2 ≡ 61 (mod 15) are z = ±1, z = ±4.

Upon performing the PQa algorithm with P0 = 1, Q0 = 15, and d = 61, the first
Qi = ±1 occurs at Q9 = 1. The corresponding solution has x = G8 = 2593 and
y = B8 = 332. For this (x, y), x2 − 61y2 = −15. The equation x2 − 61y2 = −1 is
solvable and the minimal positive solution is x = 29718, y = 3805. Applying this
to the solution (2593, 332) gives the solution x = 154117634, y = 19732741 to the
equation x2 − 61y2 = 15. This is equivalent to the fundamental solution (−86, 11).

Performing the PQa algorithm with P0 = −1, Q0 = 15, and d = 61, gives the
first Qi = ±1 at Q4 = 1, yielding the fundamental solution (86, 11) to the equation
x2 − 61y2 = 15.

Performing the PQa algorithm with P0 = 4, Q0 = 15, and d = 61, gives the
first Qi = ±1 ate Q10 = 1, yielding the fundamental solution (7162, 917) to the
equation x2 − 61y2 = 15.

Performing the PQa algorithm with P0 = −4, Q0 = 15, and d = 61, gives the
first Qi = ±1 at Q3 = 1, yielding the solution (31, 4) to the equation x2 − 61y2 =
−15. Applying the minimal positive solution to x2 − 61y2 = −1 gives the solution
x = 1849678, y = 236827 to the equation x2 − 61y2 = 15. This is equivalent to the
fundamental solution (−7162, 917).
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4.5 Solvability and Unsolvability of the Equation
ax2 − by2 = c

Using the results in our papers [13, 14] and [17] we will present two general methods
for solving the equation

ax2 − by2 = c. (4.5.1)

We will also give sufficient conditions such that equation (4.5.1) is unsolvable
in positive integers. In the special case c = 1, the equation (4.5.1) was studied in
Section 3.5.

The equation (4.5.1) is also considered in the recent paper [114], where a, b, c are
positive integers with gcd(a, b) = 1. The author showed that if (4.5.1) is solvable,
then it has infinitely many positive integer solutions. But his result is in fact a variant
of the multiplication principle.

The following result given in [172] completely solves the problem of determining
all solutions to equation (4.5.1).

Theorem 4.5.1. Let a, b be positive integers such that gcd(a, b) = 1 and a is
squarefree, and let c be a nonzero integer. Denote D = ab, N = ac. Then (u, v)
is a solution to the general Pell’s equation

u2 − Dv2 = N (4.5.2)

if and only if
(u

a
, v
)

is solution to (4.5.1).

Proof. Let (x, y) be a solution to (4.5.1). It follows that (ax)2−aby2 = ac, so (ax, y)
is a solution to the associated general Pell’s equation (4.5.2).

Conversely, if (u, v) is a solution to (4.5.2), from the relation u2 − abv2 = ac we
obtain a|u2. Taking into account that a is squarefree it follows that a|u. Therefore

u = a1a and (a1a)2 − abv2 = ac yield aa21 − bv2 = c, i.e.,
(u

a
, v
)

is a solution

to (4.5.1). ��
Remarks. 1) From the above result it is clear that (4.5.1) is solvable if and only if

the associated general Pell’s equation (4.5.2) is solvable.
2) The assumption that a is squarefree is not a restriction. Indeed, if a = a1m2

and a1 is squarefree, then the equation (4.5.1) becomes a1X2 − by2 = c, where
X = mx, i.e., an equation of the same type.

3) In order to solve (4.5.1) we determine all solutions (u, v) to the general Pell’s

equation (4.5.2). The desired solutions are given by
(u

a
, v
)

.

The equation (4.5.1) is strongly connected to the general Pell’s equation (4.5.2)
and to the Diophantine equation

as2 − bt2 = 1. (4.5.3)
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The solvability of these three equations is studied in the following theorem [17]:

Theorem 4.5.2. Suppose that gcd(a, b) = 1 and ab is not a perfect square. Then:

1) If the equations (4.5.2) and (4.5.3) are solvable, then (4.5.1) is also solvable and
all of its solutions (x, y) are given by

x = s0u + bt0v, y = t0u + as0v (4.5.4)

where (u, v) is any solution to (4.5.2) and (s0, t0) is the minimal solution to
(4.5.3).

2) If the equations (4.5.1) and (4.5.3) are solvable, then (4.5.2) is also solvable.
3) If the equations (4.5.1) and (4.5.2) are solvable and there exist solutions (x, y),

(u, v) such that

ux − bvy
c

and
−avx + uy

c

are both integers, then (4.5.3) is solvable.

Proof. 1) We have

ax2 − by2 = a(s0u + bt0v)
2 − b(t0u + as0v)

2 =

= (as20 − bt20)(u
2 − abv2) = 1 · c = c,

and it follows that (x, y), given in (4.5.4), is a solution to the equation (4.5.1).
Conversely, let (x, y) be a solution to (4.5.1), and let (s0, t0) be the minimal

solution to the equation (4.5.3). Then (u, v), where u = as0x − bt0y and v =
−t0x + s0y is a solution to the general Pell’s equation (4.5.2). Solving the above
system of linear equations with unknowns x and y yields x = s0u + bt0v and
y = t0u + as0v, i.e., (x, y) has the form (4.5.4).

2) If (x, y) and (s, t) are solutions to (4.5.1) and (4.5.3), respectively, then (u, v),
with u = asx − bty and v = −tx + sy is a solution to (4.5.2). Moreover, each
solution to (4.5.2) is of the above form. Indeed, if (u, v) is an arbitrary solution
to (4.5.2), then (x, y), where x = su + btv and y = tu + asv, is a solution to
(4.5.1). Thus, solving the above system of linear equations in u, v, it follows that
u = asx − bty and v = −tx + sy.

3) Let (x, y) and (u, v) be solutions to (4.5.1) and (4.5.2), respectively, for which

s =
ux − bvy

c
∈ Z and t =

−avx + uy
c

∈ Z.

Then (s, t) is a solution to (4.5.3). ��

Remarks. 1) The equation 8x2 − y2 = 7 is solvable and all of its solutions were
determined in Section 4.1. For this equation, the associated equations (4.5.2) and
(4.5.3) are u2 − 8v2 = 7 and 8s2 − t2 = 1, respectively. It is interesting to see
that both these equations are unsolvable.
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2) In case of solvability of equations (4.5.2) and (4.5.3), the formulas (4.5.4) point
out an alternative way to express the solutions to equation (4.5.1).

Theorem 4.5.3. Let a, c be relatively prime positive integers, not both perfect
squares, and let b and d be integers. The equation

ax2 − cy2 = ad − bc (4.5.5)

is solvable if and only if the numbers an+b and cn+d are perfect squares for some
positive integer n. In this case, the number of such n’s is infinite.

Proof. If (x0, y0) is a solution to the equation (4.5.5), then by Theorem 4.5.2,
(xm, ym)m≥0, where

xm = x0um + cy0vm, ym = ax0vm + y0um (4.5.6)

are solutions to this equation. Here (um, vm)m≥0 denotes the general solution to
Pell’s equation u2 − acv2 = 1.

