
VI. Hyperminds

Dexter Jettster: . . . Those analysis droids only focus
on symbols. Huh! I should think that
you Jedi would have more respect
for the difference between knowl-
edge and. . . wisdom!

Obi-Wan Kenobi: Well, if droids could think there’d be
none of us here, would there?

From a dialog in the movie Star Wars
Episode II: The Attack of the Clones,
produced and directed by George Lu-
cas.

Is the mind just a computing device, or is it something more? This and
similar questions have prompted a number of thinkers and researchers
to propose various theories that aim to falsify the general belief that the
mind is actually a computing device. In this direction, one may argue that
computers are actually “mental prostheses or orthoses, not stand-alone
minds” [198]. Indeed, it is not an overstatement to say that computers
dully execute commands and deliver results that only a conscious mind
can interpret. Obviously, it is not an exaggeration to say that this naive
remark forms a basis for more rigorous arguments against computational-
ism, such as the Chinese room argument. Interestingly enough, cognitive
science (i.e., “the interdisciplinary study of mind and intelligence, embrac-
ing philosophy, psychology, artificial intelligence, neuroscience, linguistics,
and anthropology” [201]) began by assuming that the human mind is in-
deed a Turing machine. Because of its impact on modern thinking, any
voice against the kernel of cognitive science is faced with great skepticism.

This chapter is a short presentation of various attacks against compu-
tationalism. First, there is a presentation of various arguments based on
results from mathematical logic, such as Gödel’s incompleteness theorems.
Then we present a number of purely philosophical arguments against the
idea that the mind is a Turing machine. In addition, there is a more elab-
orate discussion of the Chinese room argument and related issues. Next,

85



86 Chapter 6–Hyperminds

there is a discussion of the mind from a neurobiological point of view, and
we conclude with a discussion of the cognitive aspects of the human mind.

6.1 Mathematics and the Mind

6.1.1 The Pure Gödelian Argument

John Lucas was probably the first to use Gödel’s famous incompleteness
results to attack computationalism.1 The essence of his argument [116] is
that since machines are “concrete instantiations of a formal system,” they
should not be able to prove a particular proposition that a mind can clearly
see to hold true. Thus, minds are not machines. It is rather interesting to
note that Paul Benacerraf examined Lucas’s argument and concluded that:
“If I am a Turing machine, then I am barred by my very nature from obey-
ing Socrates profound philosophic injunction: KNOW THYSELF” [13].
As a side effect, Benacerraf concluded [13] that

Psychology as we know it is therefore impossible. For, if we are
not at best Turing machines, then it is impossible, and if we are,
then there are certain things we cannot know about ourselves or
any others with the same output as ourselves. I won’t take sides.

Lucas’s argument was expounded by Roger Penrose in The Emperor’s
New Mind [150] and its sequel Shadows of the Mind [151]. In accordance
with Lucas, Penrose believes that minds are not machines, and in addition,
he believes that computers cannot simulate brain processes. The summary
of Penrose’s argument that follows is based on Searle’s summary that ap-
pears in Chapter 4 of [175]:

(i) Classically, the halting problem, which is a specific version of Gödel’s
incompleteness theorem, cannot be solved. Thus, this can be used to
show that our conscious behavior is not computable. In particular,
Penrose considers some nonstopping computational processes that
cannot be shown to be nonstopping by purely computational methods,
but at the same time we can see that the processes are nonstopping.

(ii) The operation of a neuron can be simulated by computer. Thus, the
behavior of neurons is computable. This implies that neurons cannot
be used to explain consciousness, since consciousness has noncom-
putable features.

1. Actually, as Lucas admits in the first page of [116], the purpose of his work was to attack
mechanism (i.e., the doctrine that all natural phenomena are explicable by material causes and
mechanical principles), which one might say is a forerunner of computationalism.
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(iii) A theory of consciousness should be based on noncomputable phe-
nomena that might take place at the level of microtubules in neurons.
But in order to understand these phenomena we need a new physics.

Although many thinkers and researchers are convinced that a computa-
tional model of the mind is extremely implausible, still they are not con-
vinced by Penrose’s argument. For instance, Solomon Feferman [61] shows
that there are flaws in Penrose’s argument. Interestingly enough, Penrose
was “happy to agree with all the technical criticisms and corrections that
Feferman refers to in his section discussing” his “treatment of the logical
facts” [153]. Feferman also points out that it is misleading to assume that
the equivalence between formal systems and Turing machines can be used
to derive a general methodology for proving theorems. After all, mathe-
maticians arrive at proofs “through a marvellous combination of heuristic
reasoning, insight and inspiration (building, of course, on prior knowledge
and experience)” [61]. Another attack on the Gödelian argument has been
put forth by Selmer Bringsjord and Michael Zenzen [26].

From the discussion above, it should be clear that Penrose not only re-
jects “strong AI,” but also “weak AI.” Quite naturally, he believes that no
computer program can have the qualities of awareness and understanding.
Obviously, it is one thing to believe that no computer program can possess
these qualities, and another to believe that no machine can possess these
qualities. Humans, which may be viewed as biological machines, have both
qualities and thus trivially refute the idea that no machine can have aware-
ness and understanding. However, John McCarthy, in his attack against
Penrose’s ideas [124], supports the idea that computer programs can have
awareness and understanding. More specifically, he advocates [123] that in-
terrupts,2 which are supported by many popular programming languages,
might form the basis for the implementation of self-awareness in com-
puter programs. Clearly, we have a situation in which a hardware device
sends some unintelligent message that is processed by a computer program,
which is dully executed by a CPU. In addition, a conscious biological ma-
chine (e.g., Peter) assigns meaning to all of these, and just because of this
assignment, the computer program might be self-aware! Although I believe
that one day there will be conscious machines, built atop a very different
yet to be discovered machine architecture, the current machine architec-
ture is not, at best, a promising direction. And of course, this may explain
why space probes landing on other planets rarely survive more than their
expected “life” span.

The debate over the Gödelian argument is quite active and recently
Michael Redhead [164] presented a simplified version of that argument,
presented in the framework of the system Q (a form of arithmetic), which

2. Roughly, an interrupt is a signal created and sent to the CPU, which is caused by some
action taken by a hardware device. For example, pressing certain key combinations can cause
hardware interrupts.
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has the following axioms (recall that S(x) = x + 1):

(y = 0) ∨ (∃ x)
(

y = S(x)
)

,

0 �= S(x),
S(x) = S( y) ⇒ x = y,

x + 0 = x,
x + S( y) = S(x + y),

x · 0 = 0,
x · S( y) = (x · y) + x.

Observe that in this set of axioms there is no provision for proof by mathe-
matical induction. Now consider the following statement:

for all n, m ∈ N there exists a proof that m × n = n × m. (A)

First, notice that we cannot switch the order of the quantifiers to get

there exists a proof that for all n, m ∈ N : m × n = n × m. ( B)

The reason for this deficiency is the lack of an induction axiom. Notice also
that the proof of (A) depends on the specific numbers n and m that are
chosen, and the length of the proof will increase as the numbers get bigger
and bigger. But it should be clear that the length of the proof is finite. On
the other hand, the proof of (B) is by no means finite, since it must cover
every possible case. It is interesting that we can argue that

for all n, m ∈ N : m × n = n × m. (C)

is actually true in system Q. Since the axioms and the theorems of system
Q are analytically true (i.e., they express defining properties of the natural
numbers), we may replace (A) by

for all n, m ∈ N it is true that m × n = n × m. ( D)

But ( D) is strictly equivalent to

it is true that for all n, m ∈ N : m × n = n × m. ( E)

The essence of this statement is that the commutative law of multiplication
is true. Notice that truth commutes with the universal quantifier, whereas
provability does not. This argument can also be viewed as a first step at
showing that system Q is incomplete, since we have found a sentence that
we agree is true but not provable in Q. Of course, this is not the only such
sentence. For example, other such sentences are the associative laws of
addition and multiplication. Since Q is not a recursive theory, one may
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say that human mathematical reasoning is stronger than any nonrecursive
theory. Figuratively speaking, human mathematical reasoning beats Turing
machines.

