
Chapter 2
Continued Fractions, Diophantine
Approximation, and Quadratic Rings

The main goal of this chapter is to lay out basic concepts needed in our study in
Diophantine Analysis. The first section contains fundamental results pertaining to
continued fractions, some without proofs. The Theory of Continued Fractions is not
new but it plays a growing role in contemporary mathematics.

Continued fractions have fascinated mankind for centuries if not millennia. The
timeless construction of a rectangle obeying the “divine proportion” (the term is in
fact from the Renaissance) and the “self-similarity” properties that go along with it
are nothing but geometric counterparts of the continued fraction expansion of the
golden ratio,

φ ≡ 1 +
√
5

2
=

1

1 +
1

1 +
1

1 + . . .

.

Geometry was developed in India from the rules for the construction of altars.
The Sulva Sutra (a part of the Kalpa Sutra hypothesized to have been written around
800 BC) provides a rule for doubling an area that corresponds to the near-equality:

√
2 = 1 +

1

3
+

1

3× 4
− 1

3× 4× 34
(correct to 2 · 10−6).

The third and fourth partial sums namely
17

12
and

577

408
are respectively the fourth

and eight convergents to
√
2.

Accordingly, in the classical Greek world, there is evidence of knowledge of
the continued fraction for

√
2 which appears in the works of Theon of Smyrna

(discussed in Fowler’s reconstruction [74] and in [215]) and possibly of Plato in The-
atetus, see [49]. As every student knows, Euclid’s algorithm is a continued fraction
expansion algorithm in disguise, and Archimedes’ Cattle Problem (circa 250 BC)
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most probably presupposes on the part of its author some amount of understanding
of quadratic irrationals, Pell’s equation, and continued fractions; see [215] for a
discussion.

The continued fraction convergent π ≈ 355

113
was known to Twu Ch’ung Chi, born

in Fan-yang, China in 430 AD. More recently, the Swiss mathematician Lambert
proved the 2,000 year conjecture (it already appears in Aristotle) that π is irrational,
this thanks to the continued fraction expansion of the tangent function,

tan z =
z

1− z2

3− z2

5− . . .

,

and Apéry in 1979 gave in “a proof that Euler missed” [176] nonstandard expansions
like

ζ(3) =

∞∑

n=1

1

n3
= 1 +

1

2 · 2 + 13

1 +
13

2 · 6 + 23

1 +
23

2 · 10 + 33

1 + . . .

from which the irrationality of ζ(3) eventually derives.
The standard method to prove the irrationality of ex for nonzero rational x is by

obtaining a rational approximation using the differential and integral properties of
ex and the differential properties of xn(1− x)n/n!, see [88]. Recently, a simple proof
by using the theory of continued fractions was given in [154].

The principal references used in this section are [1, 46, 66, 141, 159, 164, 183,
184, 208].

The Section 2.2 presents key results regarding quadratic rings, their units
and norms defined in a natural way. Important references for this section are
[95, 171, 198].

2.1 Simple Continued Fractions

2.1.1 The Euclidean Algorithm

Given any rational fraction u0/u1, in lowest terms so that gcd(u0, u1) = 1 and
u1 > 0, we apply the Euclidean algorithm (see [21]) to get successively
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u0 = u1a0 + u2, 0 < u2 < u1
u1 = u2a1 + u3, 0 < u3 < u2
u2 = u3a2 + u4, 0 < u4 < u3
. . .

uj−1 = ujaj−1 + uj+1, 0 < uj+1 < uj

uj = uj+1aj.

(2.1.1)

If we write ξi in place of ui/ui+1 for all values of i with 0 ≤ i ≤ j, then equations
(2.1.1) become

ξi = ai +
1

ξi+1
, 0 ≤ i ≤ j − 1; ξj = aj. (2.1.2)

If we take the first two of these equations, those for which i = 0 and i = 1, and
eliminate ξ1, we get

ξ0 = a0 +
1

a1 +
1

ξ2

.

In this result we replace ξ2 by its value from (2.1.2), and then we continue with
replacement of ξ3, ξ4, . . . , to get

u0
u1

= ξ0 = a0+
1

a1+
. . .

+
1

aj−1 +
1

aj

.

(2.1.3)

This is a continued fraction expansion of ξ0, or of u0/u1. The integers ai are
called the partial quotients since they are the quotients in the repeated application
of the division algorithm in equations (2.1.1). We presumed that the rational fraction
u0/u1 had positive denominator u1, but we cannot make a similar assumption about
u0. Hence a0 may be positive, negative, or zero. However, since 0 < u2 < u1,
we note that the quotient a1 is positive, and similarly the subsequent quotients
a2, a3, . . . , aj are positive integers. In case j ≥ 1, that is if the set (2.1.1) contains
more than one equation, then aj = uj/uj+1 and 0 < uj+1 < uj imply that aj > 1.

We will use the notation 〈a0, a1, . . . , aj〉 to designate the continued fraction in
(2.1.3). In general, if x0, x1, . . . , xj are any real numbers, all positive except perhaps
x0, then we will write
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〈x0, x1, . . . , xj〉 = x0 +
1

x1+
. . .

+
1

xj−1 +
1

xj

.

Such a finite continued fraction is said to be simple if all the xi are integers. The
following notations are often used to simplify the writing:

〈x0, x1, . . . , xj〉 = x0 +
1

〈x1, . . . , xj〉

=

〈
x0, x1, . . . , xj−2, xj−1 +

1

xj

〉
.