Then ax2m − cy2m = ad − bc, m = 0, 1, 2, . . . , hence

a(x2m − d) = c(y2m − b), m = 0, 1, 2, . . . (4.5.7)

Since a and c are relatively prime, from (4.5.7) it follows that a|y2m − b and
c|x2m − d, m = 0, 1, 2, . . . . Let

nm =
y2m − b

a
=

x2m − d
c

, m = 0, 1, 2, . . . (4.5.8)

Clearly, nm is a positive integer for each m and

anm + b = y2m, cnm + d = x2m, m = 0, 1, 2, . . .

i.e., the numbers an+ b and cn+ d are simultaneously perfect squares for infinitely
many positive integers n.

If the equation (4.5.5) is not solvable in positive integers, then an+ b and cn+ d
cannot be both perfect squares. Indeed, if we assume that there is a positive integer
n0 such that an0 + b = y20 and cn0 + d = x20 for some positive integers x0, y0, then
by eliminating n0 it follows that ax20 − by20 = ad − bc, in contradiction with the
unsolvability of equation (4.5.5). ��
Theorem 4.5.4. Let a and b be positive integers such that for all positive integers
n, an + b is not a perfect square. Then the equations

ax2 − (am + v0)y
2 = c, m = 0, 1, 2, . . . (4.5.9)

and
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(am + w0)x
2 − ay2 = c, m = 0, 1, 2, . . . (4.5.10)

are not solvable in positive integers. Here c is a nonzero integer and (u0, v0) and
(w0, s0) are the minimal solutions to the equations au − bv = c and bw − as = c,
respectively.

Proof. The general solutions to the linear Diophantine equations au − bv = c and
bw − as = c are (um, vm)m≥0 and (wm, sm)m≥0, respectively, where

um = u0 + bm, vm = v0 + am and wm = w0 + am, sm = s0 + bm

(see [198]). Assume now that equation (4.5.9) is solvable and let (x, y) be a solution.
Then ax2−(am+v0)y2 = c. But by considerations above, c = aum−bvm. It follows
that

ax2 − (am + v0)y
2 = aum − bvm,

hence the equation (4.5.3), where d = um and c = um is solvable. From
Theorem 4.5.3 we obtain that an+ b is a perfect square for some n, in contradiction
with the hypothesis. ��
Example 1. The numbers 10n+3 are not perfect squares, n = 0, 1, 2, . . . . Choosing
c = 1, we find the minimal solutions to the equations 10u−3v = 1 and 3w−10s =
1. They are (1, 3) and (7, 2), respectively. From Theorem 4.5.4 it follows that the
equations

10x2 − (10m + 3)y2 = 1 and (10m + 7)x2 − 10y2 = 1, m = 0, 1, 2, . . .

are not solvable.

Remark. In many situations it is not easy to find the minimal solutions (u0, v0) and
(w0, s0) to the equations au − bv = c and bw − as = c, respectively. In this cases
we may replace (u0, v0) and (w0, s0) by any solution to the above equations and the
results in Theorem 4.5.4 remain true.

Example 2. The numbers 5n + 2 are not perfect squares for any positive integer
n. The equations 5u − 2v = c and 2w − 5s = c have (c, 2c) and (3c, c) among
their solutions, respectively. It follows that um = c + 2m, vm = 2c + 5m, and
wm = 3c + 5m, sm = c + 2m, m = 0, 1, 2, . . . .

From Theorem 4.5.3 we obtain that the equations

5x2 − (5m + 2c)y2 = c and (5m + 3c)x2 − 5y2 = c, m = 0, 1, 2, . . .

are not solvable.

Example 3. In a similar manner, starting with the nonsquare numbers 3n + 2, n =
0, 1, 2, . . . , we deduce that equations



88 4 General Pell’s Equation

3x2 − (3m + c)y2 = c and (3m + 2c)x2 − 3y2 = c, m = 0, 1, 2, . . .

are not solvable in positive integers.
There are many situations in which the unsolvability of an equation of the type

(4.5.1) can be proven by using modular arithmetics arguments.

Example 4 ([193]). The equation

(4m + 3)x2 − (4n + 1)y2 = 1

where m and n are positive integers, is not solvable.
Indeed, x2, y2 ≡ 0 or 1 (mod 4) and so (4m + 3)x2 ≡ 0 or 3 (mod 4) and

(4n + 1)y2 ≡ 0 or 1 (mod 4). By combining the residues, we obtain

(4m + 3)x2 − (4n + 1)y2 �≡ 1 (mod 4).

Example 5 ([192]). In a similar manner, we can prove that equations

(4k + 2)x2 − (4l + 3)y2 = 1 and 7mx2 − (7n + 1)y2 = 1,

where k, l and m, n are positive integers, are also not solvable.
A criterion for solvability (unsolvability) for a class of general Pell’s equations

is given in [100] (see also subsection 4.2.4).

Theorem 4.5.5. For N a squarefree integer, the equation

x2 − 2y2 = N (4.5.11)

is solvable if and only if it is solvable modulo N.

Proof. By multiplicativity, it suffices to show that x2 − 2y2 = N has a solution for
N = −1, N = 2, and N = p for p an odd prime such that 2 is congruent to a square
modulo p. For N = −1, use 12 − 2 · 12 = −1; for N = 2, use 22 − 2 · 12 = 2.

Now suppose p is an odd prime such that 2 is congruent to a square modulo p.
Find x, y such that x2 − 2y2 is divisible by p but not by p2 (if it is divisible by p2, fix
that by replacing x with x + p). Now form the ideal (x + y

√
D, p). Its norm divides

p2 and x2 − 2y2, so it must be p. ��
Incidentally, one can replace 2 by any integer D such that Q(

√
D) has unique

factorization, provided that x2 − Dy2 = −1 has a solution. It turns out (but is
by no means obvious!) that unique factorization implies that D is prime, and it is
believed (but not proved) that Q(

√
D) has unique factorization for about 75 % of the

primes D. Moreover, existence of a solution of x2 − Dy2 = −1 then implies D ≡ 1
(mod 4), but nor every prime congruent to 1 modulo 4 will work (try D = 5).
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4.6 Solving the General Pell Equation by Using
Quadratic Rings

The main purpose of this section is to present an algorithm for finding all positive
integer solutions to the general Pell’s equation

x2 − Dy2 = k (4.6.1)

where d is a nonsquare positive integer and k is a nonzero integer. We will follow
the method described in [76] (see also [171]).

Let (x, y) be an integral solution of (4.6.1), i.e., x2 − Dy2 = k. We are going to
use the results in Section 2.2.2. We have N(μ) = k, where μ = x +

√
Dy ∈ R. If ε0

is the fundamental unit of the ring R found in Theorem 3.4.1, then we will denote

ε =

{
ε0, if N(ε0) = 1

ε20, if N(ε0) = −1.

Then the vectors (1, 1) and l(ε) form a base in the linear space R
2. Indeed, if

α(1, 1)+βl(ε) = 0, with α, β ∈ R, then α+β ln |ε| = 0 and α+β ln |ε| = 0. Since
ln |ε| = − ln |ε| �= 0, from the previous two relations it follows that α = β = 0.

