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Preface

Hypercomputation in a Nutshell

Computability theory deals with problems and their solutions. In general,
problems can be classified into two broad categories: those problems that
can be solved algorithmically and those that cannot be solved algorithmi-
cally. More specifically, the design of an algorithm that solves a particular
problem means that the problem can be solved algorithmically. In addition,
the design of an algorithm to solve a particular problems is a task that
is equivalent to the construction of a Turing machine (i.e., the archetypal
conceptual computing device) that can solve the same problem. Obviously,
when a problem cannot be solved algorithmically, there is no Turing ma-
chine that can solve it. Consequently, one expects that a noncomputable
problem (i.e., a problem that cannot be solved algorithmically) should be-
come computable under a broader view of things. Generally speaking, this
is not the case. The established view is that only problems that can be solved
algorithmically are actually solvable. All other problems are simply non-
computable.

Hypercomputation deals with noncomputable problems and how they
can be solved. At first, this sounds like an oxymoron, since noncomputable
problems cannot really be solved. Indeed, if we assume that problems can
be solved only algorithmically, then this is true. However, if we can find
other ways to solve noncomputable problems nonalgorithmically, there is
no oxymoron. Thus, hypercomputation is first about finding general non-
algorithmic methods that solve problems not solvable algorithmically and
then about the application of these methods to solve particular noncom-
putable problems. But are there such methods? And if there are, can we
use them to solve noncomputable problems?

In the early days of computing, for reasons that should not concern us
for the moment, a Turing machine with an oracle was introduced. This or-
acle was available to compute a single arbitrary noncomputable function
from the natural numbers to the natural numbers. Clearly, this new con-
ceptual computing device can be classified as a hypercomputer since it can
compute noncomputable functions. Later on, other variants of the Turing
machine capable of computing noncomputable functions appeared in the
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scientific literature. However, these extensions to computability theory did
not gain widespread acceptance, mainly because no one actually believed
that one could compute the incomputable. Thus, thinkers and researchers
were indirectly discouraged from studying and investigating the possibil-
ity of finding new methods to solve problems and compute things. But the
1990s was a renaissance for hypercomputation since a considerable num-
ber of thinkers and researchers took really seriously the idea of computing
beyond computing, that is, hypercomputation. Indeed, a number of quite
interesting proposals have been made ever since. And some of these propos-
als, although quite exotic, are feasible, thus showing that hypercomputation
is not to the theory of computation what perpetual motion machines are to
physics!

The success of the Turing machine in describing everything computable,
and also its simplicity and elegance, prompted researchers and thinkers to
assume that the Turing machine has a universal role to play. In partic-
ular, many philosophers, psychologists, and neurobiologists are building
new theories of the mind based on the idea that the mind is actually a
Turing machine. Also, many physicists assume that everything around us
is a computer and consequently, the whole universe is a computer. Thus,
if the universe is indeed a Turing machine, the capabilities of the mind
and nature are limited by the capabilities of the Turing machine. In other
words, according to these views, we are tiny Turing machines that live in a
“Turing-verse”!

Hypercomputation poses a real threat to the cosmos described in the
previous paragraph. Indeed, even today it is considered heretical or even
unscientific to say that the mind in not a Turing machine! And of course,
a universe where hypercomputation is possible renders certain beliefs and
values meaningless. But then again, in the history of science there are many
cases in which fresh ideas were faced with skepticism and in some instances
with strong and prudent opposition. However, sooner or later, correct the-
ories and ideas get widespread appreciation and acceptance. Thus, it is cru-
cial to see whether there will be “experimental” verification of hypercom-
putation. But this is not an easy task, since hypercomputation is practically
in its infancy. On the other hand, it should be clear that there is no “exper-
imental” evidence for the validity of the Turing-centered ideas presented
above.

Reading This Book

Who Should Read It?

This book is a presentation, in a rather condensed form, of the emerging
theory of hypercomputation. Broadly, the book is a sort of compendium
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of hypercomputation. As such, the book assumes that readers are famil-
iar with basic concepts and notions from mathematics, physics, philosophy,
neurobiology, and of course computer science. However, since it makes no
sense to expect readers to be well versed in all these fields, the book con-
tains all the necessary definitions to make it accessible to a wide range of
people. In particular, the book is well suited for graduate students and re-
searchers in physics, mathematics, and computer science. Also, it should
be of interest to philosophers, cognitive scientists, neurobiologists, sociolo-
gists, and economists with some mathematical background. In addition, the
book should appeal to computer engineers and electrical engineers with a
strong interest in the theory of computation.

About the Contents of the Book

The book is based on material that was readily available to the author.
In many cases, the author directly requested copies of papers and/or book
chapters from authors, and he is grateful to everyone who responded pos-
itively to his request. It is quite possible that some (important?) works are
not discussed in this book. The reasons for any such omission are that the
author did not really feel they were that important, that the author did
not have at his disposal the original material describing the corresponding
piece of work, or that the author simply was unaware of this particular
piece of work.

For the results (theorems, propositions, etc.) that are presented in the
book we have opted not to present their accompanying proofs. Since this
book is an introduction to the emerging field of hypercomputation, it was
felt that the proofs would only complicate the presentation. However, read-
ers interested in proofs should consult the sources originally describing
each piece of work.

The subject index of the book contains entries for various symbols, and
the reader should be aware that there is only one entry for each symbol,
and the unique entry corresponds to the page where the symbol is actually
defined.

Mathematical Assumptions

At this point it is rather important to say that the discussion in the next
nine chapters assumes that the Axiom of Choice holds. In other words,
many of the ideas presented do not make sense without this axiom being
valid. This axiom states that

Axiom of Choice There exists a choice function for every system of sets [88].



VIII Preface

Assuming that S is a system of sets (i.e., a collection of sets only), a function
g : S → S is called a choice function for S if g(X ) ∈ X for all nonempty
X ∈ S. After this small but necessary parenthesis let us now describe the
contents of each chapter.

The Book in Detail

The first chapter is both an introduction to hypercomputation and an over-
view of facts and ideas that have led to the development of classical com-
putability theory. In addition, there is a short discussion explaining why
hypercomputation is so fascinating to many thinkers and researchers.

The second chapter can be viewed as a crash course in (classical) com-
putability theory. In particular, we discuss Turing machines, general recur-
sive functions, recursive predicates and relations, and the Church–Turing
thesis, where we present not only the “classical” version, but even quite
recent versions that encompass “modern” views.

In the third chapter we begin the formal presentation of various ap-
proaches to hypercomputation. In particular, in this chapter we present
early approaches to hypercomputation (i.e., proposals that were made be-
fore the 1990s). Although some proposals presented in this chapter are
quite recent, we opted to present them here, since they are derivatives of
certain early forms of hypercomputation. More specifically, in this chap-
ter we present trial-and-error machines and related ideas and theories, in-
ductive Turing machines, coupled Turing machines, Zeus machines, and
pseudorecursiveness.

Conceptual machines that may perform an infinite number of opera-
tions to accomplish their computational task are presented in the fourth
chapter. Since the theory of these machines makes heavy use of cardinal
and ordinal numbers, the chapter begins with a brief introduction to the
relevant theory. Then, there is a thorough presentation of infinite time Tur-
ing machines and a short description of infinite time automata. In addition,
there is a description of a “recipe” for constructing infinite machines, and
the chapter concludes with a presentation of a metaphysical foundation
for computation. Notice that infinite–time Turing machines are the ideal
conceptual machines for describing computations that take place during a
supertask. Thus, it should be more natural to present them alongside the
supertasks; however, it was felt that certain subjects should be presented
without any reference to related issues. On the other hand, other subjects
are presented in many places in the book so as to give a thorough view of
them.

Interactive computing is known to every computer practitioner; what is
not known is that interactive systems are more powerful than Turing ma-
chines. The fifth chapter begins by explaining why this is true and contin-
ues with a presentation of various conceptual devices that capture the basic
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characteristics of interactive computing. In particular, we discuss interac-
tion machines, persistent Turing machines, site and Internet machines, and
the π-calculus.

Is the mind a machine? And if it is a machine, what kind of machine
is it? What are the computational capabilities of the mind? These and other
similar questions are addressed in the sixth chapter. However, it is rather
important to explain why we have opted to discuss these questions in a book
that deals with hypercomputation. The main reason is that if one can show
that the mind is, among other things, a computational device that has capa-
bilities that transcend the capabilities of the Turing machine, then, clearly,
this will falsify the Church–Turing thesis. In other words, hypercomputa-
tion partially falsifies computationalism. In this chapter we discuss various
approaches to show that the mind is not just a Turing machine, but a device
with many capabilities both computational and noncomputational. In par-
ticular, we discuss arguments based on Gödel’s incompleteness theorems,
arguments from the philosophy of mind, the relation between semiotics
and the mind, and the mind from the point of view of neurobiology and
psychology.

The theory of computation deals primarily with natural numbers and
functions from natural numbers to natural numbers. However, in physics
and analysis we are dealing with real numbers and real functions. This
implies that it is important to study the computational properties of real
numbers and real functions. And real-number computation leads to hyper-
computation in unexpected ways, which we discuss in the seventh chapter
of the book. In particular, we discuss various approaches to real-number
computation and how they may lead to hypercomputation. We begin with
the Type-2 Theory of Effectivity, and continue with a discussion of a special
form of Type-2 machines. Next, we present BSS-machines, real-number
random access machines, and we conclude with a presentation of a recur-
sion theory on the reals.

In the eighth chapter we discuss relativistic and quantum hypercompu-
tation. More specifically, we show how the properties of space and time
can be exploited to compute noncomputable functions. Also, we show how
quantum computation can be employed to compute noncomputable prob-
lems. In addition, we present our objections to a computational theory of
the universe. There is also a brief discussion of supertasks in the framework
of classical and quantum mechanics.

The last chapter is devoted to natural computation and its relation-
ship to hypercomputation. It is worth noticing that natural computation
includes analog computing, and that is why we present various approaches
to hypercomputation via analog computation. In addition, we demonstrate
how one may end up with noncomputable functions in analysis and physics
and, thus, showing in an indirect way, that noncomputability is part of this
world. The chapter concludes with a presentation of an optical model of
(hyper)computation, membrane systems as a basis for the construction of
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hypermachines, and analog X-machines and their properties.
The book includes four appendices. The P = NP hypothesis is dis-

cussed in the first appendix. In the second appendix we briefly discuss
how hypercomputation affects complexity theory. In the third appendix,
we discuss how noncomputability affects socio-economic issues. The last
appendix contains some useful mathematical definitions, necessary for the
understanding of certain parts of the book. Clearly, this appendix is not a
substitute for a complete treatment of the subject; nevertheless, it can be
viewed as a refresher for those already exposed to the concepts or as a very
brief introduction to the relevant theory for those with no prior knowledge
of the relevant definitions.
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I. Introduction

Why do we generally believe that “modern” digital computers cannot com-
pute a number of important functions? Do we believe that there is some
fundamental physical law that prohibits computers from doing a number
of things or is it that there is something wrong with the very foundations
of computer science? I cannot really tell whether the universe itself has
imposed limits to what we can compute and where these limits lie, but a
number of indications suggest that the established way of viewing things
is not correct, and thus, we definitely need a paradigm shift in order to
alter, or at least expand, the theory of computability. In this introductory
chapter I present the historical background that eventually led to the for-
mation of the classical landscape of computability and its implications. And
since every criticism must be accompanied by proposals, this introduction
concludes with a discussion about the prospects of a new theory of compu-
tation.

1.1 On Computing and Its Limits

Originally, the word computing was synonymous with counting and reck-
oning, and a computer was an expert at calculation. In the 1950s with the
advent of the (electronic) computer, the meaning of the word computing
was broadened to include the operation and use of these machines, the pro-
cesses carried out within the computer hardware itself, and the theoretical
concepts governing them. Generally speaking, these theoretical concepts
are based on the idea that a computer is capable of enumerating “things”
and calculating the value of a function. A direct consequence of this spe-
cific view of computing is the so-called Church–Turing thesis, named after
Alonzo Church and Alan Mathison Turing, who introduced concepts and
ideas that form the core of what is known as computability theory. The the-
sis arose out of efforts to give an answer to a problem that was proposed
by David Hilbert in the context of the program that he enunciated at the
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2 Chapter 1–Introduction

beginning of the twentieth century.1 The eventual finding that this partic-
ular problem cannot be solved in a particular framework led to the for-
mulation of this thesis. Since this thesis lies at the heart of computability
theory, it has directly affected the way we realize computing and its lim-
its. In particular, the thesis states that no matter how powerful a given
computing device is, there are problems that this machine cannot solve. In
other words, according to the Church–Turing thesis there is a limit that
dictates what can and what cannot be computed by any computing device
imaginable.

In order to fully apprehend Hilbert’s problem and how it helped in the
formation of the Church–Turing thesis, we need to be aware of the context
in which Hilbert’s ideas were born. However, the context in cases like this
is not alien to the most general and abstract categories and concepts with
which we think. In other words, it is more than important to have an idea
about the various philosophies of mathematics. The established philoso-
phies of mathematics are:

(i) intuitionism, according to which only knowable statements are true
(Luitzen Egbertus Jan Brouwer is the founding father of intuition-
ism);

(ii) Platonism (or realism), which asserts that mathematical expressions
refer to entities whose existence is independent of the knowledge we
have of them;

(iii) formalism, whose principal concern is with expressions in the formal
language of mathematics (formalism is specifically associated with
Hilbert);

(iv) logicism, which says that all of mathematics can be reduced to logic
(logicism is specifically associated with Friedrich Ludwig Gottlob
Frege, Bertrand Russell, and Alfred North Whitehead).

In the Platonic realm a sentence is either true or false. The truth of
a sentence is “absolute” and independent of any reasoning, understanding,
or action. Because of this, the expression not false just means true; similarly,
not true just means false. As a direct consequence of this, the Aristotelian
principle of the excluded middle (tertium non datur), which states that a
sentence is either true or false, is always true. According to Arend Heyting
(the founder of intuitionistic logic), a sentence is true if there is a proof of
it. But what is exactly a proof? Jean-Yves Girard [67] gives the following
explanation:

1. Hilbert’s program called for finding a general (mechanical) method capable of settling
every possible mathematical statement expressed using abstract “meaningless” symbols. Such
a method should proceed by manipulating sequences of “meaningless” symbols using specific
rules. Roughly speaking, the rules and the way to encode the mathematical statements form
a formal system.
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By proof we understand not the syntactic formal transcript, but
the inherent object of which the written form gives only a shad-
owy reflection.

