
Chapter 3
Pell’s Equation

3.1 History and Motivation

Euler, after a cursory reading of Wallis’s Opera Mathematica, mistakenly attributed
the first serious study of nontrivial solutions to equations of the form x2 −Dy2 = 1,
where x �= 1 and y �= 0, to John Pell. However, there is no evidence that
Pell, who taught at the University of Amsterdam, had ever considered solving
such equations. They should be probably called Fermat’s equations, since it was
Fermat who first investigated properties of nontrivial solutions of such equations.
Nevertheless, Pellian equations have a long and rich history and can be traced back
to the Greeks. For many details we refer to the books [75] and [212] (see also the
reference [22, pp. 118–120]). Theon of Smyrna used x/y to approximate

√
2, where

x and y were integral solutions to x2 − 2y2 = 1. In general, if x2 = Dy2 + 1, then
x2/y2 = D + 1/y2. Hence, for y large, x/y is a good approximation of

√
D, a fact

well known to Archimedes.
The famous Archimedes’s problema bovinum can be reduced to a such equation

and it took two thousand years to solve (see [65]).
More precisely, it is reduced to the Pell’s equation x2 − 4729494y2 = 1. The

least positive solution, for which y has 41 digits, was discovered by Carl Amthov in
1880. For a nice presentation of the story of this problem we refer to the book [212].

In Arithmetica, Diophantus asks for rational solutions to equations of the type
x2 − Dy2 = 1. In the case where D = m2 + 1, Diophantus offered the integral
solution x = 2m2 + 1 and y = 2m. Pell type equations are also found in Hindu
mathematics. In the fourth century, the Indian mathematician Baudhayana noted
that x = 577 and y = 408 is a solution of x2 − 2y2 = 1 and used the fraction
577

408
to approximate

√
2. In the seventh century, Brahmagupta considered solutions

to the Pell’s equation x2 − 92y2 = 1, the smallest solution being x = 1151 and
y = 120. In the twelfth century, the Hindu mathematician Bhaskara found the least
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32 3 Pell’s Equation

positive solution to the Pell’s equation x2 − 61y2 = 1 to be x = 226153980 and
y = 1766319049.

In 1657, Fermat stated without proof that if D is positive and not a perfect square,
then Pell’s equation has an infinite number of solutions. For if (x, y) is a solution to
x2 − Dy2 = 1, then we have 12 = (x2 − Dy2)2 = (x2 + Dy)2 − (2xy)2D. Thus,
(x2 + Dy, 2xy) is also a solution to x2 − Dy2 = 1. Therefore, if Pell’s equation has
a solution, then it has infinitely many.

In 1657, Fermat challenged William Brouncker and John Wallis to find integral
solutions to the equations x2 − 151y2 = 1 and x2 − 313y2 = −1. He cautioned
them not to submit rational solutions for even the lowest type of arithmetician could
devise such answers. Wallis replied with (1728148040, 140634693) as a solution to
the first equation.

In 1770 Euler was looking for positive integers m and n such that n(n + 1)/2 =
m2. To accomplish this, he multiplied both sides of the latter equation by 8 and
added 1 to obtain (2n + 1)2 = 8m2 + 1. He let x = 2n + 1 and y = 2m so that
x2 − 2y2 = 1. Solutions to this Pell’s equation produce square-triangular numbers
since we have

(
x − 1

2

)(
x − 1

2
+ 1

)

2
=

( y
2

)2

.

That is, the

(
x − 1

2

)th

triangular number equals the
( y
2

)th
square number. For

example, from the solution x = 3 and y = 2, it follows that m = n = 1, yielding
the square-triangular number 1. A natural question arises. Does the method generate
all square-triangular numbers? If one is more methodical about how one obtains the
solutions, one can see that it does.

Since 1 = x2 − 2y2 = (x − y
√
2)(x + y

√
2), it follows that

1 = 12 = (x − y
√
2)2(x + y

√
2)2

= ((2y2 + x2)− 2xy
√
2)((2y2 + x2) + 2xy

√
2)

= (2y2 + x2)2 − 2(2xy)2.

Thus, if (x, y) is a solution to 1 = x2 − 2y2, then so is (2y2 + x2, 2xy). For example,
the solution (3, 2) generates the solution

(2 · 22 + 32, 2 · 2 · 3) = (17, 12).

The solution (17, 12) generates the solution

(2 · 122 + 172, 2 · 12 · 17) = (577, 408).
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The square-triangular number generated by the solution (2y2+ x2, 2xy) to 1 = x2−
2y2 is distinct from the square-triangular number generated by the solution (x, y).
Therefore, there exist an infinite number of square-triangular numbers. Lagrange, in
a series of papers presented to the Berlin Academy between 1768 and 1770, showed
that a similar procedure will determine all solutions to x2 = Dy2 + 1, where D is
positive and nonsquare. In 1766, Lagrange proved that the equation x2 = Dy2 + 1
has an infinite number of solutions whenever D is positive and not square.

The Diophantine quadratic equation

ax2 + bxy + cy2 + dx + ey + f = 0 (3.1.1)

with integral coefficients a, b, c, d, e, f reduces in its main case to a Pell-type
equation. Next, we will sketch the general method of reduction. The equation (3.1.1)
represents a conic in the xOy Cartesian plane, therefore solving (3.1.1) in integers
means finding all lattice points situated on this conic. We will solve the equation
(3.1.1) by reducing the general equation of the conic to its canonical form. Following
the ideas from [13, 14, 160, 168] we introduce the discriminant of the equation
(3.1.1) by Δ = b2 − 4ac. When Δ < 0, the conic defined by (3.1.1) is an ellipse
and in this case the given equation has only a finite number of solutions. If Δ = 0,
then the conic given by (3.1.1) is a parabola. If 2ae − bd = 0, then the equation
(3.1.1) becomes (2ax + by + d)2 = d2 − 4af and it is not difficult to solve. In
the case 2ae − bd �= 0, by performing the substitutions X = 2ax + by + d and
Y = (4ae − 2bd)y + 4af − d2, the equation (3.1.1) reduces to X2 + Y = 0 which
is also easy to solve. The most interesting case is Δ > 0, when the conic defined
by (3.1.1) is a hyperbola. Using a sequence of substitutions, the equation (3.1.1)
reduces to a general Pell-type equation

X2 − DY2 = N. (3.1.2)

To illustrate the process described above, we will consider the equation 2x2 −
6xy+3y2 = −1 (Berkely Math. Circle 2000–2001 Monthly Contest #4, Problem 4,
[22, p. 120]). We notice that Δ = 12 > 0, hence the corresponding conic is a
hyperbola. The equation can be written as x2−3(y−x)2 = 1 and by performing the
substitutions X = x and Y = y−x, we reduce it to the Pell’s equation X2−3Y2 = 1.