Dale Jacquette [90] has proposed a variant of the Turing test in which
the interrogator asks questions about the truth values of Gödel sentences
and their negations. Since I do not expect all readers to be familiar with
the Turing test, I will briefly explain it.

The Turing test was proposed by Turing [207] as a means to tackle
the question whether machines can actually think. The test has the form
of a game called the “imitation game.” In this game, we have a person, a
machine, and an interrogator, who is in a room separated from the per-
son and the machine. The aim of the game is to allow the interrogator to
ask questions to both the person and the machine and to determine from
their responses which one is the person and which one is the machine. The
interrogator knows the person and the machine by labels “X” and “Y,” re-
spectively, and at the end of the game she says either “X is a person and Y
is a machine” or “X is a machine and Y is a person.” The interrogator is
allowed to put questions to the person and the machine thus:

Will X please tell me the length of her hair?

(For a detailed discussion of the Turing test and related issues, see [144].)
According to Jacquette, the mind3 may use an nonprogrammable non-

algorithmic procedure to judge whether some Gödel sentence is true. The
procedure can be characterized as an “intensional conditional in the im-
perative mood” [90, p. 5]:

(P) If S says that S is unprovable [relative to some recur-
sively based logic], then answer (print): “S is true.”

Jacquette claims that his is a nonalgorithmic implementable procedure,
which can be interpreted as the claim that no programming language can
be used to implement this procedure. However, this procedure is realiz-
able by a mind simply because a mind understands the meaning of Gödel
sentences and, most importantly, the meaning of the negation of Gödel
sentences. This crucial information is used by the mind to decide when a
sentence S says that it is unprovable. Interestingly enough, if the interroga-
tor decides to explain that S = ¬Thm(n) and Gn(¬Thm(n)) = n (recall that
Gn(A) denotes the Gödel number of any well-formed formula A), then both
minds and machines can deduce that S is formally undecidable. However, if
the interrogator has opted to choose predicates other than ¬Thm to repre-
sent unprovability, this information will become useless. Also, one might
observe that the appearance of the external negation symbol in ¬Thm

3. Clearly, only a mind that has mastered the complexities of mathematical logic can sit next
to a machine and play this version of the imitation game. Thus, for the rest of this discussion,
the word mind will not just mean any ordinary mind, but a mind well versed in mathematical
logic.
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could be used to distinguish Gödel sentences from their negations by first
translating “problematic” constructions into prenex form, which are then
checked for occurrences of an outermost negation symbol. But even this
approach will not have the expected results, since, for example, one may
replace ¬Thm with NoThm with the expected semantic meaning. Thus,
if both Gödel sentence formulations are tried out by the interrogator, the
machine that employs the prenex trick will inevitably confuse Gödel sen-
tences of the first formulation with negations of Gödel sentences in the
second formulation.

The crux of Jacquette’s argument against mechanism is that the mind’s
procedure is at the same time intensional and nonalgorithmic. A mind has
no problem understanding any Gödel sentence as well as its negation. Thus,
it can determine when a sentence says of itself that it is either unprovable
or provable. In addition, Jacquette claims that a mind’s intensionality and
understanding of a sentence’s meaning cannot really be simulated by a ma-
chine. This means that a machine cannot really fool the interrogator, since
she can ask about the truth values of alternatively formulated Gödel sen-
tences and their negations, thus forcing the machine into making mistakes.

Storrs McCall has put forth another argument against computational-
ism, initially in [121] and later on in [122]. This argument is based on the
assumption that Turing machines know only what they can prove from a
set of axioms and a set of well-defined rules of inference. Based on this,
McCall tried to show that no Turing machine can know whether the Gödel
sentence G of the form, “This statement is unprovable,” is true. In a nut-
shell, the reason why this makes sense is that the truth value of G depends
on the consistency of Peano arithmetic. Notice that Peano arithmetic, or
just PA, is the theory of natural numbers defined by the five Peano axioms
(named after the Italian mathematician Giuseppe Peano, who proposed
them in 1889):

(i) 0 ∈ N (zero is a natural number);

(ii) for each x ∈ N, there exists exactly one S(x) ∈ N, called the successor
of x;

(iii) S(x) �= 0 (zero is not the successor of any natural number);

(iv) (S(x) = S(y)) ⇒ (x = y); and

(v) (induction schema) if φ is an arithmetic property such that 0 has this
property and if φ(x) implies φ(S(x)) for every x, then every number
has the property φ.

Since it is not known whether PA is consistent, it is possible to argue about
G by cases:

A1. If PA is consistent, then G is not provable in PA.
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A2. If PA is consistent, then ¬G is not provable in PA.

McCall assumes that whatever statement holds,4 truth and provability di-
verge because if PA is consistent, then G is true and unprovable; but if it is
inconsistent, then G is provable and false. Thus, PA contains nontheorems
that are true or theorems that are false. According to McCall, the impor-
tance of this observation is that humans can distinguish the two entities,
but Turing machines fail to do so. Let us assume that statement A1 holds.
In addition, the predicate Prov(Gn(A)) will denote that A is provable (or
that A is not a theorem). Now, first note that G ≡ ¬Prov(Gn(G)). If by
Cons(PA) we symbolize the statement “PA is consistent,” then statement
A1 can be written formally as follows:

Cons(PA) ⇒ ¬Prov(Gn(G)).

Equivalently, statement A1 can be written as

Cons(PA) ⇒ G.

McCall assumes that this is a theorem that can be proved. However, this
may not be correct, since the proof has to be in PA itself and not in the
metatheory. Let us now consider the formal version of A2:

Cons(PA) ⇒ ¬Prov(Gn(¬G)).

According to McCall, it can be shown that this statement is true (see [121]
for details). However, one cannot have a formal proof of the “theoremhood”
of this statement, and according to McCall, “there are good reasons to
believe that [the formal version of statement A2] is in fact unprovable in
PA.” The final result is that a Turing machine programmed to enumerate
theorems in PA will almost certainly never include the statement above in
the set of PA theorems. This, in turn, implies that there is a difference
between human and machine thinking. Indeed, no computer program can
model all of human reasoning.

Ignoring for the moment the remarks made by Tennant, one would
not expect someone to find any flaws in this argument. However, Panu
Raatikainen [162] has shown that there is a flaw in McCall’s argument.
In particular, Raatikainen has derived the formal equivalent of A1, which
implies that machines can make the distinction between true and derivable
sentences. More specifically, by assuming Cons(PA), one may get5

Cons(PA) Cons(PA) ⇒ G
G ⇒ E .

4. As Neil Tennant [199] observes, the reasons for claiming that the first sentence is true (it
can be proved within PA) are very different from the reasons for claiming that the second
sentence is true (even if it is true, it is not provable within PA).
5. Assume that � is a logical operator. Then the symbols �E and �I denote an elimination
rule for � and an introduction rule for �, respectively.
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As was noted previously, ¬Prov(Gn(G)) ≡ G, which can be written as

(¬Prov(Gn(G)) ⇒ G) ∧ (G ⇒ ¬Prov(Gn(G))).

This, in turn, is used as a premise in the following deduction:

(¬Prov(Gn(G)) ⇒ G) ∧ (G ⇒ ¬Prov(Gn(G)))

G ⇒ ¬Prov(Gn(G))
∧2E .

Since G holds, we get

G G ⇒ ¬Prov(Gn(G))

¬Prov(Gn(G))
⇒ E .

There is a small problem here: G cannot be proved inside PA. If we now
apply ∧I, we get

G ¬Prov(Gn(G))

G ∧ ¬Prov(Gn(G))
∧I .