An interesting consequence of the intuitionistic approach to logic is that
the principle of the excluded middle is not valid, or else we have to be able
to find either a proof of a sentence or a proof of the negation of a sentence.
More specifically, as Heyting [82] observes:

p ∨ ¬p demands a general method to solve every problem, or
more explicitly, a general method which for any proposition p
yields by specialization either a proof of p or a proof of ¬p. As
we do not possess such a method of construction, we have no
right to assert this principle.

The Curry–Howard isomorphism states that there is a remarkable analogy
between formalisms for expressing effective functions and formalisms for
expressing proofs (see [187] for more details). Practically, this means that
proofs in logic correspond to expressions in programming languages. Thus,
when one constructs a proof of the formula ∃n∈N : P(n), where N is the
set of natural numbers including zero, he or she actually constructs an ef-
fective method that finds a natural number that satisfies P . In other words,
proofs can be viewed as programs (see [9] for a description of a system that
implements this idea).

The great ancient Greek philosopher Plato argued that mathematical
propositions refer not to actual physical objects but to certain idealized ob-
jects. Plato envisaged that these ideal entities inhabited a different world,
distinct from the physical world. Roger Penrose [152] calls this world the
Platonic world of mathematical forms and assumes that the mathematical
assertions that can belong to Plato’s world are precisely those that are ob-
jectively true. According to Penrose, Plato’s world is not outside the world
we live, but, rather, part of it. In fact, Penrose is actually a trialist, since he
argues that there are three worlds that constantly interact: the physical, the
mental and the Platonic worlds.

Generally speaking, mathematical formalism is about manipulation of
symbols, regardless of meaning. Hilbert’s formalism was the attempt to
put mathematics on a secure footing by producing a formal system that is
capable of expressing all of mathematics and by proving that the formal
system is consistent (i.e., it is not possible to derive from a set of axioms two
formally contradictory theorems). Within the formal system, proofs consist
of manipulations of symbols according to fixed rules, which do not take
into account any notion of meaning. Clearly, this does not mean that the
mathematical objects themselves lack meaning, or that this meaning is not
important. In summary, as Girard [66, page 426] notes:

Hilbert treated mathematics as a formal activity, which is a non-
sense, if we take it literally. . . But what should we think of those
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who take thought as a formal activity?

Since logicism has played no significant role in the development of the
theory of computation, I will not give a more detailed account of it. One
may challenge this assertion by noting that logic programming is evidence
of logicism in the field of computation, but the point is that its role in
the development of the relevant theory was not important at all. Now we
can proceed with the presentation of events that led to the formulation of
computability theory.

At the Second International Congress of Mathematics, which was held in
Paris during the summer of 1900, Hilbert presented ten unsolved problems
in mathematics [213, 31]. These problems, and thirteen more that com-
pleted the list, were designed to serve as examples of the kinds of problems
whose solutions would lead to the furthering of disciplines in mathematics.
In particular, Hilbert’s tenth problem asked for the following:

Determination of the solvability of a Diophantine equation.
Given a Diophantine equation with any number of unknown
quantities and with integral numerical coefficients: To devise a
process according to which it can be determined by a finite num-
ber of operations whether the equation is solvable in integers.

A Diophantine equation is an equation of the form

D(x1, x2, . . . , xm) = 0,

where D is a polynomial with integer coefficients. These equations were
named after the Greek mathematician Diophantus of Alexandria, who is
often known as the “father of algebra.” But what is the essence of Hilbert’s
tenth problem?

Since the time of Diophantus, who lived in the third century A.D., num-
ber theorists have found solutions to a large number of Diophantine equa-
tions and have also proved the insolubility of an even larger number of
other equations. Unfortunately, there is no single method to solve these
equations. In particular, even for different individual equations, the solu-
tion methods are quite different. Now, what Hilbert asked for was a univer-
sal formal method for recognizing the solvability of Diophantine equations.
In other words, Hilbert asked for a general solution to a decision problem
(Entscheidungsproblem in German), which is a finite-length question that
can be answered with yes or no.

During the Third International Congress of Mathematics, which was
held in Bologna, Italy, in 1928, Hilbert went a step further and asked
whether mathematics as a formal system is finitely describable (i.e., the ax-
ioms and rules of inference are constructable in a finite number of steps,
while, also, theorems should be provable in a finite number of steps), com-
plete (i.e., every true statement that can be expressed in a given formal sys-
tem is formally deducible from the axioms of the system), consistent (i.e., it
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is not possible to derive from the axioms of the system two contradictory
formulas, for instance, the formulas 3 > 2 and 2 ≥ 3), and sufficiently pow-
erful to represent any statement that can be made about natural numbers.
But in 1931 the Austrian logician Kurt Gödel proved that any recursive
(see Section 2.2) axiomatic system powerful enough to describe the arith-
metic of the natural numbers must be either inconsistent or incomplete
(see [138] for an accessible account of Gödel’s famous theorem). Practi-
cally, Gödel put an end to Hilbert’s dream for a fully formalized mathe-
matical science. Now, what remained to fully refute Hilbert was to prove
that formal mathematics is not decidable (i.e., there are no statements that
are neither provable nor disprovable). This difficult task was undertaken
by Church and Turing, who eventually proved that formal mathematics is
not decidable.

In order to tackle the decidability problem, Church devised his famous
λ-calculus. This calculus is a formal system in which every expression stands
for a function with a single argument. Functions are anonymously defined
by a λ-expression that expresses the function’s action on its argument. For
instance, the sugared λ-expression λx.2 · x defines a function that doubles
its argument. Church proved that there is no algorithm (i.e., a method
or procedure that is effectively computable in the formalist program in
mathematics, but see page 21 for a short discussion of algorithms and
their properties) that can be used to decide whether two λ-calculus ex-
pressions are equivalent. On the other hand, Turing himself proceeded by
proposing a conceptual computing device, which nowadays bears his name,
and by showing that a particular problem cannot be decided by his con-
ceptual computing device, which, with our knowledge and understanding,
implies that Hilbert’s tenth problem is unsolvable. Finally, in 1970, Yuri
Vladimirovich Matiyasevich proved that Hilbert’s tenth problem cannot be
decided by a Turing machine. In particular, Matiyasevich proved that there
is no single Turing machine that can be used to determine the existence of
integer solutions for each and every Diophantine equation.

One may wonder what all these things have to do with computer science,
in general, and computability theory, in particular. The answer is that all
new “sciences” need mathematical foundations, and computer science is
no exception. Eugene Eberbach [55] gives the following comprehensive
account of what computer science is:

Computer science emerged as a mature discipline in the 1960s,
when universities started offering it as an undergraduate pro-
gram of study. The new discipline of computer science defined
computation as problem solving, viewing it as a transformation
of input to output—where the input is completely defined before
the start of computation, and the output provides a solution to
the problem at hand.

So, it was quite logical to adopt Turing’s conceptual device as a universal
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foundation for computational problem-solving and, hence, for computer
science. Also, this is the reason why computer scientists are so reluctant
to adopt another notion as a foundation of computer science. A direct
consequence of this choice is the assumption that Turing’s machine de-
scribes what is actually computable by any computing device. More specif-
ically, since any programming language is actually a formal system, it has
to have all the properties of a formal mathematical system. Thus, every
sufficiently rich programming language, as a formal system, is either in-
complete or inconsistent and it has to be undecidable. Clearly, a computer
program written in some programming language L is actually a formal so-
lution (“proof”) of a particular problem (“theorem”). In addition, many
computer programs are solutions to decision problems. But there is one
decision problem that cannot be solved “algorithmically”: To write a com-
puter program that takes as input another program and any input that sec-
ond program may take and decide in a finite number of steps whether the
second program with its input will halt . The negative response to Hilbert’s
Entscheidungsproblem implies that it is not possible to write such a com-
puter program, though it may be possible to give a certain response for a
particular class of simple computer programs such as the following one:2

#include <iostream>
using namespace std;

int main()
{

while (true)
cout << "Hello World!\n";

}

Naturally, in many cases (experienced) computer programmers are able
to tell intuitively whether a program that is actually being executed by a
machine will terminate. But we will briefly discuss the capabilities of the
human mind in the next section.

1.2 From Computation to Hypercomputation

The notion of a computable (real) number was introduced by Alan Turing
in his trailblazing paper entitled On Computable Numbers, with an appli-
cation to the Entscheidungsproblem [206]. In this paper, Turing identified
computable numbers with those that a Turing machine can actually com-
pute. In particular, a real number is computable if its decimal digits are
calculable by finite means. Formally, we have the following definition.

2. The code is a simple C++ program that continuously prints on a computer monitor the
greeting Hello World!. Thus, it is a nonterminating program.
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Definition 1.2.1 A real number x ∈ [0, 1] is computable if it has a com-
putable decimal expansion. That is, there is a computable function f : N →
{0, 1, . . . , 9} such that x =

∑
i∈N f (i) · 10−i.

Of course, most real numbers do not belong to the unit interval; however,
if x �∈ [0, 1], then x can be written as y + n, where y ∈ [0, 1] and n ∈ Z,
where Z is the set of integers. Thus, x is computable if and only if both y
and n are computable.

Clearly, the definition of the notion of a computable number depends
on Turing’s model of computation. This implies that a particular number
might be noncomputable by a Turing machine, but it might be computable
by some other conceptual computing device. Obviously, not all numbers
are computable under the Turing machine model. In fact, it can be shown
that any “simple” Turing machine (i.e., one that manipulates exactly two
distinct symbols) can compute at most (4n + 4)2n distinct numbers. Here n
denotes the number of different internal states the machine can enter. In
addition, by employing a diagonalization argument (see page 161 for a brief
overview), Turing managed to prove that there are uncountably many non-
computable numbers.

It is a fact that the set of Turing-computable numbers is quite small.
And this is just one aspect of the limits that the Turing machine imposes on
what we can compute. These facts have prompted a number of researchers
and thinkers to propose alternative models of computation that somehow
have the power to compute not only more numbers than the Turing ma-
chine does, but also to transcend the limits imposed by it. Collectively,
all these models of computation are known as hypercomputers. The term
hypercomputation, which was coined by Brian Jack Copeland and Diane
Proudfoot [37], characterizes all conceptual computing devices that break
the Church–Turing barrier.3 With his famous theorem, Gödel managed to
show that there is an endless number of true arithmetic statements that
cannot be formally deduced from any given set of axioms by a closed set
of rules of inference. The parallel between Turing’s results and Gödel’s
results is obvious: on the one hand the number of noncomputable num-
bers is boundless, and on the other hand, the same applies to the number
of true but unprovable arithmetic statements. However, it is important to
note that Gödel’s results apply only to formalized axiomatic procedures that
are based on an initially determined and fixed set of axioms and transfor-
mation rules. In principle, this means that for any true but “unprovable”
arithmetic statement one may come up with a nonformalistic proof. For ex-
ample, one may employ a nonconstructive method to prove the validity of
a given statement (see [72] for a discussion on this matter). Similarly, non-
computable numbers could become computable if an alternative method of
computation were employed. Practically, this means that hypercomputation

3. The alternative term super-Turing computability was introduced by Mike Stannett, and it
was popularized by Peter Wegner and Eberbach [217].
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Figure 1.1: An artist’s impression of the Chinese Room Argument.

is about a paradigm shift in order to find new models of computation that
will allow us to compute classically noncomputable numbers. After all, the
formal framework of the theory of computation has been developed mainly
for problems that are logical and discrete in nature (see [231] for a brief
discussion of the matter).

So far, we have explained what hypercomputation is, but one important
question remains: are there any real hypercomputers? The established view
of computation is that it is mechanical information processing (i.e., a trans-
formation of some input to output, where the input is completely defined
before the start of the computation and the output produces a solution to a
specified problem). However, in the age of the Internet this view of compu-
tation is too restricted–modern computers continuously interact with each
other and interchange vast amounts of information, thus making the estab-
lished model of computation simply inadequate. In addition, Robin Milner
points out [131] that the world of sequential computing is much smaller
than the world of concurrent programming and interactive systems. Later
studies have shown that algebraic models of the world of concurrent pro-
gramming and interactive systems contain the classical model of the world
of sequential computing [130].

Many thinkers believe that the human mind is a machine with capabil-
ities that transcend the capabilities of the Turing machine. Indeed, John
Rogers Searle’s much acclaimed Chinese room argument [172] aimed at re-
futing “strong AI” (AI stands for Artificial Intelligence). “Strong AI” is the
claim that computers are theoretically capable of literally thinking, under-
standing, and generally possessing intentional content in the same sense
that humans do. On the other hand, “weak AI” is the claim that comput-
ers are merely able to simulate thinking rather than literally think. Searle’s
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argument, which is the most common argument against computationalism
(i.e., the philosophy behind “strong AI”), is based on the remark that propo-
nents of computationalism usually leave out some essential features of the
mind in their account. In brief, the Chinese room argument goes as follows:
Imagine that Anna, who cannot speak or read Chinese, is locked in a room
with boxes full of Chinese ideograms. In addition, she has at her disposal
a rule book that enables her to answer questions put to her in Chinese.
One may think of the rule book as a computer program. Anna receives
ideograms that, unknown to her, are questions; she looks up in the rule
book what she is supposed to do; she picks up ideograms from the boxes,
manipulates them according to the rules in the rule book, and hands out
the required ideograms, which are interpreted as answers. We may suppose
that Anna is able to fool an external observer, giving the impression that
she actually speaks and understands Chinese. But clearly, Anna does not
understand a word of Chinese. And if Anna does not understand although
she appears to do so, then no computer will actually understand Chinese
just because it is equipped with a computer program much like Anna’s rule
book. Thus, Turing computers cannot be intelligent. Ergo, human minds
are hypercomputers!

The capabilities of the human mind are not “divine”; they are the re-
sult of neurobiological processes in the brain. However, the Chinese room
argument has made it clear that the following analogy is not correct:

Mind : Brain = Program : Hardware.

On the other hand, the brain is indeed a machine, an organic machine that
clearly transcends the capabilities of the Turing machine.Searle himself
calls his approach to the philosophy of mind biological naturalism.