Finally, let us mention that other authors reduce the equation (3.1.1) to the form
Ax2 + Bxy + Cy2 = k (see, for example [203]). Formulas yielding an infinite set of
integral solutions of the Diophantine equation x2 + bx + c = ky2 are given in [80].

3.2 The General Solution by Elementary Methods

We will present an elementary approach to solving the Pell’s equation due to
Lagrange (see, for example, [93, 112, 125, 126, 191, 198] and [212]). We will follow
the presentation of our papers [13–15].
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Theorem 3.2.1. If D is a positive integer that is not a perfect square, then the
equation

u2 − Dv2 = 1 (3.2.1)

has infinitely many solutions in positive integers and the general solution is given
by (un, vn)n≥0,

un+1 = u1un + Dv1vn, vn+1 = v1un + u1vn, (3.2.2)

where (u1, v1) is its fundamental solution, i.e., the minimal solution different from
the trivial solution (u0, v0) = (1, 0).

Proof. First, we will prove that the equation (3.2.1) has a fundamental solution.
Let c1 be an integer greater than 1. We will show that there exist integers t1,w1 ≥

1 such that

|t1 − w1

√
D| < 1

c1
, w1 ≤ c1.

Indeed, considering lk = [k
√

D + 1], k = 0, . . . , c1, yields 0 < lk − k
√

D ≤
1, k = 0, . . . , c1, and since

√
D is an irrational number, it follows that lk′ �= lk′′

whenever k′ �= k′′.
There exist i, j, p ∈ {0, 1, 2, . . . , c1}, i �= j, p �= 0, such that

p − 1

c1
< li − i

√
D ≤ p

c1
and

p − 1

c1
< lj − j

√
D ≤ p

c1

because there are c1 intervals of the form

(
p − 1

c1
,

p
c1

)
, p = 1, . . . , c1 and c1 + 1

numbers of the form lk − k
√

D, k = 0, . . . , c1.

From the inequalities above it follows that |(li − lj) − (j − i)
√

D| <
1

c1
and

setting |li − lj| = t1 and |j − i| = w1 yields |t1 − w1

√
D| < 1

c1
and w1 ≤ c1.

Multiplying this inequality by t1 + w1

√
D < 2w1

√
D + 1 gives

|t21 − Dw2
1| < 2

w1

c1

√
D +

1

c1
< 2

√
D + 1.

Choosing a positive integer c2 > c1 such that |t1 − w1

√
D| > 1

c2
, we obtain

positive integers t2,w2 with the properties

|t22 − Dw2
2| < 2

√
D + 1 and |t1 − t2|+ |w1 − w2| �= 0.
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By continuing this procedure, we find a sequence of distinct pairs (tn,wn)n≥1

satisfying the inequalities |t2n−Dw2
n | < 2

√
D+1 for all positive integers n. It follows

that the interval (−2
√

D− 1, 2
√

D+1) contains a nonzero integer k such that there
exists a subsequence of (tn,wn)n≥1 satisfying the equation t2 − Dw2 = k. This
subsequence contains at least two pairs (ts,ws), (tr,wr) for which ts ≡ tr(mod |k|),
ws ≡ wr(mod |k|), and tswr − trws �= 0, otherwise ts = tr and ws = wr, in
contradiction with |ts − tr|+ |ws − wr| �= 0 see [21] and [23] for general properties
of congruences).

Let t0 = tstr − Dwswr and let w0 = tswr − trws. Then

t20 − Dw2
0 = k2. (3.2.3)

On the other hand, t0 = tstr − Dwswr ≡ t2s − Dw2
0 ≡ 0(mod |k|), and it follows

immediately that w0 ≡ 0(mod |k|). The pair (u, v), where u =
t0
|k| , v =

w0

|k| is a

nontrivial solution to Pell’s equation (3.2.1).
Let (u1, v1) be the least such solution, i.e., with u (and implicitly v) minimal.
We show now that the pair (un, vn) defined by (3.2.2) satisfies Pell’s equation

(3.2.1). We proceed by induction with respect to n. Clearly, (u1, v1) is a solution to
the equation (3.2.1). If (un, vn) is a solution to this equation, then

u2n+1 − Dv2n+1 = (u1un + Dv1vn)
2 − D(v1un + u1vn)

2

= (u21 − Dv21)(u
2
n − Dv2n ) = 1,

i.e., the pair (un+1, vn+1) is also a solution to the equation (3.2.1).
It is not difficult to see that for all positive integer n,

un + vn

√
D = (u1 + v1

√
D)n. (3.2.4)

Clearly, (3.2.4) also yields the trivial solution (u0, v0) = (1, 0).
Let zn = un + vn

√
D = (u1 + v1

√
D)n and note that z0 < z1 < · · · < zn < . . . .

We will prove now that all solutions to the equation (3.2.1) are of the form (3.2.4).
Indeed, if the equation (3.2.1) had a solution (u, v) such that z = u + v

√
D is not of

the form (3.2.4), then zm < z < zm+1 for some integer m. Then 1 < (u+v
√

D)(um−
vm

√
D) < u1 + v1

√
D, and therefore 1 < (uum − Dvvm) + (umv − uvm)

√
D <

u1+v1
√

D. On the other hand, (uum−Dvvm)
2−D(umv−uvm)

2 = (u2−Dv2)(u2m−
Dv2m) = 1, i.e., (uum−Dvvm, umv−uvm) is a solution of (3.2.1) smaller than (u1, v1),
in contradiction with the assumption that (u1, v1) is the minimal nontrivial solution.

�	
Remarks. 1) The relations (3.2.1) could be written in the following useful matrix

form

(
un+1

vn+1

)
=

(
u1 Dv1
v1 u1

)(
un

vn

)
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from where

(
un

vn

)
=

(
u1 Dv1
v1 u1

)n (
u0
v0

)
. (3.2.5)

If

(
u1 Dv1
v1 u1

)n

=

(
an bn

cn dn

)

then it is well-known that each of an, bn, cn, dn is a linear combination of λn
1, λ

n
2,

where λ1, λ2 are the eigenvalues of the matrix

(
u1 Dv1
v1 u1

)
. By using (3.2.5),

after an easy computation it follows that

un =
1

2
[(u1 + v1

√
D)n + (u1 − v1

√
D)n],

vn =
1

2
√

D
[(u1 + v1

√
D)n − (u1 − v1

√
D)n]

(3.2.6)

2) The solutions of Pell’s equation given in one of the forms (3.2.4) or (3.2.6) may
be used in the approximation of the square roots of positive integers that are not
perfect squares. Indeed, if (un, vn) are the solutions of the equation (3.2.1), then

un − vn

√
D =

1

un + vn

√
D

and so

un

vn
−
√

D =
1

vn(un + vn

√
D)

<
1√
Dv2n

<
1

v2n
.

It follows that

lim
n→∞

un

vn
=

√
D (3.2.7)

i.e., the fractions
un

vn
approximate

√
D with an error less than

1

v2n
.

