
III. Early Hypercomputers

Hypercomputation is not really a recent development in the theory of com-
putation. On the contrary, there were quite successful early efforts to define
primarily conceptual computing devices with computational power that
transcends the capabilities of the established model of computation.1 In
this chapter, I will present some of these early conceptual devices as well as
some related ideas and theories. In particular, I will present trial-and-error
machines, TAE-computability, inductive machines, accelerated Turing ma-
chines, oracle machines, and pseudorecursiveness. However, I need to stress
that I have deliberately excluded a number of early efforts, which will be
covered later in more specialized chapters.

3.1 Trial-and-Error Machines

In this section I present the theory of trial-and-error machines, a model
of the human mind based on these machines, and TAE-computability, a
model of computation that is similar to trial-and-error machines.

3.1.1 Extending Recursion Theory

In 1965, the prestigious Journal of Symbolic Logic published in a single
issue two papers [68, 160] by Mark Gold and Hilary Putnam that dealt
surprisingly with the same subject—limiting recursion. This type of recur-
sion can be realized in the form of trial-and-error machines. Typically, a
trial-and-error machine is a kind of a Turing machine that can be used to
determine whether an element x belongs to a set X ⊂ N or, more generally,
whether a tuple (x1, . . . , xn) belongs to a relation R ⊂ Nn. In the course of
its operation, the machine continuously prints out a sequence of responses
(e.g., a sequence of 1’s and 0’s) and the last of them is always the correct

1. Strictly speaking, Kalmár [93], Rózsa Péter [154], and Jean Porte [156] were probably the
first researchers to challenge the validity of the Church–Turing thesis. Nevertheless, their
arguments were not without flaws, as was shown by Elliott Mendelson [126].

25

26 Chapter 3–Early Hypercomputers

answer. Thus, if the machine has most recently printed 1, then we know
that the integer (or the tuple) that has been supplied as input must be in
the set (or relation) unless the machine is going to change its mind; but we
have no procedure for telling whether the machine will change its mind
again. Suppose now that our trial-and-error machine prints out an infinite
number of responses. Then after a certain point, the machine may con-
verge to a particular response, and thus it will continuously print out the
same response (1 or 0). Of course, this description is somehow vague, and
so we need to define precisely limiting recursion. Let us begin with limiting
recursive predicates.2

Definition 3.1.1 A function P is a limiting recursive predicate if there is a
general recursive function f such that (for every x1, x2,. . . ,xn),

P(x1, x2, . . . , xn) ⇐⇒ lim
y→∞

f (x1, x2, . . . , xn, y) = 1,

¬P(x1, x2, . . . , xn) ⇐⇒ lim
y→∞

f (x1, x2, . . . , xn, y) = 0,

where

lim
y→∞

f (x1, x2, . . . , xn, y) = k def
= (∃y)(∀z)(z ≥ y → f (x1, . . . , xn, z) = k).

The following theorem is proved in [160].

Theorem 3.1.1 P is a limiting recursive predicate if P ∈ ∆0
2.

Obviously, this means that one cannot use a Turing machine to check
whether a limiting recursive predicate P is true or false. Thus, trial-and-
error machines transcend the Church–Turing limit.

Assume now that we restrict a trial-and-error machine so it can change
its mind only k times, irrespective of the particular input the machine has.
As a direct application of this restriction, k-limiting recursion was intro-
duced.

Definition 3.1.2 P is a k-limiting recursive predicate if there is a general
recursive function f such that (for every x1, x2,. . . ,xn):

(i) P(x1, x2, . . . , xn) ⇐⇒ lim
y→∞

f (x1, x2, . . . , xn, y) = 1;

(ii) there are at most k integers y such that

f (x1, . . . , xn, y) �= f (x1, . . . , xn, y + 1).

The following theorem is proved in [160].

2. Putnam calls these predicates trial-and-error predicates, but we have opted to use Gold’s
terminology.

3.1–Trial-and-Error Machines 27

Theorem 3.1.2 There exists a k such that P is a k-limiting recursive predicate
if and only if P belongs to ∗Σ0

1, the smallest class containing the recursively
enumerable predicates and closed under truth functions.

Limiting recursive functions can be defined similarly to limiting recur-
sive predicates.

Definition 3.1.3 A partial function f (x) will be called limiting recursive if
there is a total recursive function g(x, n) such that

f (x) = lim
n→∞

g(x, n).

Similarly, one can define limiting recursive sets and relations (see [68] for
details).

It has already been noted that trial-and-error machines transcend the
capabilities of ordinary Turing machines; thus they should be able to solve
the halting problem. Indeed, Peter Kugel [103] describes an effective meth-
od (or hyperalgorithm) that can solve this problem. Here is his effective
method to solve this problem:

Given a program, Prog, and an input, Inp, output NO (to
indicate that Prog(Inp) will not halt). Then run a simulation
of Prog(Inp). (Turing [206] showed that such a simulation is
always possible.) If the simulation halts, output YES to indicate
that Prog(Inp) really does halt.

Clearly the last output that this procedure produces solves
the halting problem, if you are willing to accept results arrived
at “in the limit.” Which proves that limiting computation can
do things no ordinary, or recursive, computation can.

3.1.2 A Model of the Human Mind

Another aspect of Kugel’s work is a proposed model of intelligence, and
consequently a model of the human mind, that is based on limiting recur-
sion. In particular, Kugel is a strong advocate of the idea that the human
mind is actually a trial-and-error machine. He has suggested a division of
the human mind into four parts or modules [102]. Figure 3.1 depicts Kugel’s
division.

