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Foreword

When thinking of quadratic Diophantine equations, a flow of associations come to
one’s mind. Gauss’s quadratic forms and their relation to class groups, fundamental
units of real quadratic fields and Pell’s equation, representations of integers as
sums of two or four squares, or the apparently innocent equation p = x2 + ny2

and its relation to norm forms of imaginary quadratic fields and Kronecker’s
Jugendtraum—all these range from relatively simple subjects for introductory
courses to elegant and involved topics of classical mathematics. But then one
can go on: representation of integers by ternary quadratic forms, the equation
p = x2 − ny2 and the Manin’s mid-life dream, so one suddenly lands in the midst
of highly interesting contemporary research topics in number theory. No, quadratic
Diophantine equations must not be dull!

So, how much of it can be communicated to a large public without assuming
involved prerequisites of algebra and number theory? This imposes some additional
restrictions which make it unadvisable to approach topics beyond the general
context of real quadratic fields and continuous fractions. The present book will
succeed to convince the reader of the richness of topics that are available within this
strict setting, as well as providing a fascinating and surprising list of applications of
quadratic equations.

Already the first chapter offers a list of interesting and less well-known appli-
cations and connections of quadratic equations to various topics from, in part,
unexpected areas of mathematics such as Hecke operators and Hecke groups,
Einstein manifolds and geodesics, or projective geometry. The second and third
chapters cover the basic knowledge on continued fractions, real quadratic fields, and
Pell’s equation; but they also offer the familiarized reader some interesting surprises
of the kind that make this book attractive. For instance, the treatment of some special
cases of the binary Thue equation ax2−by2 = 1 and an investigation of the quadratic
fields with units of negative norm, due to Stevenhagen.

On base of these prerequisites, the following chapters become more specialized:
they cover a large variety of variants and equations reducible by not-so-obvious
tricks to the Pell equation. Among them, a rich collection of representation problems
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vi Foreword

of the kind x2 − ny2 = N, of representations which we mentioned being related to
the real variant of Kronecker’s Jugendtraum, but which can in these cases be solved
by elementary methods.

We let the reader discover the unexpected applications and connections between
Pell’s equations and so many, surprising, problems, and decide which he or she finds
most interesting and appealing. The book generously offers for all tastes.

Mathematisches Institut der Universität Göttingen Preda Mihăilescu
Göttingen, Germany
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[32], published in 2003 and the syntheses [111] and [226], published in 2002.
The volume has seven chapters and moves gradually from the history and

motivation of quadratic Diophantine equations to more complicated equations and
their applications. The accessibility has also been taken into account, in the sense
that some material could be understood even by nonspecialists in the field. In many
sections the history of the advances and the problems that still remain open are also
given, together with comments. Throughout this work, complete proofs are given
and the sign � denotes the end of a proof.

Chapter 1, entitled “Why Quadratic Diophantine Equations?,” describes the
motivation of studying quadratic Diophantine equations. It contains ten short
sections, each of them illustrating an important problem whose solution reduces
to solving such an equation. Section 1.1 introduces the famous theorem of A. Thue
[62] that reduces a Diophantine equation of the form F(x, y) = m to a quadratic
one, pointing out the importance of the quadratic case. Section 1.2 reviews Hilbert’s
tenth problem, which asks, in essence, for a finite algorithm to solve a general
multivariable Diophantine equation. The proof of the impossibility of determining
such an algorithm was found by Yu. Matiyasevich, who used the results of M.

vii

Even though this domain seems to be classic, because of the last two decades
of remarkable progress in computational technique, many open problems in Dio-
phantine Analysis made a vigorous comeback with the hope that this increased
power in computation will shade new light on them. The distinctive dynamic of
Diophantine Analysis is expressively reflected in the well-known review journals:
“Mathematical Reviews” (USA) and “Zentralblatt für Matematik” (now zbMATH)
(Germany), the following AMS Subject Classification 2000 being designated to
it: 11Dxx (Diophantine equations), 11D09 (Quadratic bilinear equations), 11A55
(Continued fractions), 11J70 (Continued fractions and generalizations), 11Y65
(Continued fraction), 11B37 (Recurrences), 11B39 (Fibonacci and Lucas numbers
and polynomials and generalizations), 11R27 (Units and factorization). While in
1912 a first monograph [224] dedicated to this subject synthesized the important
results known by then, a variety of papers and doctoral theses in Diophantine Analy-
sis followed. Some of them are very recent, and we mention here just the monograph
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Davis, H. Putnam, and J. Robinson. A crucial point in Matiyasevich’s proof is
the consideration of the solutions to the equations x2 − (a2 − 1)y2 = 1, where
a ≥ 2. Section 1.3 presents the connection between Euler concordant forms and
elliptic curves, the determination of the ranks of Mordell–Weil groups, and Frey
curves, problems that lead to studying the solutions to two simultaneous Pell’s
equations. Section 1.4 makes the connection with the spectrum of the Laplace–
Bertrami operator whose spectrum description involves solving a general Pell’s type
equation. In Section 1.5, a quadrature formula in the s-dimensional unit cube is
considered, where the determination of parameters that minimize the remainder also
reduces to solving some special Pell’s type equations. The last five sections of this
chapter briefly review: reduction algorithms of “threshold” phenomena in arbitrary
lattices, the study of Einstein type Riemann metrics on homogeneous manifolds
generated by the action of a semisimple Lie group, the problem of counting the
number of autointersection points of the geodesics closed in the modular group
SL(2,Z), Hecke groups and their connection with continued fractions, as well
as (m, n) type sets in the projective plane, all of these representing examples of
problems from various areas of mathematics, whose solutions require solving Pell’s
type equations. Clearly, the list of such problems can be continued.

Chapter 2, “Continued Fractions, Diophantine Approximation and Quadratic
Rings,” presents two basic instruments of investigation in Diophantine Analysis.
The theory of continued fractions plays an important part in pure Mathematics and
has multiple applications. The main results of this theory, which are necessary in
developing efficient algorithms in Diophantine Analysis, are given in Section 2.1.
Among the references used, we mention here: [1, 46, 141, 159, 164, 183, 208].
The following aspects are introduced: the Euclid algorithm and its connection with
continued fractions, the problem of uniqueness of a continued fraction developing,
infinite continued fractions and their connection with irrational numbers, the
approximation of irrational numbers by continued fractions, the problem of the best
approximation and Hurwitz’s Theorem, periodic continued fractions. The second
important tool in studying problems in Diophantine Analysis is the theory of
quadratic rings. The fundamental concepts, the units and norms defined in a natural
way in this context are featured in Section 2.2. From the rich bibliography devoted
to this subject, we mention [95, 171, 198].

Chapter 3, “Pell’s Equation,” is divided into six sections. The first is a compre-
hensive historical introduction to Pell’s equation. Section 3.2 considers the problem
of finding the general solution to Pell’s equation by using elementary methods.
The proof of the main theorem is based on our papers [13–15]. The main forms
of writing the general solution are given: by recursive sequences, in matrix form,
explicitly, etc. In Section 3.3, the general solution to Pell’s equation is obtained
by using the method of continued fractions. In Section 3.4, following the papers
[171] and [95], the same problem is solved by using the theory of quadratic fields.
Section 3.5 contains original contributions to the study of the more general equation
ax2 − by2 = 1. Theorem 3.5.2 shows how one can determine the general solution
to this equation, in case of solvability. The proof is the one given in our papers
[13–15]. We note the fact that from our explicit form we found for the general
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solution to this equation (Remark 2) one gets immediately the result in [219], which
is obtained there by a very complicated and unnatural method. The last section is
dedicated to the negative Pell’s equation x2 − Dy2 = −1. It is studied as a special
case of the equation in the previous section and the central result concerning it
is contained in Theorem 3.6.1. The formulas (3.6.3) and (3.6.4) give the general
solution explicitly. The presentation follows again our papers [13–15]. Using now
our paper [18], in Theorem 3.6.4 it is given a family of negative Pell’s equations,
solvable only for a single value of the positive integral parameter k. The section
ends with the presentation of the current stage of the problem of solvability of the
negative Pell’s equation, an open problem that is far from being settled, and one of
the most difficult in Diophantine analysis. In this respect, partial results, as well as
recent conjectures, are mentioned.

The main goal of Chapter 4, “General Pell’s Equation,” is to present the
general theory and major algorithms regarding the equation x2 − Dy2 = N. This
chapter contains nine sections. In Section 4.1, the theory is exposed in a personal
manner; the classes of solutions are defined, and Theorems 4.1.1, 4.1.2, and 4.1.3
give classical bounds for the fundamental solutions. These bounds were recently
improved in [76] (L. Panaitopol, personal communication, December 2001). The
section ends with our results concerning a problem proposed in [37], problem
that we solve completely (see [16]). In addition, we present a final description
of the set of all rational solutions to the Pell’s equation, from which one can see
clearly the complexity of the problem of determining this set explicitly. Also,
an interesting result proved in [72] about the solvability of some general Pell’s
equation is mentioned. Section 4.2 contains results about the solvability of the
general Pell’s equation, and it is organized into five subsections dealing with the
following aspects: Pell Decision Problem and the Square Polynomial Problem, the
Legendre test, Legendre unsolvability tests, modulo n unsolvability tests, extended
multiplication principle. Section 4.3 contains an algorithm for determining the
fundamental solutions to the general Pell’s equation, based on continued fractions.
This algorithm is known as the LMM method. Numerical examples that probe the
efficiency of the algorithm are also included. Section 4.4 deals with the problem of
solving the general Pell’s equation by using the PQa algorithm, derived from the
theory of continued fractions, as well. A variant of the PQa algorithm for solving
the negative Pell’s equation, and the special Pell’s equations x2 − Dy2 = ±4 are
also given. Later in this section, the problem of the structure of the solutions to
the general Pell’s equation is taken on. By using the PQa algorithm, we study
the problem of determining the fundamental solutions in the case N <

√
D and

then consider several numerical examples that illustrate how this algorithm works.
In some of these examples, one compares the efficiency of the algorithm PQa
versus the one of the LMM’s method. Section 4.5 is dedicated to the study of
the solvability and unsolvability of the equation ax2 − by2 = c. All results here
belong to us and are based on our papers [13, 14, 17]. Two general methods for
solving the above-mentioned equation are presented, and a complete answer to
the problem posed in the recent paper [114] is given. An original point of view
is contained in Theorem 4.5.2, where the solvability of this equation is linked to
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the solvability of two other quadratic equations. In Theorem 4.5.3, a large class
of solvable equations ax2 − by2 = c is given. Section 4.6 deals with the problem
of solving the general Pell’s equation by using the theory of quadratic rings. One
obtains a different algorithm for solving the general Pell’s equation than the one
described in Section 4.7. The main goal of Section 4.8 is to discuss the more general
equation ax2 + bxy + cy2 = N. Recently, this equation captured the attention of
mathematicians (see, for example, the doctoral thesis [157]). The last section in this
chapter is dedicated to the connection between the Thue’s theorem (Theorem 4.9.1)
and the equations x2 − Dy2 = ±N. We discuss here the equation of this form
with D = 2, 3, 5, 6, 7, the working method being directly obtained from the Thue’s
theorem.

Chapter 5 is called “Equations Reducible to Pell’s Type Equations.” In Sec-
tion 5.1, we present the equations x2−kxy2+y4 = 1 and x2−kxy2+y4 = 4, the main
results being contained in Theorems 5.1.1, 5.1.7, and 5.1.9. Section 5.2 is dedicated
to the equation x2n − Dy2 = 1 and the central results are given in Theorems 5.2.3
and 5.2.4. Two special equations that finally lead to Pell’s type equations are studied
in Sections 5.3 and 5.4. Our point of view contained in section 5.5 encompasses in a
unitary class several equations dispersed in the literature, for instance the equations
in the titles of subsections 5.5.1, 5.5.2, 5.5.3, and 5.5.4. Section 5.6 points out other
quadratic equations with infinitely many integral solutions. In subsection 5.6.1, we
rely on our paper [12]. The main result concerning the equation x2 + axy + y2 = 1
is given in Theorem 5.6.1. In subsection 5.6.2, we study the equation (5.6.8), our
results correcting the ones in [173]. Other interesting equations of this type, both
solvable, are (5.6.13) and (5.6.14). The equation (5.6.15) is studied in our paper
[8], where five distinct infinite families of solutions are displayed. Based on our
paper [9], we find nine different infinite families of positive integral solutions to the
equation (5.6.18). The main idea of the paper [9] was used in [79] to generate six
infinite families of positive integral solutions to the equation (5.6.24). By using a
result in our paper [10], in the last subsection of Section 5.6 we prove that equation
(5.6.24) has in certain conditions infinitely many integral solutions.

In Chapter 6, “Diophantine Representations of Some Sequences,” we study a first
class of applications of some theoretical results presented in the previous chapters.
In Section 6.1, we define the concept of Diophantine r-representability, making
the connection with the papers [27, 28] and the doctoral Dissertation [47]. From
Theorem 6.1.1, in Section 6.2 we then obtain as special cases some properties
concerning Fibonacci’s, Lucas’, and Pell’s sequences, given in (6.2.1), (6.2.2),
and (6.2.3). In Section 6.3, we reconsider in an original manner the study of the
equations x2 + axy + y2 = ±1. The central result is contained in Theorem 6.3.1
and its proof is based on solving the special Pell’s equation u2 − 5v2 = −4. All
results in Section 6.4, concerning the equation (6.4.1) and its connection with the
Diophantine representation of the Fibonacci, Lucas, and Pell sequences are original.
The method we employ is different, more natural, and simpler than the one in the
doctoral dissertation [47]. Section 6.5 deals with the Diophantine representation of
the generalized Lucas sequences, defined by us in (6.5.1). The main results, given in
Theorems 6.5.1 and 6.5.2, generalize the ones in Section 6.4. Some special cases are
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considered in the papers [96, 97, 134] and [61], while a particular definition of Lucas
sequences is given in [91]. Important results spelling out the conditions in which the
solutions to the equation (6.5.8) are linear combinations with rational coefficients of
Fibonacci and Lucas classic sequences are contained in Theorems 6.5.4 and 6.5.5.
These results belong to us as well and appear in our papers [19] and [20].

The last chapter, “Other Applications,” contains five sections. Based on our
papers [13] and [14], we extend the results in [122] and [123] concerning the
conditions in which the numbers an + b and cn + d are simultaneously perfect
squares for infinitely many values of the positive integer n. The main result is given
in Theorem 7.1.1 and is based on Theorem 4.5.3. Several special cases appear in
[25, 199] and [40]. Section 7.2 is dedicated to the study of some special properties
of the triangular numbers. In Theorem 7.2.1, one determines all such numbers that
are perfect squares, while in Theorem 7.2.2 one studies an equation solvable in the
set of triangular numbers. The fact that the asymptotic density of the triangular
numbers is equal to 0 is proved in what follows. Theorem 7.2.3 specifies that
equation (7.2.9) is solvable for infinitely many triples (m, n, p) of positive integers
and unsolvable for infinitely many triples (m, n, p) of positive integers. In [170], it
is shown (Theorem 7.2.4) that any positive rational number r with

√
r �∈ Q can be

written as a ratio of two triangular numbers. The proof of this theorem uses in an
essential way our result contained in Theorem 4.5.3. Also in this section, we solve
completely the problem of finding all triangular numbers Tm,Tn such that Tm/Tn is
the square of a positive integer. Our approach generalizes the method given in [139]
and [101]. In Section 7.3, we study some properties of the polygonal numbers that
generalize the ones concerning triangular numbers (Theorem 7.3.1). In Section 7.3
we present some important results about powerful numbers. Recall that a positive
integer r is a powerful number if p2 divides r whenever the prime p divides r. We
prove the theorem of asymptotic behavior of the function k(x), where k(x) is the
number of powerful numbers less than or equal to x and, finally, we present results
concerning consecutive powerful numbers and the possible distances between two
powerful numbers. These results are also based on the general theory of quadratic
equations.

In the last section, we present the solution to an open problem involving matrices
in the ring M2(Z). The approach uses the properties of some quadratic Diophantine
equations, and it was given in the recent paper [29].
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Chapter 1
Why Quadratic Diophantine Equations?

In order to motivate the study of quadratic type equations, in this chapter we present
several problems from various mathematical disciplines leading to such equations.
The diversity of the arguments to follow underlines the importance of this subject.

1.1 Thue’s Theorem

Since ancient times mathematicians tried to solve equations over the integers.
Pythagoras for instance described all integers as side lengths of rectangular tri-
angles. After Diophantus from Alexandria such equations are called Diophantine
equations. Since that time, many mathematicians worked on this topic, such as
Fermat, Euler, Kummer, Siegel, and Wiles.

In 1909, A. Thue (see [62]) proved the following important theorem:
Let f = anzn + an−1zn−1 + · · · + a1z + a0 be an irreducible polynomial of

degree ≥ 3 with integral coefficients. Consider the corresponding homogeneous
polynomial

F(x, y) = anxn + an−1xn−1y + · · ·+ a1xyn−1 + a0yn.

If m is a nonzero integer, then the equation

F(x, y) = m

has either no solution or only a finite number of solutions in integers.
This result is in contrast to the situation when the degree of F is n = 2. In this

case, if F(x, y) = x2 − Dy2, where D is a nonsquare positive integer, then for all
nonzero integers m, the general Pell’s equation

x2 − Dy2 = m

has either no solution or it has infinitely many integral solutions.
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2 1 Why Quadratic Diophantine Equations?

1.2 Hilbert’s Tenth Problem

In 1900, at the International Congress of Mathematicians in Paris, David Hilbert,
looking forward to the coming century, proposed 23 problems with which twentieth
century mathematicians would have to contend. The tenth on the list, commonly
simply termed “Hilbert’s Tenth Problem,” called for a general method to determine
the solvability or unsolvability in integers of Diophantine equations. With our
current knowledge of the unsolvability of this problem, it would be interesting to
know why Hilbert felt it had a positive solution. Did it look like the Gaussian theory
could extend indefinitely to more and more variables and higher and higher degrees?
Did he think one could cut through all the details and give an abstract proof, in the
way he finished off the theory of invariants? Or was it just a manifestation of his faith
in the mathematician’s ability to solve all problems he posed for himself—a faith
on which he was quite explicit? The actual statement of Hilbert’s Tenth Problem is
rather brief and uninformative:

Given a Diophantine equation with any number of unknown quantities and
with integral numerical coefficients, devise a process according to which it can be
determined by a finite number of operations whether the equation is solvable in
integers.

To solve the Diophantine equation

f (x1, x2, . . . , xn) = 0,

where f ∈ Q[X1,X2, . . . ,Xn], amounts to determine the integer points on the
corresponding hypersurface of the affine space. Hilbert’s tenth problem is to give
an algorithm which tells whether such a given Diophantine equation has a solution
or not.

The final answers to Hilbert original tenth problem were given in 1970 by Yu.
Matiyasevich, after the works of M. Davis, H. Putnam, and J. Robinson. This was
the culminating stage of a rich and beautiful theory (see [59, 124, 130, 131], and
[132]). The solution is negative: there is no hope nowadays to achieve a complete
theory of the subject. But one may still hope that there is a positive answer if one
restricts Hilbert’s initial question to equations in few variables, say n = 2, which
amounts to considering integer points on a plane curve. In this case deep results
have been achieved during the twentieth century and many results are known, but
much more remains unveiled.

The logical assault on Hilbert’s Tenth Problem began around 1950, the first
tentative papers appearing in the ensuing decade, the first major breakthrough
appearing in print in 1961, and the ultimate solution being published in 1970. The
first contributions were made by Julia Robinson and Martin Davis.

Robinson defined a relation R on natural numbers to be Diophantine if it could
be written in the form

R(x0, . . . , xn−1) : ∃y0 . . . ym−1P(x0, . . . , xn−1, y0, . . . , ym−1) = 0,
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where P is a polynomial with integral coefficients and y0, . . . , ym−1 range over
natural numbers. (Logicians prefer their Diophantine equations to have nonnegative
integral solutions, an inessential reformulation of the usual Fermatian Diophantine
problem.) Finding she could not exhibit many demonstrably Diophantine relations,
she allowed exponentiation to enter into P to form exponential Diophantine
relations. She was able to show several interesting relations to be exponential
Diophantine, and she reduced the general problem of showing all exponential
Diophantine relations to be Diophantine to that of showing any relation of roughly
exponential growth to have a Diophantine graph. In this reduction, she used the
sequence of solutions to the special Pell’s equations

x2 − (a2 − 1)y2 = 1, a ≥ 2.

Davis took a more logical approach. The theory of algorithms recognizes two
basic types of sets of natural numbers, namely: recursive sets, for which an
algorithm determining membership exists, and recursively enumerable sets, for
which an algorithmic enumeration exists. There are recursively enumerable sets
which are not recursive. If every recursively enumerable set could be shown to
be Diophantine, then Hilbert’s Tenth Problem would have no effective solution.
The techniques Gödel developed in proving his famous Incompleteness Theorems
readily show that every recursively enumerable set can be written in the form

∃y0Q1y1 . . .Qm−1ym−1P(x, y0, . . . , ym−1) = 0,

where each Qi is either an existential quantifier or a bounded universal quantifier,
i.e., a quantifier of the form ∀yi ≤ y0. Davis simplified this representation to the
Davis Normal Form

∃y∀ z ≤ y ∃ w0 . . .wm−1 ≤ yP(x, y, z,w0, . . . ,wm−1) = 0.

Within a few years, Robinson’s husband Raphael showed one could take m = 4.
Towards the end of the 1950s, Hilary Putnam joined Davis. Together they

proved—modulo the unproved assumption of the existence of arbitrarily long
arithmetic progressions of prime numbers—the unsolvability of the exponential
Diophantine problem over the natural numbers. With Julia Robinson’s help, the
unproven conjecture was bypassed. Together, Davis, Putnam, and Robinson applied
Robinson’s exponential Diophantine relations to eliminate the single bounded
universal quantifier from the Davis Normal Form. Their proof was published
in 1961.

With the Davis–Putnam–Robinson Theorem, Robinson’s reduction of the prob-
lem of representing exponential Diophantine relations as Diophantine relations to
the special problem of giving a Diophantine representation of a single relation
of roughly exponential growth assumed a greater importance. The 1960s saw no
progress in the construction of such a relation, merely a profusion of further
reductions based on it; for example, on the eve of the final solution, Robinson
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showed it sufficient to prove the Diophantine nature of any infinite set of prime
numbers. In March 1970 the world of logic learned that the then twenty-two-year-
old Yuri Matiyasevich has shown the relation

y = F2x

to be Diophantine, where F0,F1, . . . is the Fibonacci sequence. Very quickly, a
number of researchers adapted Matiyasevich’s proof to give a direct proof of the
Diophantiness of the sequences of solutions to the special Pell’s equations

x2 − (a2 − 1)y2 = 1, a ≥ 2,

cited earlier.
Interestingly, the corresponding problems when real solutions are looked for

has a positive answer. The decision problem over the reals: is there an algorithm
deciding the existence of real solutions to a set of polynomial equation with integer
coefficients? was solved with a yes answer by Tarski [211] and Seidenberg [197].

1.3 Euler’s Concordant Forms

In 1780, Euler asked for a classification of those pairs of distinct nonzero integers
M and N for which there are integer solutions (x, y, z, t) with xy �= 0 to

x2 + My2 = t2 and x2 + Ny2 = z2.

This is known as Euler’s concordant forms problem. When M = −N, Euler’s
problem is the celebrated congruent number problem to which Tunnell gave a
conditional solution using the theory of elliptic curves and modular forms. More
precisely, let EM,N be the elliptic curve

y2 = x(x + M)(x + N).

If the group of Q-rational points of EM,N has positive rank, then there are
infinitely many primitive integer solutions to Euler’s concordant forms problem.
But if the rank is zero, there is a solution if and only if the Q-torsion subgroup
of rational points of EM,N is Z2 × Z8 or Z2 × Z6. All the curves EM,N having
such torsion subgroups are classified as follows. The torsion subgroup of EM,N(Q)
is Z2 × Z8 if there is a nonzero integer d such that (M,N) = (d2u4, d2v4) or
(−d2v4, d2(u4 − v4)) or (d2(u4 − v4,−d2v4), where (u, v,w) is a Pythagorean
triple. The torsion subgroup of EM,N(Q) is Z2×Z6 if there exist integers a and b such
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that
a
b
�∈
{
−2,−1,−1

2
, 0, 1

}
and (M,N) = (a4 + 2a3b, 2a3b + b4). Thus Euler’s

problem is reduced to a question of Q-ranks of the Mordell–Weil groups of Frey
curves. In proving the above results (see [166]) the study of the simultaneous Pell’s
equations

a2 − Mb2 = 1 and c2 − Nb2 = 1

played an important role.

1.4 Trace of Hecke Operators for Maass Forms

The trace of the Hecke operator T(n) acting on a Hilbert space of functions spanned
by the eigenfunctions of the Laplace–Beltrami operator Δ with a positive eigenvalue
can be viewed as an analogue of Eichler–Selberg trace formula for nonholomorphic
cusp forms of weight zero. For Re σ > 1, let

Ln(σ) =
∑
d∈Ω

∑
u

hd ln εd

(du2)σ
,

where the summation on u is taken over all the positive integers u which together
with t are the integral solution of the equation t2 − du2 = 4n, hd is the class number

of indefinite rational quadratic forms with discriminant d, and εd =
1

2
(u0 + v0

√
d),

with (u0, v0) being the fundamental solution to the general Pell’s equation

u2 − dv2 = 4.

Here Ω is the set of all positive integers d such that d ≡ 0 or 1 (mod 4) and d is
not a perfect square. For more details we refer to [113].

1.5 Diophantine Approximation and Numerical Integration

Consider the quadrature formula over the s-dimensional unit cube of the form

∫ 1

0

. . .

∫ 1

0

f (x1, . . . , xs)dx1 . . . dxs = q−1

q∑
t=1

f

(
a1t
q
, . . . ,

ast
q

)
+ R,

where q and a1, . . . , as are positive integers and f is supposed periodic of period 1
in each variable. Choose q to be a prime and seek to determine a1, . . . as so as to
minimize R for a class of functions f whose multiple Fourier coefficients are small.
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One of the main methods is based on units of algebraic fields (see [94]). In this
method the field is R(

√
p1, . . . ,

√
pt), where p1, . . . , pt are distinct primes and the

units are the fundamental solutions to the general Pell’s equations

x2 − Dy2 = ±4,

where D runs over the 2t − 1 proper divisors of p1p2 . . . pt.

1.6 Threshold Phenomena in Random Lattices
and Reduction Algorithms

By a lattice is meant here the set of all linear combinations of a finite collection of
vectors in R

n taken with integer coefficients,

L = Ze1 ⊕ · · · ⊕ Zep.

One may think of a lattice as a regular arrangement of points in space, somewhat
like atoms composing a crystal in R

3. Given the generating family (ej), there is
great interest in finding a “good” basis of the lattice. By this is meant a basis that is
“almost” orthogonal and is formed with vectors of “small” length. The process of
constructing a “good” basis from a skewed one is referred to as lattice reduction.

Lattice reduction is of structural interest in various branches of mathematics.
For instance, reduction in dimension 2 is completely solved by a method due to
Gauss. This entails a complete classification of binary quadratic forms with integer
coefficients, a fact that has numerous implications in the analysis of quadratic
irrationals and in the representation of integers by quadratic forms, for example
Pell’s equation

x2 − dy2 = 1.

1.7 Standard Homogeneous Einstein Manifolds
and Diophantine Equations

If M = G/H is a homogeneous manifold and G is a semisimple Lie group, then
there is a standard Riemannian metric g on M given by restricting the Killing form.
An interesting problem is to study when g is an Einstein metric. In many cases
the Einstein equations reduce to a series of integer constraints. These Diophantine
equations in certain special cases often reduce to variants of Pell’s equation. Such a
case is as follows. Suppose K,L and R are Lie groups. Let G = Kr × R, for some
integer r, and let H = K × L. Suppose that H is embedded in G via (Δ, π), where
Δ : K → Kr is the diagonal and π : K × L → R is some representation. There
are limited number of possibilities for K,L and R. One of these is K = SO(n),
L = SO(m) and R = SO(n + 1). The Einstein equations reduce to some Pell’s
equations in n,m and r and these have infinitely many solutions (see [156] for
details).
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1.8 Computing Self-Intersections of Closed Geodesics

Let Γ be a subgroup of finite index in the modular group Γ(1) = SL(2,Z). An
interesting problem is to compute the self-intersection number of a closed geodesic
on H/Γ, where H is the hyperbolic plane.

Suppose the geodesic is given as the axis γ of A ∈ Γ(1). Since by assumption
[Γ(1) : Γ] < ∞, one can find a least n ∈ Z+, with An ∈ Γ. Fix the standard

fundamental region R =

{
z ∈ H : |z| ≥ 1, |Re z| ≤ 1

2

}
for Γ(1) and let T be

the tessellation of H by images of R under Γ(1). As γ cuts T , it is divided into

segments. Translating back to R by appropriate products of the generators

(
1 1

0 1

)

and

(
0 −1

1 0

)
, determined by the order in which γ cuts sides of T , one can obtain

a finite family of segments in R whose union projects to cover a fundamental period
of An disjointly (except that points on ∂R will be covered twice). The algorithm
consists in computing the endpoints on R of all these translates of γ (under Γ(1))
and testing them in pairs for intersections in Γ(1) and then in Γ.

It is possible to write down the primitive hyperbolic in Γ(1) whose axis joins two
conjugate quadratic numbers, using minimal solutions of suitable Pell’s equations
(see [110]).

1.9 Hecke Groups and Continued Fractions

The Hecke groups

Gq =

〈(
1 λq

0 1

)
,

(
0 −1

1 0

)〉
; λq = 2 cos

π

q
, q ≥ 3

are Fuchsian groups of the first kind. The λ-continued fractions (λF) can be used
to study the geodesics on the modular surfaces determined by Gq. The period of the
λF for periodic

√
D/C has nearly the form of the classical case. The solutions to

Pell’s equation in quadratic extensions of Q(λq) as well as the Legendre’s constant

of Diophantine approximation for Gq, i.e., γq such that

∣∣∣∣α− P
Q

∣∣∣∣ < γq

Q2
implies that

P
Q

of “reduced finite λF form” is a convergent of real α �∈ Gq(∞), play an important

role in proving the above result. For details we refer to [186].
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1.10 Sets of Type (m, n) in Projective Planes

A set of type (m, n) in a projective plane is a set of points such that each line
intersects it in either m or n points. Numerical conditions for the existence of such
sets in planes of finite order q can be given. In particular, for m = 1 and n ≥ 4, it is
shown that q is of the form q = (n − 1)Ps(n), where Ps(n) satisfies the recurrence
relation P0(n) = 0, P1(n) = 1, and Ps(n) = (n − 2)Ps−1(n) − Ps−2(n) + 1.
The proof consists in solving the quadratic Diophantine equation in two variables
x2 − x − (n − 2)xy + y2 − y = 0 which is related to a general Pell’s equation (see
[209] for details).



Chapter 2
Continued Fractions, Diophantine
Approximation, and Quadratic Rings

The main goal of this chapter is to lay out basic concepts needed in our study in
Diophantine Analysis. The first section contains fundamental results pertaining to
continued fractions, some without proofs. The Theory of Continued Fractions is not
new but it plays a growing role in contemporary mathematics.

Continued fractions have fascinated mankind for centuries if not millennia. The
timeless construction of a rectangle obeying the “divine proportion” (the term is in
fact from the Renaissance) and the “self-similarity” properties that go along with it
are nothing but geometric counterparts of the continued fraction expansion of the
golden ratio,

φ ≡ 1 +
√
5

2
=

1

1 +
1

1 +
1

1 + . . .

.

Geometry was developed in India from the rules for the construction of altars.
The Sulva Sutra (a part of the Kalpa Sutra hypothesized to have been written around
800 BC) provides a rule for doubling an area that corresponds to the near-equality:

√
2 = 1 +

1

3
+

1

3× 4
− 1

3× 4× 34
(correct to 2 · 10−6).

The third and fourth partial sums namely
17

12
and

577

408
are respectively the fourth

and eight convergents to
√
2.

Accordingly, in the classical Greek world, there is evidence of knowledge of
the continued fraction for

√
2 which appears in the works of Theon of Smyrna

(discussed in Fowler’s reconstruction [74] and in [215]) and possibly of Plato in The-
atetus, see [49]. As every student knows, Euclid’s algorithm is a continued fraction
expansion algorithm in disguise, and Archimedes’ Cattle Problem (circa 250 BC)

© Springer Science+Business Media New York 2015
T. Andreescu, D. Andrica, Quadratic Diophantine Equations,
Developments in Mathematics 40, DOI 10.1007/978-0-387-54109-9_2
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most probably presupposes on the part of its author some amount of understanding
of quadratic irrationals, Pell’s equation, and continued fractions; see [215] for a
discussion.

The continued fraction convergent π ≈ 355

113
was known to Twu Ch’ung Chi, born

in Fan-yang, China in 430 AD. More recently, the Swiss mathematician Lambert
proved the 2,000 year conjecture (it already appears in Aristotle) that π is irrational,
this thanks to the continued fraction expansion of the tangent function,

tan z =
z

1− z2

3− z2

5− . . .

,

and Apéry in 1979 gave in “a proof that Euler missed” [176] nonstandard expansions
like

ζ(3) =

∞∑
n=1

1

n3
= 1 +

1

2 · 2 + 13

1 +
13

2 · 6 + 23

1 +
23

2 · 10 + 33

1 + . . .

from which the irrationality of ζ(3) eventually derives.
The standard method to prove the irrationality of ex for nonzero rational x is by

obtaining a rational approximation using the differential and integral properties of
ex and the differential properties of xn(1− x)n/n!, see [88]. Recently, a simple proof
by using the theory of continued fractions was given in [154].

The principal references used in this section are [1, 46, 66, 141, 159, 164, 183,
184, 208].

The Section 2.2 presents key results regarding quadratic rings, their units
and norms defined in a natural way. Important references for this section are
[95, 171, 198].

2.1 Simple Continued Fractions

2.1.1 The Euclidean Algorithm

Given any rational fraction u0/u1, in lowest terms so that gcd(u0, u1) = 1 and
u1 > 0, we apply the Euclidean algorithm (see [21]) to get successively
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u0 = u1a0 + u2, 0 < u2 < u1
u1 = u2a1 + u3, 0 < u3 < u2
u2 = u3a2 + u4, 0 < u4 < u3
. . .

uj−1 = ujaj−1 + uj+1, 0 < uj+1 < uj

uj = uj+1aj.

(2.1.1)

If we write ξi in place of ui/ui+1 for all values of i with 0 ≤ i ≤ j, then equations
(2.1.1) become

ξi = ai +
1

ξi+1
, 0 ≤ i ≤ j − 1; ξj = aj. (2.1.2)

If we take the first two of these equations, those for which i = 0 and i = 1, and
eliminate ξ1, we get

ξ0 = a0 +
1

a1 +
1

ξ2

.

In this result we replace ξ2 by its value from (2.1.2), and then we continue with
replacement of ξ3, ξ4, . . . , to get

u0
u1

= ξ0 = a0+
1

a1+
. . .

+
1

aj−1 +
1

aj

.

(2.1.3)

This is a continued fraction expansion of ξ0, or of u0/u1. The integers ai are
called the partial quotients since they are the quotients in the repeated application
of the division algorithm in equations (2.1.1). We presumed that the rational fraction
u0/u1 had positive denominator u1, but we cannot make a similar assumption about
u0. Hence a0 may be positive, negative, or zero. However, since 0 < u2 < u1,
we note that the quotient a1 is positive, and similarly the subsequent quotients
a2, a3, . . . , aj are positive integers. In case j ≥ 1, that is if the set (2.1.1) contains
more than one equation, then aj = uj/uj+1 and 0 < uj+1 < uj imply that aj > 1.

We will use the notation 〈a0, a1, . . . , aj〉 to designate the continued fraction in
(2.1.3). In general, if x0, x1, . . . , xj are any real numbers, all positive except perhaps
x0, then we will write
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〈x0, x1, . . . , xj〉 = x0 +
1

x1+
. . .

+
1

xj−1 +
1

xj

.

Such a finite continued fraction is said to be simple if all the xi are integers. The
following notations are often used to simplify the writing:

〈x0, x1, . . . , xj〉 = x0 +
1

〈x1, . . . , xj〉

=

〈
x0, x1, . . . , xj−2, xj−1 +

1

xj

〉
.

The symbol [x0, x1, . . . , xj] is sometimes used to represent a continued fraction. We
use the notation 〈x0, x1, . . . , xj〉 to avoid confusion with the least common multiple
and the greatest integer.

2.1.2 Uniqueness

In the last section we saw that such a fraction as 51/22 can be expanded into a
simple continued fraction, 51/22 = 〈2, 3, 7〉. It can be verified that 51/22 can also
be expressed as 〈2, 3, 6, 1〉, but it turns out that these are the only two representations
of 51/22. In general, we note that the simple continued fraction expansion (2.1.3)
has an alternate form,

u0
u1

= 〈a0, a1, . . . , aj−1, aj〉 = 〈a0, a1, . . . , aj−2, aj−1, aj − 1, 1〉. (2.1.4)

The following result [159] establishes that these are the only two simple continued
fraction expansions of a fixed rational number.

Theorem 2.1.1. If 〈a0, a1, . . . , aj〉 = 〈b0, b1, . . . , bn〉, where these finite continued
fractions are simple, and if aj > 1 and bn > 1, then j = n and ai = bi for i =
0, 1, . . . , n.

Proof. We write yi for the continued fraction 〈bi, bi+1, . . . , bn〉 and observe that

yi = 〈bi, bi+1, . . . , bn〉 = bi +
1

〈bi+1, bi+2, . . . , bn〉
= bi +

1

yi+1
. (2.1.5)

Thus we have yi > bi and yi > 1 for i = 1, 2, . . . , n − 1, and yn = bn > 1.
Consequently, bi = [yi] for all values of i in the range 0 ≤ i ≤ n. The hypothesis
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that the continued fractions are equal can be written in the form y0 = ξ0, where we
are using the notation of equation (2.1.3). Now the definition of ξi as ui/ui+1 implies
that ξi+1 > 1 for all values of i ≥ 0, and so ai = [ξi] for 0 ≤ i ≤ j by equation
(2.1.2). It follows from y0 = ξ0 that, taking integral parts, b0 = [y0] = [ξ0] = a0.
By equations (2.1.2) and (2.1.5) we get

1

ξ1
= ξ0 − a0 = y0 − b0 =

1

y1
, ξ1 = y1, a1 = [ξ1] = [y1] = b1.

This gives us the start of a proof by induction. We now establish that ξi = yi and
ai = bi imply that ξi+1 = yi+1 and ai+1 = bi+1. To see this, we again use equations
(2.1.2) and (2.1.5) to write

1

ξi+1
= ξi − ai = yi − bi =

1

yi+1
,

ξi+1 = yi+1, ai+1 = [ξi+1] = [yi+1] = bi+1.

It must also follow that the continued fractions have the same length, that is, that
j = n. For suppose that, say, j < n. From the preceding argument we have ξj = yj,
aj = bj. But ξj = aj by (2.1.2) and yj > bj by (2.1.5), and so we have a contradiction.
If we had assumed j > n, a symmetrical contradiction would have arisen, and thus j
must equal n, and the theorem is proved. ��
Theorem 2.1.2. Any finite simple continued fraction represents a rational number.
Conversely, any rational number can be expressed as a finite simple continued
fraction, and in exactly two ways.

2.1.3 Infinite Continued Fractions

Let a0, a1, a2, . . . be an infinite sequence of integers, all positive except perhaps a0.
We define two sequences of integers {hn} and {kn} inductively as follows:

h−2 = 0, h−1 = 1, hi = aihi−1 + hi−2 for i ≥ 0

k−2 = 1, k−1 = 0, ki = aiki−1 + ki−2 for i ≥ 0.
(2.1.6)

We note that k0 = 1, k1 = a1k0 ≥ k0, k2 > k1, k3 > k2, etc., so that 1 = k0 ≤ k1 <
k2 < k3 < · · · < kn < . . . .

Theorem 2.1.3. For any positive real number x,

〈a0, a1, . . . , an−1, x〉 = xhn−1 + hn−2

xkn−1 + kn−2
.
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Theorem 2.1.4. If we define rn = 〈a0, a1, . . . , an〉 for all integers n ≥ 0, then
rn = hn/kn.

Theorem 2.1.5. The equations

hiki−1 − hi−1ki = (−1)i−1 and ri − ri−1 =
(−1)i−1

kiki−1

hold for i ≥ 1. The identities

hiki−2 − hi−2ki = (−1)iai and ri − ri−2 =
(−1)iai

kiki−2

hold for i ≥ 1. The fraction hi/ki is reduced, that is (hi, ki) = 1.

Theorem 2.1.6. The values rn defined in Theorem 2.1.4 satisfy the infinite chain
of inequalities r0 < r2 < r4 < r6 < · · · < r7 < r5 < r3 < r1. Furthermore,
limn→∞ rn exists, and for every j ≥ 0, r2j < limn→∞ rn < r2j+1.

Proof. The identities of Theorem 2.1.5 for ri − ri−1 and ri − ri−2 imply that r2j <
r2j+2, r2j−1 > r2j+1, and r2j < r2j−1, because the ki are positive for i ≥ 0 and the ai

are positive for i ≥ 1. Thus we have r0 < r2 < r4 < . . . and r1 > r3 > r5 > . . . .
To prove that r2n < r2j−1, we put the previous results together in the form

r2n < r2n+2j < r2n+2j−1 ≤ r2j−1.

The sequence r0, r2, r4, . . . is monotonically increasing and is bounded above
by r1, and so has a limit. Analogously, the sequence r1, r3, r5, . . . is monotonically
decreasing and is bounded below by r0, and so has a limit. These two limits are
equal because, by Theorem 2.1.5, the difference ri − ri−1 tends to zero as i tends to
infinity, since the integers ki are increasing with i. Another way of looking at this to
observe that (r0, r1), (r2, r3), (r4, r5), . . . is a chain of nested intervals defining a
real number, namely limn→∞ rn. ��

These theorems suggest the following definition.

Definition 2.1.1. An infinite sequence a0, a1, a2, . . . of integers, all positive except
perhaps for a0, determines an infinite simple continued fraction 〈a0, a1, a2, . . . 〉.
The value of 〈a0, a1, a2, . . . 〉 is defined to be limn→∞〈a0, a1, a2, . . . , an〉.

This limit, being the same as limn→∞ rn, exists by Theorem 2.1.6. Another
way of writing this limit is limn→∞ hn/kn. The rational number 〈a0, a1, . . . , an〉 =
hn/kn = rn is called the nth convergent to the infinite continued fraction. We say
that the infinite continued fraction converges to the value limn→∞ rn. In the case
of a finite simple continued fraction 〈a0, a1, . . . , an〉 we similarly call the number
〈a0, a1, . . . , am〉 the mth convergent to 〈a0, a1, . . . , an〉.
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Theorem 2.1.7. The value of any infinite simple continued fraction 〈a0, a1, a2, . . . 〉
is irrational.

Proof. Writing θ for 〈a0, a1, a2, . . . 〉, we observe by Theorem 2.1.6 that θ lies
between rn and rn+1, so that 0 < |θ − rn| < |rn+1 − rn|. Multiplying by kn, and
making use of the result from Theorem 2.1.5 that |rn+1 − rn| = (knkn+1)

−1, we
have

0 < |knθ − hn| <
1

kn+1
.

Now suppose that θ were rational, say θ = a/b with integers a and b, b > 0. Then
the above inequality would become, upon multiplication by b,

0 < |kna − hnb| < b
kn+1

.

The integers kn increase with n, so we could choose n sufficiently large so that
b < kn+1. Then the integer |kna − hnb| would lie between 0 and 1, which is
impossible. ��
Lemma 2.1.8. Let θ = 〈a0, a1, a2, . . . 〉 be a simple continued fraction. Then
a0 = [θ]. Furthermore, if θ1 denotes 〈a1, a2, a3, . . . 〉, then θ = a0 + 1/θ1.

Proof. By Theorem 2.1.6 we see that r0 < θ < r1, that is a0 < θ < a0 + 1/a1.
Now a1 ≥ 1, so we have a0 < θ < a0 + 1, and hence a0 = [θ]. Also

θ = lim
n→∞〈a0, a1, . . . , an〉 = lim

n→∞

(
a0 +

1

〈a1, . . . , an〉

)

= a0 +
1

lim
n→∞〈a1, . . . , an〉

= a0 +
1

θ1
.

��
Theorem 2.1.9. Two distinct infinite simple continued fractions converge to differ-
ent values.

Proof. Let us suppose that 〈a0, a1, a2, . . . 〉 = 〈b0, b1, b2, . . . 〉 = θ. Then by
Lemma 2.1.8, [θ] = a0 = b0 and

θ = a0 +
1

〈a1, a2, . . . 〉
= b0 +

1

〈b1, b2, . . . 〉
.

Hence 〈a1, a2, . . . 〉 = 〈b1, b2, . . . 〉. Repetition of the argument gives a1 = b1, and
so by induction an = bn for all n. ��
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2.1.4 Irrational Numbers

We have shown that any infinite simple continued fraction represents an irrational
number. Conversely, if we begin with an irrational number ξ, or ξ0, we can expand
it into an infinite simple continued fraction. To do this we define a0 = [ξ0], ξ1 =
1/(ξ0−a0), and next a1 = [ξ1], ξ2 = 1/(ξ1−a1), and so by an inductive definition

ai = [ξi], ξi+1 =
1

ξi − ai
. (2.1.7)

The ai are integers by definition, and the ξi are all irrational, since the irrationality
of ξ1 is implied by that of ξ0, that of ξ2 by that of ξ1, and so on. Furthermore, ai ≥ 1
for i ≥ 1 because ai−1 = [ξi−1] and the fact that ξi−1 is irrational implies that

ai−1 < ξi−1 < 1 + ai−1, 0 < ξi−1 − ai−1 < 1,

ξi =
1

ξi−1 − ai−1
> 1, ai = [ξi] ≥ 1.

Next we use repeated application of (2.1.7) in the form ξi = ai + 1/ξi+1 to get
the chain

ξ = ξ0 = a0 +
1

ξ1
= 〈a0, ξ1〉

=

〈
a0, a1 +

1

ξ2

〉
= 〈a0, a2, ξ2〉

=

〈
a0, a1, . . . , am−2, am−1 +

1

ξm

〉

= 〈a0, a1, . . . , am−1, ξm〉.

This suggests, but does not establish, that ξ is the value of the infinite continued
fraction 〈a0, a1, a2, . . . 〉 determined by the integers ai.

To prove this we use Theorem 2.1.3 to write

ξ = 〈a0, a1, . . . , an−1, ξn〉 =
ξnhn−1 + hn−2

ξnkn−1 + kn−2
(2.1.8)

with the hi and ki defined as in (2.1.6). By Theorem 2.1.5 we get

ξ − rn−1 = ξ − hn−1

kn−1
=

ξnhn−1 + hn−2

ξnkn−1 + kn−2
− hn−1

kn−1

=
−(hn−1kn−2 − hn−2kn−1)

kn−1(ξnkn−1 + kn−2)
=

(−1)n−1

kn−1(ξnkn−1 + kn−2)
. (2.1.9)
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This fraction tends to zero as n tends to infinity because the integers kn are increasing
with n, and ξn is positive. Hence ξ − rn−1 tends to zero as n tends to infinity and
then, by Definition 2.1.1,

ξ = lim
n→∞ rn = lim

n→∞〈a0, a1, . . . , an〉 = 〈a0, a1, a2, . . . 〉.

We summarize the results of the last two sections in the following theorem.

Theorem 2.1.10. Any irrational number ξ is uniquely expressible, by the procedure
that gave equations (2.1.7), as an infinite simple continued fraction 〈a0, a1, a2, . . . 〉.
Conversely, any such continued fraction determined by integers ai that are positive
for all i > 0 represents an irrational number, ξ. The finite simple continued fraction
〈a0, a1, . . . , an〉 has the rational value hn/kn = rn, and is called the nth convergent
to ξ. Equations (2.1.6) relate the hi and ki to the ai. For n = 0, 2, 4, . . . these
convergents form a monotonically sequence with ξ as a limit. Similarly, for n =
1, 3, 5, . . . the convergents form a monotonically decreasing sequence tending to
ξ. The denominators kn of the convergents are an increasing sequence of positive
integers for n > 0. Finally, with ξi defined by (2.1.7), we have 〈a0, a1, . . . 〉 =
〈a0, a1, . . . , an−1, ξn〉 and ξn = 〈an, an+1, an+2, . . . 〉.
Proof. Only the last equation is new, and it becomes obvious if we apply to ξn the
process described at the opening of this section. ��
Example 1. Let us expand

√
5 as an infinite simple continued fraction.

We see that

√
5 = 2 + (

√
5− 2) = 2 + 1/(

√
5 + 2)

and

√
5 + 2 = 4 + (

√
5− 2) = 4 + 1/(

√
5 + 2).

In view of the repetition of 1/(
√
5 + 2), we obtain

√
5 = 〈2, 4, 4, 4, . . . 〉.

2.1.5 Approximations to Irrational Numbers

Continuing to use the notation on the preceding sections, we now show that
the convergents hn/kn form a sequence of “best” rational approximations to the
irrational number ξ.

Theorem 2.1.11. We have for any n ≥ 0,

∣∣∣∣ξ − hn

kn

∣∣∣∣ < 1

knkn+1
and |ξkn − hn| <

1

kn+1
.
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Proof. The second inequality follows from the first by multiplication by kn.
By (2.1.9) and (2.1.7) we have

∣∣∣∣ξ − hn

kn

∣∣∣∣ = 1

kn(ξn+1kn + kn−1)
<

1

kn(an+1kn + kn−1)
.

Using (2.1.6), we replace an+1kn + kn−1 by kn+1 to obtain the first inequality. ��
Theorem 2.1.12. The convergents hn/kn are successively closer to ξ, that is

∣∣∣∣ξ − hn

kn

∣∣∣∣ <
∣∣∣∣ξ − hn−1

kn−1

∣∣∣∣ .

In fact the stronger inequality |ξkn − hn| < |ξkn−1 − hn−1| holds.

Proof. We use kn−1 ≤ kn to write

∣∣∣∣ξ − hn

kn

∣∣∣∣ = 1

kn
|ξkn − hn| <

1

kn
|ξkn−1 − hn−1|

≤ 1

kn−1
|ξkn−1 − hn−1| =

∣∣∣∣ξ − hn−1

kn−1

∣∣∣∣ .
Now to prove the stronger inequality we observe that an +1 > ξn by (2.1.7), and so
by (2.1.6), we have

ξnkn−1 + kn−2 < (an + 1)kn−1 + kn−2

= kn + kn−1 ≤ an+1kn + kn−1 = kn+1.

This inequality and (2.1.9) imply that

∣∣∣∣ξ − hn−1

kn−1

∣∣∣∣ = 1

kn−1(ξnkn−1 + kn−2)
>

1

kn−1kn+1
.

We multiply by kn−1 and use Theorem 2.1.11 to get

|ξkn−1 − hn−1| >
1

kn+1
> |ξkn − hn|.

��
The convergent hn/kn is the best approximation to ξ of all the rational fractions

with denominator kn or less. The following theorem states this in a different way.
For the proof we refer to [159].
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Theorem 2.1.13. If a/b is a rational number with positive denominator such that
|ξ− a/b| < |ξ− hn/kn| for some n ≥ 1, then b > kn. In fact if |ξb− a| < |ξkn − hn|
for some n ≥ 0, then b ≥ kn+1.

Theorem 2.1.14. Let ξ denote any irrational number. If there is a rational number
a/b with b ≥ 1 such that

∣∣∣ξ − a
b

∣∣∣ < 1

2b2
,

then a/b equals one of the convergents of the simple continued fraction expansion
of ξ.

Theorem 2.1.15. The nth convergent of 1/x is the reciprocal of the (n − 1)st
convergent of x if x is any real number greater than 1.

2.1.6 Best Possible Approximations

Theorem 2.1.11 provides another method of proving the following well-known
result (see [159, p. 302]). If ξ is real and irrational, there are infinitely many distinct
rational numbers a/b such that

∣∣∣ξ − a
b

∣∣∣ < 1

b2
.

Indeed, from Theorem 2.1.11 we can replace kn+1 by the smaller integer kn to
get the weaker, but still correct, inequality

∣∣∣∣ξ − hn

kn

∣∣∣∣ < 1

k2n
.

We can also use continued fractions to get different proofs of the following result of
Hurwitz [159, pp. 304–305]:

Given an irrational number ξ, there exist infinitely many different rational
numbers h/k such that

∣∣∣∣ξ − h
k

∣∣∣∣ < 1√
5k2

and the constant
√
5 is the best possible. The following auxiliary result is a simple

consequence of the sign of the quadratic function.
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Lemma 2.1.16. If x is real, x > 1, and x + x−1 <
√
5, then x <

1

2
(
√
5 + 1) and

x−1 >
1

2
(
√
5− 1).

Theorem 2.1.17 (Hurwitz). Given any irrational number ξ, there exist infinitely
many rational numbers h/k such that

∣∣∣∣ξ − h
k

∣∣∣∣ < 1√
5k2

. (2.1.10)

Proof. The idea is to establish that, of every three consecutive convergents of
the simple continued fraction expansion of ξ, at least one satisfies the inequality
(2.1.10).