3) Consider the plane transformation T : R2 → R
2, given by

T(x, y) = (u1x + Dv1y, v1x + u1y),

where (u1, v1) is the fundamental solution of Pell’s equation (3.2.1). Let (Tn)n≥0

be the discrete dynamical system generated by transformation T , where Tn
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denotes the nth iteration of T . The result in Theorem 3.2.1 shows that the orbit of
point (u0, v0) of this dynamical system consists of lattice points on the hyperbola
x2 − Dy2 = 1.

4) It is not difficult to find rational solutions to equation (3.2.1). Simply divide the
relation

(r2 + D)2 − D(2r)2 = (r2 − D)2

by (r2 − D)2 to obtain

u =
r2 + D
r2 − D

, v =
2r

r2 − D
, r ∈ Q.

In the next sections we will see how we can describe all rational solutions to
(3.2.1).

5) Dirichlet in 1837 published explicit formulae giving some solutions of Pell’s
equations in terms of trigonometric functions. For example, for D = 13 he has
obtained x1 + y1

√
13 = η2, where

η =
sin

2π

13
sin

5π

13
sin

6π

13

sin
π

13
sin

3π

13
sin

4π

13

∈ Q(
√
13).

6) Concerning Pell’s equation there is the following conjecture [150]: Let p be a
prime ≡ 3 (mod 4). Consider Pell’s equation u2−pv2 = 1 and its fundamental
solution (u1, v1). Then v1 �≡ 0 (mod p).

This has been verified for all such primes p < 18000. It has been shown that
v1 �≡ 0 (mod p) if and only if E p−3

4
�≡ 0 (mod p), where the Euler numbers En

are defined by the powers series

sec t =
∞∑

n=0

En

(2n)!
t2n.

There is a similar conjecture when p ≡ 1 (mod 4).

3.3 The General Solution by Continued Fractions

The approach in this section is based on the material contained in Chapter 2,
Section 2.1. More specifically, the method we are going to present is based on
expanding

√
D into a continued fraction as in Theorem 2.1.21, with convergents

hn/kn, and with qn defined by equations (2.1.13) with ξ0 =
√

D, q0 = 1, m0 = 0.
Our presentation is based on [1, 46, 159] and [164].
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Theorem 3.3.1. If D is a positive integer not a perfect square, then h2
n − Dk2n =

(−1)n−1qn+1 for all integers n ≥ −1.

Proof. From equations (2.1.8) and (2.1.13) we have

√
D = ξ0 =

ξn+1hn + hn−1

ξn+1kn + kn−1
=

(mn+1 +
√

D)hn + qn+1hn−1

(mn+1 +
√

D)kn + qn+1kn−1

.

We simplify this equation and separate it into a rational and a purely irrational
part much as we did in (2.1.16). Each part must be zero so we get two equations,
and we can eliminate mn+1 from them. The final result is

h2n − Dk2n = (hnkn−1 − hn−1kn)qn+1 = (−1)n−1qn+1

where we used Theorem 2.1.5 in the last step. �	
Corollary 3.3.2. Taking r as the length of the period of the expansion of

√
D, as in

Theorem 2.1.21, we have for n ≥ 0,

h2nr−1 − Dk2nr−1 = (−1)nrqnr = (−1)nr.

With n even, this gives infinitely many solutions of x2 − Dy2 = 1 in integers,
provided D is positive and not a perfect square.

It can be seen that Theorem 3.3.1 gives us solutions to (3.1.2) for certain values of
N. In particular, Corollary 3.3.2 gives infinitely many solutions of x2 − Dy2 = 1 by
the use of even values nr. Of course, if r is even, all values of nr are even. If r is odd,
Corollary 3.3.2 gives infinitely many solutions to x2 − Dy2 = −1 by the use of odd
integers n ≥ 1. The next result shows that every solution to x2 − Dy2 = ±1 can be
obtained from the continued fraction expansion of

√
D. But first we make this simple

observation: Apart from such trivial solutions as x = ±1, y = 0 of x2 − Dy2 = 1,
all solutions to x2 − Dy2 = N fall into sets of four by all combinations of signs ±x,
±y. Hence it is sufficient to discuss the positive solutions x > 0, y > 0.

Theorem 3.3.3. Let D be a positive integer not a perfect square, and let the
convergents to the continued expansion of

√
D be hn/kn. Let the integer N satisfy

|N| <
√

D. Then any positive solution x = s, y = t to x2 − Dy2 = N, with
gcd(s, t) = 1, satisfies s = hn, t = kn for some positive integer n.

Proof. Let E and M be positive integers such that gcd(E,M) = 1 and E2 − ρM2 =
σ, where

√
ρ is irrational and 0 < σ <

√
ρ. Here ρ and σ are real numbers, not

necessarily integers. Then

E
M

−√
ρ =

σ

M(E + M
√
ρ)

,
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and hence we have

0 <
E
M

−√
ρ <

√
ρ

M(E + M
√
ρ)

=
1

M2(E/(M
√
ρ) + 1)

.

Also, 0 < E/M −√
ρ implies E/(M

√
ρ) > 1, and therefore

∣∣∣∣ E
M

−√
ρ

∣∣∣∣ < 1

2M2
.

By Theorem 2.1.14, E/M is a convergent in the continued fraction expansion of
√
ρ.

If N > 0, we take σ = N, ρ = D, E = s, M = t, and the theorem holds in this
case.

If N < 0, then t2 − (1/D)s2 = −N/D, and we take σ = −N/D, ρ = 1/D,
E = t, M = s. We find that t/s is a convergent in the expansion of 1/

√
D. Then

Theorem 2.1.15 shows that s/t is a convergent in the expansion of
√

D. �	
The following result is a corollary of Theorems 2.1.21, 3.3.1, and 3.3.3.

Theorem 3.3.4. All positive solutions to x2 − Dy2 = ±1 are to be found among
x = hn, y = kn, where hn/kn are the convergents of the expansion of

√
D. If r

is the period of the expansion of
√

D, as in Theorem 2.1.21 and if r is even, then
x2 − Dy2 = −1 has no solution, and all positive solutions to x2 − Dy2 = 1 are
given by x = hnr−1, y = knr−1 for n = 1, 2, 3, . . . . On the other hand, if r is
odd, then x = hnr−1, y = knr−1 give all positive solutions to x2 − Dy2 = −1 for
n = 1, 3, 5, . . . , and all positive solutions to x2 − Dy2 = 1 for n = 2, 4, 6, . . . .

