
V. Interactive Computing

Traditionally, a computational task is considered successful only if it halts
after some finite amount of time. However, if we insist on this simple re-
quirement, most modern computer-based equipment will be considered as
a failure. For example, a computer-controlled mechanical respiration sup-
port system cannot stop operating, or else the patient being supported by
this system will die. In addition, operating systems and word processors are
written to receive unbounded input over time and therefore do not halt.
Also, a rover maneuvering on the surface of another planet should not stop
operating before its projected life expectancy,1 or else it will be considered
a (partial) failure.

Apart from this, another aspect of modern computing is that many pro-
grams do not compute any function at all. For instance, one may won-
der what function is computed by a web server or an FTP client? Quite
naturally, one may respond to this question that any web server actually
computes some bizarre, huge, unwieldy function. But by going one step
further, one can assume that walls, chairs, and even fish tanks ompute such
functions (and I will discuss these ideas later). However, one should note
that a web server may crash because of a power failure, a random attack, or
just because the system administrator shuts it down for maintenance. Since
such events are usually not scheduled, one cannot possibly conclude that
web severs actually compute something, unless one is a mystic. These and
similar observations make it clear that the classical foundations of com-
puter science are inadequate, because they fail to capture many charac-
teristics of modern computer systems. One way out of this dilemma is to
introduce interaction into our formal apparatus, and that is exactly the sub-
ject of this chapter—how interaction broadens the concept of computability.

5.1 Interactive Computing and Turing Machines

Let us start with a simple question: is the Turing model of computation
sufficient to explain and describe modern computer systems? The answer

1. For a system with practically unlimited power supply, this is not really an issue.

69

70 Chapter 5–Interactive Computing

is clearly no. The inadequacy of the classical model was briefly presented in
the introductory chapter and the paragraph above; however, it is necessary
to provide rigorous arguments in favor of the deficiency of this model in
describing and explaining the functionality of modern computer systems.
Clearly, the adoption of the Turing machine as a complete model for algo-
rithms and general problem-solving lies at the heart of the problem. Most
readers will agree with Lynn Andrea Stein’s [192] remark that

Computation is a function from its inputs to its outputs. It is
made up of a sequence of functional steps that produce—at its
end—some result that is the goal. This is what I was taught when
I was trained as a computer scientist. It is a model that com-
puter scientists by and large take for granted. It is something
the members of the field share.

To be fair, Stein is not a proponent of this point of view. On the contrary,
she is in line with Peter Wegner and Eugene Eberbach, who claim [217]
that

The T[uring]M[machine] model is too weak to describe prop-
erly the Internet, evolution or robotics, because it is a closed
model. . . In the case of the Internet, the Web clients “jump” into
the middle of interaction, without a knowledge of the server
state and previous history of other clients. A dynamic set of
inputs and outputs, parallel interaction of multiple clients and
servers, a dynamic structure of the Internet communication links
and nodes, is outside what a sequential, static and requiring full
specification Turing machine can represent.

Of course, Wegner has expressed similar thoughts in other instances (e.g.,
see [218, 215]), but this is the most recent account of these ideas. Sim-
ilar views are expressed in a milder tone by Jan van Leeuwen and Jiři
Wiedermann [208]:

The given examples of interactive and global computing indi-
cate that the classical Turing machine paradigm should be re-
vised (extended) in order to capture the forms of computation
that one observes in the systems and networks in modern infor-
mation technology.

In addition, the classical model artificially imposes limits to what can be
done with modern computers. Here is what Stein has to say about this [192]:

Increasingly, however, the traditional computational metaphor
limits, rather than empowers, us today. It prevents us from con-
fronting and working effectively with computation as it actually
occurs. This is true both within computer science, which still
clings fervently to the metaphor, and in other disciplines where

5.1–Interactive Computing and Turing Machines 71

dissatisfaction with the computational metaphor [i.e., the idea
that the brain is like a computer] has in some cases caused an
anticomputationalist backlash.