If μ = x + y
√

D ∈ R and N(μ) = k, then k �= 0 implies μ �= 0, i.e., the vector
l(μ) is well defined in R

2. By using the fact that (1, 1) and l(ε) form a base in R
2,

we deduce the existence of α, γ ∈ R such that l(μ) = α(1, 1) + γl(ε). This means
that

lnμ = α+ γ ln |ε| and lnμ = α+ γ ln |ε|.

In particular, it follows that

ln |k| = ln |N(μ)| = ln |μ|+ ln |μ| = 2α+ γ ln |N(ε)| = 2α,

i.e.,

α =
ln |k|
2

and l(μ) =
ln |k|
2

(1, 1) + γl(ε).

Let a be the closest integer to γ, and let μ0 = ε−αμ. Then μ ∼ μ0 and N(μ0) =
N(μ) = k. In addition,

l(μ0) =
ln |k|
2

(1, 1) + γ1l(ε),

where |γ1| ≤ 1

2
and γ1 = γ − a. Therefore
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ln |μ0| = ln |k|
2

+ γ1 ln ε and ln |μ0| =
ln |k|
2

+ γ1 ln |ε| = ln |k|
2

− γ1 ln ε

(we have used here that ε > 1). It follows that

∣∣∣∣ln |μ0| − ln |k|
2

∣∣∣∣ ≤ 1

2
ln ε and

∣∣∣∣ln |μ0| −
ln |k|
2

∣∣∣∣ ≤ 1

2
ln ε.

The above inequalities can be written as

ln

√
|k|
ε

≤ ln |μ0| ≤ ln
√

ε|k| and ln

√
|k|
ε

≤ ln |μ0| ≤ ln
√

ε|k|.

We obtain
√

|k|
ε

≤ |μ0| ≤
√

ε|k| and

√
|k|
ε

≤ |μ0| ≤
√

ε|k|. (4.6.2)

The numbers |μ0| and |μ0| can be written as s + t
√

D, where s and t are positive
integers. Since t

√
D ≤ max{|μ0|, |μ0|} ≤ √

ε|k|, we have

t ≤
√

ε|k|
D

and s ≤
√

ε|k|. (4.6.3)

We will now describe the actual algorithm.

Step 1. Search for elements μ1, μ2, . . . , μr in R of the form s + t
√

D such that s, t
are positive integers satisfying inequalities (4.6.3) and N(μi) = k, i = 1, 2, . . . , r.

From the inequalities (4.6.3) it follows that there are finitely many such μ’s in R.
This fact also follows from Theorem 2.2.3.

Step 2. From Theorem 3.4.1 it follows that all elements μ ∈ R with N(μ) = k are
of the form μ = ±μiε

l or μ = ±μiε
l, for some i ∈ {1, 2, . . . , r} and some integer l.

Finally, let us mention that we can determine the fundamental unit ε0 ∈ R in a
finite number of steps. For this part we refer to Section 3.3, where we employed
continued fractions.

4.7 Another Algorithm for Solving General Pell’s Equation

In what follows we will present a different algorithm for solving the general Pell’s
equation (4.6.1). Our approach is based on the one given in [171] and [95].

It suffices to consider solutions (x, y) to (4.6.1) such that the positive integers x
and y are relatively prime.
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If |k| < √
D, then we apply Theorem 3.3.1. When k �= (−1)n−1qn+1 for all n,

the equation (4.6.1) is not solvable. When k = (−1)n−1qn+1 for some n, the pair
(hn, kn) is a solution to the general Pell’s equation (4.6.1) and all other of its integral
solutions are given by

x + y
√

D = (±hn ± kn

√
D)εl, l ∈ Z,

where is the fundamental solution of the Pell’s resolvent.
If |k| >

√
D, then we write k = δk0, where δ = ±1 and k0 is a positive

integer. Since x and y are relatively prime, there exist integers x1 and y1 such that
xy1 − yx1 = δ.

It follows that

(xx1 − Dyy1)
2 − D = (xx1 − Dyy1)

2 − D(xy1 − yx1)
2 =

= (x2 − Dy2)(x21 − Dy21) = k(x21 − Dy21) = δk0(x
2
1 − Dy21).

Hence

(xx1 − Dyy1)
2 − D = δk0(x

2
1 − Dy21). (4.7.1)

If (x0, y0) is a solution to the equation xy1 − yx1 = δ, then the general solution
to this equation is given by

x1 = x0 + tx and y1 = y0 + ty, t ∈ Z.

We have

xx1 − Dyy1 = xx0 − Dyy0 + t(x2 − Dy2) = xx0 − Dyy0 + tδk0.

We will choose t such that

|xx1 − Dyy1| ≤ k0
2
. (4.7.2)

Denoting by l the positive integer |xx1 − Dyy1|, from (4.7.1) we obtain

x21 − Dy21 =
l2 − D
δk0

= ηh, (4.7.3)

where η = ±1 and h is a positive integer.

Using the inequalities
√

D < k0 and l <
k0
2

, from (4.7.3) it follows that

h ≤ max{D, l2}
k0

<

max

{
k20,

k20
4

}

k0
=

k20
k0

= k0.
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If h < k0, then we apply again Theorem 3.3.1 and obtain x1 and y1 such that
x21 −Dy21 = ηh. From the equalities xy1 − yx1 = δ and xx1 −Dyy1 = ±l we deduce
the following formulas:

x =
−δDy1 ± lx1

ηh
and y =

−δx1 ± ly1
ηh

. (4.7.4)

Hence the integers x and y can be obtained from the equality

ηh(x + y
√

D) = (x1 + y1
√

D)(±l − δ
√

D).

Taking norms in the above equality yields

h2(x2 − Dy2) = (x21 − Dy21)(l
2 − D) = ηh · ηh · δk0 = h2δk0,

and so x2 − Dy2 = δk0 = k.
Therefore, if x and y given in (4.7.4) are integers, then (x, y) is a solution to the

general Pell’s equation (4.6.1).
If h >

√
D, then we apply again the described procedure.

The considerations above can be summarized in the following algorithm.

Step 1. Find all solutions to the congruence

l2 ≡ D (mod k0),

where l is a positive integer and 0 ≤ l ≤ k0
2

. Denote by l1, l2, . . . , lr those satisfying

the inequalities 0 ≤ l ≤ k0
2

. Set

l2i − D
δk0

= ηihi, i = 1, 2, . . . , r,

where ηi = ±1 and hi is a positive integer.

Step 2. If k0 <
√

D, apply Theorem 3.3.1.

Step 3. If k0 >
√

D, consider the equations

x21 − Dy21 = ηihi, i = 1, 2, . . . , r.

From the previous observations we have 0 < hi < k0, i =, 1, 2 . . . , r.

Step 4. Fix i ∈ {1, 2, . . . , r}.