And finally, by applying ⇒ I we get

[Cons(PA)]....
G ∧ ¬Prov(Gn(G))

Cons(PA) ⇒ (G ∧ ¬Prov(Gn(G)))
⇒ I .

The conclusion is just the formal counterpart of A1. Raatikainen finishes
his paper by saying that although McCall’s argument is not valid, this does
not mean that computationalism is actually correct.

Bringsjord and his colleagues at the Rensselaer Artificial Intelligence
and Reasoning (RAIR) Laboratory [25] reported their Gödelian argument
for minds whose computational capabilities transcend the capabilities of
the Turing machine. The members of the RAIR lab were involved in an
effort to devise a (partial) solution to the busy beaver problem, and their
efforts led to the formulation of their argument. Before going on, it is nec-
essary to explain what this problem is about. The description of the prob-
lem that follows is from the busy beaver section of RAIR’s lab web page:6

Consider a binary-alphabet Turing Machine which is given an
infinite, blank tape as input. If this machine halts, we define its
productivity as the number of 1’s left on the tape after the ma-
chine is run to completion. If it does not halt, the machine
is given a productivity value of zero. Now consider all of the
binary-alphabet Turing Machines that have n states. The ma-
chine in this set which has the highest productivity is called a
Busy Beaver, and its productivity is the result of the Busy Beaver
function Σ(n). Alternatively, the productivity score can be de-
fined as the number of transitions made before halting.

6. http://www.cs.rpi.edu/~kelleo/busybeaver/.
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For reasons of brevity, the solution will not be discussed. Interested read-
ers should point their web browsers to RAIR’s busy-beaver web page for
details.

The argument’s goal is to refute computationalism, when it is under-
stood as the supporting theory of the thesis that people are computers,
which, in turn, are realizations of Turing machines. Assuming that p ranges
over persons and m over Turing machines, this thesis can be stated as fol-
lows:

∀p∃m p � m, (C )
where � is pronounced “are.” This means that p � m can be interpreted
as p instantiates (or realizes) m. Assume that each person is a realization
of some Turing machine. If a measure of the mental capabilities of any
person is equal to the measure of the complexity of a Turing machine (e.g.,
the number of states plus the number of transitions used), then all people
are Turing machines whose measure of complexity is at or below some
threshold. More specifically, if we assume that C is a function that has a
Turing machine as argument and returns a number that characterizes its
complexity, then the idea just presented can be written formally as follows:

∀p∃m ( p � m ∧ C(m) ≤ k ), (C ′ )

where k ∈ N is the threshold. The goal of Bringsjord’s team was to devise
an argument (not a proof) to refute the thesis that people are computers.
The argument goes as follows:

• There are persons who have managed to determine the productiv-
ity of the initial segment of Turing machines (e.g., such persons are
members of the RAIR lab; see [25] for details):

∃p
(

D( p,Σ(1)) ∧ · · · ∧ D( p,Σ(6))
)
. (1)

• There is a natural number at and beyond which Turing machines
with measure of complexity less than or equal to k fail to determine
productivity:

∃n ∀m
(

C(m) ≤ k ⇒ ¬D(m,Σ(n)) ∧ ¬D(m,Σ(n + 1)) ∧ · · ·
)
. (2)

• If a person can determine the productivity for n, then this same per-
son can determine the productivity for n + 1:

∀n ∀p
(

D(p,Σ(n) ⇒ D(p,Σ(n + 1))
)
. (3)

• Assume that computationalism, as expressed by (C ′), actually holds.
Also, suppose that p∗, who is an arbitrary person, determines the ini-
tial segment of the busy-beaver problem, that is,

D(p∗,Σ(1)) ∧ · · · ∧ D(p∗,Σ(n)). (3′)
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Since (C′) holds for any person, it must hold true for p∗, that is,

∃m
(

p∗ � m ∧ C(m) ≤ k
)
. (4)

Let us randomly choose an m∗ and an n∗ such that
(

p∗ � m∗ ∧ C(m∗) ≤ k
)

(5)

and such that

∀m
(

C(m) ≤ k ⇒ ¬D(m,Σ(n∗)) ∧ ¬D(m,Σ(n∗ + 1)) ∧ · · ·
)
. (6)

Clearly, (6) holds for m∗:
(

C(m∗) ≤ k ⇒ ¬D(m∗,Σ(n∗)) ∧ ¬D(m∗,Σ(n∗ + 1)) ∧ · · ·
)
. (7)

From (5) and (7) we can deduce

¬D(m∗,Σ(n∗)) ∧ ¬D(m∗,Σ(n∗ + 1)) ∧ ¬D(m∗,Σ(n∗ + 2)) ∧ · · · .

By identity elimination and induction using (3), (5), and (3′), we can
infer ∀n D(m∗,Σ(n)), which is a contradiction. From this it follows
that since humans are information processors with capabilities lying
somewhere in the arithmetic hierarchy and if humans are ordinary
Turing machines they have a certain fixed size k, humans are hyper-
computers.

Clearly, no one expects such an argument to win critical acclaim with-
out any objection. On the contrary, there are issues that even Bringsjord
et al. have spotted. For example, for skeptics, premise (3) practically im-
plies that sooner or later people will be able to solve any problem. First
of all, Bringsjord et al. respond by saying that what they claim does not
mean that given enough time, anything is possible. They note that there
are problems that even infinite-time Turing machines cannot solve, and
such problems cannot be solved by any human. The essence of their argu-
ment is that if humanity “gets to n in the Σ problem, it can get to n + 1.”
And this is exactly the difference between Turing machines and humans:
Turing machines cannot solve the problem for n+1 if they have successfully
solved the problem for n; while it is also true that there is a limit to what
humans can do, it is just above the limit of what machines can achieve.

Stewart Shapiro [179] has given an interesting account of the battle
between computationalists and the Lucas–Penrose side over the Gödelian
argument. Shapiro starts by exploring the meaning of the words “machine”
and “human” in the context of this battle. Generally speaking, one may as-
sume that when computationalists speak of machines they actually mean
Turing machines, and when the Lucas–Penrose side speaks of humans they
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actually mean creatures that have unlimited lifetimes, attention spans and
energy, as well as unlimited resources at their disposal. In addition, another
crucial assumption concerning these idealized human beings is that they do
not make any mistakes! Both parties assume that there exists a set K con-
sisting of “all and only the analogues of arithmetic theorems, sentences in
the language of first-order arithmetic that can be known with unassailable,
mathematical certainty” [179, p. 277]. This set is called the set of knowable
arithmetic sentences. Since each element of K can be identified with its
Gödel number, one may assume that K ⊂ N. Computationalists, quite ex-
pectedly, take it for granted that the Church–Turing thesis is valid and thus
assume that K is recursively enumerable. Of course, the Lucas–Penrose side
does not agree with this conclusion and argues that that there are proce-
dures employed by humans that cannot be simulated by a Turing machine.
Interestingly, its seems that hypercomputation has no place in this battle:
computationalists completely deny it and the Lucas–Penrose side assumes
that noncomputable processes are necessarily nonmechanical. Obviously, in
the eyes of a proponent of hypercomputation both views are wrong: since
the Church–Turing thesis is not valid, K is not recursively enumerable,
while there are processes that transcend the Church–Turing barrier and
that are purely mechanical. In spite of this, let us continue with Shapiro’s
analysis.

If T is the set of truths of first-order arithmetic, then by assumption
K ⊆ T. However, let us suppose that K = T. Assume that Φ is an arithmetic
proposition. Then either Φ ∈ T or (¬Φ) ∈ T. If Φ ∈ T, then Φ ∈ K and so
Φ is knowable. Otherwise, (¬Φ) ∈ T and (¬Φ) ∈ K and so it is knowable in
principle that Φ is false. Let us recapitulate: if in the language of first-order
arithmetic T = K, then for every arithmetic proposition Φ, an idealized
human can determine whether Φ is true or false; that is, every arithmetic
proposition can be decided by an idealized human being. Now, by Tarski’s
theorem on truth in arithmetic, no program can output a correct true or
false value for every statement of number theory, which implies that T is
not recursively enumerable. Thus, if T = K and every arithmetic truth
can be proved by an idealized human being, the set K is not recursively
enumerable and the computationalists are wrong.