The symbol [x0, x1, . . . , xj] is sometimes used to represent a continued fraction. We
use the notation 〈x0, x1, . . . , xj〉 to avoid confusion with the least common multiple
and the greatest integer.

2.1.2 Uniqueness

In the last section we saw that such a fraction as 51/22 can be expanded into a
simple continued fraction, 51/22 = 〈2, 3, 7〉. It can be verified that 51/22 can also
be expressed as 〈2, 3, 6, 1〉, but it turns out that these are the only two representations
of 51/22. In general, we note that the simple continued fraction expansion (2.1.3)
has an alternate form,

u0
u1

= 〈a0, a1, . . . , aj−1, aj〉 = 〈a0, a1, . . . , aj−2, aj−1, aj − 1, 1〉. (2.1.4)

The following result [159] establishes that these are the only two simple continued
fraction expansions of a fixed rational number.

Theorem 2.1.1. If 〈a0, a1, . . . , aj〉 = 〈b0, b1, . . . , bn〉, where these finite continued
fractions are simple, and if aj > 1 and bn > 1, then j = n and ai = bi for i =
0, 1, . . . , n.

Proof. We write yi for the continued fraction 〈bi, bi+1, . . . , bn〉 and observe that

yi = 〈bi, bi+1, . . . , bn〉 = bi +
1

〈bi+1, bi+2, . . . , bn〉 = bi +
1

yi+1
. (2.1.5)

Thus we have yi > bi and yi > 1 for i = 1, 2, . . . , n − 1, and yn = bn > 1.
Consequently, bi = [yi] for all values of i in the range 0 ≤ i ≤ n. The hypothesis
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that the continued fractions are equal can be written in the form y0 = ξ0, where we
are using the notation of equation (2.1.3). Now the definition of ξi as ui/ui+1 implies
that ξi+1 > 1 for all values of i ≥ 0, and so ai = [ξi] for 0 ≤ i ≤ j by equation
(2.1.2). It follows from y0 = ξ0 that, taking integral parts, b0 = [y0] = [ξ0] = a0.
By equations (2.1.2) and (2.1.5) we get

1

ξ1
= ξ0 − a0 = y0 − b0 =

1

y1
, ξ1 = y1, a1 = [ξ1] = [y1] = b1.

This gives us the start of a proof by induction. We now establish that ξi = yi and
ai = bi imply that ξi+1 = yi+1 and ai+1 = bi+1. To see this, we again use equations
(2.1.2) and (2.1.5) to write

1

ξi+1
= ξi − ai = yi − bi =

1

yi+1
,

ξi+1 = yi+1, ai+1 = [ξi+1] = [yi+1] = bi+1.

It must also follow that the continued fractions have the same length, that is, that
j = n. For suppose that, say, j < n. From the preceding argument we have ξj = yj,
aj = bj. But ξj = aj by (2.1.2) and yj > bj by (2.1.5), and so we have a contradiction.
If we had assumed j > n, a symmetrical contradiction would have arisen, and thus j
must equal n, and the theorem is proved. 	

Theorem 2.1.2. Any finite simple continued fraction represents a rational number.
Conversely, any rational number can be expressed as a finite simple continued
fraction, and in exactly two ways.

2.1.3 Infinite Continued Fractions

Let a0, a1, a2, . . . be an infinite sequence of integers, all positive except perhaps a0.
We define two sequences of integers {hn} and {kn} inductively as follows:

h−2 = 0, h−1 = 1, hi = aihi−1 + hi−2 for i ≥ 0

k−2 = 1, k−1 = 0, ki = aiki−1 + ki−2 for i ≥ 0.
(2.1.6)

We note that k0 = 1, k1 = a1k0 ≥ k0, k2 > k1, k3 > k2, etc., so that 1 = k0 ≤ k1 <
k2 < k3 < · · · < kn < . . . .

Theorem 2.1.3. For any positive real number x,

〈a0, a1, . . . , an−1, x〉 = xhn−1 + hn−2

xkn−1 + kn−2
.
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Theorem 2.1.4. If we define rn = 〈a0, a1, . . . , an〉 for all integers n ≥ 0, then
rn = hn/kn.

Theorem 2.1.5. The equations

hiki−1 − hi−1ki = (−1)i−1 and ri − ri−1 =
(−1)i−1

kiki−1

hold for i ≥ 1. The identities

hiki−2 − hi−2ki = (−1)iai and ri − ri−2 =
(−1)iai

kiki−2

hold for i ≥ 1. The fraction hi/ki is reduced, that is (hi, ki) = 1.

Theorem 2.1.6. The values rn defined in Theorem 2.1.4 satisfy the infinite chain
of inequalities r0 < r2 < r4 < r6 < · · · < r7 < r5 < r3 < r1. Furthermore,
limn→∞ rn exists, and for every j ≥ 0, r2j < limn→∞ rn < r2j+1.

Proof. The identities of Theorem 2.1.5 for ri − ri−1 and ri − ri−2 imply that r2j <
r2j+2, r2j−1 > r2j+1, and r2j < r2j−1, because the ki are positive for i ≥ 0 and the ai

are positive for i ≥ 1. Thus we have r0 < r2 < r4 < . . . and r1 > r3 > r5 > . . . .
To prove that r2n < r2j−1, we put the previous results together in the form

r2n < r2n+2j < r2n+2j−1 ≤ r2j−1.