I. If hi <
√

D, apply Theorem 3.3.1 to get the solutions to the equation x2i −Dy2i =
ηihi. Then the solutions (x, y) are among those given by



4.8 The Diophantine Equation ax2 + bxy + cy2 = N 93

x =
−δDyi ± lixi

ηihi
and y =

−δxi ± liyi

ηihi
. (4.7.5)

II. If hi >
√

D, repeat Step 3, replacing δ by ηi and k0 by hi. Since 0 < hi < k0,
after finitely many operations we will find all solutions to the given equation.

Remark. The two algorithms presented in Sections 4.5 and 4.6 are comparable.
None is superior to the other and, moreover, they complete one another. The
algorithm in Section 4.5 is preferable for large k’s or large D’s. The second is more
efficient for small k’s, for example when k satisfies the inequalities −√

D < k <
√

D
(see also Subsection 4.3.4).

4.8 The Diophantine Equation ax2 + bxy + cy2 = N

The standard approach to solving the equation

ax2 + bxy + cy2 = N (4.8.1)

in relatively prime integers x, y, is via reduction of quadratic forms, as in [127].
There is a parallel approach in [71] which uses continued fractions.

However, in a memoir of 1770, Lagrange, gave a more direct method for solving
(4.8.1) when gcd(a, b, c) = gcd(a,N) = 1 and D = b2 − 4ac > 0 is not a perfect
square. This seems to have been largely overlooked. (Admittedly, the necessity part
of his proof is long and not easy to follow.)

In [175], equation (4.8.1) is solved when N = ±μ, where

μ = min
(x,y) �=(0,0)

|ax2 + bxy + cy2|.

The approach is similar to Lagrange’s reduction to the case N = ±1.
In the doctoral dissertation [157] the equation (4.8.1) is also discussed, using

a standard convergent sufficiency condition of Lagrange, which resulted in the
restriction D ≥ 16, thus making rigorous the necessity part of Lagrange’s
discussion. Only the case b = 0 is discussed in detail, along the lines of [57].

The approach using the convergent criterion of Lemma 4.3.1, which results in no
restriction on D, while allowing us to deal with the non-convergent case, without
having to appeal to the case μ = 1 in [175], whose proof is somewhat complicated.

The continued fractions approach also had the advantage that it produces the
solution (x, y) with least positive y from each class, if gcd(a,N) = 1.

The assumption gcd(a,N) = 1 involves no loss of generality. For as pointed out
by Gauss in his Disquisitiones (see [95]), there exist relatively prime integers α, γ
such that aα2 + bαγ + cγ2 = A, where gcd(A,N) = 1. Then, if αδ − βγ = 1, the
unimodular transformation x = αX +βY , y = γX + δY converts ax2 + bxy+ cy2 to
AX2 + BXY + CY2. Also, the two forms represent the same integers.



94 4 General Pell’s Equation

Let us illustrate how we can solve (4.8.1) via the reduction of the quadratic form
in the left-hand side. By multiplying both sides of (4.8.1) by 4a and completing the
square we obtain

(2ax + by)2 − Dy2 = 4aN, (4.8.2)

where D = b2 − 4ac. Assume that D > 0 and D is not a perfect square. Then
(4.8.2) is a general Pell’s equation. Let (un, vn) be the general solution to its Pell’s
resolvent u2 − Dv2 = 1 and let (α, β) be the fundamental solution of the class K to
the equation X2 − DY2 = 4aN (see Section 4.1). Following [39], we have:

Theorem 4.8.1. All integer solutions (xn, yn)n≥1 to (4.8.1) are given by

⎧⎨
⎩ xn =

(α− bβ)un − (bα− Dβ)vn

2a
yn = βun + αvn,

(4.8.3)

where (un, vn)n≥1 is the solution to the Pell’s resolvent, and (α, β) is the fundamen-
tal solution of the class K.

Proof. Let X = 2ax + by, Y = y, and N1 = 4aN. By Theorem 4.1.3, we obtain the
general solution to X2 − DY2 = N1

Xn = αun + Dβvn and Yn = βun + αvn.

Solving the linear system

{
2axn + byn = αun + Dβvn

yn = βun + αvn

we get the formulas (4.8.3).
Now let us show that xn is an integer. To prove this, it is enough to show 2a |

α− bβ and 2a | αb − βD. Indeed, we have α− bβ = 2ax and

αb−βD = αb−β(b2−4ac) = (α−bβ)b+4acβ = 2axb+4acβ = 2a(xβ+2cβ),

and the properties follow. ��
Example. The equation in Example 5, page 54, in the book [22] is reduced to

x2 − 5xy + y2 = −3. (4.8.4)

In the reference [22] the equation (4.8.4) is solved by Fermat’s method of infinite
descent. Let us illustrate the method in Theorem 4.8.1 for finding the solutions to
(4.8.4). The equation (4.8.4) is equivalent to

(2x − 5y)2 − 21y2 = −12.
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Let X = 2x−5y and Y = y. We obtain the general Pell’s equation X2−21Y2 = −12.
The Pell’s resolvent u2−21v2 = 1 has the fundamental solution (u1, v1) = (55, 12),
hence its general solution (un, vn)n≥1 is given by un + vn

√
21 = (55 + 12

√
21)n.

Using the upper bounds in the Remark after Theorem 4.1.3, we have

0 ≤ |X| ≤
√

|N|u1 + N
2

=

√
12 · 55− 12

2
=

√
6 · 54 = 18,

0 < Y ≤
√

|N|u1 − N
2D

=

√
12 · 55 + 12

2 · 21 =
√
16 = 4.

Therefore, we obtain the possibilities |X| = 0, 1, . . . , 18 and Y = 1, 2, 3, 4. Then
we get four solutions (3, 1), (−3, 1), (18, 4), (−18, 4) to the equation X2 − 21Y2 =
−12. It is easy to check that these solutions are not associated with each other and
they generates four classes of solutions to the above general Pell’s equation. From
Theorem 4.8.1 we get all integer solutions to equation (4.8.4):

(4un + 18vn, un + 3vn), (un + 3vn, un − 3vn),

(19un + 87vn, 4un + 18vn), (un − 3vn, 4un − 18vn), n ≥ 1.

These four classes of solutions give a partition of the solution obtained in the above-
mentioned reference [22].