Naturally, every argument has a counterargument. Indeed, there have
been many attempts at refuting Searle’s argument, but we will examine
this issue and related ones later on. Also, based on the hypothesis that com-
putationalism is correct, one may easily conclude that even emotions and
feelings are actually computable just because they play a functional role in
the corresponding cognitive architecture. Later on, we will examine this
issue in more detail, and we will see why feelings and emotions cannot be
replicated.

1.3 Why Bother with Hypercomputation?

Digital computers are capable of accomplishing an incredible number of
tasks. However, one may argue that we have not yet managed to exploit
their full power and potential. To a certain degree this is true. For exam-
ple, the SETI@home project has shown that one can get enormous com-
putational power by quite simple methods. However, sooner or later it will
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become impossible to further advance the technology associated with dig-
ital computers.4 To avoid approaching this doomsday for computing, we
need to take radical measures. Such measures include the development
of new computing paradigms and/or the refinement of existing comput-
ing paradigms that are inspired by nature.5 Currently, there is ongoing
research work in a number of promising new computing paradigms that
include DNA computing [148], quantum computing [84], membrane com-
puting [147], evolution computing [127], and evolvable hardware [128]. In
addition, researchers working in these new, promising areas have managed
to show that these computing paradigms are steps toward hypercomputa-
tion (e.g., see [95, 196]). Evidently, the future of computing depends on
developments in all these computing paradigms and more. But are these
computing paradigms feasible?

I am convinced that future advances in technology will allow us sooner
or later to build computers based on these paradigms. However, the most
important issue is whether these machines will offer capabilities that tran-
scend the capabilities of digital computers. A number of thinkers believe
that it is impossible to create computing devices that will transcend the
capabilities offered by physical implementations of the classical model of
computation (e.g., see [39], but see [222] for a response to Paolo Cotogno’s
arguments). I believe that the discussion so far has made it clear that hy-
percomputation is not the fictitious “Superman” of computer science, but
at the same time, it makes no sense to believe that in a few years we will
replace our personal computers with some sort of personal hypercomputers
(whatever that means). The truth is always in the middle, and I agree fully
with Christof Teuscher and Moshe Sipper [200] when they say:

So, hype or computation? At this juncture, it seems the jury is still
out—but the trial promises to be riveting.

4. In 1965, Gordon Earle Moore predicted that the number of transistors per square inch on
integrated circuits would double every 18 months. In 1975, he updated his prediction to once
every two years. This prediction is commonly known as Moore’s law. Most experts, including
Moore himself, expect Moore’s law to hold for at least another decade but not much more.
5. We must insist on this, since nature is the best source of inspiration. After all, natural
phenomena and processes have taken place for more than 10 billion years!



II. On the Church–Turing Thesis

The classical theory of computability is built around the idea that all effec-
tively computable functions are those that can be computed by a Turing
machine. This idea has come to be known as the Church–Turing thesis.
The thesis is actually a definition (or rather a set of definitions) that set
the limits of computability. In order to fully understand the meaning of
the Church–Turing thesis, one should be familiar with basic concepts from
computability. Basically, this chapter is a brief introduction to the rele-
vant material that is necessary for rigorously stating the much acclaimed
Church–Turing thesis. The exposition is based on standard references [18,
48, 63, 111, 166].

2.1 Turing Machines

A Turing machine (named after the British mathematician Alan Turing,
who invented it in the 1930s) is a conceptual computing device that consists
of an infinite tape, a controlling device, and a scanning head (see Figure 2.1).
The tape is divided into an infinite number of cells. The scanning head can
read and write symbols in each cell. The symbols are elements of a set
A={S0, S1, . . . , Sn}, n≥1, which is called the alphabet. Usually, the symbol
S0 is the blank symbol, which means that when the scanning head writes
this symbol on a cell, it actually erases the symbol that was on this particular
cell. At any moment, the machine is in a state qi, which is a member of a
finite set Q={q0, q1, . . . , qr}, r≥0. The controlling device is actually a look-
up table that is used to determine what the machine has to do next at any
given moment. More specifically, the action a machine has to take depends
on the state the machine is in and the symbol that is printed on the cell the
scanning head has just finished scanning. If no action has been specified for
a particular combination of state and symbol, the machine halts. Usually,
the control device is specified by a finite set of quadruples, which are special
cases of expressions.

Definition 2.1.1 An expression is a string of symbols chosen from the list

11
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q0, q1,. . . ; S0, S1,. . . ; R, L.

A quadruple can have one of the following forms:

qiSjSkql (2.1)

qiSjLql (2.2)

qiSjRql (2.3)

Note that L, R �∈ A. The quadruple (2.1) specifies that if the machine is in
state qi and the cell that the scanning head scans contains the symbol Sj ,
then the scanning head replaces Sj by Sk and the machine enters state ql .
The quadruples (2.2) and (2.3) specify that if the machine is in state qi
and the cell that the scanning head scans contains the symbol Sj , then the
scanning head moves to the cell to the left of the current cell, or to the cell
to the right of the current cell, respectively, and the machine enters the
state ql . Sometimes the following quadruple is also considered:

qiSjqkql . (2.4)

This quadruple is particularly useful if we want to construct a Turing ma-
chine that will compute relatively computable functions. These quadruples
provide a Turing machine with a means of communicating with an exter-
nal agency that can give correct answers to questions about a set A ⊂ N.
More specifically, when a machine is in state qi and the cell that the scan-
ning head scans contains the symbol Sj , then the machine can be thought
of asking the question, “Is n ∈ A?” Here n is the number of S1’s that are
printed on the tape. If the answer is “yes,” then the machine enters state
qk; otherwise it enters state ql . Turing machines equipped with such an ex-
ternal agency are called oracle machines, and the external agency is called
an oracle.

Turing machines are used to compute the value of functions f (x1, . . . , xn)
that take values in Nn. Each argument xi ∈N, is represented on the tape
by preprinting the symbol S1 on xi +1 consecutive cells. Argument repre-
sentations are separated by a blank cell (i.e., a cell on which the symbol S0

is printed), while all other cells are empty (i.e., the symbol S0 has been
preprinted on each cell). Note that it is customary to use the symbol 1 for S1

and the symbol “␣” for S0. Thus, the sequence 3, 4, 2 will be represented by
the following three blocks of 1’s:

1111␣11111␣111

The machine starts at state q0 and the scanning head is placed atop the left-
most 1 of a sequence of n blocks of 1’s. If the machine has reached a situa-
tion in which none or more than one quadruple is applicable, the machine
halts. Once the machine has terminated, the result of the computation is
equal to the number of cells on which the symbol 1 is printed.
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. . . 1 1 1 1 1 1 1 . . .

The tape is divided into an infinite number of
cells. Blocks of cells are used to represent the
finite number of arguments.

12

The Turing machine’s scanning head moves back and
forth along the tape. The number that the scanning
head displays is its current state, which changes as it
proceeds.

Figure 2.1: A typical Turing machine.

Let M be a Turing machine and let

Ψ
(n)
M (x1, x2, . . . , xn)

be a partial function of n arguments. We say that M computes Ψ
(n)
M if

for each tuple (m1, . . . , mn) of arguments, M halts after a finite number
of steps. If M does not terminate on a tuple (k1, . . . , kn), then Ψ

(n)
M is un-

defined on this tuple. We say that M computes f if for all (x1, . . . , xn),
Ψ

(n)
M (x1, . . . , xn) is defined and equal to f (x1, . . . , xn). Now, it is possible to

construct a Turing machine M ′ that will have as input the description of
the controlling device of another Turing machine M and its arguments.
Clearly, both the description of the controlling device and the arguments
of the machine have to be encoded. Here are the relevant details. Suppose
that we associate with each basic symbol of a Turing machine an odd num-
ber greater than or equal to 3 as follows:

3 5 7 9 11 13 15 17 19 21 . . .
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
R L S0 q0 S1 q1 S2 q2 S3 q3 . . .

For each i, Si is associated with 4i+7 and qi is associated with 4i+9. In
order to define the encoding of a Turing machine, first we need to define
the encoding of an expression and then the encoding of a sequence of ex-
pressions.
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Definition 2.1.2 Assume that M is a string of symbols γ1, γ2,. . . ,γn and that
a1, a2,. . . , an are the corresponding integers associated with these symbols.
The Gödel number of M is the integer

Gn(M) =
n∏

k=1

(
Pr(k)

)ak
,

where Pr(k) is the kth prime number in order of magnitude.

Example 2.1.1 If M = q1S0S2q1, then Gn(M) = 213 ·37 ·515 ·713, that is

Gn(M) = 52,974,066,440,027,250,000,000,000,000.

Definition 2.1.3 Suppose that M1, M2,. . . ,Mn is a finite sequence of ex-
pressions. Then the Gödel number of this sequence is the integer:

n∏

k=1

(
Pr(k)

)Gn(Mk)
.

Definition 2.1.4 Assume that M1, M2,. . . ,Mn is any arrangement of the
quadruples of a Turing machine M without repetitions. Then the Gödel
number of the sequence M1, M2,. . . ,Mn is a Gödel number of M .

Clearly, a Turing machine consisting of n quadruples has n! different Gödel
numbers.

Definition 2.1.5 A universal Turing machine U is a Turing machine that
can be employed to compute any function of one argument that an ordinary
Turing machine M can compute.1

Practically, this means that given a Turing machine M with a Gödel num-
ber m that computes the function f (x), then

Ψ
(2)
U (m, x) = f (x) = Ψ

(1)
M (x).

Thus, if the number m is written on the tape of U , followed by the num-
ber x, U will compute the number Ψ

(1)
M (x). Also, the universal Turing ma-

chine can be used to compute functions with n arguments, but we are not
going to describe how this can be done (see [48] for the relevant details).

The function Ψ
(2)
U is just an example of a function that has as arguments

a “program” and its “input.” Another interesting example of such a func-
tion is the so-called halting function:

h(m, x) =
{

1, when M starts with input x and eventually stops,
0, otherwise,

1. The question regarding which functions can be computed by a Turing machine will be
discussed in Section 2.4.
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where m is the Gödel number of M . Whether this function is computable
is equivalent to the halting problem. This, in turn, can be summarized as
follows: is there an effective procedure such that given any m and any x we
can determine whether Ψ

(2)
U (m, x) is defined?

Although Turing machines are the standard model of the classical the-
ory of computation, still their use is rather clumsy for practical purposes,
for example, to specify how we can compute a particular function. Alterna-
tively, we can use a random-access machine [111]. A random-access machine
is an idealized computer with a random-access memory consisting of a finite
number of idealized registers capable of holding arbitrarily long integers.
The set of machine instructions is quite short; however, instead of present-
ing the standard random-access machine, we will present a sugared version
of it that will appeal to those with a some knowledge of computer pro-
gramming. Thus, a random-access machine will be an idealized computer
capable of executing programs specified in a simple yet powerful enough
programming language. The only data type that this language supports is
the natural numbers including zero. However, numbers may be arbitrar-
ily large. A program can employ an arbitrarily large number of variables,
each capable of holding a single nonnegative integer. All variables will be
initialized to 0. The language has only the following types of commands:

• if test then commands else commands end

• while test do commands end

• variable++ (increment)

• variable-- (decrement)

Note that decrementing a variable whose value is already zero has no ef-
fect. Also, the test will have the form variable = 0, and it will succeed
only when the variable is equal to zero. In addition, commands is just a se-
quence of the commands presented above separated by at least one space
character and/or one newline character. This language looks like a “real”
programming language, though it appears to be a weak one. However, the
language is equivalent in power to a Turing machine. In other words, this
language is powerful enough to compute anything that can be computed by
any algorithmic programming language.

2.2 General Recursive Functions

A basic exposition of the theory of general recursive functions is essential
for a full appreciation of the Church–Turing thesis. The exposition of the
theory presented in this section is based on a seminal paper by Kleene [100].



16 Chapter 2–On the Church–Turing Thesis

We start with a presentation of the notion of a primitive recursive function,
since these functions are related to general recursive functions.

Primitive recursive functions are defined in terms of basic functions and
function builders. There are three basic or initial functions:

(i) the successor function S(x) = x + 1,

(ii) the zero function z(x) = 0, and

(iii) the projection functions U n
i (x1, . . . , xn) = xi, 1 ≤ i ≤ n.

Primitive recursive functions can be defined by applying function builders,
or schemas, to the basic functions. There are three function builders:

Composition Suppose that f is a function of m arguments and each of
g1, . . . , gm is a function of n arguments. Then the function obtained
by composition of f and g1, . . . , gm is the function h defined as follows:

h(x1, . . . , xn) = f
(

g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)
)
.

Primitive Recursion A function h of k+1 arguments is said to be definable
by (primitive) recursion from the functions f and g, having k and k+2
arguments, respectively, if it is defined as follows:

h(x1, . . . , xk, 0) = f (x1, . . . , xk),

h(x1, . . . , xk, S(m)) = g
(

x1, . . . , xk, m, h(x1, . . . , xk, m)
)
.

Minimalization The operation of minimalization associates with each to-
tal function f of k+1 arguments a function h of k arguments. Given a
tuple (x1, . . . , xk), the value of h(x1, . . . , xk) is the least value of xk+1, if
one exists, for which f (x1, . . . , xk, xk+1) = 0. If no such xk+1 exists, then
its value is undefined.

Now we are ready to define primitive recursive and general recursive func-
tions.

Definition 2.2.1 The functions that can be obtained from the basic func-
tions by the function builders composition and primitive recursion are called
primitive recursive functions.

Definition 2.2.2 The functions that can be obtained from the basic func-
tions by all function builders are called general recursive functions.

Note that general recursive functions are also known as just recursive func-
tions or µ-recursive functions.

We can easily extend the two previous definitions to define A-primitive
recursive and A-recursive functions. However, in order to do this we need
to know what the characteristic function of a set is.
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Definition 2.2.3 Assume that X is a universe set and A ⊆ X . Then the
characteristic function χA : X → {0, 1} of A is defined as follows:

χA(a) =
{

1, if a ∈ A,
0, if a �∈ A.

Note that this particular way of defining a set is actually employed to define
fuzzy subsets, multisets, etc., via different types of characteristic functions.
We are now prepared to define A-primitive recursive and A-recursive func-
tions. Assume that A ⊆ N is a fixed set.

Definition 2.2.4 A function f is a partial A-recursive function if f = ΨA
M ,

where ΨA
M is a partial function that denotes the computation performed by

an oracle Turing machine M with oracle A.