Let qn denote kn/kn−1. We first prove that

qj + q−1
j <

√
5 (2.1.11)

if (2.1.10) is false for both h/k = hj−1/kj−1 and h/k = hj/kj. Suppose (2.1.10) is
false for these two values of h/k. We have

∣∣∣∣ξ − hj−1

kj−1

∣∣∣∣+
∣∣∣∣ξ − hj

kj

∣∣∣∣ ≥ 1√
5k2j−1

+
1√
5k2j

.

But ξ lies between hj−1/kj−1 and hj/kj and hence we find, using Theorem 2.1.5, that

∣∣∣∣ξ − hj−1

kj−1

∣∣∣∣+
∣∣∣∣ξ − hj

kj

∣∣∣∣ =
∣∣∣∣hj−1

kj−1
− hj

kj

∣∣∣∣ = 1

kj−1kj
.

Combining these results we get

kj

kj−1
+

kj−1

kj
≤

√
5.

Since the left side is rational we actually have a strict inequality, and (2.1.11)
follows.

Now suppose (2.1.10) is false for h/k = hi/ki, i = n − 1, n, n + 1. We then have

(2.1.11) for both j = n and j = n+1. By Lemma 2.1.16 we see that q−1
n >

1

2
(
√
5−1)

and qn+1 <
1

2
(
√
5 + 1), and, by (2.1.6) we find qn+1 = an+1 + q−1

n . This gives us

1

2
(
√
5 + 1) > qn+1 = an+1 + q−1

n > an+1 +
1

2
(
√
5− 1)

≥ 1 +
1

2
(
√
5− 1) =

1

2
(
√
5 + 1)

and this is a contradiction. ��
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Theorem 2.1.18. The constant
√
5 in Theorem 2.1.17 is best possible, i.e.,

Theorem 2.1.17 does not hold if
√
5 is replaced by any larger value.

Proof. It suffices to exhibit an irrational number ξ for which
√
5 is the largest

possible constant. Consider the irrational ξ whose continued fraction expansion is
〈1, 1, 1, . . . 〉. We see that

ξ = 1 +
1

〈1, 1, . . . 〉 = 1 +
1

ξ
, ξ2 = ξ + 1, ξ =

1

2
(
√
5 + 1).

Using (2.1.7) we can prove by induction that ξi = (
√
5 + 1)/2 for all i ≥ 0, for

if ξi = (
√
5 + 1)/2 then

ξi+1 = (ξi − ai)
−1 =

(
1

2
(
√
5 + 1)− 1

)−1

=
1

2
(
√
5 + 1).

A simple calculation yields h0 = k0 = k1 = 1, h1 = k2 = 2. Equation (2.1.6)
becomes hi = hi−1 + hi−2, ki = ki−1 + ki−2, and so by induction kn = hn−1 for
n ≥ 1. Hence we have

lim
n→∞

kn−1

kn
= lim

n→∞
kn−1

hn−1
=

1

ξ
=

√
5− 1

2

lim
n→∞

(
ξn+1 +

kn−1

kn

)
=

√
5 + 1

2
+

√
5− 1

2
=

√
5.

If c is any constant exceeding
√
5, then

ξn+1 +
kn−1

kn
> c

holds for only a finite number of values of n. Thus, by (2.1.9),

∣∣∣∣ξ − hn

kn

∣∣∣∣ = 1

k2n(ξn+1 + kn−1/kn)
<

1

ck2n

holds for only a finite number of values of n. Thus there are only a finite number of
rational numbers h/k satisfying |ξ − h/k| < 1/(ck2), because any such h/k is one
of the convergents to ξ by Theorem 2.1.14. ��

2.1.7 Periodic Continued Fractions

An infinite simple continued fraction 〈a0, a1, a2, . . . 〉 is said to be periodic if there is
an integer n such that ar = an+r for all sufficiently large integers r. Thus a periodic
continued fraction can be written in the form
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〈b0, b1, b2, . . . , bj, a0, a1, . . . , an−1, a0, a1, . . . , an−1, . . . 〉
= 〈b0, b1, b2, . . . , bj, a0, a1, . . . , an−1〉 (2.1.12)

where the bar over the a0, a1, . . . , an−1 indicates that this block of integers is
repeated indefinitely. For example 〈2, 3〉 denotes 〈2, 3, 2, 3, 2, 3, . . . 〉 and its value
is easily computed. Writing θ for 〈2, 3〉 we have

θ = 2 +
1

3 +
1

θ

.

This is a quadratic equation in θ, and we discard the negative root to obtain the value
θ = (3+

√
15)/3. As a second example consider 〈4, 1, 2, 3〉. Calling this ξ, we have

ξ = 〈4, 1, θ〉, with θ as above, and so

ξ = 4 + (1 + θ−1)−1 = 4 +
θ

θ + 1
=

29 +
√
15

7
.

These two examples illustrate the following result (see [159]).

Theorem 2.1.19. Any periodic simple continued fraction is a quadratic irrational
number, and conversely.

Proof. Let us write ξ for the periodic continued fraction of (2.1.12) and θ for its
purely periodic part,

θ = 〈a0, a1, . . . , an−1〉 = 〈a0, a1, . . . , an−1, θ〉.

Then equation (2.1.8) gives

θ =
θhn−1 + hn−2

θkn−1 + kn−2

and this is a quadratic equation in θ. Hence θ is either a quadratic irrational number
or a rational number, but the latter is ruled out by Theorem 2.1.7. Now ξ can be
written in terms on θ,

ξ = 〈b0, b1, . . . , bj, θ〉 =
θm + m′

θq + q′

where m′/q′ and m/q are the last two convergents to 〈b0, b1, . . . , bj〉. But θ is of the
form (a+

√
b)/c, and hence ξ is of similar form because, as with θ, we can rule out

the possibility that ξ is rational.
To prove the converse, let us begin with any quadratic irrational ξ, or ξ0, of the

form ξ = ξ0 = (a +
√

b)/c, with integers a, b, c > 0, c �= 0. The integer b is not a
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perfect square since ξ is irrational. We multiply numerator and denominator by |c|
to get

ξ0 =
ac +

√
bc2

c2
or ξ0 =

−ac +
√

bc2

−c2

according as c is positive or negative. Thus we can write ξ in the form

ξ0 =
m0 +

√
d

q0

where q0|(d − m2
0), d,m0 and q0 are integers, q0 �= 0, d not a perfect square.

By writing ξ0 in this form we can get a simple formulation of its continued fraction
expansion 〈a0, a1, a2, . . . 〉. We will prove that the equations

ai = [ξi], ξi =
mi +

√
d

qi

mi+1 = aiqi − mi, qi+1 =
d − m2

i+1

qi
(2.1.13)

define infinite sequences of integers mi, qi, ai, and irrationals ξi in such a way that
equations (2.1.7) hold, and hence we will have the continued fraction expansion
of ξ0.

In the first step, we start with ξ0,m0, q0 as determined above, and we let a0 =
[ξ0]. If ξi,mi, qi, ai are known, then we take mi+1 = aiqi−mi, qi+1 = (d−m2

i+1)/qi,
ξi+1 = (mi+1 +

√
d)/qi+1, ai+1 = [ξi+1]. That is, (2.1.13) actually does determine

sequences ξi,mi, qi, ai.
Now we use induction to prove that the mi and qi are integers such that qi �= 0

and qi|(d − m2
i ).

Next we can verify that

ξi − ai =
−aiqi + mi +

√
d

qi
=

√
d − mi+1

qi
=

d − m2
i+1

qi(
√

d + mi+1)

=
qi+1√

d + mi+1

=
1

ξi+1

which verifies (2.1.7) and so we have proved that ξ0 = 〈a0, a1, a2, . . . 〉, with ai

defined by (2.1.13).
Let ξ′i = (mi −

√
d)/qi, the conjugate of ξi. We get the equation

ξ′0 =
ξ′nhn−1 + hn−2

ξ′nkn−1 + kn−2
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by taking conjugates in (2.1.8). Solving for ξ′n we obtain

ξ′n = −kn−2

kn−1

(
ξ′0 − hn−2/kn−2

ξ′0 − hn−1/kn−1

)
.

As n tends to infinity, both hn−1/kn−1 and hn−2/kn−2 tend to ξ0, which is different
from ξ′0, and hence the fraction in parentheses tends to 1. Thus for sufficiently large
n, say n > N where N is fixed, the fraction in parentheses is positive, and ξ′n is
negative. But ξn is positive for n ≥ 1 and hence ξn − ξ′n > 0 and n > N. Applying
(2.1.13) we see that this gives 2

√
d/qn > 0 and hence qr > 0 for n > N.

It also follows from (2.1.13) that

qnqn+1 = d − m2
n+1 ≤ d, qn ≤ qnqn+1 ≤ d

m2
n+1 < m2

n+1 + qnqn+1 = d, |mn+1| <
√

d

for n > N. Since d is a fixed positive integer we conclude that qn and mn+1 can
assume only a fixed number of possible values for n > N. Hence the ordered pairs
(mn, qn) can assume only a fixed number of possible pair values for n > N, and so
there are distinct integers j and k such that mj = mk and qj = qk. We can suppose
we have chosen j and k so that j < k. By (2.1.13) this implies that ξj = ξk and hence
that

ξ0 = 〈a0, a1, . . . , aj−1, aj, aj+1, . . . , ak−1〉,

and we are done. ��
The following result describes the subclass of real quadratic irrationals that

have purely periodic continued fraction expansions, that is, expressions of the form
〈a0, a1, . . . , an〉 (see [159]).

Theorem 2.1.20. The continued fraction expansion of the real quadratic irrational
number ξ is purely periodic if and only if ξ > 1 and −1 < ξ′ < 0, where ξ′ denotes
the conjugate of ξ.

Proof. First we assume that ξ > 1 and −1 < ξ′ < 0. As usual, we write ξ0 for ξ
and take conjugates in (2.1.7) to obtain

1

ξ′i+1

= ξ′i − ai. (2.1.14)

Now ai ≥ 1 for all i, even for i = 0, since ξ0 > 1. Hence if ξ′i < 0, then 1/ξ′i+1 <
−1, and we have −1 < ξ′i+1 < 0. Since −1 < ξ′0 < 0, we see, by mathematical
induction, that −1 < ξ′i < 0 holds for all i ≥ 0. Then, since ξ′i = ai + 1/ξ′i+1 by
(2.1.14), we have
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0 < − 1

ξ′i+1

− ai < 1, ai =

[
− 1

ξ′i+1

]
.

Now ξ is a quadratic irrational, so ξj = ξk for some integers j and k with 0 < j < k.
Then we have ξ′j = ξ′k and

aj−1 =

[
− 1

ξ′j

]
=

[
− 1

ξ′k

]
= ak−1

ξj−1 = aj−1 +
1

ξj
= ak−1 +

1

ξk
= ξk−1.

Thus ξj = ξk implies ξj−1 = ξk−1. A j-fold iteration of this implication gives us
ξ0 = ξk−j, and we have

ξ = ξ0 = 〈a0, a1, . . . , ak−j−1〉.

To prove the converse, let us assume that ξ is purely periodic, say ξ =
〈a0, a1, . . . , an−1〉. where a0, a1, . . . , an−1 are positive integers. Then ξ > a0 ≥ 1.
Also, by (2.1.8) we have

ξ = 〈a0, a1, . . . , an−1, ξ〉 =
ξhn−1 + hn−2

ξkn−1 + kn−2
.

Thus ξ satisfies the equation

f (x) = x2kn−1 + x(kn−2 − hn−1)− hn−2 = 0.

This quadratic equation has two roots, ξ and its conjugate ξ′. Since ξ > 1, we
need to only prove that f (x) has a root between −1 and 0 in order to establish that
−1 < ξ′ < 0. We will do this by showing that f (−1) and f (0) have opposite signs.
First we observe that f (0) = −hn−2 < 0 by (2.1.6), since ai > 0 for i ≥ 0. Next we
see that for n ≥ 1

f (−1) = kn−1 − kn−2 + hn−1 − hn−2

= (kn−2 + hn−2)(an−1 − 1) + kn−3 + hn−3 ≥ kn−3 + hn−3 > 0.

��
We now turn to the continued fraction expansion of

√
d for a positive integer

d not a perfect square. We get at this by considering the closely related irrational
number

√
d + [

√
d]. This number satisfies the conditions of Theorem 2.1.20, and so

its continued fraction is purely periodic,

√
d + [

√
d] = 〈a0, a1, . . . , ar−1〉 = 〈a0, a1, . . . , ar−1, a0〉. (2.1.15)
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We can suppose that we have chosen r to be the smallest integer for which
√

d +
[
√

d] has an expansion of the form (2.1.15). Now we note that ξi = 〈ai, ai+1, . . . 〉
is purely periodic for all values of i, and that ξ0 = ξr = ξ2r = . . . . Furthermore,
ξ1, ξ2, . . . , ξr−1 are all different from ξ0, since otherwise there would be a shorter
period. Thus ξi = ξ0 if and only if i is of the form mr.

Now we can start with ξ0 =
√

d + [
√

d], q0 = 1, m0 = [
√

d] in (2.1.13) because
1|(d − [

√
d]2). Then, for all j ≥ 0, we have

mjr +
√

d
qjr

= ξjr = ξ0 =
m0 +

√
d

q0
= [

√
d] +

√
d

mjr − qjr[
√

d] = (qjr − 1)
√

d (2.1.16)

and hence qjr = 1, since the left side is rational and
√

d is irrational. Moreover qi =

1 for no other values of the subscript i. For qi = 1 implies ξi = mi +
√

d, but ξi has a
purely periodic expansion so that, by Theorem 2.1.20 we have −1 < mi −

√
d < 0,√

d − 1 < mi <
√

d, and hence mi = [
√

d]. Thus ξi = ξ0 and i is a multiple of r.
We also establish that qi = −1 does not hold for any i. For qi = −1 implies

ξi = −mi −
√

d by (2.1.13), and by Theorem 2.1.20 we would have −mi −
√

d > 1
and −1 < −mi +

√
d < 0. But this implies

√
d < mi < −

√
d − 1, which is

impossible.
Noting that a0 = [

√
d + [

√
d]] = 2[

√
d], we can now turn to the case ξ =

√
d.

Using (2.1.15) we have

√
d = −[

√
d] + (

√
d + [

√
d])

= −[
√

d] + 〈2[
√

d], a1, a2, . . . , ar−1, a0〉

= 〈[
√

d], a1, a2, . . . , ar−1, a0〉

with a0 = 2[
√

d].
When we apply (2.1.13) to

√
d+ [

√
d], q0 = 1, m0 = [

√
d] we have a0 = 2[

√
d],

m1 = [
√

d], q1 = d − [
√

d]2. But we can also apply (2.1.13) to
√

d with q0 = 1,
m0 = 0, and we find a0 = [

√
d], m1 = [

√
d], q1 = d − [

√
d]2. The value of

a0 is different, but the values of m1, and of q1, are the same in both cases. Since
ξi = (mi +

√
d)/qi we see that further application of (2.1.13) yields the same values

for the ai, for the mi, and for the qi, in both cases. In other words, the expansions
of

√
d + [

√
d] and

√
d differ only in the values of a0 and m0. Stating our results

explicitly for the case
√

d, we have the following theorem.

Theorem 2.1.21. If the positive integer d is not a perfect square, the simple
continued fraction expansion of

√
d has the form

√
d = 〈a0, a1, a2, . . . , ar−1, 2a0〉
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with a0 = [
√

d]. Furthermore, with ξ0 =
√

d, q0 = 1, m0 = 0, in equations
(2.1.13), we have qi = 1 if and only if r|i, and qi = −1 holds for no subscript i.
Here r denotes the length of the shortest period in the expansion of

√
d.

2.2 Units and Norms in Quadratic Rings

2.2.1 Quadratic Rings

Let R be the commutative ring (see [42] and [54])

R = {m + n
√

D : m, n ∈ Z} (2.2.1)

where D is a positive that is not a perfect square, endowed with the standard
operations induced from the ring of integers (Z,+, ·). An element ε ∈ R is called a
unit in R if it is inversable, that is there exists ε1 ∈ R such that εε1 = ε1ε = 1. Two
elements α, β ∈ R are said to be divisibility associated if there exists a unit ε ∈ R
such that α = εβ. We will adopt the notation α ∼ β to indicate that α and β have
the property above. It is not difficult to see that “∼” is an equivalence relation.

If μ ∈ R, μ = a+ b
√

D, we will denote by μ the element μ = a− b
√

D and will
call it the conjugate of μ.

2.2.2 Norms in Quadratic Rings

Let us denote by N : R → Z the following function: if μ = a + b
√

D, then

N(μ) = a2 − Db2 = μ · μ. (2.2.2)

Proposition 2.2.1 (N Is Multiplicative). For all μ1, μ2 ∈ R, the following relation
holds:

N(μ1μ2) = N(μ1)N(μ2).

Proof. If μ1 = m1 + n1
√

D and μ2 = m2 + n2
√

D, then we have

μ1μ2 = (m1m2 + Dn1n2) + (m1n2 + m2n1)
√

D

and

N(μ1μ2) = (m1m2 + Dn1n2)
2 − D(m1n2 + m2n1)

2

= m2
1m2

2 + D2n21n22 − Dm2
1n22 − Dm2

2n21 = m2
1(m

2
2 − Dn22)− Dn21(m

2
2 − dn22)

= (m2
1 − Dn21)(m

2
2 − Dn22) = N(μ1)N(μ2).

��
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Proposition 2.2.2. An element ε ∈ R is an unit in R if and only if N(ε) = ±1.

Proof. If ε is a unit in R, then there exists ε1 ∈ R such that εε1 = 1. Then from
Proposition 2.2.1, N(ε)N(ε1) = N(1) = 12 − D02 = 1. Since N(ε) and N(ε1) are
integers, it follows that N(ε) = ±1. Conversely, if N(ε) = ±1, then (2.2.2) yields
εε = ±1. If N(ε) = 1, then εε = 1 and if N(ε) = −1, then ε(−ε) = 1. Both cases
show that ε is a unit in R. ��
Theorem 2.2.3. For any integer a, the cardinal number of the set

S = {α ∈ R : N(α) = a and α �∼ β for all β ∈ R, β �= α} (2.2.3)

is finite and does not exceed a2.

Proof. If a = 0, then the cardinal number of S is 1. We may assume now that a is
nonzero. Let α, β ∈ S such that α �= β and α ≡ β(mod a). This means that there
exists γ ∈ R such that α− β = aγ.

From the definition of the set S it follows that a = N(α) = N(β), hence α−β =
aγ = N(α)γ = N(β)γ.

Now embed the ring R into the field Q(
√

D) = {r + s
√

D : r, s ∈ Q}. Since
N(α) = N(β) = a �= 0, we have α, β �= 0 and

α

β
=

β + aγ
β

= 1 +
N(β)γ

β
= 1 +

ββγ

β
= 1 + βγ

and

β

α
=

α− aγ
α

= 1− N(α)γ

α
= 1− ααγ

α
= 1− αγ.

The computations above show that

α

β
− β

α
= (β − α)γ

hence
α

β
,
β

α
∈ R and α ∼ β, in contradiction with the definition of S. It follows that

α ≡ β(mod a), for all α, β ∈ S.
On the other hand, it is not difficult to see that for all b in R there exist positive

integers m, n such that 0 ≤ m < |a|, 0 ≤ n < |a|, and b ≡ m + n
√

D(mod a).
The considerations above show that the mapping

S → {0, 1, 2, . . . , |a| − 1} × {0, 1, 2, . . . , |a| − 1}

given by α → (m, n), where 0 ≤ m, n ≤ |a| − 1, α ≡ m + n
√

D(mod a), is
one-to-one.

This means that the set S is finite and its cardinal number is less or equal to a2.
��
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Proposition 2.2.4 (The Conjugate Is Multiplicative). For all μ1, μ2 ∈ R, the
following relation holds:

μ1μ2 = μ1μ2. (2.2.4)

Proof. If μ1 = m1 + n1
√

D and μ2 = m2 + n2
√

D, then

μ1μ2 = (m1m2 + Dn1n2) + (m1n2 + m2n1)
√

D

and

μ1μ2 = (m1m2 + Dn1n2)− (m1n2 + m2n1)
√

D

= (m1 − n1
√

D)(m2 − n2
√

D) = μ1μ2.

��
Remark. Proposition 2.2.4 gives another proof of the fact that N is multiplicative.
Indeed, we have

N(μ1μ2) = (μ1μ2)(μ1μ2) = (μ1μ2)(μ1μ2) = (μ1μ1)(μ2μ2) = N(μ1)N(μ2).



Chapter 3
Pell’s Equation

3.1 History and Motivation

Euler, after a cursory reading of Wallis’s Opera Mathematica, mistakenly attributed
the first serious study of nontrivial solutions to equations of the form x2 −Dy2 = 1,
where x �= 1 and y �= 0, to John Pell. However, there is no evidence that
Pell, who taught at the University of Amsterdam, had ever considered solving
such equations. They should be probably called Fermat’s equations, since it was
Fermat who first investigated properties of nontrivial solutions of such equations.
Nevertheless, Pellian equations have a long and rich history and can be traced back
to the Greeks. For many details we refer to the books [75] and [212] (see also the
reference [22, pp. 118–120]). Theon of Smyrna used x/y to approximate

√
2, where

x and y were integral solutions to x2 − 2y2 = 1. In general, if x2 = Dy2 + 1, then
x2/y2 = D + 1/y2. Hence, for y large, x/y is a good approximation of

√
D, a fact

well known to Archimedes.
The famous Archimedes’s problema bovinum can be reduced to a such equation

and it took two thousand years to solve (see [65]).
More precisely, it is reduced to the Pell’s equation x2 − 4729494y2 = 1. The

least positive solution, for which y has 41 digits, was discovered by Carl Amthov in
1880. For a nice presentation of the story of this problem we refer to the book [212].

In Arithmetica, Diophantus asks for rational solutions to equations of the type
x2 − Dy2 = 1. In the case where D = m2 + 1, Diophantus offered the integral
solution x = 2m2 + 1 and y = 2m. Pell type equations are also found in Hindu
mathematics. In the fourth century, the Indian mathematician Baudhayana noted
that x = 577 and y = 408 is a solution of x2 − 2y2 = 1 and used the fraction
577

408
to approximate

√
2. In the seventh century, Brahmagupta considered solutions

to the Pell’s equation x2 − 92y2 = 1, the smallest solution being x = 1151 and
y = 120. In the twelfth century, the Hindu mathematician Bhaskara found the least
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positive solution to the Pell’s equation x2 − 61y2 = 1 to be x = 226153980 and
y = 1766319049.

In 1657, Fermat stated without proof that if D is positive and not a perfect square,
then Pell’s equation has an infinite number of solutions. For if (x, y) is a solution to
x2 − Dy2 = 1, then we have 12 = (x2 − Dy2)2 = (x2 + Dy)2 − (2xy)2D. Thus,
(x2 + Dy, 2xy) is also a solution to x2 − Dy2 = 1. Therefore, if Pell’s equation has
a solution, then it has infinitely many.

In 1657, Fermat challenged William Brouncker and John Wallis to find integral
solutions to the equations x2 − 151y2 = 1 and x2 − 313y2 = −1. He cautioned
them not to submit rational solutions for even the lowest type of arithmetician could
devise such answers. Wallis replied with (1728148040, 140634693) as a solution to
the first equation.

In 1770 Euler was looking for positive integers m and n such that n(n + 1)/2 =
m2. To accomplish this, he multiplied both sides of the latter equation by 8 and
added 1 to obtain (2n + 1)2 = 8m2 + 1. He let x = 2n + 1 and y = 2m so that
x2 − 2y2 = 1. Solutions to this Pell’s equation produce square-triangular numbers
since we have

(
x − 1

2

)(
x − 1

2
+ 1

)

2
=
( y
2

)2
.

That is, the

(
x − 1

2

)th

triangular number equals the
( y
2

)th
square number. For

example, from the solution x = 3 and y = 2, it follows that m = n = 1, yielding
the square-triangular number 1. A natural question arises. Does the method generate
all square-triangular numbers? If one is more methodical about how one obtains the
solutions, one can see that it does.

Since 1 = x2 − 2y2 = (x − y
√
2)(x + y

√
2), it follows that

1 = 12 = (x − y
√
2)2(x + y

√
2)2

= ((2y2 + x2)− 2xy
√
2)((2y2 + x2) + 2xy

√
2)

= (2y2 + x2)2 − 2(2xy)2.

Thus, if (x, y) is a solution to 1 = x2 − 2y2, then so is (2y2 + x2, 2xy). For example,
the solution (3, 2) generates the solution

(2 · 22 + 32, 2 · 2 · 3) = (17, 12).

The solution (17, 12) generates the solution

(2 · 122 + 172, 2 · 12 · 17) = (577, 408).
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The square-triangular number generated by the solution (2y2+ x2, 2xy) to 1 = x2−
2y2 is distinct from the square-triangular number generated by the solution (x, y).
Therefore, there exist an infinite number of square-triangular numbers. Lagrange, in
a series of papers presented to the Berlin Academy between 1768 and 1770, showed
that a similar procedure will determine all solutions to x2 = Dy2 + 1, where D is
positive and nonsquare. In 1766, Lagrange proved that the equation x2 = Dy2 + 1
has an infinite number of solutions whenever D is positive and not square.

The Diophantine quadratic equation

ax2 + bxy + cy2 + dx + ey + f = 0 (3.1.1)

with integral coefficients a, b, c, d, e, f reduces in its main case to a Pell-type
equation. Next, we will sketch the general method of reduction. The equation (3.1.1)
represents a conic in the xOy Cartesian plane, therefore solving (3.1.1) in integers
means finding all lattice points situated on this conic. We will solve the equation
(3.1.1) by reducing the general equation of the conic to its canonical form. Following
the ideas from [13, 14, 160, 168] we introduce the discriminant of the equation
(3.1.1) by Δ = b2 − 4ac. When Δ < 0, the conic defined by (3.1.1) is an ellipse
and in this case the given equation has only a finite number of solutions. If Δ = 0,
then the conic given by (3.1.1) is a parabola. If 2ae − bd = 0, then the equation
(3.1.1) becomes (2ax + by + d)2 = d2 − 4af and it is not difficult to solve. In
the case 2ae − bd �= 0, by performing the substitutions X = 2ax + by + d and
Y = (4ae − 2bd)y + 4af − d2, the equation (3.1.1) reduces to X2 + Y = 0 which
is also easy to solve. The most interesting case is Δ > 0, when the conic defined
by (3.1.1) is a hyperbola. Using a sequence of substitutions, the equation (3.1.1)
reduces to a general Pell-type equation

X2 − DY2 = N. (3.1.2)

To illustrate the process described above, we will consider the equation 2x2 −
6xy+3y2 = −1 (Berkely Math. Circle 2000–2001 Monthly Contest #4, Problem 4,
[22, p. 120]). We notice that Δ = 12 > 0, hence the corresponding conic is a
hyperbola. The equation can be written as x2−3(y−x)2 = 1 and by performing the
substitutions X = x and Y = y−x, we reduce it to the Pell’s equation X2−3Y2 = 1.

Finally, let us mention that other authors reduce the equation (3.1.1) to the form
Ax2 + Bxy + Cy2 = k (see, for example [203]). Formulas yielding an infinite set of
integral solutions of the Diophantine equation x2 + bx + c = ky2 are given in [80].

3.2 The General Solution by Elementary Methods

We will present an elementary approach to solving the Pell’s equation due to
Lagrange (see, for example, [93, 112, 125, 126, 191, 198] and [212]). We will follow
the presentation of our papers [13–15].
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Theorem 3.2.1. If D is a positive integer that is not a perfect square, then the
equation

u2 − Dv2 = 1 (3.2.1)

has infinitely many solutions in positive integers and the general solution is given
by (un, vn)n≥0,

un+1 = u1un + Dv1vn, vn+1 = v1un + u1vn, (3.2.2)

where (u1, v1) is its fundamental solution, i.e., the minimal solution different from
the trivial solution (u0, v0) = (1, 0).

Proof. First, we will prove that the equation (3.2.1) has a fundamental solution.
Let c1 be an integer greater than 1. We will show that there exist integers t1,w1 ≥

1 such that

|t1 − w1

√
D| < 1

c1
, w1 ≤ c1.

Indeed, considering lk = [k
√

D + 1], k = 0, . . . , c1, yields 0 < lk − k
√

D ≤
1, k = 0, . . . , c1, and since

√
D is an irrational number, it follows that lk′ �= lk′′

whenever k′ �= k′′.
There exist i, j, p ∈ {0, 1, 2, . . . , c1}, i �= j, p �= 0, such that

p − 1

c1
< li − i

√
D ≤ p

c1
and

p − 1

c1
< lj − j

√
D ≤ p

c1

because there are c1 intervals of the form

(
p − 1

c1
,

p
c1

)
, p = 1, . . . , c1 and c1 + 1

numbers of the form lk − k
√

D, k = 0, . . . , c1.

From the inequalities above it follows that |(li − lj) − (j − i)
√

D| <
1

c1
and

setting |li − lj| = t1 and |j − i| = w1 yields |t1 − w1

√
D| < 1

c1
and w1 ≤ c1.

Multiplying this inequality by t1 + w1

√
D < 2w1

√
D + 1 gives

|t21 − Dw2
1| < 2

w1

c1

√
D +

1

c1
< 2

√
D + 1.

Choosing a positive integer c2 > c1 such that |t1 − w1

√
D| > 1

c2
, we obtain

positive integers t2,w2 with the properties

|t22 − Dw2
2| < 2

√
D + 1 and |t1 − t2|+ |w1 − w2| �= 0.
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By continuing this procedure, we find a sequence of distinct pairs (tn,wn)n≥1

satisfying the inequalities |t2n−Dw2
n | < 2

√
D+1 for all positive integers n. It follows

that the interval (−2
√

D− 1, 2
√

D+1) contains a nonzero integer k such that there
exists a subsequence of (tn,wn)n≥1 satisfying the equation t2 − Dw2 = k. This
subsequence contains at least two pairs (ts,ws), (tr,wr) for which ts ≡ tr(mod |k|),
ws ≡ wr(mod |k|), and tswr − trws �= 0, otherwise ts = tr and ws = wr, in
contradiction with |ts − tr|+ |ws − wr| �= 0 see [21] and [23] for general properties
of congruences).

Let t0 = tstr − Dwswr and let w0 = tswr − trws. Then

t20 − Dw2
0 = k2. (3.2.3)

On the other hand, t0 = tstr − Dwswr ≡ t2s − Dw2
0 ≡ 0(mod |k|), and it follows

immediately that w0 ≡ 0(mod |k|). The pair (u, v), where u =
t0
|k| , v =

w0

|k| is a

nontrivial solution to Pell’s equation (3.2.1).
Let (u1, v1) be the least such solution, i.e., with u (and implicitly v) minimal.
We show now that the pair (un, vn) defined by (3.2.2) satisfies Pell’s equation

(3.2.1). We proceed by induction with respect to n. Clearly, (u1, v1) is a solution to
the equation (3.2.1). If (un, vn) is a solution to this equation, then

u2n+1 − Dv2n+1 = (u1un + Dv1vn)
2 − D(v1un + u1vn)

2

= (u21 − Dv21)(u
2
n − Dv2n ) = 1,

i.e., the pair (un+1, vn+1) is also a solution to the equation (3.2.1).
It is not difficult to see that for all positive integer n,

un + vn

√
D = (u1 + v1

√
D)n. (3.2.4)

Clearly, (3.2.4) also yields the trivial solution (u0, v0) = (1, 0).
Let zn = un + vn

√
D = (u1 + v1

√
D)n and note that z0 < z1 < · · · < zn < . . . .

We will prove now that all solutions to the equation (3.2.1) are of the form (3.2.4).
Indeed, if the equation (3.2.1) had a solution (u, v) such that z = u + v

√
D is not of

the form (3.2.4), then zm < z < zm+1 for some integer m. Then 1 < (u+v
√

D)(um−
vm

√
D) < u1 + v1

√
D, and therefore 1 < (uum − Dvvm) + (umv − uvm)

√
D <

u1+v1
√

D. On the other hand, (uum−Dvvm)
2−D(umv−uvm)

2 = (u2−Dv2)(u2m−
Dv2m) = 1, i.e., (uum−Dvvm, umv−uvm) is a solution of (3.2.1) smaller than (u1, v1),
in contradiction with the assumption that (u1, v1) is the minimal nontrivial solution.

��
Remarks. 1) The relations (3.2.1) could be written in the following useful matrix

form

(
un+1

vn+1

)
=

(
u1 Dv1
v1 u1

)(
un

vn

)
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from where

(
un

vn

)
=

(
u1 Dv1
v1 u1

)n (
u0
v0

)
. (3.2.5)

If

(
u1 Dv1
v1 u1

)n

=

(
an bn

cn dn

)

then it is well-known that each of an, bn, cn, dn is a linear combination of λn
1, λ

n
2,

where λ1, λ2 are the eigenvalues of the matrix

(
u1 Dv1
v1 u1

)
. By using (3.2.5),

after an easy computation it follows that

un =
1

2
[(u1 + v1

√
D)n + (u1 − v1

√
D)n],

vn =
1

2
√

D
[(u1 + v1

√
D)n − (u1 − v1

√
D)n]

(3.2.6)

2) The solutions of Pell’s equation given in one of the forms (3.2.4) or (3.2.6) may
be used in the approximation of the square roots of positive integers that are not
perfect squares. Indeed, if (un, vn) are the solutions of the equation (3.2.1), then

un − vn

√
D =

1

un + vn

√
D

and so

un

vn
−
√

D =
1

vn(un + vn

√
D)

<
1√
Dv2n

<
1

v2n
.

It follows that

lim
n→∞

un

vn
=

√
D (3.2.7)

i.e., the fractions
un

vn
approximate

√
D with an error less than

1

v2n
.

3) Consider the plane transformation T : R2 → R
2, given by

T(x, y) = (u1x + Dv1y, v1x + u1y),

where (u1, v1) is the fundamental solution of Pell’s equation (3.2.1). Let (Tn)n≥0

be the discrete dynamical system generated by transformation T , where Tn
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denotes the nth iteration of T . The result in Theorem 3.2.1 shows that the orbit of
point (u0, v0) of this dynamical system consists of lattice points on the hyperbola
x2 − Dy2 = 1.

4) It is not difficult to find rational solutions to equation (3.2.1). Simply divide the
relation

(r2 + D)2 − D(2r)2 = (r2 − D)2

by (r2 − D)2 to obtain

u =
r2 + D
r2 − D

, v =
2r

r2 − D
, r ∈ Q.

In the next sections we will see how we can describe all rational solutions to
(3.2.1).

5) Dirichlet in 1837 published explicit formulae giving some solutions of Pell’s
equations in terms of trigonometric functions. For example, for D = 13 he has
obtained x1 + y1

√
13 = η2, where

η =
sin

2π

13
sin

5π

13
sin

6π

13

sin
π

13
sin

3π

13
sin

4π

13

∈ Q(
√
13).

6) Concerning Pell’s equation there is the following conjecture [150]: Let p be a
prime ≡ 3 (mod 4). Consider Pell’s equation u2−pv2 = 1 and its fundamental
solution (u1, v1). Then v1 �≡ 0 (mod p).

This has been verified for all such primes p < 18000. It has been shown that
v1 �≡ 0 (mod p) if and only if E p−3

4
�≡ 0 (mod p), where the Euler numbers En

are defined by the powers series

sec t =
∞∑

n=0

En

(2n)!
t2n.

There is a similar conjecture when p ≡ 1 (mod 4).

3.3 The General Solution by Continued Fractions

The approach in this section is based on the material contained in Chapter 2,
Section 2.1. More specifically, the method we are going to present is based on
expanding

√
D into a continued fraction as in Theorem 2.1.21, with convergents

hn/kn, and with qn defined by equations (2.1.13) with ξ0 =
√

D, q0 = 1, m0 = 0.
Our presentation is based on [1, 46, 159] and [164].
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Theorem 3.3.1. If D is a positive integer not a perfect square, then h2
n − Dk2n =

(−1)n−1qn+1 for all integers n ≥ −1.

Proof. From equations (2.1.8) and (2.1.13) we have

√
D = ξ0 =

ξn+1hn + hn−1

ξn+1kn + kn−1
=

(mn+1 +
√

D)hn + qn+1hn−1

(mn+1 +
√

D)kn + qn+1kn−1

.

We simplify this equation and separate it into a rational and a purely irrational
part much as we did in (2.1.16). Each part must be zero so we get two equations,
and we can eliminate mn+1 from them. The final result is

h2n − Dk2n = (hnkn−1 − hn−1kn)qn+1 = (−1)n−1qn+1

where we used Theorem 2.1.5 in the last step. ��
Corollary 3.3.2. Taking r as the length of the period of the expansion of

√
D, as in

Theorem 2.1.21, we have for n ≥ 0,

h2nr−1 − Dk2nr−1 = (−1)nrqnr = (−1)nr.

With n even, this gives infinitely many solutions of x2 − Dy2 = 1 in integers,
provided D is positive and not a perfect square.

It can be seen that Theorem 3.3.1 gives us solutions to (3.1.2) for certain values of
N. In particular, Corollary 3.3.2 gives infinitely many solutions of x2 − Dy2 = 1 by
the use of even values nr. Of course, if r is even, all values of nr are even. If r is odd,
Corollary 3.3.2 gives infinitely many solutions to x2 − Dy2 = −1 by the use of odd
integers n ≥ 1. The next result shows that every solution to x2 − Dy2 = ±1 can be
obtained from the continued fraction expansion of

√
D. But first we make this simple

observation: Apart from such trivial solutions as x = ±1, y = 0 of x2 − Dy2 = 1,
all solutions to x2 − Dy2 = N fall into sets of four by all combinations of signs ±x,
±y. Hence it is sufficient to discuss the positive solutions x > 0, y > 0.

Theorem 3.3.3. Let D be a positive integer not a perfect square, and let the
convergents to the continued expansion of

√
D be hn/kn. Let the integer N satisfy

|N| <
√

D. Then any positive solution x = s, y = t to x2 − Dy2 = N, with
gcd(s, t) = 1, satisfies s = hn, t = kn for some positive integer n.

Proof. Let E and M be positive integers such that gcd(E,M) = 1 and E2 − ρM2 =
σ, where

√
ρ is irrational and 0 < σ <

√
ρ. Here ρ and σ are real numbers, not

necessarily integers. Then

E
M

−√
ρ =

σ

M(E + M
√
ρ)

,
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and hence we have

0 <
E
M

−√
ρ <

√
ρ

M(E + M
√
ρ)

=
1

M2(E/(M
√
ρ) + 1)

.

Also, 0 < E/M −√
ρ implies E/(M

√
ρ) > 1, and therefore

∣∣∣∣ E
M

−√
ρ

∣∣∣∣ < 1

2M2
.

By Theorem 2.1.14, E/M is a convergent in the continued fraction expansion of
√
ρ.

If N > 0, we take σ = N, ρ = D, E = s, M = t, and the theorem holds in this
case.

If N < 0, then t2 − (1/D)s2 = −N/D, and we take σ = −N/D, ρ = 1/D,
E = t, M = s. We find that t/s is a convergent in the expansion of 1/

√
D. Then

Theorem 2.1.15 shows that s/t is a convergent in the expansion of
√

D. ��
The following result is a corollary of Theorems 2.1.21, 3.3.1, and 3.3.3.

Theorem 3.3.4. All positive solutions to x2 − Dy2 = ±1 are to be found among
x = hn, y = kn, where hn/kn are the convergents of the expansion of

√
D. If r

is the period of the expansion of
√

D, as in Theorem 2.1.21 and if r is even, then
x2 − Dy2 = −1 has no solution, and all positive solutions to x2 − Dy2 = 1 are
given by x = hnr−1, y = knr−1 for n = 1, 2, 3, . . . . On the other hand, if r is
odd, then x = hnr−1, y = knr−1 give all positive solutions to x2 − Dy2 = −1 for
n = 1, 3, 5, . . . , and all positive solutions to x2 − Dy2 = 1 for n = 2, 4, 6, . . . .

The sequences of pairs (h0, k0), (h1, k1), . . . will include all positive solutions
to x2 − Dy2 = 1. Furthermore, a0 = [

√
D] > 0, so the sequence h0, h1, h2, . . . is

strictly increasing. If we let (x1, y1) denote the first solution that appears, then for
every other solution (x, y) we have x > x1, and hence y > y1 also. Having found this
least positive solution by means of continued fractions, we can find all the remaining
positive solutions by a simpler method, which is in fact similar to the second part of
the proof of Theorem 3.2.1. �

Following the same argument as in the last part of the proof in Theorem 3.2.1,
we conclude that all nonnegative solutions are given by (xn, yn) for n = 0, 1, 2, . . . ,
where xn and yn are the integers defined by xn + yn

√
D = (x1 + y1

√
D)n.

To illustrate the above method, we will consider the numerical example given
by the equation x2 − 29y2 = 1. The expansion of

√
29 is

√
29 = 〈5; 2, 1, 1, 2, 10〉,

so we have n = 5, an odd number. The first five convergents are
5

1
,
11

2
,
16

3
,
27

5
,

70

13
=

h5
k5

. But x = h5 = 70, y = k5 = 13 give x2 − 29y2 = −1. Hence, we

must move on to the next period. The next period gives the convergents
727

135
,
1524

283
,

2251

418
,
3775

701
,
9801

1820
=

h10
k10

and so by taking x = h10 = 9801, y = k10 = 1820, we

obtain the smallest solution to our equation.
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3.4 The General Solution by Quadratic Rings

The following proof uses results about quadratic rings introduced in Section 2.2. If D
is a positive integer that is not a perfect square, consider the commutative quadratic
ring R = {m + n

√
D; m, n ∈ Z} endowed with the norm N(μ) = μ · μ, where

μ = a + b
√

D and μ = a − b
√

D.
For an element μ in R, μ �= 0, we will denote by l(μ) the vector in R

2 defined by
l(μ) = (ln |μ|, ln |μ|).

The next result is fundamental for the method we are going to describe. For the
proof we will use the approach given in [171] and [95].

Theorem 3.4.1. In the ring R there exists a unit ε0 �= ±1 such that for any other
unit ε in R the relation ε = ±εk

0 holds for some integer k and some choice of signs
+ and −.

Proof. Let q be a real number such that q > 2
√

D. For all nonzero elements α in R
with |N(α)| ≤ q, we denote by Yα the set in R

2 given by

Yα = {(x, y) ∈ H : x ≥ ln |α| and y ≥ ln |α|},

where H is the plane defined by the equation x + y = ln q.
We will first prove that for all nonzero α in R the set Yα is bounded in R

2. Indeed,
if (x, y) ∈ Yα, then x ≥ ln |α| and y ≥ ln |α|. Taking into account that x + y = ln q
yields x = ln q−y ≤ ln q− ln |α| and y = ln q−x ≤ ln q− ln |α|, it follows that Yα

is contained into a rectangle in H. Moreover, if |N(α)| ≤ q, then Yα is nonempty.
Indeed, the inequality |N(α)| = |α · α| ≤ q implies ln |α| + ln |α| ≤ q, hence
Yα �= ∅.

We will show now that for any unit ε in R the following equality holds:

Yαε = Yα + l(ε).

This means that x + y = ln q, x ≥ ln |α| and y ≥ ln |α|. Let

(x1, y1) = (x, y) + l(ε) = (x + ln |ε|, y + ln |ε|).

Then

x1 + y1 = x + y + ln |ε|+ ln |ε| = x + y + ln |ε · ε| = ln q,

because x + y = ln q and |ε · ε| = |N(ε)| = 1. From Proposition 2.2.2, ε is a unit of
R if and only if N(ε) = ±1. Also

x1 = x + ln |ε| ≥ ln |α|+ ln |ε| = ln |αε|

and

y1 = y + ln |ε| ≥ ln |α|+ ln |ε| = ln |α · ε| = ln |αε|,
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because from Proposition 2.2.4 the conjugate is multiplicative. This shows that
(x1, y1) ∈ Yαε, hence we have the inclusion

Yα + l(ε) ⊆ Yαε.

For the converse inclusion consider (x1, y1) ∈ Yαε. This means that x1+y1 = ln q
and

x1 ≥ ln |αε|, y1 ≥ ln |α · ε| = ln |αε|.

Letting x = x1 − ln |ε| and y = y1 − ln |ε| we have

x + y = ln q,

x ≥ ln |αε| − ln |ε| = ln |α|,
y ≥ ln |αε| − ln |ε| = ln |α|.

It follows that (x, y) ∈ Yα and that (x1, y1) = (x, y) + l(ε), i.e., Yαε ⊆ Yα + l(ε).
Therefore, for any nonzero element α in R with |N(α)| ≤ q and for any unit ε in R,
we have Yαε = Yα + l(ε).

Now we will prove that

H ⊆
⋃

|N(α)|≤q
α∈R,α �=0

Yα.

For this, let (x, y) ∈ H and let x1, y1 ∈ R
∗
+ such that x = ln x1 and y = ln y1. The

equality x + y = ln q implies x1y1 = q. Denote

X = [−x1, x1]× [−y1, y2].

If λ is the Lebesgue measure in R
2, then

λ(X) = 4x1y1 = 4q > 4 · 2
√

D = 4λ(T),

where T = {x(1, 1) + y(
√

D,−
√

D) : x, y ∈ [0, 1)} is the fundamental paral-
lelepiped associated with the complete lattice in R

2, Λ = {m(1, 1)+n(
√

D,−
√

D) :
m, n ∈ Z}. The lattice Λ is complete because the vectors (1, 1) and (

√
D,−

√
D) are

linearly independent over R. It is known that λ(T) = | detAD| = 2
√

D, where AD

is the matrix

AD =

(
1 1√
D −

√
D

)
.
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Using the Minkowski’s Fundamental Theorem (see [165]), it follows that there
exist integers m and n such that

(m, n) �= (0, 0) and m(1, 1) + n(
√

D,−
√

D) ∈ X ∩ Λ.

From the definition of the set X we obtain

|m + n
√

D| ≤ x1 and |m − n
√

D| ≤ y1.

Setting α = m + n
√

D and taking into account that (m, n) �= (0, 0) yields that α is
a nonzero element of the ring R and that

|N(α)| = |αα| = |α||α| = |m + n
√

D||m − n
√

D| ≤ x1y1 = q.

Because

x = ln x1 ≥ ln |m + n
√

D| = ln |α| and y = ln y1 ≥ ln |m − n
√

D| = ln |α|,

it follows that (x, y) ∈ Yα, i.e., the inclusion H ⊆ ∪Yα is proved. By using Theorem
2.2.3 we deduce the existence of a finite number of elements α1, α2, . . . , αr ∈ R
with the property that each α in R with |N(α)| ≤ q is divisibility associated with
one of the elements α1, α2, . . . , αr.

The sets Yαi , i = 1, 2, . . . , r are bounded, hence the set Y =

r⋃
i=1

Yαi is also

bounded in R
2. Let (x, y) ∈ H. Using the above considerations, it follows that there

exists a nonzero element α in R such that |N(α)| ≤ q and that (x, y) ∈ Yα. By the
choice of elements α1, α2, . . . , αr, there exists i ∈ {1, 2, . . . , r} such that α = εαi,
where ε is unit in the ring R. Hence

(x, y) ∈ Yα = Yαiε = Yαi + l(ε),

and so H ⊆ Y + L, where

L = {l(ε) : ε unit in R}.

It is clear that (0, 0) ∈ L, because (0, 0) = l(1), and that (L,+) is a subgroup
of the commutative group (R2,+). Since the set Y is bounded, and the set H is
not, it follows that L is an infinite set, in particular L �= {(0, 0)}. Assume there
is a sequence (εn)n≥1 of units in R such that lim

n→∞ l(εn) = (0, 0) and that εn �=
±1 for all positive integers n. This shows that lim

n→∞ |εn| = lim
n→∞ |εn| = 1, and so

lim
n→∞max{|εn|, |εn|} = 1. It is not difficult to see that either |εn| or |εn| has the form

m + m′√D for some nonnegative integers m and m′.
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For n ≥ 1, max{|εn|, |εn|} ≥
√

D ≥ 2, so D ≥ 2. For n = 0, taking into
account that εn �= ±1 for all n, yields max{|εn|, |εn|} ≥ m ≥ 2. In both cases,
max{|εn|, |εn|} ≥

√
2, so lim

n→∞max{|εn|, |εn|} �= 1 and lim
n→∞ l(εn) �= (0, 0). From

all of the above, it follows that there is a unit ε0 �= ±1 in R such that

‖l(ε0)‖ = min{‖l(ε)‖ : ε is a unit in R, ε �= ±1},

where ‖ · ‖ denotes the well-known Euclidean norm in R
2. We have used above

that l(ε) = (0, 0) if and only if ε = ±1. In particular, it follows that ‖l(ε0)‖ > 0.
Replacing, if necessary, ε0 by ±ε0 or by −ε0, and taking into account that

‖l(ε0)‖ = ‖l(−ε0)‖ = ‖l(ε0)‖ = ‖l(−ε0‖,

one can assume that ε0 = m+m′√D, where m,m′ are nonnegative integers such that
(m,m′) �= (1, 0). This means that ε0 > 1. Such a unit ε0 is called the fundamental
unit of the ring R. Since ln |ε|+ ln |ε| = ln 1 = 0, for all units ε in R, the following
relation holds: L ⊆ {(x, y) ∈ R

2 : x + y = 0}. If l(ε0) = (α,−α), where
α = ln |ε0| = ln ε0 > 0 and l(ε) = (β,−β) is another element of the set L
with β > 0, let k be a positive integer such that kα ≤ β ≤ (k + 1)α (we have
‖l(ε)‖ = β

√
2 ≥ ‖l(ε0)‖ = α

√
2, hence β ≥ α and k ≥ 1). Let ε1 ∈ R, ε1 = ε·ε−k

0 .
Then

l(ε1) = l(ε)− kl(ε0) = (β − kα,−β + kα).

If β − kα > 0, then ε1 �= ±1 and

‖l(ε1)‖ =
√
2(β − kα) <

√
2((k + 1)α− kα) =

√
2 · α = ‖l(ε0)‖,

in contradiction with the choice of ε0. Therefore β = kα, l(ε1) = 0, which
implies the equality ε = ±εk

0. Note that if l(ε) = (β,−β) and β < 0, then the
same argument above for ε shows that there exists a nonnegative integer k with the
property ε = ±εk

0.
From all the considerations above it follows that all units in the ring R are of the

form ±εk
0 for some integer k. ��

Theorem 3.4.1 facilitates finding all positive integer solutions to the Pell’s
equation x2 − Dy2 = 1. In this respect, consider a solution (u, v) and denote
ε = u + v

√
D. Then N(ε) = u2 − Dv2 = 1, so ε is a unit in the ring R. Applying

the result in the Theorem 3.4.1, it follows that ε = ±εk
0, for some k and for some

choice of signs + and −. In addition, if we assume (u, v) �= (1, 0), then ε > 1.
Taking into consideration that ε0 > 1 and that ε = ±εk

0 > 1, we see that the integer
k is positive and that we must to choose the sign +. Therefore, ε = εk

0, where k is a
positive integer. Moreover, if N(ε0) = −1, then one needs the necessary condition
k even (indeed, 1 = N(ε) = N(ε0)

k = (−1)k in the case N(ε0) = −1).
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The general solution to Pell’s equation x2 − Dy2 = 1 could be also written
recursively as follows:

x0 = 1, y0 = 0

x1 = m, y1 = n if N(ε0) = 1, ε0 = m + n
√

D
x1 = m2 + Dn2, y1 = 2mn if N(ε0) = −1

{
xk+1 = mxk + Dnyk

yk+1 = nxk + myk
, if N(ε0) = 1

{
xk+1 = (m2 + Dn2)xk + 2Dmnyk

yk+1 = 2mnxk + (m2 + Dn2)yk
, if N(ε0) = −1.

3.5 The Equation ax2 − by2 = 1

In the present section we will study the more general equation

ax2 − by2 = 1, (3.5.1)

where a and b are positive integers. Taking into account the considerations in
Section 3.1 we have Δ = 4ab > 0, hence (3.5.1) can be reduced to a Pell’s equation.
In the paper [144] is given a continued fraction approach.

We will use the results in [13, 14] and [15].

Proposition 3.5.1. If ab = k2, where k is an integer greater than 1, then the
equation (3.5.1) does not have solutions in positive integers.

Proof. Assume that (3.5.1) has a solution (x, y), where x, y are positive integers.
Then ax2 − by2 = 1, and clearly a and b are relatively prime. From the condition
ab = k2 it follows that a = k21 and b = k22 for some positive integer k1 and k2. The
relation k21x2 − k22y2 = 1 can be written as (k1x − k2y)(k1x + k2y) = 1. It follows
that 1 < k1x + k2y = k1x − k2y = 1, a contradiction. ��

We will call Pell’s resolvent of (3.5.1) the equation

u2 − abv2 = 1. (3.5.2)

Theorem 3.5.2. Suppose that the equation (3.5.1) has solutions in positive integers
and let (x0, y0) be its smallest solution. The general solution to (3.5.1) is (xn, yn)n≥0,
where

xn = x0un + by0vn, yn = y0un + ax0vn, (3.5.3)

and (un, vn)n≥0 is the general solution to Pell’s resolvent (3.5.2).
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Proof. We will prove first that (xn, yn)n≥0 is a solution to the equation (3.5.1).
Indeed,

ax2n − by2n = a(x0un + by0vn)
2 − b(y0un + ax0vn)

2 =

= (ax20 − by20)(u
2
n − abv2n ) = 1 · 1 = 1.