The sequences of pairs (h0, k0), (h1, k1), . . . will include all positive solutions
to x2 − Dy2 = 1. Furthermore, a0 = [

√
D] > 0, so the sequence h0, h1, h2, . . . is

strictly increasing. If we let (x1, y1) denote the first solution that appears, then for
every other solution (x, y) we have x > x1, and hence y > y1 also. Having found this
least positive solution by means of continued fractions, we can find all the remaining
positive solutions by a simpler method, which is in fact similar to the second part of
the proof of Theorem 3.2.1. �

Following the same argument as in the last part of the proof in Theorem 3.2.1,
we conclude that all nonnegative solutions are given by (xn, yn) for n = 0, 1, 2, . . . ,
where xn and yn are the integers defined by xn + yn

√
D = (x1 + y1

√
D)n.

To illustrate the above method, we will consider the numerical example given
by the equation x2 − 29y2 = 1. The expansion of

√
29 is

√
29 = 〈5; 2, 1, 1, 2, 10〉,

so we have n = 5, an odd number. The first five convergents are
5

1
,
11

2
,
16

3
,
27

5
,

70

13
=

h5
k5

. But x = h5 = 70, y = k5 = 13 give x2 − 29y2 = −1. Hence, we

must move on to the next period. The next period gives the convergents
727

135
,
1524

283
,

2251

418
,
3775

701
,
9801

1820
=

h10
k10

and so by taking x = h10 = 9801, y = k10 = 1820, we

obtain the smallest solution to our equation.
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3.4 The General Solution by Quadratic Rings

The following proof uses results about quadratic rings introduced in Section 2.2. If D
is a positive integer that is not a perfect square, consider the commutative quadratic
ring R = {m + n

√
D; m, n ∈ Z} endowed with the norm N(μ) = μ · μ, where

μ = a + b
√

D and μ = a − b
√

D.
For an element μ in R, μ �= 0, we will denote by l(μ) the vector in R

2 defined by
l(μ) = (ln |μ|, ln |μ|).

The next result is fundamental for the method we are going to describe. For the
proof we will use the approach given in [171] and [95].

Theorem 3.4.1. In the ring R there exists a unit ε0 �= ±1 such that for any other
unit ε in R the relation ε = ±εk

0 holds for some integer k and some choice of signs
+ and −.

Proof. Let q be a real number such that q > 2
√

D. For all nonzero elements α in R
with |N(α)| ≤ q, we denote by Yα the set in R

2 given by

Yα = {(x, y) ∈ H : x ≥ ln |α| and y ≥ ln |α|},

where H is the plane defined by the equation x + y = ln q.
We will first prove that for all nonzero α in R the set Yα is bounded in R

2. Indeed,
if (x, y) ∈ Yα, then x ≥ ln |α| and y ≥ ln |α|. Taking into account that x + y = ln q
yields x = ln q−y ≤ ln q− ln |α| and y = ln q−x ≤ ln q− ln |α|, it follows that Yα

is contained into a rectangle in H. Moreover, if |N(α)| ≤ q, then Yα is nonempty.
Indeed, the inequality |N(α)| = |α · α| ≤ q implies ln |α| + ln |α| ≤ q, hence
Yα �= ∅.

We will show now that for any unit ε in R the following equality holds:

Yαε = Yα + l(ε).

This means that x + y = ln q, x ≥ ln |α| and y ≥ ln |α|. Let

(x1, y1) = (x, y) + l(ε) = (x + ln |ε|, y + ln |ε|).

Then

x1 + y1 = x + y + ln |ε|+ ln |ε| = x + y + ln |ε · ε| = ln q,

because x + y = ln q and |ε · ε| = |N(ε)| = 1. From Proposition 2.2.2, ε is a unit of
R if and only if N(ε) = ±1. Also

x1 = x + ln |ε| ≥ ln |α|+ ln |ε| = ln |αε|

and

y1 = y + ln |ε| ≥ ln |α|+ ln |ε| = ln |α · ε| = ln |αε|,
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because from Proposition 2.2.4 the conjugate is multiplicative. This shows that
(x1, y1) ∈ Yαε, hence we have the inclusion

Yα + l(ε) ⊆ Yαε.

For the converse inclusion consider (x1, y1) ∈ Yαε. This means that x1+y1 = ln q
and

x1 ≥ ln |αε|, y1 ≥ ln |α · ε| = ln |αε|.

Letting x = x1 − ln |ε| and y = y1 − ln |ε| we have

x + y = ln q,

x ≥ ln |αε| − ln |ε| = ln |α|,
y ≥ ln |αε| − ln |ε| = ln |α|.

It follows that (x, y) ∈ Yα and that (x1, y1) = (x, y) + l(ε), i.e., Yαε ⊆ Yα + l(ε).
Therefore, for any nonzero element α in R with |N(α)| ≤ q and for any unit ε in R,
we have Yαε = Yα + l(ε).

Now we will prove that

H ⊆
⋃

|N(α)|≤q
α∈R,α �=0

Yα.

For this, let (x, y) ∈ H and let x1, y1 ∈ R
∗
+ such that x = ln x1 and y = ln y1. The

equality x + y = ln q implies x1y1 = q. Denote

X = [−x1, x1]× [−y1, y2].

If λ is the Lebesgue measure in R
2, then

λ(X) = 4x1y1 = 4q > 4 · 2
√

D = 4λ(T),

where T = {x(1, 1) + y(
√

D,−√
D) : x, y ∈ [0, 1)} is the fundamental paral-

lelepiped associated with the complete lattice in R
2, Λ = {m(1, 1)+n(

√
D,−√

D) :
m, n ∈ Z}. The lattice Λ is complete because the vectors (1, 1) and (

√
D,−√

D) are
linearly independent over R. It is known that λ(T) = | detAD| = 2

√
D, where AD

is the matrix

AD =

(
1 1√
D −√

D

)
.
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Using the Minkowski’s Fundamental Theorem (see [165]), it follows that there
exist integers m and n such that

(m, n) �= (0, 0) and m(1, 1) + n(
√

D,−
√

D) ∈ X ∩ Λ.

From the definition of the set X we obtain

|m + n
√

D| ≤ x1 and |m − n
√

D| ≤ y1.

Setting α = m + n
√

D and taking into account that (m, n) �= (0, 0) yields that α is
a nonzero element of the ring R and that

|N(α)| = |αα| = |α||α| = |m + n
√

D||m − n
√

D| ≤ x1y1 = q.

Because

x = ln x1 ≥ ln |m + n
√

D| = ln |α| and y = ln y1 ≥ ln |m − n
√

D| = ln |α|,

it follows that (x, y) ∈ Yα, i.e., the inclusion H ⊆ ∪Yα is proved. By using Theorem
2.2.3 we deduce the existence of a finite number of elements α1, α2, . . . , αr ∈ R
with the property that each α in R with |N(α)| ≤ q is divisibility associated with
one of the elements α1, α2, . . . , αr.

The sets Yαi , i = 1, 2, . . . , r are bounded, hence the set Y =

r⋃
i=1

Yαi is also

bounded in R
2. Let (x, y) ∈ H. Using the above considerations, it follows that there

exists a nonzero element α in R such that |N(α)| ≤ q and that (x, y) ∈ Yα. By the
choice of elements α1, α2, . . . , αr, there exists i ∈ {1, 2, . . . , r} such that α = εαi,
where ε is unit in the ring R. Hence

(x, y) ∈ Yα = Yαiε = Yαi + l(ε),

and so H ⊆ Y + L, where

L = {l(ε) : ε unit in R}.