Definition 2.2.5 A function f is an A-recursive function if there is an oracle
machine M with oracle A such that f = ΨA

M and ΨA
M is a total function.

Definition 2.2.6 A set B is recursive in A if χB is A-recursive.

2.3 Recursive Relations and Predicates

It is quite natural to extend the notion of recursiveness to characterize not
only functions, but also sets, relations, and predicates. Informally, a set is
called recursive if we have an effective method to determine whether a
given element belongs to the set. However, if this effective method cannot
be used to determine whether a given element does not belong to the set,
then the set is called semirecursive. Formally, a recursive set is defined as
follows.

Definition 2.3.1 Let A ⊆ N be a set. Then we say that A is primitive re-
cursive or recursive if its characteristic function χA is primitive recursive or
recursive, respectively.

Example 2.3.1 Suppose that Π is the set of all odd natural numbers. Then Π
is primitive recursive, since its characteristic function

χΠ(a) = R(a, 2)

is primitive recursive. Here, R(x, y) returns the remainder of the integer
division x ÷ y.

Definition 2.3.2 A set A is called recursively enumerable or semirecursive
either if A = ∅ or if A is the range of a recursive function.



18 Chapter 2–On the Church–Turing Thesis

Similarly, we can define A-recursively enumerable sets.

Definition 2.3.3 A set B is called A-recursively enumerable either if B = ∅
or if B is the range of an A-recursive function.

Definitions 2.3.1 and 2.3.2 can be easily extended to characterize relations.
Note that an n-ary relation on a set A is any subset R of the n-fold Cartesian
product A × · · · × A of n factors.

Definition 2.3.4 A relation R ⊆ Nm is called primitive recursive or recur-
sive if its characteristic function χR given by

χR(x1, . . . , xm) =

{
1, if (x1, . . . , xm) ∈ R,
0, if (x1, . . . , xm) �∈ R,

is primitive recursive or recursive, respectively.

Definition 2.3.5 A relation R ⊆ Nm is called recursively enumerable (or
semirecursive) if R is the range of a partial recursive function f : N → Nm.

Let us now see how the notion of recursiveness has been extended to
characterize predicates. But first let us recall what a predicate is. Roughly,
it is a statement that asserts a proposition that must be either true (denoted
by tt) or false (denoted by ff ). An Nn function whose range of values consists
exclusively of elements of the set {tt, ff } is a predicate.

Definition 2.3.6 A predicate P(x1, . . . , xn) is called recursive if the set

{(x1, . . . , xn)|P(x1, . . . , xn)},

which is called its extension, is recursive.

Definition 2.3.7 The predicate P(x1, . . . , xn) is called recursively enumer-
able (or semirecursive) if there exists a partially recursive function whose
domain is the set

{(x1, . . . , xn)|P(x1, . . . , xn)}.

The Arithmetic Hierarchy Let us denote by Σ0
0 the class of all recursive

subsets of N. For every n ∈ N, Σ0
n+1 is the class of sets that are A-recursively

enumerable for some set A ∈ Σ0
n. It follows that Σ0

1 is the class of recursively
enumerable sets. Let us denote by Π0

0 the class of all subsets of N whose
complements are in Σ0

0. In other words, D ∈ Π0
0 if and only if N\D∈Σ0

0. The
class Π0

1 is knwon in the literature as the class of corecursively enumerable
sets. In addition, let us denote by ∆0

n the intersection of the classes Σ0
n and

Π0
n (i.e., ∆0

n = Σ0
n ∩ Π0

n). The classes Σ0
n, Π0

n, and ∆0
n form a hierarchy that
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is called the arithmetic hierarchy. The classes that make up this hierarchy
have the following properties:

∆0
n ⊂ Σ0

n, ∆0
n ⊂ Π0

n,

Σ0
n ⊂ Σ0

n+1, Π0
n ⊂ Π0

n+1,

Σ0
n ∪Π0

n ⊂ ∆0
n+1,∀n ≥ 1.

Figure 2.2 depicts the relationships between the various classes of the arith-
metic hierarchy.

Σ0
0 Σ0

1 Σ0
2 Σ0

3 · · ·

Σ0
1 Π0

1
∆0
1Σ0

2
Π0

2
∆0
2

. . .

Figure 2.2: The relationships between the various classes of the arithmetic hierarchy.

The set-theoretic presentation of the arithmetic hierarchy is not the only
possible presentation. Indeed, other presentations based on predicates or
relations are also possible. Assume that φ is a formula2 in the language
of first-order arithmetic (i.e., there are no other nonlogical symbols apart
from constants denoting natural numbers, primitive recursive functions,
and predicates that can be decided primitive recursively). Then we say that
φ is a ∆0

0-formula if φ contains at most bounded quantifiers. We say that
φ is Σ0

1 if there is a ∆0
0-formula ψ(x) such that φ ≡ (∃x)ψ(x). Dually, φ is

Π0
1 if ¬φ is Σ0

1. More generally, a formula φ is in Σ0
n+1 if there is a formula

ψ(x) in Π0
n such that φ ≡ (∃x)ψ(x). Dually, φ is Π0

n+1 if ¬φ is Σ0
n+1. Note

that Σ0
0 is the class of all recursive predicates. Suppose that Q1 = P1(x1),

Q2 = P2(x1, x2), Q3 = P3(x1, x2, x3),. . . are ∆0
0-formulas. Then Table 2.1 gives

a schematic representation of the classes Σ0
n and Π0

n.

n = 1 n = 2 n = 3
Σ0

n (∃x1)Q1 (∃x1)(∀x2)Q2 (∃x1)(∀x2)(∃x3)Q3 · · ·
Π0

n (∀x1)Q1 (∀x1)(∃x2)Q2 (∀x1)(∃x2)(∀x3)Q3 · · ·

Table 2.1: A schematic representation of the classes Σ0
n and Π0

n.

2. Very roughly: a term yields a value; variables and constants are terms; functions are terms;
atoms yield truth values; and each predicate is an atom. An atom is a formula. Given formulas
p and q the following are also formulas: ¬p, p ∨ q, p ∧ q, p ⇒ q, p ≡ q, ∀xp, and ∃xp. In the
last two cases x is said to be a bound variable, while in all other possible cases it is said to be
a free variable.
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Assume that R ⊆ Nm is a relation. Then R ∈ Σ0
1 (i.e., R is Σ0

1-relation)
if R is recursively enumerable. Similarly, R ∈ Π0

1 if R ∈ Σ0
1 (i.e., if the

complement of R with respect to Nm is a Σ0
1-relation). In general, R ∈ Σ0

n
(n ≥ 2) if there are a k ∈ N and a Π0

n−1-relation S ⊂ Nm+k such that

R = {(x1, . . . , xm) | ∃(xm+1, . . . , xm+k) ∈ Nk, (x1, . . . , xm+k) ∈ S}.

Also, R ∈ Π0
n if R ∈ Σ0

n.

The Analytical Hierarchy The second-order equivalent of the arithmetic
hierarchy is called the analytical hierarchy. In this hierarchy, quantifiers
range over function and relation symbols and over subsets of the universe.
In other words, we are talking about second-order logic. A formula φ is
a Π1

1-formula if φ ≡ (∀X )ψ(X ) and ψ(X ) is Σ0
1. Dually, a formula φ is Σ1

1
if and only if ¬φ is Π1

1 . More generally, a formula φ is Π1
k+1 if and only if

φ ≡ (∀X )ψ(X ) and ψ(X ) is Σ1
k. Dually, φ is Σ1

k+1 if and only if ¬φ is Π1
k+1.

Clearly, it is easy to construct a table like Table 2.1 to provide a schematic
representation of the analytical hierarchy. Note that the ∆1

1-sets are the so-
called hyperarithmetic sets. In addition, a function f : N → N is hyperarith-
metic if its graph3 Gf is a hyperarithmetic relation.

The arithmetic and analytic hierarchies are used to classify functions,
sets, predicates and relations. In particular, the higher the class an object
belongs to, the more classically noncomputable it is. Alternatively, one can
view these hierarchies as a means to classify hypercomputers.

2.4 The Church–Turing Thesis

The Church–Turing thesis is the cornerstone of classical computability the-
ory, since it describes what can and what cannot be computed. The thesis
can be phrased as follows.

Thesis 2.4.1 Every effectively computable function is Turing computable,
that is, there is a Turing machine that realizes it. Alternatively, the effectively
computable functions can be identified with the recursive functions.

Formally, a function f :Nn→Nm is Turing computable if there is a Turing
machine M that computes it. But it is not clear at all what is meant by an
effective procedure or method. For example, Copeland [36] gives four cri-
teria that any sequence of instructions that make up a procedure or method
should satisfy in order for it to be characterized as effective:

3. The graph of a function f : X → Y is the subset of X × Y given by {(x, f (x)) : x ∈ X}. A
total function whose graph is recursively enumerable is a recursive function.



2.4–The Church–Turing Thesis 21

(i) Each instruction is expressed by means of finite number of symbols.

(ii) The instructions produce the desired result in a finite number of
steps.

(iii) They can be carried out by a human being unaided by any machinery
save paper and pencil.

(iv) They demand no insight or ingenuity on the part of the human carry-
ing it out.

In his classical textbook [134], Marvin Minsky defines an effective proce-
dure as “a set of rules which tell us, from moment to moment, precisely how
to behave,” provided we have at our disposal a universally accepted way to
interpret these rules. Minsky concludes that this definition is meaningful
if the steps are actually steps performed by some Turing machine. How-
ever, even this definition is not precise according to Carol Cleland. More
specifically, she argues in [33, p. 167] that “Turing-machine instructions
cannot be said to prescribe actions, let alone precisely describe them.” Cle-
land has come to this conclusion by noticing that although it is perfectly
legitimate to use the word “mechanical” to mean something that is done
without thought or volition, still this usage does not capture the idea of a
finite, constructive process.

Since an algorithm is roughly synonymous with an effective method,
it is necessary to discuss the notion of an algorithm. The definition that
follows, which was borrowed from [87], is roughly the one that is accepted
by most computer scientists and engineers.

Definition 2.4.1 An algorithm is a finite set of instructions that if followed,
accomplish a particular task. In addition, every algorithm must satisfy the
following criteria:

(i) input: there are zero or more quantities that are externally supplied;

(ii) output: at least one quantity is produced;

(iii) definiteness: each instruction must be clear and unambiguous;

(iv) finiteness: if we trace out the instructions of an algorithm, then for all
cases the algorithm will terminate after a finite number of steps;

(v) effectiveness: every instruction must be sufficiently basic that it can in
principle be carried out by a person using only pencil and paper. It is
not enough that each operation be defined as in (iii), but it must also
be feasible.

Naturally, it is no surprise to hear that this definition is not a precise one.
However, it is considered to be sufficient for most practical purposes. Also,
Hartley Rogers [166] gives the following (imprecise) definition:
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[A]n algorithm is a clerical (i.e., deterministic, book-keeping)
procedure which can be applied to any of a certain class of sym-
bolic inputs and which will eventually yield, for each such input,
a corresponding symbolic output.

The lack of a precise definition of what an algorithm is has prompted
Noson Yanofsky [230] to define an algorithm as the set of computer pro-
grams that implement or express that algorithm. Unfortunately, even this
apparently mathematical approach has its drawbacks. For instance, is it
possible to be aware of all programs that implement an algorithm? And
when Anna writes a computer program that implements an algorithm,
what is, actually, the algorithm that she is programming? Clearly, one must
be very careful to avoid entering a vicious circle.

A rather different idea regarding effectiveness has been put forth by
Cleland who argues that even everyday procedures can be rendered as ef-
fective [33]. For example, she argues that if a recipe for Hollandaise sauce
is to be carried out by an expert chef, then the whole procedure can be
classified as effective. The core of her argument is that “. . . quotidian [ev-
eryday] procedures are bona fide procedures; their instructions prescribe
genuine actions.” However, we agree with Selmer Bringsjord and Michael
Zenzen [26] when they say that

By our lights, recipes are laughably vague, and don’t deserve
to be taken seriously from the standpoint of formal philosophy,
logic, or computer science.

Gábor Etesi and István Németi [58] describe as effectively computable any
function f :Nk →Nm for which there is a physical computer realizing it.
Here, by “realization by a physical computer” they mean the following:

Let P by a physical computer, and f :Nk →Nm a (mathemat-
ical) function. Then we say that P realizes f if an imaginary
observer O can do the following with P . Assume that O can
“start” the computer P with (x1, . . . , xk) as an input, and then
sometime later (according to O’s internal clock) O “receives”
data (y1, . . . , ym) ∈ Nm from P as an output such that (y1, . . . , ym)
coincides with the value f (x1, . . . , xk) of the function f at input
(x1, . . . , xk).

The same authors, after introducing the notion of artificial computing sys-
tems, that is, thought experiments relative to a fixed physical theory that
involve computing devices, managed to rephrase the Church–Turing thesis
as follows.4

Thesis 2.4.2 Every function realizable by an artificial computing system is
Turing computable.

4. Actually, they call this “updated” version of the Church–Turing thesis the Church–Kalmár–
Turing thesis, named after Church, László Kalmár, and Turing.



2.4–The Church–Turing Thesis 23

Since artificial computing systems are thought experiments relative to a
fixed physical theory, the thesis can be rephrased as follows.

Thesis 2.4.3 Every function realizable by a thought experiment is Turing
computable.

Note that according to Etesi and Németi, a thought experiment relative
to a fixed physical theory is a theoretically possible experiment, that is, an
experiment that can be carefully designed, specified, etc., according to the
rules of the physical theory, but for which we might not currently have the
necessary resources.

Others, like David Deutsch [51], have reformulated the Church–Turing
thesis as follows.

Thesis 2.4.4 Every finitely realizable physical system can be perfectly simu-
lated by a universal model computing machine operating by finite means.

In the special case of the human mind, this thesis can be rephrased as
follows.

Thesis 2.4.5 The human brain realizes only Turing-computable functions.

This thesis is the core of computationalism. This philosophy claims that a
person’s mind is actually a Turing machine. Consequently, one may go a
step ahead and argue that since a person’s mind is a Turing machine, then
it will be possible one day to construct an artificial person with feelings
and emotions. The mind is indeed a machine, but one that transcends the
capabilities of the Turing machine and operates in a profoundly different
way. But we will say more about this in Chapter 6.

