
Chapter 1
Why Quadratic Diophantine Equations?

In order to motivate the study of quadratic type equations, in this chapter we present
several problems from various mathematical disciplines leading to such equations.
The diversity of the arguments to follow underlines the importance of this subject.

1.1 Thue’s Theorem

Since ancient times mathematicians tried to solve equations over the integers.
Pythagoras for instance described all integers as side lengths of rectangular tri-
angles. After Diophantus from Alexandria such equations are called Diophantine
equations. Since that time, many mathematicians worked on this topic, such as
Fermat, Euler, Kummer, Siegel, and Wiles.

In 1909, A. Thue (see [62]) proved the following important theorem:
Let f = anzn + an−1zn−1 + · · · + a1z + a0 be an irreducible polynomial of

degree ≥ 3 with integral coefficients. Consider the corresponding homogeneous
polynomial

F(x, y) = anxn + an−1xn−1y + · · ·+ a1xyn−1 + a0yn.

If m is a nonzero integer, then the equation

F(x, y) = m

has either no solution or only a finite number of solutions in integers.
This result is in contrast to the situation when the degree of F is n = 2. In this

case, if F(x, y) = x2 − Dy2, where D is a nonsquare positive integer, then for all
nonzero integers m, the general Pell’s equation

x2 − Dy2 = m

has either no solution or it has infinitely many integral solutions.
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1.2 Hilbert’s Tenth Problem

In 1900, at the International Congress of Mathematicians in Paris, David Hilbert,
looking forward to the coming century, proposed 23 problems with which twentieth
century mathematicians would have to contend. The tenth on the list, commonly
simply termed “Hilbert’s Tenth Problem,” called for a general method to determine
the solvability or unsolvability in integers of Diophantine equations. With our
current knowledge of the unsolvability of this problem, it would be interesting to
know why Hilbert felt it had a positive solution. Did it look like the Gaussian theory
could extend indefinitely to more and more variables and higher and higher degrees?
Did he think one could cut through all the details and give an abstract proof, in the
way he finished off the theory of invariants? Or was it just a manifestation of his faith
in the mathematician’s ability to solve all problems he posed for himself—a faith
on which he was quite explicit? The actual statement of Hilbert’s Tenth Problem is
rather brief and uninformative:

Given a Diophantine equation with any number of unknown quantities and
with integral numerical coefficients, devise a process according to which it can be
determined by a finite number of operations whether the equation is solvable in
integers.

To solve the Diophantine equation

f (x1, x2, . . . , xn) = 0,

where f ∈ Q[X1,X2, . . . ,Xn], amounts to determine the integer points on the
corresponding hypersurface of the affine space. Hilbert’s tenth problem is to give
an algorithm which tells whether such a given Diophantine equation has a solution
or not.

The final answers to Hilbert original tenth problem were given in 1970 by Yu.
Matiyasevich, after the works of M. Davis, H. Putnam, and J. Robinson. This was
the culminating stage of a rich and beautiful theory (see [59, 124, 130, 131], and
[132]). The solution is negative: there is no hope nowadays to achieve a complete
theory of the subject. But one may still hope that there is a positive answer if one
restricts Hilbert’s initial question to equations in few variables, say n = 2, which
amounts to considering integer points on a plane curve. In this case deep results
have been achieved during the twentieth century and many results are known, but
much more remains unveiled.

The logical assault on Hilbert’s Tenth Problem began around 1950, the first
tentative papers appearing in the ensuing decade, the first major breakthrough
appearing in print in 1961, and the ultimate solution being published in 1970. The
first contributions were made by Julia Robinson and Martin Davis.