28 Chapter 3–Early Hypercomputers

Input
processor

Central
Processor

Output
Processor

Program
Selector

Figure 3.1: Kugel’s division of the human mind.

The functionality of each module is briefly outlined below:

Input Processor This module gathers information from the environment
and transforms it into a form suitable for further processing by the
central processor. For example, suppose that Lila is a zoologist who
studies a herd of zebras in an African savanna. Suddenly, she real-
izes that a tiger is approaching the place where she is standing. At
once, her input processor takes this visual signal and turns it into the
message, “This is a tiger.”

Central Processor The transformed data that the input processor produces
are further transformed into a form that is meaningful for the output
processor. For example Lila’s central processor might transform the
message, “This is a tiger” into the message, “run.”

Output Processor This module takes the information produced by the cen-
tral processor and transforms it into something that can be used to
affect the world. For example, Lila’s output processor might take the
message, “run” and turn it into messages to control specific muscles
so as to remove Lila from the immediate area.

Program Selector In general, different situations demand different actions.
In Kugel’s model, the human mind has a set of (predefined?) actions,
which he calls programs, that can be invoked to handle a particular
situation. The program selector is the module that is responsible for
the invocation of the appropriate program. For example, Lila’s pro-
gram selector will most probably decide that it is time to invoke the
animal-recognizing program and halt the zebra-studying program.

Kugel argues that the input processor is a Π0
1 process (i.e., it can be simu-

lated by a machine capable of computing such functions), the output pro-
cessor is a Σ0

2 process, the central processor is a k-limiting recursive process,
and the program selector is a Π0

2 process.
Kugel has derived his results by tacitly assuming that all mental pro-

cesses are mechanistic in nature and part of the arithmetic hierarchy. This

3.1–Trial-and-Error Machines 29

observation explains the nature of his results, but not how he arrived at his
conclusions. Therefore, to explain how he did so, I will briefly present the
ideas that led him to this particular model of the mind.

Among other things, the input processor classifies what we see or ob-
serve. Based on earlier suggestions made by other researchers, Kugel has
suggested that our ability to classify what we observe might involve the
recognition of membership in productive sets. A set A ⊆ N is called pro-
ductive when there is no computing procedure to determine whether some
element x belongs to A. In addition, there is a computable function, the
production function, that effectively finds a counterexample to the claim
that some procedure will effectively recognize membership in A. Formally,
productive sets are defined as follows.

Definition 3.1.4 Let Wi, i ∈ N, be a numbering (i.e., a surjective assign-
ment of natural numbers to the elements of a set of objects) of the recur-
sively enumerable subsets of N such that Wi = domφi (i.e., the domain of
φi), where φi is a recursive function whose Gödel number is i. A set A ⊆ N

is called productive if there exists a computable function ψ such that for
all i ∈ N, Wi ⊆ A implies that ψ(i) is convergent (i.e., it is defined) and
ψ(i) ∈ A \ Wi.

There are productive sets in Π0
1 . For instance, the set N of all pairs (M , x)

such that Ψ
(1)
M (x) fails to halt is a productive set that is in Π0

1 . In addition,
there is a nonhalting procedure to determine whether a pair (M , x) belongs
to N . And according to Kugel, the input processor employs such a nonhalt-
ing procedure to recognize objects.

The human mind is able to derive general theories from specific evi-
dence and to deduce specific facts from its ever changing knowledge of the
world. In general, theories are assumed to be correct until some evidence
forces us to alter the theory or even to abandon it in favor of a new theory.
For instance, as Kugel [104] has pointed out if all swans that we have ob-
served are white, then we will come up with the theory that all swans are
white. Naturally, this theory will change the very day someone observes a
cygnus atratus (a black swan). This scenario of scientific research suggests
that our ability to develop theories from specific evidence is not really com-
putable (i.e., one cannot “re-create” this procedure by using a conventional
computing device). Indeed, Kugel has suggested that this ability might be
actually a trial-and-error procedure. As such, it can evaluate predicates in
Σ0
2. Thus, Kugel has actually suggested that the output processor is a Σ0

2
process.

A simple model of how the mind actually solves problems is based on
the solution of the problem of inverting computable functions, that is, given
a machine p and an output o, find an input i such that Ψ2

U (p, i) equals o.
This problem can be solved by employing a k-limiting recursive process, and
so one may say that the central processor is actually a k-limiting recursive

30 Chapter 3–Early Hypercomputers

process, though it is not clear what the value of k shoulf be.
Usually, most computer programs decrease the amount of information

involved during their execution. For example, a simple program that adds
its (command line) arguments generates one number out of two. On the
other hand, Kugel asserts that the selection of a program to perform a
particular task increases the amount of information in an information-
theoretic sense. This is an indication that this procedure cannot be
computable. In general, a k-limiting recursive process can be used in associ-
ation with a program-generating program to find a program that matches
the evidence provided. This is clearly the task performed by the program
selector. However, since many of the generated programs are not suitable
for some particular task (e.g., they cannot handle all pieces of evidence), we
need a mechanism to filter these programs. It is not possible to computably
filter out all and only the totally computable programs from the list of all
possible programs. But it is possible to perform this task noncomputably
using a Π0

2 filter, which explains why Kugel has suggested that the program
selector is a Π0

2 process.
The adoption of Kugel’s model automatically implies the invalidation of

the Church–Turing thesis. However, what is really puzzling about Kugel’s
model is that he asserts that most (if not all) vital mental processes are
purely computational in nature. Obviously, a number of mental processes
are indeed computational in nature, for instance, our ability to perform ba-
sic arithmetic operations.3 However, it is one thing to be able to calculate
the sum or the product of two numbers and another to fall in love and ex-
press it by saying “Sigga, I love you!” In other words, as has been already
pointed out, no one has provided enough evidence to support the idea that
feelings and affection are computational in their nature. Another aspect
of Kugel’s model is that it seems to be naive in the eyes of contemporary
thinkers and researchers, for it lacks the “sophistication” of modern ap-
proaches to the philosophy of mind. Apart from this, it is really difficult to
see why some machine that can solve the halting problem, can ipso facto
feel angry, fall in love, or even worship God!