It is really debatable whether the anticomputationalist backlash was caused
by a dissatisfaction with the classical computational metaphor. On the con-
trary, computationalism asserts that all mental processes are mechanical in
their nature. In other words, according to computationalism, mental pro-
cesses can be implemented by either computers or hypercomputers. And
precisely this is the reason for the anticomputationalist backlash. Apart
from this, the essence of the whole argument is that the traditional model
of computation is clearly inadequate for modern computer practice. For ex-
ample, young students who are trained to program sequentially on systems
with a single processor, are not adequately prepared for the real world, in
which most modern programming tasks involve some kind of concurrency,
and in many cases one has to implement “algorithms” on machines with
more than one processor.

A typical counterargument to the previous rhetoric would be that all
parts of various interactive systems can be modeled by Turing machines.
However, a Turing machine always computes a result; but then, one should
be able to answer the following question raised by Stein: “What is it that
the world-wide web calculates?” In addition, one may ask what an Inter-
net relay chat server computes. Naturally, one may raise similar questions
for many other instances in which modern computer equipment is in use
today. Our inability to give convincing answers to such questions is a clear
indication that the Turing machine is an outdated model of computation
that has a very limited role to play in modern-day computing.

Bertil Ekdahl [56] argues that interactive computing can be simulated
by oracle Turing machines. However, this argument is clearly a fallacy: The
oracle of a Turing machine contains quite specific information (e.g., the
characteristic function of a set) that is used in the course of the opera-
tion of the machine. Thus, one may say that an oracle machine is thereby
able to communicate with the external world. But a typical interactive sys-
tem has bidirectional communication with the environment, which is not
the case for an oracle machine. Also, oracle machines have all the draw-
backs of ordinary Turing machines that make then inadequate as models
of interactive systems (i.e., they expect their input at the beginning of the
computation and succeed in computing something only when they stop). In
addition, one should not forget that interaction is a primitive notion (e.g.,
the π-calculus, which was introduced by Robin Milner, Joachim Parrow,
and David Walker [133], was built around this primitive notion), just as
the notion of sequentially reading from and writing to a storage medium is
a primitive notion in which the Turing machine model rest.

Doug Lea [109] remarks that just as “the few constructs supporting se-
quential programming lead to a wide range of coding practices, idioms, and

72 Chapter 5–Interactive Computing

design strategies, a few concurrency constructs go a long way in opening up
new vistas in programming.” Consequently, as Stein notes, if we discour-
age (or even prevent) students from adopting certain styles of thinking and
understanding just because they deviate from the unrelenting sequential-
ism of the computational metaphor, students are not learning new coding
practices, idioms, and design strategies, and eventually become ill prepared
for today’s software market.

If Turing machines are inadequate for describing modern computer sys-
tems, then we clearly need other formalisms that can deal with the various
aspects of these systems. Indeed, there have been a number of calculi and/or
conceptual devices that address these issues. In the rest of this chapter I am
going to give an overview of some of them.

5.2 Interaction Machines

When Turing proposed his famous machine, he actually set the founda-
tions of sequential computing. However, in the case of interactive comput-
ing, things proceeded in the opposite direction. First, programmers im-
plemented interactive systems and practiced interactive programming, and
only then did theoreticians start to formulate theories that dealt with cer-
tain aspects of interactive computing (for example, see [4, 129]). However,
an integrated theory of interactive computing appeared only in 1998 when
Wegner published his paper “Interactive foundations of computing” [216].

In this paper Wegner discusses the basic characteristics of interaction
machines as well as their computational power. In addition, he presents
“interaction grammars” that extend the Chomsky hierarchy of grammars.

An interaction machine is simply a Turing machine that is augmented
with the capability of performing dynamic read and/or write actions that
provide it with a way of directly interacting with the external world. This
additional capability can be implemented by allowing interaction machines
to be connected with their environment—more specifically, with a single or
multiple input stream or via synchronous or asynchronous communication.
From a practical point of view this means that there is no single definition
of the structure of an interaction machine. Moreover, all interaction ma-
chines are open systems. The observable behavior of interaction machines
is specified by interaction histories, which take the form of streams that are
the interactive time-sensitive analogue of strings. Formally, if A is a set,
then by a stream over A we mean an ordered pair s = (a, s′) where a ∈ A
and s′ is another stream.2 The following statement is a clear indication that
the additional “hardware” is not just some kind of accessory.

2. Streams are objects that do not belong to the standard set-theoretic universe, but they do
belong to the universe of non-well-founded sets (see [8] for details).