We have presented various formulations of the Turing-Church thesis.
This thesis forms the core of the classical theory of computability. Hyper-
computation is an effort to refute the various forms of this thesis. And the
ambitious goal of this book is to show that this can actually be done!



III. Early Hypercomputers

Hypercomputation is not really a recent development in the theory of com-
putation. On the contrary, there were quite successful early efforts to define
primarily conceptual computing devices with computational power that
transcends the capabilities of the established model of computation.1 In
this chapter, I will present some of these early conceptual devices as well as
some related ideas and theories. In particular, I will present trial-and-error
machines, TAE-computability, inductive machines, accelerated Turing ma-
chines, oracle machines, and pseudorecursiveness. However, I need to stress
that I have deliberately excluded a number of early efforts, which will be
covered later in more specialized chapters.

3.1 Trial-and-Error Machines

In this section I present the theory of trial-and-error machines, a model
of the human mind based on these machines, and TAE-computability, a
model of computation that is similar to trial-and-error machines.

3.1.1 Extending Recursion Theory

In 1965, the prestigious Journal of Symbolic Logic published in a single
issue two papers [68, 160] by Mark Gold and Hilary Putnam that dealt
surprisingly with the same subject—limiting recursion. This type of recur-
sion can be realized in the form of trial-and-error machines. Typically, a
trial-and-error machine is a kind of a Turing machine that can be used to
determine whether an element x belongs to a set X ⊂ N or, more generally,
whether a tuple (x1, . . . , xn) belongs to a relation R ⊂ Nn. In the course of
its operation, the machine continuously prints out a sequence of responses
(e.g., a sequence of 1’s and 0’s) and the last of them is always the correct

1. Strictly speaking, Kalmár [93], Rózsa Péter [154], and Jean Porte [156] were probably the
first researchers to challenge the validity of the Church–Turing thesis. Nevertheless, their
arguments were not without flaws, as was shown by Elliott Mendelson [126].

25



26 Chapter 3–Early Hypercomputers

answer. Thus, if the machine has most recently printed 1, then we know
that the integer (or the tuple) that has been supplied as input must be in
the set (or relation) unless the machine is going to change its mind; but we
have no procedure for telling whether the machine will change its mind
again. Suppose now that our trial-and-error machine prints out an infinite
number of responses. Then after a certain point, the machine may con-
verge to a particular response, and thus it will continuously print out the
same response (1 or 0). Of course, this description is somehow vague, and
so we need to define precisely limiting recursion. Let us begin with limiting
recursive predicates.2

Definition 3.1.1 A function P is a limiting recursive predicate if there is a
general recursive function f such that (for every x1, x2,. . . ,xn),

P(x1, x2, . . . , xn) ⇐⇒ lim
y→∞

f (x1, x2, . . . , xn, y) = 1,

¬P(x1, x2, . . . , xn) ⇐⇒ lim
y→∞

f (x1, x2, . . . , xn, y) = 0,

where

lim
y→∞

f (x1, x2, . . . , xn, y) = k def
= (∃y)(∀z)(z ≥ y → f (x1, . . . , xn, z) = k).

The following theorem is proved in [160].

Theorem 3.1.1 P is a limiting recursive predicate if P ∈ ∆0
2.

Obviously, this means that one cannot use a Turing machine to check
whether a limiting recursive predicate P is true or false. Thus, trial-and-
error machines transcend the Church–Turing limit.

Assume now that we restrict a trial-and-error machine so it can change
its mind only k times, irrespective of the particular input the machine has.
As a direct application of this restriction, k-limiting recursion was intro-
duced.

Definition 3.1.2 P is a k-limiting recursive predicate if there is a general
recursive function f such that (for every x1, x2,. . . ,xn):

(i) P(x1, x2, . . . , xn) ⇐⇒ lim
y→∞

f (x1, x2, . . . , xn, y) = 1;

(ii) there are at most k integers y such that

f (x1, . . . , xn, y) �= f (x1, . . . , xn, y + 1).

The following theorem is proved in [160].

2. Putnam calls these predicates trial-and-error predicates, but we have opted to use Gold’s
terminology.
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Theorem 3.1.2 There exists a k such that P is a k-limiting recursive predicate
if and only if P belongs to ∗Σ0

1, the smallest class containing the recursively
enumerable predicates and closed under truth functions.

Limiting recursive functions can be defined similarly to limiting recur-
sive predicates.

Definition 3.1.3 A partial function f (x) will be called limiting recursive if
there is a total recursive function g(x, n) such that

f (x) = lim
n→∞

g(x, n).

Similarly, one can define limiting recursive sets and relations (see [68] for
details).

It has already been noted that trial-and-error machines transcend the
capabilities of ordinary Turing machines; thus they should be able to solve
the halting problem. Indeed, Peter Kugel [103] describes an effective meth-
od (or hyperalgorithm) that can solve this problem. Here is his effective
method to solve this problem:

Given a program, Prog, and an input, Inp, output NO (to
indicate that Prog(Inp) will not halt). Then run a simulation
of Prog(Inp). (Turing [206] showed that such a simulation is
always possible.) If the simulation halts, output YES to indicate
that Prog(Inp) really does halt.

Clearly the last output that this procedure produces solves
the halting problem, if you are willing to accept results arrived
at “in the limit.” Which proves that limiting computation can
do things no ordinary, or recursive, computation can.

3.1.2 A Model of the Human Mind

Another aspect of Kugel’s work is a proposed model of intelligence, and
consequently a model of the human mind, that is based on limiting recur-
sion. In particular, Kugel is a strong advocate of the idea that the human
mind is actually a trial-and-error machine. He has suggested a division of
the human mind into four parts or modules [102]. Figure 3.1 depicts Kugel’s
division.
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Input
processor

Central
Processor

Output
Processor

Program
Selector

Figure 3.1: Kugel’s division of the human mind.

The functionality of each module is briefly outlined below:

Input Processor This module gathers information from the environment
and transforms it into a form suitable for further processing by the
central processor. For example, suppose that Lila is a zoologist who
studies a herd of zebras in an African savanna. Suddenly, she real-
izes that a tiger is approaching the place where she is standing. At
once, her input processor takes this visual signal and turns it into the
message, “This is a tiger.”

Central Processor The transformed data that the input processor produces
are further transformed into a form that is meaningful for the output
processor. For example Lila’s central processor might transform the
message, “This is a tiger” into the message, “run.”

Output Processor This module takes the information produced by the cen-
tral processor and transforms it into something that can be used to
affect the world. For example, Lila’s output processor might take the
message, “run” and turn it into messages to control specific muscles
so as to remove Lila from the immediate area.

Program Selector In general, different situations demand different actions.
In Kugel’s model, the human mind has a set of (predefined?) actions,
which he calls programs, that can be invoked to handle a particular
situation. The program selector is the module that is responsible for
the invocation of the appropriate program. For example, Lila’s pro-
gram selector will most probably decide that it is time to invoke the
animal-recognizing program and halt the zebra-studying program.

Kugel argues that the input processor is a Π0
1 process (i.e., it can be simu-

lated by a machine capable of computing such functions), the output pro-
cessor is a Σ0

2 process, the central processor is a k-limiting recursive process,
and the program selector is a Π0

2 process.
Kugel has derived his results by tacitly assuming that all mental pro-

cesses are mechanistic in nature and part of the arithmetic hierarchy. This
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observation explains the nature of his results, but not how he arrived at his
conclusions. Therefore, to explain how he did so, I will briefly present the
ideas that led him to this particular model of the mind.

Among other things, the input processor classifies what we see or ob-
serve. Based on earlier suggestions made by other researchers, Kugel has
suggested that our ability to classify what we observe might involve the
recognition of membership in productive sets. A set A ⊆ N is called pro-
ductive when there is no computing procedure to determine whether some
element x belongs to A. In addition, there is a computable function, the
production function, that effectively finds a counterexample to the claim
that some procedure will effectively recognize membership in A. Formally,
productive sets are defined as follows.

Definition 3.1.4 Let Wi, i ∈ N, be a numbering (i.e., a surjective assign-
ment of natural numbers to the elements of a set of objects) of the recur-
sively enumerable subsets of N such that Wi = domφi (i.e., the domain of
φi), where φi is a recursive function whose Gödel number is i. A set A ⊆ N

is called productive if there exists a computable function ψ such that for
all i ∈ N, Wi ⊆ A implies that ψ(i) is convergent (i.e., it is defined) and
ψ(i) ∈ A \ Wi.

There are productive sets in Π0
1 . For instance, the set N of all pairs (M , x)

such that Ψ
(1)
M (x) fails to halt is a productive set that is in Π0

1 . In addition,
there is a nonhalting procedure to determine whether a pair (M , x) belongs
to N . And according to Kugel, the input processor employs such a nonhalt-
ing procedure to recognize objects.

The human mind is able to derive general theories from specific evi-
dence and to deduce specific facts from its ever changing knowledge of the
world. In general, theories are assumed to be correct until some evidence
forces us to alter the theory or even to abandon it in favor of a new theory.
For instance, as Kugel [104] has pointed out if all swans that we have ob-
served are white, then we will come up with the theory that all swans are
white. Naturally, this theory will change the very day someone observes a
cygnus atratus (a black swan). This scenario of scientific research suggests
that our ability to develop theories from specific evidence is not really com-
putable (i.e., one cannot “re-create” this procedure by using a conventional
computing device). Indeed, Kugel has suggested that this ability might be
actually a trial-and-error procedure. As such, it can evaluate predicates in
Σ0
2. Thus, Kugel has actually suggested that the output processor is a Σ0

2
process.

A simple model of how the mind actually solves problems is based on
the solution of the problem of inverting computable functions, that is, given
a machine p and an output o, find an input i such that Ψ2

U (p, i) equals o.
This problem can be solved by employing a k-limiting recursive process, and
so one may say that the central processor is actually a k-limiting recursive



30 Chapter 3–Early Hypercomputers

process, though it is not clear what the value of k shoulf be.
Usually, most computer programs decrease the amount of information

involved during their execution. For example, a simple program that adds
its (command line) arguments generates one number out of two. On the
other hand, Kugel asserts that the selection of a program to perform a
particular task increases the amount of information in an information-
theoretic sense. This is an indication that this procedure cannot be
computable. In general, a k-limiting recursive process can be used in associ-
ation with a program-generating program to find a program that matches
the evidence provided. This is clearly the task performed by the program
selector. However, since many of the generated programs are not suitable
for some particular task (e.g., they cannot handle all pieces of evidence), we
need a mechanism to filter these programs. It is not possible to computably
filter out all and only the totally computable programs from the list of all
possible programs. But it is possible to perform this task noncomputably
using a Π0

2 filter, which explains why Kugel has suggested that the program
selector is a Π0

2 process.
The adoption of Kugel’s model automatically implies the invalidation of

the Church–Turing thesis. However, what is really puzzling about Kugel’s
model is that he asserts that most (if not all) vital mental processes are
purely computational in nature. Obviously, a number of mental processes
are indeed computational in nature, for instance, our ability to perform ba-
sic arithmetic operations.3 However, it is one thing to be able to calculate
the sum or the product of two numbers and another to fall in love and ex-
press it by saying “Sigga, I love you!” In other words, as has been already
pointed out, no one has provided enough evidence to support the idea that
feelings and affection are computational in their nature. Another aspect
of Kugel’s model is that it seems to be naive in the eyes of contemporary
thinkers and researchers, for it lacks the “sophistication” of modern ap-
proaches to the philosophy of mind. Apart from this, it is really difficult to
see why some machine that can solve the halting problem, can ipso facto
feel angry, fall in love, or even worship God!

3.2 TAE-Computability

Jaakko Hintikka and Arto Mutanen [83, Chapter 9] present an alternative
conceptual computing device that is similar to trial-and-error machines.
The Hintikka–Mutanen abstract computing device is essentially a Turing
machine with an extra tape, which is called the bookkeeping or result-
recording tape. Both the working and bookkeeping tapes can be viewed as

3. Although it is not clear at all that our ability to perform basic arithmetic operations is
computational, still, for the sake of argument, I will assume this is the case.
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read–write storage devices, since the machine can print and erase informa-
tion from either tape. Without loss of generality, one can assume that what
appears on the bookkeeping tape are equations of the form f (a) = b, where
a, b ∈ N. These equations are used by the machine to define the function
to be computed. In particular, this function is computed by the machine if
and only if all (and only) such true equations appear on the bookkeeping
tape when the machine has completed its operation. Practically, this means
that each true equation f (a) = b will be printed on the bookkeeping tape
sometime during the operation of the machine and it will stay on it until
the machine terminates. At that point, for each a, there has to be one and
only one true equation on the bookkeeping tape. If no such equation has
appeared on the bookkeeping tape for some a, or the equation for some a
was changing continuously, then the value f (a) is not defined.

A Hintikka–Mutanen machine cannot be simulated by a Turing ma-
chine, since these machines introduce a wider notion of computability com-
pared to standard Turing machines. On the other hand, by imposing some
restrictions on the operation of the machine, we obtain an abstract machine
that is computationally equivalent to the Turing machine. More specifically,
if we require that the machine never erase anything from the bookkeeping
tape, the machine will behave like an ordinary Turing machine. In classical
computability it is not enough to have each true equation f (a) = b on the
result-recording tape from some finite stage on, but it is necessary to know
when the machine has reached this stage. If we allow the machine to erase
data from the bookkeeping tape, then we could specify as a condition that
f (x) have the value b if and only if the equation f (a) = b is the last equation
of the form f (a) = x produced by the machine. Clearly, this implies that
we have at our disposal an effective procedure to determine when the last
equation has been printed on the bookkeeping tape.

Hintikka and Mutanen call the resulting computability theory TAE-
computability, short for trial-and-error computability. The following pas-
sage [83] gives an explanation of why this particular name was chosen:

The name is motivated by the fact that erasure from the result
tape is permitted by our definition. Such erasure can be thought
of as an acknowledgement on the part of the machine that its
trial choice of a line of computation has been in error and that
it is using the recognition of an error to try a different line of
computation.

TAE-computability is “arguably more fundamental theoretically than
recursivity.” In order to show this, the authors prove a theorem. But in
order to fully comprehend it, one must be familiar with a number of defini-
tions from logic. So, I will briefly present the notions of satisfiable formulas
and Skolem functions as they are presented in [53]. Readers familiar with
these concepts can safely skip the next paragraph.
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Assume that L is a language (i.e., a countable set of nonlogical symbols).
Then an interpretation I of L is characterized by the following:

(i) There is a domain of interpretation, which is a nonempty set D of
values.