3.2 TAE-Computability

Jaakko Hintikka and Arto Mutanen [83, Chapter 9] present an alternative
conceptual computing device that is similar to trial-and-error machines.
The Hintikka–Mutanen abstract computing device is essentially a Turing
machine with an extra tape, which is called the bookkeeping or result-
recording tape. Both the working and bookkeeping tapes can be viewed as

3. Although it is not clear at all that our ability to perform basic arithmetic operations is
computational, still, for the sake of argument, I will assume this is the case.

3.2–TAE-Computability 31

read–write storage devices, since the machine can print and erase informa-
tion from either tape. Without loss of generality, one can assume that what
appears on the bookkeeping tape are equations of the form f (a) = b, where
a, b ∈ N. These equations are used by the machine to define the function
to be computed. In particular, this function is computed by the machine if
and only if all (and only) such true equations appear on the bookkeeping
tape when the machine has completed its operation. Practically, this means
that each true equation f (a) = b will be printed on the bookkeeping tape
sometime during the operation of the machine and it will stay on it until
the machine terminates. At that point, for each a, there has to be one and
only one true equation on the bookkeeping tape. If no such equation has
appeared on the bookkeeping tape for some a, or the equation for some a
was changing continuously, then the value f (a) is not defined.

A Hintikka–Mutanen machine cannot be simulated by a Turing ma-
chine, since these machines introduce a wider notion of computability com-
pared to standard Turing machines. On the other hand, by imposing some
restrictions on the operation of the machine, we obtain an abstract machine
that is computationally equivalent to the Turing machine. More specifically,
if we require that the machine never erase anything from the bookkeeping
tape, the machine will behave like an ordinary Turing machine. In classical
computability it is not enough to have each true equation f (a) = b on the
result-recording tape from some finite stage on, but it is necessary to know
when the machine has reached this stage. If we allow the machine to erase
data from the bookkeeping tape, then we could specify as a condition that
f (x) have the value b if and only if the equation f (a) = b is the last equation
of the form f (a) = x produced by the machine. Clearly, this implies that
we have at our disposal an effective procedure to determine when the last
equation has been printed on the bookkeeping tape.

Hintikka and Mutanen call the resulting computability theory TAE-
computability, short for trial-and-error computability. The following pas-
sage [83] gives an explanation of why this particular name was chosen:

The name is motivated by the fact that erasure from the result
tape is permitted by our definition. Such erasure can be thought
of as an acknowledgement on the part of the machine that its
trial choice of a line of computation has been in error and that
it is using the recognition of an error to try a different line of
computation.

TAE-computability is “arguably more fundamental theoretically than
recursivity.” In order to show this, the authors prove a theorem. But in
order to fully comprehend it, one must be familiar with a number of defini-
tions from logic. So, I will briefly present the notions of satisfiable formulas
and Skolem functions as they are presented in [53]. Readers familiar with
these concepts can safely skip the next paragraph.

32 Chapter 3–Early Hypercomputers

Assume that L is a language (i.e., a countable set of nonlogical symbols).
Then an interpretation I of L is characterized by the following:

(i) There is a domain of interpretation, which is a nonempty set D of
values.

(ii) A function fI :Dn→D is assigned to each n-ary function symbol f ∈ L.
Constants are assigned values from D.

(iii) A proposition letter in L is assigned either the value tt or ff .

(iv) A relation PI ⊆ Dn is assigned to each n-ary predicate symbol P ∈ L.

Suppose that L is a language, I an interpretation of L, D the domain of I ,
and α a formula of L. Now, if α has the value tt in I for every assignment
of the values of D to the free variables of α, then α is said to be valid in I
or that I satisfies α. For any formula that is valid in an interpretation I , the
interpretation I is called a model of α. Also, any formula α that has at least
one model is called satisfiable, or else it is called unsatisfiable. A sentence
is a logic formula in which every variable is quantified. A sentence is in
prenex normal form if it has the following form:

Q1x1Q2x2 . . . Qnxnα,

where Qi is either a universal quantifier or an existential quantifier, xi are
distinct variables and each of them occurs at least once in α, and α contains
no quantifiers. If σ is a sentence in prenex normal form, the Skolemization
of σ is the procedure by which we eliminate each existential quantifier and
its attached variable from the prefix of σ and then replace each occurrence
of the attached variable in the quantifier-free part of the sentence with cer-
tain terms called Skolem functions. If the existential quantifier is in the
scope of a sequence of universal quantifiers, then each free occurrence of
the attached variable will be replaced by the term f (x1, x2, . . . , xn), where f
is a fresh function symbol and the xi’s are the variables attached to the uni-
versal quantifiers; otherwise, each free occurrence of the attached variable
will be replaced by a new constant symbol.

In the 9th chapter of [83], Hintikka and Mutanen state and prove the
following theorem.

Theorem 3.2.1 Each satisfiable formula S of first-order logic has at least one
model where its Skolem functions are TAE-computable.

The essence of this theorem is that since there are satisfiable formulas for
which there are no models with recursively enumerable relations (i.e., there
are no sets of recursive Skolem functions) and we, on the other hand, can
compute these sets using TAE-machines, these machines are clearly more
powerful than Turing machines. Thus TAE-machines are hypermachines.