4.9 Thue’s Theorem and the Equations x2 − Dy2 = ±N

In this section, following the papers [86, 87, 128] and [225] we show how to
obtain explicit representations of certain integers in the form x2 − Dy2 for small
D > 1, using a constructive version of Thue’s theorem based on Euclid’s algorithm.
Amongst other things, if u2 ≡ D (mod N), D �≡ 1 (mod N) is solvable and
gcd(D,N) = 1, N odd, we show how to find the following representations:

N = 8k ± 1 N = x2 − 2y2

−N = x2 − 2y2

N = 12k + 1 N = x2 − 3y2

N = 12k − 1 −N = x2 − 3y2

N = 5k + 1 N = x2 − 5y2

N = 5k − 1 −N = x2 − 5y2

N = 24k + 1 or 24k − 5 N = x2 − 6y2

N = 24k − 1 or 24k + 5 −N = x2 − 6y2

N = 28k + 1, 28k + 9 or 28k + 25 N = x2 − 7y2

N = 28k − 1, 28k − 9 or 28k − 25 −N = x2 − 7y2
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4.9.1 Euclid’s Algorithm and Thue’s Theorem

Let a and b be natural numbers, a > b, where b does not divide a. Let r0 = a,
r1 = b, and for 1 ≤ k ≤ n, rk−1 = rkqk + rk+1, where 0 < rk+1 < rk and rn = 0.
Define sequences s0, s1, . . . , sn+1 and t0, t1, . . . , tn+1 by

s0 = 1, s1 = 0, t0 = 0, t1 = 1, tk+1 = −qktk + tk−1, sk+1 = −qksk + sk−1,

for 1 ≤ k ≤ n. Then the following are easily proved by induction:

(i) sk = (−1)k|sk|, tk = (−1)k+1|tk|;
(ii) 0 = |s1| < |s2| < . . . |sn+1|;

(iii) 1 = |t1| < |t2| < · · · < |tn+1|;
(iv) a = |tk|rk−1 + |tk−1|rk for 1 ≤ k ≤ n + 1;
(v) rk = ska + tkb for 1 ≤ k ≤ n + 1.

Theorem 4.9.1 (Thue). Let a and b be integers, a > b > 1 with gcd(a, b) = 1.
Then the congruence bx ≡ y (mod a) has a solution in nonzero integers x and y
satisfying |x| < √

a, |y| ≤ a.

Proof. As rn = gcd(a, b) = 1, a >
√

a > 1, and the remainders r0, . . . , rn in
Euclid’s algorithm decrease strictly to 1, there is a unique index k such that rk−1 >√

a ≥ rk. Then the equation a = |tk|rk−1 + |tk−1|rk gives a ≥ |tk|rk−1 > |tk|√a.
Hence |tk| < √

a.
Finally, rk = ska + tkb, so btk ≡ rk (mod a) and we can take x = tk, y = rk. ��

4.9.2 The Equation x2 − Dy2 = N with Small D

Let N ≥ 1 be an odd integer, D > 1 and not a perfect square. Then a necessary
condition for solvability of the equation x2 − Dy2 = ±N with gcd(x, y) = 1 is
that the congruence u2 ≡ D (mod N) is solvable. From now on we assume this,

together with gcd(D,N) = 1 and 1 < u < N. Then the Jacobi symbol

(
D
N

)
= 1.

We note that if N is prime, then

(
D
N

)
= 1 also implies that u2 ≡ D (mod N) is

solvable.
If we take a = N and b = u in Euclid’s algorithm, the integers r2k −Dt2k decrease

strictly for k = 0, . . . , n, from a2 to 1− Dt2n and are always multiples of N. For

r2k − Dt2k ≡ t2k u2 − Dt2k ≡ t2k (u
2 − D) ≡ 0 (mod N).

If k is chosen so that rk−1 >
√

N > rk, as in the proof of Thue’s theorem, then as

N = rk−1|tk|+ rk|tk−1| > rk−1|tk|, (4.9.1)
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we have |tk| <
√

N and

− DN < r2k − Dt2k < N. (4.9.2)

Hence r2k − Dt2k = −lN, −1 < l < D. In fact, 1 ≤ l < D, so

− DN < r2k − Dt2k ≤ −N. (4.9.3)

Also r2k + lN = Dt2k and hence Dt2k > lN,

|tk| >
√

lN
D
. (4.9.4)

From equation (4.9.1), N > rk−1|tk| and inequality (4.9.4) implies

rk−1 <

√
DN

l
. (4.9.5)

4.9.3 The Equations x2 − 2y2 = ±N

The assumption

(
2

N

)
= 1 is equivalent to N ≡ ±1 (mod 8). Also 1 ≤ l < 2, so

l = 1 and (4.9.3) gives r2k − 2t2k = −N. Hence from equation (4.9.5) with D = 2,
rk−1 <

√
2N and

−N = r2k − 2t2k < r2k−1 − 2t2k−1 < r2k−1 < 2N.

Thus r2k−1 − 2t2k−1 = N.

Example. Let N = 10000000033, a prime of the form 8n + 1. Then u = 87196273
gives k = 10, r10 = 29015, t10 = −73627, r9 = 118239, t9 = 44612 and r210 −
2t210 = −N, r29 − 2t29 = N.

Remark. We can express rk−1 and tk−1 in terms of rk and tk. The method is useful
later for delineating cases when D = 5, 6, 7:

Using the identities

(rkrk−1 −Dtktk−1)
2 −D(tkrk−1 − tk−1rk)

2 = (r2k −Dt2k )(r
2
k−1 −Dt2k−1) (4.9.6)

and

(−1)kN = rktk−1 − rk−1tk, (4.9.7)
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we deduce that

rkrk−1 − Dtktk−1 = εN, (4.9.8)

where ε = ±1.

From equation (4.9.8) we see that ε = 1, as tktk−1 < 0. Hence

rkrk−1 + DTkTk−1 = N, (4.9.9)

where Tk = |tk|. Then solving equations (4.9.7) and (4.9.9) with D = 2 for rk−1 and
Tk−1 yields

rk−1 = −rk + 2Tk, Tk−1 = Tk − rk.

The integers N, |N| ≤ 200, such that the equation x2 − 2y2 = N is solvable are:
±1, ±2, ±4, ±7, ±8, ±9, ±14, ±16, ±17, ±18, ±23, ±25, ±28, ±31, ±32, ±34,
±36, ±41, ±46, ±47, ±49, ±50, ±56, ±62, ±63, ±64, ±68, ±71, ±72, ±73,
±79, ±81, ±82, ±89, ±92, ±94, ±97, ±98, ±100, ±103, ±112, ±113, ±119,
±121, ±124, ±126, ±127, ±128, ±136, ±137, ±142, ±144, ±146, ±151, ±153,
±158, ±161, ±162, ±164, ±167, ±169, ±175, ±178, ±184, ±188, ±191, ±193,
±194, ±196, ±199, ±200.

The following table presents the numbers k(2,N) of classes of solutions and
the sets K(2,N) of fundamental solutions of classes of x2 − 2y2 = N, when the
equations are solvable and N is positive or negative, |N| ≤ 18 [161].

x2 − 2y2 = N k(2,N) K(2,N)

x2 − 2y2 = 2 1 (2, 1)

x2 − 2y2 = −2 1 (4, 3)

x2 − 2y2 = 4 1 (6, 4)

x2 − 2y2 = −4 1 (2, 2)

x2 − 2y2 = 7 2 (3, 1), (5, 3)

x2 − 2y2 = −7 2 (1, 2), (5, 4)

x2 − 2y2 = 8 1 (4, 2)

x2 − 2y2 = −8 1 (8, 6)

x2 − 2y2 = 9 1 (9, 6)

x2 − 2y2 = −9 1 (3, 3)

x2 − 2y2 = 14 2 (4, 1), (8, 5)

x2 − 2y2 = −14 2 (2, 3), (6, 5)

x2 − 2y2 = 16 1 (12, 8)

x2 − 2y2 = −16 1 (4, 4)

x2 − 2y2 = 17 2 (5, 2), (7, 4)

x2 − 2y2 = −17 2 (1, 3), (9, 7)

x2 − 2y2 = 18 1 (6, 3)

x2 − 2y2 = −18 1 (12, 9)
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Here are four examples of general Pell’s equations x2 − 2y2 = N, with N big:
k(2, 833) = 6 and K(2, 833) = {(29,2), (31,8), (35,14), (49,28), (61,38), (79,52)};
k(2, 1666) = 5 and K(2, 1666) = {(42,7), (46,15), (54,25), (62,33), (98,63)};
k(2, 2737) = 7 and K(2, 2737) = {(53,6), (55,12), (57,16), (75,38), (107,66),
(117,74), (135,88)}; k(2, 3689) = 8 and K(2, 3689) = {(61,4), (67,20), (71,26),
(83,40), (89,46), (109,64), (121,74), (167,110)}.