5.2–Interaction Machines 73

Proposition 5.2.1 It is not possible to model interaction machines by Turing
machines. [216]

Interaction machines can be viewed as mappings over streams that take
time into account. Such mappings cannot be classified as functions, since
functions are timeless. In other words, interaction machines extend the
theory of computability by introducing computable nonfunctions over histo-
ries. This nonfunctional facet of interaction machines applies also to other
aspects of these machines. This can be demonstrated by a simple example:
consider a rover maneuvering on the surface of another planet. Clearly, the
rover is an interactive system that must respond to external stimuli. For
instance, when it encounters a boulder it must change its course; when it
is going down into a crater it must use its brakes to reduce its speed, while
when it is going up a hillside it must boost its engines. In many cases, the
software loaded into the rover’s memory cannot handle totally unexpected
situations, and so a new, updated software is uploaded to the rover. None
of these actions can be predicted, and sometimes they are not among the
actions one initially expects the rover to face. In other words, these actions
cannot be described by a function, and thus one may say that they cannot be
described algorithmically. From this example it is not difficult to see that
the behavior of interaction machines cannot be described by Turing com-
putable functions. An interesting and, to some degree, unexpected effect of
interaction is that if we enhance algorithms with interactive behavior, we
create systems that operate in a smart (not intelligent!) way, or in Wegner’s
own words, “[e]xtending algorithms with interaction transforms dumb al-
gorithms into smart agents.” The crux of the ideas presented so far have
been summarized by Wegner in the form of a thesis.

Thesis 5.2.1 Inductive computing: Algorithms (Turing machines) do not
capture the intuitive notion of computing, since they cannot express inter-
active computing and intuitive computing includes interaction [216].

Before we proceed with the presentation of interaction grammars, we
will briefly recall the definitions of formal grammar and the Chomsky hi-
erarchy of grammars, as well as their relationship to various forms of au-
tomata. Readers familiar with these notions can safely skip this material.
Assume that Σ is an arbitrary set and that ε denotes the empty string. Then

Σ∗ = {ε} ∪ Σ ∪ Σ× Σ ∪ Σ× Σ× Σ ∪ · · · .

is the set of all finite strings over Σ. Let us now recall the definition of a
grammar.

Definition 5.2.1 A grammar is defined to be a quadruple G = (VN , VT , S,Φ)
where VT and VN are disjoint sets of terminal and nonterminal (syntactic
class) symbols, respectively; S, a distinguished element of VN , is called the

74 Chapter 5–Interactive Computing

starting symbol. Φ is a finite nonempty relation from (VT ∪ VN)∗VN (VT ∪
VN)∗ to (VT ∪ VN)∗. In general, an element (α,β) is written as α → β and is
called a production or rewriting rule [204].

Grammars are classified as follows:

Unrestricted grammars There are no restrictions on the form of the pro-
duction rules.

Context-sensitive grammars The relation Φ contains only productions of
the form α → β, where |α| ≤ |β|, and in general, |γ| is the length of
the string γ.

Context-free grammars The relation Φ contains only productions of the
form α → β, where |α| = 1 and α ∈ VN .

Regular grammars The relation Φ contains only productions of the form
α → β, where |α| ≤ |β|, α ∈ VN , and β has the form aB or a, where
a ∈ VT and B ∈ VN .

Syntactically complex languages can be defined by means of grammars. To
each class of languages there is a class of automata (machines) that accept
(i.e., they can answer the decision problem “s ∈ L?,” where s is a string and
L is a language) this class of languages, which are generated by the respec-
tive grammars. In particular, finite automata accept languages generated
by regular grammars, push-down automata accept languages generated by
context-free grammars, linear bounded automata accept languages gener-
ated by context-sensitive grammars, and Turing machines accept recursive
languages, that is, a subclass of the class of languages generated by unre-
stricted grammars.

An interaction grammar is not used to recognize strings but rather
streams defined above.