(ii) A function fI :Dn→D is assigned to each n-ary function symbol f ∈ L.
Constants are assigned values from D.

(iii) A proposition letter in L is assigned either the value tt or ff .

(iv) A relation PI ⊆ Dn is assigned to each n-ary predicate symbol P ∈ L.

Suppose that L is a language, I an interpretation of L, D the domain of I ,
and α a formula of L. Now, if α has the value tt in I for every assignment
of the values of D to the free variables of α, then α is said to be valid in I
or that I satisfies α. For any formula that is valid in an interpretation I , the
interpretation I is called a model of α. Also, any formula α that has at least
one model is called satisfiable, or else it is called unsatisfiable. A sentence
is a logic formula in which every variable is quantified. A sentence is in
prenex normal form if it has the following form:

Q1x1Q2x2 . . . Qnxnα,

where Qi is either a universal quantifier or an existential quantifier, xi are
distinct variables and each of them occurs at least once in α, and α contains
no quantifiers. If σ is a sentence in prenex normal form, the Skolemization
of σ is the procedure by which we eliminate each existential quantifier and
its attached variable from the prefix of σ and then replace each occurrence
of the attached variable in the quantifier-free part of the sentence with cer-
tain terms called Skolem functions. If the existential quantifier is in the
scope of a sequence of universal quantifiers, then each free occurrence of
the attached variable will be replaced by the term f (x1, x2, . . . , xn), where f
is a fresh function symbol and the xi’s are the variables attached to the uni-
versal quantifiers; otherwise, each free occurrence of the attached variable
will be replaced by a new constant symbol.

In the 9th chapter of [83], Hintikka and Mutanen state and prove the
following theorem.

Theorem 3.2.1 Each satisfiable formula S of first-order logic has at least one
model where its Skolem functions are TAE-computable.

The essence of this theorem is that since there are satisfiable formulas for
which there are no models with recursively enumerable relations (i.e., there
are no sets of recursive Skolem functions) and we, on the other hand, can
compute these sets using TAE-machines, these machines are clearly more
powerful than Turing machines. Thus TAE-machines are hypermachines.
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It is rather interesting to note that Hintikka and Mutanen conclude that
the logic associated with TAE-computability is just classical logic. Going
one (probably arbitrary) step ahead, one may say that classical logic is the
logic of (one form of) hypercomputation.

Although TAE-computability is not as mature a theory as its classical
counterpart, still there are certain aspects of the theory that have been ad-
dressed by its developers. For instance, a set is TAE-enumerable if and only
if its semicharacteristic function4 is TAE-computable. Also, a set is TAE-
decidable if and only if both it and its complement are TAE-enumerable.
The halting problem in the case of TAE-computability is formulated as
follows: does the Turing machine with number n, which defines a partial
function fn(x), TAE-compute a value for the argument m? It important to
say that in the case of the TAE-“halting” problem we are not really con-
cerned whether the machine will actually stop; instead, we are concerned
about the constancy of the value the machine has reached.

For reasons of completeness, we present some results from [83, pp. 183–
184].

Theorem 3.2.2 If the sets A and B are TAE-enumerable, then so are A ∩ B
and A ∪ B.

Theorem 3.2.3 If the functions f and g are TAE-computable, then so is f ◦g.

Theorem 3.2.4 Being TAE-computable is an arithmetic predicate. In fact,
it is a Σ0

2 predicate.

There are a number of interesting philosophical issues that are ad-
dressed by Hintikka and Mutanen. However, I will not discuss them here.
The interested reader should consult [83] for more details.

3.3 Inductive Turing Machines

Inductive Turing machines were introduced by Mark Burgin and are de-
scribed in detail in his recent monograph [28]. Generally speaking, a sim-
ple inductive machine is a Turing machine equipped with two additional
tapes, each having its own scanning head. Burgin argues that the structure
of a simple inductive Turing machine closely resembles the generalized ar-
chitecture of modern computers. For instance, the input tape corresponds
to the input devices of the computer (e.g., the keyboard, the mouse, the
optical scanner), the output tape corresponds to the output devices of the

4. Given a set A ⊆ X , where X is some universe set, then for any x ∈ A, we have cA(x) = χA(x),
where cA is the semicharacteristic function of A. When x 
∈ A, then cA(x) = ⊥, where ⊥
denotes the undefined value. In other words, cA(x) is undefined when x 
∈ A.
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computer (e.g., the video monitor, the printer), and the working tape cor-
responds to the central processing unit of the computer.

A simple inductive machine operates in a fashion similar to that of an
ordinary Turing machine (e.g., the scanning heads read the symbol that
is printed on a particular cell on the corresponding tape, then the ma-
chine consults the controlling device, and proceeds accordingly). However,
their difference lies in the way they determine their outputs (i.e., the result
of the computation). In the course of its operation, an inductive machine
prints symbols on consecutive cells, which form sequences of symbols that
form the result of the computation (Burgin calls these sequences words,
but I prefer the term strings). Sometimes, the machine stops, provided it
has entered its halting state, and thus operates like a normal Turing ma-
chine. Nevertheless, there are cases in which the machine does not actually
stop. But this does not prevent the machine from giving results. When the
machine has printed a string on the output tape that remains unchanged
while the machine continues its operation, we can safely assume that this
particular string is the result of the computation. Even in cases in which
the result changes occasionally, it is quite possible that the output is ade-
quate for our purposes. For example, when we compute a real number we
are interested in computing it to a specific accuracy. Thus, when our ma-
chine has achieved computing the real number to the desired accuracy, we
can fetch our result while the machine continues computing the number to
even greater accuracy.

One can easily prove the following statement concerning the computa-
tional power of simple inductive machines.

Theorem 3.3.1 For any Turing machine T , there is an inductive Turing ma-
chine M such that M computes the same function as T ; that is, M and T
are functionally equivalent.

In order to classify simple inductive machines as hypermachines, they should
be able to compute functions that ordinary Turing machines fail to com-
pute. Clearly, in most cases we are interested in seeing how a potential
hypermachine can solve the halting problem. Here is how this can be done:
Assume that M is an inductive machine that contains a universal Turing
machine U as a subroutine. Given a string u and a description D(T ) of a
Turing machine T , machine M uses machine U to simulate T with in-
put u. In the course of its operation M prints a zero on the output tape. If
U stops, which means that T halts with input u, machine M prints a 1 on
the output tape. Now, according to the definition, the computational result
of M is equal to 1 if T halts, or else it is equal to 0.

As has been demonstrated, simple inductive machines are hyperma-
chines. However, the crucial question is, how much more powerful than
ordinary Turing machines are these machines? It has been shown that these
machines can compute functions that are in Σ0

3∩Π0
3, which is not really high
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in the arithmetic hierarchy. For this reason, Burgin has developed an ad-
vanced form of inductive machine called inductive Turing machines with a
structured memory. We note that these machines were developed indepen-
dently from the theory of limiting recursion. For reasons of brevity, in what
follows, the term “inductive machine” will refer to inductive machines with
a structured memory.

A typical inductive machine consists of three components: hardware,
software, and infware. The term infware refers to the data processed by
the machine. An inductive machine M operates on strings of a formal lan-
guage. In other words, the formal languages with which M works consti-
tute its infware. Usually, these languages are divided into three categories:
input, output, and working language(s). Normally, a formal language L is
defined by an alphabet (i.e., a set of symbols on which this language is built)
and formation rules (i.e., rules that specify which strings count as well-
formed). The language L of an inductive machine is a triple (Li, Lw, Lo),
where Li is the input language, Lw is the working language, and Lo is
the output language. Notice that in the most general case it holds that
Li �= Lw �= Lo �= Li.

The hardware of an inductive machine is simply its control device, which
controls the operation of the machine; its operating devices, which corre-
spond to one or several scanning heads of an ordinary Turing machine; and
its memory, which corresponds to one or several tapes of an ordinary Tur-
ing machine. The control device has a configuration S = (q0, Q, F ), where
Q is the set of states, q0 ∈ Q is called the initial state, and F ⊆ Q is the set
of final (or accepting) states. The memory is divided into different, but usu-
ally uniform, cells. In addition, it is structured by a system of mathematical
relations that establish ties between cells. On each cell the operating device
may print any of the symbols of the alphabet or it may erase the symbol that
is printed on the cell. Formally, the memory is a triad E = (P, W, K), where
P is the set of all cells, W is the set of connection types, and K ⊆ P × P
is the binary relation that specifies the ties between cells. Moreover, the
set P, and consequently the relation K , may be a set with structure. A type
is assigned to each tie from K by the mapping τ : K → W .

In general, the cells of the memory may have different types. This classi-
fication is represented by the mapping ι : P → V , where V is the set of cell
types. Clearly, different types of cells may be used to store different kinds
of information, but we will not elaborate on this issue.

The set of cells P is actually the union of three disjoint sets Pi, Pw,
and Po, where Pi is the set of input registers, Pw is the working memory,
and Po is the set of output registers. In addition, K is the union of three
disjoint sets Ki, Kw, and Ko that define ties between the cells from Pi, Pw,
and Po, respectively. For simplicity, one may consider Pi and Po to be two
different singleton sets (i.e., to correspond to two different one-dimensional
tapes).

The software of an inductive machine is a sequence of simple rewriting
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rules of the following form:

qhai −→ ajqk,
qhai −→ C(l)qk.

It is also possible to use only rules of one form,

qhai −→ ajqkc.

Here qh and qk are states of the control device, ai and aj are symbols of
the alphabet of the machine, and c is a type of connection from K . Each
rule instructs the inductive machine to execute one step of computation.
For example, the meaning of the first rule is that if the control device is
in state qh and the operating device has scanned the symbol ai, then the
control device enters state qk and the operating device prints the symbol aj
on the current cell and moves to the next cell. The third rule is the same
except that the operating device uses a connection of type c, and in the
case of the second rule, the operating device moves to the cell with number
l. Having described in a nutshell the structure of inductive machines as
well as the way they operate, we can now proceed with the presentation of
results concerning the computational power of inductive machines.

First of all, let us see whether it is ever necessary for an inductive ma-
chine to stop and give a result. The following statement gives a negative
response to this requirement.

Lemma 3.3.1 For any inductive machine M , there is an inductive machine G
such that G never stops and computes the same functions as M ; that is, M
and G are functionally the same.

Also, the following result is quite important.

Theorem 3.3.2 For any Turing machine T with an advice function (see Sec-
tion 5.4), there exists an inductive Turing machine M with a structured mem-
ory that computes the same function as T .

In order to present the next result we need a few auxiliary definitions.

Definition 3.3.1 The memory E of an inductive machine is called recursive
if the relation K ⊆ P × P and all mappings τ : K → W and ι : P → V are
recursive.

The following result is not the one promised above. Nevertheless, it is a
useful one.

Theorem 3.3.3 An inductive machine with recursive memory is equivalent
to a simple inductive machine.
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Definition 3.3.2 The memory E of an inductive machine M is called
0-inductive if it is recursive. For every n ≥ 1, an inductive machine M
with structured memory E is said to be (n − 1)-inductive when the relation
K ⊆ P ×P and all mappings τ : K → W and ι : P → V are defined by some
inductive machines of order n.

And here is the main result.

Theorem 3.3.4 For any arithmetic relation Y, there exists an inductive ma-
chine M such that it computes the characteristic function of Y . If Y ∈
Σ0

n ∪Π0
n, there is an inductive machine M of order n that decides Y .

It is important to note that inductive machines are not only more powerful
than Turing machines, but also more efficient. In addition, it can be shown
that for a model of computation based on recursive functions, it is possible
to find a class of inductive machines that can compute the same result more
efficiently (personal communication with Burgin, 2005). Roughly speak-
ing, the term efficiency means that computations performed by inductive
machines take less time than their Turing counterparts. Also, when an in-
ductive machine has delivered its result, it does not necessarily stop but can
continue to operate, or as Burgin has put it in a personal communication:

They always finish computation in a finite number of steps when
they give the result, but they can continue to function. For ex-
ample, when you wrote your e-mail to me, you gave a result, but
I hope that you did not terminate your functioning.

3.4 Extensions to the Standard Model
of Computation

When Turing proposed the abstract computing device that bears his name,
he also proposed two other conceptual devices that somehow extend the
capabilities of the standard Turing machine. These conceptual devices were
dubbed choice and oracle Turing machines. Here is how Turing defined
choice machines [206]:

For some purposes we might use machines (choice machines
or c-machines) whose motion is only partially determined by
the configuration (hence the use of the word “possible” in §1).
When such a machine reaches one of these ambiguous config-
urations, it cannot go on until some arbitrary choice has been
made by an external operator.
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The external operator is supposed to be a human being that assists the
machine in the course of its operation. Clearly, if the actions of the mind
transcend the capabilities of the standard model of computation, then c-
machines are hypermachines by definition. It is rather interesting to note
that a c-machine cannot be mimicked by a nondeterministic Turing ma-
chine (see Appendix A), since nondeterminism does not confer additional
computational power on a Turing machine.

As we have described on page 12, an oracle machine is equipped with
an external agency that can give correct answers to questions about a set
A ⊂ N. Clearly, it is possible to posit the existence of an oracle (i.e., a
physical oracle) that gives correct answers to questions about a noncom-
putable set B. In fact, this is how Copeland has interpreted Turing’s writ-
ing. On the other hand, no one has ever formulated oracles this way. Obvi-
ously, a machine assisted by such an oracle can compute sets and functions
that are classically noncomputable. For example, a physical oracle machine
might solve the halting problem for ordinary Turing machines. Naturally,
for Copeland the next step was to propose oracle machines as a model of
the human mind [34]:

As I argued in my [previous] paper, O-machines point up the
fact that the concept of a programmed machine whose activity
consists of the manipulation of formal symbols is more general
than the restricted notion of formal symbol-manipulation tar-
geted in the Chinese room argument. The Chinese room argu-
ment depends upon the occupant of the room—a human clerk
working by rote and unaided by machinery; call him or her
Clerk—being able to carry out by hand each operation that the
program in question calls for (or in one version of the argument,
to carry them out in his or her head). Yet an O-machine’s pro-
gram may call for fundamental symbol-manipulation processes
that rote-worker Clerk is incapable of carrying out. In such a
case, there is no possibility of Searle’s Chinese room argument
being deployed successfully against the functionalist hypothesis
that the brain instantiates an O-machine—a hypothesis which
Searle will presumably find as “antibiological” as other func-
tionalisms.