In order to defend their own belief, computationalists demand that T �=
K. Assume that Φ ∈ T and Φ �∈ K. Then Φ is an unknowable truth. This
implies that both Φ and ¬Φ are absolutely undecidable, and so even an ideal-
ized human being cannot decide whether Φ is true or false. In other words,
if what computationalists believe is true, there are absolutely undecidable
arithmetic propositions.

In conclusion, this battle will be over once we know whether T = K.
However, computationalists can easily avoid losing this battle, since
“[they] are having trouble coming up with a reasonable mechanistic the-
sis for Lucas and Penrose to attack” [179, p. 300]. However, it seems that
the whole battle is like trying to convince Alfred Square, resident of the
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two-dimensional Edwin A. Abbott’s Flatland [2], that there is a three-
dimensional world. Clearly, this is almost impossible unless Alfred is able
to enter the three-dimensional world in order to realize that his world is
just part of this brave new world!

6.1.2 The Argument from Infinitary Logic

Another mathematically oriented argument, which is based on the isolation
and exploitation of mathematical reasoning, is the argument from infini-
tary logic. Mathematical reasoning seems to be infinitary in nature and,
consequently, one may argue that it is also irreducible to language usage.
However, this seems to be a side issue irrelevant to the present discussion.
The argument from infinitary logic aims at showing that the infinitary na-
ture of mathematical reasoning is in general part of what makes a mind a
hypermind. Our presentation is based on the exposition of the argument
that is included in [26].

In order to apprehend the argument, it is necessary to be familiar with
infinitary logic. The brief, rough exposition that follows is based on [11].
Assume that µ and λ are two infinite cardinals such that λ ≤ µ and that L
is a fixed first-order language. Also, suppose that Φ is a set of formulas of
L such that card(Φ) < µ. Then

∧
Φ and

∨
Φ will denote infinite conjunc-

tions and disjunctions with card(Φ) conjuncts or disjuncts, respectively. In
addition, if X is a set of individual variables such that card(X ) < λ and φ
is an L-formula, then ∃Xφ and ∀Xφ are formulas. Moreover, if φ and ψ
are L-formulas, then φ ∧ ψ and ¬φ are formulas. More generally, all L-
formulas are formulas. A language having these characteristics is an infini-
tary language, denoted by L(µ,λ). In particular, the language L(ω1,ω), where
ω1 denotes the set of countable ordinals, is one that allows countably infi-
nite conjunctions but only finite quantifications. Now we can proceed with
the argument from infinitary reasoning as presented in [26]:

(i) All reasoning is computable.

(ii) For every case of reasoning R there exists a Turing machine (or any
equally powerful device) M such that some computation C of M is
such that R = C [from (i)].

(iii) For every computation C of every Turing machine M there is an
equivalent deduction D in some instantiation of LI (i.e., first-order
logic).

(iv) For every case of reasoning R there exists a deduction D in some
instantiation of LI such that R = D [from (ii), (iii); universal elimi-
nation, hypothetical syllogism, and universal introduction].
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(v) There exists a case of reasoning R∗, namely reasoning with L(ω1,ω),
that is such that for every deduction D in some instantiation of the
first-order logic LI , R∗ �= D.

(vi) It is not the case that all reasoning is computable [reductio ad absur-
dum; (iv), (v) contradictory].

The designers of this argument claim that it is valid because the infer-
ences are formally correct. In addition, they discuss a number of objections
to this argument. The first objection is that this argument is not really
convincing. Their response to this objection is simple: it is one thing to
have a convincing argument and another thing to have a sound argument.
Furthermore, it is important to notice that the history of science is full of
unconvincing but sound theories, such as the theory that the Earth moves
around the Sun.

Another objection concerns reasoning in and about L(ω1,ω) that is simply
manipulation of finite expressions that are clearly computable, such as the
following expression borrowed from [26, p. 108]:

∨

n<ω

∃x1· · ·∃xn∀y(y = x1 ∨ · · · ∨ y = xn).

The essence of the response to this objection is that although Hilbert no-
ticed that proofs are presented as finite strings on finite sheets of paper and
consequently put forward the ideas we presented in the introductory chap-
ter, Gödel managed to abolish Hilbert’s ideas. In addition, Gödel proved
that “human mathematical reasoning is not always limited to Hilbertian
reasoning: some form of infinitistic reasoning must be employed for some
proofs of formulas about N” [26, p. 109].

6.1.3 The Modal Argument

According to Selmer Bringsjord and Konstantine Arkoudas [23], there are
basically two methods for attacking computationalism when starting from
mathematical results in the realm of incompleteness. The first method is
the one described in the previous section, while the second method is the
one that will be presented in this section. The proof that minds are not Tur-
ing machines is a two-stage process. First, it is necessary to make suitable
idealizations of minds and machines, and then one must prove a formally
valid modal argument.

Like Shapiro, Bringsjord and Arkoudas believe that idealized comput-
ers can be identified with ordinary Turing machines. Unlike Shapiro’s ide-
alized humans with unlimited capacities, the idealized humans of Bringsjord
and Arkoudas take input and yield output that reflects decisions based on
the inputs taken. Also, they assume that (part) of the human mind is actu-
ally an information-processing device.
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Let us consider the following decision problem: Given a Turing machine
M0 and an input string w, does M0 halt on input w? It has been proved that
there is no algorithm (i.e., no Turing machine) that can decide this prob-
lem. Assume that D(M , M ′, i) is a predicate that stands for the sentence,
“Turing machine M determines whether Turing machine M ′ halts on in-
put i.” Using this predicate we can formally specify the undecidability of
the problem above in quantified modal logic as follows:

∀M∃i¬�D(M , M0, i). (M1)

Notice that the modality � is associated to logical or mathematical possi-
bility, that is, �φ if and only if it is logically or mathematically possible that
φ. Assume that M(x) stands for “x is a Turing machine,” P(x) for “x is a
person,” and I(x) for “x is input for a Turing machine.” Then (M1) can be
written as follows

∃x
(

M(x) ∧ ∀y
(

M(y) → ∃u
(
I(u) ∧ ¬�D(y, x, u)

))
)

.

For the sake of argument let us assume that persons are indeed Turing
machines, or, more accurately, that persons are physically realized Turing
machines. This assumption can be specified in the following way:

∀P∃M P � M . (M2)

From (M1) and (M2) we deduce that

∀P∃i¬�D(P, M0, i). (M3)

Bringsjord and Arkoudas conclude that since there are persons, (M3) is
inconsistent with

∀P∀i�D(P, M0, i). (M4)

And so if we can prove (M4), we have an indirect proof of ¬(M1), which
means that computationalism is false.

The crucial question is whether (M4) is actually true. Before going on,
it is necessary to clarify that the “modal argument is not inseparably linked
to a particular formal derivation or a particular proof theory.” This means
that one may present this argument even in first-order logic. However, the
authors have presented their argument in this manner because they hap-
pen to be comfortable with it. Clearly, this book is about hypercomputa-
tion, and so far we have presented a good number of conceptual devices
that transcend the capabilities of the Turing machine that are eventually
realizable. Assume that H stands for any hypermachine. Then it follows
that

∀H ∀i�D(H , M0, i). (M5)
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If we are inclined to assume that a person may be a hypermachine and not
just a Turing machine, we can formally express this as follows:

(
∀H ∀i�D(H , M0, i)

)
→

(
∀P∀i�D(P, M0, i)

)
. (M6)

Proposition (M4) follows by modus ponens from (M5) and (M6).
No argument remains unchallenged, and this argument is no exception.