The sequence r0, r2, r4, . . . is monotonically increasing and is bounded above
by r1, and so has a limit. Analogously, the sequence r1, r3, r5, . . . is monotonically
decreasing and is bounded below by r0, and so has a limit. These two limits are
equal because, by Theorem 2.1.5, the difference ri − ri−1 tends to zero as i tends to
infinity, since the integers ki are increasing with i. Another way of looking at this to
observe that (r0, r1), (r2, r3), (r4, r5), . . . is a chain of nested intervals defining a
real number, namely limn→∞ rn. 	


These theorems suggest the following definition.

Definition 2.1.1. An infinite sequence a0, a1, a2, . . . of integers, all positive except
perhaps for a0, determines an infinite simple continued fraction 〈a0, a1, a2, . . . 〉.
The value of 〈a0, a1, a2, . . . 〉 is defined to be limn→∞〈a0, a1, a2, . . . , an〉.

This limit, being the same as limn→∞ rn, exists by Theorem 2.1.6. Another
way of writing this limit is limn→∞ hn/kn. The rational number 〈a0, a1, . . . , an〉 =
hn/kn = rn is called the nth convergent to the infinite continued fraction. We say
that the infinite continued fraction converges to the value limn→∞ rn. In the case
of a finite simple continued fraction 〈a0, a1, . . . , an〉 we similarly call the number
〈a0, a1, . . . , am〉 the mth convergent to 〈a0, a1, . . . , an〉.
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Theorem 2.1.7. The value of any infinite simple continued fraction 〈a0, a1, a2, . . . 〉
is irrational.

Proof. Writing θ for 〈a0, a1, a2, . . . 〉, we observe by Theorem 2.1.6 that θ lies
between rn and rn+1, so that 0 < |θ − rn| < |rn+1 − rn|. Multiplying by kn, and
making use of the result from Theorem 2.1.5 that |rn+1 − rn| = (knkn+1)

−1, we
have

0 < |knθ − hn| < 1

kn+1
.

Now suppose that θ were rational, say θ = a/b with integers a and b, b > 0. Then
the above inequality would become, upon multiplication by b,

0 < |kna − hnb| < b
kn+1

.

The integers kn increase with n, so we could choose n sufficiently large so that
b < kn+1. Then the integer |kna − hnb| would lie between 0 and 1, which is
impossible. 	

Lemma 2.1.8. Let θ = 〈a0, a1, a2, . . . 〉 be a simple continued fraction. Then
a0 = [θ]. Furthermore, if θ1 denotes 〈a1, a2, a3, . . . 〉, then θ = a0 + 1/θ1.

Proof. By Theorem 2.1.6 we see that r0 < θ < r1, that is a0 < θ < a0 + 1/a1.
Now a1 ≥ 1, so we have a0 < θ < a0 + 1, and hence a0 = [θ]. Also

θ = lim
n→∞〈a0, a1, . . . , an〉 = lim

n→∞

(
a0 +

1

〈a1, . . . , an〉
)

= a0 +
1

lim
n→∞〈a1, . . . , an〉 = a0 +

1

θ1
.

	

Theorem 2.1.9. Two distinct infinite simple continued fractions converge to differ-
ent values.

Proof. Let us suppose that 〈a0, a1, a2, . . . 〉 = 〈b0, b1, b2, . . . 〉 = θ. Then by
Lemma 2.1.8, [θ] = a0 = b0 and

θ = a0 +
1

〈a1, a2, . . . 〉 = b0 +
1

〈b1, b2, . . . 〉 .

Hence 〈a1, a2, . . . 〉 = 〈b1, b2, . . . 〉. Repetition of the argument gives a1 = b1, and
so by induction an = bn for all n. 	
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2.1.4 Irrational Numbers

We have shown that any infinite simple continued fraction represents an irrational
number. Conversely, if we begin with an irrational number ξ, or ξ0, we can expand
it into an infinite simple continued fraction. To do this we define a0 = [ξ0], ξ1 =
1/(ξ0−a0), and next a1 = [ξ1], ξ2 = 1/(ξ1−a1), and so by an inductive definition

ai = [ξi], ξi+1 =
1

ξi − ai
. (2.1.7)

The ai are integers by definition, and the ξi are all irrational, since the irrationality
of ξ1 is implied by that of ξ0, that of ξ2 by that of ξ1, and so on. Furthermore, ai ≥ 1
for i ≥ 1 because ai−1 = [ξi−1] and the fact that ξi−1 is irrational implies that

ai−1 < ξi−1 < 1 + ai−1, 0 < ξi−1 − ai−1 < 1,

ξi =
1

ξi−1 − ai−1
> 1, ai = [ξi] ≥ 1.

Next we use repeated application of (2.1.7) in the form ξi = ai + 1/ξi+1 to get
the chain

ξ = ξ0 = a0 +
1

ξ1
= 〈a0, ξ1〉

=

〈
a0, a1 +

1

ξ2

〉
= 〈a0, a2, ξ2〉

=

〈
a0, a1, . . . , am−2, am−1 +

1

ξm

〉

= 〈a0, a1, . . . , am−1, ξm〉.

This suggests, but does not establish, that ξ is the value of the infinite continued
fraction 〈a0, a1, a2, . . . 〉 determined by the integers ai.

To prove this we use Theorem 2.1.3 to write

ξ = 〈a0, a1, . . . , an−1, ξn〉 = ξnhn−1 + hn−2

ξnkn−1 + kn−2
(2.1.8)

with the hi and ki defined as in (2.1.6). By Theorem 2.1.5 we get

ξ − rn−1 = ξ − hn−1

kn−1
=

ξnhn−1 + hn−2

ξnkn−1 + kn−2
− hn−1

kn−1

=
−(hn−1kn−2 − hn−2kn−1)

kn−1(ξnkn−1 + kn−2)
=

(−1)n−1

kn−1(ξnkn−1 + kn−2)
. (2.1.9)
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This fraction tends to zero as n tends to infinity because the integers kn are increasing
with n, and ξn is positive. Hence ξ − rn−1 tends to zero as n tends to infinity and
then, by Definition 2.1.1,

ξ = lim
n→∞ rn = lim

n→∞〈a0, a1, . . . , an〉 = 〈a0, a1, a2, . . . 〉.