4.9.4 The Equations x2 − 3y2 = ±N

The assumption

(
3

N

)
= 1 is equivalent to N ≡ ±1 (mod 12). From equation

(4.9.3), we have −3N < r2k − 3t2k ≤ −N. Hence r2k − 3t2k = −2N or −N.

Case 1. Assume N ≡ 1 (mod 12). Then r2k − 3t2k = −N would imply the
contradiction r2k ≡ −1 (mod 3).

Hence r2k − 3t2k = −2N and inequality (4.9.5) implies rk−1 <

√
3N
2

. Hence

−2N = r2k − 3t2k < r2k−1 − 3t2k−1 < r2k−1 <
3N
2
.

Consequently, r2k−1 − 3t2k−1 = N.
We find 2rk−1 = −rk + 3Tk and 2Tk−1 = −rk + Tk.

Case 2. Assume N ≡ −1 (mod 12). Then r2k − 3t2k = −2N would imply the
contradiction r2k ≡ 0 (mod 3). Hence r2k −3t2k = −N and inequality (4.9.5) implies
rk−1 <

√
3N. Hence

−N = r2k − 3t2k < r2k−1 − 3t2k−1 < r2k−1 < 3N.

Consequently, r2k−1 − 3t2k−1 = N or 2N. However, r2k−1 − 3t2k−1 = N implies the
contradiction r2k−1 ≡ −1 (mod 3). Hence r2k−1 − 3t2k−1 = 2N.

We find rk−1 = −rk + 3Tk and Tk−1 = −rk + Tk.
The integers N, |N| ≤ 200, such that the equation x2 − 3y2 = N is solvable are:

1, 4, 6, 9, 13, 16, 22, 24, 25, 33, 36, 37, 46, 49, 52, 54, 61, 64, 69, 73, 78, 81, 88,
94, 96, 97, 100, 109, 117, 118, 121, 132, 141, 142, 144, 148, 150, 157, 166, 169,
177, 181, 184, 193, 196, 198, −2, −3, −8, −11, −12, −18, −23, −26, −27, −32,
−39, −44, −47, −48, −50, −59, −66, −71, −72, −74, −75, −83, −92, −98, −99,
−104, −107, −108, −111, −122, −128, −131, −138, −143, −146, −147, −156,
−162, −167, −176, −179, −183, −188, −191, −192, −194, −200.

The following table contains the numbers k(3,N) of classes of solutions and
the sets K(3,N) of fundamental solutions of classes of x2 − 3y2 = N, when the
equations are solvable and N is positive or negative, |N| ≤ 27 [161].
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x2 − 3y2 = N k(3,N) K(3,N)

x2 − 3y2 = 4 1 (4, 2)

x2 − 3y2 = 6 1 (3, 1)

x2 − 3y2 = 9 1 (6, 3)

x2 − 3y2 = 13 2 (4, 1), (5, 2)

x2 − 3y2 = 16 1 (8, 4)

x2 − 3y2 = 22 2 (5, 1), (7, 3)

x2 − 3y2 = 24 1 (6, 2)

x2 − 3y2 = 25 1 (10, 5)

x2 − 3y2 = −3 1 (3, 2)

x2 − 3y2 = −8 1 (2, 2)

x2 − 3y2 = −11 2 (1, 2), (4, 3)

x2 − 3y2 = −12 1 (6, 4)

x2 − 3y2 = −18 1 (3, 3)

x2 − 3y2 = −23 2 (2, 3), (5, 4)

x2 − 3y2 = −26 2 (1, 3), (7, 5)

x2 − 3y2 = −27 1 (9, 6)

Here are five example of equations x2 − 3y2 = N, with N big: k(3, 121) = 3
and K = {(13,4), (14,5), (22,11)}; k(3, 253) = 4 and K(3, 253) = {(16,1), (19,6),
(20,7), (29,14)}; k(3, 1573) = 5 and K(3, 1573) = {(40,3), (41,6), (44,11), (55,22),
(64,29)}; k(3, 3289) = 8 and K(3, 3289) = {(58,5), (59,8), (61,12), (67,20),
(74,27), (86,37), (94,43), (101,48)}’ k(3, 3718) = 6 and K(3, 3718) = {(61,1),
(65,13), (71,21), (79,29), (91,39), (119,59)}.

4.9.5 The Equations x2 − 5y2 = ±N

The assumption

(
5

N

)
= 1 is equivalent to N ≡ ±1 (mod 5). Then from equation

(4.9.3), we have −5N < r2k − 5t2k ≤ −N. Hence r2k − 5t2k = −4N, −3N, −2N

or −N. We cannot have r2k − 5t2k = −3N, as then

(
5

3

)
= 1. Neither can we have

r2k − 5t2k = −2N, as N is odd.

Case 1. Assume N ≡ 1 (mod 5). Then r2k − 5t2k = −N would imply the
contradiction r2k ≡ −1 (mod 5). Hence r2k − 5t2k = −4N. Then rk and tk are both

odd. Also, inequality (4.9.5) implies rk−1 <

√
5N
4

. Hence −N ≤ r2k−1−5t2k−1 ≤ N.

Then as in the remark above, we can show that

(i) if r2k−1 − 5t2k−1 = −N, then
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4rk−1 = −3rk + 4Tk, 4Tk−1 = −rk + 3Tk,

hence rk ≡ −Tk (mod 4).
(ii) if r2k−1 − 5t2k−1 = N, then

4rk−1 = −rk + 5Tk, 4Tk−1 = −rk + Tk,

hence rk ≡ Tk (mod 4).

Case 2. Assume N ≡ −1 (mod 5). Then r2k − 5t2k = −4N would imply the
contradiction r2k ≡ 4 (mod 5). Hence r2k − 5t2k = −N. Then not both rk and
tk are odd. Also, inequality (4.9.5) implies rk−1 <

√
5N and we deduce that

−N < r2k−1 − 5t2k−1 ≤ 4N. Consequently, r2k−1 − 5t2k−1 = N or 4N.
Then, as in the remark above, we can show

(i) if r2k−1 − 5t2k−1 = N, then

rk−1 = −2rk + 5Tk, Tk−1 = −rk + 2Tk,

hence rk−1 ≡ −2rk (mod 5).
(ii) If r2k−1 − 5t2k−1 = 4N, then

rk−1 = −rk + 5Tk, Tk−1 = −rk + Tk,

hence rk−1 ≡ −rk (mod 5).