In the remainder of this section I will present two objections to the modal
argument as well as the responses offered by the designers of the argument.

If one assumes that computationalism is the belief that people are phys-
ical computers, then one may hope to refute the modal argument. In partic-
ular, if we assume that C ranges over embodied computers, then the formal
expression describing computationalism takes the following form:

∀P∃C P � C. (M2′)

Based on this, proposition (M1) must be replaced with

∀C∃i¬�D(C, M0, i). (M1′)

But this proposition is false, since there is some machine C0 (e.g., an ora-
cle Turing machine, a trial-and-error machine) that can solve the halting
problem for M0. Computationalism is the doctrine that advocates that per-
sons are just symbol processing “machines” and not hypermachines, which
implies that (M1′) cannot possibly be true.

Let us now discuss the second objection, which is based on the com-
mon belief that modern physical computers running some program P are
physically instantiated Turing machines. Obviously, at this point we should
pretend that there is no empirical evidence for the view that modern digital
computers are not Turing machines. Suppose that B ranges over modern
digital computers running some program P . Then proposition (M2) takes
the following form:

∀B∃M B � M . (M2′′)

It follows from (M1) and (M2′′) that

∀B∃i¬�D(B, M0, i). (M3′′)

But this proposition is inconsistent with

∀B∀i�D(B, M0, i). (M4′′)

This means that digital computers running some program are not com-
puters! The problem is that proposition (M4′′) is true only if every digital
computer is actually a hypercomputer, while on the other hand, proposi-
tion (M3′′) is true only if modern digital computers are instantiations of
Turing machines.
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6.2 Philosophy and the Mind

The mind as an object of philosophical inquiry has been a very attractive
subject of study for several thousand years. Almost every philosopher has
had something to say about the mind, which in many cases has affected peo-
ple’s lives in quite unexpected ways. In particular, various prejudices and
folk beliefs have deeply affected the formation of philosophical doctrines,
which, in turn, reflect these prejudices and beliefs. For instance, as Searle
notes in [176], Cartesian dualism gave the material world to scientists and
the mental world to theologians. Thus the new scientific discoveries of the
time posed no threat to traditional religion. Although the philosophy of the
mind is a very interesting subject, we will concentrate on arguments against
computationalism. The reader with a general interest in the subject should
consult any textbook on the philosophy of mind.

6.2.1 Arguments Against Computationalism

Let us now present a number of important arguments against computation-
alism. The presentation of these arguments is highly influenced by Searle’s
presentation in [176].

The term qualia (singular: quale) refers to the ways things seem to us.
In particular, qualia describe the qualitative character of conscious experi-
ences. To make things clear, imagine that you and a friend are staring at a
landscape at sunset. The way it looks to you—the particular, personal, sub-
jective visual quality of the landscape—is the quale of your visual experience
at the moment. Perhaps, that is why no color model (i.e., a mechanism by
which we can describe the color formation process in a predictable way) can
accurately describe colors. Since qualia really exist and computationalism
does not take them into account, one may conclude that computationalism
is false. Note that we assume here that computationalism and functional-
ism are being conflated. Functionalism, which is a doctrine quite similar to
computationalism, argues that what it takes to be a mind is independent of
its physical realization.

Thomas Nagel [139] argues that although one may have perfect knowl-
edge of a bat’s neurophysiology, she will not be able to say what it is like to
be a bat. Even if she could by gradual degrees be transformed into a bat, she
could not imagine the way she would feel when, eventually, she would be
metamorphosed into a bat. The argument is based on the observation that
bats have a sensory apparatus considerably different from ours, and it aims
to show that having complete knowledge of everything that goes on inside
the body of an animal is still insufficient to explain consciousness. Yujin
Nagasawa [137] has put forth an interesting objection to Nagel’s argument.
More specifically, Nagasawa claims that if we have a vivid imagination
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or a sophisticated simulation system, there is no problem for us to know
what it is like to be bat without being a bat like creature. However, an im-
mediate response is that one cannot really say how it feels like to “enjoy”
smoking a cigarette when one has never smoked one. Imagination is simply
not enough!

A similar argument is the one that Frank Jackson published in [89]. As-
sume that it is possible to create a dome inside of which everything is black
and white. Maria grows up in this dome and she is educated by watch-
ing distant-learning programs on a black-and-white television set and by
reading black-and-white books and magazines. In this way Maria learns
everything other pupils learn about the physical world that surrounds us.
Thus, she knows there are objects that are red, but she has never seen any
red object in her life. Now, if Maria knows everything she should know, she
should have no problem recognizing the red Ferrari in a full-color photo of
sport cars. But this is not true, since the very moment she sees the red Fer-
rari in the photo, she will learn what it is like to sense red. In a nutshell,
knowledge is not enough to know what it is like to sense colors.

Another argument against computationalism has been put forward by
Ned Block. This argument is considered by many as an immediate an-
tecedent to the Chinese room argument. Block’s argument goes like this:
Assume that the brain of a typical human being consists of around 1.5 bil-
lion neurons.7 Also, assume that each Chinese citizen plays the role of a
neuron. For instance, neuron firing can be simulated by the act of call-
ing another person using a cellular phone. This “artificial” brain lacks
mental states (e.g., one cannot claim that it “feels” wrath), and thus it
cannot be classified as a real brain. A similar argument was advanced by
Searle [174]. This argument has been dubbed the “Chinese gym” argu-
ment, while Block’s argument is known as the “Chinese nation” argument.
Searle’s argument goes like this. Imagine that there is a hall containing
many monolingual English-speaking men. These men would carry out the
same operations as the neurons of a connectionist architecture (i.e., neu-
ral networks) that models the brain process that take place on the brain
of the human in the Chinese room argument. No one in the gym speaks
any Chinese, and there is no way to imagine that the system considered as
a single entity, understands Chinese. Yet the system gives the impression
that it understands Chinese.
7. Actually, the brain of an adult human has more than 100 billion neurons [181], but the core
of Block’s argument is that the entire population of China will implement the functions of
neurons in the brain. Thus, we cannot actually use the real figure for the presentation of the
argument.
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6.2.2 The Chinese Room Argument Revisited

In 2004, the Chinese room argument (CRA) turned 25 years old, but age
is not slowing the CRA down. It is still a subject of debate as well as a
source of inspiration for members of the scientific community. And the
recent collection of selected papers on the CRA [159], which was edited
by John Preston and Mark Bishop, as well as Jerome Wakefield’s recent
paper on the CRA [214], which was the most viewed paper on the “Minds
and Machines” web site in 2003, are clear proofs of this. Apart from its
popularity, the real question is whether the CRA is still valid. And that is
exactly the subject of this section.

An interesting idea concerning the validity of the CRA was put forth by
Bruce MacLennan [118], who rightly claims that if one accepts the CRA in
the digital setting, then one should also accept it in the analog setting, and
conversely, if one does not accept it in the digital setting, then one should
not accept it in the analog setting. Here the term “analog setting” refers to
analog computation (see Chapter 9). MacLennan does not believe in the
validity of the CRA. He has proposed the “granny room argument,” that
is, the analogue of the CRA in an analog computing setting, in order to
refute the CRA based on his view that one has to accept or reject the appli-
cability of the CRA in both the digital and analog settings. In the granny
room there is a person who is exposed to a continuous visual image and
produces a continuous auditory output. By making use of various analog
computational aids the person in the room “implements the analog com-
putation by performing a complicated, ritualized sensorimotor procedure.”
When the system sees an image of MacLennan’s grandmother it will re-
spond, “Hi, Granny!” MacLennan believes that his argument refutes the
CRA, but the truth is that this argument does not actually do so. In fact,
one may question the point of substituting symbol recognition with face
recognition. Assume that the person inside the room has photos for each
face that can possibly appear, and depending on the face seen, she produces
what MacLennan calls a (continuous) auditory image. For example, when
she sees face A, she has to say, “Hello, Stella!” Practically, this argument
does not differ from the classical “digital” version of the CRA. The point
is that facial recognition is no different from symbol recognition, and thus
the CRA remains immune from attack even in the “analog” setting.