It is clear that (0, 0) ∈ L, because (0, 0) = l(1), and that (L,+) is a subgroup
of the commutative group (R2,+). Since the set Y is bounded, and the set H is
not, it follows that L is an infinite set, in particular L �= {(0, 0)}. Assume there
is a sequence (εn)n≥1 of units in R such that lim

n→∞ l(εn) = (0, 0) and that εn �=
±1 for all positive integers n. This shows that lim

n→∞ |εn| = lim
n→∞ |εn| = 1, and so

lim
n→∞max{|εn|, |εn|} = 1. It is not difficult to see that either |εn| or |εn| has the form

m + m′√D for some nonnegative integers m and m′.
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For n ≥ 1, max{|εn|, |εn|} ≥ √
D ≥ 2, so D ≥ 2. For n = 0, taking into

account that εn �= ±1 for all n, yields max{|εn|, |εn|} ≥ m ≥ 2. In both cases,
max{|εn|, |εn|} ≥ √

2, so lim
n→∞max{|εn|, |εn|} �= 1 and lim

n→∞ l(εn) �= (0, 0). From

all of the above, it follows that there is a unit ε0 �= ±1 in R such that

‖l(ε0)‖ = min{‖l(ε)‖ : ε is a unit in R, ε �= ±1},

where ‖ · ‖ denotes the well-known Euclidean norm in R
2. We have used above

that l(ε) = (0, 0) if and only if ε = ±1. In particular, it follows that ‖l(ε0)‖ > 0.
Replacing, if necessary, ε0 by ±ε0 or by −ε0, and taking into account that

‖l(ε0)‖ = ‖l(−ε0)‖ = ‖l(ε0)‖ = ‖l(−ε0‖,

one can assume that ε0 = m+m′√D, where m,m′ are nonnegative integers such that
(m,m′) �= (1, 0). This means that ε0 > 1. Such a unit ε0 is called the fundamental
unit of the ring R. Since ln |ε|+ ln |ε| = ln 1 = 0, for all units ε in R, the following
relation holds: L ⊆ {(x, y) ∈ R

2 : x + y = 0}. If l(ε0) = (α,−α), where
α = ln |ε0| = ln ε0 > 0 and l(ε) = (β,−β) is another element of the set L
with β > 0, let k be a positive integer such that kα ≤ β ≤ (k + 1)α (we have
‖l(ε)‖ = β

√
2 ≥ ‖l(ε0)‖ = α

√
2, hence β ≥ α and k ≥ 1). Let ε1 ∈ R, ε1 = ε·ε−k

0 .
Then

l(ε1) = l(ε)− kl(ε0) = (β − kα,−β + kα).

If β − kα > 0, then ε1 �= ±1 and

‖l(ε1)‖ =
√
2(β − kα) <

√
2((k + 1)α− kα) =

√
2 · α = ‖l(ε0)‖,

in contradiction with the choice of ε0. Therefore β = kα, l(ε1) = 0, which
implies the equality ε = ±εk

0. Note that if l(ε) = (β,−β) and β < 0, then the
same argument above for ε shows that there exists a nonnegative integer k with the
property ε = ±εk

0.
From all the considerations above it follows that all units in the ring R are of the

form ±εk
0 for some integer k. �	

Theorem 3.4.1 facilitates finding all positive integer solutions to the Pell’s
equation x2 − Dy2 = 1. In this respect, consider a solution (u, v) and denote
ε = u + v

√
D. Then N(ε) = u2 − Dv2 = 1, so ε is a unit in the ring R. Applying

the result in the Theorem 3.4.1, it follows that ε = ±εk
0, for some k and for some

choice of signs + and −. In addition, if we assume (u, v) �= (1, 0), then ε > 1.
Taking into consideration that ε0 > 1 and that ε = ±εk

0 > 1, we see that the integer
k is positive and that we must to choose the sign +. Therefore, ε = εk

0, where k is a
positive integer. Moreover, if N(ε0) = −1, then one needs the necessary condition
k even (indeed, 1 = N(ε) = N(ε0)

k = (−1)k in the case N(ε0) = −1).
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The general solution to Pell’s equation x2 − Dy2 = 1 could be also written
recursively as follows:

x0 = 1, y0 = 0

x1 = m, y1 = n if N(ε0) = 1, ε0 = m + n
√

D
x1 = m2 + Dn2, y1 = 2mn if N(ε0) = −1

{
xk+1 = mxk + Dnyk

yk+1 = nxk + myk
, if N(ε0) = 1

{
xk+1 = (m2 + Dn2)xk + 2Dmnyk

yk+1 = 2mnxk + (m2 + Dn2)yk
, if N(ε0) = −1.

3.5 The Equation ax2 − by2 = 1

In the present section we will study the more general equation

ax2 − by2 = 1, (3.5.1)

where a and b are positive integers. Taking into account the considerations in
Section 3.1 we have Δ = 4ab > 0, hence (3.5.1) can be reduced to a Pell’s equation.
In the paper [144] is given a continued fraction approach.

We will use the results in [13, 14] and [15].

Proposition 3.5.1. If ab = k2, where k is an integer greater than 1, then the
equation (3.5.1) does not have solutions in positive integers.

Proof. Assume that (3.5.1) has a solution (x, y), where x, y are positive integers.
Then ax2 − by2 = 1, and clearly a and b are relatively prime. From the condition
ab = k2 it follows that a = k21 and b = k22 for some positive integer k1 and k2. The
relation k21x2 − k22y2 = 1 can be written as (k1x − k2y)(k1x + k2y) = 1. It follows
that 1 < k1x + k2y = k1x − k2y = 1, a contradiction. �	

We will call Pell’s resolvent of (3.5.1) the equation

u2 − abv2 = 1. (3.5.2)

Theorem 3.5.2. Suppose that the equation (3.5.1) has solutions in positive integers
and let (x0, y0) be its smallest solution. The general solution to (3.5.1) is (xn, yn)n≥0,
where

xn = x0un + by0vn, yn = y0un + ax0vn, (3.5.3)

and (un, vn)n≥0 is the general solution to Pell’s resolvent (3.5.2).
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Proof. We will prove first that (xn, yn)n≥0 is a solution to the equation (3.5.1).
Indeed,

ax2n − by2n = a(x0un + by0vn)
2 − b(y0un + ax0vn)

2 =

= (ax20 − by20)(u
2
n − abv2n ) = 1 · 1 = 1.