Conversely, let (x, y) be a solution to the equation (3.5.1). Then (u, v), where
u = ax0x− by0y and v = y0x− x0y, is a solution to Pell’s resolvent (3.5.2). Solving
the above system of linear equations with unknowns x and y yields x = x0u + by0v
and y = y0u + ax0v, i.e., (x, y) has the form (3.5.3). ��
Remarks. 1) A simple algebraic computation yields the following relation between

the fundamental solution (u1, v1) to Pell’s resolvent and the smallest solution
(x0, y0) to equation (3.5.1): u1 ± v1

√
ab = (x0

√
a ± y0

√
b)2, where the signs +

and – correspond.
2) Using formulas (3.2.6), from (3.5.3) it follows that

xn =
1

2

(
x0 +

y0
a

√
ab
)(

u1 + v1
√

ab
)n

+
1

2

(
x0 −

y0
a

√
ab
)(

u1 − v1
√

ab
)n

yn =
1

2

(
y0 +

x0
b

√
ab
)(

u1 + v1
√

ab
)n

+
1

2

(
y0 −

x0
b

√
ab
)(

u1 − v1
√

ab
)n

.

Taking into account Remark 1, the above formulas can be written as

xn =
1

2
√

a

[(
x0
√

a + y0
√

b
)2n+1

+
(

x0
√

a − y0
√

b
)2n+1

]

yn =
1

2
√

b

[(
x0
√

a + y0
√

b
)2n+1

−
(

x0
√

a − y0
√

b
)2n+1

]
.

This last form of solutions appears in [219] but the method given there is much
more complicated.

3) The general solution (3.5.3) can be written in the following matrix form

(
xn

yn

)
=

(
x0 by0
y0 ax0

)(
un

vn

)
=

(
x0 by0
y0 ax0

)(
u1 abv1
v1 u1

)n (
u0
v0

)
.

To illustrate the above method, let us consider the following equation:
6x2 − 5y2 = 1. Its smallest solution is (x0, y0) = (1, 1). The Pell’s resolvent
is u2 − 30v2 = 1, whose fundamental solution is (11, 2). The general solution
to the equation considered is xn = un + 5vn, yn = un + 6vn, n = 0, 1, . . . where
(un, vn)n≥0 is the general solution to Pell’s resolvent, i.e., un+1 = 11un + 60vn,
vn+1 = 2un + 11vn, n = 0, 1, . . . with u0 = 11, v0 = 2.

A closed form for these solutions can be found by using the above Remark 2. We
obtain
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xn =
1

2
√
6

[(√
6 +

√
5
)2n+1

+
(√

6−
√
5
)2n+1

]

yn =
1

2
√
5

[(√
6 +

√
5
)2n+1

−
(√

6−
√
5
)2n+1

]
.

Remarks. 1) In the paper [84] is given a nice survey concerning the history and
various approaches in solving the equation (3.5.1).

2) The next result is due in [152]: If 1 < a < b are integers such that ab is square-
free, then at most one of the two equations

ax2 − by2 = ±1 (3.5.4)

is solvable.
3) In Example 3, page 140 of [22], it is shown that if a, b ≥ 1 are integers such that

ab is not a perfect square and both equations (3.5.4) are solvable, then a = 1 or
b = 1.

3.6 The Negative Pell Equation and the Pell–Stevenhagen
Constants

While the Pell’s equation x2 − Dy2 = 1 is always solvable if the positive integer D
is not a perfect square, as we have proven in the previous sections, the equation

x2 − Dy2 = −1 (3.6.1)

is solvable only for certain values of D.
We have seen in Theorem 3.3.4 that if r is the period of the expansion of

√
D

in continued fractions, then, if r is even, the equation (3.6.1) has no solution. If
r is odd, then x = hnr−1 and y = knr−1 give all positive solutions to (3.6.1) for
n = 1, 3, 5, . . . .

Next, we will write the solutions to the equation (3.6.1) by using our method in
Section 3.5.

The equation (3.6.1) is known as the negative Pell’s equation. From the Theo-
rem 3.5.2 the following theorem follows:

Theorem 3.6.1. Suppose that the equation (3.6.1) has solutions in positive integers
and let (x0, y0) be its smallest solution. The general solution to (3.6.1) is given by
(xn, yn)n≥0 where

xn = x0un + Dy0vn, yn = y0un + x0vn (3.6.2)

and (un, vn)n≥0 is the general solution to Pell’s equation u2 − Dv2 = 1.
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Remarks. 1) Between (x0, y0) and (u1, v1) there is the following important
connection:

u1 ± v1
√

D =
(

x0 ± y0
√

D
)2

,

where the signs + and – correspond.
2) By using formulas (3.6.2) we obtain the solutions to the negative Pell’s equation

in explicit form:

xn =
1

2

(
x0 + y0

√
D
)(

u1 + v1
√

D
)n

+
1

2

(
x0 − y0

√
D
)(

u1 − v1
√

D
)n

yn =
1

2

(
y0 +

x0
D

√
D
)(

u1 + v1
√

D
)n

+
1

2

(
y0 −

x0
D

√
D
)(

u1 − v1
√

D
)n

.

(3.6.3)

Formulas (3.6.3) can be also written as

xn =
1

2

[(
x0 + y0

√
D
)2n+1

+
(

x0 − y0
√

D
)2n+1

]

yn =
1

2
√

D

[(
x0 + y0

√
D
)2n+1

−
(

x0 − y0
√

D
)2n+1

] (3.6.4)

3) The general solution (3.6.2) can be expressed in the following matrix form

(
xn

yn

)
=

(
x0 Dy0
y0 x0

)(
un

vn

)
=

(
x0 Dy0
y0 x0

)(
u1 Dv1
v1 u1

)n(
u0
v0

)
.

The following result points out an important class of solvable negative Pell’s
equations. The proof is adapted from [151].

Theorem 3.6.2. Let p be a prime ≥ 3. The negative Pell’s equation

x2 − py2 = −1

is solvable in positive integers if and only if p ≡ 1 (mod 4).

Proof. First suppose that the equation is solvable. Then there are positive integers

u, v such that u2 − pv2 = −1. So, u2 − (−1) = pv2, implying

(
−1

p

)
= 1,

where

(
a
p

)
denotes the Legendre symbol. According to Theorem 4.3.1.5) in [22,

pp. 178–179] we have

(
−1

p

)
= (−1)

p − 1

2
, hence p ≡ 1 (mod 4).
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Let (u0, v0) be the fundamental solution to the Pell’s resolvent u2 − pv2 = 1.
Then u20 − 1 = pv20 , and u0 cannot be even, for in this case we should have −1 ≡
p(mod 4). Hence u0 is odd and the numbers u0 − 1 and u0 + 1 have the greatest
common divisor 2. Therefore u0 ± 1 = 2α2 and u0 ∓ 1 = 2pβ2, where α and β are
positive integers such that v0 = 2αβ. By elimination of u0 we get ±1 = α2 − pβ2.
Since β < v0, we cannot have the upper sign. Thus the lower sign must be taken
and the theorem is proved. ��
Remarks. 1) To give an example of an unsolvable negative Pell’s equation we will

show that the equation x2−34y2 = −1 has no solution. The fundamental solution
of Pell’s resolvent is (35, 6). If the equation x2 − 34y2 = −1 were solvable and
had the fundamental solution (x0, y0), then by Theorem 3.3.4 we would have
x20 + 34y20 = 35 and 2x0y0 = 6. But this system of equations has no solutions in
positive integers and thus the equation x2 − 34y2 = −1 is not solvable.

2) In the paper [58] is proved that the proportion of square-free D divisible by k
primes of the form 4m + 1 for which the negative Pell equation is solvable is at
least 40 %.

The following short and completely elementary criterion concerning the
solvability of the negative Pell equation was obtained in the paper [146].

Theorem 3.6.3. If D ≡ 1, 2 (mod 4) is a non-square integer, then there is a
solution to (3.6.1) if and only if u1 ≡ −1 (mod 2D), where (u1, v1) is the
fundamental solution to the Pell equation u2 − Dv2 = 1.

Proof. If (3.6.1) is solvable with the smallest solution (x0, y0), then we have u1 =
x20 + Dy20 = −1 + 2Dy20 ≡ −1 (mod 2D) (see Remark 1) after Theorem 3.6.1).

Conversely, assume that the fundamental solution (u1, v1) to u2 − Dv2 = 1
satisfies u1 ≡ −1 (mod 2D). It follows that u1 = −1 + 2Dk, for some positive
integer k. We have (−1+2Dk)2 −Dv21 = 1, which gives Dk2 − k− v′21 = 0, where
v1 = 2v′1. Therefore,

k(Dk − 1) = v′21 ,

from which it follows that k = r2 and Dk − 1 = s2 as gcd(k,Dk − 1) = 1. Thus
Dk − 1 = Dr2 − 1 = s2 which gives s2 − Dr2 = −1, hence the negative Pell
equation is solvable. ��
Remark. In [147] is explored the central norm in the simple continued fraction
expression of

√
D, where D ≥ 2 is not a perfect square. The obtained results are

used by the authors in the study of solvability of the negative Pell’s equation.
In what follows we will present a result concerning the negative Pell’s equation

based on our paper [18]. We begin with a representation theorem of the Fibonacci
sequence that will turn to be useful in the proof of our result.

We consider the Diophantine equation

x2 + y2 + 1 = xyz. (3.6.5)
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First we will establish the necessary condition of solvability for equation (3.6.5)
and then we will determine all its solutions in terms of the well-known Fibonacci
sequence (Fm)m≥1.

Theorem 3.6.4. The equation (3.6.5) is solvable if and only if z = 3. In this case
all of its solutions (x, y) are given by

(1, 1), (F2n+1,F2n−1), (F2n−1,F2n+1), n ≥ 1.

Proof. Let (x, y, z) be a solution with z �= 3. Then x �= y, for otherwise x2(z−2) = 1,
which is impossible, since z − 2 �= 1. We have

0 = x2 + y2 + 1− xyz = (x − yz)2 + y2 + 1 + xyz − y2z2

= (yz − x)2 + y2 + 1− (yz − x)yz

hence (yz − x, y, z) is also a solution, since x(yz − x) = xyz − x2 = y2 + 1 > 0
implies yz − x > 0. Note that if x > y, then x2 > y2 + 1 = x(yz − x). Hence
x > yz − x, which shows that the newly obtained solution is smaller than the initial
solution, in the sense that x+ y > (yz− x) + y. However, under the assumption that
x �= y, this procedure can be continued indefinitely, which is impossible, since in
the process we construct a decreasing sequence of positive integers, a contradiction.
This contradiction shows that there are no solutions if z �= 3.

Clearly, (1,1) is a solution to the equation

x2 + y2 + 1 = 3xy.

Let (a, b), a > b, be another solution. Then b2 + (3b − a)2 + 1 = 3b(3b − a),
so (b, 3b − a) is also a solution. From

(a − b)(a − 2b) = a2 − 3ab + 2b2 = b2 − 1 > 0

it follows that a > 2b, hence 3b − a < b. So the new solution has a smaller b.
It follows that we reach a solution with b = 1, hence with a2 +2 = 3a, in which

case a = 1 or a = 2. It follows that all solutions are obtained from (a1, b1) = (1, 1)
by the recursion

(an+1, bn+1) = (bn, 3bn − an).

The sequences (an)n≥1 and (bn)n≥1 satisfy the same recursion: xn+1 = 3xn −
xn−1, x1 = 1, x2 = 2. This recursion characterizes the Fibonacci numbers of odd
index. Therefore, (an, bn) = (F2n+1,F2n−1), n ≥ 1.

The solutions are (1, 1), (F2n+1,F2n−1), (F2n−1,F2n+1), for n ≥ 1. ��
The following result points out a family of unsolvable negative Pell’s equations

[199]:
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Theorem 3.6.5. Let k be an integer greater than 2. The equation

x2 − (k2 − 4)y2 = −1 (3.6.6)

is solvable if and only if k = 3.

Proof. We will show that the equation

u2 − (k2 − 4)v2 = −4 (3.6.7)

is not solvable if k �= 3. Assume the contrary, and let (u, v) be a solution to (3.6.7).

Then u and kv have the same parity. Consider x =
u + kv

2
. Then u = 2x − kv and

(3.6.7) becomes

x2 + v2 + 1 = xvk.

Since k �= 3, this contradicts the result in Theorem 3.6.4.
Assume now that for k �= 3, the negative Pell’s equation (3.6.6) has a solution

(x, y). Multiplying both sides by 4 yields

(2x)2 − (k2 − 4)(2y)2 = −4,

contradicting the above result concerning equation (3.6.7).
When k = 3 equation (3.6.6) becomes

x2 − 5y2 = −1. (3.6.8)

The smallest solution to (3.6.8) is (2,1). From formulas (3.6.3) it follows that all
solutions to (3.6.8) are given by (xn, yn)n≥0, where

xn =
1

2

[(
2 +

√
5
)2n+1

+
(
2−

√
5
)2n+1

]

yn =
1

2
√
5

[(
2 +

√
5
)2n+1

−
(
2−

√
5
)2n+1

]

Remark. A complicated method for proving the result in Theorem 3.6.4 was given
in [169].

The problem of determining those D for which the negative Pell’s equation
(3.6.1) is solvable in positive integers has a long history. We mentioned at the
beginning of this section that if D is a positive nonsquare the solvability or
unsolvability of (3.6.1) can be determined by expanding

√
D as an ordinary

continued fraction
√

D = 〈a0; a1, . . . , ar〉.
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Then (3.6.1) is solvable or not according to whether r is odd or even. If r is odd,
then

x0
y0

= 〈a0, a1, . . . , ar−1〉

is the fundamental solution of (3.6.1).
A second approach to this problem involves using generalized residue symbol

criteria derived from D to determine conditions on D which guarantee that (3.6.1)
is solvable or unsolvable. This approach was initiated by Legendre in 1785. He
proved that if D is a prime congruent to 1(mod 4), then (3.6.1) is solvable (see
Theorem 3.6.2), while if a prime p congruent to 3(mod 4) divides the squarefree
part of D, then (3.6.1) is unsolvable. Dirichlet observed that D = pq with p ≡
q ≡ 1(mod 4) and (p/q)4 = (q/p)4 = −1, then (3.6.1) is solvable. For D =
p1 . . . pN in [210] are given quadratic residue criteria among p which when they
held would guarantee that (3.6.1) is solvable. In the paper [195] applied methods of
class field theory were used to show that in the case D = pq with p ≡ q ≡ 1(mod 4)
equation (3.6.1) is unsolvable when (p/q)4 �= (q/p)4, while in the case (p/q)4 =
(q/p)4 = 1 the equation (3.6.1) is sometimes solvable and sometimes not. In the
papers [195] and [181] it is proved that these residue symbol criteria were related to
the structure of the 2-Sylow subgroup of an appropriate ring class group Q[

√
D]. In

[180, 181] is introduced a “conditional Artin symbol” defined in terms of generators
of certain class fields, by means of which it is given a set of necessary and sufficient
conditions for (3.6.1) to be solvable. In [153] it is acknowledged that the problem
of determining those D for which (3.6.1) is solvable is still open, presumably due to
the nonexplicit character of conditions in [180] and [181]. Explicit residue symbol
conditions for special types of D are still being found, e.g., [99] and [177].

The residue symbol approach can be extended to yield an algorithm determining
the solvability of negative Pell’s equation whose main bottleneck is finding a
factorization of D. In the paper [108] it is proved that there is an algorithm when
given a positive integer D together with (i) a complete prime factorization of D and
(ii) a quadratic nonresidue ni for each prime pi dividing D, determines whether the
equation (3.6.1) is solvable in positive integers or not, and which always terminates
in O((lnD)5(ln lnD)(ln ln lnD)) elementary operations.

In the paper [81] it is shown that for a nonsquare positive integer D, the negative
Pell equation (3.6.1) is solvable if and only if there exist a primitive Pythagorean
triple (A,B,C) and positive integers a, b such that D = a2 + b2 and aA − bB =
±1. It is also possible to describe a method to generate families of such integers D
stemming from the solutions to the linear equation aA − bB = ±1.

If p is a prime such that 2p = a4 + s2, where a2 ≡ ±s ≡ 9(mod 16), then the
negative Pell’s equation x2 − 2py2 = −1 has no solution [44]. If D = 2p, where
p = c2 + 8D2 and D is odd, then the equation (3.6.1) has no solutions [69]. If
p = c2 + qD2 and D is odd when p ≡ 1(mod 4) and (p/q) = 1, then the negative
Pell’s equation t2 − pqu2 = −1 has no solutions [109].
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While the set of positive integers D for which the Pell’s equation is solvable is
well known (it is the set of all nonsquare positive integers), the set D of all positive
integers D for which the negative Pell’s equation is solvable is far from being known.
Only recently has progress been made in the study of the set D. We will mention a
few results and some open problems concerning the set D.

Without loss of generality one can, however, assume that D is square-free.
Moreover, (3.6.1) can have solutions only if D has no prime divisors ≡ 3 (mod 4).
Consider the case in which D = p′1p′2 . . . p′r, p′1 < p′2 < · · · < p′r and p′k ≡ 1
(mod 4). In 1834, G. L. Dirichlet had shown that (3.6.1) has solutions when r = 1
(see Theorem 3.6.2) and also when r = 2 provided (p′1/p′2) = −1. He had even
considered the case when r = 3. In [155] it is shown that (3.6.1) has solutions for
all odd r’s, provided (p′i/p′j) = −1 for each i < j ≤ r.

Define the Pell constant (see [73, pp. 119–120])

P = 1−
∏
j≥1
j odd

(
1− 1

2j

)
= 0, 5805775582 . . .

needed in what follows. The constant P is irrational [206] but only conjectured to
be transcendental. Define also the function ψ by

ψ(p) =
2 + (1 + 21−νp)p

2(p + 1)

where νp is the exponent of 2 into factorization in p − 1.
For any set S of positive integers, let fS(n) denote the number of elements in S

not exceeding n. In [43, 206, 207] several conjectures regarding the distribution of
D were formulated. For example, it was conjectured that the counting function fD
satisfies the following relation [207]:

lim
n→∞

√
ln n
n

fD(n) =
3P
2π

∏
p prime

p≡1(mod 4)

(
1 +

ψ(p)
p2 − 1

)(
1− 1

p2

)1/2

= 0, 28136 . . .

Let U be the set of positive integers not divisible by 4, and let V be the set of
positive integers not divisible by any prime congruent to 3 modulo 4. Clearly, D is
a subset of U ∩ V , and U ∩ V is the set of positive integers that can be written as a
sum of two coprime squares. By the above conjectured and by a coprimality result
given in [182], the density of D inside U ∩ V is [207]:

lim
n→∞

fD(n)
fU∩V(n)

= P
∏

p prime
p≡1(mod 4)

(
1 +

ψ(p)
p2 − 1

)(
1− 1

p2

)
= 0, 57339 . . .
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Here is another conjecture involving the Pell constant. Let W be the set of
squarefree integers, that is, integers which are divisible by no square exceeding 1.
In [206] it is conjectured that

lim
n→∞

√
ln n
n

fD∩W(n) =
6

π2
PK = 0, 2697318462 . . .

where K is the Landau–Ramanujan constant. Clearly, U is a subset of W, and V ∩W
is the set of positive squarefree integers that can be written as a sum of two (coprime)
squares. By the second conjectured limit and by a squarefree result one obtains that
the density of D ∩ W inside V ∩ W is [43]:

lim
n→∞

fD∩W(n)
fV∩W(n)

= P = 0, 5805775582 . . .

An interesting connection to continued fractions is given in [207]: an integer
D > 1 is in D if and only if

√
D is irrational and has a regular continued fraction

expansion with odd period length (see also Theorem 3.3.4).
If D > 1 is a squarefree integer with no prime factor p, p ≡ 3(mod 4), with

exactly n prime factors, and if Dn(X) denotes the set of those D ≤ X, in the paper
[58] the authors study the distribution of such D which lie in D. An explicit number
λn is given such that

lim inf
X→∞

#(Dn(X) ∩ D)

#Dn(X)
≥ λn.

Moreover, it is conjectured that

lim
X→∞

#(D̃(X) ∩ D)

#D̃(X)
≥ λ∞

where D̃(X) =
∞⋃

n=1

Dn(X), and λ∞ = lim
n→∞λn = 0, 419 . . . .



Chapter 4
General Pell’s Equation

This chapter gives the general theory and useful algorithms to find positive integer
solutions (x, y) to general Pell’s equation (4.1.1), where D is a nonsquare positive
integer, and N a nonzero integer. There are five good methods for solving the general
Pell’s equation:

1. The Lagrange–Matthews–Mollin (LMM) method;
2. Brute-force search (which is good only if |N| is small and the minimal positive

solution to Pell’s resolvent is small);
3. Use of quadratic rings;
4. The cyclic method;
5. Lagrange’s system of reductions.

Of these five, we will present only the first three, with two versions for the third
one. These two last algorithms are comparable in terms of effectiveness. For the
cyclic method see [67] and for the Lagrange’s system of reductions see [52] or [142].

4.1 General Theory

In a memoir of 1768, Lagrange gave a recursive method for solving the equation

x2 − Dy2 = N (4.1.1)

with gcd(x, y) = 1, where D > 1 is not a perfect square and N �= 0, thereby
reducing the problem to the situation where |N| <

√
D, in which case the positive

solutions (x, y) are found among the pairs (pn, qn), with pn/qn a convergent of the
simple continued fraction for

√
D.

It does not seem to be widely known that Lagrange also gave another algorithm
in a memoir of 1770, which may be regarded as a generalization of the well-known
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method of solving Pell’s equation and negative Pell’s equation presented in Sec-
tion 3.3 by using the simple continued fraction for

√
D (see [196]). Quadratic

Reciprocity (see [21, 185] and [179] for various applications)
In what follows we will call (4.1.1) the general Pell’s equation. First we will

present the general method of finding the solutions to this equation following the
presentation in [56, 112, 125, 126, 151] and [161].

Like in Section 3.5 we will consider the Pell’s resolvent

u2 − Dv2 = 1. (4.1.2)

Let (un, vn)n≥0 be the general solution to the equation (4.1.2) given in The-
orem 3.2.1. Assume that equation (4.1.1) is solvable and let (x, y) be one of its
solutions. Then

(un + vn

√
D)(x + y

√
D) = (unx + vnyD) + (uny + vnx)

√
D

and

(unx + vnyD)2 − D(uny + vnx)2 = (x2 − Dy2)(u2n − Dv2n ) = N · 1 = N.

It follows that (xn, yn)n≥0, where

xn = xun + Dyvn and yn = yun + xvn (4.1.3)

satisfies the general Pell’s equation. Hence every initial solution to (4.1.1) generates
its own family of infinitely many solutions.

This method of generating solutions is called the multiplication principle.
The main problem here is to decide whether or not two different initial solutions

generate different general solutions described above.
We say that solution (xn, yn)n≥0 given by (4.1.3) is associated with the solution

(un, vn)n≥0. The set of all solutions associated with each other forms a class of
solutions to (4.1.1).

Next we will show a way to decide whether the two given solutions (x, y) and
(x′, y′) belong to the same class or not. In fact, by using the method given in
Theorem 3.5.2 it is easy to see that the necessary and sufficient condition for these
two solutions to be associated with each other is that the numbers

xx′ − Dyy′

N
and

yx′ − xy′

N

are both integers.
Let K be the class consisting of the solutions (xn, yn)n≥0 defined by (4.1.3). Then

(xn,−yn)n≥0 also constitutes a class, denoted by K. The classes K and K are said
to be conjugates of each other. Conjugate classes are in general distinct, but may
sometimes coincide; in the latter case we speak of ambiguous classes.
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Among all the solutions (x, y) in a given class K we now choose a solution
(x∗, y∗) in the following way: let y∗ be the least nonnegative value of y which occurs
in K. If K is not ambiguous, then the number x∗ is also uniquely determined, for the
solution (−x∗, y∗) belongs to the conjugate class K. If K is ambiguous, then we get
a uniquely determined x∗ by prescribing that x∗ ≥ 0. The solution (x∗, y∗) defined
in this way is said to be the fundamental solution of the class.

In the fundamental solution, the number |x∗| has the least value which is possible
for |x| when (x, y) belongs to K. The case x∗ = 0 can occur when the class is
ambiguous, and similarly for the case y∗ = 0.

If N = ±1, there is only one class and it is ambiguous.
Suppose now that N is positive.

Theorem 4.1.1. If (x, y) is the fundamental solution of the class K of the equation
(4.1.1) and if (u1, v1) is the fundamental solution of the Pell’s resolvent (4.1.2), then
the following inequalities hold:

0 ≤ |x| ≤
√

(u1 + 1)N
2

(4.1.4)

0 < y ≤ v1√
2(u1 + 1)

√
N. (4.1.5)

Proof. If inequalities (4.1.4) and (4.1.5) are true for a class K, they are also true for
the conjugate class K. Thus we may assume that y is positive.

It is clear that

xu1 − Dyv1 = xu1 −
√

(x2 − N)(u21 − 1) > 0. (4.1.6)

Consider the solution (xu1 − Dyv1, yu1 − xv1) which belongs to the same class
as (x, y). Since (x, y) is the fundamental solution of the class and since by (4.1.6)
xu1−Dyv1 is positive, we must have xu1−Dyv1 ≥ x. From this inequality it follows
that

x2(u1 − 1)2 ≥ D2y2v21 = (x2 − N)(u21 − 1)

or

u1 − 1

u1 + 1
≥ 1− N

x2

and finally x2 ≤ 1

2
(u1+1)N. This proves inequality (4.1.4) and it is easily seen that

(4.1.4) implies (4.1.5). ��
Suppose next that N < 0 and call (4.1.1) the general negative Pell’s equation.

With a proof similar to the one in Theorem 4.1.1 we have
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Theorem 4.1.2. If (x, y) is the fundamental solution of the class K of the general
negative Pell’s equation and if (u1, v1) is the fundamental solution of the Pell’s
resolvent (4.1.2), then the following inequalities hold:

0 ≤ |x| ≤
√

(u1 − 1)|N|
2

(4.1.7)

0 < y ≤ v1√
2(u1 − 1)

√
|N|. (4.1.8)

From Theorems 4.1.1 and 4.1.2 we deduce

Theorem 4.1.3. If D is a nonsquare positive integer and N is a nonzero integer, then
the equation (4.1.1) has a finite number of classes of solutions. The fundamental
solutions of all the classes can be found after a finite number of trials by means
of the inequalities (4.1.4), (4.1.5) and (4.1.7), (4.1.8). If (x∗, y∗) is the fundamental
solution of the class K, then all the solutions in K are given by (xn, yn)n≥0, where

xn = x∗un + Dy∗vn and yn = y∗un + x∗vn

and (un, vn)n≥0 represents the general solution of Pell’s resolvent including ±1, if
necessary.

Remark. The upper bounds for fundamental solutions that generate the classes of
solutions of general Pell’s equation (4.1.1) found in Theorems 4.1.1 and 4.1.2 can
still be improved. In [76] it is shown that

0 ≤ |x| ≤
√
ε|N|, 0 < y ≤

√
ε|N|

D

where ε = u1 + v1
√

D.

In the private communication (L. Panaitopol, personal communication, December
2001) the following better upper bounds are mentioned

0 ≤ |x| ≤
√

|N|u1 + N
2

, 0 < y ≤
√

|N|u1 − N
2D

.

In the above delimitations (u1, v1) denotes the fundamental solution to the Pell’s
equation (4.1.2).

We denote by k(D,N) the number of classes of solutions of the equation (4.1.1),
and by K(D,N) the set of the fundamental solutions of all classes.

Theorem 4.1.4. Let p be a prime. Then each of the general Pell’s equations

x2 − Dy2 = ±p (4.1.9)
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has at most one solution (x, y) in which x and y satisfy the inequalities (4.1.4) and
(4.1.5), or (4.1.7) and (4.1.8), respectively, provided that x ≥ 0.

If the equation (4.1.9) is solvable, then it has one or two solutions satisfying the
above conditions, according as the prime p divides 2D or not.

Proof. Suppose that (x, y) and (x1, y1) are two solutions of (4.1.9) satisfying the
conditions in the first part of Theorem 4.1.4. Thus the numbers x, y, x1 and y1 are
nonnegative.

Eliminating D between relations

x2 − Dy2 = ±p, x21 − Dy21 = ±p (4.1.10)

yields x2y21 − x21y2 = ±p(y21 − y2). Thus xy1 ≡ x1y (mod p).
Furthermore, from (4.1.10) we obtain

(xx1 ∓ Dyy1)
2 − D(xy1 ∓ x1y)2 = p2.

In the equation

(
xx1 ∓ Dyy1

p

)2

− D

(
xy1 ∓ x1y

p

)2

= 1 (4.1.11)

let us choose the sign such that the congruence xy1 ≡ ±x1y (mod p) is satisfied.
Then the two squares on the left-hand side are integers. If xy1 ∓ x1y �= 0, from
(4.1.11) we conclude that

|xy1 ∓ x1y| ≥ v1p. (4.1.12)

On the other hand, by applying inequalities (4.1.4) and (4.1.5), or (4.1.7) and
(4.1.8), respectively, we obtain |xy1 ∓ x1y| < v1p, which is contrary to (4.1.12).
The remaining case is xy1 ∓ x1y = 0, which is obviously possible only for x = x1
and y = y1. Thus the first part of Theorem 4.1.4.

Consequently, there are at most two classes of solutions. Suppose that (x, y) and
(x,−y) are two solutions which satisfy inequalities (4.1.4) and (4.1.5), or (4.1.7)
and (4.1.8), respectively. These solutions are associated if and only if p divides the
two numbers 2xy and x2 + Dy2 = 2Dy2 ± p. Since y cannot be divisible by p, the
numbers 2x and 2D are divisible by p. But if 2D is divisible by p, then so is 2x. Thus,
the necessary and sufficient condition for (x, y) and (x,−y) to belong to the same
class is that 2D is a multiple of p. Thus proves the second part of the theorem. ��

The following example illustrates how the method described in Theorem 4.1.4
can be applied.

Consider the equation x2 − 2y2 = 119. The fundamental solution of its Pell’s
resolvent u2 − 2v2 = 1 is (3, 2). The following solutions of our equation satisfy
inequalities (4.1.4) and (4.1.5): (11, 1), (−11, 1), (13, 5), (−13, 5). It is not difficult
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to show that these numbers are all fundamental solutions in different classes.
Thus the number of classes is four but only solutions (11,1) and (13,5) satisfy
Theorem 4.1.4. The form of the integer N is very important. For instance, in the
paper [174] are considered the equations x2 − Dy2 = ±c(231 − 1).

We will now present an example which illustrates how one can use
Theorem 4.1.4. We will now rely on the result in our paper [16]. In [37] the
following question is posed: Does the Diophantine equation

8x2 − y2 = 7 (4.1.13)

have infinitely many solutions in positive integers?
Recently, in the paper [114] the more general equation ax2 − by2 = c is

considered. It is shown that if ab is not a square and the above equation has a positive
integer solution (x0, y0), then it has infinitely many positive integer solutions. This
property is a direct consequence of the multiplication principle. In the paper [143]
a simple criterion for solving both equations x2 − Dy2 = c and x2 − Dy2 = −c is
presented.

In what follows, we will find all solutions to the equation (4.1.13). We can write
the equation (4.1.13) in the following equivalent form: y2 − 8x2 = −7. This is a
special case of (4.1.9). In our case, p = 7 and p does not divide 2D = 16. Applying
Theorem 4.1.4 we deduce that the equation (4.1.13) has two classes of solutions and
these are generated by (−1, 1) and (1, 1). The Pell’s resolvent u2 − 8v2 = 1 has the
fundamental solution (u1, v1) = (3, 1) and its general solution (un, vn)n≥0 is given
by (see formulas (3.2.6)):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un =
1

2

[(
3 +

√
8
)n

+
(
3−

√
8
)n]

vn =
1

2
√
8

[(
3 +

√
8
)n

−
(
3−

√
8
)n] (4.1.14)

Applying Theorem 4.1.3 it follows that all solutions to the equation (4.1.13) are
given by (xn, yn)n≥0 and (x′n, y′n)n≥0, where

{
xn = un + vn

yn = un + 8vn
and

{
x′n = un − vn

y′n = −un + 8vn

and (un, vn)n≥0 is defined in (4.1.14). We obtain two classes of solutions:

(x, y) = (1, 1), (4, 11), (23, 65), (134, 379), . . .

and

(x′, y′) = (2, 5), (11, 31), (64, 181), (373, 1055), . . .

respectively.
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Remark. We will describe now the set of rational solutions to the Pell’s equation
u2 − Dv2 = 1. A family of such solutions was given in Remark 4 in Section 3.2.

For fixed positive integers m and n consider the general Pell’s equation x2 −
Dy2 = (mn)2. Consider the set of all its integral solutions (x, y) satisfying n|x and

m|y and let Sm,n be the set of all pairs
(x1

m
,

y1
n

)
, where x = x1n, y = y1m. The set

of all rational solutions to u2 − Dv2 = 1 is then given by S =
⋃

m,n≥1

Sm,n.

The following interesting result was proved in the paper [72].

Theorem 4.1.5. Let D = a2 + (2b)2, with a, b ∈ Z. If D is a prime, the following
hold:

1) The equation x2 − Dy2 = a is solvable.
2) The equation x2 − Dy2 = 4b is solvable.

If D is not prime, then both 1) and 2) can fail. For instance 221 = 102 + 112 =
52 + 142, but for a = ±5 or ±11 the equation x2 − 221y2 = a has no solution mod
13, while for b = ±5 or ±7 the equation x2 − 221y2 = 4b has no solution mod 17.

4.2 Solvability of General Pell’s Equation

Disregarding any time considerations, Theorem 4.1.1 may be used to determine
whether any general Pell equation is solvable or not. Following the reference
[204], let consider the general Pell equation x2 − 43y2 = 35. According to
Theorem 4.1.1, if it is solvable, then any of its fundamental solutions (x, y) must

lie within the following bounds: 0 < |x| ≤
[√

35(3482 + 1)/2
]

= 246 and

0 < v ≤
[
532

√
35/(2(3482 + 1))

]
= 37, where (3482, 532) is the fundamental

solution to the Pell’s resolvent u2 − 43v2 = 1. After checking all 9102 possible
combinations of (x, y) we see that the equation x2 − 43y2 = 35 is not solvable.

With regards to computational efficiency, the question of solvability for the
considered example is no match for modern computers. But, what happens when

N gets large? Clearly,

√
(u1 − 1)|N|

2
→ ∞, as N → ±∞. Thus, Theorem 4.1.1,

though a nice tool, does not allow one to efficiently decide if a particular general Pell
equation is solvable. In the reference [204] is mentioned the equation x2 − 313y2 =
172635965 and the fact that, using the actual computation force, we need about
69806785 years to prove the unsolvability, following the method provided by
Theorem 4.1.1. Thus, in this particular example, with N = 172635965 relatively
small, using the approach in Theorem 4.1.1 will take a considerable amount of time.
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The question of solvability of the general Pell’s equation can be formulated into
two problems:

Pell Decision Problem (PDP). Given a positive integer D ≥ 2 which is not a
perfect square, and an integer N, is there an efficient means to decide if the equation
(4.1.1) is solvable?

In some situations PDP can be reduced to the case when D is a prime (see for
instance Theorem 3.6.2).

Pell Search Problem (PSP). Assuming that the equation (4.1.1) is solvable, can we
find all fundamental solutions in the Pell classes in a reasonable amount of time?

Notice that a general criterion for solvability is, in effect, a solution to a PDP. In
this section we address the problem of finding a general criterion for solvability of
general Pell equation and give a partial solution. Most of the tests that we develop
throughout this section are based on the reference [204] and do not rely on integer
factorization. However, a few of the implementations based on these results will rely
heavily on the efficiency of integer factorization, which is likely no more efficient
than tests based on the Pell class approach.

4.2.1 PDP and the Square Polynomial Problem

In what follows we will show that the PDP is equivalent to the problem of deciding
whether or not a particular second degree polynomial with integer coefficients has a
square integer value. In this respect we formulate the following concrete problem:

Square Polynomial Decision Problem (SPDP). Does there exist an algorithm
that, for any odd prime p and N ∈ Z with gcd(N, p) = 1 decides if there is for

some a with N ≡ a2 (mod p) and n ∈ Z such that pn2 − 2an +
a2 − N

p
is a

square?
The SPDP and the PDP for specific D and N may be formulated in terms of

arithmetical functions. Let p be a prime, N ∈ Z, with

(
N
p

)
= 1 and consider

the equation x2 − py2 = N. Since

(
N
p

)
= 1 we have a2 ≡ N (mod p) for

some positive integer a. Note that, the Tonelli–Shanks algorithm, assuming the
Generalized Riemann Hypothesis, efficiently find an integer a such that a2 ≡ N
(mod p) (see [159, pp. 110–115]).

Following the reference [204], define the functions

φ(p,N) =

⎧⎪⎪⎨
⎪⎪⎩

1 if pn2 − 2an +
a2 − N

p
is a square for some

integers n and a with a2 ≡ N (mod p)
−1 otherwise
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and

ψ(p,N) =

{
1 if x2 − py2 = N is solvable

−1 otherwise.

Clearly, in the definition of φ(p,N) we can assume that a ∈ Zp.
Now, we have the proper terminology to prove the following result.

Theorem 4.2.1. Let p be an odd prime and N ∈ Z with

(
N
p

)
= 1. Then,

ψ(p,N) = 1 if and only if φ(p,N) = 1.

Proof. If ψ(p,N) = 1, then we have u2−pm2 = N for some integers u,m. Observe
that y2 ≡ N (mod p). To prove φ(p,N) = 1 we must show that there is an integer

n such that pn2 − 2un +
u2 − N

p
is a square. But, we have

u2 − N
p

= m2, hence we

choose n = 0. Therefore φ(p,N) = 1.
Suppose φ(p,N) = 1. That is, there are integers n,m and u ∈ Zp such that

u2 ≡ N (mod p) and pn2 − 2un +
u2 − N

p
= m2. The last relation is equivalent

to (u + pn)2 − pm2 = N, so the pair (u + pn,m) is a solution to the general Pell’s
equation x2 − py2 = N. Thus, the relation ψ(p,N) = 1 holds. ��

The result in Theorem 4.2.1 proves that SPDP is equivalent to PDP.

4.2.2 The Legendre Test

The Legendre symbol and the Quadratic Reciprocity Law provide the first test for
the solvability of general Pell’s equation.

Theorem 4.2.2. If

(
N
p

)
= −1 then ψ(p,N) = −1, that is x2 − py2 = N is not

solvable.

Proof. If the equation x2 − py2 = N were solvable, then u2 − pv2 = N for some
integers u and v. Therefore, u2 − N = pv2, hence u2 ≡ N (mod p), implying(

N
p

)
= 1, contradicting our assumption. ��

Corollary 4.2.3. If

(
N
p

)
= 1 and

(
M
p

)
= −1, then the equation

x2 − py2 = MN

is not solvable.
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Example 1. Consider the general Pell’s equation x2 − 17y2 = −46. Using the
properties of the Legendre symbol, we have

(
−46

17

)
=

(
−1

17

)(
46

17

)
=

(
12

17

)
=

(
4

17

)(
3

17

)

=

(
3

17

)
=

(
17

3

)
=

(
2

3

)
= −1,

hence, according to Theorem 4.2.2, the considered equation is not solvable.

4.2.3 Legendre Unsolvability Tests

This subsection uses the Quadratic Reciprocity Law and some properties of the
Legendre symbol to obtain some tests for the unsolvability of general Pell’s
equation.

Theorem 4.2.4. Let p be an odd prime and N a positive integer. If p ≡ 3 (mod 4)

and

(
N
p

)
= 1, then the equation x2 − py2 = −N is not solvable.

Proof. If the equation is solvable, then we have r2 − ps2 = −N, for some integers

r, s. It follows r2 ≡ −N (mod p), hence

(
−N

p

)
= 1. Using the standard

properties of the Legendre symbol we get

1 =

(
−N

p

)
=

(
−1

p

)(
N
p

)

and
(
−1

p

)
=

(
−1

p

)
· 1 =

(
−1

p

)(
N
p

)
=

(
−N

p

)
= 1.

By the Quadratic Reciprocity Law, this only happens when p ≡ 1 (mod 4),
contradicting our assumption. ��
Example 2. Consider the equation x2 − 11y2 = −5. Since (4,1) is a solution to

x2 − 11y2 = 5, we have

(
5

11

)
= 1. Since 11 ≡ 3 (mod 4), by Theorem 4.2.4, we

obtain that the considered equation is not solvable.
The next result is given in [204] and it yields a general test for the unsolvability

of a large class of general Pell’s equations.

Theorem 4.2.5. Let p be a prime, p ≡ 3 (mod 4), and N = m2n with n square
free. If x2 − py2 = N is solvable, then n ≡ 1 (mod 4).
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Proof. Suppose that n ≡ 3 (mod 4). Since x2 − py2 = N is solvable, there are
u, v ∈ Z such that u2 − pv2 = m2n. We shall collect the following three facts:

(i)

(
n
p

)
= 1.

(ii) If q is a prime divisor of n with q ≡ 3 (mod 4), then

(
q
p

)
= −1.

(iii) Let r = |{q : q|n and q is an odd prime and q ≡ 3 (mod 4)}|. Then r is odd.

Since u2 − pv2 = m2n, we have u2 − m2n = pv2. So, X2 ≡ N (mod p) is

solvable. Thus,

(
n
p

)
=

(
m2n

p

)
= 1. This proves (i).

Now suppose that q is a prime divisor of n. So, n = qn0 for some n0 ∈ Z. Thus,

u2 − pv2 = qn0 and so X2 ≡ pv2 (mod p) is solvable. So,

(
p
q

)
=

(
pv2

q

)
=

1. By the Quadratic Reciprocity Law, we know that, since p ≡ q ≡ 3 (mod 4),(
p
q

)
= −

(
q
p

)
. So, −

(
q
p

)
= 1. This proves (ii).

Let n = q1 . . . qr · qr+1 . . . ql, where q1 ≡ . . . ≡ qr ≡ 3 (mod 4) and qr+1 ≡
. . . ≡ ql ≡ 1 (mod 4). If r is even, then we may arrange these first r primes in
pairs as follows: (q1 · q2), (q3 · q4), . . ., (qr−1 · qr). Then, for i even with 1 ≤ i ≤ r,
(qi−1 · qi) ≡ 9 ≡ 1 (mod 4). But, then n = (q1 · q2) · (q3 · q4) . . . (qr−1 · qr) ·
qr+1 . . . ql ≡ 1 (mod 4) contrary to assumption. This proves (iii).

Again let n = q1 . . . qrqr+1 . . . ql, where q1 ≡ . . . ≡ qr ≡ 3 (mod 4) and
qr+1 ≡ . . . ≡ ql ≡ 1 (mod 4). Because r is odd, by (ii) we have

(
q1
p

)
. . .

(
qr

p

)
= (−1) . . . (−1) = (−1)r = −1.

Also,

(
qr+1

p

)
. . .

(
ql

p

)
= 1 . . . 1 = 1l−r = 1.

Therefore, by (i) we obtain

1 =

(
n
p

)
=

(
q1 . . . qrqr+1 . . . ql

p

)

=

(
q1
p

)
. . .

(
qr

p

)(
qr+1

p

)
. . .

(
ql

p

)
= (−1)r · 1 = −1,

a contradiction. ��
The result in Theorem 4.2.5, when expressed using the contrapositive, yields a

nice test for unsolvability. We state this as the following consequence.
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Corollary 4.2.6. Let N = m2n with n square free. If p is a prime with p ≡ n ≡ 3
(mod 4), then the equation x2 − py2 = N is not solvable.

The next consequence follows immediately.

Corollary 4.2.7. If p ≡ N ≡ 3 (mod 4) and M ≡ 1 (mod 4), then the equation
x2 − py2 = MN is not solvable.

Example 3. Consider the equation x2 − 31y2 = 1008. We have 1008 = 122 · 7
and 7 ≡ 3 (mod 4). Corollary 4.2.6 allows us to conclude that the equation is not
solvable.

The next result requires that we know a prime factor ≥ 3 of N.

Theorem 4.2.8. Let q be an odd prime divisor of N. If the equation x2 − py2 = N

is solvable, then

(
p
q

)
= 1.

Proof. Assume that u2−pv2 = N, for some integers u, v. Because N ≡ 0 (mod q),
it follows u2 ≡ pv2 (mod q).

Therefore,

(
pv2

q

)
= 1, hence

(
p
q

)
= 1. ��

In the case when we can find an odd prime divisor of N, the contrapositive to
Theorem 4.2.8 provides a nice test for unsolvability.

Corollary 4.2.9. Let q be an odd prime divisor of N. If

(
p
q

)
= −1, then the

equation x2 − py2 = N is not solvable.

Now, we are in position to discuss the solvability of the equation

x2 − 313y2 = 172635965,

considered at the beginning of this section. Because 5 is a prime divisor of

172635965 and

(
313

5

)
= −1, we may use Corollary 4.2.9 to conclude the

unsolvability of the equation.

Corollary 4.2.10. Let q be an odd prime divisor of N. If p or q ≡ 1 (mod 4) and(
q
p

)
= −1, then the equation x2 − py2 = N is not solvable.

Proof. Because p or q ≡ 1 (mod 4), we have

(
p
q

)
=

(
q
p

)
= −1, and we can

use the result in Corollary 4.2.9.

Corollary 4.2.11. Let N = m2n, where n is square free. If p is a prime with p ≡ 5
(mod 8), and n is even, then the equation x2 − py2 = N is not solvable.
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Proof. Suppose that u2 − pv2 = N, for some integers u, v. It follows

(
N
p

)
= 1,

hence

(
n
p

)
=

(
m2n

p

)
= 1. Since n is even, we have n = 2n0, n0 ∈ Z, and(

2n0
p

)
= 1. Because p ≡ 5 (mod 8), we have

(
2

p

)
= −1. Therefore, n has

a prime factor q such that

(
q
p

)
= −1. But, n is square free, so q must be odd.

Moreover, from p ≡ 5 (mod 8), it follows p ≡ 1 (mod 4) and the conclusion
follows from Corollary 4.2.9. ��

The following application is given in the reference [204].

Example 4. Consider the equation x2 − 181y2 = 1908360. We have 181 ≡ 5
(mod 8) and 1908360 = 182 · 5890 with 5890 = 2 · 5 · 19 · 31 even and square free.
Applying Corollary 4.2.11, it follows the unsolvability of the equation.

4.2.4 Modulo n Unsolvability Tests

We will describe a simple but useful way to test the unsolvability of general Pell’s
equation.

Theorem 4.2.12. If the equation x2 − Dy2 = N is not solvable in Zn, for some
positive integer n ≥ 2, then it is not solvable in integers.

Proof. Assume that u2 − Dv2 = N for some integers u, v. The remainder upon
dividing u2 − Dv2 by n will be the same as the remainder in the division of N by n.
Therefore, the equation x2−Dy2 = N is solvable in Zn. Thus, by the contrapositive,
the result follows. ��

Note that if the equation x2−Dy2 = N is solvable in Zn for some positive integer
n ≥ 2, then it is not necessarily the case that it is solvable in integers.

Theorem 4.2.13. Let p be a prime with p ≡ 3 (mod 4), and N an odd integer. If
the equation x2 − py2 = N is solvable, then N ≡ 1 (mod 4).

Proof. We have a2 ≡ 0 1 (mod 4), and by direct calculation, we see that x2−oy2 ≡
x2 − 3y2 ≡ 0, 1, or 2 (mod 4). Therefore, if N ≡ 3 (mod 4), the equation is not
solvable in Z4, and, by mod 4 test, the equation is not solvable in integers. ��

Using the same argument, but in Z8, we can prove the following result.

Theorem 4.2.14. Let p be a prime with p ≡ 1, 3, or 5 (mod 8), and N an integer
with N ≡ 2 (mod 4). Then the equation x2 − py2 = N is not solvable.
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4.2.5 Extended Multiplication Principle

We now give some tests for the solvability of general Pell’s equation, using an
extension of the multiplication principle discussed in Section 4.1.

Extended Multiplication Principle. If u2 − Dv2 = M and r2 − Ds2 = N, then
(ur ± Dvs)2 − D(us ± vr)2 = MN, where the signs + and − correspond.

The above identity is also called the Bhaskara identity, according to the name of
the Hindu mathematician mentioned in Section 3.1.

We can reformulate this algebraic property as follows: If the general Pell’s
equations u2 − Dv2 = M and r2 − Ds2 = N are solvable, then the equation
x2 − Dy2 = MN is also solvable.

As an application to the Extended Multiplication Principle, we present an
extension of the result involving the negative Pell’s equation, and contained in
Theorem 3.6.2.

Theorem 4.2.15. Let p be a prime with p ≡ 1 (mod 4). The equation

x2 − py2 = −N

is solvable if and only if the equation x2 − py2 = N is solvable.

Proof. By Theorem 3.6.2, we know that the negative Pell’s equation

u2 − pv2 = −1

is solvable. Now, the result directly follows from the Extended Multiplicative
Principle. ��
Remark. Notice that if we can factor N, say N = N1 . . .Ns and show, for all i =
1, . . . , s, that the equation x2 − Dy2 = Ni is solvable, then using successively the
Extended Multiplication Principle we obtain that the equation x2 − Dy2 = N is
solvable.

The converse of the above remark need not hold, as the next example illustrates.

Example 5. Considering the equation x2 − 37y2 = 192, we have 192 = 42 · 12 =
82 · 3. The equations x2 − 37y2 = 12 and x2 − 37y2 = 42 are clearly solvable,
hence according to the Extended Multiplication Principle, it follows the considered
equation is solvable. On the other hand, if we use the second factorization of 192,
we see that x2 − 37y2 = 3 is not solvable (apply Theorem 4.1.1 where (u1, v1) =
(73, 12). Thus, we may not conclude that the unsolvability of x2−37y2 = 3 implies
the unsolvability of x2 − 37y2 = 192.
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4.3 An Algorithm for Determining the Fundamental
Solutions Based on Simple Continued Fractions
(The LMM Method)

We will describe an almost forgotten algorithm due to Lagrange, for deciding the
solvability of general Pell’s equation (4.1.1), where gcd(x, y) = 1 and D > 0 is
not a perfect square. In the case of solvability, the fundamental solutions are also
constructed.

The main purpose of this section is to present a version of Lagrange’s algorithm
which uses only the technique of simple continued fractions.

A related algorithm is given in [158] but each of the cases D = 2 or D = 3 and
N < 0 needs separate consideration. Also, unlike our algorithm, the approach in
[158] requires the calculation of the fundamental solution of Pell’s resolvent.

Lagrange’s algorithm has been rediscovered in [141]. The method there is more
complicated than ours, as it uses the language of ideals and semi-simple continued
fractions, in addition to that of simple continued fractions.

First we need a result which is an extension of Theorem 172 in [88].

Lemma 4.3.1. If ω =
Pζ + R
Qζ + S

, where ζ > 1 and P,Q,R, S are integers such that

Q > 0, S > 0 and PS − QR = ±1, or S = 0 and Q = R = 1, then P/Q is a
convergent to ω. Moreover if Q �= S > 0, then

R
S
=

pn−1 + kpn

qn−1 + kqn
, k ≥ 0.

Also, ζ + k is the (n + 1)-th complete convergent to ω. Here k = 0 if Q > S, while
k ≥ 1 if Q < S.

Proof. In [88] only the case Q > S > 0 is considered. We write

P
Q

= 〈a0; a1, . . . , an〉 =
pn

qn

and assume PS − QR = (−1)n−1. Then

pnS − qnR = PS − QR = pnqn−1 − pn−1qn,

so pn(S − qn−1) = qn(R − pn−1).
Hence qn|(S − qn−1). Then from qn = Q > S > 0 and qn ≥ qn−1 > 0, we

deduce |S − qn−1| < qn and hence S − qn−1 = 0. Then S = qn−1 and R = pn−1.
Also

ω =
Pζ + R
Qζ + S

=
pnζ + pn−1

qnζ + qn−1
= 〈a0; a1, . . . , an, ζ〉.
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If S = 0 and Q = R = 1, then ω = [P, ζ] and P/Q = P/1 = p0/q0.
If Q = S, then Q = S = 1 and P − R = ±1. If P = R + 1, then ω = [R, 1, ζ],

so P/Q = (R + 1)/1 = p1/q1. If P = R − 1, then ω = [R − 1, 1 + ζ] and
P/Q = (R − 1)/1 = p0/q0.

If Q < S, then from qn|(S − qn−1) and

S − qn−1 > Q − qn−1 = qn − qn−1 ≥ 0,

we have S − qn−1 = kqn, where k ≥ 1. Then

ω =
Pζ + R
Qζ + S

=
pnζ + pn−1 + kpn

qnζ + qn−1 + kqn
=

pn(ζ + k) + pn−1

qn(ζ + k) + qn−1

and ω = 〈a0; a1, . . . , an, ζ + k〉. ��
Theorem 4.3.2. Suppose x2 − Dy2 = N is solvable in integers x > 0, y > 0, with
gcd(x, y) = 1 and let Q0 = |N|. Then gcd(Q0, y) = 1. Define P0 by x ≡ −P0y
(mod Q0), where D ≡ P2

0 (mod Q0) and −Q0/2 < P0 ≤ Q0/2.
Let ω = (P0 +

√
D)/Q0 and let x = Q0X − P0y. Then

(i) X/y is a convergent An−1/Bn−1 of ω if x > 0;
(ii) Qn = (−1)nN/|N|.
Proof. With Q0 = |N|, x = Q0X − P0y and x2 − Dy2 = N, we have

P0x + Dy ≡ −P2
0y + Dy ≡ (−P2

0 + D)y ≡ 0 (mod Q0).