We summarize the results of the last two sections in the following theorem.

Theorem 2.1.10. Any irrational number ξ is uniquely expressible, by the procedure
that gave equations (2.1.7), as an infinite simple continued fraction 〈a0, a1, a2, . . . 〉.
Conversely, any such continued fraction determined by integers ai that are positive
for all i > 0 represents an irrational number, ξ. The finite simple continued fraction
〈a0, a1, . . . , an〉 has the rational value hn/kn = rn, and is called the nth convergent
to ξ. Equations (2.1.6) relate the hi and ki to the ai. For n = 0, 2, 4, . . . these
convergents form a monotonically sequence with ξ as a limit. Similarly, for n =
1, 3, 5, . . . the convergents form a monotonically decreasing sequence tending to
ξ. The denominators kn of the convergents are an increasing sequence of positive
integers for n > 0. Finally, with ξi defined by (2.1.7), we have 〈a0, a1, . . . 〉 =
〈a0, a1, . . . , an−1, ξn〉 and ξn = 〈an, an+1, an+2, . . . 〉.
Proof. Only the last equation is new, and it becomes obvious if we apply to ξn the
process described at the opening of this section. 	

Example 1. Let us expand

√
5 as an infinite simple continued fraction.

We see that

√
5 = 2 + (

√
5− 2) = 2 + 1/(

√
5 + 2)

and

√
5 + 2 = 4 + (

√
5− 2) = 4 + 1/(

√
5 + 2).

In view of the repetition of 1/(
√
5 + 2), we obtain

√
5 = 〈2, 4, 4, 4, . . . 〉.

2.1.5 Approximations to Irrational Numbers

Continuing to use the notation on the preceding sections, we now show that
the convergents hn/kn form a sequence of “best” rational approximations to the
irrational number ξ.

Theorem 2.1.11. We have for any n ≥ 0,

∣∣∣∣ξ −
hn

kn

∣∣∣∣ <
1

knkn+1
and |ξkn − hn| < 1

kn+1
.
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Proof. The second inequality follows from the first by multiplication by kn.
By (2.1.9) and (2.1.7) we have

∣∣∣∣ξ −
hn

kn

∣∣∣∣ =
1

kn(ξn+1kn + kn−1)
<

1

kn(an+1kn + kn−1)
.

Using (2.1.6), we replace an+1kn + kn−1 by kn+1 to obtain the first inequality. 	

Theorem 2.1.12. The convergents hn/kn are successively closer to ξ, that is

∣∣∣∣ξ −
hn

kn

∣∣∣∣ <
∣∣∣∣ξ −

hn−1

kn−1

∣∣∣∣ .

In fact the stronger inequality |ξkn − hn| < |ξkn−1 − hn−1| holds.

Proof. We use kn−1 ≤ kn to write

∣∣∣∣ξ −
hn

kn

∣∣∣∣ =
1

kn
|ξkn − hn| < 1

kn
|ξkn−1 − hn−1|

≤ 1

kn−1
|ξkn−1 − hn−1| =

∣∣∣∣ξ −
hn−1

kn−1

∣∣∣∣ .

Now to prove the stronger inequality we observe that an +1 > ξn by (2.1.7), and so
by (2.1.6), we have

ξnkn−1 + kn−2 < (an + 1)kn−1 + kn−2

= kn + kn−1 ≤ an+1kn + kn−1 = kn+1.

This inequality and (2.1.9) imply that

∣∣∣∣ξ −
hn−1

kn−1

∣∣∣∣ =
1

kn−1(ξnkn−1 + kn−2)
>

1

kn−1kn+1
.

We multiply by kn−1 and use Theorem 2.1.11 to get

|ξkn−1 − hn−1| > 1

kn+1
> |ξkn − hn|.

	

The convergent hn/kn is the best approximation to ξ of all the rational fractions

with denominator kn or less. The following theorem states this in a different way.
For the proof we refer to [159].
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Theorem 2.1.13. If a/b is a rational number with positive denominator such that
|ξ− a/b| < |ξ− hn/kn| for some n ≥ 1, then b > kn. In fact if |ξb− a| < |ξkn − hn|
for some n ≥ 0, then b ≥ kn+1.

Theorem 2.1.14. Let ξ denote any irrational number. If there is a rational number
a/b with b ≥ 1 such that

∣∣∣ξ − a
b

∣∣∣ <
1

2b2
,

then a/b equals one of the convergents of the simple continued fraction expansion
of ξ.

Theorem 2.1.15. The nth convergent of 1/x is the reciprocal of the (n − 1)st
convergent of x if x is any real number greater than 1.

2.1.6 Best Possible Approximations

Theorem 2.1.11 provides another method of proving the following well-known
result (see [159, p. 302]). If ξ is real and irrational, there are infinitely many distinct
rational numbers a/b such that

∣∣∣ξ − a
b

∣∣∣ <
1

b2
.

Indeed, from Theorem 2.1.11 we can replace kn+1 by the smaller integer kn to
get the weaker, but still correct, inequality

∣∣∣∣ξ −
hn

kn

∣∣∣∣ <
1

k2n
.