Here is a complete classification of the possible cases:

1. N = 5k + 1. Then r2k − 5t2k = −4N, while rk and tk are odd.

(i) rk ≡ −Tk (mod 4). Then r2k−1 − 5t2k−1 = −N.
(ii) rk ≡ Tk (mod 4). Then r2k−1 − 5t2k−1 = N.

2. N = 5k − 1. Then r2k − 5t2k = −N, while rk and tk are not both odd.

(i) rk−1 ≡ −2rk (mod 5). Then r2k−1 − 5t2k−1 = N.
(ii) rk−1 ≡ −rk (mod 5). Then r2k−1 − 5t2k−1 = 4N.

The integers N, |N| ≤ 200, such that the equation x2 − 5y2 = N is solvable are:
±1, ±4, ±5, ±9, ±11, ±16, ±19, ±20, ±25, ±29, ±31, ±36, ±41, ±44, ±45,
±49, ±55, ±59, ±61, ±64, ±71, ±76, ±79, ±80, ±81, ±89, ±95, ±99, ±100,
±101, ±109, ±116, ±121, ±124, ±125, ±131, ±139, ±144, ±145, ±149, ±151,
±155, ±164, ±169, ±171, ±176, ±179, ±180, ±181, ±191, ±196, ±199.

The following table gives the numbers k(5,N) and the sets K(5,N) of the
equations x2 − 5y2 = N, when they are solvable and N is positive or negative,
|N| ≤ 29 [161].
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x2 − 5y2 = N k(5,N) K(5,N)

x2 − 5y2 = 4 3 (3, 1), (7, 3), (18, 8)

x2 − 5y2 = 5 1 (5, 2)

x2 − 5y2 = 9 1 (27, 12)

x2 − 5y2 = 11 2 (4, 1), (16, 7)

x2 − 5y2 = 16 3 (6, 2), (14, 6), (36, 16)

x2 − 5y2 = 19 2 (8, 3), (12, 5)

x2 − 5y2 = 20 3 (5, 1), (10, 4), (25, 11)

x2 − 5y2 = 25 1 (45, 20)

x2 − 5y2 = −4 3 (1, 1), (4, 2), (11, 5)

x2 − 5y2 = −5 1 (20, 9)

x2 − 5y2 = −9 1 (6, 3)

x2 − 5y2 = −11 2 (3, 2), (13, 6)

x2 − 5y2 = −16 3 (2, 2), (8, 4), (22, 10)

x2 − 5y2 = −19 2 (1, 2), (31, 14)

x2 − 5y2 = −20 3 (5, 3), (15, 7), (40, 18)

x2 − 5y2 = −25 1 (10, 5)

x2 − 5y2 = −29 2 (4, 3), (24, 11)

Here are three example of equations x2 − 5y2 = N, with N big: k(5, 1276) =
11 and K(5, 1276) = {(36,2), (39,7), (41,9), (49,15), (59,21), (76,30), (84,34),
(111,47), (141,61), (211,93), (284,126)}; k(5, 1936) = 8 and K(5, 1936) = {(46,6),
(54,14), (84,32), (116,48), (154,66), (206,90), (294,130), (396,176)}; k(5, 9196) =
18 and K(5, 9196) = {(96,2), (99,11), (104,18), (111,25), (121,33), (139,45),
(149,51), (176,66), (201,79), (229,93), (264,110), (321,137), (351,151), (429,187),
(499,219), (576,254), (671,297), (824,366)}.

4.9.6 The Equations x2 − 6y2 = ±N

The assumption

(
6

N

)
= 1 is equivalent to N ≡ ±1 (mod 24) or N ≡ ±5

(mod 24). Then from equation (4.9.3), we have −6N < r2k − 6t2k ≤ −N. Hence
r2k − 6t2k = −5N, −4N, −3N, −2N or −N. Only −4N is ruled out immediately
and the other possibilities can occur.

As with the case D = 5, there is a complete classification of the possible cases:

1. N = 24k − 1 or 24k + 5.

(i) rk ≡ 0 (mod 3). Then r2k − 6t2k = −3N, r2k−1 − 6t2k−1 = −N.
(ii) rk �≡ 0 (mod 3). Then r2k − 6t2k = −N.
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(a) rk−1 ≡ 0 (mod 2). Then r2k−1 − 6t2k−1 = 2N.
(b) rk−1 ≡ 1 (mod 2). Then r2k−1 − 6t2k−1 = 5N.

2. N = 24k + 1 or 24k − 5:

(i) rk ≡ 0 (mod 2). Then r2k − 6t2k = −2N, r2k−1 − 6t2k−1 = N.
(ii) rk ≡ 1 (mod 2). Then r2k − 6t2k = −5N.

(a) rk ≡ Tk (mod 5). Then r2k−1 − 6t2k−1 = N.
(b) rk ≡ −Tk (mod 5). Then r2k−1 − 6t2k−1 = −2N, r2k−2 − 6t2k−2 = N.

The integers N, |N| ≤ 200, such that x2 − 6y2 = N is solvable are: 1, 3, 4, 9,
10, 12, 16, 19, 25, 27, 30, 36, 40, 43, 46, 48, 49, 57, 58, 64, 67, 73, 75, 76, 81,
90, 94, 97, 100, 106, 108, 115, 120, 121, 129, 138, 139, 142, 144, 145, 147, 160,
163, 169, 171, 172, 174, 184, 190, 192, 193, 196, −2, −5, −6, −8, −15, −18, −20,
−23, −24, −29, −32, −38, −45, −47, −50, −53, −54, −60, −69, −71, −72, −80,
−86, −87, −92, −95, −96, −98, −101, −114, −116, −125, −128, −134, −135,
−141, −146, −149, −150, −152, −159, −162, −167, −173, −180, −188, −191,
−194, −197, −200.

The following table gives the numbers k(6,N) and the sets K(6,N) of equations
x2− 6y2 = N, when they are solvable and N is positive or negative, |N| ≤ 25 [161].

x2 − 6y2 = N k(6,N) K(6,N)

x2 − 6y2 = 3 1 (3, 1)

x2 − 6y2 = 4 1 (10, 4)

x2 − 6y2 = 9 1 (15, 6)

x2 − 6y2 = 10 2 (4, 1), (8, 3)

x2 − 6y2 = 12 1 (6, 2)

x2 − 6y2 = 16 1 (20, 8)

x2 − 6y2 = 19 2 (5, 1), (13, 5)

x2 − 6y2 = 25 3 (7, 2), (11, 4), (25, 10)

x2 − 6y2 = −2 1 (2, 1)

x2 − 6y2 = −5 2 (1, 1), (7, 3)

x2 − 6y2 = −6 1 (12, 5)

x2 − 6y2 = −8 1 (4, 2)

x2 − 6y2 = −15 2 (3, 2), (9, 4)

x2 − 6y2 = −18 1 (6, 3)

x2 − 6y2 = −20 2 (2, 2), (14, 6)

x2 − 6y2 = −23 2 (1, 2), (19, 8)

Here are three examples of equations x2 − 6y2 = N, with N big: k(6, 625) = 5
and K(6, 625) = {(29,6), (35,10), (55,20), (73,28), (125,50)}; k(6, 2185) = 8
and K(6, 2185) = {(47,2), (49,6), (61,16), (79,26), (83,28), (113,42), (173,68),
(211,84)}; k(6, 9025) = 9 and K(6, 9025) = {(97,8), (101,14), (133,38), (155,50),
(175,60), (209,76), (337,132), (389,154), (475,190)}.
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4.9.7 The Equations x2 − 7y2 = ±N

The assumption

(
7

N

)
= 1 is equivalent to N ≡ 1, 3, 9, 19, 25, 27 (mod 28).