3.3–Inductive Turing Machines 33

It is rather interesting to note that Hintikka and Mutanen conclude that
the logic associated with TAE-computability is just classical logic. Going
one (probably arbitrary) step ahead, one may say that classical logic is the
logic of (one form of) hypercomputation.

Although TAE-computability is not as mature a theory as its classical
counterpart, still there are certain aspects of the theory that have been ad-
dressed by its developers. For instance, a set is TAE-enumerable if and only
if its semicharacteristic function4 is TAE-computable. Also, a set is TAE-
decidable if and only if both it and its complement are TAE-enumerable.
The halting problem in the case of TAE-computability is formulated as
follows: does the Turing machine with number n, which defines a partial
function fn(x), TAE-compute a value for the argument m? It important to
say that in the case of the TAE-“halting” problem we are not really con-
cerned whether the machine will actually stop; instead, we are concerned
about the constancy of the value the machine has reached.

For reasons of completeness, we present some results from [83, pp. 183–
184].

Theorem 3.2.2 If the sets A and B are TAE-enumerable, then so are A ∩ B
and A ∪ B.

Theorem 3.2.3 If the functions f and g are TAE-computable, then so is f ◦g.

Theorem 3.2.4 Being TAE-computable is an arithmetic predicate. In fact,
it is a Σ0

2 predicate.

There are a number of interesting philosophical issues that are ad-
dressed by Hintikka and Mutanen. However, I will not discuss them here.
The interested reader should consult [83] for more details.

3.3 Inductive Turing Machines

Inductive Turing machines were introduced by Mark Burgin and are de-
scribed in detail in his recent monograph [28]. Generally speaking, a sim-
ple inductive machine is a Turing machine equipped with two additional
tapes, each having its own scanning head. Burgin argues that the structure
of a simple inductive Turing machine closely resembles the generalized ar-
chitecture of modern computers. For instance, the input tape corresponds
to the input devices of the computer (e.g., the keyboard, the mouse, the
optical scanner), the output tape corresponds to the output devices of the

4. Given a set A ⊆ X , where X is some universe set, then for any x ∈ A, we have cA(x) = χA(x),
where cA is the semicharacteristic function of A. When x
∈ A, then cA(x) = ⊥, where ⊥
denotes the undefined value. In other words, cA(x) is undefined when x
∈ A.

34 Chapter 3–Early Hypercomputers

computer (e.g., the video monitor, the printer), and the working tape cor-
responds to the central processing unit of the computer.

A simple inductive machine operates in a fashion similar to that of an
ordinary Turing machine (e.g., the scanning heads read the symbol that
is printed on a particular cell on the corresponding tape, then the ma-
chine consults the controlling device, and proceeds accordingly). However,
their difference lies in the way they determine their outputs (i.e., the result
of the computation). In the course of its operation, an inductive machine
prints symbols on consecutive cells, which form sequences of symbols that
form the result of the computation (Burgin calls these sequences words,
but I prefer the term strings). Sometimes, the machine stops, provided it
has entered its halting state, and thus operates like a normal Turing ma-
chine. Nevertheless, there are cases in which the machine does not actually
stop. But this does not prevent the machine from giving results. When the
machine has printed a string on the output tape that remains unchanged
while the machine continues its operation, we can safely assume that this
particular string is the result of the computation. Even in cases in which
the result changes occasionally, it is quite possible that the output is ade-
quate for our purposes. For example, when we compute a real number we
are interested in computing it to a specific accuracy. Thus, when our ma-
chine has achieved computing the real number to the desired accuracy, we
can fetch our result while the machine continues computing the number to
even greater accuracy.

One can easily prove the following statement concerning the computa-
tional power of simple inductive machines.

Theorem 3.3.1 For any Turing machine T , there is an inductive Turing ma-
chine M such that M computes the same function as T ; that is, M and T
are functionally equivalent.

In order to classify simple inductive machines as hypermachines, they should
be able to compute functions that ordinary Turing machines fail to com-
pute. Clearly, in most cases we are interested in seeing how a potential
hypermachine can solve the halting problem. Here is how this can be done:
Assume that M is an inductive machine that contains a universal Turing
machine U as a subroutine. Given a string u and a description D(T) of a
Turing machine T , machine M uses machine U to simulate T with in-
put u. In the course of its operation M prints a zero on the output tape. If
U stops, which means that T halts with input u, machine M prints a 1 on
the output tape. Now, according to the definition, the computational result
of M is equal to 1 if T halts, or else it is equal to 0.

As has been demonstrated, simple inductive machines are hyperma-
chines. However, the crucial question is, how much more powerful than
ordinary Turing machines are these machines? It has been shown that these
machines can compute functions that are in Σ0

3∩Π0
3, which is not really high

3.3–Inductive Turing Machines 35

in the arithmetic hierarchy. For this reason, Burgin has developed an ad-
vanced form of inductive machine called inductive Turing machines with a
structured memory. We note that these machines were developed indepen-
dently from the theory of limiting recursion. For reasons of brevity, in what
follows, the term “inductive machine” will refer to inductive machines with
a structured memory.

A typical inductive machine consists of three components: hardware,
software, and infware. The term infware refers to the data processed by
the machine. An inductive machine M operates on strings of a formal lan-
guage. In other words, the formal languages with which M works consti-
tute its infware. Usually, these languages are divided into three categories:
input, output, and working language(s). Normally, a formal language L is
defined by an alphabet (i.e., a set of symbols on which this language is built)
and formation rules (i.e., rules that specify which strings count as well-
formed). The language L of an inductive machine is a triple (Li, Lw, Lo),
where Li is the input language, Lw is the working language, and Lo is
the output language. Notice that in the most general case it holds that
Li �= Lw �= Lo �= Li.