We can also use continued fractions to get different proofs of the following result of
Hurwitz [159, pp. 304–305]:

Given an irrational number ξ, there exist infinitely many different rational
numbers h/k such that

∣∣∣∣ξ −
h
k

∣∣∣∣ <
1√
5k2

and the constant
√
5 is the best possible. The following auxiliary result is a simple

consequence of the sign of the quadratic function.
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Lemma 2.1.16. If x is real, x > 1, and x + x−1 <
√
5, then x <

1

2
(
√
5 + 1) and

x−1 >
1

2
(
√
5− 1).

Theorem 2.1.17 (Hurwitz). Given any irrational number ξ, there exist infinitely
many rational numbers h/k such that

∣∣∣∣ξ −
h
k

∣∣∣∣ <
1√
5k2

. (2.1.10)

Proof. The idea is to establish that, of every three consecutive convergents of
the simple continued fraction expansion of ξ, at least one satisfies the inequality
(2.1.10).

Let qn denote kn/kn−1. We first prove that

qj + q−1
j <

√
5 (2.1.11)

if (2.1.10) is false for both h/k = hj−1/kj−1 and h/k = hj/kj. Suppose (2.1.10) is
false for these two values of h/k. We have

∣∣∣∣ξ −
hj−1

kj−1

∣∣∣∣+
∣∣∣∣ξ −

hj

kj

∣∣∣∣ ≥
1√
5k2j−1

+
1√
5k2j

.

But ξ lies between hj−1/kj−1 and hj/kj and hence we find, using Theorem 2.1.5, that

∣∣∣∣ξ −
hj−1

kj−1

∣∣∣∣+
∣∣∣∣ξ −

hj

kj

∣∣∣∣ =
∣∣∣∣
hj−1

kj−1
− hj

kj

∣∣∣∣ =
1

kj−1kj
.

Combining these results we get

kj

kj−1
+

kj−1

kj
≤

√
5.

Since the left side is rational we actually have a strict inequality, and (2.1.11)
follows.

Now suppose (2.1.10) is false for h/k = hi/ki, i = n − 1, n, n + 1. We then have

(2.1.11) for both j = n and j = n+1. By Lemma 2.1.16 we see that q−1
n >

1

2
(
√
5−1)

and qn+1 <
1

2
(
√
5 + 1), and, by (2.1.6) we find qn+1 = an+1 + q−1

n . This gives us

1

2
(
√
5 + 1) > qn+1 = an+1 + q−1

n > an+1 +
1

2
(
√
5− 1)

≥ 1 +
1

2
(
√
5− 1) =

1

2
(
√
5 + 1)

and this is a contradiction. 	
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Theorem 2.1.18. The constant
√
5 in Theorem 2.1.17 is best possible, i.e.,

Theorem 2.1.17 does not hold if
√
5 is replaced by any larger value.

Proof. It suffices to exhibit an irrational number ξ for which
√
5 is the largest

possible constant. Consider the irrational ξ whose continued fraction expansion is
〈1, 1, 1, . . . 〉. We see that

ξ = 1 +
1

〈1, 1, . . . 〉 = 1 +
1

ξ
, ξ2 = ξ + 1, ξ =

1

2
(
√
5 + 1).

Using (2.1.7) we can prove by induction that ξi = (
√
5 + 1)/2 for all i ≥ 0, for

if ξi = (
√
5 + 1)/2 then

ξi+1 = (ξi − ai)
−1 =

(
1

2
(
√
5 + 1)− 1

)−1

=
1

2
(
√
5 + 1).

A simple calculation yields h0 = k0 = k1 = 1, h1 = k2 = 2. Equation (2.1.6)
becomes hi = hi−1 + hi−2, ki = ki−1 + ki−2, and so by induction kn = hn−1 for
n ≥ 1. Hence we have

lim
n→∞

kn−1

kn
= lim

n→∞
kn−1

hn−1
=

1

ξ
=

√
5− 1

2

lim
n→∞

(
ξn+1 +

kn−1

kn

)
=

√
5 + 1

2
+

√
5− 1

2
=

√
5.

If c is any constant exceeding
√
5, then

ξn+1 +
kn−1

kn
> c

holds for only a finite number of values of n. Thus, by (2.1.9),

∣∣∣∣ξ −
hn

kn

∣∣∣∣ =
1

k2n(ξn+1 + kn−1/kn)
<

1

ck2n

holds for only a finite number of values of n. Thus there are only a finite number of
rational numbers h/k satisfying |ξ − h/k| < 1/(ck2), because any such h/k is one
of the convergents to ξ by Theorem 2.1.14. 	


2.1.7 Periodic Continued Fractions

An infinite simple continued fraction 〈a0, a1, a2, . . . 〉 is said to be periodic if there is
an integer n such that ar = an+r for all sufficiently large integers r. Thus a periodic
continued fraction can be written in the form
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〈b0, b1, b2, . . . , bj, a0, a1, . . . , an−1, a0, a1, . . . , an−1, . . . 〉
= 〈b0, b1, b2, . . . , bj, a0, a1, . . . , an−1〉 (2.1.12)

where the bar over the a0, a1, . . . , an−1 indicates that this block of integers is
repeated indefinitely. For example 〈2, 3〉 denotes 〈2, 3, 2, 3, 2, 3, . . . 〉 and its value
is easily computed. Writing θ for 〈2, 3〉 we have

θ = 2 +
1

3 +
1

θ

.