Robinson defined a relation R on natural numbers to be Diophantine if it could
be written in the form

R(x0, . . . , xn−1) : ∃y0 . . . ym−1P(x0, . . . , xn−1, y0, . . . , ym−1) = 0,
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where P is a polynomial with integral coefficients and y0, . . . , ym−1 range over
natural numbers. (Logicians prefer their Diophantine equations to have nonnegative
integral solutions, an inessential reformulation of the usual Fermatian Diophantine
problem.) Finding she could not exhibit many demonstrably Diophantine relations,
she allowed exponentiation to enter into P to form exponential Diophantine
relations. She was able to show several interesting relations to be exponential
Diophantine, and she reduced the general problem of showing all exponential
Diophantine relations to be Diophantine to that of showing any relation of roughly
exponential growth to have a Diophantine graph. In this reduction, she used the
sequence of solutions to the special Pell’s equations

x2 − (a2 − 1)y2 = 1, a ≥ 2.

Davis took a more logical approach. The theory of algorithms recognizes two
basic types of sets of natural numbers, namely: recursive sets, for which an
algorithm determining membership exists, and recursively enumerable sets, for
which an algorithmic enumeration exists. There are recursively enumerable sets
which are not recursive. If every recursively enumerable set could be shown to
be Diophantine, then Hilbert’s Tenth Problem would have no effective solution.
The techniques Gödel developed in proving his famous Incompleteness Theorems
readily show that every recursively enumerable set can be written in the form

∃y0Q1y1 . . .Qm−1ym−1P(x, y0, . . . , ym−1) = 0,

where each Qi is either an existential quantifier or a bounded universal quantifier,
i.e., a quantifier of the form ∀yi ≤ y0. Davis simplified this representation to the
Davis Normal Form

∃y∀ z ≤ y ∃ w0 . . .wm−1 ≤ yP(x, y, z,w0, . . . ,wm−1) = 0.

Within a few years, Robinson’s husband Raphael showed one could take m = 4.
Towards the end of the 1950s, Hilary Putnam joined Davis. Together they

proved—modulo the unproved assumption of the existence of arbitrarily long
arithmetic progressions of prime numbers—the unsolvability of the exponential
Diophantine problem over the natural numbers. With Julia Robinson’s help, the
unproven conjecture was bypassed. Together, Davis, Putnam, and Robinson applied
Robinson’s exponential Diophantine relations to eliminate the single bounded
universal quantifier from the Davis Normal Form. Their proof was published
in 1961.

With the Davis–Putnam–Robinson Theorem, Robinson’s reduction of the prob-
lem of representing exponential Diophantine relations as Diophantine relations to
the special problem of giving a Diophantine representation of a single relation
of roughly exponential growth assumed a greater importance. The 1960s saw no
progress in the construction of such a relation, merely a profusion of further
reductions based on it; for example, on the eve of the final solution, Robinson
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showed it sufficient to prove the Diophantine nature of any infinite set of prime
numbers. In March 1970 the world of logic learned that the then twenty-two-year-
old Yuri Matiyasevich has shown the relation

y = F2x

to be Diophantine, where F0,F1, . . . is the Fibonacci sequence. Very quickly, a
number of researchers adapted Matiyasevich’s proof to give a direct proof of the
Diophantiness of the sequences of solutions to the special Pell’s equations

x2 − (a2 − 1)y2 = 1, a ≥ 2,

cited earlier.
Interestingly, the corresponding problems when real solutions are looked for

has a positive answer. The decision problem over the reals: is there an algorithm
deciding the existence of real solutions to a set of polynomial equation with integer
coefficients? was solved with a yes answer by Tarski [211] and Seidenberg [197].

1.3 Euler’s Concordant Forms

In 1780, Euler asked for a classification of those pairs of distinct nonzero integers
M and N for which there are integer solutions (x, y, z, t) with xy �= 0 to

x2 + My2 = t2 and x2 + Ny2 = z2.

This is known as Euler’s concordant forms problem. When M = −N, Euler’s
problem is the celebrated congruent number problem to which Tunnell gave a
conditional solution using the theory of elliptic curves and modular forms. More
precisely, let EM,N be the elliptic curve

y2 = x(x + M)(x + N).