The hardware of an inductive machine is simply its control device, which
controls the operation of the machine; its operating devices, which corre-
spond to one or several scanning heads of an ordinary Turing machine; and
its memory, which corresponds to one or several tapes of an ordinary Tur-
ing machine. The control device has a configuration S = (q0, Q, F), where
Q is the set of states, q0 ∈ Q is called the initial state, and F ⊆ Q is the set
of final (or accepting) states. The memory is divided into different, but usu-
ally uniform, cells. In addition, it is structured by a system of mathematical
relations that establish ties between cells. On each cell the operating device
may print any of the symbols of the alphabet or it may erase the symbol that
is printed on the cell. Formally, the memory is a triad E = (P, W, K), where
P is the set of all cells, W is the set of connection types, and K ⊆ P × P
is the binary relation that specifies the ties between cells. Moreover, the
set P, and consequently the relation K , may be a set with structure. A type
is assigned to each tie from K by the mapping τ : K → W .

In general, the cells of the memory may have different types. This classi-
fication is represented by the mapping ι : P → V , where V is the set of cell
types. Clearly, different types of cells may be used to store different kinds
of information, but we will not elaborate on this issue.

The set of cells P is actually the union of three disjoint sets Pi, Pw,
and Po, where Pi is the set of input registers, Pw is the working memory,
and Po is the set of output registers. In addition, K is the union of three
disjoint sets Ki, Kw, and Ko that define ties between the cells from Pi, Pw,
and Po, respectively. For simplicity, one may consider Pi and Po to be two
different singleton sets (i.e., to correspond to two different one-dimensional
tapes).

The software of an inductive machine is a sequence of simple rewriting

36 Chapter 3–Early Hypercomputers

rules of the following form:

qhai −→ ajqk,
qhai −→ C(l)qk.

It is also possible to use only rules of one form,

qhai −→ ajqkc.

Here qh and qk are states of the control device, ai and aj are symbols of
the alphabet of the machine, and c is a type of connection from K . Each
rule instructs the inductive machine to execute one step of computation.
For example, the meaning of the first rule is that if the control device is
in state qh and the operating device has scanned the symbol ai, then the
control device enters state qk and the operating device prints the symbol aj
on the current cell and moves to the next cell. The third rule is the same
except that the operating device uses a connection of type c, and in the
case of the second rule, the operating device moves to the cell with number
l. Having described in a nutshell the structure of inductive machines as
well as the way they operate, we can now proceed with the presentation of
results concerning the computational power of inductive machines.

First of all, let us see whether it is ever necessary for an inductive ma-
chine to stop and give a result. The following statement gives a negative
response to this requirement.

Lemma 3.3.1 For any inductive machine M , there is an inductive machine G
such that G never stops and computes the same functions as M ; that is, M
and G are functionally the same.

Also, the following result is quite important.

Theorem 3.3.2 For any Turing machine T with an advice function (see Sec-
tion 5.4), there exists an inductive Turing machine M with a structured mem-
ory that computes the same function as T .

In order to present the next result we need a few auxiliary definitions.

Definition 3.3.1 The memory E of an inductive machine is called recursive
if the relation K ⊆ P × P and all mappings τ : K → W and ι : P → V are
recursive.

The following result is not the one promised above. Nevertheless, it is a
useful one.

Theorem 3.3.3 An inductive machine with recursive memory is equivalent
to a simple inductive machine.

3.4–Extensions to the Standard Model of Computation 37

Definition 3.3.2 The memory E of an inductive machine M is called
0-inductive if it is recursive. For every n ≥ 1, an inductive machine M
with structured memory E is said to be (n − 1)-inductive when the relation
K ⊆ P ×P and all mappings τ : K → W and ι : P → V are defined by some
inductive machines of order n.

And here is the main result.

Theorem 3.3.4 For any arithmetic relation Y, there exists an inductive ma-
chine M such that it computes the characteristic function of Y . If Y ∈
Σ0

n ∪Π0
n, there is an inductive machine M of order n that decides Y .

It is important to note that inductive machines are not only more powerful
than Turing machines, but also more efficient. In addition, it can be shown
that for a model of computation based on recursive functions, it is possible
to find a class of inductive machines that can compute the same result more
efficiently (personal communication with Burgin, 2005). Roughly speak-
ing, the term efficiency means that computations performed by inductive
machines take less time than their Turing counterparts. Also, when an in-
ductive machine has delivered its result, it does not necessarily stop but can
continue to operate, or as Burgin has put it in a personal communication:

They always finish computation in a finite number of steps when
they give the result, but they can continue to function. For ex-
ample, when you wrote your e-mail to me, you gave a result, but
I hope that you did not terminate your functioning.

3.4 Extensions to the Standard Model
of Computation

When Turing proposed the abstract computing device that bears his name,
he also proposed two other conceptual devices that somehow extend the
capabilities of the standard Turing machine. These conceptual devices were
dubbed choice and oracle Turing machines. Here is how Turing defined
choice machines [206]:

For some purposes we might use machines (choice machines
or c-machines) whose motion is only partially determined by
the configuration (hence the use of the word “possible” in §1).
When such a machine reaches one of these ambiguous config-
urations, it cannot go on until some arbitrary choice has been
made by an external operator.