Definition 5.2.2 An interaction grammar IG is defined to be a quadruple
(VN , VT , S, R), where VN , VT , and S have their “usual” meaning and R is a
set of production rules. Given a production ruleα → β,βmay be formed using
the “listening” operator . and the “nondeterministic choice” operator +.3

Generally speaking, the . operator waits for input, while the + operator se-
lects nondeterministically an event from a list of events when input arrives.
Thus, an interactive grammar containing only the production rule

BinDigit → (0 + 1).BinDigit

describes infinite streams, expressing reactive systems that react to a con-
tinuous (nonhalting) stream of zeros and ones over time.

3. Although it is not explicitly stated, one may use parentheses for clarity.

5.3–Persistent Turing Machines 75

It is known that one can compose sequential processes and create a new
process that has the combined effect of the two processes. Practically, this
means that one can compose two Turing machines to create paired Turing
machines that compute exactly what the two distinct machines compute.
On the other hand, it is not possible to compose interaction machines in
a similar way. However, we can combine interaction machines by means
of the parallel composition operator, denoted by |. Thus, the behavior of
P|Q is “equal” to the behavior of P, the behavior of Q, and the interaction
that takes place between P and Q. It is interesting to note that parallel
composition is a commutative operation, that is, A|B = B|A.

Interactive identity machines are a special form of interaction machines
that immediately output their input without transforming it. These ma-
chines can express richer behavior than Turing machines, because they
trivially model Turing machines by simply echoing their behavior. Interac-
tive identity machines can be used to model “echo intelligence” (a
behavior that is best exemplified by the legendary Eliza program by Joseph
Weizenbaum [221]).

5.3 Persistent Turing Machines

Persistent Turing machines, which were introduced by Dina Goldin [69],
are extended Turing machines that can describe a limited form of inter-
active behavior. In particular, they can be employed to describe sequential
interactive computations that are applied to a dynamic stream consisting
of input/output pairs and have their state stored in some medium [70]. A
persistent Turing machine is a Turing machine that operates on a number
of different tapes. In addition, the contents of a distinguished tape, which
is called the persistent work tape (or just work tape), are preserved between
any two complete computational tasks. This distinguished tape plays the
role of the permanent memory of the machine, and its contents specify the
state of the machine before and after a computation. The states of a persis-
tent Turing machine are represented by strings with no restriction on their
length (i.e., they may even be infinite).

A persistent Turing machine P defines a partial recursive function
φP :I×W →O×W , where I , O, and W denote its input, output, and work
tape. To demonstrate how we can define this function, I will borrow an ex-
ample from [69]. A telephone answering machine A is actually a persistent
Turing machine that defines the following function:

φA (record x, y) = (ok, yx),
φA (play back, x) = (x, x),

φA (erase, y) = (done, ε).

76 Chapter 5–Interactive Computing

The answering machine can record, play back, and erase messages. In addi-
tion, the work tape of the answering machine contains a stream of recorded
messages. Thus, φA fully describes the observable behavior of the answer-
ing machine. Notice that the contents of the work tape are only part of the
definition of φA and by no means affect the behavior of A .

Let us summarize: a persistent Turing machine P transforms an input
stream (i1, i2, . . .) to an output stream (o1, o2, . . .) using a function φP . Ini-
tially, the state of P is empty. In the course of its operation the state of
P changes. For instance, in the case of our answering machine, a possible
input stream may be

(record A, record BC, erase, record D, record E,play back, . . .).

This input stream generates the output stream

(ok, ok,done, ok, ok, DE, . . .),

while the state evolves as follows:

(ε, A, ABC, ε, D, DE, DE, . . .).

Assume that I and O are the input and output streams of a persistent Tur-
ing machine P . Then the interaction stream of P is a stream of pairs,
where the first part of each pair comes from the input stream and the
second part from the output stream. Thus, the interaction stream of our
answering machine has the following form:

(
(record A, ok), (record BC, ok), (erase,done), (record D, ok), . . .

)
.

In order to compare two different conceptual computing devices, Goldin
uses the notion of behavioral equivalence. Two conceptual computing de-
vices are equivalent if they have the same behavior. In the case of string-
manipulating devices (e.g., ordinary Turing machines), the collection of
strings that are processed and generated by the device constitutes its be-
havior. For example, the behavior of a Turing machine is formed by the
strings that are read and printed by its scanning head. More generally, the
behavior of a conceptual computing device D can be modeled by its corre-
sponding language L(D). For instance, for any persistent Turing machine
P, the set of all interaction streams makes up its language L(P). Since the
language of a conceptual computing device models its behavior, one can say
that two such devices D1 and D2 are equivalent if L(D1) = L(D2).