Hence the matrix

[
P R
Q S

]
=

[
X P0x+Dy

Q0

y x

]

has integer entries and determinant Δ = ±1. For

Δ = Xx − y(P0x + Dy)
Q0

=
(x + P0y)x

Q0
− y(P0x + Dy)

Q0

=
x2 − Dy2

Q0
= ±1.

Also, if ζ =
√

D and ω = (P0 +
√

D)/Q0, it is easy to verify that ω =
Pζ + R
Qζ + S

.

Then the lemma implies that X/y is a convergent to ω.
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Finally, x = Q0X − P0y = Q0An−1 − P0Bn−1 = Gn−1 and

N = x2 − Dy2 = G2
n−1 − DB2

n−1 = (−1)nQ0Qn.

Hence Qn = (−1)nN/|N|. ��
Remark. The solutions u of u2 ≡ D (mod Q0) come in pairs ±u1, . . . ,±ur, where
0 < ui ≤ Q0/2, together with possibly ur+1 = 0 and ur+2 = Q0/2. Hence we can
state the following:

Corollary 4.3.3. Suppose x2 − Dy2 = N is solvable, with x > 0 and y > 0,
gcd(x, y) = 1 and Q0 = |N|. Let x ≡ −P0y (mod Q0), where P0 ≡ ±ui

(mod Q0) and x = Q0X − P0y. Then X/y is a convergent An−1/Bn−1 of ωi =
(ui +

√
D)/Q0 or ω′

i = (−ui +
√

D)/Q0 and Qn = (−1)nN/|N|.

4.3.1 An Algorithm for Solving the General Pell’s Equation
(4.1.1)

In view of the Corollary 4.3.3 we know that the primitive solutions to x2−Dy2 = N
with y > 0 will be found by considering the continued fraction expansions of both
ωi and ω′

i for 1 ≤ i ≤ r + 2.
One can show that each equivalence class contains solutions (x, y) with x > 0

and y > 0, so the necessary condition Qn = (−1)nN/|N| occurs in both ωi and ω′
i .

Hence we need only consider ωi.
Suppose that ωi = (ui +

√
D)/Q0 = [a0, . . . , at, at+1, . . . , at+l].

If x2 − Dy2 = N is solvable, there are infinitely many solutions and hence Qn =
±1 holds for ωi for some n in the range t + 1 ≤ n ≤ t + l. Any such n must have
Qn = 1, as (Pn +

√
D)/Qn is reduced for n in this range and so Qn > 0. Moreover,

if l is even, then the condition (−1)n = N/|N| is preserved.
In addition, there can be at most one such n. For if Pn =

√
D is reduced, then

Pn = [
√

D] and hence two such occurrences of Qn = 1 within a period would give
a smaller period.

We also remark that l is odd if and only if the fundamental solution of Pell’s
equation has norm equal to −1. Consequently, a solution of x2−Dy2 = N gives rise
to a solution of x2 − Dy2 = −N; indeed we see that if t + 1 ≤ n ≤ t + l and k ≥ 1,
then Gn+kl−1 + Bn+kl−1

√
D = ηk

0(Gn−1 + Bn−1

√
D), where η0 is the fundamental

solution of x2 − Dy2 = ±1. Hence G2
n+l−1 − DB2

n+l−1 = −(G2
n−1 − DB2

n−1) if
N(η0) = −1.

Putting these observations together, we have the following:

Theorem 4.3.4. For 1 ≤ i ≤ r + 2, let

ωi = (ui +
√

D)/Q0 = 〈a0, . . . , at, at+1, . . . , at+l〉.
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(a) Then a necessary condition for x2 − Dy2 = N, gcd(x, y) = 1, to be solvable is
that for some i in i = 1, . . . , r+2, we have Qn = 1 for some n in t+1 ≤ n ≤ t+l,
where if l is even, then (−1)nN/|N| = 1.

(b) Conversely, suppose for ωi, we have Qn = 1 for some n with t + 1 ≤ n ≤ t + l.
Then

(i) If l is even and (−1)nN/|N| = 1, then x2−Dy2 = N is solvable and it has
solution Gn−1 + Bn−1

√
D.

(ii) If l is odd, then Gn−1 + Bn−1

√
D is a solution of x2 − Dy2 = (−1)n|N|,

while Gn+l−1 + Bn+l−1

√
D is a solution of x2 − Dy2 = (−1)n+1|N|.

(iii) At least one of the Gn−1 + Bn−1

√
D with least Bn−1 satisfying Qn =

(−1)nN/|N|, which arise from continued fraction expansions of ωi and
ω′

i , is a fundamental solution.

Remarks. 1) Unlike the case of Pell’s equation, Qn = ±1 can also occur for n <
t + 1 and can contribute to a fundamental solution. If N(η) = 1, one sees that to
find the fundamental solutions for both x2 − Dy2 = ±N, it suffices to examine
only the cases Qn = ±1, n ≤ t + l. However if N(η) = −1, one may have to
examine the range t + l + 1 ≤ n ≤ t + 2l as well.

2) It can happen that l is even and that x2 − Dy2 = N is solvable and has solution
x ≡ ±uiy (mod Q0), while x2 − Dy2 = −N is solvable and has solution x ≡
±ujy (mod Q0), with i �= j. (Of course, if |N| = p is prime, this cannot happen,
as the congruence u2 ≡ D (mod p) has two solutions if p does not divide D and
one solution if p divides D.)

An example of this is D = 221, N = 217 (see Example 2 later). Then u1 = 2,
u2 = 33. Also, l = 6 and (2+

√
221)/217 produces the solution −2+

√
221 of x2−

221y2 = −217, whereas (33−
√
221)/217 produces the solution −179 + 12

√
221

of x2 − 221y2 = 217.

Example 1 (Lagrange). x2 − 13y2 = ±101.
We find the solutions of P2

0 ≡ 13 (mod 101) are ±35.

(a) We have
35 +

√
13

101
= [0, 2, 1, 1, 1, 1, 1, 6].

i 0 1 2 3 4 5 6 7 8

Pi 35 −35 11 −2 3 1 2 1 3

Qi 101 −12 9 1 4 3 3 4 1

Ai 0 1 1 2 3 5 8 13 86

Bi 1 2 3 5 8 13 21 34 225

We observe that Q3 = Q8 = 1. The period length is odd, so both the
equations x2 − 13y2 = ±101 are solvable. With Gn = Q0An − P0Bn, we have

G2=101 · 1− 34 · 3=− 4, x+y
√
13=− 4+3

√
13, x2 − 13y2=− 101;

G7=101 · 13−35 · 34=123, x+y
√
13=123+34

√
13, x2−13y2=101.
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(b) We have
−35 +

√
13

101
= [−1, 1, 2, 4, 1, 1, 1, 1, 6].

i 0 1 2 3 4 5 6 7 8

Pi −35 −66 23 1 3 1 2 1 3

Qi 101 −43 12 1 4 3 3 4 1

Ai −1 0 −1 −4 −5 −9 −14 −23 −152

Bi 1 1 3 13 16 29 45 74 489

We observe that Q3 = Q8 = 1. Hence

G2=101 · (−1)−(−35) · 3=4, x+y
√
13=A + 3

√
13, x2 − 13y2 = −101;

G7=101 · (−23)−(−35) · 74=267, x+y
√
13=267+74

√
13, x2−13y2=101.

Hence −4 + 3
√
13 and 123 + 34

√
13 are fundamental solutions for the

equations x2 − 13y2 = −101 and x2 − 13y2 = 101 respectively.
We have η = 649+180

√
13, so the complete solution of x2− 13y2 = −101

is given by x + y
√
13 = ±ηn(±4 + 3

√
13), n ∈ Z, while the complete solution

of x2 − 13y2 = 101 is given by x + y
√
13 = ±ηn(±123 + 34

√
13), n ∈ Z.

Example 2. x2 − 221y2 = ±217.
We find the solutions of P2

0 ≡ 221 (mod 217) are ±2 and ±33.

(a) We have
2 +

√
221

217
= [0, 12, 1, 6, 2, 6, 1, 28].

i 0 1 2 3 4 5 6 7

Pi 2 −2 14 11 13 13 11 14

Qi 217 1 25 4 13 4 25 1

Ai 0 1 1 7 15 97 112 3233

Bi 1 12 13 90 193 1248 1441 41596

We observe that Q1 = Q7 = 1. The period length is even and (−1)7 = −1.
Hence the equation x2 − 221y2 = −217 is solvable.

G0 = 217 · 0− 2 · 1 = −2, x + y
√
221 = −2 +

√
221, x2 − 221y2 = −217.

i 0 1 2 3 4 5 6 7 8

Pi 33 −33 13 5 7 8 7 3 4

Qi 101 −10 9 6 5 3 10 7 9

We see that the condition Qn = 1 does not holds for 3 ≤ n ≤ 8.
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4.4 Solving the General Pell’s Equation

4.4.1 The PQa Algorithm for Solving Pell’s and Negative
Pell’s Equations

This algorithm is at the heart of all the algorithms to solve Pell’s equations presented
here. The input to the algorithms is three integers, D,P0,Q0, where D > 0 is not a
square, Q0 > 0, and P2

0 ≡ D (mod Q0). Recursively compute, for i ≥ 0

ai = int(Pi +
√

D)/Qi,

Pi+1 = aiQi − Pi,

and

Qi+1 = (D − P2
i+1)/Qi.

Also compute Gi and Bi as follows. Begin with G−2 = −P0, G−1 = Q0, B−2 =
1, and B−1 = 0. Then for i ≥ 0, set Gi = aiGi−1+Gi−2, and set Bi = aiBi−1+Bi−2.
Sometimes one also computes Ai as A−2 = 0, A−1 = 1, and Ai = aiAi−1+Ai−2 for
i ≥ 0. Then Gi = Q0Ai − P0Bi.

Note that G2
i − DB2

i = (−1)i+1Qi+1Q0. This relation will be important to us
because all of the methods of solution we discuss will involve setting Q0 = |N|,
and finding those i so that (−1)i+1Qi+1 = N/|N|. Then (Gi,Bi) will be a solution
to the equation being considered. From a computational viewpoint, also note that,
in some sense, Gi and Bi will typically be large, while Q0 and Qi+1 will be small.
So this equation sometimes allows accurate computation of the left-hand side when
numbers on the left-hand side exceed the machine accuracy available. Exactly how
far to carry these computations is discussed with each use below.

The sequence ai is the simple continued fraction expansion of (P0 +
√

D)/Q0,
and the Ai/Bi are the convergents to this continued fraction. Each of the sequences
Pi,Qi, and ai is periodic from some point, although not necessarily the same point
for all three. Starting from the right point, the periodic part of the sequence Pi is
palindromic. For each of the sequences Qi and ai, the periodic part, less the last
term, is palindromic.

To solve the equation x2 −Dy2 = ±1, apply the PQa algorithm with P0 = 0 and
Q0 = 1. There will be a smallest i with ai = 2a0, which will also be the smallest
i > 0 so that Qi = 1. There are two cases to consider: this i is odd, or this i is even.

If this i is odd, then the equation x2 − Dy2 = −1 has solutions. The minimal
positive solution is given by x = Gi−1, y = Bi−1. For any positive integer k, if k
is odd then x = Gki−1, y = Bki−1 is a solution to the equation x2 − Dy2 = −1,
and all solutions to this equation with x and y positive are generated this way. If k
is an even positive integer, then x = Gki−1, y = Bki−1 is a solution to the equation
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x2 − Dy2 = 1, and all solutions to this equation with x and y positive are generated
this way. The minimal positive solution to x2 − Dy2 = 1 is x = G2i−1, y = B2i−1.

If the smallest i so that ai = 2a0 is even, then the equation x2 − Dy2 = −1 does
not have any solutions. For any positive integer k, x = Gki−1, y = Bki−1 is a solution
to the equation x2−Dy2 = 1, and all solutions to this equation with x and y positive
are generated this way. In particular, the minimal positive solution to x2 − Dy2 = 1
is x = Gi−1, y = Bi−1.

The sequences Pj and aj are periodic with period i after the zero-th term, i.e.,
the first period is P1 to Pi for the sequences Pj, and a1 to ai for the sequence aj.
The sequence Qj is periodic starting at the zero-th term, i.e., the first period is Q0 to
Qi−1.

In Sections 3.2–3.5 and 3.6, respectively, we give several methods to generate
all solutions to either Pell’s and negative Pell’s equations once the minimal positive
solution is found.

4.4.2 Solving the Special Equations x2 − Dy2 = ±4

In some ways, solutions to the equation x2 − Dy2 = ±4 are more fundamental than
solutions to the equation x2 − Dy2 = ±1. The most interesting case is when D ≡ 1
(mod 4), so we cover that first.

When D ≡ 1 (mod 4), apply the PQa algorithm with P0 = 1 and Q0 = 2. There
will be a smallest i > 0 so that ai = 2a0 − 1. This will also be the smallest i > 0
so that Qi = 2. The minimal positive solution to x2 − Dy2 = ±4 is then x = Gi−1,
y = Bi−1. If i is odd, it will be a solution to the −4 equation, while if i is even it
will be a solution to the +4 equation and the −4 equation will not have solutions.
Periodicity of the sequences Pi,Qi, and ai is similar to that for the ±1 equation.

If D ≡ 0 (mod 4), then for any solution to x2 − Dy2 = ±4, x must be even.
Set X = x/2, set Y = y, and solve X2 − (D/4)Y2 = ±1. If (X,Y) is the minimal
positive solution to this equation, then x = 2X, y = Y is the minimal positive
solution to x2 − Dy2 = ±4. Alternatively, one can apply the PQa algorithm with
P0 = 0 and Q0 = 2. If i is the smallest index so that ai = 2a0, then the minimal
positive solution is (Gi−1,Bi−1).

If D ≡ 2 or 3 (mod 4), then by considerations modulo 4 one can that both x
and y must be even. Set X = x/2, set Y = y/2, and solve X2 − DY2 = ±1. If
(X,Y) is the minimal positive solution to this equation, then x = 2X, y = 2Y is the
minimal positive solution to x2 − Dy2 = ±4. Alternatively, use the PQa algorithm
with P0 = 0 and Q0 = 1, but set G−2 = 0, G−1 = 2, B−2 = 2, and B−1 = 0.
If i is the smallest index so that ai = 2a0, then the minimal positive solutions is
(Gi−1,Bi−1).

As with the ±1 equation, all solutions can be generated from the minimal positive
solution. Consider first the equation x2−Dy2 = 4. If (x1, y1) is the minimal positive
solution to this equation, then for the n-th solution we have
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xn + yn

√
D =

1

2n−1
(x1 + y1

√
D)n

xn − yn

√
D =

1

2n−1
(x1 − y1

√
D)n.

(4.4.1)

Therefore

xn =

(
x1 + y1

√
D

2

)n

+

(
x1 − y1

√
D

2

)n

yn =
1√
D

[(
x1 + y1

√
D

2

)n

−
(

x1 − y1
√

D
2

)n]
.

(4.4.2)

We also have the recursion

xn+1 =
1

2
(x1xn + Dy1yn)

yn+1 =
1

2
(y1xn + x1yn)

(4.4.3)

The relations (4.4.3) could be written in the following useful matrix form

(
xn+1

yn+1

)
=

1

2

(
x1 Dy1
y1 x1

)(
xn

yn

)
(4.4.4)

from where

(
xn

yn

)
=

1

2n

(
x1 Dy1
y1 x1

)n (
x0
y0

)
(4.4.5)

where (x0, y0) = (2, 0) is the trivial solution.
We can express all integer solutions to the positive equation by the following

formula

1

2
(un + vn

√
D) = εn

(
u1 + v1

√
D

2

)n

, n ∈ Z, (4.4.6)

where εn is 1 or −1. Indeed, for n > 0 and εn = 1 we get all negative solutions.
For n > 0 and εn = −1 we obtain all solutions (un, vn) with un and vn negative.
For n < 0 and εn = 1 we have (un, vn) with un > 0 and vn < 0, while n < 0
and εn = −1 gives un < 0 and vn > 0. The trivial solutions (2, 0) and (−2, 0) are
obtained for n = 0.
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Formula (4.4.6) captures all symmetries of equation (u, v) → (−u,−v),
(u, v) → (u,−v), (u, v) → (−u, v). Therefore, in 2D the points (un, vn) represents
the orbits of the action of the Klein four-group Z2 × Z2, i.e., points obtained by the
180 degree rotation, the vertical reflection, and by the horizontal reflection.

Now suppose the equation x2 − Dy2 = −4 has solutions, let (x1, y1) be the
minimal positive solution, and define xn, yn by the equation xn + yn

√
D = [(x1 +

y1
√

D)n]/(2n−1). Then if n is odd, (xn, yn) is a solution to the equation x2 − Dy2 =
−4, and if n is even then (xn, yn) is a solution to the equation x2 − Dy2 = 4. All
positive solutions to these two equations are so generated. The pair (xn, yn) in (4.4.2)
also alternately generates solutions to the +4 and −4 equation.

The set of solutions can be summarized as follows.

Theorem 4.4.1. Let (x1, y1) be the minimal positive solution to x2 − Dy2 = ±4.
Then for any solution to x2 −Dy2 = ±4, there is a choice of signs + and −, and an
integer n such that

1

2
(x + y

√
D) = ±

(
x1 + y1

√
D

2

)n

. (4.4.7)

In some ways, the equation x2−Dy2 = ±4 is more fundamental than the equation
x2−Dy2 = ±1. The numbers 1 and 4 are the only N’s so that, for any D, if you know
the minimal positive solution to the equation x2 − Dy2 = ±N, you can generate all
solutions, and you can do this without solving any other Pell’s equation. Also, if
you know the minimal positive solution to x2 − Dy2 = ±4, you can generate all the
solutions to x2−Dy2 = ±1. But the converse does not hold. The best that can be said
as a converse is that for D not 5 or 12, the solutions to the equation x2 − Dy2 = ±4
can be derived from the intermediate steps when the PQa algorithm is used to solve
the equation x2 − Dy2 = ±1.

When D ≡ 1 (mod 4), considerations modulo 4 show that for any solution to
x2 − Dy2 = ±4, x and y are both odd or both even. If the minimal positive solution
has both x and y even, then all solutions have both x and y even. In this case, every
solution to x2 − Dy2 = ±1 is just one-half of a solution to x2 − Dy2 = ±4. If the
minimal positive solution to x2 − Dy2 = ±4 has both x and y odd, then D ≡ 5
(mod 8), every third solution has x and y even, and all other solutions have x and
y odd. In this case, every solution to x2 − Dy2 = ±1 is just one-half of one of the
solutions to x2 − Dy2 = ±4 that has both x and y even. When D ≡ 1 (mod 4), the
equation x2 − Dy2 = −4 has solutions if and only if the equation x2 − Dy2 = −1
has solutions.

When D ≡ 0 (mod 4), considerations modulo 4 show that for any solution to
x2 − Dy2 = ±4, x is even. If the minimal positive solution has y even, then all
solutions have y even (and x is always even). In this case, every solution to x2 −
Dy2 = ±1 is just one-half of a solution to x2 − Dy2 = ±4. If the minimal positive
solution to x2 − Dy2 = ±4 has y odd, then every other solution has y even, and
every other solution has y odd. In this case, every solution to x2 − Dy2 = ±1 is
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just one-half of one of the solutions to x2 − Dy2 = ±4 that has x and y both even.
When D ≡ 0 (mod 4), it is possible for these to be solutions to x2 − Dy2 = −4,
but not solutions to x2 − Dy2 = 1. This happens for D = 8, 20, 40, 52 and many
more values. Of course, x2 − Dy2 = −1 never has solutions when D ≡ 0 (mod 4).

When D ≡ 2 (mod 4) or D ≡ 3 (mod 4), all solutions to x2 − Dy2 = ±4 have
both x and y even. Every solution to x2 − Dy2 = ±1 is just one-half of a solution
to x2 − Dy2 = ±4. The equation x2 − Dy2 = −4 has solutions if and only if the
equation x2 − Dy2 = −1 has solutions.

The cases D ≡ 1 (mod 4) for D squarefree, and D = 4r for r ≡ 2 or 3
(mod 4), r squarefree, are treated in [53]. The material we have presented above
is not addressed directly in either [159] or [142]. For example, the proof that the
method for solving the equation works in the case d ≡ 1 (mod 4) is not trivially
derived from the material in one or both of these sources.

Remark. Concerning the equation x2 − Dy2 = −4 the following conjecture is still
open: Let p be a prime ≡ 1 (mod 4) and let (x1, y1) be the fundamental solution to
the equation x2 − py2 = −4. Then y1 �≡ 0 (mod p).

This has been verified for all primes p < 2000 with p ≡ 5 (mod 8) and for
all primes p < 100000 with p ≡ 1 (mod 8). Also, it has been shown that y1 �≡ 0
(mod p) if and only if B p−1

4
�≡ 0 (mod p), where the Bernoulli numbers Bn are

defined by the series

t
et − 1

= 1− t
2
+

∞∑
n=1

(−1)n−1Bn

(2n)!
t2n.

4.4.3 Structure of Solutions to the General Pell’s Equation

As we have seen in Section 4.1, if (r, s) is a solution to x2 − Dy2 = N, and (t, u)
is any solution to its Pell’s resolvent, then for x = rt + Dsu, y = ru + st, (x, y)
is a solution to the equation x2 − Dy2 = N. This follows from the multiplication
principle:

(r2 − Ds2)(t2 − Du2) = (rt + Dsu)2 − D(ru + st)2.

This fact can be used to separate solutions to x2 − Dy2 = N into equivalence
classes. Two solutions (x, y) and (r, s) are equivalent if there is a solution (t, u) to
t2 − Du2 = 1 so that x = rt + Dsu and y = ru + st.

It may help to view the set of solutions geometrically. If N > 0, then, as an
equation in real numbers, x2 − Dy2 = N is a hyperbola with the x-axis as its axis,
and the y-axis as an axis of symmetry. The asymptotes are the lines x ± y

√
D = 0.

Let (t, u) be the minimal positive solution to x2 − Dy2 = 1. Draw the graph of
x2 − Dy2 = N over the reals. Mark the point (

√
N, 0), which is on this graph.
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Now mark the point (t
√

N, u
√

N), which is also on the graph. Continue marking
points so that if (x, y) is the most recent point marked, then the next point marked is
(xt + Dyu, xu + yt). All of the points marked so far, apart from the first, have x > 0
and y > 0. Now, for each point (x, y) that has been marked, mark all of the points
(±x,±y) not yet marked.

The marked points divide the graph into intervals. Make the interval
((
√

N, 0), (t
√

N, u
√

N)] a half-open interval, and then make the other intervals
on this branch half-open by assigning endpoints to one interval. Make the intervals
on the other half-open by mapping (x, y) in the right branch to (−x,−y) on the left
branch. If there are integer solutions to x2 − Dy2 = N, then

1) No two solutions within the same (half-open) interval are equivalent,
2) Every interval has exactly one solution in each class, and
3) The order of solutions by class is the same in every interval.

Instead of starting with the point (
√

N, 0), we could have started with any point
(r, s) on the graph, and marked off the points corresponding to ±(r + s

√
D)(t +

u
√

D)n. The above three comments still apply.
The situation is similar in the case N < 0, except that the graph has the y-axis

as its axis, and the x-axis is an axis of symmetry. If the negative Pell’s equation
x2 − Dy2 = −1 is solvable, then any of its solutions can be used to generate a
correspondence between solutions to x2 − Dy2 = N and x2 − Dy2 = −N.

Within a class there is a unique solution with x and y nonnegative, but smaller
than any nonnegative solution. This is the minimal nonnegative solution for the
class. There is also either one or two solutions so that y is nonnegative, and is less
than or equal to any other nonnegative y in any solution (x, y) within the class. If
there is one such solution, it is called the fundamental solution. If there are two such
solutions, then they will be equivalent and their x-values will be negatives of each
other. In this case, the solution with the positive x-value is called the fundamental
solution for the class.

When tabulating solutions, it is usually convenient to make a list consisting of
one solution from each class. Often, this list will consist of the minimal nonnegative
solutions, or the fundamental solutions. Given any solution in a class, it is easy to
find the fundamental solution or the minimal nonnegative solution for that class.

The results are summarized in the following

Theorem 4.4.2. Given any solution in a class, all solutions in that class are derived
from solutions to the equation x2 − Dy2 = 1. If (r, s) is any particular solution to
x2 −Dy2 = N, (x, y) is any other solution to the same equation in the same class as
(r, s) and if (t1, u1) is the fundamental solution to the Pell’s resolvent, then for some
choice of signs + and −, and for some integer n

x + y
√

D = ±(r + s
√

D)(t1 + u1
√

D)n. (4.4.8)

We can write formulas similar to those presented for cases N = ±1 and N = ±4
in Section 4.4.2.
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4.4.4 Solving the Equation x2 − Dy2 = N for N <
√

D

When 1 < N2 < D, apply the PQa algorithm with P0 = 0, Q0 = 1. Continue the
computations until you reach the first i > 0 with G2

i − DB2
i = 1 (i.e., Qi+1 = 1 and

i + 1 is even). For 1 ≤ j ≤ i, if G2
j − DB2

j = N/f 2 for some f > 0, add fGj, fBj to
the list of solutions. When done, the list of solutions will have the minimal positive
member of each class.

The list of all solutions can be generated using the methods of the previous
section. Alternatively, all positive solutions can be generated by extending the PQa
algorithm indefinitely.

4.4.5 Solving the Equation x2 − Dy2 = N by Brute-Force
Search

Let (t, u) be the minimal positive solution to x2 − Dy2 = N. If N > 0, set y1 = 0,

and y2 =

√
(t − 1)N

2D
. If N < 0, set y1 =

√
|N|
2

, and y2 =

√
(t + 1)|N|

2D
. For

y1 ≤ y ≤ y2, if N+Dy2 is a square, set x =
√

N + Dy2. If (x, y) is not equivalent to
(−x, y), add both to the list of solutions, otherwise just add (x, y) to the list. When
finished, this list gives the fundamental solutions.

This method works well if y2 is not too large, which means that

√
(t ± 1)|N|

2D
is

not too large. Hence it suffices to search between the bounds y1 and y2.
To generate all solutions be performing this algorithm, refer to the structure of

solutions of general Pell’s equation given in Section 4.4.3.

4.4.6 Numerical Examples

In order to see how the algorithms that we have presented work, we will examine a
few numerical examples. Computations were done by using MATHEMATICA.

Example 1. Consider the equations

x2 − 109y2 = ±1.

Apply the PQa algorithm with P0 = 0 and Q0 = 1. The following table gives the
index, i, and then the several calculated quantities for i = −2 to 30.
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i Pi Qi ai Gi Bi G2 − 109B2

−2 0 1 −109

−1 1 0 1

0 0 1 10 10 1 −9

1 10 9 2 21 2 5

2 8 5 3 73 7 −12

3 7 12 1 94 9 7

4 5 7 2 261 25 −4

5 9 4 4 1138 109 15

6 7 15 1 1399 134 −3

7 8 3 6 9532 913 3

8 10 3 6 58591 5612 −15

9 8 15 1 68123 6525 4

10 7 4 4 331083 31712 −7

11 9 7 2 730289 69949 12

12 5 12 1 1061372 101661 −5

13 7 5 3 3914405 374932 9

14 8 9 2 8890182 851525 −1

15 10 1 20 181718045 17405432 9

16 10 9 2 372326272 35662389 −5

17 8 5 3 1298696861 124392599 12

18 7 12 1 1671023133 160054988 −7

19 5 7 2 4640743127 444502575 4

20 9 4 4 20233995641 1938065288 −15

21 7 15 1 24874738768 2382567863 3

22 8 3 6 169482428249 16233472466 −3

23 10 3 6 1041769308262 99783402659 15

24 8 15 1 1211251736511 116016875125 −4

25 7 4 4 5886776254306 563850903159 7

26 9 7 2 12984804245123 1243718681443 −12

27 5 12 1 18871580499429 18075659584602 5

28 7 5 3 69599545743410 6666427435249 −9

29 8 9 2 158070671986249 15140424455100 1

30 10 1 20 3231012985468390 309474916537249 −9

We have a0 = 10, and the first i so that ai = 2a0 is i = 15, at which point
a15 = 20. Hence the period of ai is 15, which is odd, and so the equation x2 −
109y2 = −1 has solutions. The minimal positive solution to x2 − 109y2 = −1 is
x = 8890182, y = 851525. The minimal positive solution to x2 − 109y2 = 1 is
x = 158070671986249, y = 15140424455100.

Example 2. Let us examine now the equations

x2 − 109y2 = ±4.

As D ≡ 1 (mod 4), apply the PQa algorithm with P0 = 1 and Q0 = 2. The
following table gives the index, i, and the standard quantities for i = −2 to 14.
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i Pi Qi ai Gi Bi G2 − 109B2

−2 −1 1 −108

−1 2 0 4

0 1 2 5 9 1 −28

1 9 14 1 11 1 12

2 5 6 2 31 3 −20

3 7 10 1 42 4 20

4 3 10 1 73 7 −12

5 7 6 2 188 18 28

6 5 14 1 261 25 −4

7 9 2 9 2537 243 28

8 9 14 1 2798 268 −12

9 5 6 2 8133 779 20

10 7 10 1 10931 1047 −20

11 3 10 1 19064 1826 12

12 7 6 2 49059 4699 −28

13 5 14 1 68123 6535 4

14 9 2 9 662166 63424 −28

We have a0 = 5, and the first i so that ai = 2a0−1 is i = 7, at which point a7 = 9.
Hence the period of ai is 7, which is odd, and so the equation x2 − 109y2 = −4 has
solutions. The minimal positive solution to x2 − 109y2 = −4 is x = 261, y = 25.
The minimal positive solution to x2 − 109y2 = 4 is x = 68123, y = 6525.

Note that the third solution to x2 − 109y2 = ±4 can be computed from

1

4
(261 + 25

√
109)3 = 17780364 + 1703050

√
109.

Upon dividing by 2, we get the minimal positive solution x = 8890182,
y = 851525 to negative Pell’s equation x2 − 109y2 = −1.

Example 3. Consider the equation

x2 − 129y2 = −5.

From Theorem 4.1.4 it follows that if this equation is solvable, then it has exactly
two classes of solutions.

Here N <
√

D. Apply the PQa algorithm with P0 = 0, Q0 = 1.

i Pi Qi ai Gi Bi G2 − 129B2

−2 0 1 −129
−1 1 0 1
0 0 1 11 11 1 −8
1 11 8 2 23 2 13
2 5 13 1 34 3 −5
3 8 5 3 125 11 16
4 7 16 1 159 14 −3
5 9 3 6 1079 95 16
6 9 16 1 1238 109 −5
7 7 5 3 4793 422 13
8 8 13 1 6031 531 −8
9 5 8 2 16855 1484 1

10 11 1 22 376841 33179 −8
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The only f > 0 so that f 2 divides −5 is f = 1. Reviewing the above for G2
j −

129B2
j = −5, we find solutions (x, y) equal to (34,3) and (1238,109). Thus, there

are two classes of solutions, and these are the minimal positive solutions for these
classes.

Example 4. Let us use the brute-force search method to find the fundamental
solutions of

x2 − 61y2 = 15.

The minimal positive solution to Pell’s resolvent x2 − 61y2 = 1 is x =
1766319049, y = 226153980. As N = 15 is positive, the lower search limit for
y is 0, and the upper limit is

√
15(1766319049− 1)

2 · 61 ≈ 14736, 702.

So we search on y from 0 to 14736. Only y = 11 and y = 917 yield solutions, so
the four fundamental solutions are x = ±86, y = 11, and x = ±7162, y = 917.

Example 5. For the same equation above, we will apply now the LMM algorithm
given in Section 4.3.

The only f > 0 so that f 2 divides 15 is f = 1. Set m = 15. The z’s with
−15/2 < z ≤ 15/2 and z2 ≡ 61 (mod 15) are z = ±1, z = ±4.

Upon performing the PQa algorithm with P0 = 1, Q0 = 15, and d = 61, the first
Qi = ±1 occurs at Q9 = 1. The corresponding solution has x = G8 = 2593 and
y = B8 = 332. For this (x, y), x2 − 61y2 = −15. The equation x2 − 61y2 = −1 is
solvable and the minimal positive solution is x = 29718, y = 3805. Applying this
to the solution (2593, 332) gives the solution x = 154117634, y = 19732741 to the
equation x2 − 61y2 = 15. This is equivalent to the fundamental solution (−86, 11).

Performing the PQa algorithm with P0 = −1, Q0 = 15, and d = 61, gives the
first Qi = ±1 at Q4 = 1, yielding the fundamental solution (86, 11) to the equation
x2 − 61y2 = 15.

Performing the PQa algorithm with P0 = 4, Q0 = 15, and d = 61, gives the
first Qi = ±1 ate Q10 = 1, yielding the fundamental solution (7162, 917) to the
equation x2 − 61y2 = 15.

Performing the PQa algorithm with P0 = −4, Q0 = 15, and d = 61, gives the
first Qi = ±1 at Q3 = 1, yielding the solution (31, 4) to the equation x2 − 61y2 =
−15. Applying the minimal positive solution to x2 − 61y2 = −1 gives the solution
x = 1849678, y = 236827 to the equation x2 − 61y2 = 15. This is equivalent to the
fundamental solution (−7162, 917).
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4.5 Solvability and Unsolvability of the Equation
ax2 − by2 = c

Using the results in our papers [13, 14] and [17] we will present two general methods
for solving the equation

ax2 − by2 = c. (4.5.1)

We will also give sufficient conditions such that equation (4.5.1) is unsolvable
in positive integers. In the special case c = 1, the equation (4.5.1) was studied in
Section 3.5.

The equation (4.5.1) is also considered in the recent paper [114], where a, b, c are
positive integers with gcd(a, b) = 1. The author showed that if (4.5.1) is solvable,
then it has infinitely many positive integer solutions. But his result is in fact a variant
of the multiplication principle.

The following result given in [172] completely solves the problem of determining
all solutions to equation (4.5.1).

Theorem 4.5.1. Let a, b be positive integers such that gcd(a, b) = 1 and a is
squarefree, and let c be a nonzero integer. Denote D = ab, N = ac. Then (u, v)
is a solution to the general Pell’s equation

u2 − Dv2 = N (4.5.2)

if and only if
(u

a
, v
)

is solution to (4.5.1).

Proof. Let (x, y) be a solution to (4.5.1). It follows that (ax)2−aby2 = ac, so (ax, y)
is a solution to the associated general Pell’s equation (4.5.2).

Conversely, if (u, v) is a solution to (4.5.2), from the relation u2 − abv2 = ac we
obtain a|u2. Taking into account that a is squarefree it follows that a|u. Therefore

u = a1a and (a1a)2 − abv2 = ac yield aa21 − bv2 = c, i.e.,
(u

a
, v
)

is a solution

to (4.5.1). ��
Remarks. 1) From the above result it is clear that (4.5.1) is solvable if and only if

the associated general Pell’s equation (4.5.2) is solvable.
2) The assumption that a is squarefree is not a restriction. Indeed, if a = a1m2

and a1 is squarefree, then the equation (4.5.1) becomes a1X2 − by2 = c, where
X = mx, i.e., an equation of the same type.

3) In order to solve (4.5.1) we determine all solutions (u, v) to the general Pell’s

equation (4.5.2). The desired solutions are given by
(u

a
, v
)

.

The equation (4.5.1) is strongly connected to the general Pell’s equation (4.5.2)
and to the Diophantine equation

as2 − bt2 = 1. (4.5.3)
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The solvability of these three equations is studied in the following theorem [17]:

Theorem 4.5.2. Suppose that gcd(a, b) = 1 and ab is not a perfect square. Then:

1) If the equations (4.5.2) and (4.5.3) are solvable, then (4.5.1) is also solvable and
all of its solutions (x, y) are given by

x = s0u + bt0v, y = t0u + as0v (4.5.4)

where (u, v) is any solution to (4.5.2) and (s0, t0) is the minimal solution to
(4.5.3).

2) If the equations (4.5.1) and (4.5.3) are solvable, then (4.5.2) is also solvable.
3) If the equations (4.5.1) and (4.5.2) are solvable and there exist solutions (x, y),

(u, v) such that

ux − bvy
c

and
−avx + uy

c

are both integers, then (4.5.3) is solvable.

Proof. 1) We have

ax2 − by2 = a(s0u + bt0v)
2 − b(t0u + as0v)

2 =

= (as20 − bt20)(u
2 − abv2) = 1 · c = c,

and it follows that (x, y), given in (4.5.4), is a solution to the equation (4.5.1).
Conversely, let (x, y) be a solution to (4.5.1), and let (s0, t0) be the minimal

solution to the equation (4.5.3). Then (u, v), where u = as0x − bt0y and v =
−t0x + s0y is a solution to the general Pell’s equation (4.5.2). Solving the above
system of linear equations with unknowns x and y yields x = s0u + bt0v and
y = t0u + as0v, i.e., (x, y) has the form (4.5.4).

2) If (x, y) and (s, t) are solutions to (4.5.1) and (4.5.3), respectively, then (u, v),
with u = asx − bty and v = −tx + sy is a solution to (4.5.2). Moreover, each
solution to (4.5.2) is of the above form. Indeed, if (u, v) is an arbitrary solution
to (4.5.2), then (x, y), where x = su + btv and y = tu + asv, is a solution to
(4.5.1). Thus, solving the above system of linear equations in u, v, it follows that
u = asx − bty and v = −tx + sy.

3) Let (x, y) and (u, v) be solutions to (4.5.1) and (4.5.2), respectively, for which

s =
ux − bvy

c
∈ Z and t =

−avx + uy
c

∈ Z.

Then (s, t) is a solution to (4.5.3). ��

Remarks. 1) The equation 8x2 − y2 = 7 is solvable and all of its solutions were
determined in Section 4.1. For this equation, the associated equations (4.5.2) and
(4.5.3) are u2 − 8v2 = 7 and 8s2 − t2 = 1, respectively. It is interesting to see
that both these equations are unsolvable.
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2) In case of solvability of equations (4.5.2) and (4.5.3), the formulas (4.5.4) point
out an alternative way to express the solutions to equation (4.5.1).

Theorem 4.5.3. Let a, c be relatively prime positive integers, not both perfect
squares, and let b and d be integers. The equation

ax2 − cy2 = ad − bc (4.5.5)

is solvable if and only if the numbers an+b and cn+d are perfect squares for some
positive integer n. In this case, the number of such n’s is infinite.

Proof. If (x0, y0) is a solution to the equation (4.5.5), then by Theorem 4.5.2,
(xm, ym)m≥0, where

xm = x0um + cy0vm, ym = ax0vm + y0um (4.5.6)

are solutions to this equation. Here (um, vm)m≥0 denotes the general solution to
Pell’s equation u2 − acv2 = 1.

Then ax2m − cy2m = ad − bc, m = 0, 1, 2, . . . , hence

a(x2m − d) = c(y2m − b), m = 0, 1, 2, . . . (4.5.7)

Since a and c are relatively prime, from (4.5.7) it follows that a|y2m − b and
c|x2m − d, m = 0, 1, 2, . . . . Let

nm =
y2m − b

a
=

x2m − d
c

, m = 0, 1, 2, . . . (4.5.8)

Clearly, nm is a positive integer for each m and

anm + b = y2m, cnm + d = x2m, m = 0, 1, 2, . . .

i.e., the numbers an+ b and cn+ d are simultaneously perfect squares for infinitely
many positive integers n.

If the equation (4.5.5) is not solvable in positive integers, then an+ b and cn+ d
cannot be both perfect squares. Indeed, if we assume that there is a positive integer
n0 such that an0 + b = y20 and cn0 + d = x20 for some positive integers x0, y0, then
by eliminating n0 it follows that ax20 − by20 = ad − bc, in contradiction with the
unsolvability of equation (4.5.5). ��
Theorem 4.5.4. Let a and b be positive integers such that for all positive integers
n, an + b is not a perfect square. Then the equations

ax2 − (am + v0)y
2 = c, m = 0, 1, 2, . . . (4.5.9)

and
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(am + w0)x
2 − ay2 = c, m = 0, 1, 2, . . . (4.5.10)

are not solvable in positive integers. Here c is a nonzero integer and (u0, v0) and
(w0, s0) are the minimal solutions to the equations au − bv = c and bw − as = c,
respectively.

Proof. The general solutions to the linear Diophantine equations au − bv = c and
bw − as = c are (um, vm)m≥0 and (wm, sm)m≥0, respectively, where

um = u0 + bm, vm = v0 + am and wm = w0 + am, sm = s0 + bm

(see [198]). Assume now that equation (4.5.9) is solvable and let (x, y) be a solution.
Then ax2−(am+v0)y2 = c. But by considerations above, c = aum−bvm. It follows
that

ax2 − (am + v0)y
2 = aum − bvm,

hence the equation (4.5.3), where d = um and c = um is solvable. From
Theorem 4.5.3 we obtain that an+ b is a perfect square for some n, in contradiction
with the hypothesis. ��
Example 1. The numbers 10n+3 are not perfect squares, n = 0, 1, 2, . . . . Choosing
c = 1, we find the minimal solutions to the equations 10u−3v = 1 and 3w−10s =
1. They are (1, 3) and (7, 2), respectively. From Theorem 4.5.4 it follows that the
equations

10x2 − (10m + 3)y2 = 1 and (10m + 7)x2 − 10y2 = 1, m = 0, 1, 2, . . .

are not solvable.

Remark. In many situations it is not easy to find the minimal solutions (u0, v0) and
(w0, s0) to the equations au − bv = c and bw − as = c, respectively. In this cases
we may replace (u0, v0) and (w0, s0) by any solution to the above equations and the
results in Theorem 4.5.4 remain true.

Example 2. The numbers 5n + 2 are not perfect squares for any positive integer
n. The equations 5u − 2v = c and 2w − 5s = c have (c, 2c) and (3c, c) among
their solutions, respectively. It follows that um = c + 2m, vm = 2c + 5m, and
wm = 3c + 5m, sm = c + 2m, m = 0, 1, 2, . . . .

From Theorem 4.5.3 we obtain that the equations

5x2 − (5m + 2c)y2 = c and (5m + 3c)x2 − 5y2 = c, m = 0, 1, 2, . . .

are not solvable.

Example 3. In a similar manner, starting with the nonsquare numbers 3n + 2, n =
0, 1, 2, . . . , we deduce that equations
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3x2 − (3m + c)y2 = c and (3m + 2c)x2 − 3y2 = c, m = 0, 1, 2, . . .

are not solvable in positive integers.
There are many situations in which the unsolvability of an equation of the type

(4.5.1) can be proven by using modular arithmetics arguments.

Example 4 ([193]). The equation

(4m + 3)x2 − (4n + 1)y2 = 1

where m and n are positive integers, is not solvable.
Indeed, x2, y2 ≡ 0 or 1 (mod 4) and so (4m + 3)x2 ≡ 0 or 3 (mod 4) and

(4n + 1)y2 ≡ 0 or 1 (mod 4). By combining the residues, we obtain

(4m + 3)x2 − (4n + 1)y2 �≡ 1 (mod 4).

Example 5 ([192]). In a similar manner, we can prove that equations

(4k + 2)x2 − (4l + 3)y2 = 1 and 7mx2 − (7n + 1)y2 = 1,

where k, l and m, n are positive integers, are also not solvable.
A criterion for solvability (unsolvability) for a class of general Pell’s equations

is given in [100] (see also subsection 4.2.4).

Theorem 4.5.5. For N a squarefree integer, the equation

x2 − 2y2 = N (4.5.11)

is solvable if and only if it is solvable modulo N.

Proof. By multiplicativity, it suffices to show that x2 − 2y2 = N has a solution for
N = −1, N = 2, and N = p for p an odd prime such that 2 is congruent to a square
modulo p. For N = −1, use 12 − 2 · 12 = −1; for N = 2, use 22 − 2 · 12 = 2.

Now suppose p is an odd prime such that 2 is congruent to a square modulo p.
Find x, y such that x2 − 2y2 is divisible by p but not by p2 (if it is divisible by p2, fix
that by replacing x with x + p). Now form the ideal (x + y

√
D, p). Its norm divides

p2 and x2 − 2y2, so it must be p. ��
Incidentally, one can replace 2 by any integer D such that Q(

√
D) has unique

factorization, provided that x2 − Dy2 = −1 has a solution. It turns out (but is
by no means obvious!) that unique factorization implies that D is prime, and it is
believed (but not proved) that Q(

√
D) has unique factorization for about 75 % of the

primes D. Moreover, existence of a solution of x2 − Dy2 = −1 then implies D ≡ 1
(mod 4), but nor every prime congruent to 1 modulo 4 will work (try D = 5).
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4.6 Solving the General Pell Equation by Using
Quadratic Rings

The main purpose of this section is to present an algorithm for finding all positive
integer solutions to the general Pell’s equation

x2 − Dy2 = k (4.6.1)

where d is a nonsquare positive integer and k is a nonzero integer. We will follow
the method described in [76] (see also [171]).

Let (x, y) be an integral solution of (4.6.1), i.e., x2 − Dy2 = k. We are going to
use the results in Section 2.2.2. We have N(μ) = k, where μ = x +

√
Dy ∈ R. If ε0

is the fundamental unit of the ring R found in Theorem 3.4.1, then we will denote

ε =

{
ε0, if N(ε0) = 1

ε20, if N(ε0) = −1.

Then the vectors (1, 1) and l(ε) form a base in the linear space R
2. Indeed, if

α(1, 1)+βl(ε) = 0, with α, β ∈ R, then α+β ln |ε| = 0 and α+β ln |ε| = 0. Since
ln |ε| = − ln |ε| �= 0, from the previous two relations it follows that α = β = 0.

If μ = x + y
√

D ∈ R and N(μ) = k, then k �= 0 implies μ �= 0, i.e., the vector
l(μ) is well defined in R

2. By using the fact that (1, 1) and l(ε) form a base in R
2,

we deduce the existence of α, γ ∈ R such that l(μ) = α(1, 1) + γl(ε). This means
that

lnμ = α+ γ ln |ε| and lnμ = α+ γ ln |ε|.

In particular, it follows that

ln |k| = ln |N(μ)| = ln |μ|+ ln |μ| = 2α+ γ ln |N(ε)| = 2α,

i.e.,

α =
ln |k|
2

and l(μ) =
ln |k|
2

(1, 1) + γl(ε).

Let a be the closest integer to γ, and let μ0 = ε−αμ. Then μ ∼ μ0 and N(μ0) =
N(μ) = k. In addition,

l(μ0) =
ln |k|
2

(1, 1) + γ1l(ε),

where |γ1| ≤
1

2
and γ1 = γ − a. Therefore
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ln |μ0| =
ln |k|
2

+ γ1 ln ε and ln |μ0| =
ln |k|
2

+ γ1 ln |ε| =
ln |k|
2

− γ1 ln ε

(we have used here that ε > 1). It follows that

∣∣∣∣ln |μ0| −
ln |k|
2

∣∣∣∣ ≤ 1

2
ln ε and

∣∣∣∣ln |μ0| −
ln |k|
2

∣∣∣∣ ≤ 1

2
ln ε.

The above inequalities can be written as

ln

√
|k|
ε

≤ ln |μ0| ≤ ln
√

ε|k| and ln

√
|k|
ε

≤ ln |μ0| ≤ ln
√

ε|k|.

We obtain
√

|k|
ε

≤ |μ0| ≤
√

ε|k| and

√
|k|
ε

≤ |μ0| ≤
√

ε|k|. (4.6.2)

The numbers |μ0| and |μ0| can be written as s + t
√

D, where s and t are positive
integers. Since t

√
D ≤ max{|μ0|, |μ0|} ≤

√
ε|k|, we have

t ≤
√

ε|k|
D

and s ≤
√

ε|k|. (4.6.3)

We will now describe the actual algorithm.

Step 1. Search for elements μ1, μ2, . . . , μr in R of the form s + t
√

D such that s, t
are positive integers satisfying inequalities (4.6.3) and N(μi) = k, i = 1, 2, . . . , r.

From the inequalities (4.6.3) it follows that there are finitely many such μ’s in R.
This fact also follows from Theorem 2.2.3.

Step 2. From Theorem 3.4.1 it follows that all elements μ ∈ R with N(μ) = k are
of the form μ = ±μiε

l or μ = ±μiε
l, for some i ∈ {1, 2, . . . , r} and some integer l.

Finally, let us mention that we can determine the fundamental unit ε0 ∈ R in a
finite number of steps. For this part we refer to Section 3.3, where we employed
continued fractions.

4.7 Another Algorithm for Solving General Pell’s Equation

In what follows we will present a different algorithm for solving the general Pell’s
equation (4.6.1). Our approach is based on the one given in [171] and [95].

It suffices to consider solutions (x, y) to (4.6.1) such that the positive integers x
and y are relatively prime.
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If |k| <
√

D, then we apply Theorem 3.3.1. When k �= (−1)n−1qn+1 for all n,
the equation (4.6.1) is not solvable. When k = (−1)n−1qn+1 for some n, the pair
(hn, kn) is a solution to the general Pell’s equation (4.6.1) and all other of its integral
solutions are given by

x + y
√

D = (±hn ± kn

√
D)εl, l ∈ Z,

where is the fundamental solution of the Pell’s resolvent.
If |k| >

√
D, then we write k = δk0, where δ = ±1 and k0 is a positive

integer. Since x and y are relatively prime, there exist integers x1 and y1 such that
xy1 − yx1 = δ.

It follows that

(xx1 − Dyy1)
2 − D = (xx1 − Dyy1)

2 − D(xy1 − yx1)
2 =

= (x2 − Dy2)(x21 − Dy21) = k(x21 − Dy21) = δk0(x
2
1 − Dy21).

Hence

(xx1 − Dyy1)
2 − D = δk0(x

2
1 − Dy21). (4.7.1)

If (x0, y0) is a solution to the equation xy1 − yx1 = δ, then the general solution
to this equation is given by

x1 = x0 + tx and y1 = y0 + ty, t ∈ Z.

We have

xx1 − Dyy1 = xx0 − Dyy0 + t(x2 − Dy2) = xx0 − Dyy0 + tδk0.

We will choose t such that

|xx1 − Dyy1| ≤
k0
2
. (4.7.2)

Denoting by l the positive integer |xx1 − Dyy1|, from (4.7.1) we obtain

x21 − Dy21 =
l2 − D
δk0

= ηh, (4.7.3)

where η = ±1 and h is a positive integer.

Using the inequalities
√

D < k0 and l <
k0
2

, from (4.7.3) it follows that

h ≤ max{D, l2}
k0

<

max

{
k20,

k20
4

}

k0
=

k20
k0

= k0.
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If h < k0, then we apply again Theorem 3.3.1 and obtain x1 and y1 such that
x21 −Dy21 = ηh. From the equalities xy1 − yx1 = δ and xx1 −Dyy1 = ±l we deduce
the following formulas:

x =
−δDy1 ± lx1

ηh
and y =

−δx1 ± ly1
ηh

. (4.7.4)

Hence the integers x and y can be obtained from the equality

ηh(x + y
√

D) = (x1 + y1
√

D)(±l − δ
√

D).

Taking norms in the above equality yields

h2(x2 − Dy2) = (x21 − Dy21)(l
2 − D) = ηh · ηh · δk0 = h2δk0,

and so x2 − Dy2 = δk0 = k.
Therefore, if x and y given in (4.7.4) are integers, then (x, y) is a solution to the

general Pell’s equation (4.6.1).
If h >

√
D, then we apply again the described procedure.

The considerations above can be summarized in the following algorithm.

Step 1. Find all solutions to the congruence

l2 ≡ D (mod k0),

where l is a positive integer and 0 ≤ l ≤ k0
2

. Denote by l1, l2, . . . , lr those satisfying

the inequalities 0 ≤ l ≤ k0
2

. Set

l2i − D
δk0

= ηihi, i = 1, 2, . . . , r,

where ηi = ±1 and hi is a positive integer.

Step 2. If k0 <
√

D, apply Theorem 3.3.1.

Step 3. If k0 >
√

D, consider the equations

x21 − Dy21 = ηihi, i = 1, 2, . . . , r.

From the previous observations we have 0 < hi < k0, i =, 1, 2 . . . , r.

Step 4. Fix i ∈ {1, 2, . . . , r}.

I. If hi <
√

D, apply Theorem 3.3.1 to get the solutions to the equation x2i −Dy2i =
ηihi. Then the solutions (x, y) are among those given by
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x =
−δDyi ± lixi

ηihi
and y =

−δxi ± liyi

ηihi
. (4.7.5)

II. If hi >
√

D, repeat Step 3, replacing δ by ηi and k0 by hi. Since 0 < hi < k0,
after finitely many operations we will find all solutions to the given equation.

Remark. The two algorithms presented in Sections 4.5 and 4.6 are comparable.
None is superior to the other and, moreover, they complete one another. The
algorithm in Section 4.5 is preferable for large k’s or large D’s. The second is more
efficient for small k’s, for example when k satisfies the inequalities −

√
D < k <

√
D

(see also Subsection 4.3.4).

4.8 The Diophantine Equation ax2 + bxy + cy2 = N

The standard approach to solving the equation

ax2 + bxy + cy2 = N (4.8.1)

in relatively prime integers x, y, is via reduction of quadratic forms, as in [127].
There is a parallel approach in [71] which uses continued fractions.

However, in a memoir of 1770, Lagrange, gave a more direct method for solving
(4.8.1) when gcd(a, b, c) = gcd(a,N) = 1 and D = b2 − 4ac > 0 is not a perfect
square. This seems to have been largely overlooked. (Admittedly, the necessity part
of his proof is long and not easy to follow.)

In [175], equation (4.8.1) is solved when N = ±μ, where

μ = min
(x,y) 
=(0,0)

|ax2 + bxy + cy2|.