However, Bringsjord, Paul Bello, and David Ferrucci totally disagree with
this idea. In particular, these authors point out that oracle Turing ma-
chines process symbols just like ordinary Turing machines [24]. In other
words, Copeland’s argument falls prey to Searle’s argument. After all, one
can supply a Turing machine with an auxiliary infinite tape (instead of
a physical oracle) on which are listed, in increasing order (as sequences
of 1’s) the members of some set X . These machines can correctly answer
any question regarding X and thus have the computational power of ora-
cle machines. Obviously, these machines can be used to refute Copeland’s
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argument, since they are clearly symbol-manipulation devices. An interest-
ing question is what happens when there is no auxiliary infinite tape, but
a physical oracle, which leads naturally to the next question: do there exist
physical oracles?

On page 15 we presented an alternative formulation of classical com-
putability in the form of a random-access machine. An oracle Turing ma-
chine can be “simulated” by introducing a read command:

read variable

This command is an ordinary input command—nothing magical is assumed!
However, the command is used only to assist the computation via an exter-
nal operator (a physical oracle?), much as interactive systems take user
feedback to proceed.

If we go one step further and introduce an output command (e.g., a
write command) that can feed the “external world” with data, then we have
a model of interactive computation. However, this model of computation is
not general enough, since it suffers from the same drawbacks the classical
model does. Nevertheless, it seems to be a step forward.

Coupled Turing machines, which were proposed by Copeland [38], are
an extension of the notion of a Turing machine that exhibits interactive
behavior. A coupled Turing machine is the result of coupling a Turing ma-
chine to its environment via one or more input channels. Each channel
supplies a stream of symbols to the tape as the machine operates. In addi-
tion, the machine may also have one or more output channels that output
symbols to the environment. The universal Turing machine is not always
able to simulate a coupled Turing machine that never halts (think of a com-
puter operating system, which is a system that never halts; nevertheless,
sometimes some “operating systems” crash quite unexpectedly. . . ).

It is not difficult to see that coupled Turing machines are actually hy-
permachines. Assume that C is a coupled Turing machine with a single
input channel. The number of output channels will not concern us here.
Also, suppose that u ∈ [0, 1] is some “noncomputable” real number (i.e., a
number that cannot be computed by a Turing machine) whose decimal rep-
resentation can be written as follows: 0.u1u2u3 . . . . The digits of the binary
representation of u will form the input of C. The input channel of C writes
to a single square of the machine’s tape, and each successive symbol ui in
the input stream overwrites its predecessor on this square. As each input
symbol arrives, C performs some elementary computation (e.g., it multi-
plies the symbol by 3) and writes the result on some designated squares of
the tape. In order to achieve constant operation time, the next result always
overwrites its predecessor. No Turing machine can produce the sequence
3 · u1, 3 · u2, etc. (for if it could, it could also be in the process of producing
the binary representation of u).

Clearly, the important question is what numbers a coupled Turing ma-
chine can compute. To say that it can compute more than the Turing
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machine is not really useful. In addition, the vague description above is
surely not a replacement for a rigorous mathematical definition of the ma-
chine and its semantics.

3.5 Exotic Machines

The term “exotic machines” refers to conceptual computing devices that
assume that our universe has certain properties. For example, take the case
of Thomson’s lamp, which was “invented” by James Thomson and was first
described in [202]. This is a device that consists of a lamp and an electrical
switch that can be used to turn the lamp on and off. Assume that at t = 0,
the lamp is off. At time t = 1

2 , we turn the lamp on. At time t = 1
2 + 1

4 ,
we turn the lamp off. At time t = 1

2 + 1
4 + 1

8 , we turn the lamp on. At time
t = 1

2+
1
4+

1
8+

1
16 , we turn the lamp off and so on. The problem is to determine

whether the lamp will be on or off at time t = 1. Thomson provided the
following solution to this problem: assume that 0 < t < 1. (i) If the lamp is
off at t, then there is a t′ such that t < t′ < 1 and the lamp is on at t′, and
(ii) if the lamp is on at t, then there is a t′ such that t < t′ < 1 and the lamp
is off at t′. Thomson thought that it followed from (i) that the lamp cannot
be off at t = 1 and from (ii) that the lamp cannot be on at t = 1. This
is clearly a contradiction, and thus Thomson concluded that this device is
logically or conceptually impossible. Paul Benacerraf [12] has pointed out
the fallaciousness of this argument. He claimed that one should distinguish
between the series of instants of time in which the actions of the supertask5

are performed (which will be called the t-series) and the instant t∗ = 1, the
first instant after the supertask.

Thesis 3.5.1 From a description of the t-series, nothing follows about any
point outside the t-series.

From a practical point of view, one may say that tasks like this are really
meaningless if time is granular. However, if time and space are continuous,
then this task has at least some physical basis (for more details, see the
short discussion at the end of Section 8.3).

The so-called Zeus machine is an example of an exotic machine that has
been popularized by Boolos and Jeffrey in their classical textbook [18]. A
Zeus machine is operated by the superhuman being Zeus (i.e., the principal
god of the ancient Greek pantheon), who can perform an infinite task in
a finite amount of time. Actually, Zeus can enumerate the elements of an

5. In philosophy, a supertask is a task involving an infinite number of steps, completed in a
finite amount of time. The term supertask was coined by James Thomson.
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enumerable set6 in one second by writing out an infinite list faster and
faster. In particular, Zeus enumerates the elements of the set in a way that
is identical to the operation of Thomson’s lamp. Copeland has proposed
a more formal version of a Zeus machine, which is called an accelerating
Turing machine [34]. These are Turing machines that perform the second
primitive operation in half the time taken to perform the first, the third in
half the time taken to perform the second, and so on. If we assume that the
first primitive operation is executed in one minute, then since

1

2
+
1

4
+
1

8
+ · · · + 1

2n +
1

2n+1 + · · · < 1,

an accelerating Turing machine can execute infinitely many primitive op-
erations before one minute of operating time has elapsed. It is interesting
to see how accelerating Turing machines can compute the halting function.
We assume that a universal accelerating Turing machine is equipped with
a signaling device (e.g., a horn) that is used to send a signal when a com-
putation is finished within one minute. In particular, given a Turing ma-
chine M with a Gödel number m that is supposed to compute the function
f (x), a universal accelerating Turing machine will take as input the num-
bers m and n (a possible argument to function f ). If within one minute,
the signaling device does not send a signal, the computation does not halt;
otherwise, it does halt. Strictly speaking, this universal accelerating Turing
machine is not a Turing machine at all, since it communicates with the
external world. However, it is not really important to get into these details
(the interested reader should consult Copeland’s paper). Copeland claims
that accelerating oracle Turing machines can be used to refute Searle’s
Chinese room argument. Again, this is not correct. Bringsjord, Bello, and
Ferrucci [24] point out that

After all, Zeus could be a pigeon. And a pigeon trained to move
symbols around, even if blessed with the ability to carry out this
movement at Zeus-level speeds, would still have the mental life
of a bird, which of course falls far short of truly understanding
Chinese.

Copeland responded to this argument by claiming that there is an ascend-
ing hierarchy of symbol-manipulations [35]. Thus, it is not possible to apply
the Chinese room argument to all different levels of this hierarchy. How-
ever, symbol-manipulation is always the same kind of operation no matter
how fast we perform it. Also, there are no recipes to construct a proof. Of
course a brute-force search is not such a recipe, although it is employed by
automated theorem-proving systems to prove truly interesting statements.

6. Although in the original description, Zeus is supposed to enumerate the elements of an
enumerable set, it was pointed out to the author that a machine cannot so “easily” produce an
enumeration of a countably infinite set. On the other hand, Zeus’s job would make sense for
any infinite recursively enumerable set.
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But this approach is not always applicable. In addition, the general proof
methodologies cannot be used to construct the proof or disproof of a par-
ticular mathematical statement. Also, mechanical symbol manipulation is a
process that clearly lacks intentionality, and as Dale Jacquette remarks [90,
p. 10]: “[T]he machine can only imperfectly simulate the mind’s intention-
ality and understanding of a sentence’s meaning.” Now, whether machines
have or do not have mental capabilities is an issue that I will address in
Chapter 6.

The Rapidly Accelerating Computer (RAC), which was proposed by Ian
Stewart [195], is actually equivalent to an accelerating Turing machine. In
particular, the clock of an RAC accelerates exponentially fast with pulses
at times 1− 2−n as n → ∞. And just like accelerating Turing machines, an
RAC can perform an infinite number of computations in a single minute.
It can therefore solve the halting problem for Turing machines by running
a computation in accelerating time and throwing a particular switch if and
only if the Turing machine halts. Like all computations carried out by an
RAC, the entire procedure is completed within one minute; and it siffices
to inspect the switch to see whether it has been thrown. In Stewart’s own
words, “RAC can calculate the incalculable” (emphasis added). Interest-
ingly enough, the RAC and accelerating Turing machines can be modeled
by a classical (i.e., nonquantum) dynamical system, because classical me-
chanics poses no upper bound on velocities. Thus, it is possible to “acceler-
ate” time so that infinite “subjective” time passes within a finite period of
“objective” time. However, it is quite possible to achieve the same effect in
special spacetimes, and we will say more on this matter on Chapter 8.

3.6 On Pseudorecursiveness

While working on his doctoral dissertation, Benjamin Wells constructed a
particular nonrecursive set of algebraic equations, that his thesis advisor,
Alfred Tarski declared to be decidable.7 Thus Wells constructed a nonre-
cursive but decidable set. Clearly, the very existence of such a set jeopar-
dizes the foundations of classical computability theory, which is of interest
because it was constructed by someone without a negative attitude toward
the Church–Turing thesis and its implications. Let us now see how one can
construct such a set (the discussion that follows is based on Wells’s two
recent papers [224, 225]).

We want to construct a set of formal equations. Each formal equation

7. Any decision problem P is associated with a predicate FP . In normal parlance, a prob-
lem P is decidable if FP is computable; P is semidecidable if FP is semicomputable; and P is
cosemidecidable if ¬FP is semicomputable.
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is a string that can be generated using the following formal grammar:

formal equation ::= term “=” term
term ::= “(” term + term “)” | constant | variable

constant ::= “a” | “b”
variable ::= “v1” | “v2” | · · · | “vi” | · · · i ∈ N.

We usually drop the outermost parentheses for clarity.
An equational theory of such formal equations is a set T consisting

of strings, generated by the grammar above, that necessarily includes the
equation v1 = v1. In addition, T must be closed under the following two
operations:8

Subterm replacement The replacement of a subterm t1 that appears in an
equation in T by a term t2 when t1 = t2 or t2 = t1 belongs to T .

Variable substitution The substitution of a chosen but arbitrary term for
every occurrence of a variable in an equation in T belongs to T .

A subset B of an equational theory T is an equational base for T if T is the
smallest equational theory that includes B. We write T = Th(B). Thus, T
is recursively based precisely when T is the closure under subterm replace-
ment and variable substitution of a finite set, or an infinite recursive set, of
equations. The class of algebraic models for an equational theory is called
its variety. The equational theories that Wells considered in his work are
equational theories for varieties of semigroups, that is, they contain equa-
tions that guarantee the associativity of the + operator. In other words, they
contain

(v1 + v2) + v3 = v1 + (v2 + v3).

In addition, one can introduce an additive identity element by including the
following equations:

0 + v1 = v1 = v1 + 0.

Here 0 is a new distinguished constant or a particular term.
Assume that Tn is the subset of the equational theory T consisting of

the equations in T with no more than n distinct variables. We say that T
is quasirecursive if for every number n, Tn is recursive. The theory T is
pseudorecursive if T is quasirecursive but not recursive.

Wells has constructed various pseudorecursive equational theories. In
particular, he provides the following recipe for constructing such theories:
start with a fixed but arbitrary nonrecursive, recursively enumerable set
X ⊂ N and define a finite equational base Ψ1X from a highly engineered
Turing machine that accepts X [223]. The resulting theory Th(Ψ1X ) is an

8. A set X is said to be closed under some operation or map L if L maps elements of X to
elements of X .
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equational theory of semigroups with identity and finitely many individual
constants (the number of constants can be reduced to two or even to one
or zero). This recipe can be formally summarized as follows.

Theorem 3.6.1 For every nonrecursive recursively enumerable set X that is
a subset of N, Th(Ψ1X ) is a finitely based pseudorecursive equational theory
that is Turing-equivalent to X.

According to Wells [224], Tarski has suggested that a basis for a deci-
sion procedure of T (i.e., a method for telling whether an arbitrary equa-
tion is in T ) can be constructed as follows: For each value of n, there is a
procedure for deciding Tn; n can be used to index a catalog of these pro-
cedures. Given an arbitrary equation, count the number of variables in it,
and then use the catalog to locate the correct procedure and apply it. Us-
ing this basis, we can construct a decision procedure for a finitely based
or even just recursively enumerable pseudorecursive theory. We employ an
oracle Turing machine, whose query tape lists the values of the character-
istic function for X . The keying is performed by counting variables to n.
Indexing depends on oracular information: the Turing index for the tem-
plate used to build the machine Mn, which is used to decide Tn, and the
first n items from the oracle are sent to an internal foundry to be recast
as a functional equivalent of Mn, and its Gödel number, now computable,
is returned. The last step sends this number with n to a universal Turing
machine that simulates Mn computing with input n and “allows nature to
take its course.” This oracle Turing machine can decide Tn by looking only
at the first n cells on the tape, which lists the characteristic function fn of
Xn = {0, 1, . . . , n} ∩ X . In addition, since this finite function is recursive,
we can incorporate it into the control mechanism of the oracle machine to
form M∗

n , an ordinary Turing machine that decides Tn. Clearly, for every
n, f (n) = fn(n), where f is the characteristic function of X (therefore, there
is no way to recursively recapture X from the Xn or synthesize an ordinary
Turing machine to decide T ).

The work on pseudorecursiveness has revealed the following (see the
abstract of [225]):

The dilemma of a decidable but not recursive set presents an
impasse to standard computability theory. One way to break the
impasse is to predicate that the theory is computable—in other
words, hypercomputation by definition.