A persistent Turing machine processes an arbitrary input stream that
is generated by its environment. Clearly, this is not a realistic assumption,
since the external environment cannot yield an arbitrary input stream (e.g.,
the winning numbers in a lottery drawing are usually in the range 1 to 48,
and these numbers are the input for the lottery players). This remark has
led Goldin to a general definition of equivalence in the following way.

5.4–Site and Internet Machines 77

Definition 5.3.1 Assume that C is a set of conceptual computing devices
and B a function that returns the behavior of some machine. Then an envi-
ronment O for C is a function O : C → βO that is consistent, which means
that

∀M1, M2 ∈ C : B(M1) = B(M2) ⇒ O(M1) = O(M2).

The elements of βO are called feasible behaviors (within the environment
O). If O(M1) �= O(M2), then M1 and M2 are distinguishable in O; otherwise,
they appear equivalent in O.

Given a set C of conceptual computing devices with behavior B, then
any environment O for C can be used to partition C into equivalence
classes. Each of these classes is called a behavioral equivalence class, since
the members of each equivalence class appear equivalent in O. Based on
this, it is possible to classify environments.

Definition 5.3.2 Given two environments O1 and O2, then O1 is richer than
O2 if its behavioral equivalence classes are strictly finer that those of O2.

Quite naturally, it is possible to define an infinite sequence Θ of finite per-
sistent Turing machines’ environments Θ = (O1, O2, . . .), provided that for
any k, Ok(M) is the set of prefixes of interaction streams, of length less than
or equal to k. It can be proved that for any such sequence, Ok+1 is richer
than Ok. The main result concerning environments is the following.

Theorem 5.3.1 The environments in Θ induce an infinite expressiveness hier-
archy of persistent Turing machine behaviors, with Turing machines at the
bottom of the hierarchy [69].

Goldin admits that the behavior of any persistent Turing machine is not
rich enough to describe an arbitrary interactive system. However, as men-
tioned above, these machines can be used to describe any sequential interac-
tive computation. This observation has been formulated in [70] as follows.

Thesis 5.3.1 Any sequential interactive computation can be performed by a
persistent Turing machine.

On the other hand, the behavior of a Turing machine is at the bottom of
the expressiveness hierarchy, which simply implies that Turing machines
are an inadequate model of computation for modern computer equipment.

5.4 Site and Internet Machines

Site and Internet machines were introduced by van Leeuwen and Wieder-
mann [209] to model individual machines, possibly connected with other

78 Chapter 5–Interactive Computing

machines, and a network of site machines. More specifically, a site machine
models a normal personal computer that is equipped with a hard disk hav-
ing potentially unlimited capacity. A site machine can communicate with
its environment by sending and receiving messages via a number of ports.
One may think of a site machine as a random-access machine that can use
sockets to communicate with its environment. The messages that a site
machine may receive or send consist of symbols from a finite alphabet Σ.
The special symbol τ ∈ Σ is used to designate the end of some communi-
cation. One may think that τ is something like the ASCII EOT (End Of
Transmission) character that signals the end of the current transmission.

Typically, the hardware and/or software of a site machine can be changed
by an external operator called an agent. The agent is part of the environ-
ment and communicates with a site machine via its ports. As in real life,
when the configuration of the machine changes (e.g., when it is being main-
tained by the agent), either the machine is temporarily switched off or its
communication with the environment is temporarily blocked. Since site
machines are equipped with a permanent memory, no data is lost during
hardware or software upgrades. When the upgrade process is finished, the
machine will be able to resume its operation and consequently, its commu-
nication with the environment. It is quite possible to define a function γ
that returns a description of the hardware or software upgrade that is tak-
ing place at time t. If no such operation is taking place, one may assume
that γ returns an empty string. Generally speaking, the function γ is non-
computable (in the classical sense of the word) and its values are not a priori
known. These remarks are justified because one cannot foresee the actions
of any agent. In other words, one cannot tell beforehand what might go
wrong with a computer system. If we could actually compute such a func-
tion, then the notion of a computable future would be no exaggeration!