Jerome C. Wakefield [214] presents some interesting ideas concerning
the CRA. In particular, he criticizes the formulation of the CRA as pre-
sented by Searle in [175, pp 11–12]:

i. Programs are entirely syntactic.

ii. Minds have a semantics.

iii. Syntax is not the same as, nor by itself sufficient for, semantics.

∴ Programs are not minds.
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According to Wakefield, this syllogism is problematic because the third
premise is a “straightforward denial of computationalism,” since “the no-
semantics-from-syntax intuition is precisely what strong AI proponents are
challenging with their computationalistic theory of content.” However, we
feel that it is necessary to see first what Searle has to say in [175] about the
third step:

[T]he general principle that the Chinese Room thought exper-
iment illustrates: merely manipulating formal symbols is not in
and of itself constitutive of having semantic contents, nor is it
sufficient by itself to guarantee the presence of semantic con-
tents. It does not matter how well the system can imitate the
behavior of someone who really does understand, nor how com-
plex the symbol manipulations are; you cannot milk semantics
out of syntactical processes alone.

To claim that 2 is a set is clearly counterintuitive. In addition, depend-
ing on which sets one identifies with the natural numbers, there are many
other things that are equally counterintuitive (e.g., 2 ∈ 3). However, the
existence of such counterintuitive results does not mean that the reduction
of numbers to sets is problematic. Similarly, one cannot claim that since
there some counterintuitive results in the thought experiment associated
with the CRA, one can object to the claim that certain computer states
are beliefs, which, in a nutshell, is the essentialist objection to the CRA.
Wakefield claims that this is a valid objection to the CRA and argues that
the CRA can be reinterpreted in such a way as to make it immune to the
essentialist attack. In particular, if we explain the meaning of the CRA in
an indeterminate way, the new argument still poses a challenge to com-
putationalism and strong AI. This new formulation of the CRA has been
dubbed the Chinese Room Indeterminacy Argument, or just CRIA.8 Wake-
field’s CRIA goes as follows [214]:

i. There are determinate meanings of thoughts and intentions-in-action.
In addition, a thought about a syntactic shape is different from any
thoughts that possess the semantic content that is expressed by the
syntactic shapes.

ii. Any syntactic fact underdetermines, and at the same time leaves in-
determinate, the contents of thoughts and intentions-in-action.

∴ The content of thoughts and intentions-in-action cannot be consti-
tuted by syntactic facts.

And as Wakefield notes, “[t]his indeterminacy argument provides the needed
support for Searle’s crucial third premise.”

8. An argument is called indeterminate when it is open to multiple incompatible interpreta-
tions consistent with all the possible evidence.
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If one could have demonstrated that syntax is indeed the same as seman-
tics, then she would have managed to refute the CRA. And the easiest way
to achieve this goal would be to show or at least to provide evidence that
some computer program understands. By following this line of thinking,
Herbert Alexander Simon and Stuart A. Eisenstadt [184] describe three
programs they believe provide evidence that computer programs can un-
derstand and thus falsify the CRA. For instance, they present a program
called ZBIE that simulates human language learning. The program has as
inputs sentences in any natural language and description lists that repre-
sent simple scenes (e.g., “The boy pulls on the oar under the lash.”). Af-
ter some time, the program acquires a vocabulary of words related to the
scenes it has as input and a vocabulary of relational structures. In addition,
using sentences in two languages as inputs, instead of sentences and scenes,
ZBIE can learn to translate from one language to another. However, there
are some issues with these “astonishing” capabilities. First, notice that even
modern specialized programs fail to provide meaningful translations. For
instance, the author used a mechanical language translator to translate the
sentence above to Greek and the resulting text back to English only to get
back the completely different sentence, “the boy pulls in the oar under the
whip.” And of course, if a modern professional tool does this kind of work,
what should one expect from a tool of the early 1970s? On the other hand,
when someone learns a new word, she tries to associate this new word with
her own experiences so as to grasp its real meaning. For example, when
a juvenile learns the word “orgasm,” she will not really understand the
real meaning of the word until the day she first experiences an orgasm.
So syntax is simply not enough to understand what an orgasm is. In other
words, Jaak Panksepp’s question, “Could you compute me an orgasm?” has
a negative answer. More generally, it is meaningless to say that a computer
program understands just because some talented computer programmer
has figured out a number of cases that make a computer program appear
as if it really understands. A clever set of rewriting rules cannot possibly be
equated with understanding.

6.3 Neurobiology and the Mind

The brain is part of the central nervous system and includes all the higher
nervous centers. It is also the center of the nervous system, and the seat of
consciousness and volition. As such, it is of great importance to neurobiol-
ogists. Until recently, most biologists employed reductionism (i.e., the idea
that the nature of complex things can always be explained by simpler or
more fundamental things) to explain biological phenomena (e.g., the dis-
covery of the structural and chemical basis of living processes is a result of
the application of reductionism to biology). However, it is quite surprising,
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particularly for nonspecialists, that biologists are gradually abandoning
reductionism in favor of emergence, which is roughly the idea that some
properties of a system are irreducible. Indeed, as Marc Van Regenmortel
notes [210]:

Complex systems are defined as systems that possess emergent
properties and which, therefore, cannot be explained by the prop-
erties of their component parts. Since the constituents of a com-
plex system interact in a non-linear manner, the behaviour of
the system cannot be analysed by classical mathematical meth-
ods that do not incorporate cooperativity and non-additive ef-
fects.

And he concludes by stating that “reductionism is not the panacea for un-
derstanding the mind.” Interestingly enough, biological naturalism is an
explanation of the so-called mind–body problem (i.e., “How can a decision
in my soul cause a movement of a physical object in the world such as my
body?” [176, p. 17]) that is based on exactly these principles. More specif-
ically, biological naturalism is based on the following theses [176, pp. 113–
114]:

(i) Conscious states, with their subjective, first-person ontology, are real
phenomena in the real world. It is impossible to do an eliminative re-
duction of consciousness in order to show that it is just an illusion. In
addition, it is not possible to reduce consciousness to its neurobiolog-
ical basis, because such a third-person reduction would leave out the
first-person ontology of consciousness.

(ii) Conscious states are entirely caused by lower-level neurobiological
processes in the brain. Conscious states are thus causally reducible
to neurobiological processes. However, they have absolutely no life of
their own independent of the neurobiology. Causally speaking, they
are not something “over and above” neurobiological processes.

(iii) Conscious states are realized in the brain as features of the brain sys-
tem, and thus exist at a level higher than that of neurons and synapses.
Individual neurons are not conscious, but portions of the brain system
composed of neurons are conscious.

(iv) Because conscious states are real features of the real world, they func-
tion causally. For instance, the reader’s conscious thirst causes him or
her to drink water.

As a direct consequence, one can surely simulate in principle the function-
ing either of parts of the brain or of the whole brain in a computer. How-
ever, it is impossible for the computer simulation to become conscious.
In order to make things clear, let us give a somewhat trivial argument.
Many people are aware that water is the chemical compound H2O and that
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ethanol is the chemical compound CH3CH2OH. Each water molecule con-
sists of atoms, which, in turn, consist of electrons, neutrons and protons.
And of course the same applies to the ethanol molecules. The question is,
since both water and ethanol consist of exactly the same basic building
blocks, why do they taste different, and more generally, why do they have
different properties? Certainly, the answer is that their molecules consist
of different numbers of electrons, neutrons, and protons and that these el-
ementary particles are arranged in different ways. So it is not enough to
know the constituents of a compound to have a complete image of its prop-
erties. Analogously, one may say that it is not enough to study the properties
of neurons and how they are connected in order to (fully) understand the
brain and its operations.