Conversely, let (x, y) be a solution to the equation (3.5.1). Then (u, v), where
u = ax0x− by0y and v = y0x− x0y, is a solution to Pell’s resolvent (3.5.2). Solving
the above system of linear equations with unknowns x and y yields x = x0u + by0v
and y = y0u + ax0v, i.e., (x, y) has the form (3.5.3). �	
Remarks. 1) A simple algebraic computation yields the following relation between

the fundamental solution (u1, v1) to Pell’s resolvent and the smallest solution
(x0, y0) to equation (3.5.1): u1 ± v1

√
ab = (x0

√
a ± y0

√
b)2, where the signs +

and – correspond.
2) Using formulas (3.2.6), from (3.5.3) it follows that

xn =
1

2

(
x0 +

y0
a

√
ab
)(

u1 + v1
√

ab
)n

+
1

2

(
x0 − y0

a

√
ab
)(

u1 − v1
√

ab
)n

yn =
1

2

(
y0 +

x0
b

√
ab
)(

u1 + v1
√

ab
)n

+
1

2

(
y0 − x0

b

√
ab
)(

u1 − v1
√

ab
)n

.

Taking into account Remark 1, the above formulas can be written as

xn =
1

2
√

a

[(
x0
√

a + y0
√

b
)2n+1

+
(

x0
√

a − y0
√

b
)2n+1

]

yn =
1

2
√

b

[(
x0
√

a + y0
√

b
)2n+1

−
(

x0
√

a − y0
√

b
)2n+1

]
.

This last form of solutions appears in [219] but the method given there is much
more complicated.

3) The general solution (3.5.3) can be written in the following matrix form

(
xn

yn

)
=

(
x0 by0
y0 ax0

)(
un

vn

)
=

(
x0 by0
y0 ax0

)(
u1 abv1
v1 u1

)n (
u0
v0

)
.

To illustrate the above method, let us consider the following equation:
6x2 − 5y2 = 1. Its smallest solution is (x0, y0) = (1, 1). The Pell’s resolvent
is u2 − 30v2 = 1, whose fundamental solution is (11, 2). The general solution
to the equation considered is xn = un + 5vn, yn = un + 6vn, n = 0, 1, . . . where
(un, vn)n≥0 is the general solution to Pell’s resolvent, i.e., un+1 = 11un + 60vn,
vn+1 = 2un + 11vn, n = 0, 1, . . . with u0 = 11, v0 = 2.

A closed form for these solutions can be found by using the above Remark 2. We
obtain
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xn =
1

2
√
6

[(√
6 +

√
5
)2n+1

+
(√

6−
√
5
)2n+1

]

yn =
1

2
√
5

[(√
6 +

√
5
)2n+1

−
(√

6−
√
5
)2n+1

]
.

Remarks. 1) In the paper [84] is given a nice survey concerning the history and
various approaches in solving the equation (3.5.1).

2) The next result is due in [152]: If 1 < a < b are integers such that ab is square-
free, then at most one of the two equations

ax2 − by2 = ±1 (3.5.4)

is solvable.
3) In Example 3, page 140 of [22], it is shown that if a, b ≥ 1 are integers such that

ab is not a perfect square and both equations (3.5.4) are solvable, then a = 1 or
b = 1.

3.6 The Negative Pell Equation and the Pell–Stevenhagen
Constants

While the Pell’s equation x2 − Dy2 = 1 is always solvable if the positive integer D
is not a perfect square, as we have proven in the previous sections, the equation

x2 − Dy2 = −1 (3.6.1)

is solvable only for certain values of D.
We have seen in Theorem 3.3.4 that if r is the period of the expansion of

√
D

in continued fractions, then, if r is even, the equation (3.6.1) has no solution. If
r is odd, then x = hnr−1 and y = knr−1 give all positive solutions to (3.6.1) for
n = 1, 3, 5, . . . .

Next, we will write the solutions to the equation (3.6.1) by using our method in
Section 3.5.

The equation (3.6.1) is known as the negative Pell’s equation. From the Theo-
rem 3.5.2 the following theorem follows:

Theorem 3.6.1. Suppose that the equation (3.6.1) has solutions in positive integers
and let (x0, y0) be its smallest solution. The general solution to (3.6.1) is given by
(xn, yn)n≥0 where

xn = x0un + Dy0vn, yn = y0un + x0vn (3.6.2)

and (un, vn)n≥0 is the general solution to Pell’s equation u2 − Dv2 = 1.
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Remarks. 1) Between (x0, y0) and (u1, v1) there is the following important
connection:

u1 ± v1
√

D =
(

x0 ± y0
√

D
)2

,

where the signs + and – correspond.
2) By using formulas (3.6.2) we obtain the solutions to the negative Pell’s equation

in explicit form:

xn =
1

2

(
x0 + y0

√
D
)(

u1 + v1
√

D
)n

+
1

2

(
x0 − y0

√
D
)(

u1 − v1
√

D
)n

yn =
1

2

(
y0 +

x0
D

√
D
)(

u1 + v1
√

D
)n

+
1

2

(
y0 − x0

D

√
D
)(

u1 − v1
√

D
)n

.

(3.6.3)

Formulas (3.6.3) can be also written as

xn =
1

2

[(
x0 + y0

√
D
)2n+1

+
(

x0 − y0
√

D
)2n+1

]

yn =
1

2
√

D

[(
x0 + y0

√
D
)2n+1

−
(

x0 − y0
√

D
)2n+1

] (3.6.4)

3) The general solution (3.6.2) can be expressed in the following matrix form

(
xn

yn

)
=

(
x0 Dy0
y0 x0

)(
un

vn

)
=

(
x0 Dy0
y0 x0

)(
u1 Dv1
v1 u1

)n(
u0
v0

)
.

The following result points out an important class of solvable negative Pell’s
equations. The proof is adapted from [151].

Theorem 3.6.2. Let p be a prime ≥ 3. The negative Pell’s equation

x2 − py2 = −1

is solvable in positive integers if and only if p ≡ 1 (mod 4).

Proof. First suppose that the equation is solvable. Then there are positive integers

u, v such that u2 − pv2 = −1. So, u2 − (−1) = pv2, implying

(−1

p

)
= 1,

where

(
a
p

)
denotes the Legendre symbol. According to Theorem 4.3.1.5) in [22,

pp. 178–179] we have

(−1

p

)
= (−1)

p − 1

2
, hence p ≡ 1 (mod 4).
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Let (u0, v0) be the fundamental solution to the Pell’s resolvent u2 − pv2 = 1.
Then u20 − 1 = pv20 , and u0 cannot be even, for in this case we should have −1 ≡
p(mod 4). Hence u0 is odd and the numbers u0 − 1 and u0 + 1 have the greatest
common divisor 2. Therefore u0 ± 1 = 2α2 and u0 ∓ 1 = 2pβ2, where α and β are
positive integers such that v0 = 2αβ. By elimination of u0 we get ±1 = α2 − pβ2.
Since β < v0, we cannot have the upper sign. Thus the lower sign must be taken
and the theorem is proved. �	
Remarks. 1) To give an example of an unsolvable negative Pell’s equation we will

show that the equation x2−34y2 = −1 has no solution. The fundamental solution
of Pell’s resolvent is (35, 6). If the equation x2 − 34y2 = −1 were solvable and
had the fundamental solution (x0, y0), then by Theorem 3.3.4 we would have
x20 + 34y20 = 35 and 2x0y0 = 6. But this system of equations has no solutions in
positive integers and thus the equation x2 − 34y2 = −1 is not solvable.