This is a quadratic equation in θ, and we discard the negative root to obtain the value
θ = (3+

√
15)/3. As a second example consider 〈4, 1, 2, 3〉. Calling this ξ, we have

ξ = 〈4, 1, θ〉, with θ as above, and so

ξ = 4 + (1 + θ−1)−1 = 4 +
θ

θ + 1
=

29 +
√
15

7
.

These two examples illustrate the following result (see [159]).

Theorem 2.1.19. Any periodic simple continued fraction is a quadratic irrational
number, and conversely.

Proof. Let us write ξ for the periodic continued fraction of (2.1.12) and θ for its
purely periodic part,

θ = 〈a0, a1, . . . , an−1〉 = 〈a0, a1, . . . , an−1, θ〉.

Then equation (2.1.8) gives

θ =
θhn−1 + hn−2

θkn−1 + kn−2

and this is a quadratic equation in θ. Hence θ is either a quadratic irrational number
or a rational number, but the latter is ruled out by Theorem 2.1.7. Now ξ can be
written in terms on θ,

ξ = 〈b0, b1, . . . , bj, θ〉 = θm + m′

θq + q′

where m′/q′ and m/q are the last two convergents to 〈b0, b1, . . . , bj〉. But θ is of the
form (a+

√
b)/c, and hence ξ is of similar form because, as with θ, we can rule out

the possibility that ξ is rational.
To prove the converse, let us begin with any quadratic irrational ξ, or ξ0, of the

form ξ = ξ0 = (a +
√

b)/c, with integers a, b, c > 0, c �= 0. The integer b is not a
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perfect square since ξ is irrational. We multiply numerator and denominator by |c|
to get

ξ0 =
ac +

√
bc2

c2
or ξ0 =

−ac +
√

bc2

−c2

according as c is positive or negative. Thus we can write ξ in the form

ξ0 =
m0 +

√
d

q0

where q0|(d − m2
0), d,m0 and q0 are integers, q0 �= 0, d not a perfect square.

By writing ξ0 in this form we can get a simple formulation of its continued fraction
expansion 〈a0, a1, a2, . . . 〉. We will prove that the equations

ai = [ξi], ξi =
mi +

√
d

qi

mi+1 = aiqi − mi, qi+1 =
d − m2

i+1

qi
(2.1.13)

define infinite sequences of integers mi, qi, ai, and irrationals ξi in such a way that
equations (2.1.7) hold, and hence we will have the continued fraction expansion
of ξ0.

In the first step, we start with ξ0,m0, q0 as determined above, and we let a0 =
[ξ0]. If ξi,mi, qi, ai are known, then we take mi+1 = aiqi−mi, qi+1 = (d−m2

i+1)/qi,
ξi+1 = (mi+1 +

√
d)/qi+1, ai+1 = [ξi+1]. That is, (2.1.13) actually does determine

sequences ξi,mi, qi, ai.
Now we use induction to prove that the mi and qi are integers such that qi �= 0

and qi|(d − m2
i ).

Next we can verify that

ξi − ai =
−aiqi + mi +

√
d

qi
=

√
d − mi+1

qi
=

d − m2
i+1

qi(
√

d + mi+1)

=
qi+1√

d + mi+1

=
1

ξi+1

which verifies (2.1.7) and so we have proved that ξ0 = 〈a0, a1, a2, . . . 〉, with ai

defined by (2.1.13).
Let ξ′i = (mi −

√
d)/qi, the conjugate of ξi. We get the equation

ξ′0 =
ξ′nhn−1 + hn−2

ξ′nkn−1 + kn−2
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by taking conjugates in (2.1.8). Solving for ξ′n we obtain

ξ′n = −kn−2

kn−1

(
ξ′0 − hn−2/kn−2

ξ′0 − hn−1/kn−1

)
.

As n tends to infinity, both hn−1/kn−1 and hn−2/kn−2 tend to ξ0, which is different
from ξ′0, and hence the fraction in parentheses tends to 1. Thus for sufficiently large
n, say n > N where N is fixed, the fraction in parentheses is positive, and ξ′n is
negative. But ξn is positive for n ≥ 1 and hence ξn − ξ′n > 0 and n > N. Applying
(2.1.13) we see that this gives 2

√
d/qn > 0 and hence qr > 0 for n > N.

It also follows from (2.1.13) that

qnqn+1 = d − m2
n+1 ≤ d, qn ≤ qnqn+1 ≤ d

m2
n+1 < m2

n+1 + qnqn+1 = d, |mn+1| <
√

d

for n > N. Since d is a fixed positive integer we conclude that qn and mn+1 can
assume only a fixed number of possible values for n > N. Hence the ordered pairs
(mn, qn) can assume only a fixed number of possible pair values for n > N, and so
there are distinct integers j and k such that mj = mk and qj = qk. We can suppose
we have chosen j and k so that j < k. By (2.1.13) this implies that ξj = ξk and hence
that

ξ0 = 〈a0, a1, . . . , aj−1, aj, aj+1, . . . , ak−1〉,

and we are done. 	

The following result describes the subclass of real quadratic irrationals that

have purely periodic continued fraction expansions, that is, expressions of the form
〈a0, a1, . . . , an〉 (see [159]).

Theorem 2.1.20. The continued fraction expansion of the real quadratic irrational
number ξ is purely periodic if and only if ξ > 1 and −1 < ξ′ < 0, where ξ′ denotes
the conjugate of ξ.