The approach is similar to Lagrange’s reduction to the case N = ±1.
In the doctoral dissertation [157] the equation (4.8.1) is also discussed, using

a standard convergent sufficiency condition of Lagrange, which resulted in the
restriction D ≥ 16, thus making rigorous the necessity part of Lagrange’s
discussion. Only the case b = 0 is discussed in detail, along the lines of [57].

The approach using the convergent criterion of Lemma 4.3.1, which results in no
restriction on D, while allowing us to deal with the non-convergent case, without
having to appeal to the case μ = 1 in [175], whose proof is somewhat complicated.

The continued fractions approach also had the advantage that it produces the
solution (x, y) with least positive y from each class, if gcd(a,N) = 1.

The assumption gcd(a,N) = 1 involves no loss of generality. For as pointed out
by Gauss in his Disquisitiones (see [95]), there exist relatively prime integers α, γ
such that aα2 + bαγ + cγ2 = A, where gcd(A,N) = 1. Then, if αδ − βγ = 1, the
unimodular transformation x = αX +βY , y = γX + δY converts ax2 + bxy+ cy2 to
AX2 + BXY + CY2. Also, the two forms represent the same integers.
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Let us illustrate how we can solve (4.8.1) via the reduction of the quadratic form
in the left-hand side. By multiplying both sides of (4.8.1) by 4a and completing the
square we obtain

(2ax + by)2 − Dy2 = 4aN, (4.8.2)

where D = b2 − 4ac. Assume that D > 0 and D is not a perfect square. Then
(4.8.2) is a general Pell’s equation. Let (un, vn) be the general solution to its Pell’s
resolvent u2 − Dv2 = 1 and let (α, β) be the fundamental solution of the class K to
the equation X2 − DY2 = 4aN (see Section 4.1). Following [39], we have:

Theorem 4.8.1. All integer solutions (xn, yn)n≥1 to (4.8.1) are given by

⎧⎨
⎩ xn =

(α− bβ)un − (bα− Dβ)vn

2a
yn = βun + αvn,

(4.8.3)

where (un, vn)n≥1 is the solution to the Pell’s resolvent, and (α, β) is the fundamen-
tal solution of the class K.

Proof. Let X = 2ax + by, Y = y, and N1 = 4aN. By Theorem 4.1.3, we obtain the
general solution to X2 − DY2 = N1

Xn = αun + Dβvn and Yn = βun + αvn.

Solving the linear system

{
2axn + byn = αun + Dβvn

yn = βun + αvn

we get the formulas (4.8.3).
Now let us show that xn is an integer. To prove this, it is enough to show 2a |

α− bβ and 2a | αb − βD. Indeed, we have α− bβ = 2ax and

αb−βD = αb−β(b2−4ac) = (α−bβ)b+4acβ = 2axb+4acβ = 2a(xβ+2cβ),

and the properties follow. ��
Example. The equation in Example 5, page 54, in the book [22] is reduced to

x2 − 5xy + y2 = −3. (4.8.4)

In the reference [22] the equation (4.8.4) is solved by Fermat’s method of infinite
descent. Let us illustrate the method in Theorem 4.8.1 for finding the solutions to
(4.8.4). The equation (4.8.4) is equivalent to

(2x − 5y)2 − 21y2 = −12.
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Let X = 2x−5y and Y = y. We obtain the general Pell’s equation X2−21Y2 = −12.
The Pell’s resolvent u2−21v2 = 1 has the fundamental solution (u1, v1) = (55, 12),
hence its general solution (un, vn)n≥1 is given by un + vn

√
21 = (55 + 12

√
21)n.

Using the upper bounds in the Remark after Theorem 4.1.3, we have

0 ≤ |X| ≤
√

|N|u1 + N
2

=

√
12 · 55− 12

2
=

√
6 · 54 = 18,

0 < Y ≤
√

|N|u1 − N
2D

=

√
12 · 55 + 12

2 · 21 =
√
16 = 4.

Therefore, we obtain the possibilities |X| = 0, 1, . . . , 18 and Y = 1, 2, 3, 4. Then
we get four solutions (3, 1), (−3, 1), (18, 4), (−18, 4) to the equation X2 − 21Y2 =
−12. It is easy to check that these solutions are not associated with each other and
they generates four classes of solutions to the above general Pell’s equation. From
Theorem 4.8.1 we get all integer solutions to equation (4.8.4):

(4un + 18vn, un + 3vn), (un + 3vn, un − 3vn),

(19un + 87vn, 4un + 18vn), (un − 3vn, 4un − 18vn), n ≥ 1.

These four classes of solutions give a partition of the solution obtained in the above-
mentioned reference [22].

4.9 Thue’s Theorem and the Equations x2 − Dy2 = ±N

In this section, following the papers [86, 87, 128] and [225] we show how to
obtain explicit representations of certain integers in the form x2 − Dy2 for small
D > 1, using a constructive version of Thue’s theorem based on Euclid’s algorithm.
Amongst other things, if u2 ≡ D (mod N), D �≡ 1 (mod N) is solvable and
gcd(D,N) = 1, N odd, we show how to find the following representations:

N = 8k ± 1 N = x2 − 2y2

−N = x2 − 2y2

N = 12k + 1 N = x2 − 3y2

N = 12k − 1 −N = x2 − 3y2

N = 5k + 1 N = x2 − 5y2

N = 5k − 1 −N = x2 − 5y2

N = 24k + 1 or 24k − 5 N = x2 − 6y2

N = 24k − 1 or 24k + 5 −N = x2 − 6y2

N = 28k + 1, 28k + 9 or 28k + 25 N = x2 − 7y2

N = 28k − 1, 28k − 9 or 28k − 25 −N = x2 − 7y2
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4.9.1 Euclid’s Algorithm and Thue’s Theorem

Let a and b be natural numbers, a > b, where b does not divide a. Let r0 = a,
r1 = b, and for 1 ≤ k ≤ n, rk−1 = rkqk + rk+1, where 0 < rk+1 < rk and rn = 0.
Define sequences s0, s1, . . . , sn+1 and t0, t1, . . . , tn+1 by

s0 = 1, s1 = 0, t0 = 0, t1 = 1, tk+1 = −qktk + tk−1, sk+1 = −qksk + sk−1,

for 1 ≤ k ≤ n. Then the following are easily proved by induction:

(i) sk = (−1)k|sk|, tk = (−1)k+1|tk|;
(ii) 0 = |s1| < |s2| < . . . |sn+1|;

(iii) 1 = |t1| < |t2| < · · · < |tn+1|;
(iv) a = |tk|rk−1 + |tk−1|rk for 1 ≤ k ≤ n + 1;
(v) rk = ska + tkb for 1 ≤ k ≤ n + 1.

Theorem 4.9.1 (Thue). Let a and b be integers, a > b > 1 with gcd(a, b) = 1.
Then the congruence bx ≡ y (mod a) has a solution in nonzero integers x and y
satisfying |x| < √

a, |y| ≤ a.

Proof. As rn = gcd(a, b) = 1, a >
√

a > 1, and the remainders r0, . . . , rn in
Euclid’s algorithm decrease strictly to 1, there is a unique index k such that rk−1 >√

a ≥ rk. Then the equation a = |tk|rk−1 + |tk−1|rk gives a ≥ |tk|rk−1 > |tk|
√

a.
Hence |tk| <

√
a.

Finally, rk = ska + tkb, so btk ≡ rk (mod a) and we can take x = tk, y = rk. ��

4.9.2 The Equation x2 − Dy2 = N with Small D

Let N ≥ 1 be an odd integer, D > 1 and not a perfect square. Then a necessary
condition for solvability of the equation x2 − Dy2 = ±N with gcd(x, y) = 1 is
that the congruence u2 ≡ D (mod N) is solvable. From now on we assume this,

together with gcd(D,N) = 1 and 1 < u < N. Then the Jacobi symbol

(
D
N

)
= 1.

We note that if N is prime, then

(
D
N

)
= 1 also implies that u2 ≡ D (mod N) is

solvable.
If we take a = N and b = u in Euclid’s algorithm, the integers r2k −Dt2k decrease

strictly for k = 0, . . . , n, from a2 to 1− Dt2n and are always multiples of N. For

r2k − Dt2k ≡ t2k u2 − Dt2k ≡ t2k (u
2 − D) ≡ 0 (mod N).

If k is chosen so that rk−1 >
√

N > rk, as in the proof of Thue’s theorem, then as

N = rk−1|tk|+ rk|tk−1| > rk−1|tk|, (4.9.1)
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we have |tk| <
√

N and

− DN < r2k − Dt2k < N. (4.9.2)

Hence r2k − Dt2k = −lN, −1 < l < D. In fact, 1 ≤ l < D, so

− DN < r2k − Dt2k ≤ −N. (4.9.3)

Also r2k + lN = Dt2k and hence Dt2k > lN,

|tk| >
√

lN
D
. (4.9.4)

From equation (4.9.1), N > rk−1|tk| and inequality (4.9.4) implies

rk−1 <

√
DN

l
. (4.9.5)

4.9.3 The Equations x2 − 2y2 = ±N

The assumption

(
2

N

)
= 1 is equivalent to N ≡ ±1 (mod 8). Also 1 ≤ l < 2, so

l = 1 and (4.9.3) gives r2k − 2t2k = −N. Hence from equation (4.9.5) with D = 2,
rk−1 <

√
2N and

−N = r2k − 2t2k < r2k−1 − 2t2k−1 < r2k−1 < 2N.

Thus r2k−1 − 2t2k−1 = N.

Example. Let N = 10000000033, a prime of the form 8n + 1. Then u = 87196273
gives k = 10, r10 = 29015, t10 = −73627, r9 = 118239, t9 = 44612 and r210 −
2t210 = −N, r29 − 2t29 = N.

Remark. We can express rk−1 and tk−1 in terms of rk and tk. The method is useful
later for delineating cases when D = 5, 6, 7:

Using the identities

(rkrk−1 −Dtktk−1)
2 −D(tkrk−1 − tk−1rk)

2 = (r2k −Dt2k )(r
2
k−1 −Dt2k−1) (4.9.6)

and

(−1)kN = rktk−1 − rk−1tk, (4.9.7)
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we deduce that

rkrk−1 − Dtktk−1 = εN, (4.9.8)

where ε = ±1.

From equation (4.9.8) we see that ε = 1, as tktk−1 < 0. Hence

rkrk−1 + DTkTk−1 = N, (4.9.9)

where Tk = |tk|. Then solving equations (4.9.7) and (4.9.9) with D = 2 for rk−1 and
Tk−1 yields

rk−1 = −rk + 2Tk, Tk−1 = Tk − rk.

The integers N, |N| ≤ 200, such that the equation x2 − 2y2 = N is solvable are:
±1, ±2, ±4, ±7, ±8, ±9, ±14, ±16, ±17, ±18, ±23, ±25, ±28, ±31, ±32, ±34,
±36, ±41, ±46, ±47, ±49, ±50, ±56, ±62, ±63, ±64, ±68, ±71, ±72, ±73,
±79, ±81, ±82, ±89, ±92, ±94, ±97, ±98, ±100, ±103, ±112, ±113, ±119,
±121, ±124, ±126, ±127, ±128, ±136, ±137, ±142, ±144, ±146, ±151, ±153,
±158, ±161, ±162, ±164, ±167, ±169, ±175, ±178, ±184, ±188, ±191, ±193,
±194, ±196, ±199, ±200.

The following table presents the numbers k(2,N) of classes of solutions and
the sets K(2,N) of fundamental solutions of classes of x2 − 2y2 = N, when the
equations are solvable and N is positive or negative, |N| ≤ 18 [161].

x2 − 2y2 = N k(2,N) K(2,N)

x2 − 2y2 = 2 1 (2, 1)

x2 − 2y2 = −2 1 (4, 3)

x2 − 2y2 = 4 1 (6, 4)

x2 − 2y2 = −4 1 (2, 2)

x2 − 2y2 = 7 2 (3, 1), (5, 3)

x2 − 2y2 = −7 2 (1, 2), (5, 4)

x2 − 2y2 = 8 1 (4, 2)

x2 − 2y2 = −8 1 (8, 6)

x2 − 2y2 = 9 1 (9, 6)

x2 − 2y2 = −9 1 (3, 3)

x2 − 2y2 = 14 2 (4, 1), (8, 5)

x2 − 2y2 = −14 2 (2, 3), (6, 5)

x2 − 2y2 = 16 1 (12, 8)

x2 − 2y2 = −16 1 (4, 4)

x2 − 2y2 = 17 2 (5, 2), (7, 4)

x2 − 2y2 = −17 2 (1, 3), (9, 7)

x2 − 2y2 = 18 1 (6, 3)

x2 − 2y2 = −18 1 (12, 9)
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Here are four examples of general Pell’s equations x2 − 2y2 = N, with N big:
k(2, 833) = 6 and K(2, 833) = {(29,2), (31,8), (35,14), (49,28), (61,38), (79,52)};
k(2, 1666) = 5 and K(2, 1666) = {(42,7), (46,15), (54,25), (62,33), (98,63)};
k(2, 2737) = 7 and K(2, 2737) = {(53,6), (55,12), (57,16), (75,38), (107,66),
(117,74), (135,88)}; k(2, 3689) = 8 and K(2, 3689) = {(61,4), (67,20), (71,26),
(83,40), (89,46), (109,64), (121,74), (167,110)}.

4.9.4 The Equations x2 − 3y2 = ±N

The assumption

(
3

N

)
= 1 is equivalent to N ≡ ±1 (mod 12). From equation

(4.9.3), we have −3N < r2k − 3t2k ≤ −N. Hence r2k − 3t2k = −2N or −N.

Case 1. Assume N ≡ 1 (mod 12). Then r2k − 3t2k = −N would imply the
contradiction r2k ≡ −1 (mod 3).

Hence r2k − 3t2k = −2N and inequality (4.9.5) implies rk−1 <

√
3N
2

. Hence

−2N = r2k − 3t2k < r2k−1 − 3t2k−1 < r2k−1 <
3N
2
.

Consequently, r2k−1 − 3t2k−1 = N.
We find 2rk−1 = −rk + 3Tk and 2Tk−1 = −rk + Tk.

Case 2. Assume N ≡ −1 (mod 12). Then r2k − 3t2k = −2N would imply the
contradiction r2k ≡ 0 (mod 3). Hence r2k −3t2k = −N and inequality (4.9.5) implies
rk−1 <

√
3N. Hence

−N = r2k − 3t2k < r2k−1 − 3t2k−1 < r2k−1 < 3N.

Consequently, r2k−1 − 3t2k−1 = N or 2N. However, r2k−1 − 3t2k−1 = N implies the
contradiction r2k−1 ≡ −1 (mod 3). Hence r2k−1 − 3t2k−1 = 2N.

We find rk−1 = −rk + 3Tk and Tk−1 = −rk + Tk.
The integers N, |N| ≤ 200, such that the equation x2 − 3y2 = N is solvable are:

1, 4, 6, 9, 13, 16, 22, 24, 25, 33, 36, 37, 46, 49, 52, 54, 61, 64, 69, 73, 78, 81, 88,
94, 96, 97, 100, 109, 117, 118, 121, 132, 141, 142, 144, 148, 150, 157, 166, 169,
177, 181, 184, 193, 196, 198, −2, −3, −8, −11, −12, −18, −23, −26, −27, −32,
−39, −44, −47, −48, −50, −59, −66, −71, −72, −74, −75, −83, −92, −98, −99,
−104, −107, −108, −111, −122, −128, −131, −138, −143, −146, −147, −156,
−162, −167, −176, −179, −183, −188, −191, −192, −194, −200.

The following table contains the numbers k(3,N) of classes of solutions and
the sets K(3,N) of fundamental solutions of classes of x2 − 3y2 = N, when the
equations are solvable and N is positive or negative, |N| ≤ 27 [161].
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x2 − 3y2 = N k(3,N) K(3,N)

x2 − 3y2 = 4 1 (4, 2)

x2 − 3y2 = 6 1 (3, 1)

x2 − 3y2 = 9 1 (6, 3)

x2 − 3y2 = 13 2 (4, 1), (5, 2)

x2 − 3y2 = 16 1 (8, 4)

x2 − 3y2 = 22 2 (5, 1), (7, 3)

x2 − 3y2 = 24 1 (6, 2)

x2 − 3y2 = 25 1 (10, 5)

x2 − 3y2 = −3 1 (3, 2)

x2 − 3y2 = −8 1 (2, 2)

x2 − 3y2 = −11 2 (1, 2), (4, 3)

x2 − 3y2 = −12 1 (6, 4)

x2 − 3y2 = −18 1 (3, 3)

x2 − 3y2 = −23 2 (2, 3), (5, 4)

x2 − 3y2 = −26 2 (1, 3), (7, 5)

x2 − 3y2 = −27 1 (9, 6)

Here are five example of equations x2 − 3y2 = N, with N big: k(3, 121) = 3
and K = {(13,4), (14,5), (22,11)}; k(3, 253) = 4 and K(3, 253) = {(16,1), (19,6),
(20,7), (29,14)}; k(3, 1573) = 5 and K(3, 1573) = {(40,3), (41,6), (44,11), (55,22),
(64,29)}; k(3, 3289) = 8 and K(3, 3289) = {(58,5), (59,8), (61,12), (67,20),
(74,27), (86,37), (94,43), (101,48)}’ k(3, 3718) = 6 and K(3, 3718) = {(61,1),
(65,13), (71,21), (79,29), (91,39), (119,59)}.

4.9.5 The Equations x2 − 5y2 = ±N

The assumption

(
5

N

)
= 1 is equivalent to N ≡ ±1 (mod 5). Then from equation

(4.9.3), we have −5N < r2k − 5t2k ≤ −N. Hence r2k − 5t2k = −4N, −3N, −2N

or −N. We cannot have r2k − 5t2k = −3N, as then

(
5

3

)
= 1. Neither can we have

r2k − 5t2k = −2N, as N is odd.

Case 1. Assume N ≡ 1 (mod 5). Then r2k − 5t2k = −N would imply the
contradiction r2k ≡ −1 (mod 5). Hence r2k − 5t2k = −4N. Then rk and tk are both

odd. Also, inequality (4.9.5) implies rk−1 <

√
5N
4

. Hence −N ≤ r2k−1−5t2k−1 ≤ N.

Then as in the remark above, we can show that

(i) if r2k−1 − 5t2k−1 = −N, then
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4rk−1 = −3rk + 4Tk, 4Tk−1 = −rk + 3Tk,

hence rk ≡ −Tk (mod 4).
(ii) if r2k−1 − 5t2k−1 = N, then

4rk−1 = −rk + 5Tk, 4Tk−1 = −rk + Tk,

hence rk ≡ Tk (mod 4).

Case 2. Assume N ≡ −1 (mod 5). Then r2k − 5t2k = −4N would imply the
contradiction r2k ≡ 4 (mod 5). Hence r2k − 5t2k = −N. Then not both rk and
tk are odd. Also, inequality (4.9.5) implies rk−1 <

√
5N and we deduce that

−N < r2k−1 − 5t2k−1 ≤ 4N. Consequently, r2k−1 − 5t2k−1 = N or 4N.
Then, as in the remark above, we can show

(i) if r2k−1 − 5t2k−1 = N, then

rk−1 = −2rk + 5Tk, Tk−1 = −rk + 2Tk,

hence rk−1 ≡ −2rk (mod 5).
(ii) If r2k−1 − 5t2k−1 = 4N, then

rk−1 = −rk + 5Tk, Tk−1 = −rk + Tk,

hence rk−1 ≡ −rk (mod 5).

Here is a complete classification of the possible cases:

1. N = 5k + 1. Then r2k − 5t2k = −4N, while rk and tk are odd.

(i) rk ≡ −Tk (mod 4). Then r2k−1 − 5t2k−1 = −N.
(ii) rk ≡ Tk (mod 4). Then r2k−1 − 5t2k−1 = N.

2. N = 5k − 1. Then r2k − 5t2k = −N, while rk and tk are not both odd.

(i) rk−1 ≡ −2rk (mod 5). Then r2k−1 − 5t2k−1 = N.
(ii) rk−1 ≡ −rk (mod 5). Then r2k−1 − 5t2k−1 = 4N.

The integers N, |N| ≤ 200, such that the equation x2 − 5y2 = N is solvable are:
±1, ±4, ±5, ±9, ±11, ±16, ±19, ±20, ±25, ±29, ±31, ±36, ±41, ±44, ±45,
±49, ±55, ±59, ±61, ±64, ±71, ±76, ±79, ±80, ±81, ±89, ±95, ±99, ±100,
±101, ±109, ±116, ±121, ±124, ±125, ±131, ±139, ±144, ±145, ±149, ±151,
±155, ±164, ±169, ±171, ±176, ±179, ±180, ±181, ±191, ±196, ±199.

The following table gives the numbers k(5,N) and the sets K(5,N) of the
equations x2 − 5y2 = N, when they are solvable and N is positive or negative,
|N| ≤ 29 [161].
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x2 − 5y2 = N k(5,N) K(5,N)

x2 − 5y2 = 4 3 (3, 1), (7, 3), (18, 8)

x2 − 5y2 = 5 1 (5, 2)

x2 − 5y2 = 9 1 (27, 12)

x2 − 5y2 = 11 2 (4, 1), (16, 7)

x2 − 5y2 = 16 3 (6, 2), (14, 6), (36, 16)

x2 − 5y2 = 19 2 (8, 3), (12, 5)

x2 − 5y2 = 20 3 (5, 1), (10, 4), (25, 11)

x2 − 5y2 = 25 1 (45, 20)

x2 − 5y2 = −4 3 (1, 1), (4, 2), (11, 5)

x2 − 5y2 = −5 1 (20, 9)

x2 − 5y2 = −9 1 (6, 3)

x2 − 5y2 = −11 2 (3, 2), (13, 6)

x2 − 5y2 = −16 3 (2, 2), (8, 4), (22, 10)

x2 − 5y2 = −19 2 (1, 2), (31, 14)

x2 − 5y2 = −20 3 (5, 3), (15, 7), (40, 18)

x2 − 5y2 = −25 1 (10, 5)

x2 − 5y2 = −29 2 (4, 3), (24, 11)

Here are three example of equations x2 − 5y2 = N, with N big: k(5, 1276) =
11 and K(5, 1276) = {(36,2), (39,7), (41,9), (49,15), (59,21), (76,30), (84,34),
(111,47), (141,61), (211,93), (284,126)}; k(5, 1936) = 8 and K(5, 1936) = {(46,6),
(54,14), (84,32), (116,48), (154,66), (206,90), (294,130), (396,176)}; k(5, 9196) =
18 and K(5, 9196) = {(96,2), (99,11), (104,18), (111,25), (121,33), (139,45),
(149,51), (176,66), (201,79), (229,93), (264,110), (321,137), (351,151), (429,187),
(499,219), (576,254), (671,297), (824,366)}.

4.9.6 The Equations x2 − 6y2 = ±N

The assumption

(
6

N

)
= 1 is equivalent to N ≡ ±1 (mod 24) or N ≡ ±5

(mod 24). Then from equation (4.9.3), we have −6N < r2k − 6t2k ≤ −N. Hence
r2k − 6t2k = −5N, −4N, −3N, −2N or −N. Only −4N is ruled out immediately
and the other possibilities can occur.

As with the case D = 5, there is a complete classification of the possible cases:

1. N = 24k − 1 or 24k + 5.

(i) rk ≡ 0 (mod 3). Then r2k − 6t2k = −3N, r2k−1 − 6t2k−1 = −N.
(ii) rk �≡ 0 (mod 3). Then r2k − 6t2k = −N.
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(a) rk−1 ≡ 0 (mod 2). Then r2k−1 − 6t2k−1 = 2N.
(b) rk−1 ≡ 1 (mod 2). Then r2k−1 − 6t2k−1 = 5N.

2. N = 24k + 1 or 24k − 5:

(i) rk ≡ 0 (mod 2). Then r2k − 6t2k = −2N, r2k−1 − 6t2k−1 = N.
(ii) rk ≡ 1 (mod 2). Then r2k − 6t2k = −5N.

(a) rk ≡ Tk (mod 5). Then r2k−1 − 6t2k−1 = N.
(b) rk ≡ −Tk (mod 5). Then r2k−1 − 6t2k−1 = −2N, r2k−2 − 6t2k−2 = N.

The integers N, |N| ≤ 200, such that x2 − 6y2 = N is solvable are: 1, 3, 4, 9,
10, 12, 16, 19, 25, 27, 30, 36, 40, 43, 46, 48, 49, 57, 58, 64, 67, 73, 75, 76, 81,
90, 94, 97, 100, 106, 108, 115, 120, 121, 129, 138, 139, 142, 144, 145, 147, 160,
163, 169, 171, 172, 174, 184, 190, 192, 193, 196, −2, −5, −6, −8, −15, −18, −20,
−23, −24, −29, −32, −38, −45, −47, −50, −53, −54, −60, −69, −71, −72, −80,
−86, −87, −92, −95, −96, −98, −101, −114, −116, −125, −128, −134, −135,
−141, −146, −149, −150, −152, −159, −162, −167, −173, −180, −188, −191,
−194, −197, −200.

The following table gives the numbers k(6,N) and the sets K(6,N) of equations
x2− 6y2 = N, when they are solvable and N is positive or negative, |N| ≤ 25 [161].

x2 − 6y2 = N k(6,N) K(6,N)

x2 − 6y2 = 3 1 (3, 1)

x2 − 6y2 = 4 1 (10, 4)

x2 − 6y2 = 9 1 (15, 6)

x2 − 6y2 = 10 2 (4, 1), (8, 3)

x2 − 6y2 = 12 1 (6, 2)

x2 − 6y2 = 16 1 (20, 8)

x2 − 6y2 = 19 2 (5, 1), (13, 5)

x2 − 6y2 = 25 3 (7, 2), (11, 4), (25, 10)

x2 − 6y2 = −2 1 (2, 1)

x2 − 6y2 = −5 2 (1, 1), (7, 3)

x2 − 6y2 = −6 1 (12, 5)

x2 − 6y2 = −8 1 (4, 2)

x2 − 6y2 = −15 2 (3, 2), (9, 4)

x2 − 6y2 = −18 1 (6, 3)

x2 − 6y2 = −20 2 (2, 2), (14, 6)

x2 − 6y2 = −23 2 (1, 2), (19, 8)

Here are three examples of equations x2 − 6y2 = N, with N big: k(6, 625) = 5
and K(6, 625) = {(29,6), (35,10), (55,20), (73,28), (125,50)}; k(6, 2185) = 8
and K(6, 2185) = {(47,2), (49,6), (61,16), (79,26), (83,28), (113,42), (173,68),
(211,84)}; k(6, 9025) = 9 and K(6, 9025) = {(97,8), (101,14), (133,38), (155,50),
(175,60), (209,76), (337,132), (389,154), (475,190)}.
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4.9.7 The Equations x2 − 7y2 = ±N

The assumption

(
7

N

)
= 1 is equivalent to N ≡ 1, 3, 9, 19, 25, 27 (mod 28).

As with the case D = 6, there is a complete classification of the possible cases:

1. N = 28k + 1, 28k + 9, or 28k + 25.

(i) rk ≡ Tk (mod 2). Then r2k − 7t2k = −6N.

(a) rk ≡ −Tk (mod 6). Then r2k−1 − 7t2k−1 = −3N.

(1) rk−1 ≡ −Tk−1 (mod 3). Then r2k−2 − 7t2k−2 = N.
(2) rk−1 ≡ Tk−1 (mod 3). Then r2k−2 − 7t2k−2 = 2N.

(b) rk ≡ Tk (mod 6). Then r2k−1 − 7t2k−1 = N.

(ii) rk �≡ Tk (mod 2). Then r2k − 7t2k = −3N.

(a) rk ≡ −Tk (mod 3). Then r2k−1 − 7t2k−1 = N.
(b) rk ≡ Tk (mod 3). Then r2k−1 − 7t2k−1 = 2N.

2. N = 28k + 3, 28k + 19, or 28k + 27.

(i) rk ≡ Tk (mod 2). Then r2k − 7t2k = −2N.

(a) rk−1 ≡ −Tk−1 (mod 3). Then r2k−1 − 7t2k−1 = −N.
(b) rk−1 ≡ Tk−1 (mod 3). Then r2k−1 − 7t2k−1 = 3N.

(ii) rk �≡ Tk (mod 2). Then r2k − 7t2k = −N.

(a) rk−1 ≡ −Tk−1 (mod 3). Then r2k−1 − 7t2k−1 = 3N.
(b) rk−1 ≡ Tk−1 (mod 3). Then r2k−1 − 7t2k−1 = 6N.

In cases 1(a)(2) and 2(i), the equations r2k−2 − 7t2k−2 = 2N and r2k − 7t2k = −2N
give rise to equations x2 − 7y2 = N, −N, respectively, if we write x + y

√
7 =

(rk−2+ tk−2

√
7)(3+

√
7) and (rk + tk

√
7)/(3+

√
7), respectively. For if x+y

√
7 =

(r + t
√
7)/(3 +

√
7), where r and t are odd, then x =

3r − 7t
2

and y =
3t − r
2

are

integers and x2 − 7y2 = (r2 − 7t2)/2.
We note that 1(a)(2) cannot occur unless N ≡ 0 (mod 3). Then we have

rk−1 +
−rk + 7Tk

6
, Tk−1 =

−rk + 5Tk

6
(4.9.10)

rk−2 =
−rk−1 + 7Tk−1

3
, Tk−2 =

−rk−1 + Tk−1

3
. (4.9.11)

Then (4.9.6) implies rk−1 + Tk−1 = −rk + 2Tk ≡ −rk − Tk ≡ 0 (mod 3).
Also (4.9.7) implies rk−1 ≡ Tk−1 (mod 3). Hence 3 divides rk−1 and Tk−1 and the
equation r2k−1 − 7T2

k−1 = −3N then implies that 3 divides N.
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Example. N = 57. The congruence u2 ≡ 7 (mod 57) has solutions u ≡ ±8,±11
(mod 57). Then u = 0 gives k = 2, r1 = 8, t1 = 1, r2 = 1, r2 = 1, t2 = −7,
r2k − 7t2k = −6N and r2k−1 − 7t2k−1 = N, while u = 11 gives k = 2, r1 = 11, t1 = 1,
r2 = 2, t2 = −5 and r2k − 7t2k = −3N and r2k−1 − 7t2k−1 = 2N.

The integers N, |N| ≤ 200, such that x2 − 7y2 = N is solvable are: 1, 2, 4, 8,
9, 16, 18, 21, 25, 29, 32, 36, 37, 42, 49, 50, 53, 57, 58, 64, 72, 74, 81, 84, 93, 98,
100, 106, 109, 113, 114, 116, 121, 128, 133, 137, 141, 144, 148, 149, 162, 168, 169,
177, 186, 189, 193, 196, 197, 200, −3, −6, −7, −12, −14, −19, −24, −27, −28,
−31, −38, −47, −48, −54, −56, −59, −62, −63, −75, −76, −83, −87, −94, −96,
−103, −108, −111, −112, −118, −124, −126, −131, −139, −147, −150, −152,
−159, −166, −167, −171, −174, −175, −188, −192, −199.

The following table contains the numbers k(7,N) and the sets K(7,N) of the
equations x2 − 7y2 = N, when they are solvable and N is positive or negative,
|N| ≤ 29 [161].

x2 − 7y2 = N k(7,N) K(7,N)

x2 − 7y2 = 2 1 (3, 1)

x2 − 7y2 = 4 1 (16, 6)

x2 − 7y2 = 8 1 (6, 2)

x2 − 7y2 = 9 3 (4, 1), (11, 4), (24, 9)

x2 − 7y2 = 16 1 (32, 12)

x2 − 7y2 = 18 3 (5, 1), (9, 3), (19, 7)

x2 − 7y2 = 21 2 (7, 2), (14, 5)

x2 − 7y2 = 25 1 (40, 15)

x2 − 7y2 = 29 2 (6, 1), (27, 10)

x2 − 7y2 = −3 2 (2, 1), (5, 2)

x2 − 7y2 = −6 2 (1, 1), (13, 5)

x2 − 7y2 = −7 1 (21, 8)

x2 − 7y2 = −12 2 (4, 2), (10, 4)

x2 − 7y2 = −14 1 (7, 3)

x2 − 7y2 = −19 2 (3, 2), (18, 7)

x2 − 7y2 = −24 2 (2, 2), (26, 10)

x2 − 7y2 = −27 4 (1, 2), (6, 3), (15, 6), (34, 13)

Here are three examples of equations x2 − 7y2 = N, with N big: k(7, 2349) =
10 and K(7, 2349) = {(51,6), (54,9), (61,14), (82,25), (93,30), (114,39), (131,46),
(194,71), (243,90), (282,105)}; k(7, 3249) = 9 and K(7, 3249) = {(64,11), (71,16),
(76,19), (111,36), (132,45), (209,76), (232,85), (281,104), (456,171)}; k(7, 4617) =
12 and K(7, 4617) = {(68,1), (72,9), (75,12), (93,24), (117,36), (128,41), (163,56),
(180,63), (240,87), (348,129), (387,144), (523,196)}.



Chapter 5
Equations Reducible to Pell’s Type Equations

5.1 The Equations x2 − kxy2 + y4 = 1
and x2 − kxy2 + y4 = 4

An interesting problem concerning the Pell’s equation u2 − Dv2 = 1 is to study
when the second component of a solution (u, v) is a perfect square. This question is
equivalent to solving the equation

X2 − DY4 = 1. (5.1.1)

The equation (5.1.1) was intensively studied in a series of papers (see [116–118]).
We begin this section by mentioning the main result about the above equation.

Theorem 5.1.1. For a positive nonsquare integer D there are at most two solutions
to the equation (5.1.1). If two solutions exist, and εD denotes the fundamental unit in
the quadratic field Q(

√
D), then they are given by (x1, y1), (x2, y2), x1 < x2, where

x1 + y21
√

D = εD and x2 + y22
√

D is either ε2D or ε4D, with the latter case occurring
for only finitely many D.

Following the recent paper [221] we first prove a generalization of Theo-
rem 5.1.1. We then use this result to completely solve the equations

x2 − kxy2 + y4 = 1 (5.1.2)

and

x2 − kxy2 + y4 = 4. (5.1.3)

Let D = e2d, with e an integer and d a positive squarefree integer. Then εD =
a + b

√
d

2
, where a and b are positive integers with the same parity, and satisfy
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a2 − db2 = (−1)α4, where α ∈ {0, 1}. Define λD = λd to be the fundamental
solution u+v

√
d to X2−dY2 = 1, with u and v positive integers. Then λD = (εD)

c,
where

c =

⎧⎪⎪⎨
⎪⎪⎩

1 if a and b are even and α = 0

2 if a and b are even and α = 1

3 if a and b are odd and α = 0

6 if a and b are odd and α = 1.

(5.1.4)

Lemma 5.1.2 ([55]). Let D be a nonsquare positive integer. If the equation X4 −
DY2 = 1 is solvable in positive integers X,Y, then either X2 + Y

√
D = λD

or λ2
D. Solutions to X4 − DY2 = 1 arise from both λD and λ2

D only for D ∈
{1785, 7140, 28560}.

Lemma 5.1.3. If there are two solutions to equation (5.1.1), then they are given by
X + Y2

√
D = εD, ε4D for D ∈ {1785, 28560}, and X + Y2

√
D = εD, ε2D otherwise.

Proof. Let T + U
√

D denote the fundamental solution in positive integers to the
Pell’s equation x2 − Dy2 = 1, and for k ≥ 1 let Tk + Uk

√
D = (T + U

√
D)k.

If there exist two indices k1 and k2 for which Uk1 and Uk2 are squares, then by
Theorem 5.1.1, (k1, k2) = (1, 4) or (k1, k2) = (1, 2). If there are integers x and y
such that U1 = x2 and U4 = y2, then since U4 = 2T2U2, there exist integers w and
z such either (T2,U2) = (w2, 2z2), or (T2,U2) = (2w2, z2). The latter case is not
possible, since it would imply the existence of three solutions to X2 − DY4 = 1,
contradicting Theorem 5.1.1. In the former case, since 2z2 = U2 = 2T1U1, there
are integers u and v > 1 such that T1 = v2 and U1 = u2. We thus have solutions
to X4 − DY2 = 1 arising from both εD and ε2D. By Lemma 5.1.2, we deduce that
D ∈ {1785, 7140, 28560}, and since U1 = 2 and D = 7140, we have finally that
D ∈ {1785, 28560}. ��
Lemma 5.1.4 ([117]). The only positive integer solutions to the equation X2 −
2Y4 = −1 are (X,Y) = (1, 1), (239, 13).

Lemma 5.1.5 ([45]). The only positive integer solutions to the equation 3X4 −
2Y2 = 1 are (X,Y) = (1, 1), (3, 11).

Lemma 5.1.6 ([38]). With the notations in the proof to Lemma 5.1.3, if Tk = 2x2

for some integer x, then k = 1.

Theorem 5.1.7. Let D be a nonsquare positive integer with D �∈ {1785, 7140,
28560}. Then there are at most two positive indices k for which Uk = 2δy2 with
y an integer and δ = 0 or 1. If two solutions k1 < k2 exist, then k1 = 1 and k2 = 2,
and provided that D �= 5, T+U

√
D is the fundamental unit in Q(

√
D), or its square.

For D ∈ {1785, 7140, 28560}, the only solutions to Uk = 2δy2 are k = 1, k = 2,
and k = 4.

Proof. If one of the equation x2 − Dy4 = 1, x2 − 4Dy4 = 1 is not solvable,
then the result follows from Lemma 5.1.3 applied to 4D and D respectively.
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Therefore we may assume that both of these equations are solvable. Let k and l
be indices for which Uk = z2 and Ul = 2w2. It follows from the binomial theorem
that not both of k and l are odd.

Assume first that k and l are both even. We will show that this leads to D ∈
{1785, 7140, 28560}. Letting l = 2m, then there are integers u > 1 and v such that
Tm = u2 and Um = v2. Then by Lemma 5.1.2, either m = 1 or m = 2. Also, by
Lemma 5.1.3, and the fact that k is even, either (k,m) = (2, 1), (k,m) = (4, 1) and
D ∈ {1785, 28560}, or else k = m. The first case is not possible since it would
imply k = l = 2, and this contradicts the assumed forms of Uk and Ul. Thus, for
D �∈ {1785, 28560}, we have that k = m, and furthermore, the only possibility is
k = m = 2. Since U2 = 2T1U1, there are positive integers a, b for which either
(T1,U1) = (a2, 2b2) or (T1,U1) = (2a2, b2). From the identity T2 = 2T2

1 − 1,
these two possibilities yield the respective equations u2 = 2a4 − 1 or u2 = 8a4 − 1.
The equation u2 = 8a4 − 1 is not solvable modulo 4. By Lemma 5.1.4, the only
positive integer solution to the equation u2 = 2a4 − 1, with u > 1, is u = 239 and
a = 13. Therefore, T1 = 169, and U1 = 2b2 for some integer b. The only choice
for b is b = 1, which results in D = 7140.

We can assume that k and l are of opposite parity. First assume that l is even,
l = 2m, and that k is odd. Thus, we have that U2m = 2w2. From the identity
U2m = 2TmUm, and the fact that (Tm,Um) = 1, it follows that there are integers u
and v such that Tm = u2 and Um = v2. By Lemma 5.1.2, either m = 1 or m = 2, and
T1 + U1

√
D = λD. Furthermore, by Lemma 5.1.3, either k = m or k = 1, m = 2. If

k = m, then since k is odd and m = 1 or 2, we have that k = 1 and l = 2, which is
our desired result. On the other hand, if k = 1 and m = 2, then l = 4, and we have
that U4 = 2w2, U2 = v2, and T2 = u2. As in the previous paragraph, this leads to
D = 7140.

Now assume that l is odd and k is even, k = 2m. Therefore, U2m = 2TmUm = z2,
and it follows that there are integers u and v such that either (Tm,Um) = (2u2, v2)
or (Tm,Um) = (u2, 2v2). In the first case, Lemma 5.1.3 implies that (m, k) = (1, 2),
since Um and Uk are both squares. Therefore U1 is a square, and 22α properly divides
U1 for some integer α � 0, Since Ul = 2w2, 22β+1 properly divides Ul for some
integer β � 0. From the fact that l is odd, the binomial theorem exhibits that the
same power of 2 divides U1 and Ul, thus leading to a contradiction. In the case
that (Tm,Um) = (u2, 2v2), Lemma 5.1.2 shows that m = 1 or m = 2, and that
T1 + U1

√
D = λD. Also, by Lemma 5.1.3 applied to 4D, either m = l or (l,m) =

(1, 2). The former possibility leads to l = 1 and k = 2, which is the desired result.
The latter possibility implies that k = 4, and that T2 = u2, U2 = 2v2, Since
U2 = 2T1U1, there are integers a and b such that T1 = a2, and U1 = b2. Therefore,
u2 = T2 = 2T2

1 − 1 = 2a4 − 1, and by Lemma 5.1.4, it follows that T1 = 169, and
hence that D = 1785 or D = 28560.

It remains to prove that for D �= 5, T + U
√

D = T1 + U1

√
D is the fundamental

unit εD in Q(
√

D), or its square. Letting T +U
√

D = εc
d, then we need to prove that

c = 1 or c = 2, where c is defined in (5.1.4).
Let D = l2d with d squarefree. Let λd = t + u

√
d, and for k � 1, define

λk
d = tk + uk

√
d. Then T + U

√
D = λr

d = tr + ur

√
d for some integer r, and
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uir = lUi for each i � 1. We assume now that U1 = 2δ1x2 and U2 = 2δ2y2 for some
integers x and y. Then ur = 2δ1 lx2 and u2r = 2δ2 ly2. Since u2r = 2trur, it follows
that tr = z2 or 2z2 for some integer z. By Lemma 5.1.3 and Lemma 5.1.6, either
r = 1 or r = 2. This implies that c divides 12. We wish to show that 4 does not
divide c. If 4 divides c, then r = 2 and N(εd) = −1, and so there are the integers
V > 1 and W such that V2−W2d = −1, with t2+u2

√
d = λ2

d = (V+W
√

d)4. Since
r = 2, Lemma 5.1.6 shows that t2 = z2. Therefore, t2 = z2 = 8V4 + 8V2 + 1, and
as it was shown in [117] that this equation implies V = 0, we have a contradiction.
Therefore c divides 6, and to complete the proof of the theorem, we need to show
that 3 does not divide c.

Assume that 3 divides c. Then T + U
√

D is the cube of a unit in Q(
√

D) of

the form
a + b

√
D

2
, where a and b are odd, and a2 − b2D = 4. Moreover, T =

a

(
a2 − 3

2

)
is odd, and so either T + U

√
D = X2 + Y2

√
D or T + U

√
D =

X2 + 2Y2
√

D, i.e., T is not of the form 2X2. It follows that a(a2 − 3) = 2X2. If
(a, a2 − 3) = 1, then since a is odd, a = A2 and a2 − 3 = 2B2 for some integers
A,B, which is not possible by considering this last equation modulo 8. Therefore
(a, a2 − 3) = 3, and there are integers A,B for which a = 3A2 and a2 − 3 = 6B2,
which results in the equation 3A4 − 2B2 = 1. By Lemma 5.1.5 the only positive
integer solutions to this equation are (A,B) = (1, 1) and (A,B) = (3, 11). This
shows that either a = 3 or a = 27. The case a = 3 yields D = 5, which we have
excluded. The case a = 27 yields that either D = 29 or D = 725. It is easily
checked that the hypotheses are not satisfied for both of these values of D. ��
Corollary 5.1.8. For k = 169, the only positive integer solutions to x2 − (k2 − 1)
y4 = 1 are (x, y) = (169, 1), (6525617281, 6214).

For k > 1 and k �= 169, the only positive integer solution (x, y) to x2 − (k2 − 1)
y4 = 1 is (x, y) = (k, 1), unless k = 2v2 for some integer v, in which case (x, y) =
(8v4 − 1, 2v) is the only other solution.

For k > 1 there is no positive integer solutions (x, y) to x2 − (k2 − 1)y4 = 4,
unless k = v2 for some integer v, in which case (x, y) = (4v4 − 2, 2v) is the only
solution.

Proof. The particular case k = 169 is easily verified for both equations, and so we
assume that k > 1 and k �= 169. The fundamental solution to x2 − (k2 − 1)y2 = 1
is (k, 1). For i ≥ 1 define Ti + Ui

√
k2 − 1 = (k +

√
k2 − 1)i. There is always the

solution (x, y) = (k, 1) to x2 − (k2 − 1)y4 = 1, and so by Theorem 5.1.7, if there
is another solution, it must come from T2 + U2

√
k2 − 1 = 2k2 − 1 + 2k

√
k2 − 1,

i.e., (x, y) = (2k2 − 1,
√
2k). This entails that 2k is a perfect square, and hence that

k = 2v2 for some integer v, This gives (x, y) = (8v4 − 1, 2v).

We note that if k is odd, then the minimal solution to x2 −
(

k2 − 1

4

)
y2 = 1

is (x, y) = (k, 2), from which it follows that for k even or odd, any solution to
x2 − (k2 − 1)y2 = 4 has both x and y even. Now let (x, y) be a positive integer
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solution to x2 − (k2 − 1)y4 = 4, then x and y are even, and (u, v) = (x/2, y/2) is
a positive integer solution to u2 − 4(k2 − 1)v4 = 1, and hence there is a positive
integer i for which Ui = 2v2. By Theorem 5.1.7, since U1 = 1 is already a square,
i = 2. Therefore u + 2v2

√
k2 − 1 = T2 + U2

√
k2 − 1 = 2k2 − 1 + 2k

√
k2 − 1,

and hence k = v2. This leads to the solution (x, y) = (4v4 − 2, 2v) to the equation
x2 − (k2 − 1)y4 = 4. This completes the proof. ��
Theorem 5.1.9. Let k be an even positive integer.

1) The only solutions to equation (5.1.2) in nonnegative integers (x, y) are (k, 1),
(1, 0), (0, 1), unless either k is a perfect square, in which case there are also the
solutions (1,

√
k), (k2 − 1,

√
k), or k = 338 in which case there are the solutions

(x, y) = (114243, 6214), (13051348805, 6214).
2) The only solution in nonnegative integers x, y to the equation (5.1.3) is (x, y) =

(2, 0), unless k = 2v2 for some integer v, in which case there are also the
solutions (2,

√
2k), (2k2 − 2,

√
2k).

Proof. Letting k = 2s, then we can rewrite the equation x2 − kxy2 + y4 = 1 as

(x − sy2)2 − (s2 − 1)y4 = 1.

Aside from the trivial solution (x, y) = (1, 0), Corollary 5.1.8 implies that the
only solutions are y = 1, x− sy2 = ±s, unless s = 2v2 for some integer v, in which
case there is also the solutions y = 2v and x − sy2 = ±(8v4 − 1), or k = 338.
In either case, the solutions listed in Corollary 5.1.8 lead to the solutions given in
Theorem 5.1.9.

The equation x2 − kxy2 + y4 = 4 can be rewritten as

(x − sy2)2 − (s2 − 1)y4 = 4.

Corollary 5.1.8 shows that, aside from the trivial solution (x, y) = (2, 0), there
is no solution in positive integers unless s = v2 for some integer v, in which case
y = 2v and x− sy2 = ±4v4 − 2. It follows that k = 2v2, y =

√
2k, and either x = 2

or x = 2k2 − 2. ��

5.2 The Equation x2n − Dy2 = 1

In this section we will discuss the solvability of the equation

x2n − Dy2 = 1, (5.2.1)

where D is a nonsquare positive integer and n is an integer greater than 1. When
n = 2 its solvability was discussed in the papers [51, 231, 232] and in the section
above.
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In what follows we also employ the equations

xp − 2y2 = −1, (5.2.2)

and

xp − 2y2 = 1, (5.2.3)

where p is a prime ≥ 5.
They were studied by elementary methods in the paper [51].
We first present two useful results.

Lemma 5.2.1. If the equation (5.2.2) has positive integer solution (x, y) �= (1, 1),
then 2p|y.

Proof. Suppose (x, y) is a positive integer solution of (5.2.2). Then

(x + 1) · xp + 1

x + 1
= 2y2.

Since

(
x + 1,

xp + 1

x + 1

)
= 1 or p, we have

x + 1 = 2y21,
xp + 1

x + 1
= y22, y = y1y2, (5.2.4)

or

x + 1 = 2py21,
xp + 1

x + 1
= py22, y = py1y2. (5.2.5)

By the result of [119],
xp + 1

x + 1
= y22, therefore x = 1. Thus (5.2.4) gives

x = y = 1.
For (5.2.5) clearly p|y. We will prove 2|y with the elementary method given

in [51].
If 2 � y, from (5.2.2), we have x ≡ 1 (mod 8). Put

A(t) =
xp + 1

x + 1
, t ≥ 1 and 2 � t,

and so A(t) ≡ 1 (mod 8). Let 1 < l < p be a positive odd integer. Then there exist
an integer r, odd, 0 < r < l, and 2k such that p = 2kl + r or p = 2kl − r.

If p = 2kl + r, then

A(p) =
((x + 1)A(l)− 1)2kxr + 1

x + 1
≡ xr + 1

x + 1
≡ A(r) (mod A(l)), (5.2.6)
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since xl = (x + 1)A(l)− 1. Now (A(p),A(l)) = A((p, l)) = A(1) = 1. Thus (5.2.6)
gives

A(p)
A(l)

=
A(r)
A(l)

.

If p = 2kl − r, then l − r is even. Thus

A(p)
A(l)

=

(
−xl−r A(r)

A(l)

)
=

(
A(r)
A(l)

)
,

since A(l) ≡ 1 (mod 8) and

A(p) = xl−rA(l(2k − 1)) + A(l)− xl−rA(r).

For l, r, we have

l = 2k1r + ε1r1, 0 < r1 < r,
r = 2k2r1 + ε2r2, 0 < r2 < r1,
. . .

rs−1 = 2ks+1rs + εs+1rs+1, 0 < rs+1 < rs,

rs = ks+2rs+1,

where εi = ±1 (i = 1, . . . , s + 1) and ri (i = 1, . . . , s + 1) are odd integers. Since
(l, p) = 1, we have rs+1 = 1. Hence

(
A(p)
A(l)

)
=

(
A(r)
A(l)

)
=

(
A(l)
A(r)

)
=

(
A(r1)
A(r)

)
=

(
A(r)
A(r1)

)
=

(
A(r2)
A(r1)

)

= · · · =
(

A(rs+1)

A(rs)

)
=

(
A(l)
A(rs)

)
=

(
1

A(rs)

)
= 1.

Now, from
xp + 1

x + 1
= py22, we have

(py2)
2 ≡ pA(p) (mod A(l)).

Thus
(

pA(p)
A(l)

)
=

(
p

A(l)

)
=

(
A(l)

p

)
=

(
l
p

)
= 1,

since x ≡ −1 (mod p) and so A(l) ≡ l (mod p), We have a contradiction if l is
taken as an odd quadratic nonresidue of p. This proves the result. ��



114 5 Equations Reducible to Pell’s Type Equations

Lemma 5.2.2. The equation (5.2.3) has only positive integer solution x = 3, y = 11
(when p = 5).

Proof. From (5.2.3), we have

xp − 1

x − 1
= a2 (5.2.7)

if p � y. By the result of [119], the solution of (5.2.7) is x = 3 (when p = 5). Thus
(5.2.3) has positive integer solution x = 3, y = 11 (when p = 5).

If p|y, then 2|y by Remark 1. From (5.2.3), (1 +
√−2y)(1−√−2y) = xp. With

the assumption (1 +
√−2y, 1−√−2y) = 1, we have

1 +
√

−2y = (a + b
√
−2)p, x = a2 + 2b2, (5.2.8)

where a, b are integers. Since 2|y, from (5.2.3), it follows that

x ≡ 1 (mod 8). (5.2.9)

From (5.2.8) and (5.2.9), we have 2|b and b �= 0. Now, (5.2.8) gives

1 = ap +

(
p
2

)
ap−2(b

√
−2)2 + · · ·+

(
p

p − 1

)
a(b

√
−2)p−1. (5.2.10)

Thus a|1 and so a = ±1.
If a = −1, then (5.2.10) gives

−2 =

(
p
2

)
(b
√
−2)2 + · · ·+

(
p

p − 1

)
(b
√
−2)p−1,

and so p|2 which is impossible.
If a = 1, then we have

0 =

(
p
2

)
(b
√
−2)2 + · · ·+

(
p

p − 1

)
(b
√
−2)p−1. (5.2.11)

Since 2|b and b �= 0, let 2sk ||
(

p
2k

)
(b
√
−2)2k

(
1 ≤ k ≤ p − 1

2

)
, clearly sk > sj

(k > j). Thus (5.2.11) is impossible. ��
Theorem 5.2.3. If n > 2 and the negative Pell’s equation u2 − Dv2 = −1 is
solvable, then the equation (5.2.1) has only one solution in positive integers: x = 3,
y = 22 (when n = 5, D = 122).

Proof. Let Ω = u0+v0
√

D be the smallest solution to the equation u2−Dv2 = −1,
Ω = u0−v0

√
D, and let η = U0+V0

√
D be the fundamental solution of the equation

U2 − DV2 = 1, η = U0 − V0

√
D. Then, we have η = Ω2.
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Suppose (x, y) is any positive integer solution of (5.2.1). Then

xn =
ηm + ηm

2
=

Ω2m +Ω
2m

2
, m > 0. (5.2.12)

Clearly, without loss of generality, we may assume that n = 4 or n = p (p is odd
prime).