2) In the paper [58] is proved that the proportion of square-free D divisible by k
primes of the form 4m + 1 for which the negative Pell equation is solvable is at
least 40 %.

The following short and completely elementary criterion concerning the
solvability of the negative Pell equation was obtained in the paper [146].

Theorem 3.6.3. If D ≡ 1, 2 (mod 4) is a non-square integer, then there is a
solution to (3.6.1) if and only if u1 ≡ −1 (mod 2D), where (u1, v1) is the
fundamental solution to the Pell equation u2 − Dv2 = 1.

Proof. If (3.6.1) is solvable with the smallest solution (x0, y0), then we have u1 =
x20 + Dy20 = −1 + 2Dy20 ≡ −1 (mod 2D) (see Remark 1) after Theorem 3.6.1).

Conversely, assume that the fundamental solution (u1, v1) to u2 − Dv2 = 1
satisfies u1 ≡ −1 (mod 2D). It follows that u1 = −1 + 2Dk, for some positive
integer k. We have (−1+2Dk)2 −Dv21 = 1, which gives Dk2 − k− v′21 = 0, where
v1 = 2v′1. Therefore,

k(Dk − 1) = v′21 ,

from which it follows that k = r2 and Dk − 1 = s2 as gcd(k,Dk − 1) = 1. Thus
Dk − 1 = Dr2 − 1 = s2 which gives s2 − Dr2 = −1, hence the negative Pell
equation is solvable. �	
Remark. In [147] is explored the central norm in the simple continued fraction
expression of

√
D, where D ≥ 2 is not a perfect square. The obtained results are

used by the authors in the study of solvability of the negative Pell’s equation.
In what follows we will present a result concerning the negative Pell’s equation

based on our paper [18]. We begin with a representation theorem of the Fibonacci
sequence that will turn to be useful in the proof of our result.

We consider the Diophantine equation

x2 + y2 + 1 = xyz. (3.6.5)
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First we will establish the necessary condition of solvability for equation (3.6.5)
and then we will determine all its solutions in terms of the well-known Fibonacci
sequence (Fm)m≥1.

Theorem 3.6.4. The equation (3.6.5) is solvable if and only if z = 3. In this case
all of its solutions (x, y) are given by

(1, 1), (F2n+1,F2n−1), (F2n−1,F2n+1), n ≥ 1.

Proof. Let (x, y, z) be a solution with z �= 3. Then x �= y, for otherwise x2(z−2) = 1,
which is impossible, since z − 2 �= 1. We have

0 = x2 + y2 + 1− xyz = (x − yz)2 + y2 + 1 + xyz − y2z2

= (yz − x)2 + y2 + 1− (yz − x)yz

hence (yz − x, y, z) is also a solution, since x(yz − x) = xyz − x2 = y2 + 1 > 0
implies yz − x > 0. Note that if x > y, then x2 > y2 + 1 = x(yz − x). Hence
x > yz − x, which shows that the newly obtained solution is smaller than the initial
solution, in the sense that x+ y > (yz− x) + y. However, under the assumption that
x �= y, this procedure can be continued indefinitely, which is impossible, since in
the process we construct a decreasing sequence of positive integers, a contradiction.
This contradiction shows that there are no solutions if z �= 3.

Clearly, (1,1) is a solution to the equation

x2 + y2 + 1 = 3xy.

Let (a, b), a > b, be another solution. Then b2 + (3b − a)2 + 1 = 3b(3b − a),
so (b, 3b − a) is also a solution. From

(a − b)(a − 2b) = a2 − 3ab + 2b2 = b2 − 1 > 0

it follows that a > 2b, hence 3b − a < b. So the new solution has a smaller b.
It follows that we reach a solution with b = 1, hence with a2 +2 = 3a, in which

case a = 1 or a = 2. It follows that all solutions are obtained from (a1, b1) = (1, 1)
by the recursion

(an+1, bn+1) = (bn, 3bn − an).

The sequences (an)n≥1 and (bn)n≥1 satisfy the same recursion: xn+1 = 3xn −
xn−1, x1 = 1, x2 = 2. This recursion characterizes the Fibonacci numbers of odd
index. Therefore, (an, bn) = (F2n+1,F2n−1), n ≥ 1.

The solutions are (1, 1), (F2n+1,F2n−1), (F2n−1,F2n+1), for n ≥ 1. �	
The following result points out a family of unsolvable negative Pell’s equations

[199]:
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Theorem 3.6.5. Let k be an integer greater than 2. The equation

x2 − (k2 − 4)y2 = −1 (3.6.6)

is solvable if and only if k = 3.

Proof. We will show that the equation

u2 − (k2 − 4)v2 = −4 (3.6.7)

is not solvable if k �= 3. Assume the contrary, and let (u, v) be a solution to (3.6.7).

Then u and kv have the same parity. Consider x =
u + kv

2
. Then u = 2x − kv and

(3.6.7) becomes

x2 + v2 + 1 = xvk.

Since k �= 3, this contradicts the result in Theorem 3.6.4.
Assume now that for k �= 3, the negative Pell’s equation (3.6.6) has a solution

(x, y). Multiplying both sides by 4 yields

(2x)2 − (k2 − 4)(2y)2 = −4,

contradicting the above result concerning equation (3.6.7).
When k = 3 equation (3.6.6) becomes

x2 − 5y2 = −1. (3.6.8)

The smallest solution to (3.6.8) is (2,1). From formulas (3.6.3) it follows that all
solutions to (3.6.8) are given by (xn, yn)n≥0, where

xn =
1

2

[(
2 +

√
5
)2n+1

+
(
2−

√
5
)2n+1

]

yn =
1

2
√
5

[(
2 +

√
5
)2n+1

−
(
2−

√
5
)2n+1

]

Remark. A complicated method for proving the result in Theorem 3.6.4 was given
in [169].