As with the case D = 6, there is a complete classification of the possible cases:

1. N = 28k + 1, 28k + 9, or 28k + 25.

(i) rk ≡ Tk (mod 2). Then r2k − 7t2k = −6N.

(a) rk ≡ −Tk (mod 6). Then r2k−1 − 7t2k−1 = −3N.

(1) rk−1 ≡ −Tk−1 (mod 3). Then r2k−2 − 7t2k−2 = N.
(2) rk−1 ≡ Tk−1 (mod 3). Then r2k−2 − 7t2k−2 = 2N.

(b) rk ≡ Tk (mod 6). Then r2k−1 − 7t2k−1 = N.

(ii) rk �≡ Tk (mod 2). Then r2k − 7t2k = −3N.

(a) rk ≡ −Tk (mod 3). Then r2k−1 − 7t2k−1 = N.
(b) rk ≡ Tk (mod 3). Then r2k−1 − 7t2k−1 = 2N.

2. N = 28k + 3, 28k + 19, or 28k + 27.

(i) rk ≡ Tk (mod 2). Then r2k − 7t2k = −2N.

(a) rk−1 ≡ −Tk−1 (mod 3). Then r2k−1 − 7t2k−1 = −N.
(b) rk−1 ≡ Tk−1 (mod 3). Then r2k−1 − 7t2k−1 = 3N.

(ii) rk �≡ Tk (mod 2). Then r2k − 7t2k = −N.

(a) rk−1 ≡ −Tk−1 (mod 3). Then r2k−1 − 7t2k−1 = 3N.
(b) rk−1 ≡ Tk−1 (mod 3). Then r2k−1 − 7t2k−1 = 6N.

In cases 1(a)(2) and 2(i), the equations r2k−2 − 7t2k−2 = 2N and r2k − 7t2k = −2N
give rise to equations x2 − 7y2 = N, −N, respectively, if we write x + y

√
7 =

(rk−2+ tk−2

√
7)(3+

√
7) and (rk + tk

√
7)/(3+

√
7), respectively. For if x+y

√
7 =

(r + t
√
7)/(3 +

√
7), where r and t are odd, then x =

3r − 7t
2

and y =
3t − r
2

are

integers and x2 − 7y2 = (r2 − 7t2)/2.
We note that 1(a)(2) cannot occur unless N ≡ 0 (mod 3). Then we have

rk−1 +
−rk + 7Tk

6
, Tk−1 =

−rk + 5Tk

6
(4.9.10)

rk−2 =
−rk−1 + 7Tk−1

3
, Tk−2 =

−rk−1 + Tk−1

3
. (4.9.11)

Then (4.9.6) implies rk−1 + Tk−1 = −rk + 2Tk ≡ −rk − Tk ≡ 0 (mod 3).
Also (4.9.7) implies rk−1 ≡ Tk−1 (mod 3). Hence 3 divides rk−1 and Tk−1 and the
equation r2k−1 − 7T2

k−1 = −3N then implies that 3 divides N.
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Example. N = 57. The congruence u2 ≡ 7 (mod 57) has solutions u ≡ ±8,±11
(mod 57). Then u = 0 gives k = 2, r1 = 8, t1 = 1, r2 = 1, r2 = 1, t2 = −7,
r2k − 7t2k = −6N and r2k−1 − 7t2k−1 = N, while u = 11 gives k = 2, r1 = 11, t1 = 1,
r2 = 2, t2 = −5 and r2k − 7t2k = −3N and r2k−1 − 7t2k−1 = 2N.

The integers N, |N| ≤ 200, such that x2 − 7y2 = N is solvable are: 1, 2, 4, 8,
9, 16, 18, 21, 25, 29, 32, 36, 37, 42, 49, 50, 53, 57, 58, 64, 72, 74, 81, 84, 93, 98,
100, 106, 109, 113, 114, 116, 121, 128, 133, 137, 141, 144, 148, 149, 162, 168, 169,
177, 186, 189, 193, 196, 197, 200, −3, −6, −7, −12, −14, −19, −24, −27, −28,
−31, −38, −47, −48, −54, −56, −59, −62, −63, −75, −76, −83, −87, −94, −96,
−103, −108, −111, −112, −118, −124, −126, −131, −139, −147, −150, −152,
−159, −166, −167, −171, −174, −175, −188, −192, −199.

The following table contains the numbers k(7,N) and the sets K(7,N) of the
equations x2 − 7y2 = N, when they are solvable and N is positive or negative,
|N| ≤ 29 [161].

x2 − 7y2 = N k(7,N) K(7,N)

x2 − 7y2 = 2 1 (3, 1)

x2 − 7y2 = 4 1 (16, 6)

x2 − 7y2 = 8 1 (6, 2)

x2 − 7y2 = 9 3 (4, 1), (11, 4), (24, 9)

x2 − 7y2 = 16 1 (32, 12)

x2 − 7y2 = 18 3 (5, 1), (9, 3), (19, 7)

x2 − 7y2 = 21 2 (7, 2), (14, 5)

x2 − 7y2 = 25 1 (40, 15)

x2 − 7y2 = 29 2 (6, 1), (27, 10)

x2 − 7y2 = −3 2 (2, 1), (5, 2)

x2 − 7y2 = −6 2 (1, 1), (13, 5)

x2 − 7y2 = −7 1 (21, 8)

x2 − 7y2 = −12 2 (4, 2), (10, 4)

x2 − 7y2 = −14 1 (7, 3)

x2 − 7y2 = −19 2 (3, 2), (18, 7)

x2 − 7y2 = −24 2 (2, 2), (26, 10)

x2 − 7y2 = −27 4 (1, 2), (6, 3), (15, 6), (34, 13)

Here are three examples of equations x2 − 7y2 = N, with N big: k(7, 2349) =
10 and K(7, 2349) = {(51,6), (54,9), (61,14), (82,25), (93,30), (114,39), (131,46),
(194,71), (243,90), (282,105)}; k(7, 3249) = 9 and K(7, 3249) = {(64,11), (71,16),
(76,19), (111,36), (132,45), (209,76), (232,85), (281,104), (456,171)}; k(7, 4617) =
12 and K(7, 4617) = {(68,1), (72,9), (75,12), (93,24), (117,36), (128,41), (163,56),
(180,63), (240,87), (348,129), (387,144), (523,196)}.
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