(a) If n = 4, then (5.2.12) gives

x4 = 2

(
Ωm +Ω

m

2

)2

− (−1)m,

and so x = 1, m = 0, which is impossible since m > 0.
(b) If n = p (p is odd prime), then (5.2.12) gives

xp = 2

(
Ωm +Ω

m

2

)2

− (−1)m. (5.2.13)

(b.1) When 2|m, let m = 2s, s > 0; then (5.2.13) gives

xp + 1 = 2

(
Ω2s +Ω

2s

2

)2

. (5.2.14)

Suppose p = 3. Then by (5.2.14), we have (see [218])

x =
Ω2s +Ω

2s

2
= 1, (5.2.15)

and

x = 23,
Ω2s +Ω

2s

2
= 78. (5.2.16)

Clearly (5.2.15) is impossible, since s > 0, and (5.2.16) is also
impossible since

Ω2s +Ω
2s

2
= 2

(
Ωs +Ω

s

2

)2

− (−1)s

is odd.
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Thus p > 3. For (5.2.14) we have 2p|Ω
2s +Ω

2s

2
by Lemma 5.2.1.

However, 2|Ω2s+Ω
2s

2 is impossible.
(b.2) When 2 � m, we have

xp − 1 = 2

(
Ωm +Ω

m

2

)2

, (5.2.17)

and so x = 1, (Ωm + Ω
m
)/2 = 0 when p = 3 (see [218]). If p > 3, then

(5.2.17) gives x = 3, (Ωm + Ω
m
)/2 = 11 (when p = 5) by Lemma 5.2.2.

Thus (5.2.1) has only positive integer solution x = 3, y = 22 (when
n = 5, D = 122). ��

Theorem 5.2.4. If η = U1 + V1

√
D is the fundamental solution to Pell’s equation

U2 − DV2 = 1, then the positive integer solutions to equation (5.2.1) do not satisfy

xn + y
√

D = η4m, n > 2, m > 0.

Proof. If

xn + y
√

D = η4m, n > 2,m > 0,

then we have

xn =
η4m + η4m

2
= 2

(
η2m + η2m

2

)2

− 1. (5.2.18)

By Lemma 5.2.1, the equality (5.2.18) is impossible since 2 � (η2m + η2m)/2 and
m > 0. ��

As applications of the above results we will discuss now some interesting
problems in number theory.

In 1939 (see [70]) it was conjectured that the equation

(
n
m

)
= yk, n > m ≥ 2, k ≥ 3 (5.2.19)

has no integer solution. In [70] it is proved that the conjecture is right when m > 4,
leaving the cases m = 2 and m = 3 unsolved. Now, we can deduce the following
result:

Corollary 5.2.5. The equation
(

n
2

)
= y2k

has no positive integer solution (n, y) with n ≥ 3 and k ≥ 2.
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Proof. From

(
n
2

)
=

n(n − 1)

2
= y2k, we have

n − 1 = 2y2k
1 , n = y2k

2 , y = y1y2,

or

n − 1 = y2k
2 , n = 2y2k

1 , y = y1y2.

Hence

y2k
2 ∓ 1 = 2y2k

1 . (5.2.20)

If 2|k, then (5.2.20) clearly gives |y1y2| ≤ 1; on the other hand, n ≥ 3 and(
n
2

)
= y2k imply |y| = |y1y2| > 1. Here we have a contradiction. If 2 � k, k ≥ 2,

we may conclude from Theorem 5.2.3 and Lemma 5.2.1 that (5.2.20) is impossible.
��

Define the generalized Pell sequence by

x0 = 1, x1 = a, xn+2 = 2axn+1 − xn, (5.2.21)

where a is an integer greater than 1.

Corollary 5.2.6. The equation

x4n = ym

has no positive integer solution (n, y), when m ≥ 3.

Proof. From (5.2.21) we have xn =
αn + αn

2
, n ≥ 0, where α = α+

√
a2 − 1 and

α = α−
√
α2 − 1 are roots of the trinomial z2 − 2az+1. Let a2 − 1 = Db2, where

D > 0 is squarefree and b is positive integer. Then

α = a + b
√

D, α = a − b
√

D and αα = 1.

Thus yn =
αn − αn

2
√

D
satisfies

x2n − Dy2n = 1. (5.2.22)

By Theorem 5.2.4, the relation (5.2.22) is impossible when 4|n, xn = ym and
m ≥ 3. ��
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Clearly, if a = 2u2 + 1 (u > 0), then Db2 = a2 − 1 = 4u2(u2 + 1). Thus 2u|b.
Letting b = 2uv, we have u2 + 1 = Dv2. Hence, using Theorem 5.2.3, we obtain

Corollary 5.2.7. For the generalized Pell sequence

x0 = 1, x1 = 2u2 + 1, xn+2 = 2(2u2 + 1)xn+1 − xn,

where u is positive integer, xn is never an mth power if m ≥ 3, except for x1 =
2 · 112 + 1 = 35.

Remarks. 1) In the paper [129] it is studied the equation (5.2.1), where n = p is a
prime. The main two results given there are:

1. If p = 2 and D > exp(64), then (5.2.1) has at most one positive integer
solution (x, y).

2. If p > 2 and D > exp(exp(exp(exp(10)))), then 2 � m, where (x, y) is a
solution to (5.2.1) expressed as

xp + y
√

D = εm
1

and ε1 = u1 + v1
√

D is the fundamental solution to the Pell’s equation
u2 − Dv2 = 1.

2) In the paper [189] it is studied the equation m4 − n4 = py2, where p ≥ 3 is a
prime, and then the equations x4+6px2y2+p2y4 = z2, ck(x4+6px2y2+p2y4)+
4pdk(x3y + pxy3) = z2, for p ∈ {3, 7, 11, 19} and (ck, dk) is a solution to the
Pell’s equation c2 − pd2 = 1 or to the negative Pell’s equation c2 − pd2 = −1.

3) In the paper [190] is considered the equation x4 − q4 = py3, with the following
conditions: p and q are distinct primes, x is not divisible by p, p ≡ 11 (mod 12),
q ≡ 1 (mod 3), x is not divisible by p, p ≡ 11 (mod 12), q ≡ 1 (mod 3), p
is a generator of the group (Z∗

q , ·), and 2 is a cubic residue mod q. This equation
has been solved in the general case in the paper [121].

5.3 The Equation x2 + (x + 1)2 + · · · + (x + n − 1)2

= y2 + (y + 1)2 + · · · + (y + n + k − 1)2

In the paper [2] the relation 52 = 32 + 42 was considered as the simplest solution
in positive integers to various Diophantine equations, in particular, as the simplest
solution for the case n = 1 to

x2 + (x + 1)2 + (x + 2)2 + · · ·+ (x + n − 1)2

= y2 + (y + 1)2 + (y + 2)2 + · · ·+ (y + n)2, (5.3.1)
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i.e., the case where the sum of n consecutive squares equals the sum of n + 1
consecutive squares. The complete set of solutions of (5.3.1) for all positive integers
n, for which n and n + 1 are squarefree, was given in [2] and [4].

The relation 52 = 32 + 42 may also be considered as the simplest solution in
positive integers for the case k = 2 of the sum of k consecutive squares is a perfect
square. This problem is treated in [5].

In this section, we consider the equation (5.3.1) as the special case for k = 1 of

x2 + (x + 1)2 + (x + 2)2 + · · ·+ (x + n − 1)2

= y2 + (y + 1)2 + (y + 2)2 + · · ·+ (y + n + k − 1)2, (5.3.2)

i.e., the case where the sum of n consecutive squares equals the sum of n + k
consecutive squares, and present results for k ≥ 2. We will use the approach in [3].

Theorem 5.3.1. The equation (5.3.2) is not solvable for k ≡ 3, 4, or 5 (mod 8).

Proof. The sum S of squares of n consecutive integers, modulo 4, is listed in the
table:

n 1 2 3 4 5 6 7 8

S (mod 4) 0 or 1 1 1 or 2 2 2 or 3 3 0 or 3 0

Clearly, beginning with n = 9, the row for S (mod 4) must repeat itself and
continue to do so with the length of the period equal to 8. Now, if the sum of n
consecutive squares is to equal the sum of n + 3 consecutive squares, there must
be, for some n, a number in the S-row which also appears in the S-row for n + 3.
This, however, is not the case for any value of n. Since the column of entries in the
S-row repeats with period 8, the same is true for any value of k ≡ 3 (mod 8). The
same argument can be used to prove the nonexistence of solutions for k ≡ 4 or 5
(mod 8). ��
Theorem 5.3.2. The equation (5.3.2) is not solvable for k ≡ 7, 11, 16, or 20
(mod 27).

Proof. Using the formula for the sum of the first n squares, (5.3.2) can be
rewritten as

nx2 + n(n − 1)x + n(n − 1)(2n − 1)/6

= (n + k)y2 + (n + k)(n + k − 1)y + (n + k)(n + k − 1)(2n + 2k − 1)/6

or

n(2x + n− 1)2 = (n + k)(2y + n + k − 1)2 + kn2 + k2n+ k(k2 − 1)/3. (5.3.3)
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Letting

z = 2x + n − 1 and w = 2y + n + k − 1,

we can rewrite (5.3.3) as

nz2 = (n + k)w2 + kn2 + k2n + k(k2 − 1)/3. (5.3.4)

Considering first the case where k ≡ (mod 27), we substitute into (5.3.4) k =
27λ+ 7 and obtain

nz2 = (n + 27λ+ 7)w2 + (27λ+ 7)n2 + (27λ+ 7)2n

+ (27λ+ 7)(243λ2 + 126λ+ 16). (5.3.5)

If n ≡ 0 (mod 3), the left-hand side is congruent to 0, modulo 3, while the right-
hand side is congruent to w2+1, modulo 3, so that w2 ≡ 2, which is a contradiction.
If n ≡ 2 (mod 3), a contradiction is similarly obtained as the left-hand side is
congruent to 2z2, modulo 3, and the right-hand side congruent to 1, modulo 3.

If in (5.3.5), n ≡ 1 (mod 3), we obtain

z2 ≡ 2w2 (mod 3),

which is satisfies only if z ≡ w ≡ 0 (mod 3), so that we can set

z = 3z′ and w = 3w′, n = 3m + 1,

which, when substituted into (5.3.5) yields

(3m + 1)9z′2 = (3m+27λ+8)9w′2+(27λ+7)(3m+1)2+(27λ+7)2(3m+1)

+(27λ+ 7)(243λ2 + 126λ+ 16),

which immediately leads to a contradiction, since the left-hand side is congruent to
0, modulo 9, while the right-hand side is congruent to 6, modulo 9.

By substituting into (5.3.4) k = 27λ+11, k = 27λ+16, and k = 27λ+20, and
using the procedure shown above for k = 27λ+7, we can similarly show that there
are no solutions for (5.3.2) if k ≡ 11, 16, or 20 (mod 27). ��

We now turn to the question of finding values of k for which solutions to (5.3.2)
exist. Such solutions can be obtained either by an analysis of (5.3.4) which is
equivalent to (5.3.2) or by programming a computer to find solutions directly from
(5.3.2). Using both methods, all values of k ≤ 100, not excluded by Theorems 5.3.1
and 5.3.2, were considered and solutions found for the values of k indicated in the
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following table. In each case, we also list a solution for the indicated value of n and
give x and y, as defined by (5.3.2).

k n x y k n x y k n x y
6 5 28 15 39 2 25169 5539 64 16 740 294

8 3 137 67 40 5 378 104 71 2 378 23

9 3 23 6 41 11 1551 690 72 10 163 13

10 5 25 8 42 25 77 18 73 73 217 102

15 2 2743 933 46 1 3854 539 78 5 754 143

17 17 33 11 48 2 2603 496 79 79 312 166

18 3 127 38 49 2 210 14 80 3 2196 376

22 11 38 7 50 3 243 30 81 3 1257 195

23 2 8453 2379 54 39 160 67 86 43 188 51

24 2 24346 6740 55 55 128 51 87 2 510565 76493

25 25 123 70 56 14 151 33 89 89 227 97

26 3 1417 442 57 19 183 56 90 3 3521 586

31 4 196 49 58 11 36927 14712 94 33 608 253

32 3 239723 70167 62 25 5316 2813 95 2 716 51

33 11 313 137 63 2 236 5 96 1 679 15

Thus the first entry in the table means that

282 + 292 + 302 + 312 + 322 = 152 + 162 + · · ·+ 252.

In the table above, no attempt was made to list for each given value of k the
smallest value of n for which there exists a solution, since, as is evident from an
inspection of the table, small values of n are frequently associated with very large
values of x and y.

For each pair of values (k, n) for which a solution is given in the above table,
infinitely many additional solutions can be obtained as follows.

Letting

kn2 + k2n +
k(k2 − 1)

3
= A

equation (5.3.4) can be rewritten as nz2 − (n + k)w2 = A or, multiplying both sides
by n,

u2 − Dw2 = N, (5.3.6)

where u = nz, D = n(n + k), N = nA.
Now if (hm, km) is the general solution of Pell’s equation

h2 − Dk2 = 1 (5.3.7)
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and (u1,w1) is any solution to the general Pell’s equation (5.3.6), then

um = u1hm ± Dw1km, wm = u1km ± w1hm, m ≥ 0 (5.3.8)

are solutions to the equation (5.3.6). For details we refer to Section 4.3.
On the other hand, equations (5.3.8) do not necessarily give all solutions for a

given pair of values (k, n). Indeed, any attempt to find all solutions for given n and
k is bound to lead to presently unsurmountable difficulties as complete solutions
of (5.3.6) are available only for n <

√
D, and this condition will generally not be

satisfied for k > 1 (see Section 4.3.4).
While in the case k = 1 (see [4] and [5]) it was shown that solutions exist for

all values of n, for which n and n + 1 are squarefree, it can easily be shown that
for k > 1, even if there exists a solution for some n, there may be none for others.
Thus, for example, it can be shown that for k = 6, solutions can exist only if n ≡ 1
or 5 (mod 6). Such facts can be established by arguments similar to those used in
the proof of Theorem 5.3.1, making use of the facts that the sequence of values of
S (mod 4) in the table of that proof has period 8 and that, if a similar table were
constructed for the sequence of values of S (mod 3), it would have period 9.

It is of interest to note that Theorems 5.3.1 and 5.3.2, together with the table of
solutions of equation (5.3.2) for k ≤ 100, presented above, answers for all but 6
values of k the question as to whether or not a solution of (5.3.2) exists for values of
k � 100. These 6 values are k = 2, 14, 30, 66, 82, 98. No general method for proving
the existence or nonexistence of solutions in individual cases seems to suggest itself.
To illustrate typical proofs, we show below the ones for the case k = 2, where the
knowledge of the Jacobi symbol is involved leads to a solution, and k = 14, where
an analysis of the highest power of 2 dividing the constant term of (5.3.4) solves the
problem.

Theorem 5.3.3. The equation (5.3.2) is not solvable for k = 2.

Proof. The sum S of the squares of n consecutive integers, modulo 12, is listed in
the following table.

n S (mod 12)

1 0, 1, 4, or 9
2 1 or 5
3 2 or 5
4 2 or 6
5 3, 6, 7, or 10
6 7

7 4, 7, 8, or 11
8 0 or 8
9 0 or 9

10 1 or 9
11 1, 2, 5, or 10
12 2
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Obviously, for 13 � n � 24, the values of S (mod 12) are those of the above
table increased by 2, while those for 25 � n � 36 are those of the above table
increased by 4, etc. From this, it is immediately seen that all values of n except
n ≡ 5 or 11 (mod 12) cannot give solutions.

Now substituting n = 12m + 5 into (5.3.4) yields

(12m + 5)z2 = (12m + 7)w2 + 72(2m + 1)2,

so that

−2z2 ≡ 72(2m + 1)2 (mod 12m + 7)

or

z2 ≡ −36(2m + 1)2 (mod 12m + 7),

which means that the Jacobi symbol (−1/12m + 7) must have the value +1, which
is a contradiction.

An entirely similar analysis for the case n = 12m + 11 leads to another
contradiction. ��
Theorem 5.3.4. The equation (5.3.2) is not solvable for k = 14.

Proof. By simple congruence analysis we find that all values of n except n ≡ 1
(mod 4) can be excluded. Now substituting n = 4m + 1 into (5.3.4) yields

(4m + 1)z2 = (4m + 15)w2 + 14(4m + 1)2 + 196(4m + 1) + 910. (5.3.9)

Considering the above equation, modulo 4, we obtain z2 ≡ 3w2 (mod 4), which
shows that z and w must both be even.

Now, if m is even, then (5.3.9) can be rewritten by letting m = 2m′ as

(8m′ + 1)z2 = (8m′ + 15)w2 + 224(4m′2 + 8m′ + 5).

Since letting z = 2z′, w = 2w′ leads exactly as shown above to the conclusion
that z′ and w′ must be even, we let z = 4z′ and w = 4w′ and divide by 16 to obtain

(8m′ + 1)z′2 = (8m′ + 15)w′2 + 14(4m′2 + 8m′ + 5).

Considering this equation modulo 8, we obtain

z′2 = −w′2 + 6 (mod 8),

which is a contradiction, since the left-hand side is congruent to 0,1, or 4 (mod 8),
while the right-hand side is congruent to 2,5, or 6 (mod 8).
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Now m is odd, then (5.3.9) can be rewritten by letting m = 2m′ + 1 as

(8m′ + 5)z′2 = (8m′ + 19)w′2 + 448(2m′2 + 6m′ + 5)

or, diving both sides by 64 and letting w = 8w′, z = 8z′, as

(8m′ + 5)z′2 = (8m′ + 19)w′2 + 7(2m′2 + 6m′ + 5).

Considering this equation modulo 4, we obtain

z′2 ≡ 3w′2 + 3 (mod 4),

which again is a contradiction. ��

5.4 The Equation x2 +2(x+1)2 + · · ·+ n(x+n−1)2 = y2

In this section, following [229], we will discuss the equation

x2 + 2(x + 1)2 + · · ·+ n(x + n − 1)2 = y2 (5.4.1)

determining the values of n for which it has finitely or infinitely many positive
integer solutions (x, y).

Theorem 5.4.1. For each n ≥ 2 the equation (5.4.1) is solvable and it has infinitely

many solutions unless
n(n + 1)

2
is a perfect square.

Proof. The equation (5.4.1) can be written immediately into the form

n(n + 1)

2
x2 +

2(n − 1)n(n + 1)

3
x +

(n − 1)n(n + 1)(3n − 2)

12
= y2. (5.4.2)

The substitutions

k =
n(n + 1)

2
, u = 3x + 2(n − 1), v =

3y
k

along with the observation

(n − 1)n(n + 1)(n + 2)

4
= k(k − 1)

reduce (5.4.2) to the general Pell’s equation

u2 − kv2 = 1− k. (5.4.3)
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For all positive integral values of k, the equation (5.4.3) admits the solution u0 =
2n + 1, v0 = 3, corresponding to the solution x = 1, y = k of (5.4.1) which is the
familiar formula for the sum of the first n cubes. Thus (5.4.1) has always at least one
solution.

Now, let k =
n(n + 1)

2
be a nonsquare. In this case the Pell’s equation

U2 − kV2 = 1 (5.4.4)

has the solutions (Um,Vm)m≥0 given in Sections 3.2, 3.3, 3.4.
By using the theory of general Pell’s equation developed in Chapter 4, it follows

that if (u0, v0) is a solution of (5.4.3), then

um = u0Um + kv0Vm, vm = v0Um + u0Vm, m = 0, 1, . . . (5.4.5)

are solutions to (5.4.3).
These will give solutions to (5.4.1) in all cases where

x =
um + 2− 2n

3
and y =

kvm

3
(5.4.6)

are integers. We proceed to examine these.
If n ≡ 1 (mod 3), then k ≡ 1, u0 ≡ 0, v0 ≡ 0 (mod 3), and each um, vm given

in (5.4.5) will satisfy um ≡ 0, vm ≡ 0 (mod 3), which imply that x and y in (5.4.6)
are integers.

If n ≡ 2 (mod 3), then k ≡ 0, u0 ≡ 2, v0 ≡ 0, U2
0 ≡ 1 (mod 3) hence

U0 ≡ 1 or 2 (mod 3). For U0 ≡ 1 (mod 3) the relations (5.4.5) show that um ≡ 2,
um + 2 − 2n ≡ 0, kvm ≡ 0 (mod 3), hence x and y in (5.4.6) are integers. For
U0 ≡ 2 (mod 3) we have um ≡ 1 (mod 3), and x is not an integer. However, in
this case, from (5.4.5), um+1 ≡ 2 (mod 3) so that the corresponding x and y are
integers.

Analogous study of the case n ≡ 0 (mod 3) gives a similar result. Hence, in all
cases, at least alternate members of the infinite sequence of solutions to (5.4.3) give
integral values of x, y which satisfy the equation (5.4.1). ��
Remark. One may determine explicitly (see [15]) the integers n for which k =
n(n + 1)

2
is a perfect square. This reduces to finding the solutions to the equations

n(n + 1) = 2s2 or, equivalently, (2n + 1)2 − 8s2 = 1. The last Pell’s equation has
solutions (2nl + 1, sl)l≥1, where

2nl + 1 =
1

2

[(
3 +

√
8
)l

+
(
3−

√
8
)l
]
. (5.4.7)
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From (5.4.7) it follows that all positive integers n with the above property are
given by

nl =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[(√
2 + 1

)l −
(√

2− 1
)l

2

]2
if l is odd

2

[(
1 +

√
2
)l −

(
1−

√
2
)l

2
√
2

]2
if l is even

(5.4.8)

5.5 The Equation (x2 + a)(y2 + b) = F2(x, y, z)

In this section we study the general class of Diophantine equations

(x2 + a)(y2 + b) = F2(x, y, z) (5.5.1)

where F : Z+ × Z+ × Z → Z
∗ is a given function and a, b are nonzero integers

satisfying |a|, |b| ≤ 4.
It is clear that if only one of x2+a or y2+b is a perfect square, then the equation

(5.5.1) is not solvable. In the given hypothesis, x2+a and y2+b are simultaneously
nonzero perfect squares only if |a| = 3 and |b| = 3 in which situation (x, y) is one
of the pairs (1,1), (1,2), (2,1), (2,2). For these pairs we must have

F(1, 1, z) = ±4, F(1, 2, z) = ±2, F(2, 1, z) = ±2, F(2, 2, z) = ±1.
(5.5.2)

It remains to find z from the corresponding equations in (5.5.2), a problem that is
strictly dependent upon the function F.

In order to have a unitary presentation of our general method, we may assume
that x ≥ 3 and y ≥ 3.

From the above considerations we may assume that none of x2 + a and y2 + b is
a perfect square. From (5.5.1) it follows that x2 + a = du2 and y2 + b = dv2 for
some positive integers d, u, v. The last two equations can be written as

x2 − du2 = −a and y2 − dv2 = −b (5.5.3)

which are general Pell’s equations of the form X2 − dY2 = N, where |N| ≤ 4.
Define the set

P(a, b) = {d ∈ Z : d is nonsquare ≥ 2 and (5.5.3) are solvable} (5.5.4)

and for any d in P(a, b) consider the general solutions (x(d), u(d)) and (y(d), v(d))
to the equations (5.5.3) (see Chapter 4 for details).
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We have x2(d) + a = du2(d) and y2(d) + b = dv2(d) hence

F(x(d), y(d), z) = ±du(d)v(d). (5.5.5)

Denote by Zd the set of all integers z satisfying the equation (5.5.5).
The solutions to the equation (5.5.1) are (x(d), y(d), z), where d ∈ P(a, b) and

z ∈ Zd.
To illustrate this method let us consider the following concrete examples.

5.5.1 The Equation x2 + y2 + z2 + 2xyz = 1

In the book [25] the above equation is solved in integers. Indeed, it is equivalent to

(x2 − 1)(y2 − 1) = (xy + z)2, (5.5.6)

an equation of the form (5.5.1), where a = b = −1 and F(x, y, z) = xy + z.
In this case P(−1,−1) = {d > 0 : d nonsquare}, as we have seen in Chapter 3.
Let (sl(d), tl(d))l≥0 be the general solution to Pell’s equation s2− dt2 = 1. From

the general method, it follows that the integral solutions to the given equation are

(±sm(d),±sn(d),−sm(d)sn(d)± dtm(d)tn(d)), (5.5.7)

for all m, n ≥ 0 and d ∈ P(−1,−1).
Using either of relations (3.2.2), (3.2.5), or (3.2.6), one can prove the following

equalities

sm(d)sn(d) + dtm(d)tn(d) = sm+n(d), m, n ≥ 0

sm(d)sn(d)− dtm(d)tn(d) = sm−n(d), m ≥ n ≥ 0.

The triples (5.5.7) become

(±sm(d),±sn(d),−sm+n(d)), m, n ≥ 0

(±sm(d),±sn(d),−sm−n(d)), m ≥ n ≥ 0,
(5.5.8)

where the signs + and – correspond.
Given the symmetry of the equation in x, y, z, in order to obtain all of its solutions,

we need to also consider the triples obtained from (5.5.8) by cyclic permutations.
We mention that the solutions found in [216] are not complete.

Remark. The equation

x2 + y2 + z2 + 2xyz = 1 (5.5.9)
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has an interesting history. Its geometric interpretation has been pointed out in [30],
where it is shown that it reduces to finding all triangles whose angles have rational
cosines.

The general solution in rational numbers of this equation is given [33]:

x =
b2 + c2 − a2

2bc
, y =

a2 + c2 − b2

2ac
, z =

a2 + b2 − c2

2ab
.

In the paper [167] it is noted that apart from the trivial solutions (±1, 0, 0),
(0,±1, 0), (0, 0,±1), all integral solutions to the equation (5.5.9) are given by the
following rule: if p, q, r are any integers with greatest common divisor 1 such that
one of them is equal to the sum of the other two and if u ≥ 1 is any integer, then

x = ±ch(pθ), y = ±ch(qθ), z = ±ch(rθ)

where θ = ln
(
u +

√
u2 − 1

)
and u ≥ 1 is an arbitrary integer.

In the papers [148, 149] it is studied the more general Diophantine equation

x2 + y2 + z2 + 2xyz = n. (5.5.10)

It is proved that this equation has no solutions in integers if n ≡ 3 (mod 4),
n ≡ 6 (mod 8), n ≡ ±3 (mod 9), n = 1− 4k2 with k �≡ 0 (mod 4) and k has no
prime factors of the form 4j+3, or n = 1−3k2 with (k, 4) = 2, (k, 3) = 1 and k has
no prime factors of the form 3j + 2. On the other hand, one solution to the equation
(5.5.10) implies infinitely many such solutions, except possibly when n is a perfect
square having no prime factors of the form 4j + 1. Also, there are infinitely many
solutions if n = 2r and r is odd, but only the solution x = y = 0, z = 2

r
2 and its

cyclic permutations when r is even.

5.5.2 The Equation x2 + y2 + z2 − xyz = 4

The problem of finding all triples of positive integers (x, y, z) with the property
mentioned above appears in [7]. These triples were found by using our general
method described at the beginning of this section. Indeed, writing the equation in
the equivalent form

(x2 − 4)(y2 − 4) = (xy − 2z)2

we note that in (5.5.1) we have a = b = −4 and F(x, y, z) = xy − 2z. Both of
the equations (5.5.3) reduce to the special Pell’s equation s2 − dt2 = 4, which was
extensively discussed in Section 4.3.2. Let (sl(d), tl(d))l≥0 be the general solution
to the equation s2 − dt2 = 4 given in (4.4.2) or (4.4.5). From (5.5.5) we obtain



5.5 The Equation (x2 + a)(y2 + b) = F2(x, y, z) 129

z1 =
1

2
(sm(d)sn(d) + dtm(d)tn(d)) = sm+n(d)

and

z2 =
1

2
(sm(d)sn(d)− dtm(d)tn(d)) = s|m−n|(d).

The general positive integral solutions to the equation x2 + y2+ z2− xyz = 4 are

(sm(d), sn(d), sm+n(d)), m, n ≥ 0 and (sm(d), sn(d), sm−n(d)), m ≥ n ≥ 0

along with the corresponding permutations.

5.5.3 The Equation (x2 + 1)(y2 + 1) = z2

In order to solve this equation in positive integers x, y, z note that a = b = 1 and
F(x, y, z) = z. The equations (5.5.3) become the negative Pell’s equation s2− dt2 =
−1. As we have seen in Section 3.6 the set P(1, 1) is far from easy to describe. The
general solution of this equation is

(sm, sn, dtmtn),

where m, n ≥ 0 and d ∈ P(1, 1).
In a similar way one can solve the equations in (k + 1) variables:

(x21 ± 1)(x22 ± 1) . . . (x2k ± 1) = y2 (5.5.11)

for any choice of the signs + and −.

5.5.4 The Equation (x2 − 1)(y2 − 1) = (z2 − 1)2

The problem of finding all solutions in positive integers to the equation

(x2 − 1)(y2 − 1) = (z2 − 1)2 (5.5.12)

is still open [82]. Partial results concerning this equation were published in [120,
222, 227], and [228].

In what follows we will describe the set of solutions to the equation (5.5.12). Our
description will show the complexity of the problem of finding all of its solutions.
The equation (5.5.12) is of the type (5.5.1), where a = b = −1 and F(x, y, z) =
z2 − 1. By using the general method presented at the beginning of this section,
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we can describe the set of solutions to (5.5.12) in the following way: Fix a nonsquare
d ≥ 2 and consider the Pell’s equation s2 − dt2 = 1. It is clear that the solutions to
(5.5.12) are of the form (sm, sn, zm,n)m,n≥0, where (sk, tk)k≥0 is the general solution
to the above Pell’s equation, zm,n =

√
1 + dtmtn, m, n ≥ 0 and 1 + dtmtn is a perfect

square.
Let

Cd = {(sm, sn, zm,n) : 1 + dtmtn is a square, m, n ≥ 0}.

The set of all solutions to (5.5.12) is

C =
⋃
d≥2√

d �∈Q

Cd.

Note that for all nonsquare d ≥ 2, Cd contains the infinite family of solutions
(sm, sm, sm), m ≥ 0, but this is far from determining all elements in Cd.

5.6 Other Equations with Infinitely Many Solutions

5.6.1 The Equation x2 + axy + y2 = 1

In the book [26] we determine all integers a for which the equation

x2 + axy + y2 = 1 (5.6.1)

has infinitely many integer solutions (x, y). In case of solvability, we find all such
solutions. Clearly, (5.6.1) is a special case of the general equation (4.8.1).

Theorem 5.6.1. The equation (5.6.1) has infinitely many integer solutions if and
only if |a| ≥ 2.

If a = −2, the solutions are (m,m+1), (m+1,m), (−m,−m−1), (−m−1,−m),
m ∈ Z.

If a = 2, the solutions are (−m,m+1), (m+1,−m), (m,−m−1), (−m−1,m),
m ∈ Z.

If |a| > 2, the solutions are

(−vn, vn+1), (vn,−vn+1), (−vn+1, vn), (vn+1,−vn), (5.6.2)

where

vn =
1√

a2 − 4

[(
a +

√
a2 − 4

2

)n

−
(

a −
√

a2 − 4

2

)n]
, n ≥ 0. (5.6.3)
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Proof. Rewrite the given equation in the form

(2x + ay)2 − (a2 − 4)y2 = 4. (5.6.4)

If |a| < 2, then the curve described by (5.6.4) is an ellipse, and so only finitely
many integer solutions occur.

If |a| = 2 then the equation (5.6.1) has infinitely many solutions, since it can be
written as (x ± y)2 = 1.

If |a| > 2, then a2 − 4 is not perfect square. In this case we have a special Pell’s
equation of the form

u2 − (a2 − 4)v2 = 4. (5.6.5)

This type of equations was extensively studied in Section 4.3.2.
Note that a nontrivial solution to (5.6.5) in (a, 1). Using the formula (4.4.2) we

obtain the general solution (un, vn)n≥1 to (5.6.5), where

un =

(
a +

√
a2 − 4

2

)n

+

(
a −

√
a2 − 4

2

)n

,

vn =
1√

a2 − 4

[(
a +

√
a2 − 4

2

)n

−
(

a −
√

a2 − 4

2

)n]
, n ≥ 1.

From formulas (4.4.3) the sequences (un)n≥1, (vn)n≥1 satisfy the recursive
system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un+1 =
1

2
[aun + (a2 − 4)vn]

vn+1 =
1

2
(un + avn), n ≥ 1.

(5.6.6)

From (5.6.4) it follows that the nontrivial integer solutions (x, y) to the equation
(5.6.1) satisfy

2x + ay = ±un and y = ±vn, n ≥ 1 (5.6.7)

where the signs + and − correspond.
If 2x + ay = un and y = vn, then from (5.6.6) it follows that

x =
1

2
(un − avn) =

1

4
[aun−1 + (a2 − 4)vn−1 − aun−1 − a2vn−1] = −vn−1.

We obtain the solution (−vn, vn+1)n≥1. The choice 2x + ay = −un and y =
−vn yield the solution (vn,−vn+1)n≥1 which in fact reflects the symmetry (x, y) →
(−x,−y) of (5.6.1).
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The last two solutions in (5.6.2) follow from the symmetry (x, y) → (y, x) of the
equation (5.5.1). ��
Remark. In the case a = −m, where m is a positive integer, the equation (5.6.1)
was solved in positive integers by using a complicated method involving planar
transformations in [31, pp. 70–73].

5.6.2 The Equation
x2 + 1

y2 + 1
= a2 + 1

We will prove that if a is any fixed positive integer, then there exist infinitely many
pairs of positive integers (x, y) such that

x2 + 1

y2 + 1
= a2 + 1. (5.6.8)

This means that the set {Jm = m2 + 1 : m = 1, 2, . . . } contains infinitely many
pairs (Jx, Jy) such that Jx = JaJy.

The equation (5.6.8) is equivalent to the general Pell’s equation

x2 − (a2 + 1)y2 = a2. (5.6.9)

We notice that equation (5.6.9) has particular solutions (a2 − a + 1, a − 1) and
(a2 + a + 1, a + 1). Let (un, vn)n≥0 be the general solution of its Pell’s resolvent
u2 − (a2 + 1)v2 = 1. The fundamental solution to the Pell’s resolvent equation is
(u1, v1) = (2a2 + 1, 2a).

Following (4.1.3), we construct the sequences of solutions (xn, yn)n≥0 and
(x′n, y′n)n≥0 to the equation (5.6.8):

{
xn = (a2 − a + 1)un + (a − 1)(a2 + 1)vn

yn = (a − 1)un + (a2 − a + 1)vn
(5.6.10)

and

{
x′n = (a2 + a + 1)un + (a + 1)(a2 + 1)vn

y′n = (a + 1)un + (a2 + a + 1)vn
(5.6.11)

We will show now that for all a ≥ 3 the solutions (xn, yn)n≥0, (x′n, y′n)n≥0 are all
distinct. In this respect, following the criterion given in Section 4.1 it suffices to see
that at least one of the numbers

xx′ − yy′d
N

and
yx′ − xy′

N
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is not an integer. Here (x, y) and (x′, y′) are solutions to the general Pell’s equation
X2 − dY2 = N. Indeed,

xx′ − yy′d
N

=
(a2 − a + 1)(a2 + a + 1)− (a − 1)(a + 1)(a2 + 1)

a2
=

=
a4 + a2 + 1− a4 + 1

a2
= 1 +

2

a2
�∈ Z.

Remarks. 1) The equation

(x2 + 1)(y2 + 1) = z2 + 1 (5.6.12)

was known even to Diophantus. It was him who pointed out the solutions
(k, 0, k), (k, k ± 1, k2 ± k + 1), where k is a positive integer and the signs +
and – correspond.

The problem of finding all solutions to (5.6.12) in positive integers appears in
[173]. Unfortunately, the solution presented there was incorrect.

2) It is clear that if y = x + 1, then (x2 + 1)(y2 + 1) = (x2 + 1)(x2 + 2x + 2) =
(x2 + x + 1)2 + 1, hence the equation (5.6.12) has infinitely solutions (x, y, z),
where x and y are consecutive positive integers.

In the case when x is fixed, the problem of finding infinitely many y and
z satisfying (5.6.12) also appears in [205] and it is solved by using a suitable
negative Pell’s equation.

3) A weaker version of the same problem appears in [89] as follows: the sequence
of numbers Jl = l2 + 1, l = 1, 2, . . . contains an infinity of composite numbers
JN = Jm · Jn. In fact, in the mentioned reference, for an arbitrary fixed m, only
three pairs of corresponding n,N are found:

Jm2−m+1 = Jm · Jm−1, Jm2+m+1 = Jm · Jm+1 and J2m2+m = Jm · J2m2 .

4) The equation (5.6.8) is completely solved in rational numbers in [50]. Its general
solution is given by

x = f (a)

y = ±a − 1 +
2

r2(a) + 1
− 2r(a)

r2(a) + 1
f (a),

where

f (a) = −a ± (a2 + 1)(r(a)± 1)2

r2(a) + 2ar(a)− 1

and r(a) is any rational function of a.
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5) A slightly modified equation is given by

x2 − 1

y2 − 1
= z2. (5.6.13)

This equation can be solved completely [139]. Indeed, it is equivalent to

x2 − (y2 − 1)z2 = 1.

It is not difficult to see that (y, 1) is the fundamental solution to this equation
and that all solutions are given by (xn, y, zn)n≥0, where y is any integer greater
than 1 and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xn =
1

2

[(
y +

√
y2 − 1

)n
+
(

y −
√

y2 − 1
)n]

zn =
1

2
√

y2 − 1

[(
y +

√
y2 − 1

)n
−
(

y −
√

y2 − 1
)n]

6) Another equation related to (5.6.12) is

x2 + 1

y2 + 1
= z2. (5.6.14)

This equation can be solved completely as well. We write it under the form

x2 − (y2 + 1)z2 = −1,

a negative Pell’s equation with minimal solution (y, 1). Using formulas (3.6.3)
we obtain the general solution (xn, zn)n≥0,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn =
1

2

[(
y +

√
y2 + 1

)2n+1

+
(

y −
√

y2 + 1
)2n+1

]

yn =
1

2
√

y2 + 1

[(
y +

√
y2 + 1

)2n+1

−
(

y −
√

y2 + 1
)2n+1

]

All solutions to (5.6.14) are given by (xn, y, zn)n≥0, where y is any positive
integer.
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5.6.3 The Equation (x + y + z)2 = xyz

Generally, integer solutions to equations of three or more variables are given in
various parametric forms. In this section we will construct different families of
infinite nonzero integer solutions to the equation:

(x + y + z)2 = xyz. (5.6.15)

Following our paper [8] we will indicate a general method of generating such
families of solutions. We start by performing the transformations

x =
u + v

2
+ a, y =

u − v

2
+ a, z = b (5.6.16)

where a and b are nonzero integer parameters that will be determined in a convenient
manner. The equation becomes

(u + 2a + b)2 =
b
4
(u2 − v2) + abu + a2b.

Imposing the conditions 2(2a + b) = ab and b(b − 4) > 0 yields the general
Pell’s equation

(b − 4)u2 − bv2 = 4[(2a + b)2 − a2b]. (5.6.17)

The imposed conditions are equivalent to (a − 2)(b − 4) = 8, and b < 0 or b > 4.
A simple case analysis shows that the only pairs of integers (a, b) satisfying them
are: (1,−4), (3, 12), (4, 8), (6, 6), (10, 5).

The following table contains the general Pell’s equations (5.6.17) corresponding
to the above pairs (a, b), their Pell’s resolvents, both equations with their fundamen-
tal solutions.

(a, b) General Pell’s equation (5.6.17) Pell’s resolvent and its
and its fundamental solution fundamental solution

(1,−4) 2u2 − v2 = −8, (2, 4) r2 − 2s2 = 1, (3, 2)

(3, 12) 2u2 − 3v2 = 216, (18, 12) r2 − 6s2 = 1, (5, 2)

(4, 8) u2 − 2v2 = 128, (16, 8) r2 − 2s2 = 1, (3, 2)

(6, 6) u2 − 3v2 = 216, (18, 6) r2 − 3s2 = 1, (2, 1)

(10, 5) u2 − 5v2 = 500, (25, 5) r2 − 5s2 = 1, (9, 4)

By using the formula (4.5.2) we obtain the following sequences of solutions to
the equations (5.6.17):

u(1)m = 2r(1)m + 4s(1)m , v(1)m = 4r(1)m + 4s(1)m
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where r(1)m + s(1)m
√
2 = (3 + 2

√
2)m, m ≥ 0;

u(2)m = 18r(2)m + 36s(2)m , v(2)m = 12r(2)m + 36s(2)m

where r(2)m + s(2)m
√
6 = (5 + 2

√
6)m, m ≥ 0;

u(3)m = 16r(3)m + 16s(3)m , v(3)m = 8r(3)m + 16s(3)m

where r(3)m + s(3)m
√
2 = (3 + 2

√
2)m, m ≥ 0;

u(4)m = 18r(4)m + 18s(4)m , v(4)m = 6r(4)m + 18s(4)m

where r(4)m + s(4)m
√
3 = (2 +

√
3)m, m ≥ 0;

u(5)m = 25r(5)m + 25s(5)m , v(5)m = 5r(5)m + 25s(5)m

where r(5)m + s(5)m
√
5 = (9 + 4

√
5)m, m ≥ 0.

Formulas (5.6.16) yield the following five families of nonzero integer solutions
to the equation (5.6.15):

x(1)m = 3r(1)m + 4s(1)m + 1, y(1)m = −r(1)m + 1, z(1)m = −4, m ≥ 0

x(2)m = 15r(2)m + 36s(2)m + 3, y(2)m = 3r(2)m + 3, z(2)m = 12, m ≥ 0

x(3)m = 12r(3)m + 16s(3)m + 4, y(3)m = 4r(3)m + 4, z(3)m = 8, m ≥ 0

x(4)m = 12r(4)m + 18s(4)m + 6, y(4)m = 6r(4)m + 6, z(4)m = 6, m ≥ 0

x(5)m = 15r(5)m + 25s(5)m + 10, y(5)m = 10r(5)m + 10, z(5)m = 5, m ≥ 0.

Remark. In the recent paper [78] the following approach to generates solutions to
the equation (5.6.15) is indicated. Taking z = kx−y, for some integer k, our equation
is equivalent to y2 − kxy + x(k + 1)2 = 0, which is a quadratic equation in y, hence

y =
1

2

(
kx ±

√
k2x2 − 4(k + 1)2x

)
.

Now, let k2x2 − 4(k + 1)2x = a2, for some integer a. Treat this relation as a
quadratic equation in x, we have

x = 2(k + 1)2 ±
√

4(k + 1)4 + k2a2.

Again, consider 4(k + 1)4 + k2a2 = b2, for some integer b. Considering the last
equation as (2(k+1)2)2+(ka)2 = b2, which is a Pythagorean, we get the following
two possible situations
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⎧⎨
⎩

b = u2 + v2

ka = u2 − v2

(k + 1)2 = uv
and

⎧⎨
⎩

b = u2 + v2

ka = 2uv
2(k + 1)2 = u2 − v2

where u, v ∈ Z. Therefore, in order to generate solutions to equation (5.6.15), we

start with two integers u, v such that uv or
u2 − v2

2
is a perfect square (k + 1)2.

Then, we find a =
u2 − v2

k
or a =

2uv
k

, and b = u2 + v2. Finally, we obtain

x = 2(k + 1)2 ± b, y =
1

2
(kx ± a), z = kx − y.

Clearly, every pair (u, v) generates at most two values of k for each system
considered above. Let us illustrate the method by the following special situation.

Example. Let ka =
3

2
(k + 1)2, b =

5

2
(k + 1)2, be the special solutions to the

equation (2(k + 1)2)2 + (ka)2 = b2. Then we obtain from families (x, y) the
solutions: (

9(k + 1)2

2k2
,
6(k + 1)2

k

)
,

(
9(k + 1)2

2k2
,
3(k + 1)2

k

)
,

(
− (k + 1)2

2k2
,
(k + 1)2

k

)
,

(
− (k + 1)2

2k2
,−2(k + 1)2

k

)
.

In order to get integer solutions, the only possibilities are k = −3, −1, 1, 3, giving
the solutions (0, 0, 0), (18, 12, 6), (8, 16, 8), (−2, 2− 4), (−2,−8, 6).

5.6.4 The Equation (x + y + z + t)2 = xyzt

Using the method described in Section 5.6.3 we will generate nine infinite families
of positive integer solutions to the equation

(x + y + z + t)2 = xyzt. (5.6.18)

We will follow the paper [9].
The transformations

x =
u + v

2
+ a, y =

u − v

2
+ a, z = b, t = c (5.6.19)

where a, b, c are positive integers, bring the equation (5.6.18) to the form

(u + 2a + b + c)2 =
bc
4
(u2 − v2) + abcu + a2bc.
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Setting the conditions 2(2a + b + c) = abc and bc > 4, we obtain the following
general Pell’s equation

(bc − 4)u2 − bcv2 = 4[(2a + b + c)2 − a2bc]. (5.6.20)

There are nine triples (a, b, c) up to permutations satisfying the above conditions:
(1,6,4), (1,10,3), (2,2,6), (3,4,2), (3,14,1), (5,2,3), (4,1,9), (7,1,6), (12,1,5).

The following table contains the general Pell’s equations (5.6.20) corresponding
to the above triples (a, b, c), their Pell’s resolvent, both equations with their
fundamental solutions.

(a, b, c) General Pell’s equation (5.6.20) Pell’s resolvent
and its fundamental solution and its fundamental solution

(1, 6, 4) 5u2 − 6v2 = 120, (12, 10) r2 − 30s2 = 1, (11, 2)

(1, 10, 3) 13u2 − 15v2 = 390, (15, 13) r2 − 195s2 = 1, (14, 1)

(2, 2, 6) 2u2 − 3v2 = 96, (12, 8) r2 − 6s2 = 1, (5, 2)

(3, 4, 2) u2 − 2v2 = 72, (12, 6) r2 − 2s2 = 1, (3, 2)

(3, 14, 1) 5u2 − 7v2 = 630, (21, 15) r2 − 35s2 = 1, (6, 1)

(4, 1, 9) 5u2 − 9v2 = 720, (42, 30) r2 − 45s2 = 1, (161, 24)

(5, 2, 3) u2 − 3v2 = 150, (15, 5) r2 − 3s2 = 1, (2, 1)

(7, 1, 6) u2 − 3v2 = 294, (21, 7) r2 − 3s2 = 1, (2, 1)

(12, 1, 5) u2 − 5v2 = 720, (30, 6) r2 − 5s2 = 1, (9, 4)

By using the formula (4.4.2) we obtain the following sequences of solutions to
equations (5.6.20):

u(1)m = 12r(1)m + 60s(1)m , v(1)m = 10r(1)m + 60s(1)m ,

where r(1)m + s(1)m
√
30 = (11 + 2

√
30)m, m ≥ 0;

u(2)m = 15r(2)m + 195s(2)m , v(2)m = 13r(2)m + 195s(2)m ,

where r(2)m + s(2)m
√
195 = (14 +

√
195)m, m ≥ 0;

u(3)m = 12r(3)m + 24s(3)m , v(3)m = 8r(3)m + 24s(3)m ,

where r(3)m + s(3)m
√
6 = (5 + 2

√
6)m, m ≥ 0;

u(4)m = 12r(4)m + 12s(4)m , v(4)m = 6r(4)m + 12s(4)m ,
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where r(4)m + s(4)m
√
2 = (3 + 2

√
2)m, m ≥ 0;

u(5)m = 21r(5)m + 105s(5)m , v(5)m = 15r(5)m + 105s(5)m ,

where r(5)m + s(5)m
√
35 = (6 +

√
35)m, m ≥ 0;

u(6)m = 42r(6)m + 270s(6)m , v(6)m = 30r(6)m + 210s(6)m ,

where r(6)m + s(6)m
√
45 = (161 + 24

√
45)m, m ≥ 0;

u(7)m = 15r(7)m + 15s(7)m , v(7)m = 5r(7)m + 15s(7)m ,

where r(7)m + s(7)m
√
3 = (2 +

√
3)m, m ≥ 0;

u(8)m = 21r(8)m + 21s(8)m , v(8)m = 7r(8)m + 21s(8)m ,

where r(8)m + s(8)m
√
3 = (2 +

√
3)m, m ≥ 0;

u(9)m = 30r(9)m + 30s(9)m , v(9)m = 6r(9)m + 30s(9)m ,

where r(9)m + s(9)m
√
5 = (9 + 4

√
5)m, m ≥ 0.

Formulas (5.6.19) yield the following nine families of positive integers solutions
to the equation (5.6.18):

x(1)m = 11r(1)m + 60s(1)m + 1, y(1)m = r(1)m + 1, z(1)m = 6, t(1)m = 4

x(2)m = 14r(2)m + 195s(2)m + 1, y(2)m = r(2)m + 1, z(2)m = 10, t(2)m = 3

x(3)m = 10r(3)m + 24s(3)m + 2, y(3)m = 2r(3)m + 2, z(3)m = 2, t(3)m = 6

x(4)m = 12r(4)m + 12s(4)m + 3, y(4)m = 3r(4)m + 3, z(4)m = 4, t(4)m = 2

x(5)m = 18r(5)m + 105s(5)m + 3, y(5)m = 3r(5)m + 3, z(5)m = 14, t(5)m = 1

x(6)m = 36r(6)m + 240s(6)m + 4, y(6)m = 6r(6)m + 30s(6)m + 4, z(6)m = 1, t(6)m = 9

x(7)m = 10r(7)m + 15s(7)m + 5, y(7)m = 5r(7)m + 5, z(7)m = 2, t(7)m = 3

x(8)m = 14r(8)m + 21s(8)m + 7, y(8)m = 7r(8)m + 7, z(8)m = 1, t(8)m = 6

x(9)m = 18r(9)m + 30s(9)m + 12, y(9)m = 12r(9)m + 12, z(9)m = 1, t(9)m = 5.

Remarks. 1) In [194] only solution (x(7)m , y(7)m , z(7)m , t(7)m ) is found.
2) Note the atypical form of solution (x(6)m , y(6)m , z(6)m , t(6)m )m≥0.
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5.6.5 The Equation (x + y + z + t)2 = xyzt + 1

The equation

(x + y + z + t)2 = xyzt + 1 (5.6.21)

is considered in the paper [79], where the method to generate families of solutions
is similar to the one described in the previous section. Introduction of the linear
transformations

x = u + v + a, y = u − v + a, z = b, t = c, (5.6.22)

where a, b, c are positive integers, leads (5.6.21) to the form

(bc − 4)u2 − bcv2 = (2a + b + c)2 − a2bc − 1, (5.6.23)

in which bc > 4 and 2(2a+b+c) = abc. There are six triples (a, b, c) satisfying the
above conditions, namely (5,2,3), (7,1,6), (12,1,5), (1,10,3), (3,14,1), (4,1,9). The
following table contains the general Pell’s equations (5.6.23) corresponding to the
above triples (a, b, c), their Pell’s resolvent, both equations with their fundamental
solutions.

(a, b, c) General Pell’s equation (5.6.23) Pell’s resolvent
and its fundamental solution and its fundamental solution

(5, 2, 3) u2 − 3v2 = 37, (7, 2) r2 − 3s2 = 1, (2, 1)

(7, 1, 6) u2 − 3v2 = 73, (10, 3) r2 − 3s2 = 1, (2, 1)

(12, 1, 5) u2 − 5v2 = 179, (28, 11) r2 − 5s2 = 1, (9, 4)

(1, 10, 3) 13u2 − 15v2 = 97, (7, 6) r2 − 195s2 = 1, (14, 1)

(3, 14, 1) 5u2 − 7v2 = 157, (10, 7) r2 − 35s2 = 1, (6, 1)

(4, 1, 9) 5u2 − 9v2 = 179, (50, 37) r2 − 45s2 = 1, (161, 24)

In view of the formula (4.4.2), the following sequences are six families of positive
integer solutions to the corresponding general Pell’s equations (5.6.22):

u(1)m = 7r(1)m + 6s(1)m , v(1)m = 2r(1)m + 7s(1)m ,

where r(1)m + s(1)m
√
3 = (2 +

√
3)m, m ≥ 0.

u(2)m = 10r(2)m + 9s(2)m , v(2)m = 3r(2)m + 10s(2)m ,

where r(2)m + s(2)m
√
3 = (2 +

√
3)m, m ≥ 0.
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u(3)m = 28r(3)m + 55s(3)m , v(3)m = 11r(3)m + 28s(3)m ,

where r(3)m + s(3)m
√
5 = (9 + 4

√
5)m, m ≥ 0.

u(4)m = 7r(4)m + 90s(4)m , v(4)m = 6r(4)m + 91s(4)m ,

where r(4)m + s(4)m
√
195 = (14 +

√
195)m, m ≥ 0.

u(5)m = 10r(5)m + 49s(5)m , v(5)m = 7r(5)m + 50s(5)m ,

where r(5)m + s(5)m
√
35 = (6 +

√
35)m, m ≥ 0.

u(6)m = 50r(6)m + 333(6)m , v(6)m = 37r(6)m + 250s(6)m ,

where r(6)m + 3s(6)m
√
5 = (161 + 72

√
5)m, m ≥ 0.