The problem of determining those D for which the negative Pell’s equation
(3.6.1) is solvable in positive integers has a long history. We mentioned at the
beginning of this section that if D is a positive nonsquare the solvability or
unsolvability of (3.6.1) can be determined by expanding

√
D as an ordinary

continued fraction
√

D = 〈a0; a1, . . . , ar〉.
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Then (3.6.1) is solvable or not according to whether r is odd or even. If r is odd,
then

x0
y0

= 〈a0, a1, . . . , ar−1〉

is the fundamental solution of (3.6.1).
A second approach to this problem involves using generalized residue symbol

criteria derived from D to determine conditions on D which guarantee that (3.6.1)
is solvable or unsolvable. This approach was initiated by Legendre in 1785. He
proved that if D is a prime congruent to 1(mod 4), then (3.6.1) is solvable (see
Theorem 3.6.2), while if a prime p congruent to 3(mod 4) divides the squarefree
part of D, then (3.6.1) is unsolvable. Dirichlet observed that D = pq with p ≡
q ≡ 1(mod 4) and (p/q)4 = (q/p)4 = −1, then (3.6.1) is solvable. For D =
p1 . . . pN in [210] are given quadratic residue criteria among p which when they
held would guarantee that (3.6.1) is solvable. In the paper [195] applied methods of
class field theory were used to show that in the case D = pq with p ≡ q ≡ 1(mod 4)
equation (3.6.1) is unsolvable when (p/q)4 �= (q/p)4, while in the case (p/q)4 =
(q/p)4 = 1 the equation (3.6.1) is sometimes solvable and sometimes not. In the
papers [195] and [181] it is proved that these residue symbol criteria were related to
the structure of the 2-Sylow subgroup of an appropriate ring class group Q[

√
D]. In

[180, 181] is introduced a “conditional Artin symbol” defined in terms of generators
of certain class fields, by means of which it is given a set of necessary and sufficient
conditions for (3.6.1) to be solvable. In [153] it is acknowledged that the problem
of determining those D for which (3.6.1) is solvable is still open, presumably due to
the nonexplicit character of conditions in [180] and [181]. Explicit residue symbol
conditions for special types of D are still being found, e.g., [99] and [177].

The residue symbol approach can be extended to yield an algorithm determining
the solvability of negative Pell’s equation whose main bottleneck is finding a
factorization of D. In the paper [108] it is proved that there is an algorithm when
given a positive integer D together with (i) a complete prime factorization of D and
(ii) a quadratic nonresidue ni for each prime pi dividing D, determines whether the
equation (3.6.1) is solvable in positive integers or not, and which always terminates
in O((lnD)5(ln lnD)(ln ln lnD)) elementary operations.

In the paper [81] it is shown that for a nonsquare positive integer D, the negative
Pell equation (3.6.1) is solvable if and only if there exist a primitive Pythagorean
triple (A,B,C) and positive integers a, b such that D = a2 + b2 and aA − bB =
±1. It is also possible to describe a method to generate families of such integers D
stemming from the solutions to the linear equation aA − bB = ±1.

If p is a prime such that 2p = a4 + s2, where a2 ≡ ±s ≡ 9(mod 16), then the
negative Pell’s equation x2 − 2py2 = −1 has no solution [44]. If D = 2p, where
p = c2 + 8D2 and D is odd, then the equation (3.6.1) has no solutions [69]. If
p = c2 + qD2 and D is odd when p ≡ 1(mod 4) and (p/q) = 1, then the negative
Pell’s equation t2 − pqu2 = −1 has no solutions [109].
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While the set of positive integers D for which the Pell’s equation is solvable is
well known (it is the set of all nonsquare positive integers), the set D of all positive
integers D for which the negative Pell’s equation is solvable is far from being known.
Only recently has progress been made in the study of the set D. We will mention a
few results and some open problems concerning the set D.

Without loss of generality one can, however, assume that D is square-free.
Moreover, (3.6.1) can have solutions only if D has no prime divisors ≡ 3 (mod 4).
Consider the case in which D = p′1p′2 . . . p′r, p′1 < p′2 < · · · < p′r and p′k ≡ 1
(mod 4). In 1834, G. L. Dirichlet had shown that (3.6.1) has solutions when r = 1
(see Theorem 3.6.2) and also when r = 2 provided (p′1/p′2) = −1. He had even
considered the case when r = 3. In [155] it is shown that (3.6.1) has solutions for
all odd r’s, provided (p′i/p′j) = −1 for each i < j ≤ r.

Define the Pell constant (see [73, pp. 119–120])

P = 1−
∏
j≥1
j odd

(
1− 1

2j

)
= 0, 5805775582 . . .

needed in what follows. The constant P is irrational [206] but only conjectured to
be transcendental. Define also the function ψ by

ψ(p) =
2 + (1 + 21−νp)p

2(p + 1)

where νp is the exponent of 2 into factorization in p − 1.
For any set S of positive integers, let fS(n) denote the number of elements in S

not exceeding n. In [43, 206, 207] several conjectures regarding the distribution of
D were formulated. For example, it was conjectured that the counting function fD
satisfies the following relation [207]:

lim
n→∞

√
ln n
n

fD(n) =
3P
2π

∏
p prime

p≡1(mod 4)

(
1 +

ψ(p)
p2 − 1

)(
1− 1

p2

)1/2

= 0, 28136 . . .

Let U be the set of positive integers not divisible by 4, and let V be the set of
positive integers not divisible by any prime congruent to 3 modulo 4. Clearly, D is
a subset of U ∩ V , and U ∩ V is the set of positive integers that can be written as a
sum of two coprime squares. By the above conjectured and by a coprimality result
given in [182], the density of D inside U ∩ V is [207]:

lim
n→∞

fD(n)
fU∩V(n)

= P
∏

p prime
p≡1(mod 4)

(
1 +

ψ(p)
p2 − 1

)(
1− 1

p2

)
= 0, 57339 . . .
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Here is another conjecture involving the Pell constant. Let W be the set of
squarefree integers, that is, integers which are divisible by no square exceeding 1.
In [206] it is conjectured that

lim
n→∞

√
ln n
n

fD∩W(n) =
6

π2
PK = 0, 2697318462 . . .

where K is the Landau–Ramanujan constant. Clearly, U is a subset of W, and V ∩W
is the set of positive squarefree integers that can be written as a sum of two (coprime)
squares. By the second conjectured limit and by a squarefree result one obtains that
the density of D ∩ W inside V ∩ W is [43]:

lim
n→∞

fD∩W(n)
fV∩W(n)

= P = 0, 5805775582 . . .

An interesting connection to continued fractions is given in [207]: an integer
D > 1 is in D if and only if

√
D is irrational and has a regular continued fraction

expansion with odd period length (see also Theorem 3.3.4).
If D > 1 is a squarefree integer with no prime factor p, p ≡ 3(mod 4), with

exactly n prime factors, and if Dn(X) denotes the set of those D ≤ X, in the paper
[58] the authors study the distribution of such D which lie in D. An explicit number
λn is given such that

lim inf
X→∞

#(Dn(X) ∩ D)

#Dn(X)
≥ λn.

Moreover, it is conjectured that

lim
X→∞

#(D̃(X) ∩ D)

#D̃(X)
≥ λ∞

where D̃(X) =
∞⋃

n=1

Dn(X), and λ∞ = lim
n→∞λn = 0, 419 . . . .
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