If we suppose that the computational theory of the mind is indeed true,
then we should expect that the brain operates in a discrete manner. Indeed,
according to “modern” computationalism, the brain operates in discrete
manner in a discrete universe. However, to the disappointment of many
computationalists, Michael Spivey and his colleagues Marc Grosjean and
Günther Knoblich [188] reported that there is compelling evidence that
language comprehension is a continuous process. In their experiment, Spi-
vey and his colleagues had at their disposal forty-two volunteers, who were
Cornell University undergraduate students who took psychology courses.
Each volunteer was presented with color images of two objects on a screen,
and a prerecorded audio file instructed them to click one of the images with
a mouse. One of the objects had the role of a distractor object and the other
the role of a target object. When the students were instructed to click one
of the two objects and the names of the objects did not sound alike, such as
apple and jacket, the trajectories of their mouse movements were straight
and direct to the objects they were instructed to click on. On the other
hand, when the students were instructed to click on an “apple” and were
presented with two objects with similar sounding names (e.g., “apple” and
“maple”), they were slower to click on the correct object, and in addition,
their mouse trajectories were much more curved.

This experiment provided powerful support for models of continuous
comprehension of acoustic–phonetic input during spoken-word recogni-
tion. In addition, the data gathered from this experiment provide support
to the claim that the continuous temporal dynamics of motor output reflect
continuous temporal dynamics of lexical activation in the brain. In other
words, one may say that cognition does not operate by entering and leaving
states (e.g., like a state machine or automaton) but rather can have values
in between (e.g., it may be partially in one state or another) and eventu-
ally stabilizes to a unique interpretation, which, for example, can be the
recognition of a certain word.

Panksepp is the father of the emerging field of affective neuroscience,
which supports the idea that affective and cognitive mental processes are
distinct. A summary of “recent conceptual and empirical advances in
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understanding basic affective process of the mammalian brain and how
we might distinguish affective from cognitive processes” was presented
in [146]. The following short presentation of affective neuroscience is based
on this paper.

It is a common belief, shared particularly among nonscientists, that
emotional processes have both cognitive and affective attributes. In addi-
tion, these attributes rank highest among a number of other attributes
emotional processes may have. However, because of the difficulty unam-
biguously distinguishing the two attributes in the laboratory, many scien-
tists have begun to question the utility of this distinction. In spite of this
skepticism, Panksepp believes that this very distinction may prove helpful
in deciphering the neurobiological nature of the basic affective quality of
conscious actuality. Panksepp advances this idea because affective feelings
are, not completely but to a considerable degree, distinct neurobiological
processes from an anatomical and a neurochemical point of view. Also, this
distinction is evident to a similar degree with respect to peripheral bod-
ily interactions. Emotional and motivational feelings “push” organisms to
make cognitive choices (e.g., to find food when hungry, water when thirsty,
companionship when lonely). If this idea is indeed true, then it is necessary
to develop special techniques to understand affective organic processes in
neural terms, which, in turn, may provide a solid basis for the construction
of a coherent science of the mind. As a side effect of such a development,
new psychiatric therapeutics will be advanced. Interestingly, the foundation
on top of which emotional and motivational processes are built is analog in
nature. In addition, this foundation is to a large degree the result of evo-
lutionary process. Let us now see why Panksepp advocates the distinction
between affects and cognitions.

First of all, emotional states are inherently characterized by valence. In
other words, they are characterized by either aversive or attractive feelings
that do not accompany pure cognitions. It is not entirely unreasonable to
suppose that various basic emotional and motivational responses and the
accompanying types of valence have their origin in inherently evolution-
arily controlled states of the nervous system. These mental abilities of the
brain are not built just from the perceptions of external events and the
cognition that follows. Instead, they have an intrinsic structure of their
own. However, emotions are not just disturbances of the physical setting
in which they occur. In addition, they help control the way we perceive the
world around us.

Although many forms of brain damage severely impair cognitions, still
emotional responses and many basic affective tendencies are not affected.
This dictum is based on the fact that early decortication (i.e., removal of
the outer covering of the brain) of neonatal rats affects the ability of these
animals to learn while their emotional and motivational behaviors remain
almost intact. Ralph Adolphs, Daniel Tranel, and Antonio Damasio [3] re-
ported the results of their study to test the hypothesis that the recognition
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of emotions is probably “composed” in different brain regions, which de-
pends on the nature of the stimuli that have caused these emotions. Adolphs
et al. studied a person who had suffered extensive bilateral brain lesions,
and their findings support the dictum above. These and similar observa-
tions have led Panksepp to conclude that, “Cognitions are largely cortical
while affects are largely subcortical.”

It is an everyday observation that children are very emotionally alive,
which suggests that “affective competence is elaborated more by earlier
maturing medial brain systems than more rostrally and laterally situated
cognitive systems” [146, p. 10]. These remarks affirm that affects are more
likely to be evolutionary “givens.” The higher cortico-cognitive processes
that keep in check emotionality appear gradually as the organisms mature.

Processes that resemble discrete computational processes may generate
cognitions, while neurochemical processes that resemble analog computa-
tional processes may be responsible for the generation of affects. A direct
consequence of this observation is that in the case of long-term emotional
learning, the conditioning of holistic “state” responses plays an important
role, while in the case of cognitive learning, the temporal resolution of for-
mal operations and propositions plays an important role. Probably, this is
the reason why it is hard to activate cognitions by directly stimulating the
brain, while this does not hold true for affects.

Cognitions do not generate facial or bodily expressions and do not have
any effect on the tone of our voice, while emotions generate such expres-
sions and changes in tone. Although the importance of facial expressions
in the study of emotional feelings has not remained unchallenged, still it
is clear that these emotional actions can cause congruent feelings. And
in cases in which someone has suffered cortical damage, full emotional
expressions cannot be generated by cognitive means, while they can be
aroused by spontaneous emotional states.

Over the past 15 or more years, various studies have revealed emotional
asymmetry and asymmetries in motor output (for instance, see [46, 78, 91,
185]). There are two general theories of emotional asymmetry: the right-
hemisphere hypothesis and the valence hypothesis. According to the right-
hemisphere hypothesis, the right hemisphere is the center of all forms of
emotional expression and perception. On the other hand, the valence hy-
pothesis posits that emotional valence deeply affects hemispheric asymme-
try for expression and perception of emotions. More specifically, the right
hemisphere is dominant for negative emotions and the left hemisphere is
dominant for positive emotions. Both hypotheses have received empirical
support.

It is an unfortunate fact that our way of thinking and perceiving the
world around us is constrained by prevailing cultural and scientific as-
sumptions. And this is why affective issues have been confronted with great
skepticism. However, this attitude is changing, and a growing number of
researchers now recognize the importance of affects. One of the main
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reasons for this turnaround is that by understanding what affects really
are, we may hope to understand what consciousness really is.

6.4 Cognition and the Mind

The arguments and ideas presented in this section have appeared in peri-
odicals whose scope is marginally related to the philosophy of mind.

In Section 3.1.2 we presented a model of the mind based on the assump-
tion that the mind is a trial-and-error machine. Here we follow a different
path by assuming that the mind is a machine that has semantic content.

People are definitely not computers, but people are definitely (some sort
of) machines, since they can calculate, memorize, etc. And naturally the
question is, What kind of machines are people? James H. Fetzer presents
some interesting ideas on this matter in [62]. A sign is a generalization of
the concept of a symbol. Charles Sanders Peirce divides signs into three
categories: icons, indices, and symbols. Here is how Peirce explains the dif-
ference among these three categories:9

There are three kinds of signs. Firstly, there are likenesses, or
icons; which serve to convey ideas of the things they represent
simply by imitating them. Secondly, there are indications, or in-
dices; which show something about things, on account of their
being physically connected with them. Such is a guidepost, which
points down the road to be taken, or a relative pronoun, which is
placed just after the name of the thing intended to be denoted,
or a vocative exclamation, as “Hi! there,” which acts upon the
nerves of the person addressed and forces his attention. Thirdly,
there are symbols, or general signs, which have become associ-
ated with their meanings by usage. Such are most words, and
phrases, and speeches, and books, and libraries.