Formulas (5.6.22) yield the following six families of positive integers solutions
to the equation (5.6.21):

x(1)m = 9r(1)m + 13s(1)m + 5, y(1)m = 5r(1)m − s(1)m + 5, z(1)m = 2, t(1)m = 3

x(2)m = 13r(2)m + 19s(2)m + 7, y(2)m = 7r(2)m − s(2)m + 7, z(2)m = 1, t(2)m = 6

x(3)m = 39r(3)m + 83s(3)m + 12, y(3)m = 17r(3)m + 27s(3)m + 12, z(3)m = 1, t(3)m = 5

x(4)m = 13r(4)m + 181s(4)m + 1, y(4)m = r(4)m − s(4)m + 1, z(4)m = 10, t(4)m = 3

x(5)m = 17r(5)m + 99s + 3, y(5)m = 3r(5)m − s(5)m + 3, z(5)m = 14, t(5)m = 1

x(6)m = 87r(6)m + 583s(6)m + 4, y(6)m = 13r(6)m + 83s(6)m + 4, z(6)m = 1, t(6)m = 9.

5.6.6 The Equation x3 + y3 + z3 + t3 = n

We will prove that if the equation

x3 + y3 + z3 + t3 = n (5.6.24)

has an integral solution (a, b, c, d) such that a �= b or c �= d and −(a+b)(c+d) > 0
is not a perfect square, then it has infinitely many integral solutions.

For this, let us perform the transformations:

x = X + a, y = −X + b, z = Y + c, t = −Y + d.

Then (a + b)X2 + (a2 − b2)X + (c + d)Y2 + (c2 − d2)Y = 0. The last equation
is equivalent to
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(a + b)

(
X +

a − b
2

)2

+ (c + d)

(
Y +

c − d
2

)2

=
(a + b)(a − b)2

4
+

(c + d)(c − d)2

4
. (5.6.25)

From the hypothesis, (5.6.25) is a general Pell’s equation:

AU2 − BV2 = C (5.6.26)

where A = a + b, B = −(c + d), C =
1

4
[(a + b)(a − b)2 + (c + d)(c − d)2] and

U = X +
a − b
2

, V = Y +
c − d
2

.

We note that (U0,V0) =

(
a − b
2

,
c − d
2

)
satisfies the equation (5.6.26) and

consider the Pell’s resolvent r2 − Ds2 = 1, where D = −(a + b)(c + d), with
the general solution (rm, sm)m≥0. From the formula (4.5.2), we obtain the solutions
(Um,Vm)m≥0 where

Um =
a − b
2

rm − (c + d)
c − d
2

sm

Vm =
c − d
2

rm + (a + b)
a − b
2

sm.

It follows that

Xm =
a − b
2

rm − c2 − d2

2
sm − a − b

2

Ym =
c − d
2

rm +
a2 − b2

2
sm − c − d

2
.

From these formulas we generate an infinite family of solutions (xm, ym,
zm, tm)m≥0 to the equation (5.6.24):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xm =
a − b
2

rm − c2 − d2

2
sm +

a + b
2

ym = −a − b
2

rm +
c2 − d2

2
sm +

a + b
2

zm =
c − d
2

rm +
a2 − b2

2
sm +

c + d
2

tm = −c − d
2

rm − a2 − b2

2
sm +

c + d
2

.

(5.6.27)
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Remarks. 1) The main idea of the approach described above comes from [150] and
all computations are given in [10].

2) A special case of equation (5.6.24) appears in the book [24]: Prove that the
equation

x3 + y3 + z3 + t3 = 1999

has infinitely many integral solutions (1999 Bulgarian Mathematical Olym-
piad). In this case, one simple solution to the given equation is (a, b, c, d) =
(10, 10,−1, 0). By using formulas (5.6.27), we obtain the following infinite
family of solutions:

(xm, ym, zm, tm) =

(
−1

2
sm + 10,

1

2
sm + 10,−1

2
(rm + 1),

1

2
(rm − 1)

)
,

where rm + sm

√
20 = (9 + 2

√
20)m, m ≥ 0. It is not difficult to see that the

integers rm are all odd and that sm are all even.



Chapter 6
Diophantine Representations of Some Sequences

In 1900, David Hilbert asked for an algorithm to decide whether a given Diophantine
equation is solvable or not and put this problem tenth in his famous list of 23.

In 1970, it was proved that such an algorithm cannot exist, i.e., the problem is
recursively undecidable. Proof was supplied by Yu. V. Matiyasevich [133], heavily
leaning on results arrived at by M. Davis, J. Robinson, and H. Putnam [60]. This
was accomplished by proving that any enumerable set A ⊆ N = {0, 1, 2, . . . } can
be represented in the following form: There exists a polynomial p(x, x1, . . . , xn) with
n ≥ 0 such that a ∈ A if and only if p(a, x1, . . . , xn) = 0 is solvable for particular
nonnegative integers x1, . . . , xn, i.e.,

a ∈ A ⇔ ∃ x1, . . . , xn ≥ 0 : p(a, x1, . . . , xn) = 0.

Therefore, the set A equals the set of parameters for which the equation p = 0 is
solvable. Employing an idea of H. Putnam [178] this can be reformulated as follows.
If q(x, x1, . . . , xn) = x(1−p(x, x1, . . . , xn)

2), then A equals the set of positive values
of q, where its variables range over the nonnegative integers. Among the recursively
enumerable sets there are many for which such representation is surprising. We will
name some examples which are of importance in number theory.

(1) The primes and their recursively enumerable subsets, most outstanding Fermat-,
Mersenne-, and Twin-primes.

(2) The set of partial denominators of the continued fraction expansion of numbers
as e, π and 3

√
2. (Whereas for e this is known to equal {1}∪ {2, 4, 6, . . . }, there

is only computer-based research regarding the other numbers.

In this chapter we will introduce a Diophantine representation concept for
sequences of integers that refines the idea of Diophantine set. This concept proves
helpful in solving several types of Diophantine equations.

© Springer Science+Business Media New York 2015
T. Andreescu, D. Andrica, Quadratic Diophantine Equations,
Developments in Mathematics 40, DOI 10.1007/978-0-387-54109-9_6

145



146 6 Diophantine Representations of Some Sequences

6.1 Diophantine r-Representable Sequences

The sequence (xm)m≥1 is Diophantine r-representable if there exists a sequence
(Pn)n≥1 of polynomials of degree r, Pn ∈ Z[X1, . . . ,Xr], such that for any positive
integer n the following equality holds:

Pn(xn−r+1, . . . , xn) = 0. (6.1.1)

This means that the sequence (xm)m≥1 has the above property if and only if
among the solutions to the Diophantine equation

Pn(y1, y2, . . . , yr) = 0

there are some for which y(n)
1 = xn−r+1, y(n)

2 = xn−r+2, . . . , y(n)
r = xn, for all

positive integers n.
The main result of this section is that any sequence defined by a linear recurrence

of order r is Diophantine r-representable. Our approach follows the method given
in [27] and [47] (see also [28] in the case r = 2).

Consider the sequence (xn)n≥1 defined recursively by

⎧⎪⎨
⎪⎩

xi = αi, i = 1, 2, . . . , r

xn =

r∑
k=1

akxn−r−1+k, n ≥ r + 1
(6.1.2)

where α1, α2, . . . , αr and a1, a2, . . . , ar are integers with a1 �= 0.
For n ≥ r, let

Dn = det

⎡
⎢⎢⎣

xn−r+1 xn−r+2 . . . xn−1 xn

xn−r+2 xn−r+3 . . . xn xn+1

. . . . . . . . . . . . . . .

xn xn+1 . . . xn+r−2 xn+r−1

⎤
⎥⎥⎦ (6.1.3)

Lemma 6.1.1. For all integers n ≥ r, the following equality holds:

Dn = (−1)(r−1)(n−r)an−r
1 Dr. (6.1.4)

Proof. Following the method of [104, 135] and [202] we introduce the matrix

An =

⎡
⎢⎢⎢⎢⎢⎣

xn−r+1 xn−r+2 . . . xn−1 xn

xn−r+2 xn−r+3 . . . xn xn+1

. . . . . . . . . . . . . . .

xn−1 xn . . . xn+r−3 xn+r−2

xn xn+1 . . . xn+r−2 xn+r−1

⎤
⎥⎥⎥⎥⎥⎦
.
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It is easy to see that

An+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 . . . 0 0 0

0 0 1 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 1 0

0 0 0 0 . . . 0 0 1

a1 a2 a3 a4 . . . ar−2 ar−1 ar

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
· An

and so that

An =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 . . . 0 0 0

0 0 1 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 1 0

0 0 0 0 . . . 0 0 1

a1 a2 a3 a4 . . . ar−2 ar−1 ar

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n−r

· Ar. (6.1.5)

Passing to determinants in (6.1.5), we obtain ((−1)r−1a1)n−rDr = Dn for n ≥ r,
that is the relation (6.1.4). ��
Theorem 6.1.2. Any sequence defined by a linear recurrence of order r is Diophan-
tine r-representable.

Proof. Consider the sequence (xn)n≥1 defined by (6.1.2) and let Pn ∈ Z[X1, . . . ,Xr]
be the polynomial given by

Pn(y1, . . . , yr) = Fr(y1, . . . , yr)− (−1)(r−1)(n−r)an−r
1 Fr(α1, . . . , αr) (6.1.6)

where Fr ∈ Z[X1, . . . ,Xr] is obtained from the determinant (6.1.3) and the recursive
relation (6.1.2).

From the relation (6.1.4) it follows that for all n ≥ r the following equalities hold

Pn(xn−r+1, . . . , xn)=Fr(xn−r+1, . . . , xn)− (−1)(r−1)(n−r)an−r
1 Fr(α1, . . . , αr)

= Dn − (−1)(r−1)(n−r)an−r
1 Dr = 0,

i.e., the sequence (xn)n≥1 is Diophantine r-representable. ��
Remarks. 1) When r = 2, the polynomial Fr in (6.1.6) is given by

F2(x, y) = x2 − a2xy − a1y2 (6.1.7)

and it follows that, for the sequence (xn)n≥1 defined by
{

x1 = α1, x2 = α2

xn = a1xn−2 + a2xn−1, n ≥ 3
(6.1.8)
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the relation F2(xn−1, xn) = (−1)nan−2
1 F2(α1, α2) holds, i.e.,

x2n − a2xn−1xn − a1x2n−1 = (−1)nan−2
1 (α2

2 − a2α1α2 − a1α
2
1). (6.1.9)

The relation (6.1.9) is the first relation of [35] and [36].
2) In the particular case r = 3, after elementary calculation, we obtain

F3(x, y, z) = −x3−(a1 + a2a3)y
3 − a21z3 + 2a3x2y + a2x2z

−(a22 + a1a3)y
2z − (a23 − a2)xy2

−a1a3xz2 − 2a1a2yz2 + (3a1 − a2a3)xyz,

hence we get that, for the linear recurrence

{
x1 = α1, x2 = α2, x3 = α3

xn = a1xn−2 + a2xn−2 + a3xn−1, n ≥ 4
(6.1.10)

the relation

F3(xn−2, xn−1, xn) = an−3
1 F3(α1, α2, α3) (6.1.11)

is true.
3) If in the proof of Theorem 6.1.2, the equation Pn(xn−r+1, . . . , xn) = 0 can be

solved with respect to xn, then xn can be written as a function in r − 1 variables
xn−r+1, . . . , xn−1.

4) Note that the polynomial Fr ∈ Z[X1, . . . ,Xr] can be viewed as an “invariant” to
the sequence (xn)n≥1 defined by (6.1.2).

5) For additional informations about the special case r = 2 we refer to [92].

6.2 A Property of Some Special Sequences

If a1 = a2 = 1 and α1 = α2 = 1, then (6.1.8) defines the Fibonacci sequence
(Fn)n≥1 (see [105, 114, 187]) and [217] for many interesting properties). From
(6.1.9) we obtain

F2
n − FnFn−1 − F2

n−1 = (−1)n−1. (6.2.1)

If a1 = a2 = 1 and α1 = 1, α2 = 3, then (6.1.8) defines the Lucas sequence
(Ln)n≥1 (see [105]) and from (6.1.9) it follows that

L2
n − LnLn−1 − L2

n−1 = 5(−1)n. (6.2.2)
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If a1 = 1, a2 = 2 and α1 = 1, α2 = 3, then (6.1.8) gives the Pell sequence
(Pn)n≥1 (see [106]) and the relation (6.1.9) becomes

P2
n − 2PnPn−1 − P2

n−1 = (−1)n−1. (6.2.3)

From the relations (6.2.1), (6.2.2), (6.2.3) we deduce

Fn =
1

2

(
Fn−1 +

√
5F2

n−1 + 4(−1)n−1

)
(6.2.4)

Ln =
1

2

(
Ln−1 +

√
5L2

n−1 + 20(−1)n

)
(6.2.5)

Pn = Pn−1 +
√

2P2
n−1 + (−1)n−1. (6.2.6)

These identities give the possibility for writing computer programs that facilitate
the computation of the terms of each of the three sequences (Fn)n≥1, (Ln)n≥1,
(Pn)n≥1.

In [183] it is given a method for obtaining the relation (6.2.4) by using hyperbolic
functions. Similar results are also presented in [90].

Proposition 6.2.1. If the sequence (xn)n≥1 is given by (6.1.8), then for all integers
n ≥ 3, the integer

(a22 + 4a1)x
2
n−1 + 4(−1)n−1an−2

1 (a1α
2
1 + a2α1α2 − α2

2)

is a perfect square.

Proof. From (6.1.9) we obtain

(a22 + 4a1)x
2
n−1 + 4(−1)n−1an−2

1 (a1α
2
1 + a2α1α2 − α2

2) = (2xn − a2xn−1)
2

which finishes the proof. ��

Proposition 6.2.2. Let α1, α2 and k be nonzero integers. The general Pell’s
equations

x2 − (k2 + 4)y2 = 4(α2
1 + kα1α2 − α2

2)

and

(k2 + 4)u2 − v2 = 4(α2
1 + kα1α2 − α2

2)

are solvable.

Proof. In (6.1.8) consider a1 = 1 and a2 = k. From Proposition 6.2.1 it follows that
(x, y) = (2xn − kxn−1, xn−1) is a solution to the first equation whenever n is odd. If
n is even, then (u, v) = (xn−1, 2xn −kxn−1) is a solution to the second equation. ��
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Remark. Note that the first equation in Proposition 6.2.2 has solution (2α1 +
kα2, α2). From Theorem 4.5.1 it follows that it has infinitely many integral
solutions.

Similarly, the second equation in Proposition 6.2.2 has solution (kα1 + (k2 +
2)α2, α1 + kα2), and by applying Theorem 4.5.1 we deduce that it has infinitely
many integral solutions.

6.3 The Equations x2 + axy + y2 = ±1

The result in Theorem 5.6.1 shows that if |a| > 2 the pairs (−vn, vn+1), (vn,−vn+1),
(−vn+1, vn), (vn+1,−vn) of consecutive terms in the sequence given by

vn =
1√

a2 − 4

[(
a +

√
a2 − 4

2

)n

−
(

a −
√

a2 − 4

2

)n]

can be characterized as solutions to the equation x2 + ax + y2 = 1.
On the other hand, the sequence (vn)n≥0 satisfies the linear recurrence of order 2

vn+1 = avn − vn−1, n ≥ 1, where v0 = 0 and v1 = 1.

Therefore the solutions to the discussed equation consists of all pairs of
consecutive terms in a sequence defined by a second order recursive linear relation.

In what follows, we will study the equation

x2 + axy + y2 = −1, (6.3.1)

which is also a special case of (4.8.1).

Theorem 6.3.1. The equation (6.3.1) is solvable in integers if and only if a = ±3.
If a = −3, then the solutions are

(−F2n−1,−F2n+1), (−F2n+1,−F2n−1),

(F2n−1,F2n+1), (F2n+1,F2n−1), n ≥ 1.

If a = 3, then the solutions are

(−F2n−1,F2n+1), (−F2n+1,F2n−1),

(F2n−1,−F2n+1), (F2n+1,−F2n−1), n ≥ 1,

where (Fm)m≥1 is the Fibonacci sequence.
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Proof. First consider a < 0. If there is a solution (x, y), then xy > 0. Therefore, we
may assume that x > 0, y > 0 and we may consider that x is minimal.

If a �= −3, then x �= y, for otherwise (a + 2)x2 = −1, which is impossible,
because a + 2 �= −1. We have

0 = x2 + axy + y2 + 1 = (x + ay)2 − axy − a2y2 + y2 + 1

= (−x − ay)2 + a(−x − ay)y + y2 + 1,

hence (−x − ay, y) is also a solution. It follows that −x − ay > 0.
If we prove that −x − ay < x, then we contradict the minimality of x. Indeed,

from the symmetry of the equation, we may assume that x > y. Then x2 > y2+1 =
x(−x − ay), so x > −x − ay. It follows that in this case the equation (6.3.1) is not
solvable.

Consider now a > 0 and let (x, y) be a solution. Then xy < 0 and we may assume
for example that x > 0 and y < 0. Setting z = −y, we obtain the equivalent equation
x2 + (−a)xz + z2 = −1, with x > 0, z > 0, which we examined above. It follows
that the equation (6.3.1) is not solvable if −a �= −3, i.e., a �= 3.

It remains to solve the equation when a = ±3. First, consider the case a =
−3 and write the equation x2 − 3xy + y2 = −1 in the following equivalent form
(2x − 3y)2 − 5y2 = −4. This is a special Pell’s equation:

u2 − 5v2 = −4. (6.3.2)

Its minimal solution is (1, 1). By the results in Section 4.3.2, it follows that the
general solution (um, vm) to (6.3.2) is given by

um + vm

√
5 = 2

(
1 +

√
5

2

)m

, m = 1, 3, 5, . . .

Since

um − vm

√
5 = 2

(
1−

√
5

2

)m

, m = 1, 3, 5, . . .

we obtain

um =

(
1 +

√
5

2

)m

+

(
1−

√
5

2

)m

and

vm =
1√
5

[(
1 +

√
5

2

)m

−
(
1−

√
5

2

)m]
= Fm

where m = 1, 3, 5, . . .
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It follows that 2x − 3Fm = um, hence

x =

(
3

2
√
5
+

1

2

)(
1 +

√
5

2

)m

−
(

3

2
√
5
− 1

2

)(
1−

√
5

2

)m

=
(1 +

√
5)2

4
√
5

(
1 +

√
5

2

)m

− (1−
√
5)2

2
√
5

(
1−

√
5

2

)m

=
1√
5

⎡
⎣
(
1 +

√
5

2

)m+2

−
(
1−

√
5

2

)m+2
⎤
⎦ = Fm+2.

We obtain the solutions (F2n+1,F2n−1), n ≥ 1, and by the symmetries (x, y) →
(y, x) and (x, y) → (−x,−y) we find the others.

If a = 3, the substitution y = −z transforms the equation into

x2 − 3xz + z2 = −1.

From the above considerations we obtain the solutions

(x, z) = (F2n+1,F2n−1)

and by using the same symmetries we get the four families of solutions given in the
Theorem. ��
Remarks. 1) The conclusion in Theorem 6.3.1 can be also obtained by considering

the more general equation (see [200] or [25]):

x2 + y2 + 1 = xyz.

The integral solutions (x, y, z) to this equation are given by

(−F2n−1,−F2n+1, 3), (−F2n+1,−F2n−1, 3), (F2n−1,F2n+1, 3),

(F2n+1,F2n−11, 3), (−F2n−1,F2n+1,−3), (−F2n+1,F2n−1,−3),

(F2n−1,−F2n+1,−3), (F2n+1,−F2n−1,−3), n ≥ 1.

2) In [150] it is considered the more general equation

f1(x, y) = zf2(x, y)

where f1(x, y) = ax2 + bxy + cy2 + dx + ey + f , f2(x, y) = pxy + qx + ry +
s are quadratic forms with integer coefficients and ac �= 0, a| gcd(b, d, p, q),
c| gcd(b, e, p, r).
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3) In the paper [188] is considered the equation

x4 − 6x2y2 + 5y4 = 16Fn−1Fn+1, (6.3.3)

when one of the Fibonacci numbers Fn−1, Fn+1 is prime and another is prime
or it is a product of two different prime numbers. There are such Fibonacci
numbers, for example F5 = 5 and F7 = 13; F11 = 89 and F13 = 233; F17 =
1597 and F19 = 165580141 = F29 = 514229 and F31 = 1346269 = 557·2147;
F41 = 165580141 = 2789 · 59369 and F43 = 433494437.

Using the equivalent form (x2−5y2)(x2−y2) = 16Fn−1Fn+1 to the equation,
and the result in Theorem 4.1.1, in the paper [188] is shown that all integral
solutions (x, y, n) to (6.3.3) are (x, y, n) = (±L6l,±F6l, 6l), l ≥ 1, when 6l − 1
are prime numbers, F6l+1 is a product of two different primes, and L6l is the
Lucas number.

6.4 Diophantine Representations of the Sequences
Fibonacci, Lucas, and Pell

In this section we will consider some special cases of the Diophantine equation

x2 + axy − y2 = b (6.4.1)

where a and b are integers and we will show that all nontrivial positive solutions to
(6.4.1) are representable by pairs of consecutive terms in the sequences (Fn)n≥1,
(Ln)n≥1, (Pn)n≥1. These results are given in [47] but the method used there is
different and more complicated. Note that this equation is a special case of (4.8.1).

Theorem 6.4.1. (i) The nontrivial positive integer solutions to the equation

x2 + xy − y2 = −1 (6.4.2)

are given by (F2n,F2n+1), n ≥ 1.
(ii) The nontrivial positive integer solutions to the equation

x2 + xy − y2 = 1 (6.4.3)

are given by (F2n−1,F2n), n ≥ 1.

Proof. (i) The equation is equivalent to

(2x + y)2 − 5y2 = −4.
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This is a special Pell’s equation of the form u2 − 5v2 = −4 and has solution

1

2
(um + vm

√
5) =

(
1 +

√
5

2

)m

, m = 3, 5, . . .

(see Theorem 4.4.1). It follows that

um =

(
1 +

√
5

2

)m

+

(
1−

√
5

2

)m

and

vm =
1√
5

[(
1 +

√
5

2

)m

−
(
1−

√
5

2

)m]
, m = 3, 5, . . .

Hence ym = vm and

xm =
1

2
(um − vm) =

1

2

[(
1− 1√

5

)(
1 +

√
5

2

)m

+

(
1 +

1√
5

)(
1−

√
5

2

)m]

=
1√
5

⎡
⎣
(
1 +

√
5

2

)m−1

−
(
1−

√
5

2

)m−1
⎤
⎦ , m = 3, 5, . . .

Thus (xn, yn) = (F2n,F2n+1), n ≥ 1.
(ii) Similarly, we obtain the equivalent equation

(2x + y)2 − 5y2 = 4

which is a special Pell’s equation of the form u2 − 5v2 = 4 and has solution

un =

(
3 +

√
5

2

)n

+

(
3−

√
5

2

)n

,

vn =
1√
5

[(
3 +

√
5

2

)n

−
(
3−

√
5

2

)n]
,

where n ≥ 1 (see (4.3.2)).
It follows that

yn = vn =
1√
5

⎡
⎣
(
1 +

√
5

2

)2n

−
(
1−

√
5

2

)2n
⎤
⎦ = F2n



6.4 Diophantine Representations of the Sequences Fibonacci, Lucas, and Pell 155

and

xn =
1

2
(un − vn) =

1

2

⎡
⎣
(
1− 1√

5

)(
1 +

√
5

2

)2n

+

(
1 +

1√
5

)(
1−

√
5

2

)2n
⎤
⎦

=
1√
5

⎡
⎣
(
1 +

√
5

2

)2n−1

−
(
1−

√
5

2

)2n−1
⎤
⎦ = F2n−1.

��
Theorem 6.4.2. (i) The nontrivial positive integer solutions to the equation

x2 + xy − y2 = −5 (6.4.4)

are given by (L2n−1,L2n), n ≥ 1.
(ii) The nontrivial positive integer solutions to the equation

x2 + xy − y2 = 5 (6.4.5)

are given by (L2n,L2n+1), n ≥ 1.

Proof. Recall that the general term of the Lucas sequence is given by

Lm =

(
1 +

√
5

2

)m

+

(
1−

√
5

2

)m

, m ≥ 1. (6.4.6)

(i) Write the equation in the equivalent form

(2x + y)2 − 5y2 = −20

and let 2x+ y = 5u, y = v. We obtain the special Pell’s equation v2 − 5u2 = 4,
whose solutions are

vn =

(
3 +

√
5

2

)n

+

(
3−

√
5

2

)n

,

un =
1√
5

[(
3 +

√
5

2

)n

−
(
3−

√
5

2

)n]
, n ≥ 1.

It follows that

yn = vn =

(
1 +

√
5

2

)2n

+

(
1−

√
5

2

)2n

= L2n
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and

xn =
1

2
(5un − vn) =

⎡
⎣(√5− 1)

(
1 +

√
5

2

)2n

− (
√
5 + 1)

(
1−

√
5

2

)2n
⎤
⎦

=

(
1 +

√
5

2

)2n−1

+

(
1−

√
5

2

)2n−1

= L2n−1.

(ii) Similarly, the equivalent equation (2x + y)2 − 5y2 = 20 reduces to v2 − 5u2 =
−4, where 2x + y = 5u and y = v. We have

1

2
(vm + um

√
5) =

(
1 +

√
5

2

)m

, m = 1, 3, 5, . . .

(see Theorem 4.4.1), hence

ym = vm =

(
1 +

√
5

2

)m

+

(
1−

√
5

2

)m

= Lm, m = 1, 3, 5, . . .

and

xm =
1

2
(5um − vm) =

1

2

[
(
√
5− 1)

(
1 +

√
5

2

)m

− (
√
5 + 1)

(
1−

√
5

2

)m]

=

(
1 +

√
5

2

)m−1

+

(
1−

√
5

2

)m−1

= Lm−1, m = 1, 3, 5, . . .

��
Theorem 6.4.3. (i) The nontrivial positive integer solutions to the equation

x2 + 2xy − y2 = −1 (6.4.7)

are given by (P2n,P2n+1), n ≥ 0.
(ii) The nontrivial positive integer solutions to the equation

x2 + 2xy − y2 = 1

are given by (P2n−1,P2n), n ≥ 1.

Proof. The general term of the Pell’s sequence is given by

Pm =
1

2
√
2
[(1 +

√
2)m − (1−

√
2)m], m ≥ 1. (6.4.8)
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(i) Write the equation in the equivalent form (x+y)2−2y2 = −1. This is a negative
Pell’s equation of the form u2 − 2v2 = −1, whose solutions are given by

un =
1

2
[(1 +

√
2)2n+1 + (1−

√
2)2n+1]

and

vn =
1

2
√
2
[(1 +

√
2)2n+1 − (1−

√
2)2n+1], n ≥ 0.

It follows that

yn = vn = P2n+1

and

xn − un − vn =
1

2

[(
1− 1√

2

)
(1 +

√
2)2n+1 +

(
1 +

1√
2

)
(1−

√
2)2n+1

]

=
1

2
√
2
[(1 +

√
2)2n − (1−

√
2)2n] = P2n.

(ii) We obtain the Pell’s equation (x + y)2 − 2y2 = 1, whose solutions are

xn + yn =
1

2
[(1 +

√
2)2n + (1−

√
2)2n],

yn =
1

2
√
2
[(1 +

√
2)2n − (1−

√
2)2n], n ≥ 1.

It follows that yn = P2n and

xn =
1

2

[(
1− 1√

2

)
(1 +

√
2)2n +

(
1 +

1√
2

)
(1−

√
2)2n

]

=
1

2
√
2
[(1 +

√
2)2n−1 − (1−

√
2)2n−1] = P2n−1.

��
The results in Theorems 6.4.1–6.4.3 can be summarized in the following

Theorem proven by the infinite descent method in [47].

Theorem 6.4.4. Let a be a positive integer and let (αn)n≥1 be the sequence defined
recursively by

{
α1 = 1, α2 = a
αn+1 = aαn + αn−1, n ≥ 2.

(6.4.9)
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Then all positive integer solutions to the equation

|x2 + axy − y2| = 1 (6.4.10)

are given by (αn, αn+1), n ≥ 1.

Proof. The general term of the sequence (αn)n≥1 in (6.4.9) is given by

αn =
1√

a2 + 4

[(
a +

√
a2 + 4

2

)n

−
(

a −
√

a2 + 4

2

)n]
, n ≥ 1. (6.4.11)

The equation x2+axy−y2 = −1 is equivalent to (2x+ay)2−(a2+4)y2 = −4, which
is a special Pell’s equation of the form u2 − (a2 +4)v2 = −4. From Theorem 4.4.1
it follows that

1

2
(um + vm

√
a2 + 4) =

(
a +

√
a2 + 4

2

)m

, m = 1, 3, 5, . . .

Hence

um =

(
a +

√
a2 + 4

2

)m

+

(
a −

√
a2 + 4

2

)m

and

vm =
1√

a2 + 4

[(
a +

√
a2 + 4

2

)m

−
(

a −
√

a2 + 4

2

)m]
.

Therefore ym = vm = αm, m = 1, 3, 5, . . . , and

xm =
1

2
(um − avm)

=
1

2

[(
1− a√

a2 + 4

)(
a +

√
a2 + 4

2

)m

+

(
1 +

a√
a2 + 4

)(
a −

√
a2 + 4

2

)m]

=
1√

a2 + 4

⎡
⎣
(

a +
√

a2 + 4

2

)m−1

−
(

a −
√

a2 + 4

2

)m−1
⎤
⎦ = αm−1.

The equation x2+axy−y2 = 1 is equivalent to (2x+ay)2−(a2+4)y2 = 4. From
Theorem 4.4.1 it follows that the general solution to the equation u2−(a2+4)v2 = 4
is given by
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1

2
(un + vn

√
a2 + 4) =

(
a2 + 2 + a

√
a2 + 4

2

)n

=

(
a +

√
a2 + 4

2

)2n

.

We obtain

un =

(
a +

√
a2 + 4

2

)2n

+

(
a −

√
a2 + 4

2

)2n

,

vn =
1√

a2 + 4

⎡
⎣
(

a +
√

a2 + 4

2

)2n

−
(

a −
√

a2 + 4

2

)2n
⎤
⎦ .

Hence yn = vn = α2n and

xn =
1

2
(un − avn)

=
1

2

⎡
⎣
(
1− a√

a2 + 4

)(
a +

√
a2 + 4

2

)2n

+

(
1+

a√
a2 + 4

)(
a −

√
a2 + 4

2

)2n
⎤
⎦

=
1√

a2 + 4

⎡
⎣
(

a +
√

a2 + 4

2

)2n−1

−
(

a −
√

a2 + 4

2

)2n−1
⎤
⎦ = α2n−1.

��
Remarks. 1) Theorem 6.4.4 characterizes the pairs of consecutive terms of the

sequence (αn)n≥1 defined by the linear recurrence (6.4.9).
2) The set consisting of α2k, k ≥ 1, is included in the set of positive values of the

polynomial

P1(x, y) = x[1− (x2 + axy − y2 − 1)2]

and the set consisting of α2k+1, k ≥ 0, is included in the set of positive values of
the polynomial

P2(x, y) = x[1− (x2 + axy − y2 + 1)2].

3) The result in Theorem 6.4.4 also appears in the paper [134].
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6.5 Diophantine Representations of Generalized
Lucas Sequences

We define the generalized Lucas sequence (γn)n≥0, γn = γn(a, b), with parameters
a, b ∈ Z

∗ by

γn+1 = f (a, b)γn − γn−1, n ≥ 1 (6.5.1)

where f : Z∗ × Z
∗ → Z is a given function and γ0 = γ0(a, b), γ1 = γ1(a, b) are

given integers.
The following theorems generalize all results in Section 6.4.

Theorem 6.5.1. Let a, b be nonzero integers such that b �= 1 and a2 − 4b > 0 is a
nonsquare. All integral solutions to the equation

x2 + axy + by2 = 1 (6.5.2)

are given by (αn, βn)n≥1, (−αn,−βn)n≥1, where (αn)n≥1, (βn)n≥1 are the general-
ized Lucas sequences defined by

αn+1 = u0αn − αn−1, α0 = 2, α1 = u0 and

βn+1 = u0βn − βn−1, β0 = 1, β1 =
1

2
(u0 − av0).

(6.5.3)

Here u0 = u0(a, b), v0 = v0(a, b) are the minimal solutions to the special Pell’s
equation

u2 − (a2 − 4b)v2 = 4. (6.5.4)

Proof. The general terms of the sequences (αn)n≥0 and (βn)n≥0 are given by

αn =

(
u0 + v0

√
a2 − 4b

2

)n

+

(
u0 − v0

√
a2 − 4b

2

)n

and

βn =
1

2

[(
1− a√

a2 − 4b

)(
u0 + v0

√
a2 − 4b

2

)n

+

(
1 +

a√
a2 − 4b

)(
u0 − v0

√
a2 − 4b

2

)n]
.
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The equation (6.5.2) is equivalent to (2x + ay)2 − (a2 − 4b)y2 = 4, i.e., to the
general Pell’s equation (6.5.3). From Theorem 4.4.1 its general solution is given by

1

2
(un + vn

√
a2 − 4b) =

(
u0 + v0

√
a2 − 4b

2

)n

, n ≥ 1.

It follows that

un =

(
u0 + v0

√
a2 − 4b

2

)n

+

(
u0 − v0

√
a2 − 4b

2

)n

and

vn =
1√

a2 − 4b

[(
u0 + v0

√
a2 − 4b

2

)n

−
(

u0 − v0
√

a2 − 4b
2

)n]
, n ≥ 1.

Thus yn = vn = αn and xn =
1

2
(un − avn) = βn. ��

Remark. Theorems 6.5.1 and 6.5.2 give an useful method for solving the Diophan-
tine equations of degree three in four variables

x2 + uxy + vy2 = ±1.

Indeed, setting u = a, v = b, with a, b ∈ Z, the above equations are equivalent to

(2x + ay)2 − (a2 − 4b)y2 = ±4.

If a2 − 4b < 0, there are at most finitely many solutions.
If a2 − 4b = 0, the equations reduce to (2x + ay)2 = ±4, and for a even we

obtain solutions

(
−ka

2
± 1, k

)
, k ∈ Z.

If a2 − 4b > 0 is a perfect square, there are at most finitely many solutions.
If a2−4b > 0 is not a square, then all solutions to the equation x2+uxy+vy2 = 1

are given by (x, y, u, v) = (±αm,±βm, a, b), m ≥ 1, where (αm), (βm) are the
generalized Lucas sequences defined in Theorem 6.5.1.

All solutions to the equation x2 + uxy + vy2 = −1 are given by

(x, y, u, v) = (±α2n+1,±β2n+1, a, b), n ≥ 0,

where (αm), (βm) are defined in Theorem 6.5.2.
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For some particular values of a and b the generalized Lucas sequences (αn)n≥0

and (βn)n≥0 defined by (6.5.3) coincide with some classical sequences. In the
following table we will give a few such situations (see also Section 6.4).

a b Equation (6.5.2) Solutions

1 −1 x2 + xy − y2 = 1 (F2n−1,F2n), (−F2n−1,−F2n)

−1 −1 x2 − xy − y2 = 1 (F2n+1,F2n), (−F2n+1,−F2n)

2 −1 x2 + 2xy − y2 = 1 (P2n−1,P2n), (−P2n−1,−P2n)

−2 −1 x2 − 2xy − y2 = 1 (P2n+1,P2n), (−P2n+1,−P2n)

Theorem 6.5.2. Let a, b be nonzero integers such that b �= 1 and a2 − 4b > 0 is a
nonsquare. Assume that the special Pell’s equation

s2 − (a2 − 4b)t2 = −4 (6.5.5)

is solvable and its minimal solution is (s0, t0), s0 = s0(a, b), t0 = t0(a, b). Then all
integral solutions to the equation

x2 + axy + by2 = −1 (6.5.6)

are given (α2n+1, β2n+1), (−α2n+1,−β2n+1), n ≥ 1, where (αm)m≥0, (βm)m≥0 are
the generalized Lucas sequences defined by

αm+1 = s0αm − αm−1, α0 = 2, α1 = s0 and

βm+1 = s0βm − βm−1, β0 = 1, β1 =
1

2
(s0 − at0).

(6.5.7)

Proof. We proceed like in the previous theorem and take into account the results in
Theorem 4.4.1 concerning the general solution to the equation (6.5.5). ��

In some special cases, the generalized Lucas sequences defined by (6.5.7) yield
to solutions involving well-known sequences. We will illustrate this by presenting
the following table (see also Section 6.5).

a b Equation (6.5.6) Solutions

1 −1 x2 + xy − y2 = −1 (F2n,F2n+1), (−F2n,−F2n+1)

−1 −1 x2 − xy − y2 = −1 (F2n,F2n−1), (−F2n,−F2n−1)

2 −1 x2 + 2xy − y2 = −1 (P2n,P2n+1), (−P2n,−P2n+1)

−2 −1 x2 − 2xy − y2 = −1 (P2n,P2n−1), (−P2n,−P2n−1)

5 5 x2 + 5xy + 5y2 = −1 (L2n,−F2n+1), (−L2n,F2n+1)
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Remarks. 1) The solvability condition for the general Pell’s equation (6.5.5) in
Theorem 6.5.2 is necessary. Indeed, for example, for a = 5, b = 1 the equation

s2 − 21t2 = −4

is not solvable (the left-hand side is congruent to 0 or 1 (mod 3)). The
corresponding equation (6.5.6):

x2 + 5xy − y2 = −1

is also not solvable.
2) The special case b = −1 is studied in [134]. Particular Diophantine repre-

sentations for the Fibonacci and Lucas sequences are given in [96] and [97].
We also mention the connection with the general Pell’s equation given in [61].
A particular definition for generalized Lucas sequences appears in [91].

An interesting special case for the equation (6.5.2) is a = b. We obtain the
Diophantine equation

x2 + axy + ay2 = 1. (6.5.8)

The general Pell’s equation (6.5.4) becomes u2 − (a2 − 4a)v2 = 4, whose
minimal solution is (u0, v0) = (a − 2, 1).

With the notations in Theorem 6.5.1 the generalized Lucas sequences
(αn)n≥0, (βn)n≥0 are given by

αn+1 = (a − 2)αn − αn−1, α0 = 2, α1 = a − 2

βn+1 = (a − 2)βn − βn−1, β0 = 1, β1 = −1.

From Theorem 6.5.1 we obtain the following Corollary:

Corollary 6.5.3. The equation (6.5.8) is always solvable and all of its solutions are
given by (αn, βn)n≥0.

Next we study when the solutions to the equation (6.5.8) are linear combinations
over Q of the classical Fibonacci and Lucas sequences. The results are obtained in
the paper [20].

For other results we refer to the papers [61, 91, 96–98] and [134]. Also, the
problem is connected to the Y.V. Matiasevich and J. Robertson way to solve
the Hilbert’s Tenth Problem, and it has applications to the problem of singlefold
Diophantine representation of recursively enumerable sets. In the recent paper [102]
the equations x2−kxy+y2 = 1, x2−kxy−y2 = 1 are solved in terms of generalized
Fibonacci and Lucas numbers. Let us mention that in the paper [83] is defined
the Hankel matrices involving the Pell, Pell-Lucas and modified Pell sequences,
is computed their Frobenius norm, and it is investigated some spectral properties of
them.
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Recall the Binet’s formulas for Fn and Ln:

Fn =
1√
5

[(
1 +

√
5

2

)n

−
(
1−

√
5

2

)n]
,

Ln =

(
1 +

√
5

2

)n

+

(
1−

√
5

2

)n

.

These formulas can be extended to negative integers n in a natural way. We have
F−n = (−1)n−1Fn and L−n = (−1)nLn, for all n.

Theorem 6.5.4. The solutions to the positive equation (6.5.8) are linear combina-
tions with rational coefficients of at most two Fibonacci and Lucas numbers if and
only if a = an = ±L2n + 2, n ≥ 1.

For each n, all of its integer solutions (xk, yk) are given by

⎧⎪⎨
⎪⎩

xk =
εk

2
L2kn ∓

an

2F2n
F2kn

yk = ± 1

F2n
F2kn,

(6.5.9)

where k ≥ 1, signs + and − depend on k and correspond, while εk = ±1.

Proof. The equation x2 + axy + ay2 = 1 is equivalent to the positive special Pell’s
equation

(2x + ay)2 − (a2 − 4a)y2 = 4. (6.5.10)

From formula (4.4.6) it follows that

2xn + aym = εm

[(
u1 + v1

√
D

2

)m

+

(
u1 − v1

√
D

2

)m]

and

ym =
εm√

D

[(
u1 + v1

√
D

2

)m

−
(

u1 − v1
√

D
2

)m]
,

where m ∈ Z, εm = ±1, D = a2 − 4a, and (u1, v1) is the minimal positive solution
to u2 − Dv2 = 4. we have (u1, v1) = (a − 2, 1), and combining the above relations
it follows
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xm =
εm

2

[(
1− a√

a2 − 4a

)(
a − 2 +

√
a2 − 4a

2

)m

+

(
1 +

a√
a2 − 4a

)(
a − 2−

√
a2 − 4a

2

)m]
(6.5.11)

and

ym =
εm√

a2 − 4a

[(
a − 2 +

√
a2 − 4a

2

)m

−
(

a − 2−
√

a2 − 4a
2

)m]
.

(6.5.12)

Taking into account Binet’s formulas, solution (xm, ym) is representable in terms
of Fm and Lm only if a2 − 4a = 5s2, for some positive integer s. This is equivalent
to the special Pell’s equation

(a − 2)2 − 5s2 = 4, (6.5.13)

whose minimal solution is (a1 − 2, s1) = (3, 1). The general integer solution to
(6.5.13) is

an − 2 = εn

[(
3 +

√
5

2

)n

+

(
3−

√
5

2

)n]
= εnL2n,

and

sn =
εn√
5

[(
3 +

√
5

2

)n

−
(
3−

√
5

2

)n]
= εnF2n,

where n is an integer and εn = ±1.
From (2x + ay)2 − (a2 − 4a)y2 = 4 we find (2x + any)2 − 5(sny)2 = 4, with

integer solution (xm, ym) given by

2xm + anym = ε2mL2m and snym = ±F2m.

Hence

xm =
1

2

[
ε2mL2m ∓ an

F2m

F2n

]
, ym = ±F2m

F2n
, (6.5.14)

where signs + and − correspond, and ε2m = ±1.
Taking into account that F2n divides F2m if and only if n divides m (see [21,

p. 180] and [90, p. 39]), it is necessary that m = kn, for some positive integer k.
Formula (6.5.14) becomes (6.5.9).
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A parity argument shows that in the equation

(x + ay)2 − (a2 − 4a)y2 = 4,

X is even, so xk in (6.5.9) is always an integer. ��
The following two tables give the integer solutions to equation (6.5.8) at level k,

including the trivial solution obtained for k = 0.

n an = L2n + 2 Equation (6.5.8) Solutions

1 5 x2 + 5xy + 5y2 = 1 x = εk
2

L2k ∓ 5
2

F2k, y = ±F2k

2 9 x2 + 9xy + 9y2 = 1 x = εk
2

L4k ∓ 5
6

F4k, y = ± 1
3

F4k

3 20 x2 + 20xy + 20y2 = 1 x = εk
2

L6k ∓ 5
4

F6k, y = ± 1
8

F6k

4 49 x2 + 49xy + 49y2 = 1 x = εk
2

L8k ∓ 7
6

F8k, y = ± 1
21

F8k

5 125 x2 + 125xy + 125y2 = 1 x = εk
2

L10k ∓ 25
22

F10k, y = ± 1
55

F10k

6 324 x2 + 324xy + 324y2 = 1 x = εk
2

L12k ∓ 9
8

F12k, y = ± 1
144

F12k

n an = −L2n + 2 Equation (6.5.8) Solutions

1 −1 x2 − xy − y2 = 1 x = εk
2

L2k ± 1
2

F2k, y = ±F2k

2 −5 x2 − 5xy − 5y2 = 1 x = εk
2

L4k ± 5
6

F4k, y = ± 1
3

F4k

3 −16 x2 − 16xy − 16y2 = 1 x = εk
2

L6k ± F6k, y = ± 1
8

F6k

4 −45 x2 − 45xy − 45y2 = 1 x = εk
2

L8k ± 15
14

F8k, y = ± 1
21

F8k

5 −121 x2 − 121xy − 121y2 = 1 x = εk
2

L10k ∓ 11
10

F10k, y = ± 1
55

F10k

6 −320 x2 − 320xy − 320y2 = 1 x = εk
2

L12k ∓ 10
9

F12k, y = ± 1
144

F12k

Next we will consider the “negative” equation of the type (6.5.8):

x2 + axy + ay2 = −1. (6.5.15)

Unlike the result in Theorem 6.5.4, there are only two values of a for which the
corresponding property holds.

Theorem 6.5.5. The solutions to the negative equation (6.5.15) are linear combi-
nations with rational coefficients of at most two Fibonacci and Lucas numbers if
and only if a = −1 or a = 5.

If a = −1, all of its integer solutions (xm, ym) are given by

xm =
εm

2
L2m+1 ±

1

2
F2m+1, ym = ±F2m+1, m ≥ 0. (6.5.16)

If a = 5, all integer solutions (xm, ym) are

xm =
εm

2
L2m+1 ∓ 5F2m+1, ym = ±F2m+1, m ≥ 0. (6.5.17)

The signs + and − depend on m and correspond, while εm = ±1.
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Proof. As in the proof of Theorem 6.5.4 the equation is equivalent to

(2x + ay)2 − (a2 − 4a)y2 = −4.

Suppose that this negative special Pell’s equation is solvable. Its solution (xm, ym)
is representable in terms of Fibonacci and Lucas numbers as a linear combination
with rational coefficients only if a2 − 4a = 5s2. As in the proof of Theorem 6.5.4
we obtain an = ±L2n + 2 and sn = ±F2n, n ≥ 1.

The equation (2x + ay)2 − (a2 − 4a)y2 = −4 becomes

(2x + ay)2 − 5(sny)2 = −4,

whose integer solutions are 2xm + aym = εmL2m+1 and snym = ±F2m+1. It
follows that

ym = ±F2m+1

F2n
, m ≥ 1.

If n ≥ 2, then F2n ≥ 2, and since 2n does not divide 2m + 1, it follows that
F2n does not divide F2m+1 (see [21, pp. 180] and [90, pp. 39]), hence ym is not an
integer.

Thus n = 1 and so a = ±L2 + 2, i.e., a = −1 or a = 5.
For a = −1, it follows ym = ±F2m+1 and 2xm − ym = εmL2m+1, and we obtain

solutions (6.5.16).
If a = 5, then ym = ±F2m+1 and 2xm + 5ym = εmL2m+1, yielding the solutions

(6.5.17). ��
Remark. On the other hand, it is more or less known Zeckendorf’s theorem in
[230], which states that every positive integer can be represented uniquely as the
sum of one or more distinct Fibonacci numbers in such a way that the sum does
not include two consecutive Fibonacci numbers. Such a sum is called Zeckendorf
representation and it is related to the Fibonacci coding of a positive integer. Our
results are completely different, because the number of terms is reduced to at most
two, and the sum in the representation of solutions is a linear combination with
rational coefficients.



Chapter 7
Other Applications

7.1 When Are an + b and cn + d Simultaneously
Perfect Squares?

In [122] and [123] it is proven that there are infinitely many positive integers n such
that 2n + 1 and 3n + 1 are both perfect squares. The proof relies on the theory of
general Pell’s equations.

In what follows we will present an extension of this result, based on our papers
[13] and [14]. The main result is also cited in [41, Problem 1.13]. Recall that in
Theorem 4.5.2 we proved that if a, c are relatively prime positive integers, not both
perfect squares, and if b, d are integers, then the Diophantine equation

ax2 − cy2 = ad − bc

is solvable if and only if an + b and cn + d are simultaneously perfect squares for
some positive integer n. In this case, the number of such n’s is infinite. If (xm, ym)m≥0

are solutions to ax2 − by2 = ad − bc (see Theorem 4.5.1), then for all nmm m ≥ 0,
where

nm =
y2m − b

a
=

x2m − d
c

,

anm + b and cnm + d are simultaneously perfect squares (see Theorem 4.5.2).
From the previous formulas, we see that the least positive n0 for which an0 + b

and cn0 + d are simultaneously perfect squares is

n0 =
x20 − d

c
=

y20 − b
a

,

where (x0, y0) is the minimal solution to the equation ax2 − cy2 = ad − bc.
The main result in this section is the following:

© Springer Science+Business Media New York 2015
T. Andreescu, D. Andrica, Quadratic Diophantine Equations,
Developments in Mathematics 40, DOI 10.1007/978-0-387-54109-9_7
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Theorem 7.1.1. Let a, c be relatively prime positive integers, not simultaneously
perfect squares and let b, d be integers. Each of the following conditions is sufficient
for the numbers an + b and cn + d to be both perfect squares for infinitely many
positive integers n:

1) b and d are perfect squares;
2) a + b and c + d are perfect squares;

3)
a
c
=

b − 1

d − 1
.

Proof. Conditions 1) and 2) state that an + b and cn + d are simultaneously perfect
squares for n = 0 and n = 1, respectively. From Theorem 4.5.2 it follows that they
have this property for infinitely many positive integers n.

Condition 3) is equivalent to a − c = ad − bc, in which case the equation
ax2 − by2 = ad − bc has solution (1, 1) and the conclusion follows from the same
Theorem 4.5.2. ��
Applications

1) The numbers 2n + 3 and 5n + 6 are both perfect squares for infinitely many
positive integers n. Indeed, the equation 2x2 − 5y2 = −3 has solution (1, 1) and
the result follows from Theorem 4.5.2.

2) If k is an arbitrary positive integer different from 3, then n and (k2 − 4)n − 1
cannot be simultaneously perfect squares. Indeed, in Section 3.6 we saw that the
negative Pell’s equation x2 − (k2 − 4)y2 = −1 is not solvable (see also [199])
and the conclusion follows from Theorem 4.5.2.

3) If p and q are relatively prime positive integers and pq is not a perfect square,
then pn + 1 and qn + 1 are simultaneously perfect squares for infinitely many
positive integers n. This property follows from Theorem 7.1.1.1). For p = 2 and
q = 3 we obtain the result in [122]. For p = 3 and q = 4 we obtain Problem 8
in [25, p. 83].

If p = 1 and q = 3 we obtain the first part of the result in [40]. The second part
shows that if n1 < n2 < · · · < nk < . . . are all positive integers satisfying the
above property, then nknk+1+1 is also a perfect square, k = 1, 2, . . . . Indeed, the
equation is 3x2−y2 = 2, which is equivalent to the Pell’s equation u2−3v2 = 1,

where u =
1

2
(3x − y) and v =

1

2
(y − x). The general solution is (uk, vk)k≥1,

where uk + vk

√
3 = (2 +

√
3)k, k ≥ 1, hence

nk = x2k − 1 = (uk + vk)
2 − 1 =

1

6
[(2 +

√
3)2k+1 + (2−

√
3)2k+1 − 4].

We have

nknk+1 + 1 =

{
1

6
[(2 +

√
3)2k+2 + (2−

√
3)2k+2 − 8]

}2

, k ≥ 1.
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4) For any nonzero integers k and l, the numbers (k2 + 1)n + 2l and 2kn + l2 + 1
are simultaneously perfect squares for infinitely many positive integers n. This
follows from Theorem 7.1.1.2).

5) The following application appeared in [11] (see also [25, p. 82]). The smallest
positive integer m such that 19m + 1 and 95m + 1 are both perfect squares
is 134232. Indeed, setting 19m = n we are looking for the smallest n ≡ 0
(mod 19) such that n + 1 and 5n + 1 are simultaneously perfect square. In this
case, the equation is x2 − 5y2 = −4, whose general solution is given by

1

2
(xk + yk

√
5) =

(
1 +

√
5

2

)k

, k = 1, 3, 5, . . .

(see also Section 4.3.2). It follows that yk = F2k−1, k = 1, 2, . . . , and nk =
F2
2k−1 − 1. The smallest k for which nk ≡ 0 (mod 19) is k = 9, hence the

desired integers is m =
1

19
n9 = 134232.

7.2 Triangular Numbers

Let Tn =
n(n + 1)

2
denote the nth triangular number. In this section we will present

several situations when some properties related to these numbers reduce to solving
Pell-type equations.

7.2.1 Triangular Numbers with Special Properties

There are infinitely many positive integers n for which Tn is a perfect square. Indeed,

if Tn is a perfect square, then so is T4n(n+1), because
n(n + 1)

2
= k2 implies

T4n(n+1) = T8k2 = 4k2(8k2 + 1) = 4k2(4n2 + 4n + 1) = [2k(2n + 1)]2.

Taking into account that T1 = 12, by the above procedure, we generate a
sequence of perfect square triangular numbers. A formula for such integers n has
already been given in (5.4.8).
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It is natural to ask what are all triangular numbers that are perfect squares. We
have [15]:

Theorem 7.2.1. The triangular number Tx is a perfect square if and only if

x =

⎧⎪⎨
⎪⎩

2P2
m, m even[
(1 +

√
2)m + (1−

√
2)m

2

]2
, m odd

(7.2.1)

where (Pm)m≥0 is the Pell’s sequence.

Proof. The equation Tx = y2 is equivalent to (2x + 1)2 − 8y2 = 1. The Pell’s
equation u2 − 8v2 = 1 has solutions

um =
1

2
[(1 +

√
2)2m + (1−

√
2)2m]

and

vm =
1

2
√
2
[(1 +

√
2)2m − (1−

√
2)2m] = P2m

hence the conclusion. ��
Remarks. 1) Every other x satisfying Tx = y2 is a perfect square.
2) Every y satisfying Tx = y2 is a Pell number.
3) The equation Tx = (Ty)

2 is more difficult. It has only solutions (1, 1) and (8, 3).
A complicated proof was given by W. Ljunggren (see [150] for details).

4) Some extensions of the result in Theorem 7.2.1 are given in the paper [223].