A site machine performs a computation by transforming an infinite mul-
tiplex input stream into a similar output stream. More specifically, if a site
machine has n input ports and m output ports, it processes a stream of
n-tuples to produce a stream of m-tuples. In other words, a site machine
computes mappings Φ of the form (Σn)∞ → (Σm)∞. Note that if A is an
alphabet, then Aω denotes the set of infinite strings over the alphabet A.
Also, A∞ = A∗ ∪ Aω, which is the set of finite and infinite strings over the
alphabet A.

Clearly, a site machine is not a basic conceptual computing device. Thus,
if one wants to study the computational power of site machines, it is nec-
essary to design a conceptual computing device that mimics the behavior
of a site machine. Most attempts to define new conceptual computing de-
vices are based on the Turing machine. In general, this approach is based
on the conservative idea that the Turing model is simple and valid, so all
extensions should be based on it. Thus, we are going to construct a new con-
ceptual device that is basically a Turing machine augmented with a number
of new features. More specifically, our new extended Turing machine will

5.4–Site and Internet Machines 79

be equipped with three new features: advice, interaction, and infinity of
operation.

Any candidate mechanism that models the change of software or hard-
ware must satisfy the following two requirements:

(i) changes should be independent of the current input read by the ma-
chine up to the moment of the actual change, and

(ii) changes should not be large.

These requirements can be met once we demand that the description of
new hardware or software depend only on the moment t it actually happens.
In addition, the size of the description has to be “at most polynomial in t”
(i.e., it has to be reasonably short).

Oracles can be used to enter new, external information into the ma-
chine. However, “ordinary” oracles are too “loose” for our case, and so van
Leeuwen and Wiedermann have opted to use advice functions. Turing ma-
chines with advice were studied by Karp and Lipton [94]. Assume that
S ⊂ B, where B = {0, 1}∗. In addition, suppose that h : N → B. Next, we
define the set

S : h =

{

wx
∣
∣
∣
(

x ∈ S
)
∧
(

w = h(|x|)
)}

.

Recall that |x| denotes the length of the bit string x. Let S be any collection
of subsets of B. Also, let F be any collection of functions from the set of
natural numbers to the set of natural numbers. Then

S/F =

{

S
∣
∣
∣ (∃h)

(
(λn.|h(n)| ∈ F) ∧ (S : h ∈ S)

)}

.

The intuitive meaning of S/F is that it is the collection of subsets of B
that can be accepted by S with F “advice.” In this book we will be con-
cerned only with the class P/poly. Notice that the P/poly class of languages
is characterized by a Turing machine that receives advice whose length is
polynomially bounded and computes in deterministic polynomial time. By
substituting the set {0, 1} with Σ, one may get similar definitions and re-
sults.

In order to make a Turing machine with advice able to interact with
its environment, we must equip it with a (finite) number of input and out-
put ports. In addition, in order to accommodate infinite computation, one
may consider the modus operandi of infinite-time Turing machines. Having
roughly specified how advice, interaction, and infinity of operation can be
accommodated in a single conceptual computing device, we need to give a
description of how the resulting machine will operate. Initially, the tapes of
the machine are assumed to be filled with blanks. In addition, the machine’s
operation depends on some controlling device. At each step, the machine
reads the symbols that appear in its input ports and writes some symbols

80 Chapter 5–Interactive Computing

to its output ports. What the machine will do next depends on what it has
read, what lies under its scanning heads, and the instruction being exe-
cuted. Also, at any time t the machine can consult its advice only for values
of t1 ≤ t. Machines that have these characteristics are termed interactive
Turing machines with advice.

Theorem 5.4.1 For every site machine there exists an interactive Turing ma-
chine with advice A that has the same computational power. In addition, for
every interactive Turing machine with advice there exists a site machine that
has the same computational power.

The following theorem makes precise the equivalence stated in the previous
theorem.

Theorem 5.4.2 Assume that Φ : (Σn)∞→ (Σm)∞, n, m > 0, is a function. Then
the following statements are equivalent:

(i) The function Φ can be computed by a site machine.

(ii) The function Φ can be computed by an interactive Turing machine with
advice.