38 Chapter 3–Early Hypercomputers

The external operator is supposed to be a human being that assists the
machine in the course of its operation. Clearly, if the actions of the mind
transcend the capabilities of the standard model of computation, then c-
machines are hypermachines by definition. It is rather interesting to note
that a c-machine cannot be mimicked by a nondeterministic Turing ma-
chine (see Appendix A), since nondeterminism does not confer additional
computational power on a Turing machine.

As we have described on page 12, an oracle machine is equipped with
an external agency that can give correct answers to questions about a set
A ⊂ N. Clearly, it is possible to posit the existence of an oracle (i.e., a
physical oracle) that gives correct answers to questions about a noncom-
putable set B. In fact, this is how Copeland has interpreted Turing’s writ-
ing. On the other hand, no one has ever formulated oracles this way. Obvi-
ously, a machine assisted by such an oracle can compute sets and functions
that are classically noncomputable. For example, a physical oracle machine
might solve the halting problem for ordinary Turing machines. Naturally,
for Copeland the next step was to propose oracle machines as a model of
the human mind [34]:

As I argued in my [previous] paper, O-machines point up the
fact that the concept of a programmed machine whose activity
consists of the manipulation of formal symbols is more general
than the restricted notion of formal symbol-manipulation tar-
geted in the Chinese room argument. The Chinese room argu-
ment depends upon the occupant of the room—a human clerk
working by rote and unaided by machinery; call him or her
Clerk—being able to carry out by hand each operation that the
program in question calls for (or in one version of the argument,
to carry them out in his or her head). Yet an O-machine’s pro-
gram may call for fundamental symbol-manipulation processes
that rote-worker Clerk is incapable of carrying out. In such a
case, there is no possibility of Searle’s Chinese room argument
being deployed successfully against the functionalist hypothesis
that the brain instantiates an O-machine—a hypothesis which
Searle will presumably find as “antibiological” as other func-
tionalisms.

However, Bringsjord, Paul Bello, and David Ferrucci totally disagree with
this idea. In particular, these authors point out that oracle Turing ma-
chines process symbols just like ordinary Turing machines [24]. In other
words, Copeland’s argument falls prey to Searle’s argument. After all, one
can supply a Turing machine with an auxiliary infinite tape (instead of
a physical oracle) on which are listed, in increasing order (as sequences
of 1’s) the members of some set X . These machines can correctly answer
any question regarding X and thus have the computational power of ora-
cle machines. Obviously, these machines can be used to refute Copeland’s

3.4–Extensions to the Standard Model of Computation 39

argument, since they are clearly symbol-manipulation devices. An interest-
ing question is what happens when there is no auxiliary infinite tape, but
a physical oracle, which leads naturally to the next question: do there exist
physical oracles?

On page 15 we presented an alternative formulation of classical com-
putability in the form of a random-access machine. An oracle Turing ma-
chine can be “simulated” by introducing a read command:

read variable

This command is an ordinary input command—nothing magical is assumed!
However, the command is used only to assist the computation via an exter-
nal operator (a physical oracle?), much as interactive systems take user
feedback to proceed.

If we go one step further and introduce an output command (e.g., a
write command) that can feed the “external world” with data, then we have
a model of interactive computation. However, this model of computation is
not general enough, since it suffers from the same drawbacks the classical
model does. Nevertheless, it seems to be a step forward.

Coupled Turing machines, which were proposed by Copeland [38], are
an extension of the notion of a Turing machine that exhibits interactive
behavior. A coupled Turing machine is the result of coupling a Turing ma-
chine to its environment via one or more input channels. Each channel
supplies a stream of symbols to the tape as the machine operates. In addi-
tion, the machine may also have one or more output channels that output
symbols to the environment. The universal Turing machine is not always
able to simulate a coupled Turing machine that never halts (think of a com-
puter operating system, which is a system that never halts; nevertheless,
sometimes some “operating systems” crash quite unexpectedly. . .).

It is not difficult to see that coupled Turing machines are actually hy-
permachines. Assume that C is a coupled Turing machine with a single
input channel. The number of output channels will not concern us here.
Also, suppose that u ∈ [0, 1] is some “noncomputable” real number (i.e., a
number that cannot be computed by a Turing machine) whose decimal rep-
resentation can be written as follows: 0.u1u2u3 The digits of the binary
representation of u will form the input of C. The input channel of C writes
to a single square of the machine’s tape, and each successive symbol ui in
the input stream overwrites its predecessor on this square. As each input
symbol arrives, C performs some elementary computation (e.g., it multi-
plies the symbol by 3) and writes the result on some designated squares of
the tape. In order to achieve constant operation time, the next result always
overwrites its predecessor. No Turing machine can produce the sequence
3 · u1, 3 · u2, etc. (for if it could, it could also be in the process of producing
the binary representation of u).

Clearly, the important question is what numbers a coupled Turing ma-
chine can compute. To say that it can compute more than the Turing

40 Chapter 3–Early Hypercomputers

machine is not really useful. In addition, the vague description above is
surely not a replacement for a rigorous mathematical definition of the ma-
chine and its semantics.