Theorem 7.2.2. If k is a positive integer that is not a perfect square, then the
equation

kTx = Ty (7.2.2)

has infinitely many solutions in positive integers.

Proof. Equation (7.2.2) is equivalent to (2y+1)2−k(2x+1)2 = 1−k. Let (u1, v1)
be the fundamental positive integral solution of Pell’s equation u2 − kv2 = 1. If
u1 and v1 are of opposite parity, we obtain infinitely many (but not necessarily all)
positive integral solutions (x, y) by taking

2y + 1 + (2x + 1)
√

k = (1 +
√

k)(u1 + v1
√

k)j, j = 1, 2, 3, . . .

If u1 and v1 are both odd (which can occur only when k ≡ 0 (mod 8), we set

u + v
√

k = (u1 + v1
√

k)2,
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and since u1 is odd and v1 is even, we get infinitely many positive integral solutions
x, y by taking

2y + 1 + (2x + 1)
√

k = (1 +
√

k)(u + v
√

k)j, j = 1, 2, 3, . . .

This completes the proof of the theorem. ��
The equation (7.2.2) is also studied in [34].
It is interesting to see what is the asymptotic density of “composite” triangular

numbers among all triangular numbers. In [214] it is shown that this density is zero.
More specifically, if F(n) denotes the number of triples a, b, c such that

TaTb = Tc, 1 < a ≤ b < c ≤ n (7.2.3)

we will show that

F(n) < 4n3/4. (7.2.4)

Denote g(x) = A
√

x2 − d2 for x ≥ d, where A and d are given positive numbers.
Suppose h is a fixed positive number. Then

mh(x) =
1

2x
[g(x + h) + g(x − h)]

is an increasing function of x for x ≥ d + h.
Clearly,

mh(x) =
g(x + h)2 − g(x − h)2

2x{g(x + h)− g(x − h)} =
2A2h

g(x + h)− g(x − h)
.

Thus it suffices to show that g(x+ h)− g(x− h) is a decreasing function of x for
x ≥ d + h. But for x > d + h we have

g′(x + h)− g′(x − h) =
A(x + h)√

(x + h)2 − d2
− A(x − h)√

(x − h)2 − d2
< 0,

since the derivative of x(x2 − d2)−1/2 is −d2(x2 − d2)−3/2.
Because F(n) = 0 for n ≤ 7 we may assume n ≥ 8. For a given a with 1 <

a < n, let s(a, n) denote the number of pairs (b, c) satisfying (7.2.3). If b ≥ a >

21/4n1/2, clearly Tb ≥ Ta >
1

2
· 21/4n1/2(21/4n1/2 + 1) and, hence TaTb >

1

2
(n +

23/4).
Thus s(a, n) = 0 if a > 21/4n1/2, and so

F(n) =
[21/4n1/2]∑

a=2

s(a, n).
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Suppose that a and n are fixed and s(a, n) > 0. Set K = Ta. Then the equation
TaTb = tc is equivalent to K(b2 + b) = c2 + c or

K{(2b + 1)2 − 1} = (2c + 1)2 − 1.

Set u = 2b + 1, v = 2c + 1. Because v2 = (2c + 1)2 ≤ (2n + 1)2, we have

u2 =
v2 − 1

K
+ 1 ≤ 4n2 + 4n

K
+ 1 = 8

n(n + 1)

a(a + 1)
+ 1 < 8

n2

a2
+ 1 < 9

n2

a2
,

so

u < 3n/a. (7.2.5)

On the other hand, u = 2b + 1 ≥ 2a + 1 =
√
8K + 1 >

√
2K and

v2 = Ku2 − K + 1 > K{(2b + 1)2 − 1} ≥ K{(2a + 1)2 − 1} = 8K2,

hence

0 <
√

Ku − v =
K − 1√
Ku + v

<
K

2
√
2K + 2

√
2K

or

0 <
√

Ku − v < 1/(4
√
2). (7.2.6)

Now suppose (bi, ci), i = 1, 2, . . . , s are the solutions to KTb = Tc with a ≤ bj <
cj ≤ n and b1 < b2 < · · · < bs, where s = s(a, n). Set ui = 2bi +1 and vi = 2ci +1
for i = 1, 2, . . . , s. We claim that ui+1 − ui �= uj+1 − uj for 1 ≤ i < j ≤ s − 1.

Suppose to the contrary that ui+1 − ui = uj+1 − uj for some pair (i, j) with
1 ≤ i < j ≤ s − 1. From (7.2.6) we have

−1/(4
√
2) < (

√
Kui+1 − vi+1)− (

√
Kui − vi) < 1/(4

√
2),

so

√
K(ui+1 − ui)− (vi+1 − vi) = θi,

where |θi| < 1/(4
√
2). Similarly,

√
K(uj+1 − uj)− (vj+1 − vj) = θj,

where |θj| < 1/(4
√
2). Hence

vi+1 − vi + θi =
√

K(ui+1 − ui) =
√

K(uj+1 − uj) = vj+1 − vj + θj,

hence

[(vj+1 − vj)− (vi+1 − vi)] = |θi − θj| < 1/(2
√
2).
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Because the left-hand side is an integer, we have

vi+1 − vi = vj+1 − vj. (7.2.7)

On the other hand (ui, vi), (ui+1, vi+1), (uj, vj), (uj+1, vj+1) are points with positive
integral coordinates lying on the hyperbola y2 = Kx2 − (K − 1) and satisfying the
conditions ui+1 − ui = uj+1 − uj > 0, ui < uj. Further,

vi+1 − vi

vj+1 − vj
=

K(u2i+1 − u2i )/(vi+1 + vi)

K(u2j+1 − u2j )/(vj+1 + vj)
=

(vj+1 + vj)/(uj+1 + uj)

(vi+1 + vi)/(ui+1 + ui)
. (7.2.8)

Applying the monotonicity of function mh with 2h = ui+1 − ui = uj+1 − uj and
g(x) =

√
Kx2 − (K − 1), we find that

(vj+1 + vj)/(uj+1 + uj) > (vi+1 + vi)/(ui+1 + ui),

and then (7.2.8) gives vi+1 − vj > vj+1 − vj. But this contradicts (7.2.7) and so our
assumption that ui+1 − ui = uj+1 − uj is untenable.

Thus we have shown that the gaps u2 − u1, u3 − u2, . . . , us − us−1 are s − 1
different even positive integers. Hence,

us − u1 = (u2 − u1) + (u3 − u2) + · · ·+ (us − us−1)

≥ 2 + 4 + · · ·+ 2(s − 1) = s(s − 1).

Combining this with (7.2.5), we obtain

3n/a > us > us − u1 ≥ (s − 1)2,

so

s(a, n) < 1 +
√
3n/a.

Hence

F(n) =
[21/4n1/2]∑

a=2

s(a, n) <
[21/4n1/2]∑

a=2

(1 +
√

3n/a)

< 21/4n1/2 +
√
3n
∫ 21/4n1/2

1

t−1/2dt

<
√
3n
∫ 21/4n1/2

0

t−1/2dt < 4n3/4.

Thus (7.2.4) is proved. �
The following result was proven in [170].
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Theorem 7.2.3. The equation

Tm = TnTp (7.2.9)

is solvable for infinitely many triples (m, n, p), p ≥ 2, and unsolvable for infinitely
many triples (m, n, p).

Proof. For the first part, we choose p = 2. The equation (7.2.9) becomes Tm = 3Tn.
From Theorem 7.2.2 it follows that the last equation has infinitely many solutions.

For the second part, let m be an odd prime number. The equation (7.2.9) is
equivalent to

2m(m + 1) = n(n + 1)p(p + 1).

Without loss of generality, we may assume that m|n or m|n + 1, i.e., n = km or
n + 1 = km.

Since p(p + 1) ≥ 6, in the first case we obtain

2(m + 1) = k(km + 1)p(p + 1) ≥ 6(m + 1),

a contradiction. In the second case, when n = km − 1, we have

2(m + 1) = (km − 1)kp(p + 1) ≥ 6(m − 1)

which is a contradiction, as well. It follows that equation (7.2.9) is not solvable. ��

7.2.2 Rational Numbers Representable as
Tm

Tn

The following results have been proven in [170]. The proof of the first result is based
on some results contained in our papers [13] and [14].

Theorem 7.2.4. If r is a positive rational number and
√

r is irrational, then there
exist positive integers m, n such that

r =
Tm

Tn
. (7.2.10)

Proof. Let r =
p
q

, where p, q are relatively prime positive integers. Then (7.2.10) is

equivalent to
m(m + 1)

n(n + 1)
=

p
q

, i.e.,
(2m + 1)2 − 1

(2n + 1)2 − 1
=

p
q

. Letting 2m + 1 = x and

2n + 1 = y yields

qx2 − py2 = q − p. (7.2.11)

The irrationality of
√

r implies that pq is not a perfect square.
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Since (7.2.11) is solvable (it has solution x = y = 1), from Theorem 4.5.1 it
follows that it has infinitely many solutions.

If (uk, vk)k≥0 is the general solution to the Pell’s equation u2 − pqv2 = 1, then
uk + vk

√
pq = (u0 + v0

√
pq)k, k ≥ 1. It follows that u1 = u20 + pqv20 , v1 = 2u0v0.

From Theorem 4.5.1, (Xk,Yk)k≥0, where Xk = uk + pvk, Yk = uk + qvk, are
solutions to the equation (7.2.11). Since u21 − pqv21 = 1 and v1 is even, it follows

that u1 is odd. Hence X1 and Y1 are both odd and we can choose m =
1

2
(X1 − 1)

and n =
1

2
(Y1 − 1). ��

Theorem 7.2.5. Among the positive rational numbers r for which
√

r is rational,
infinitely many are representable in the form (7.2.10) and infinitely many are not.

Proof. Let p be an odd integer and let r = (2p)2. Choosing m = p2 − 1 and

n =
p − 1

2
, we obtain r =

Tm

Tn
.

If p is an odd prime, we will prove that r =

(
p + 1

p − 1

)2

is not of the form (7.2.10).

Indeed r =
Tm

Tn
would imply

m(m + 1)

n(n + 1)
=

(p + 1)2

(p − 1)2
. Setting 2m + 1 = x and

2n+1 = y, we have
x2 − 1

y2 − 1
=

(p + 1)2

(p − 1)2
, x, y ≥ 3. The last equality is equivalent to

(
p − 1

2
x − p + 1

2
y

)(
p − 1

2
x +

p + 1

2
y

)
= −p

and so

p − 1

2
x − p + 1

2
y = −1 and

p − 1

2
x +

p + 1

2
y = p,

which yields x = 1 and y = 1, a contradiction. ��

7.2.3 When Is
Tm

Tn
a Perfect Square?

In this subsection we are interested in finding all pairs (m, n) for which the ratio of
triangular numbers Tm and Tn is the square of an integer.

In [140] it is shown that pairs (4n(n + 1), n), n ≥ 1, satisfy the above property.
In the recent paper [101] all pairs (m, n) are determined by using a suitable Pell’s
equation.
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The relation
Tm

Tn
= q2 is equivalent to

(2m + 1)2 − 1

(2n + 1)2 − 1
= q2.

Using now the result and notation in Remark 5), subsection 5.6.2, we obtain

2mk + 1 = xk, qk = zk, k ≥ 0. It follows that mk =
xk − 1

2
, qk = zk, where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk =
1

2

[(
2n + 1 + 2

√
n(n + 1)

)k
+
(
2n + 1− 2

√
n(n + 1)

)k
]

zk =
1

4
√

n(n + 1)

[(
2n + 1 + 2

√
n(n + 1)

)k
−
(
2n + 1− 2

√
n(n + 1)

)k
]

k ≥ 0.
It is clear that xk is odd for all k, hence all such pairs (m, n) are given by

(mk, n)k≥0, where n is an arbitrary positive integer.

7.3 Polygonal Numbers

The kth polygonal number of order n (or the kth n-gonal number) Pn
k is given by the

equation

Pn
k =

k
2
[(n − 2)(k − 1) + 2].

Diophantus (c. 250 A.D.) noted that if the arithmetic progression with first term
1 and common difference n − 2 is considered, then the sum of the first k terms
is Pn

k . The usual geometric realization, from which the name derives, is obtained
by considering regular polygons with n sides sharing a common angle and having
points at equal distances along each side with the total number of points being Pn

k .
The first forty pages of Dickson’s History of Number Theory, Vol. II, are devoted

to results on polygonal numbers.
In [201] it is shown that there are infinitely many triangular numbers which at

the same time can be written as the sum, the difference, and the product of other
triangular numbers. It is easy to show that 4(m2 + 1)2 is the sum, difference,
and product of squares. Since then, several authors have proved similar results for
sums and differences of other polygonal numbers. In [85] are considered pentagonal
numbers, in [162] and [163] are considered hexagonal and septagonal numbers, and
in [6] it is proved that for any n infinitely many n-gonal numbers can be written
as the sum and difference of other n-gonal numbers. Although [85] gives several
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examples of pentagonal numbers written as the product of two other pentagonal
numbers, the existence of an infinite class was left in doubt.

In this section we show that for every n there are infinitely many n-gonal numbers
that can be written as the product of two other n-gonal numbers, and in fact show
how to generate infinitely many such products. We suspect that our method does
not generate all of the solutions for every n, but we have not tried to prove this.
Moreover, except for n = 3 and 4, it is still not known whether there are infinitely
many n-gonal numbers which at the same time can be written as the sum, difference,
and product of n-gonal numbers.

Our proof uses the theory of the Pell equation. We also use a result on the
existence of infinitely many solutions of a Pell equation satisfying a congruence
condition, given that one solution exists satisfying the congruence condition. Next
we note some facts about the Pell equation and prove this latter result. Then we
prove the theorem on products of polygonal numbers.

In what follows, Z+ denotes the set of positive integers and (a, b) ≡ (c, d)
(mod m) means that a ≡ c and b ≡ d (mod m).

Theorem 7.3.1. If D ∈ Z+ is not a square, then for any m ∈ Z+ there are infinitely
many integral solutions to the Pell’s equation u2 − Dv2 = 1, with (u, v) ≡ (1, 0)
(mod m).

Proof. Suppose (u1, v1) is the fundamental solution to Pell’s equation

u2 − Dv2 = 1

and that (uj, vj)j≥1 is the general solution given by

uj + vj

√
D = (u1 + v1

√
D)j, j ≥ 1.

Since there are only m2 distinct ordered pairs of integers modulo m, there must
be j, l ∈ Z+ such that (uj, vj) ≡ (ul, vl) (mod m). We notice that, for any k ≥ 2,

uk + vk

√
D = (u1 + v1

√
D)(uk−1 + vk−1

√
D)

so

uk = u1uk−1 + Dv1vk−1 and vk = v1uk−1 + u1vk−1

(see also Section 3.2).
Applying these equations to the above congruence, we deduce

u1uj−1 + Dv1vj−1 ≡ u1ul−1 + Dv1vl−1 (mod m) and
v1uj−1 + u1vj−1 ≡ v1ul−1 + u1vl−1 (mod m).

(7.3.1)
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From (7.3.1) it follows (u21 − Dv21)vj−1 ≡ (u21 − Dv21)vl−1 (mod m). Since
u21 − Dv21 = 1, we obtain vj−1 ≡ vl−1 (mod m).

Similarly, from (7.3.1) we obtain uj−1 ≡ vl−1 (mod m), so (uj−1, vj−1) ≡
(ul−1, vl−1) (mod m).

We can conclude that for i = |j − l|, (1, 0) = (u0, v0) ≡ (usi, vsi) (mod m), for
any i ∈ Z+. ��
Theorem 7.3.2. If a, b,m,D ∈ Z+, D is not a square, and the general Pell’s
equation u2 − Dv2 = M has a solution (u∗, v∗) with (u∗, v∗) ≡ (a, b) (mod m),
then it has infinitely many solutions (u∗k , v

∗
k )k≥1 such that (u∗k , v

∗
k ) ≡ (a, b)

(mod m).

Proof. Let (uk, vk)k≥1 be the solutions to the Pell’s equation u2 − Dv2 = 1,
guaranteed by Theorem 7.3.1, i.e., (uk, vk) ≡ (1, 0) (mod m). Then the solution
(u∗k , v

∗
k )k≥1 to the general Pell’s equation obtained from these solutions are such

that

u∗k = u∗uk + Dv∗vk ≡ a · 1 + Db · 0 ≡ a (mod m)

and

v∗k = v∗uk + u∗vk ≡ b · 1 + a · 0 ≡ b (mod m), k ≥ 1

(see also Section 4.1). ��
The following Corollary follows by taking m in Theorem 7.3.2 to be the least

common multiple of m1 and m2.

Corollary 7.3.3. If a, b,m1,m2,D ∈ Z+, D is not a square, and a2 − Db2 = M,
then there are infinitely many solutions to the general Pell’s equation u2−Dv2 = M
with u ≡ a (mod m1) and v ≡ b (mod m2).

Next we show that any nonsquare n-gonal number is infinitely often the quotient
of two n-gonal numbers (see [68]). The theorem that n-gonal products are infinitely
often n-gonal and a remark on the solvability of a related equation follow.

Theorem 7.3.4. If the n-gonal number P = Ps is not a square, then there exist
infinitely many distinct pairs (Px,Py) of n-gonal numbers such that

Px = PsPy. (7.3.2)

Proof. Recalling that Px =
x
2
[(n − 2)(x − 1) + 1] and setting n − 2 = r, equation

(7.3.2) becomes

rx2 − (r − 2)x = P[ry2 − (r − 2)y].
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Multiplying by 4r to complete the square gives

(2rx − (r − 2))2 − (r − 2)2 = P[(2ry − (r − 2))2 − (r − 2)2].

Setting

u = 2rx − (r − 2), v = 2ry − (r − 2) (7.3.3)

we get the general Pell’s equation

u2 − Pv2 = M, (7.3.4)

with M = (r − 2)2 − P(r − 2)2.
Thus, in order to ensure infinitely many solution (x, y) to (7.3.2), it suffices to

have infinitely many solutions (u, v) to (7.3.4) for which the pair (x, y) obtained
from (7.3.3) is integral. Put another way, it suffices to show the existence of infinitely
many solutions (u∗, v∗) to (7.3.4) for which the congruence

(u∗, v∗) ≡ (−(r − 2),−(r − 2)) ≡ (r + 2, r + 2) (mod 2r)

holds.
But notice that, since P1 = 1, a particular solution of (7.3.2) is x = s, y = 1, and

these values of x and y give u = (2s− 1)r +2, v = r +2, as a particular solution of
(7.3.4). Thus, we have a solution (u∗, v∗) of (7.3.4) with (u∗, v∗) ≡ (r + 2, r + 2)
(mod 2r). Theorem 7.3.2 guarantees the infinitely many solutions we are seeking.

��
Our final result is now a straightforward corollary.

Theorem 7.3.5. For any n ≥ 3, there are infinitely many n-gonal numbers which
can be written as a product of two other n-gonal numbers.

Proof. The case n = 4 is trivial. By Theorem 7.3.4, we need only show that Ps is
not a square for some s. But for n �= 4, at least one of P2 = n and P9 = 9(4n − 7)
is not a square. ��
Remarks. 1) Trying to prove that

Pk =
k
2
[(n − 2)(k − 1) + 2] = PxPy

infinitely often by setting Px = k and

Py =
1

2
[(n − 2)(Px − 1) + 2]
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and solving the corresponding Pell’s equation that results works if n �= 2t2 + 2,
and thus, for these values of n, there are infinitely many solutions to the equation
Pp = PxPy.

2) There are 51 solutions of P3
x = P3

s P3
y with P3

x < 106. There are 43 solutions of
Pn

x = Pn
s Pn

y with 5 ≤ n ≤ 36 and Pn
x < 106. For 36 < n ≤ 720, there are no

solutions with Pn
x < 106.

3) In [107] are considered the simultaneous equations Pn
x = Pm

y = Pq
z , where

m, n, q, x, y, z are positive integers. By reducing these to systems of simultaneous
Pell equations, one can show that if (m, n, q) is not a permutation of (3, 6, k) (for
k > 3), then all solutions of the above system of equations have max{x, y, z} < c,
where c is an effectively computable constant depending only on m, n and q. In
fact, the remaining case may also be easily analyzed, upon noting the reduction to

Z2 − jX2 = (j − 1)(j − 4),

if we take (m, n, q) = (3, 6, j + 2). If j is a square, this equation has at most
finitely many solutions, while, if j > 1 is not a square, it has infinitely many,
corresponding to classes of the given Pell’s equation, upon noting that (Z,X) =
(j − 2, 1) gives one such solution.

7.4 Powerful Numbers

Define a positive integer r to be a powerful number if p2 divides r whenever the
prime p divides r. The following list contains all powerful numbers between 1 and
1000: 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144,
169, 196, 200, 216, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 432, 441, 484,
500, 512, 529, 576, 625, 648, 675, 676, 729, 784, 800, 841, 864, 900, 961, 968, 972,
1000. Let k(x) denote the number of powerful numbers not exceeding x. Following
[77] we show that

lim
x→∞

k(x)√
x

= c,

with the constant c =
ζ(3/2)

ζ(3)
, where ζ is the well-known Riemann zeta function.

We also prove that there are infinitely many pairs of consecutive powerful integers,
such as 8, 9 and 288, 289. We conclude with some results and conjectures
concerning the gaps between powerful numbers.
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7.4.1 The Density of Powerful Numbers

Let

F(s) =
∏

p

(1 + p−2s + p−3s + . . . ) =
∏

p

(
1 +

1

ps(ps − 1)

)
(7.4.1)

where the products are extended over all primes p. It is evident that

F(s) =
∑
r∈K

r−s, (7.4.2)

where K is the set of powerful numbers. Then, the sum of the reciprocals of the
powerful numbers,

F(1) =
∑
r∈K

1

r
=
∏

p

(
1 +

1

p(p − 1)

)
, (7.4.3)

To estimate k(x), the number of powerful numbers up to x, we observe first that
k(x) � [

√
x], since every perfect square is powerful. Next, we observe that every

powerful number r can be represented as a perfect square n2 (including the case
n = 1) times a perfect cube m3 (including m = 1), and that this representation is
unique if we require m to be square-free. That is, we set m equal to the product of
those primes having odd exponents in the canonical factorization of r into powers
of distinct primes, and the representation r = n2m3 is then unique.

Thus,

k(x) = #(n2m2 � x, μ(m) �= 0) =
∞∑

m=1

μ2(m)

[( x
m3

)1/2]
∼ cx1/2, x → ∞,

(7.4.4)
where

∞∑
m=1

μ2(m)m−3/2 < ζ(3/2) < ∞. (7.4.5)

Explicitly,

c =
∏

p

(1 + p−3/2) =
∏

p

(1− p−3)/(1− p−3/2) = ζ(3/2)ζ(3), (7.4.6)

where ζ(s) is the Riemann zeta function (see [213]). This evaluation of c comes
from setting s = 3/2 in the identity

is seen to be convergent (see [136–138] for the theory of convergent series).



184 7 Other Applications

∑
m=1

μ2(m)

ms
=
∏

p

(
1 +

1

ps

)

=
∏

p

1− p−2s

1− p−s

=
∏

p

(1− p−2s)
/∏

p

(1− p−s)

= ζ(s)/ζ(2s) (7.4.7)

for all Re(s) > 1, where ζ(s) =
∞∑

n=1

n−s =
∏

p

(1− p−s)−1 for Re(s) > 1.

For purposes of estimation, we have the inequalities

cx1/2 � k(x) � cx1/2 − 3x1/3 for x � 1, (7.4.8)

because cx1/2 =

∞∑
m=1

μ2(m)(x/m3)1/2 �
∞∑

m=1

μ2(m)[(x/m3)1/2] = k(x), and

cx1/2 − k(x) =
∞∑

m=1

|μ(m)|
{( x

m3

)1/2
−
[( x

m3

)1/2]}

�
[x1/3]−1∑

m=1

|μ(m)| · 1 +
∞∑

m=[x1/3]

|μ(m)|
( x

m3

)1/2

� ([x1/3]− 1) +

(
1 +

√
x
∫ ∞

[x1/3]
u−3/2du

)

� x1/3 + 2x1/2x−1/6 = 3x1/3.

Numerically, c = 2 · 173 . . .
We have the further identities:

F(s) =
∑
r∈K

(1/rs)

=

∞∑
n=1

n−2s
∞∑

m=1

μ2(m)m−2s

=

∞∑
i=1

t−2s
∑
m|t

|μ(m)|/ms
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=

∞∑
t=1

t−2s
∏
p|t

(1 + p−s), (7.4.9)

where we used the substitution t = mn;

F(s) =
∞∑

n=1

n−2s
∞∑

m=1

μ2(m)m−2s = ζ(2s)ζ(3s)/ζ(6s), (7.4.10)

and

F(1) = ζ(2)ζ(3)/ζ(6) =

∞∑
i=1

Ψ(t)/t3, (7.4.11)

where

Ψ(t) = t
∏
p|t

(
1 +

1

p

)
, (7.4.12)

by setting s = 1 in the previous identities (7.4.9) and (7.4.10).
Since ζ(2) = π2/6 and ζ(6) = π6/945, we observe

F(1) =
315

2π4
ζ(3). (7.4.13)

7.4.2 Consecutive Powerful Numbers

Four consecutive integers cannot all be powerful, since one of them is twice an odd
number. No example of three consecutive powerful numbers is known, unless one
is willing to accept -1, 0, 1. If such an example exists, it must be of the form

4k − 1, 4k, 4k + 1.

No case of 4k − 1 and 4k + 1 both being powerful is known. In fact, the only
known example of consecutive odd numbers 2k− 1 and 2k+1 both being powerful
is 2k − 1 = 25, 2k + 1 = 27.

There are two infinite families of examples where two consecutive integers are
powerful which correspond to the solutions of the Pell equations x2 − 2y2 = 1 and
x2 − 2y2 = −1.

Let x1, y1 satisfy x21 − 2y21 = ±1. Then 8x21y21 = A and (x21 + 2y21)
2 = B

are consecutive powerful numbers. The following table gives several examples of
consecutive powerful numbers from solutions of the equations x2 − 2y2 = ±1.
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x y A B
1 1 8 = 23 9 = 32

3 2 288 = 25 · 32 289 = 172

7 5 9800 = 23 · 52 · 72 9801 = 34 · 112
17 12 332928 = 25 · 32 · 172 332929 = 5772√
B0

√
A0/2 4A0B0 4A0B0 + 1

If A and B = A + 1 are consecutive powerful numbers, and if B is a perfect
square, B = u2, then A = (u − 1)(u + 1). If u is even, then (u − 1, u + 1) = 1,
and both u − 1 and u + 1 are odd powerful numbers. As already remarked, the only
known instance of this occurrence is u− 1 = 25, u+1 = 27, leading to the isolated
example A = 675 = 33 · 52, B = 676 = 22 · 132. If u is odd, then (u − 1)/2 and
(u + 1)/2 are consecutive integers, with ((u − 1)/2, (u + 1)/2) = 1. For u2 − 1 to
be powerful, (u − 1)/2 and (u + 1)/2 must be a powerful odd number and twice
a powerful number, in either order. The two Pell equations produce examples in
both orders. However, an example satisfying neither of these Pell equations is also
known, with (u − 1)/2 = 242 = 2 · 112 and (u + 1)/2 = 243 = 35. This leads to
A = 235.224 = 23 · 35 · 112 and B = 235.225 = 52 · 972.

Whenever A and B are consecutive powerful numbers, so too are A′ = 4AB and
B′ = 4AB+1 = (2A+1)2. The solution x0 = 1, y0 = 1, of x2−2y2 = −1 generates
all solutions of the Pell equations x2 − 2y2 = ±1, in the sense that xn + yn

√
2 =

(x0 + y0
√
2)n yields the complete set of solutions (xn, yn) such that x2n − 2y2n = ±1.

Note that the consecutive powerful numbers A = 675, B = 676, come from the
solution x = 26, y = 15, of the Pell equation x2 − 3y2 = 1, with A = 3y2 and
B = x2. Similarly, the example A = 235.224, B = 235.225 of consecutive powerful
numbers arises from the Pell equation x2 − 6y2 = 1 with x = 485, y = 198. More
generally, any solution (x1, y1) of the Pell equation x2 − dy2 = ±1, with the extra
condition that d|y21, leads to an infinite family of consecutive powerful numbers,
starting with A1 = x21, B1 = dy21 = A1 ± 1, and continuing with An = x2n , Bn = dy2n ,
where (xn, yn) are obtained from the computation (x1 +

√
dy1)n = xn +

√
dyn.

Conversely, whenever we have two consecutive powerful integers, if one of them
is a perfect square x2, we can write the other in the form n2m3 = my2, with m
square-free, and we have a solution to the Pell equation x2 − my2 = ±1.

In all cases given thus far consecutive powerful numbers, the larger number is a
perfect square. However, the Pell equation x2−5y2 = −1 with 5|y leads to infinitely
many powerful numbers x2 + 1 = 5y2, such as x2 = (682)2 = 465124; 5y2 =
5(305)2 = 53 · 612 = 465125.

One example consisting of two consecutive powerful numbers where neither is a
perfect square is given by A = 233 = 12167 and B = 23 · 32 · 132 = 12168. An
interesting method based on the equation ax2−by2 = 1 to generate such consecutive
powerful numbers is presented in the paper [220]. For instance, in this paper is found
A = 7(2637362)2 = 48689748233308 and B = 3(4028637)2 = 48689748233307.
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7.4.3 Gaps Between Powerful Numbers

The set K of powerful numbers is closed under multiplication. Since there are
infinitely many pairs of powerful numbers which differ by 1, there are infinitely
many pairs of powerful numbers differing by r, for any r ∈ K.

Every positive integer not of the form 2(2b + 1) is difference of two powerful
numbers in at least one way (specifically, as a difference of two perfect squares). For
numbers of the form 2(2b + 1), b � 0, such representations may also exist. Thus:

2 = 33 − 52 30 = 832 − 193

6 =? 34 =?

10 = 133 − 37 38 = 372 − 113

14 =? 42 =?

18 = 192 − 73 = 32(33 − 52) 46 = 172 − 35

22 = 72 − 33 = 472 − 37 50 = 52(33 − 52)

26 = 33 − 12 = 72 · 35 − 1092 54 = 34 − 33 = 33(33 − 52) = 73 − 172.

If u and v are both powerful numbers, (u, v) = 1, and a = u − v, we say that a
has a proper representation as a difference of powerful numbers. We observe that

2b + 1 = (b + 1)2 − b2

8c = (2c + 1)2 − (2c − 1)2

so that all odd numbers, as well as all multiples of 8, have proper representations.
Among the numbers 2(2b + 1), b = 0, 1, . . . , 13 for which representations were
found, there were proper representations included in every case except 2(2b+1) =
50. Finally, for numbers 4(2b + 1), b = 0, 1, . . . , 12, we observe the following
proper representations:

4 = 53 − 112 60 =?

12 = 472 − 133 68 = 33 · 54 − 75

20 =? 76 = 53 − 72

28 =? 84 =?

36 =? 92 =?

44 = 53 − 34 = 132 − 53 100 = 73 − 35

52 =?

It is interesting that if u and v = u+4 are both powerful, then so too are u′ = uv
and v′ = u′ + 4 = (u + 2)2. Thus, from the example 4 = 53 − 112, an infinite
number of proper representations of 4 are obtainable. It would be interesting to
determine whether or not any numbers other than 1 and 4 have infinitely many
proper representations.
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Among the powerful numbers which are not perfect squares, the smallest
difference known to occur infinitely often is 4. Specifically, the equation 3x2−2y2 =
1 has infinitely many solutions for which 3|x, such as x = 9, y = 11. For any
such solution, we have 12x2 − 8y2 = 4, where 12x2 and 8y2 are both powerful,
and neither is a square. The only known instances where the difference between
nonsquare powerful numbers is less than 4 are: 27 − 53 = 3, and (as previously
mentioned) 23 · 32 · 132 − 233 = 1.

It has been conjectured that 6 cannot be represented in any way as a difference
between two powerful numbers. It is further conjectured that there are infinitely
many numbers which cannot be so represented. Other interesting properties and
open problems concerning powerful numbers are mentioned in [141].

7.5 The Diophantine Face of a Problem Involving
Matrices in M2(Z)

Let R be a ring with identity. An element a ∈ R is called unit-regular if a = bub
with b ∈ R and a unit u in R, clean if a = e+u with an idempotent e and a unit u, and
nil-clean if a = e + n with an idempotent e and a nilpotent n. A ring is unit-regular
(or clean, or nil-clean) if all its elements are so. In [48], it was proved that every
unit-regular ring is clean. However, in [103], it was noticed that this implication,
for elements, fails. In the paper, plenty of unit-regular elements which are not clean

are found among 2× 2 matrices of the type

[
a b
0 0

]
with integer entries.

While it is easy to prove that any nil-clean ring is also a clean ring, the question
whether nil-clean elements are clean, was left open (see [63] and restated in [64])
for some 7 years. In this section, following the paper [29], we answer in the negative
this question.

7.5.1 Nil-Clean Matrices in M2(Z)

As this was done (in a special case) in [103], we investigate elements in the 2 × 2
matrix ring M2(Z). Since Z and direct sums of Z are not clean (not even exchange
rings), it makes sense to look for elements which are not clean in this matrix ring.

We first recall some elementary facts.
Let R be an integral domain and A ∈ Mn(R). Then A is a zero divisor if and only

if detA = 0. Therefore idempotents (excepting the identity matrix) and nilpotents
have zero determinant.

For A ∈ Mn(R), rk(A) < n if and only if detA is a zero divisor in R. A matrix
A is a unit in Mn(R) if and only if detA ∈ U(R). Thus, the units in M2(Z) are the
2× 2 matrices of det = ±1.
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Lemma 7.5.1. Nontrivial idempotents in M2(Z) are matrices

[
α+ 1 u
v −α

]

with α2 + α+ uv = 0.

Proof. One way follows by calculation. Conversely, notice that excepting I2, such
matrices are singular. Any nontrivial idempotent matrix in M2(Z) has rank 1. By
Cayley–Hamilton Theorem, E2 − tr(E)E + det(E)I2 = 0. Since det(E) = 0 and
E2 = E we obtain (1− tr(E)).E = 02 and so, since there are no zero divisors in Z,
tr(E) = 1. ��
Lemma 7.5.2. Nilpotents in M2(Z) are matrices

[
β x
y −β

]

with β2 + xy = 0.

Proof. One way follows by calculation. Conversely, just notice that nilpotent
matrices in M2(Z) have the characteristic polynomial t2 and so have trace and
determinant equal to zero. ��

Therefore the set of all the nil-clean matrices in M2(Z), which use a nontrivial
idempotent in their nil-clean decomposition, is

{[
α+ β + 1 u + x

v + y −α− β

]
|α, β, u, v, x, y ∈ Z, α2 + α+ uv = 0 = β2 + xy

}
.

Remarks. 1) Nil-clean matrices in M2(Z) which use a nontrivial idempotent, have
the trace equal to 1. Otherwise, this is 2 or 0.

2) Since only the absence of nonzero zero divisors is (essentially) used, the above
characterizations hold in any integral domain.

It is easy to discard the triangular case.

Proposition 7.5.3. Upper triangular nil-clean matrices, which are neither unipo-
tent nor nilpotent, are idempotent, and so (strongly) clean.

Proof. Such upper triangular idempotents are

[
α+ 1 u
0 −α

]
with

− det = α2 + α = 0,



190 7 Other Applications

so have α ∈ {−1, 0}, that is,

[
1 u
0 0

]
or

[
0 u
0 1

]
. Upper triangular nilpotents have

the form

[
0 x
0 0

]
, and so upper triangular nil-clean matrices have the form

[
1 u
0 0

]
or

[
0 u
0 1

]
. As noticed before, these are idempotent. ��

In the sequel we shall use the quadratic equation (3.1.1)

ax2 + bxy + cy2 + dx + ey + f = 0,

where a, b, c, d, e, f and are integers.
Denote D =: b2 − 4ac, g =: gcd(b2 − 4ac; 2ae − bd) and

Δ =: 4acf + bde − ae2 − cd2 − fb2.

Then the equation reduces to

−D
g

Y2 + gX2 + 4a
Δ

g
= 0

which (if D > 0) is a general Pell equation. Here

Y = 2ax + by + d and X =
D
g

y +
2ae − bd

g
.

Notice that this equation may be also written as −DY2 + X2 + 4aΔ = 0 replacing
X by gX (and so X = Dy + 2ae − bd).

7.5.2 The General Case

In order to find a nil-clean matrix in M2(Z) which is not clean, we need integers
α, β, u, v, x, y with α2 +α+ uv = 0 = β2 + xy, such that for every γ, s, t ∈ Z, with
γ2 + γ + st = 0, the determinant

det

[[
α+ β − γ u + x − s
v + y − t −α− β + γ

]]
=−(α+β− γ)2 − (u+ x− s)(v+ y− t) /∈{±1}.

That is, subtracting any idempotent

[
γ + 1 s

t −γ

]
from
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[
α+ 1 u
v −α

]
+

[
β x
y −β

]
,

the result should not be a unit in M2(Z).

Remark. Notice that above we have excepted the trivial idempotents. However, this
will not harm since, in finding a counterexample, we ask for the nil-clean example
not to be idempotent, nilpotent nor unit (and so not unipotent).

In the sequel, to simplify the writing, the following notations will be used: firstly,
m := 2α+2β+1 (m is odd and so nonzero) and n := (u+x)(v+y)+(α+β)2+1,
and secondly, r := α+ β and δ := r2 + r + (v + y)(u + x). Then

m = 2r + 1, n = (u + x)(v + y) + r2 + 1 = δ − r + 1.

This way an arbitrary nil-clean matrix which uses no trivial idempotents is now
written

C =

[
r + 1 u + x
v + y −r

]

and δ = − detC. To simplify the wording such nil-clean matrices will be called
nontrivial nil-clean.

Theorem 7.5.4. Let

C =

[
r + 1 u + x
v + y −r

]

be a nontrivial nil-clean matrix and let

E =

[
γ + 1 s

t −γ

]

be a nontrivial idempotent matrix. With above notations, C − E is invertible in
M2(Z) with det(C − E) = 1 if and only if

X2 − (1 + 4δ)Y2 = 4(v + y)2(2r + 1)2(δ2 + 2δ + 2)

with

X = (2r + 1)[−(1 + 4δ)t + (2δ + 3)(v + y)]

and

Y = 2(v + y)2s + (2r2 + 2r + 1 + 2δ)t − (2δ + 3)(v + y).
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Further, C − E is invertible in M2(Z) with det(C − E) = −1 if and only if

X2 − (1 + 4δ)Y2 = 4(v + y)2(2r + 1)2δ(δ − 2)

with

X = (2r + 1)[−(1 + 4δ)t + (2δ − 1)(v + y)]

and

Y = 2(v + y)2s + (2r2 + 2r + 1 + 2δ)t − (2δ − 1)(v + y).

Proof. For given α, β, u, v, x, y, det(C − E) = ±1 amounts to a general inhomo-
geneous equation of the second degree with two unknowns, which we reduce to a
canonical form, as mentioned in the previous section. Here are the details.

−γ2 − st − (α+ β)2 + 2(α+ β)γ + (v + y)s + (u + x)t − (u + x)(v + y)

= (2α+ 2β + 1)γ + (v + y)s + (u + x)t − (u + x)(v + y)− (α+ β)2 = ±1.

The case det = 1. Since

−mγ = (v+y)s+(u+x)t−(u+x)(v+y)−(α+β)2−1 = (v+y)s+(u+x)t−n,

we obtain from (−mγ)2 − m(−mγ) + m2st = 0, the equation

[(v + y)s+ (u + x)t− n]2 − m[(v + y)s+ (u + x)t− n] + m2st = 0,

or

(v + y)2s2 + [2(v + y)(u + x) + m2]st+ (u + x)2t2

−(m + 2n)(v + y)s− (m + 2n)(u + x)t+ (m + n)n = 0.

Thus, with the notations of the previous section

a = (v + y)2, b = [2(v + y)(u + x) + m2], c = (u + x)2

and

d = −(m + 2n)(v + y), e = −(m + 2n)(u + x), f = (m + n)n.

Further

D = [2(v + y)(u + x) + m2]2 − 4(v + y)2(u + x)2
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= m4 + 4m2(v + y)(u + x) = m2[m2 + 4(v + y)(u + x)],

2ae− bd = m2(m + 2n)(v + y) for g = gcd(D, 2ae − bd)

(notice that m2|g) and

Δ = 4acf + bde − ae2 − cd2 − fb2

= 4(v + y)2(u + x)2(m + n)n + [2(v + y)(u + x) + m2](m + 2n)2(v + y)(u + x)

−(v + y)2(m + 2n)2(u + x)2 − (u + x)2(m + 2n)2(v + y)2

−(m + n)n[2(v + y)(u + x) + m2]2

= m4[(v + y)(u + x)− (m + n)n].

The case det = −1. Formally exactly the same calculation, but n is slightly
modified: here

n′ = (u + x)(v + y) + (α+ β)2 − 1,

i.e., n′ := n − 2.
These equations reduce to the canonical form

gX2 − D
g

Y2 = −4a
Δ

g

with

D = m2[m2 + 4(v + y)(u + x)],

g = gcd(D,m2(m + 2n)(v + y)), a = (v + y)2

and

Δ = m4[(v + y)(u + x)− (m + n)n].

Since clearly g = m2g′, in the above equation we can replace D and Δ by
D
m2

and
Δ

m2
(and g = gcd(m2 + 4(v + y)(u + x); (m + 2n)(v + y))), that is D =

m2 + 4(v + y)(u + x) and Δ = m2[(v + y)(u + x)− (m + n)n].
Further, this amounts to g2X2 − DY2 = −4aΔ and so we can eliminate g (by

taking a new unknown: X′ = gX). Hence we reduce to the equation

X2 − [m2 + 4(v + y)(u + x)]Y2 = −4(v + y)2m2[(v + y)(u + x)− (m + n)n].
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which we can rewrite as

X2 − (1 + 4δ)Y2 = 4(v + y)2(2r + 1)2(δ2 + 2δ + 2).

Further, for det = −1, we obtain a similar equation replacing n by n − 2, i.e.,
n = δ − r − 1:

X2 − (1 + 4δ)Y2 = 4(v + y)2(2r + 1)2δ(δ − 2).

The linear systems in s and t corresponding to det = 1 and det = −1, are
respectively:

{
2(v + y)2s + (2r2 + 2r + 1 + 2δ)t − (2δ + 3)(v + y) = Y

(2r + 1)[−(1 + 4δ)t + (2δ + 3)(v + y)] = X

for det = 1
(here −(2r +1)γ = (v+ y)s+(u+ x)t − n = (v+ y)s+(u+ x)t − δ+ r − 1), and

{
2(v + y)2s + (2r2 + 2r + 1 + 2δ)t − (2δ − 1)(v + y) = Y

(2r + 1)[−(1 + 4δ)t + (2δ − 1)(v + y)] = X

for det = −1
(here −(2r+1)γ = (v+ y)s+(u+ x)t− n′ = (v+ y)s+(u+ x)t− δ+ r+1). ��

7.5.3 The Example

Since 1 + 4δ ≥ 1 if δ ≥ 0, in this case, from the general theory of Pell equations,
it is known that the equations emphasized in Theorem 7.5.4 have infinitely many
solutions, and so we cannot decide whether all the linear systems corresponding to
these equations have (or not) integer solutions. However, if δ ≤ −1, then 1+4δ < 0
and we have elliptic type of Pell equations, which clearly have only finitely many
integer solutions.

Take r = 2, δ = −57 and v+y = −7, u+x = 9, that is, the matrix we consider is

[
3 9

−7 −2

]
; 1 + 4δ = −227.

More precisely α = −1, β = 3, u = 0, v = −6, x = 9, and y = −1, i.e., the
nil-clean decomposition

[
3 9

−7 −2

]
=

[
0 0

−6 1

]
+

[
3 9

−1 −3

]
.
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The (elliptic) Pell equation which corresponds to a unit with det = 1 is X2 +
227Y2 = 15.371.300 with X = 3(227t + 777) (we shall not need Y).

Since X = 227(3t + 10) + 61 we deduce X2 = 227k + 89 for a suitable integer
k. However, since 15.371.300 = 67.715×227−5 from the Pell equation we obtain
X2 = 227l − 5 (for a suitable integer l) and so there are no integer solutions.

As for the equation which corresponds to det = −1, X2 + 227Y2 = 16.478.700
with X = 3(227t+805). Analogously, X = 227(3t+10)+145 and X2 = 227p+141
(for some integer p). Since from the Pell equation (16.478.700 = 72.593×227+89)
we obtain X2 = 227q+89 (for an integer q), and again we have no integer solutions.

7.5.4 How the Example Was Found

A deceptive good news is that both equations (in Theorem 7.5.4) are solvable (over
Z): the first equation admits the solutions

X = ±(v + y)(2r + 1)(2δ + 3) and Y = ±(v + y)(2r + 1),

and the second equation admits the solutions:

X = ±(v + y)(2r + 1)(2δ − 1) and Y = ±(v + y)(2r + 1).

Therefore, the main problem which remains with respect to the solvability of the
initial equations in s and t (γ is determined by s and t) is whether the linear systems
above (in s and t) also have solutions (over Z). Here is an analysis of this problem,
just for the solutions given above.

For a unit with det = 1 we have four solutions:
for +X = +(v + y)(2r + 1)(2δ + 3) we obtain t = 0.
Then for +Y = +(v + y)(2r + 1) we obtain

s = u + x +
r2 + 2r + 2

v + y
and γ = −1

and for −Y = −(v + y)(2r + 1) we obtain

s = u + x +
r2 + 1

v + y
and γ = 0.
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The corresponding clean decompositions are

[
r + 1 u + x
v + y −r

]
=

[
0 u + x + r2+2r+2

v+y

0 1

]
+

[
r + 1 − r2+2r+2

v+y

v + y −r − 1

]

=

[
1 u + x + r2+1

v+y

0 0

]
+

[
r − r2+1

v+y

v + y −r

]
.

Notice that r2 + 1 and r2 + 2r + 2 = (r + 1)2 + 1 are nonzero.
For −X = −(v + y)(2r + 1)(2δ + 3) we obtain

t = (v + y)(1 +
5

1 + 4δ
)

which is an integer if and only if 1 + 4δ divides 5(v + y). However, this has to be
continued with conditions on s.

For a unit with det = −1 we also have four solutions:
for +X = (v+ y)(2r +1)(2δ− 1) we obtain t = 0. Then for +Y = (v+ y)(2r +1)
we obtain

s = u + x +
r2 + 2r
v + y

and γ = −1

and for −Y = −(v + y)(2r + 1) we obtain

s = u + x +
r2 − 1

v + y
and γ = 0.

The corresponding clean decompositions are

[
r + 1 u + x
v + y −r

]
=

[
0 u + x + r2+2r

v+y

0 1

]
+

[
r + 1 − r2+2r

v+y

v + y −r − 1

]

=

[
1 u + x + r2−1

v+y

0 0

]
+

[
r − r2−1

v+y

v + y −r

]
.

Notice that r2 − 1 = 0 if and only if r ∈ {±1} and r2 + 2r = 0 if and only if
r ∈ {0, 2}.

For −X = −(v+y)(2r+1)(2δ−1) we obtain t = (v+y)

(
1 +

1

1 + 4δ

)
which

is an integer if and only if 1+4δ divides v+ y. Again, this has to be continued with
conditions on s.

Generally the relations α2+α+uv = 0 and β2+xy = 0, do not imply that v+y
divides any of r2 +1, r2 − 1, r2 +2r = (r +1)2 − 1 or r2 +2r +2 = (r +1)2 +1
(recall that r = α + β), nor that 1 + 4δ divides 5(v + y) (and so does not divide
v + y).
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Searching for a counterexample, we need integers α, β, u, v, x, y such that α2 +
α+uv = 0 = β2+ xy, and v+ y does not divide any of the numbers: r2+1, r2−1,
(r + 1)2 − 1 or (r + 1)2 + 1.

Further, 1 + 4δ should not divide 5(v + y) and, moreover, to cover the trivial
idempotents, we add two other conditions.

Since idempotents and units are clean in any ring, we must add:

det

[
r + 1 u + x
v + y −r

]
�= 0

(this way the nil-clean matrix is not idempotent, nor nilpotent) and

det

[
r + 1 u + x
v + y −r

]
�= ±1,

(it is not a unit, and so nor unipotent), that is δ /∈ {0,±1}.
Notice that if r ∈ {−2,−1, 0, 1}, then 0 appears among our two numbers (r2−1,

(r + 1)2 − 1) and the fraction is zero (i.e., an integer).
Since a matrix is nil-clean if and only if its transpose is nil-clean, we should have

symmetric conditions on the corners v+y and u+x, respectively. That is why, u+x
should not divide any of the numbers: r2 + 1, r2 − 1, (r + 1)2 − 1, or (r + 1)2 + 1,
and further, 1 + 4δ should not divide 5(u + x).

Further, we exclude clean decompositions which use an idempotent of type

[
0 0

k 1

]
.

In this case the unit (supposed with det = −1) should be

[
r + 1 u + x

(v + y)− k −r − 1

]

and if its determinant equals −1 then u + x divides r2 + r. Since idempotent,
nilpotent, unit and so nil-clean matrices have the same property when transposed, to
the conditions above we add u + x and v + y do not divide r2 + r.

By inspection, one can see that there are no selections of u + x and v + y
less than ±7 and ±9, at least for r ∈ {2, 3, . . . 10}, which satisfy all the above
nondivisibilities.

Therefore v + y = −7, u + x = 9 is some kind of minimal selection. In order
to keep numbers in the Pell equation as low as possible we choose r = 2 and so
δ = −57.

Indeed, our matrix verifies all these exclusion conditions: −7 and 9 do not divide
any of r2 ± 1 = 3, 5, (r + 1)2 ± 1 = 8, 10 nor r2 + r = 6; 1 + 4δ = −227 (prime
number) does not divide 5× (−7) = −35 nor 5× 9 = 45, and δ /∈ {0,±1}.
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Remark. We found this example in terms of r, δ, u + x, and v + y. It was not
obvious how to come back to the nil-clean decomposition, that is, to α, β, u, v, x,
and y (indeed, this reduces to another elliptic Pell equation!). However, the following
elementary argument showed more: there is only one solution, given by (u, v) =
(0,−6).

The system α+ β = 2, u + x = 9, v + y = −7, α2 + α+ uv = 0 = β2 + xy is
equivalent to (7u− 9v− 59)(7u− 9v− 54)+ 25uv = 0. Denote t = 7u− 9v− 59,

hence u =
1

7
(9v + t + 59). We obtain the equation

t(t + 5) + 25uv = 0.

Looking mod 5, it follows t = 5k, for some integer k. The equation simplifies to
k(k + 1) + uv = 0. That is

k(k + 1) +
1

7
(9v + 5k + 59)v = 0.

Considering the last equation as a quadratic equation in k, we have

7k2 + (5v + 7)k + 9v2 + 59v = 0.

The discriminant of the last equation is

Δ = (5v + 7)2 − 28(9v2 + 59v) = −227v2 − 1582v + 49.

In order to have integer solutions for our last equation it is necessary Δ ≥ 0 and Δ
to be a perfect square. The quadratic function

f (v) = −227v2 − 1582v + 49

has the symmetry axis of the equation vmax = − 1582

2 · 227 < 0, and f (1) < 0, hence

there are no integers v ≥ 1 such that f (v) ≥ 0.
On the other hand, we have f (−7) = 0, giving k = 2, hence t = 10. Replacing in

the equation (1) we obtain 6− 7u = 0, equation with no integer solution. Moreover,
we have f (v) < 0 for all v < −7.

From the above remark, it follows that all possible integer solutions for v are −6,
−5, −4, −3, −2, −1, 0. Checking all these possibilities we obtain f (−6) = 372 and
then k = −1. We get t = −5, and equation (1) becomes −6u = 0, hence u = 0.
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7.6 A Related Question

Since both unit-regular and nil-clean rings are clean, a natural question is whether
these two classes are somehow related. First Z3 (more generally, any domain with
at least 3 elements) is a unit-regular ring which is not nil-clean, and, Z4 (more
generally, any nil clean ring with nontrivial Jacobson radical) is nil-clean but not
unit-regular.

Finally, we give examples of nil-clean matrices in M2(Z) which are not unit-
regular, and unit-regular matrices which are not nil-clean.

Recall that the set of all the nontrivial nil-clean matrices in M2(Z) is

{[
α+ β + 1 u + x

v + y −α− β

]
|α, β, u, v, x, y ∈ Z, α2 + α+ uv = 0 = β2 + xy

}
,

and that the only nonzero unit-regular matrices with a zero second row are

[
a b
0 0

]
,

with (a, b) unimodular (i.e., a row whose entries generate the unit ideal) [see [103]).

Hence

[
2 1

0 0

]
is unit-regular but not nil-clean (nil-clean matrices have trace equal

to 2,1 or 0; in the first case

[
2 1

0 0

]
− I2 is not nilpotent). Conversely, first notice that

the nil-clean matrices with a zero second row are exactly the matrices

[
1 b
0 0

]
, b ∈ Z.

Being idempotent, these are also unit-regular (so not suitable).
However, consider the nil-clean matrix (with our notations α = β = v = x = 0,

u = 1, y = 2)

A =

[
1 1

2 0

]
.

Suppose A is unit-regular. Then, using an equivalent definition, A = EU with E =
E2 and U ∈ GL2(Z). Since detA = −2 �= ±1, A is not a unit and so E �= I2. Hence
detE = 0 and from detA = detE · detU, we obtain a contradiction.
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