The Internet is the international computer network of networks that
connects government, academic, and business institutions. Every machine
that is part of the Internet has its own address. Internet machines are a
model of the Internet. As such, an Internet machine consists of a number
of different site machines. All machines that make up an Internet machine
have their own unique addresses. As in the case of a simple network, we
need to know which machines are active at any given moment. Thus, we
define a function α that returns the list of addresses of those machines
that are active at time t. In addition, we can safely assume that for all t,
the size of the list α(t) is polynomially bounded.4 Also, we assume that the
site machines making up an Internet machine operate asynchronously and
communicate by exchanging messages.

Typically, an IP packet is a chunk of data transferred over the Internet
using the standard Internet protocol. Each packet begins with a header
containing the address of the sender, the address of the receiver, and gen-
eral system control information. Similarly, the header of any message that
site machines exchange contains the address of both the sender and the
receiver. Naturally, it is unnecessary to include any system control informa-
tion, since we are defining a conceptual device in the broad sense of the
term. In the real world, it is impossible to predict the amount of time it
takes for a message to arrive at a destination machine from the moment it

4. A function f (n) is polynomially bounded if f (n)=O(nk) for some constant k. Practically, this
means that there are positive constants c and l such that f (n)≤cnk for all n≥ l. The values of
c and l must be fixed for the function f and must not depend on n.

5.5–Other Approaches 81

has been sent, not to mention the possibility that the message never gets
delivered. This implies that the time it takes for a message emitted by a site
machine to reach its destination should not be predictable. However, one
can give an estimate of this time. Thus, at any given moment t, for any two
site machines i, j ∈ α(t), one can define a function β that will “compute” the
estimated delivery time. For messages that are addressed to some machine
k �∈ α(t), the sending machine will receive an error message just after the
message has been sent. Clearly, not all machines are directly connected and
thus the message is actually sent from a machine that resides in the prox-
imity of where the non-existing machine is supposed to be. Messages that
have the same (existing) recipient enter a queue if they arrive at same time,
and consequently, they will be processed accordingly. At any time t and for
any machine i ∈ α(t), the function γ returns a (formal) description of the
hardware or software upgrade that might take place at t on machine i.

Functions α, β, and γ fully specify the operation of a given Internet
machine. Generally speaking, these functions are noncomputable and their
return values are “computed” by consulting a number of finite tables.

It is not hard to see that Internet machines compute mappings that are
similar to those that can be computed by site machines. However, since
an Internet machine consists of a number of site machines that may have
different numbers of input and output ports, this obviously affects the map-
pings that can be computed by a given Internet machine. Without getting
into the technical details, one can prove that for every Internet machine
there exists an interactive Turing machine with advice that sequentially re-
alizes the same computation as the Internet machine. Clearly, the opposite
also holds true.

Site and Internet machines are conceptual computing devices that are
supposed to model our personal computers and the Internet, respectively.
Both these conceptual computing devices seem to transcend the capabili-
ties of the Turing machine. They seem to transcend even the capabilities
of interaction machines. In spite of the fact that it has not been directly
demonstrated how these machines can tackle classically unsolvable prob-
lems, we still classify them provisionally as hypermachines, since they seem
to transcend the capabilities of Turing machines.

5.5 Other Approaches

If we assume that the Church–Turing thesis is indeed valid, then for every
effectively computable function f there is a λ-term and vice versa. Let us
now hypothesize that there exists a calculus that is built around a notion
more “fundamental” than the corresponding notion on which the λ-calculus
is built. Also, assume that this new calculus is general enough so one can
simulate the λ-calculus within it, but at the same time, it is impossible

82 Chapter 5–Interactive Computing

to simulate this new calculus within the λ-calculus. Clearly, this hypotheti-
cal new calculus is more expressive than the λ-calculus. In addition, it would
be interesting to see whether classically noncomputable functions become
“computable” in this new framework, provided that we are able to define
an equivalent model of computation. The very existence of such a calcu-
lus, and its accompanying model of computation, would affect the validity
of the Church–Turing thesis. Naturally, a direct consequence would be a
“broadening” of the thesis.5 The most important question is whether such
a calculus actually exists.