Proof. First we assume that ξ > 1 and −1 < ξ′ < 0. As usual, we write ξ0 for ξ
and take conjugates in (2.1.7) to obtain

1

ξ′i+1

= ξ′i − ai. (2.1.14)

Now ai ≥ 1 for all i, even for i = 0, since ξ0 > 1. Hence if ξ′i < 0, then 1/ξ′i+1 <
−1, and we have −1 < ξ′i+1 < 0. Since −1 < ξ′0 < 0, we see, by mathematical
induction, that −1 < ξ′i < 0 holds for all i ≥ 0. Then, since ξ′i = ai + 1/ξ′i+1 by
(2.1.14), we have
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0 < − 1

ξ′i+1

− ai < 1, ai =

[
− 1

ξ′i+1

]
.

Now ξ is a quadratic irrational, so ξj = ξk for some integers j and k with 0 < j < k.
Then we have ξ′j = ξ′k and

aj−1 =

[
− 1

ξ′j

]
=

[
− 1

ξ′k

]
= ak−1

ξj−1 = aj−1 +
1

ξj
= ak−1 +

1

ξk
= ξk−1.

Thus ξj = ξk implies ξj−1 = ξk−1. A j-fold iteration of this implication gives us
ξ0 = ξk−j, and we have

ξ = ξ0 = 〈a0, a1, . . . , ak−j−1〉.

To prove the converse, let us assume that ξ is purely periodic, say ξ =
〈a0, a1, . . . , an−1〉. where a0, a1, . . . , an−1 are positive integers. Then ξ > a0 ≥ 1.
Also, by (2.1.8) we have

ξ = 〈a0, a1, . . . , an−1, ξ〉 = ξhn−1 + hn−2

ξkn−1 + kn−2
.

Thus ξ satisfies the equation

f (x) = x2kn−1 + x(kn−2 − hn−1)− hn−2 = 0.

This quadratic equation has two roots, ξ and its conjugate ξ′. Since ξ > 1, we
need to only prove that f (x) has a root between −1 and 0 in order to establish that
−1 < ξ′ < 0. We will do this by showing that f (−1) and f (0) have opposite signs.
First we observe that f (0) = −hn−2 < 0 by (2.1.6), since ai > 0 for i ≥ 0. Next we
see that for n ≥ 1

f (−1) = kn−1 − kn−2 + hn−1 − hn−2

= (kn−2 + hn−2)(an−1 − 1) + kn−3 + hn−3 ≥ kn−3 + hn−3 > 0.

	

We now turn to the continued fraction expansion of

√
d for a positive integer

d not a perfect square. We get at this by considering the closely related irrational
number

√
d + [

√
d]. This number satisfies the conditions of Theorem 2.1.20, and so

its continued fraction is purely periodic,

√
d + [

√
d] = 〈a0, a1, . . . , ar−1〉 = 〈a0, a1, . . . , ar−1, a0〉. (2.1.15)
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We can suppose that we have chosen r to be the smallest integer for which
√

d +
[
√

d] has an expansion of the form (2.1.15). Now we note that ξi = 〈ai, ai+1, . . . 〉
is purely periodic for all values of i, and that ξ0 = ξr = ξ2r = . . . . Furthermore,
ξ1, ξ2, . . . , ξr−1 are all different from ξ0, since otherwise there would be a shorter
period. Thus ξi = ξ0 if and only if i is of the form mr.

Now we can start with ξ0 =
√

d + [
√

d], q0 = 1, m0 = [
√

d] in (2.1.13) because
1|(d − [

√
d]2). Then, for all j ≥ 0, we have

mjr +
√

d
qjr

= ξjr = ξ0 =
m0 +

√
d

q0
= [

√
d] +

√
d

mjr − qjr[
√

d] = (qjr − 1)
√

d (2.1.16)

and hence qjr = 1, since the left side is rational and
√

d is irrational. Moreover qi =

1 for no other values of the subscript i. For qi = 1 implies ξi = mi +
√

d, but ξi has a
purely periodic expansion so that, by Theorem 2.1.20 we have −1 < mi −

√
d < 0,√

d − 1 < mi <
√

d, and hence mi = [
√

d]. Thus ξi = ξ0 and i is a multiple of r.
We also establish that qi = −1 does not hold for any i. For qi = −1 implies

ξi = −mi −
√

d by (2.1.13), and by Theorem 2.1.20 we would have −mi −
√

d > 1
and −1 < −mi +

√
d < 0. But this implies

√
d < mi < −√

d − 1, which is
impossible.

Noting that a0 = [
√

d + [
√

d]] = 2[
√

d], we can now turn to the case ξ =
√

d.
Using (2.1.15) we have

√
d = −[

√
d] + (

√
d + [

√
d])

= −[
√

d] + 〈2[
√

d], a1, a2, . . . , ar−1, a0〉
= 〈[

√
d], a1, a2, . . . , ar−1, a0〉

with a0 = 2[
√

d].
When we apply (2.1.13) to

√
d+ [

√
d], q0 = 1, m0 = [

√
d] we have a0 = 2[

√
d],

m1 = [
√

d], q1 = d − [
√

d]2. But we can also apply (2.1.13) to
√

d with q0 = 1,
m0 = 0, and we find a0 = [

√
d], m1 = [

√
d], q1 = d − [

√
d]2. The value of

a0 is different, but the values of m1, and of q1, are the same in both cases. Since
ξi = (mi +

√
d)/qi we see that further application of (2.1.13) yields the same values

for the ai, for the mi, and for the qi, in both cases. In other words, the expansions
of

√
d + [

√
d] and

√
d differ only in the values of a0 and m0. Stating our results

explicitly for the case
√

d, we have the following theorem.