One may say that an icon is a thing that resembles that for which it stands,
an index is a cause or an effect of that for which it stands, and a symbol is
merely habitually or conventionally associated with that for which it stands.
Based on this division, Fetzer suggests that there should be at least three
kinds of minds. More specifically, Type I minds that can process icons,
Type II minds that can process icons and indices, and Type III minds that
can process icons, indices, and symbols. Although Fetzer stopped here, we
can go on and introduce Type IV minds as minds that manipulate only
indices and Type V minds as minds that manipulate only symbols. However,
computers process symbols according to their form and not the meaning

9. The excerpt is from Peirce’s paper entitled What Is a Sign? which is available online from
http://www.iupui.edu/~peirce/ep/ep2/ep2book/ch02/ep2ch2.htm.
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that may be associated to them by usage. On the other hand, a mind capable
of processing symbols, while aware of the meaning associated with their
“meaning,” is clearly different from a Type V mind. Let us call these minds
Type VI minds. It seems that the sci-fi androids are Type VI minds, but I
will not argue about this idea.

A Type III mind is actually a semiotic system; while a modern computing
system (i.e., a Type V “mind”) is a symbolic system. There are two differ-
ences between semiotic and symbolic systems. First, a symbolic system is
able to process syntax (i.e., it is able to manipulate meaningless marks),
while a semiotic system is able to process signs that are meaningful for this
system. Second, a symbolic system manipulates marks by executing some
computational procedure, but a semiotic system manipulates signs by non-
computational procedures. Human thought processes cannot be described
by symbol systems, but they can be described by semiotic systems. Another
important difference between semiotic and symbolic systems is that in the
case of semiotic systems there is a “grounding” relationship between signs
and what they stand for, while in the case of symbolic systems, such a rela-
tion does not exist.

These observations have led Fetzer to propose that the mind is actually
a semiotic engine. As such, the mind processes information in a nonalgo-
rithmic way.

Quite recently, Chris Eliasmith discovered a major flaw in functional-
ism and reported it in [57]. Recall that the Turing machine is a conceptual
device, and as such, its properties are independent of any particular real-
ization. In addition, it is easy to characterize a Turing machine from its
input, the state of the machine, and the program being executed. Func-
tionalists believe that what makes something a mental state depends on
its function in the cognitive system of which it is a part. More specifi-
cally, mental states are functional relations between sensory stimulations
(input), behavior (state of the machine), and their mental states (the pro-
gram being executed). Thus, cognitive functions can be completely char-
acterized by high-level descriptions abstracted from their implementation.
Also, “two systems are functionally isomorphic if there is a correspondence
between the states of one and the states of the other that preserves functional
relations” [161]. This implies that any system isomorphic to a mind is a
mind. Assume that there are two functionally isomorphic systems having
different implementations. Then these will have the same mental states (if
any). This is the thesis of multiple or universal realizability (i.e., the fal-
lacious claim that anything can be described as implementing a computer
program), which Eliasmith refutes in [57].

The argument against the multiple realizability thesis is based on the
idea that two computing devices that are equivalent (or isomorphic if you
prefer this term) are not equal. In particular, machine equivalence provides
little information regarding the way a machine actually computes some-
thing, and it is this way that is cognitively relevant. For instance, although
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a modern CISC machine is equivalent to a RISC machine, in the sense
that one can compile and execute exactly the same programs on both ma-
chines, a RISC machine is faster (e.g., consider operating systems, such as
OpenSolaris and GNU/Linux, that are available for both architectures and
think about their performance). Clearly, if we compile the same program
under the same operating system running on two different architectures
the resulting binary files will be completely different. Obviously, both bi-
naries will produce the same results, but one will be executed much faster
than the other. The reason for this difference in performance is due to
the simplicity of the RISC architecture or to the complexity of the CISC
architecture. Clearly, this means that the implementation, contrary to the
functional belief, really matters. In other words, a system that is function-
ally isomorphic to a mind is not necessarily a mind.

By having as a starting point “the cognitive study of science,” Roland
Giere [64] shows that only “distributed cognition” can be employed to un-
derstand cognition as it occurs in modern science. Giere uses an example
to demonstrate the validity of his ideas. In particular, he considers the large
hadron collider of the European Center for Nuclear Research (known as
CERN), which is coupled with a very large detector called ATLAS. The
ATLAS project involves many scientists, technicians, and support person-
nel and aims to obtain direct experimental evidence of the existence of the
Higgs boson.10 Since there is no reason to explain all the details involved,
it sufficies to say that the experiment involves the acceleration of certain
elementary particles to very high energies and their subsequent collision in
the detector. Depending on what goes on in the detector, one may decide
whether the Higgs boson actually exists.

When finished, the ATLAS project will produce some knowledge, which
is actually a cognitive product. Thus, one may view the ATLAS project as
a cognitive process. Clearly, one may wonder about the nature of scientific
cognition starting with this particular example. As expected, the “stan-
dard” answer to this problem is that a cognitive agent, which is a human
or artificial individual, acquires a symbolic representation that is computa-
tionally processed according to a set of syntactic rules. This answer is prob-
lematic for a number of reasons. First of all, it is not clear who or what
this cognitive agent is. A typical answer to this question is that the cog-
nitive agent is the person who interprets the final output. There are two
problems with this response. First, if we assume that such a person indeed
exists, then this person “operates” by manipulating and thus is incapable
of understanding anything. Second, there is actually no such person, since
the final output is the result of a complex interaction among people with
different kinds of expertise who consult sophisticated equipment. Thus, we
cannot find a single person who has the required property.

A partial solution to these problems emerges if we consider the notion

10. The Higgs boson is a hypothetical particle whose very existence would validate the “stan-
dard” mechanism by which particles acquire mass.
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of collective cognition. In this setting, we assume that each individual par-
ticipating in the project is actually a computational system. We may there-
fore say that the final output is the conjunction of the outputs produced
by each individual. Clearly, this solution insists that humans are computers
and as such is simply unacceptable. Apart from that, it does not take into
consideration the artifacts that play a crucial role in the project.

A better idea is to use the notion of distributed cognition (i.e., a cognitive
system that is collective but includes not only persons but also instruments
and other artifacts as parts of the cognitive system). In this new setting,
scientists, technicians, machines, sensors, etc., interact harmoniously to
achieve a final result. Obviously, this does not mean that machines and sen-
sors are conscious. Instead, when the cognitive system is viewed as a whole,
one may easily say that it is a computational system. But does it make sense
to say that the ATLAS project is actually a computational project?

The whole project is not computational at all. First of all, when ele-
mentary particles interact, no symbolic representation is transformed by
syntactic-like operations. And since computation is identified with the trans-
formation of symbolic representations by syntax-manipulation operations,
one easily deduces that elementary-particle interaction is not a computa-
tional process. Unfortunately, not everybody shares this idea. For instance,
there are those who believe that even the whole universe is a gigantic com-
puter that computes its next state. However, such beliefs are based on un-
justified assumptions (see Section 8.5 for a more detailed discussion of these
issues). But it is equally interesting to say that it is the beauty of compu-
tation in general and the “desire for a single, overarching explanation for
everything” that has compelled many thinkers and researchers to support
the idea that the universe is a computer. Nevertheless, the project is par-
tially computational in the sense that there are computers that do actually
compute. Thus, Project ATLAS is a hybrid system. There are some further
questions related to the very nature of knowledge, but a proper treatment
of such questions falls outside the scope of this book.