If the group of Q-rational points of EM,N has positive rank, then there are
infinitely many primitive integer solutions to Euler’s concordant forms problem.
But if the rank is zero, there is a solution if and only if the Q-torsion subgroup
of rational points of EM,N is Z2 × Z8 or Z2 × Z6. All the curves EM,N having
such torsion subgroups are classified as follows. The torsion subgroup of EM,N(Q)
is Z2 × Z8 if there is a nonzero integer d such that (M,N) = (d2u4, d2v4) or
(−d2v4, d2(u4 − v4)) or (d2(u4 − v4,−d2v4), where (u, v,w) is a Pythagorean
triple. The torsion subgroup of EM,N(Q) is Z2×Z6 if there exist integers a and b such
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that
a
b
�∈
{
−2,−1,−1

2
, 0, 1

}
and (M,N) = (a4 + 2a3b, 2a3b + b4). Thus Euler’s

problem is reduced to a question of Q-ranks of the Mordell–Weil groups of Frey
curves. In proving the above results (see [166]) the study of the simultaneous Pell’s
equations

a2 − Mb2 = 1 and c2 − Nb2 = 1

played an important role.

1.4 Trace of Hecke Operators for Maass Forms

The trace of the Hecke operator T(n) acting on a Hilbert space of functions spanned
by the eigenfunctions of the Laplace–Beltrami operator Δ with a positive eigenvalue
can be viewed as an analogue of Eichler–Selberg trace formula for nonholomorphic
cusp forms of weight zero. For Re σ > 1, let

Ln(σ) =
∑
d∈Ω

∑
u

hd ln εd

(du2)σ
,

where the summation on u is taken over all the positive integers u which together
with t are the integral solution of the equation t2 − du2 = 4n, hd is the class number

of indefinite rational quadratic forms with discriminant d, and εd =
1

2
(u0 + v0

√
d),

with (u0, v0) being the fundamental solution to the general Pell’s equation

u2 − dv2 = 4.

Here Ω is the set of all positive integers d such that d ≡ 0 or 1 (mod 4) and d is
not a perfect square. For more details we refer to [113].

1.5 Diophantine Approximation and Numerical Integration

Consider the quadrature formula over the s-dimensional unit cube of the form

∫ 1

0

. . .

∫ 1

0

f (x1, . . . , xs)dx1 . . . dxs = q−1

q∑
t=1

f

(
a1t
q
, . . . ,

ast
q

)
+ R,

where q and a1, . . . , as are positive integers and f is supposed periodic of period 1
in each variable. Choose q to be a prime and seek to determine a1, . . . as so as to
minimize R for a class of functions f whose multiple Fourier coefficients are small.
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One of the main methods is based on units of algebraic fields (see [94]). In this
method the field is R(

√
p1, . . . ,

√
pt), where p1, . . . , pt are distinct primes and the

units are the fundamental solutions to the general Pell’s equations

x2 − Dy2 = ±4,

where D runs over the 2t − 1 proper divisors of p1p2 . . . pt.

1.6 Threshold Phenomena in Random Lattices
and Reduction Algorithms

By a lattice is meant here the set of all linear combinations of a finite collection of
vectors in Rn taken with integer coefficients,

L = Ze1 ⊕ · · · ⊕ Zep.

One may think of a lattice as a regular arrangement of points in space, somewhat
like atoms composing a crystal in R3. Given the generating family (ej), there is
great interest in finding a “good” basis of the lattice. By this is meant a basis that is
“almost” orthogonal and is formed with vectors of “small” length. The process of
constructing a “good” basis from a skewed one is referred to as lattice reduction.

Lattice reduction is of structural interest in various branches of mathematics.
For instance, reduction in dimension 2 is completely solved by a method due to
Gauss. This entails a complete classification of binary quadratic forms with integer
coefficients, a fact that has numerous implications in the analysis of quadratic
irrationals and in the representation of integers by quadratic forms, for example
Pell’s equation

x2 − dy2 = 1.