Theorem 2.1.21. If the positive integer d is not a perfect square, the simple
continued fraction expansion of

√
d has the form

√
d = 〈a0, a1, a2, . . . , ar−1, 2a0〉
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with a0 = [
√

d]. Furthermore, with ξ0 =
√

d, q0 = 1, m0 = 0, in equations
(2.1.13), we have qi = 1 if and only if r|i, and qi = −1 holds for no subscript i.
Here r denotes the length of the shortest period in the expansion of

√
d.

2.2 Units and Norms in Quadratic Rings

2.2.1 Quadratic Rings

Let R be the commutative ring (see [42] and [54])

R = {m + n
√

D : m, n ∈ Z} (2.2.1)

where D is a positive that is not a perfect square, endowed with the standard
operations induced from the ring of integers (Z,+, ·). An element ε ∈ R is called a
unit in R if it is inversable, that is there exists ε1 ∈ R such that εε1 = ε1ε = 1. Two
elements α, β ∈ R are said to be divisibility associated if there exists a unit ε ∈ R
such that α = εβ. We will adopt the notation α ∼ β to indicate that α and β have
the property above. It is not difficult to see that “∼” is an equivalence relation.

If μ ∈ R, μ = a+ b
√

D, we will denote by μ the element μ = a− b
√

D and will
call it the conjugate of μ.

2.2.2 Norms in Quadratic Rings

Let us denote by N : R → Z the following function: if μ = a + b
√

D, then

N(μ) = a2 − Db2 = μ · μ. (2.2.2)

Proposition 2.2.1 (N Is Multiplicative). For all μ1, μ2 ∈ R, the following relation
holds:

N(μ1μ2) = N(μ1)N(μ2).

Proof. If μ1 = m1 + n1
√

D and μ2 = m2 + n2
√

D, then we have

μ1μ2 = (m1m2 + Dn1n2) + (m1n2 + m2n1)
√

D

and

N(μ1μ2) = (m1m2 + Dn1n2)
2 − D(m1n2 + m2n1)

2

= m2
1m2

2 + D2n21n22 − Dm2
1n22 − Dm2

2n21 = m2
1(m

2
2 − Dn22)− Dn21(m

2
2 − dn22)

= (m2
1 − Dn21)(m

2
2 − Dn22) = N(μ1)N(μ2).
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Proposition 2.2.2. An element ε ∈ R is an unit in R if and only if N(ε) = ±1.

Proof. If ε is a unit in R, then there exists ε1 ∈ R such that εε1 = 1. Then from
Proposition 2.2.1, N(ε)N(ε1) = N(1) = 12 − D02 = 1. Since N(ε) and N(ε1) are
integers, it follows that N(ε) = ±1. Conversely, if N(ε) = ±1, then (2.2.2) yields
εε = ±1. If N(ε) = 1, then εε = 1 and if N(ε) = −1, then ε(−ε) = 1. Both cases
show that ε is a unit in R. 	

Theorem 2.2.3. For any integer a, the cardinal number of the set

S = {α ∈ R : N(α) = a and α �∼ β for all β ∈ R, β �= α} (2.2.3)

is finite and does not exceed a2.

Proof. If a = 0, then the cardinal number of S is 1. We may assume now that a is
nonzero. Let α, β ∈ S such that α �= β and α ≡ β(mod a). This means that there
exists γ ∈ R such that α− β = aγ.

From the definition of the set S it follows that a = N(α) = N(β), hence α−β =
aγ = N(α)γ = N(β)γ.

Now embed the ring R into the field Q(
√

D) = {r + s
√

D : r, s ∈ Q}. Since
N(α) = N(β) = a �= 0, we have α, β �= 0 and

α

β
=

β + aγ
β

= 1 +
N(β)γ

β
= 1 +

ββγ

β
= 1 + βγ

and

β

α
=

α− aγ
α

= 1− N(α)γ

α
= 1− ααγ

α
= 1− αγ.

The computations above show that

α

β
− β

α
= (β − α)γ

hence
α

β
,
β

α
∈ R and α ∼ β, in contradiction with the definition of S. It follows that

α ≡ β(mod a), for all α, β ∈ S.
On the other hand, it is not difficult to see that for all b in R there exist positive

integers m, n such that 0 ≤ m < |a|, 0 ≤ n < |a|, and b ≡ m + n
√

D(mod a).
The considerations above show that the mapping

S → {0, 1, 2, . . . , |a| − 1} × {0, 1, 2, . . . , |a| − 1}

given by α → (m, n), where 0 ≤ m, n ≤ |a| − 1, α ≡ m + n
√

D(mod a), is
one-to-one.

This means that the set S is finite and its cardinal number is less or equal to a2.
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Proposition 2.2.4 (The Conjugate Is Multiplicative). For all μ1, μ2 ∈ R, the
following relation holds:

μ1μ2 = μ1μ2. (2.2.4)

Proof. If μ1 = m1 + n1
√

D and μ2 = m2 + n2
√

D, then

μ1μ2 = (m1m2 + Dn1n2) + (m1n2 + m2n1)
√

D

and

μ1μ2 = (m1m2 + Dn1n2)− (m1n2 + m2n1)
√

D

= (m1 − n1
√

D)(m2 − n2
√

D) = μ1μ2.

	

Remark. Proposition 2.2.4 gives another proof of the fact that N is multiplicative.
Indeed, we have

N(μ1μ2) = (μ1μ2)(μ1μ2) = (μ1μ2)(μ1μ2) = (μ1μ1)(μ2μ2) = N(μ1)N(μ2).
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