3.5 Exotic Machines

The term “exotic machines” refers to conceptual computing devices that
assume that our universe has certain properties. For example, take the case
of Thomson’s lamp, which was “invented” by James Thomson and was first
described in [202]. This is a device that consists of a lamp and an electrical
switch that can be used to turn the lamp on and off. Assume that at t = 0,
the lamp is off. At time t = 1

2 , we turn the lamp on. At time t = 1
2 + 1

4 ,
we turn the lamp off. At time t = 1

2 + 1
4 + 1

8 , we turn the lamp on. At time
t = 1

2+
1
4+

1
8+

1
16 , we turn the lamp off and so on. The problem is to determine

whether the lamp will be on or off at time t = 1. Thomson provided the
following solution to this problem: assume that 0 < t < 1. (i) If the lamp is
off at t, then there is a t′ such that t < t′ < 1 and the lamp is on at t′, and
(ii) if the lamp is on at t, then there is a t′ such that t < t′ < 1 and the lamp
is off at t′. Thomson thought that it followed from (i) that the lamp cannot
be off at t = 1 and from (ii) that the lamp cannot be on at t = 1. This
is clearly a contradiction, and thus Thomson concluded that this device is
logically or conceptually impossible. Paul Benacerraf [12] has pointed out
the fallaciousness of this argument. He claimed that one should distinguish
between the series of instants of time in which the actions of the supertask5

are performed (which will be called the t-series) and the instant t∗ = 1, the
first instant after the supertask.

Thesis 3.5.1 From a description of the t-series, nothing follows about any
point outside the t-series.

From a practical point of view, one may say that tasks like this are really
meaningless if time is granular. However, if time and space are continuous,
then this task has at least some physical basis (for more details, see the
short discussion at the end of Section 8.3).

The so-called Zeus machine is an example of an exotic machine that has
been popularized by Boolos and Jeffrey in their classical textbook [18]. A
Zeus machine is operated by the superhuman being Zeus (i.e., the principal
god of the ancient Greek pantheon), who can perform an infinite task in
a finite amount of time. Actually, Zeus can enumerate the elements of an

5. In philosophy, a supertask is a task involving an infinite number of steps, completed in a
finite amount of time. The term supertask was coined by James Thomson.

3.5–Exotic Machines 41

enumerable set6 in one second by writing out an infinite list faster and
faster. In particular, Zeus enumerates the elements of the set in a way that
is identical to the operation of Thomson’s lamp. Copeland has proposed
a more formal version of a Zeus machine, which is called an accelerating
Turing machine [34]. These are Turing machines that perform the second
primitive operation in half the time taken to perform the first, the third in
half the time taken to perform the second, and so on. If we assume that the
first primitive operation is executed in one minute, then since

1

2
+
1

4
+
1

8
+ · · · + 1

2n +
1

2n+1 + · · · < 1,

an accelerating Turing machine can execute infinitely many primitive op-
erations before one minute of operating time has elapsed. It is interesting
to see how accelerating Turing machines can compute the halting function.
We assume that a universal accelerating Turing machine is equipped with
a signaling device (e.g., a horn) that is used to send a signal when a com-
putation is finished within one minute. In particular, given a Turing ma-
chine M with a Gödel number m that is supposed to compute the function
f (x), a universal accelerating Turing machine will take as input the num-
bers m and n (a possible argument to function f). If within one minute,
the signaling device does not send a signal, the computation does not halt;
otherwise, it does halt. Strictly speaking, this universal accelerating Turing
machine is not a Turing machine at all, since it communicates with the
external world. However, it is not really important to get into these details
(the interested reader should consult Copeland’s paper). Copeland claims
that accelerating oracle Turing machines can be used to refute Searle’s
Chinese room argument. Again, this is not correct. Bringsjord, Bello, and
Ferrucci [24] point out that

After all, Zeus could be a pigeon. And a pigeon trained to move
symbols around, even if blessed with the ability to carry out this
movement at Zeus-level speeds, would still have the mental life
of a bird, which of course falls far short of truly understanding
Chinese.

Copeland responded to this argument by claiming that there is an ascend-
ing hierarchy of symbol-manipulations [35]. Thus, it is not possible to apply
the Chinese room argument to all different levels of this hierarchy. How-
ever, symbol-manipulation is always the same kind of operation no matter
how fast we perform it. Also, there are no recipes to construct a proof. Of
course a brute-force search is not such a recipe, although it is employed by
automated theorem-proving systems to prove truly interesting statements.

6. Although in the original description, Zeus is supposed to enumerate the elements of an
enumerable set, it was pointed out to the author that a machine cannot so “easily” produce an
enumeration of a countably infinite set. On the other hand, Zeus’s job would make sense for
any infinite recursively enumerable set.

42 Chapter 3–Early Hypercomputers

But this approach is not always applicable. In addition, the general proof
methodologies cannot be used to construct the proof or disproof of a par-
ticular mathematical statement. Also, mechanical symbol manipulation is a
process that clearly lacks intentionality, and as Dale Jacquette remarks [90,
p. 10]: “[T]he machine can only imperfectly simulate the mind’s intention-
ality and understanding of a sentence’s meaning.” Now, whether machines
have or do not have mental capabilities is an issue that I will address in
Chapter 6.

The Rapidly Accelerating Computer (RAC), which was proposed by Ian
Stewart [195], is actually equivalent to an accelerating Turing machine. In
particular, the clock of an RAC accelerates exponentially fast with pulses
at times 1− 2−n as n → ∞. And just like accelerating Turing machines, an
RAC can perform an infinite number of computations in a single minute.
It can therefore solve the halting problem for Turing machines by running
a computation in accelerating time and throwing a particular switch if and
only if the Turing machine halts. Like all computations carried out by an
RAC, the entire procedure is completed within one minute; and it siffices
to inspect the switch to see whether it has been thrown. In Stewart’s own
words, “RAC can calculate the incalculable” (emphasis added). Interest-
ingly enough, the RAC and accelerating Turing machines can be modeled
by a classical (i.e., nonquantum) dynamical system, because classical me-
chanics poses no upper bound on velocities. Thus, it is possible to “acceler-
ate” time so that infinite “subjective” time passes within a finite period of
“objective” time. However, it is quite possible to achieve the same effect in
special spacetimes, and we will say more on this matter on Chapter 8.