1.7 Standard Homogeneous Einstein Manifolds
and Diophantine Equations

If M = G/H is a homogeneous manifold and G is a semisimple Lie group, then
there is a standard Riemannian metric g on M given by restricting the Killing form.
An interesting problem is to study when g is an Einstein metric. In many cases
the Einstein equations reduce to a series of integer constraints. These Diophantine
equations in certain special cases often reduce to variants of Pell’s equation. Such a
case is as follows. Suppose K,L and R are Lie groups. Let G = Kr × R, for some
integer r, and let H = K × L. Suppose that H is embedded in G via (Δ, π), where
Δ : K → Kr is the diagonal and π : K × L → R is some representation. There
are limited number of possibilities for K,L and R. One of these is K = SO(n),
L = SO(m) and R = SO(n + 1). The Einstein equations reduce to some Pell’s
equations in n,m and r and these have infinitely many solutions (see [156] for
details).
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1.8 Computing Self-Intersections of Closed Geodesics

Let Γ be a subgroup of finite index in the modular group Γ(1) = SL(2,Z). An
interesting problem is to compute the self-intersection number of a closed geodesic
on H/Γ, where H is the hyperbolic plane.

Suppose the geodesic is given as the axis γ of A ∈ Γ(1). Since by assumption
[Γ(1) : Γ] < ∞, one can find a least n ∈ Z+, with An ∈ Γ. Fix the standard

fundamental region R =

{
z ∈ H : |z| ≥ 1, |Re z| ≤ 1

2

}
for Γ(1) and let T be

the tessellation of H by images of R under Γ(1). As γ cuts T , it is divided into

segments. Translating back to R by appropriate products of the generators

(
1 1

0 1

)

and

(
0 −1

1 0

)
, determined by the order in which γ cuts sides of T , one can obtain

a finite family of segments in R whose union projects to cover a fundamental period
of An disjointly (except that points on ∂R will be covered twice). The algorithm
consists in computing the endpoints on R of all these translates of γ (under Γ(1))
and testing them in pairs for intersections in Γ(1) and then in Γ.

It is possible to write down the primitive hyperbolic in Γ(1) whose axis joins two
conjugate quadratic numbers, using minimal solutions of suitable Pell’s equations
(see [110]).

1.9 Hecke Groups and Continued Fractions

The Hecke groups

Gq =

〈(
1 λq

0 1

)
,

(
0 −1

1 0

)〉
; λq = 2 cos

π

q
, q ≥ 3

are Fuchsian groups of the first kind. The λ-continued fractions (λF) can be used
to study the geodesics on the modular surfaces determined by Gq. The period of the
λF for periodic

√
D/C has nearly the form of the classical case. The solutions to

Pell’s equation in quadratic extensions of Q(λq) as well as the Legendre’s constant

of Diophantine approximation for Gq, i.e., γq such that

∣∣∣∣α− P
Q

∣∣∣∣ < γq

Q2
implies that

P
Q

of “reduced finite λF form” is a convergent of real α �∈ Gq(∞), play an important

role in proving the above result. For details we refer to [186].
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1.10 Sets of Type (m, n) in Projective Planes

A set of type (m, n) in a projective plane is a set of points such that each line
intersects it in either m or n points. Numerical conditions for the existence of such
sets in planes of finite order q can be given. In particular, for m = 1 and n ≥ 4, it is
shown that q is of the form q = (n − 1)Ps(n), where Ps(n) satisfies the recurrence
relation P0(n) = 0, P1(n) = 1, and Ps(n) = (n − 2)Ps−1(n) − Ps−2(n) + 1.
The proof consists in solving the quadratic Diophantine equation in two variables
x2 − x − (n − 2)xy + y2 − y = 0 which is related to a general Pell’s equation (see
[209] for details).
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