The π-calculus [132] is a process algebra that is built around the prim-
itive notion of interaction. The calculus is particularly well suited for the
description of systems in which mobility 6 plays a central role. In addition,
the π-calculus has as a special case the λ-calculus [130]. In other words,
for every λ-term there is an “equivalent” π-calculus process expression,
but not vice versa. Moreover, if there are two λ-terms that are equated
using λ-calculus means, their translations can be distinguished in the π-
calculus, which makes the π-calculus strictly more expressive than the λ-
calculus [19].

Let us now see how we can translate a λ-term into the π-calculus. Since
this translation is purely syntactic, we need to briefly review the syntax of
both calculi. The set of π-calculus process expressions is defined by the
following abstract syntax:

P ::= Σi∈Iπi.Pi

∣
∣
∣ P1|P2

∣
∣
∣ new α P

∣
∣
∣ !P .

If I = ∅, then Σi∈Iπi.Pi = 0, which is the null process that does nothing.
In addition, πi denotes an action prefix that represents either sending or
receiving a message, or making a silent transition:

π ::= x(y)
∣
∣
∣ x̄〈 y〉

∣
∣
∣ τ .

The expression Σi∈Iπi.Pi behaves just like one of the Pi’s, depending on
what messages are communicated to the composite process; the expression
P1|P2 denotes that both processes are concurrently active; the expression
new α P means that the use of the message α is restricted to the process
P; and the expression !P means that there are infinitely many concurrently
active copies of P .

The set of λ-terms is defined by the following abstract syntax:

M ::= x
∣
∣
∣ λx.M

∣
∣
∣ MN .

We are now ready to present the translation of any λ-term into the π-
calculus.
5. This is true, as evidenced by the fact that the authors of the various models of interactive
computation presented in this chapter have reformulated the Church–Turing thesis.
6. The term “mobility” here means among others things that processes may move in a virtual
space of linked processes or that processes move in a physical space of computing sites.

5.5–Other Approaches 83

mail
queue

1 2 n

Xn actor machine

Figure 5.1: An abstract representation of an actor.

Definition 5.5.1 Assume that M is an arbitrary λ-term. Then its translation
[[M]] into the π-calculus is an abstraction defined inductively as follows:

[[x]](u) def
= x̄〈u〉,

[[λx.M]](u) def
= u(xv).[[M]]〈v〉,

[[(MN)]](u) def
= new v

(
[[M]]〈v〉 | new x(v̄〈xu〉 | !x[[N]])

)
.

Notice that in the last equation, x is a bound name in N . Also, [[M]](u)
denotes that [[M]] is actually an abstraction that is applied to an argument
list u.

The π-calculus is not really a model of computation; it is rather a math-
ematical theory with which one can describe the functionality of computa-
tional models or systems. A theory that is closer to what one may call a true
model of interactive computation is the actors model of concurrent compu-
tation created by Carl Hewitt, Henry Baker, and Gul Agha [4]. The actors
model is an untyped theory that is a generalization of the λ-calculus. Actors
communicate with each other by sending messages. Incoming communica-
tion is mapped to a triple that consists of:

(i) a finite set of messages sent to other actors,

(ii) a new behavior that is a function of the communication accepted (and
thus the response to the next communication depends on it), and

(iii) a finite set of newly created actors.

Each actor has its own mail address and its own mail queue, with no limit
on the number of messages it can hold. Notice that the behavior of an actor
is determined by the relationships among the events that are caused by it.
Also, it is rather important to note that an actor is defined by its behavior
and not by its physical representation. Figure 5.1 depicts an abstract rep-
resentation of an actor. The information contained in the actor machine
determines the behavior of the actor; thus, it can be sensitive to history.

84 Chapter 5–Interactive Computing

Actors are a model of computation that is more powerful than the clas-
sical model of computation. For instance, it is not difficult to simulate ar-
bitrary sequential processes (e.g., Turing machines) or purely functional
systems based on the λ-calculus by a suitable actor system, but it is not pos-
sible to simulate an actor system by a system of sequential processes. The
reason why the converse is not possible is the ability of any actor to create
other actors. And this is one of the reasons the π-calculus is more expres-
sive than the λ-calculus: by using the replication operator, !, one can specify
the generation of an unbounded number of copies of a given process.