3.6 On Pseudorecursiveness

While working on his doctoral dissertation, Benjamin Wells constructed a
particular nonrecursive set of algebraic equations, that his thesis advisor,
Alfred Tarski declared to be decidable.7 Thus Wells constructed a nonre-
cursive but decidable set. Clearly, the very existence of such a set jeopar-
dizes the foundations of classical computability theory, which is of interest
because it was constructed by someone without a negative attitude toward
the Church–Turing thesis and its implications. Let us now see how one can
construct such a set (the discussion that follows is based on Wells’s two
recent papers [224, 225]).

We want to construct a set of formal equations. Each formal equation

7. Any decision problem P is associated with a predicate FP . In normal parlance, a prob-
lem P is decidable if FP is computable; P is semidecidable if FP is semicomputable; and P is
cosemidecidable if ¬FP is semicomputable.

3.6–On Pseudorecursiveness 43

is a string that can be generated using the following formal grammar:

formal equation ::= term “=” term
term ::= “(” term + term “)” | constant | variable

constant ::= “a” | “b”
variable ::= “v1” | “v2” | · · · | “vi” | · · · i ∈ N.

We usually drop the outermost parentheses for clarity.
An equational theory of such formal equations is a set T consisting

of strings, generated by the grammar above, that necessarily includes the
equation v1 = v1. In addition, T must be closed under the following two
operations:8

Subterm replacement The replacement of a subterm t1 that appears in an
equation in T by a term t2 when t1 = t2 or t2 = t1 belongs to T .

Variable substitution The substitution of a chosen but arbitrary term for
every occurrence of a variable in an equation in T belongs to T .

A subset B of an equational theory T is an equational base for T if T is the
smallest equational theory that includes B. We write T = Th(B). Thus, T
is recursively based precisely when T is the closure under subterm replace-
ment and variable substitution of a finite set, or an infinite recursive set, of
equations. The class of algebraic models for an equational theory is called
its variety. The equational theories that Wells considered in his work are
equational theories for varieties of semigroups, that is, they contain equa-
tions that guarantee the associativity of the + operator. In other words, they
contain

(v1 + v2) + v3 = v1 + (v2 + v3).

In addition, one can introduce an additive identity element by including the
following equations:

0 + v1 = v1 = v1 + 0.

Here 0 is a new distinguished constant or a particular term.
Assume that Tn is the subset of the equational theory T consisting of

the equations in T with no more than n distinct variables. We say that T
is quasirecursive if for every number n, Tn is recursive. The theory T is
pseudorecursive if T is quasirecursive but not recursive.

Wells has constructed various pseudorecursive equational theories. In
particular, he provides the following recipe for constructing such theories:
start with a fixed but arbitrary nonrecursive, recursively enumerable set
X ⊂ N and define a finite equational base Ψ1X from a highly engineered
Turing machine that accepts X [223]. The resulting theory Th(Ψ1X) is an

8. A set X is said to be closed under some operation or map L if L maps elements of X to
elements of X .

44 Chapter 3–Early Hypercomputers

equational theory of semigroups with identity and finitely many individual
constants (the number of constants can be reduced to two or even to one
or zero). This recipe can be formally summarized as follows.

Theorem 3.6.1 For every nonrecursive recursively enumerable set X that is
a subset of N, Th(Ψ1X) is a finitely based pseudorecursive equational theory
that is Turing-equivalent to X.

According to Wells [224], Tarski has suggested that a basis for a deci-
sion procedure of T (i.e., a method for telling whether an arbitrary equa-
tion is in T) can be constructed as follows: For each value of n, there is a
procedure for deciding Tn; n can be used to index a catalog of these pro-
cedures. Given an arbitrary equation, count the number of variables in it,
and then use the catalog to locate the correct procedure and apply it. Us-
ing this basis, we can construct a decision procedure for a finitely based
or even just recursively enumerable pseudorecursive theory. We employ an
oracle Turing machine, whose query tape lists the values of the character-
istic function for X . The keying is performed by counting variables to n.
Indexing depends on oracular information: the Turing index for the tem-
plate used to build the machine Mn, which is used to decide Tn, and the
first n items from the oracle are sent to an internal foundry to be recast
as a functional equivalent of Mn, and its Gödel number, now computable,
is returned. The last step sends this number with n to a universal Turing
machine that simulates Mn computing with input n and “allows nature to
take its course.” This oracle Turing machine can decide Tn by looking only
at the first n cells on the tape, which lists the characteristic function fn of
Xn = {0, 1, . . . , n} ∩ X . In addition, since this finite function is recursive,
we can incorporate it into the control mechanism of the oracle machine to
form M∗

n , an ordinary Turing machine that decides Tn. Clearly, for every
n, f (n) = fn(n), where f is the characteristic function of X (therefore, there
is no way to recursively recapture X from the Xn or synthesize an ordinary
Turing machine to decide T).

The work on pseudorecursiveness has revealed the following (see the
abstract of [225]):

The dilemma of a decidable but not recursive set presents an
impasse to standard computability theory. One way to break the
impasse is to predicate that the theory is computable—in other
words, hypercomputation by definition.

This statement should not be taken as an indication that hypercomputation
is actually an empty word. On the contrary, the theory can be made com-
putable once the very notion of computability is extended. Wells believes
that one should expand a theory only when “real” problems need solutions.
For example, our inability to find a number that is the square root of mi-
nus one led mathematicians to invent the imaginary numbers. Thus, Wells
expects a new expanded theory based on nonrecursive yet decidable sets.