This statement should not be taken as an indication that hypercomputation
is actually an empty word. On the contrary, the theory can be made com-
putable once the very notion of computability is extended. Wells believes
that one should expand a theory only when “real” problems need solutions.
For example, our inability to find a number that is the square root of mi-
nus one led mathematicians to invent the imaginary numbers. Thus, Wells
expects a new expanded theory based on nonrecursive yet decidable sets.



IV. Infinite-Time Turing Machines

Infinite-time Turing machines are Turing machines that can perform an
infinite number of steps to accomplish their tasks. Since their theory relies
heavily on the theory of infinite ordinal numbers, I will provide a brief in-
troduction to the theory of infinite cardinal and ordinal numbers. Then, I
will present the basic results concerning these machines and discuss the
feasibility of a sort of infinite-time Turing machine. Also, I will briefly
present infinite-time automata and “building instructions” for infinite-time
machines. The chapter concludes with Eric Steinhart’s metaphysical foun-
dations for computation, since it seems to fit best in this chapter.

4.1 On Cardinal and Ordinal Numbers

The number of elements of a set A is called the cardinality of the set A, and
it is expressed in cardinal numbers. The cardinality of a set A is denoted by
card(A). For a finite set, its cardinality is simply a natural number equal to
the number of elements in the set. For infinite sets, one has to use infinite
cardinal numbers to express their size. The first infinite number is denoted
by ℵ0 (pronounced aleph null) and by definition it is the cardinal number
of the set N of natural numbers. An infinite set that can be put into one-
to-one correspondence with the set N is called a countable set. Clearly,
the cardinality of a countable set is equal to ℵ0. Examples of countable
sets include the set of integers (Z) and the set of rational numbers (Q).
Assume that A and B are two finite or infinite sets and that a = card(A) and
b = card(B). Then one can define the arithmetic of cardinals as follows:

(i) a + b := card(A ∪ B), A ∩ B = ∅,

(ii) a · b := card(A × B),

(iii) ab := card(AB) (recall that AB is the set of all mappings from B to A).

Notice that the operations of subtraction and division are not defined in
this arithmetic. Also, for every set X it can be proved that

card(2X ) = 2card(X ),

45
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where 2X is identified with the power set of X , or P(X ), that is, the set of
all subsets of X . Suppose that n is a finite cardinal number. Then it is easy
to see that ℵ0 has the following properties:

ℵ0 + ℵ0 = ℵ0,
ℵ0 · ℵ0 = ℵ0,
ℵ0 + n = n + ℵ0 = ℵ0,
ℵ0 · n = n · ℵ0 = ℵ0, n > 0,

ℵn
0 = ℵ0, n > 0.

An infinite set A is called uncountable if card(A) > ℵ0. A classical exam-
ple of an uncountable set is the set of real numbers (R). The cardinality
of this set is called c. Another uncountable set is the powerset of N. The
cardinality of this set is equal to 2ℵ0 . An important question is the follow-
ing: is there an uncountable cardinal number λ such that λ < 2ℵ0? The
hypothesis that there is no such cardinal number is known as the contin-
uum hypothesis. Let us denote by ℵ1 the least uncountable cardinal number.
Then ℵ1 = c = 2ℵ0 , provided the continuum hypothesis holds. More gen-
erally, one can formulate a broader hypothesis and introduce a sequence
ℵ0, . . . ,ℵα, . . . of transfinite cardinals, but we will come to this at the end of
this section. Now assume that n is a finite cardinal. Then the arithmetic of
ℵ1 obeys the following conditions:

ℵ1 + n = n + ℵ1 = ℵ1,
ℵ1 + ℵ0 = ℵ0 + ℵ1 = ℵ1,
ℵ1 + ℵ1 = ℵ1,
ℵ1 · n = n · ℵ1 = ℵ1, n > 0,

ℵ0 · ℵ1 = ℵ1 · ℵ0 = ℵ1,
ℵ1 · ℵ1 = ℵ1,

ℵn
1 = ℵ1, n > 0,

nℵ0 = ℵ1, n > 1,

ℵℵ0
0 = ℵ1,

ℵℵ0
1 = ℵ1.

The last three properties make sense only if the continuum hypothesis
holds.

In von Neumann–Bernays–Gödel set theory, one deals with classes and
sets. The notion of a class is more general than that of a set. Assume that P
is some property. Then one can define the class of all objects that have this
property. The elements of a class are called sets. Although a set is a class,
not every class is a set (e.g., consider the class V of all sets). Two classes
with the same elements are equal. A well-ordering is a linear order (W,≤)
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(i.e., the elements of the set W are comparable) that is irreflexive with the
additional property that every nonempty S ⊆ W has a least element. If
(α,∈α) is a well-ordering, where α is a transitive set (i.e., if every set B that
is an element of α has the property that all of its elements also belong to α)
and ∈α is the relation is an element of, we call α an ordinal number. Thus
we can define the first ordinal numbers as follows:

0 := ∅,
1 := {0} = {∅},
2 := {0, 1} = {∅, {∅}},
3 := {0, 1, 2} = {∅, {∅}, {∅, {∅}}},
...

ω := {0, 1, 2, 3, . . .}.

An ordinal number x > 0 is called a limit ordinal if it has no immediate
predecessor (i.e., an ordinal number y such that y + 1 = x). One can prove
that if α �= 0 and for all β ∈ α, β + 1 ∈ α as well, then α is a limit ordinal.
Indeed, all limit ordinals have this property, as can easily be seen. The
first limit ordinal is ω. There are two rules for generating infinite ordinal
numbers:

(i) if x is an ordinal number, then x∪{x} is the next ordinal; in fact, x+1
is a suggestive notation for S(x), where S(x) = x ∪ {x} is called the
successor operation on ordinal numbers;

(ii) given the sequence 0, 1, 2, . . . , x, x + 1, x + 2, . . ., where x is an ordinal
number, the number following all x + n, n ∈ N, is a limit ordinal
number that can be understood as the set of all smaller numbers:

x · 2 = x + x = {0, 1, 2, . . . , x, x + 1, . . .}.

For example, by applying the first rule to ω, we obtain the ordinal ω + 1;
then by applying the same rule to ω + 1, we obtain ω + 2, and so on. This
way, we obtain the sequence

0, 1, 2, 3, . . . ,ω,ω + 1,ω + 2,ω + 3, . . . .

Notice that while the ordinal numbers ω + 1,ω + 2, . . . are bigger than ω
in the sense of order, they are not bigger in the sense of cardinality, since
card(ω) = card(ω + 1) = card(ω + 2) = · · · = ℵ0. By applying the second
rule to the previous sequence of ordinals we are led to the new limit ordinal
ω + ω, equal to ω · 2:

0, 1, 2, 3, . . . ,ω,ω + 1,ω + 2,ω + 3, . . . ,ω · 2.
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Notice that card(ω) = card(ω · 2) = · · · = ℵ0. Now, by combining both rules
we obtain the following sequence:

0, 1, 2, . . . ,ω,ω + 1,ω + 2, . . . ,ω · 2,ω · 2 + 1,ω · 2 + 2, . . . ,ω · 3,ω · 3 + 1, . . . .

The rules of the arithmetic of ordinal numbers are rather tricky. For exam-
ple, 1 + ω is not equal to ω + 1, since the latter is the next ordinal number
after ω, but 1 + ω = ω.

We define �0 (pronounced beth null) to be the first infinite cardinal
(that is, ℵ0). For each ordinal α, we define �α+1 = 2�α . For each limit or-
dinal δ, we define �δ = ∪α∈δ�α. The generalized continuum hypothesis is
equivalent to the assertion that ℵα = �α, for every ordinal α. An equivalent
condition is that ℵα+1 = 2ℵα . Thus, if the generalized continuum hypothesis
is indeed true, one can construct any possible infinite cardinal using this
rule.

Let us conclude this section with the following important definition
from [166, p. 211].

Definition 4.1.1 An ordinal α is a recursive ordinal if there exists a relation
R such that:

(i) R is a well-ordering (of some set of integers);

(ii) R is recursive; and

(iii) the well-ordering given by R is order-isomorphic (see Appendix D.1)
to α.

The least nonrecursive ordinal is denoted by ωCK
1 , the Church–Kleene ordi-

nal.

4.2 Infinite-Time Turing Machines

Jeffrey Kidder initially defined infinite-time Turing machines in 1989, and
later, together with Joel David Hamkins they worked out the early theory
while they were graduate students at the University of California, Berke-
ley. Later, Hamkins and Andrew Lewis reworked the theory [74]. To put
it very simply, an infinite-time Turing machine is a Turing machine that
may perform an infinite number of steps to achieve its computational task.
More precisely, the total number of steps that an infinite-time Turing ma-
chine may perform is characterized by some ordinal number α. When a
machine enters stage α, then there is a unique next stage α + 1, and all of
these culminate in the stage that is characterized by the limit ordinal β (e.g.,
ω, ω · 2, etc.). The informal description of the operation of an infinite-time
Turing machine that is presented in the next subsection is based on [73]. In
addition, unless it is explicitly stated, the rest of the presentation is based
on [74].
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4.2.1 How the Machines Operate

An infinite-time Turing machine consists of three parallel right infinite
tapes (i.e, all tapes are infinite to the right only). A scanning head simulta-
neously moves across all three tapes. The scanning head, as in the case of
ordinary Turing machines, can read or write symbols or move left or right
by following the commands of a finite program, thereby entering a new
state. When the scanning head is atop a triplet of cells, it can read sym-
bols from any cell or write symbols to any cell. The three tapes are called
the input tape, the scratch tape, and the output tape. Initially, the head is
on the leftmost cell, and the machine is in a special state called the start
state. In addition, the (possibly infinite) input is written on the input tape,
while the scratch and output tapes are filled with zeros. Figure 4.1 depicts
an infinite-time Turing machine at its starting configuration.

output: 0 0 0 0 0 0 . . .

scratch: 0 0 0 0 0 0 . . .

input: 1 1 0 1 1 0 . . .

start

Figure 4.1: An infinite-time Turing machine at its starting configuration.

An infinite-time Turing machine operates in a purely deterministic fash-
ion, since if we know the state of the machine, the position of the scanning
head, and the contents of the tapes at any stage α, we can uniquely deter-
mine the configuration of the machine at stage α + 1.

Assume that a Turing machine has entered an infinite loop. Clearly, this
machine is performing a nonhalting computation and thus fails to compute
the requested computation. However, it is quite possible that the symbols
written on the tape constitute a noncomputable number. This means that
useful information may be lost, since we usually discard the output of a
nonhalting Turing machine. On the other hand, infinite-time Turing ma-
chines provide a mechanism by which we can avoid losing this “precious”
information. The way they succeed is by taking some kind of limit of the
earlier configuration and continuing the computation transfinitely. In par-
ticular, at any limit-ordinal stage, the scanning head resets to the leftmost
cell; the machine enters the special limit state, which is just another of the
finitely many states; and the values in the cells of the tapes are updated
by computing a kind of limit of the previous values the cell has displayed.
Figure 4.2 depicts an infinite-time Turing machine in the limit stage.
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output: 1 1 0 1 1 1 . . .

scratch: 0 1 1 0 0 1 . . .

input: 1 1 0 1 0 0 . . .

limit

Figure 4.2: An infinite-time Turing machine in the limit stage.

Suppose now that the values in a cell have stabilized before a limit stage.
Then the limit value displayed by the cell at the limit stage will be this sta-
bilized value; otherwise, if the cell’s value is alternating between 0 and 1,
then the limit value is set to 1. By definition, this limit value is equivalent,
to computing for each cell the limit-supremum of all previous values dis-
played in that cell. With the limit-stage configuration thus completely spec-
ified, the machine simply continues computing. If eventually the halt state
is reached, the machine stops its operation and gives as output whatever is
written on the output tape; as shown in Figure 4.3.

output: 1 1 0 1 0 1 . . .

scratch: 0 1 0 0 1 1 . . .

input: 1 0 0 0 1 0 . . .

halt

Figure 4.3: An infinite-time Turing machine in the halt stage.

Obviously, in all other cases the machine will operate forever.
Assume that p (for program) is an infinite-time Turing machine; then

clearly p determines a function. When the machine (or program) p is run
on input x, the result of a halting computation will be denoted by φp(x).
Apparently, the domain of φp is the collection of all x that lead to a halting
computation. Notice that the natural input for these machines is an infinite
bit string x ∈ 2ω (recall that 2 = {0, 1}). Thus, the functions computable
by infinite-time Turing machines are partial functions on a Cantor space
(see Appendix D.3). Since it is not too wrong to let R stand for 2ω, in what
follows the symbol R will stand for 2ω.
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From the discussion so far, it is not clear how one can use an infinite-
time Turing machine to compute functions that take more than one argu-
ment. An obvious solution to this problem is to augment the machine with
additional input tapes—one for each argument. On the other hand, it is
possible to print the arguments on one tape using the following technique:
Assume that 〈a1, a2, . . .〉 and 〈b1, b2, . . .〉 are the digits of two arguments.
Then we print on the single tape the “number” 〈a1, b1, a2, b2, . . .〉. In other
words, the digits of the two inputs appear interleaved on the single tape
(see also Section 4.2.5). By convention, the numbers 0 and 1 are repre-
sented by 〈0, 0, 0, . . .〉 and 〈1, 1, 1, . . .〉, respectively. Let us now proceed with
a number of basic definitions.

Definition 4.2.1 Assume that f : Rk → R is a partial function. Then we say
that f is infinite-time computable if there is a program p such that f = φp.

It is not a novelty to assume that the program of an infinite-time Turing
machine is represented by some natural number n. Clearly, n can be gener-
ated by employing a coding mechanism. For example, one can use a coding
mechanism like the one employed in the theory of universal Turing ma-
chines to represent the program of an ordinary Turing machine.

Definition 4.2.2 Let A be a set of reals. Then A is infinite-time decidable
if its characteristic function, χA, is infinite-time computable. Moreover, A
is infinite-time semidecidable if the partial function

g(x) =
{

1, if x ∈ A,
undefined, otherwise,

is infinite-time computable.

Thus, a set is infinite-time semidecidable when it is the domain of an
infinite-time computable function.

Definition 4.2.3 Suppose that A is a set of reals. Then A is α-decidable
if its characteristic function χA can be computed by a machine that must
perform no more that α steps on any input.

As a direct consequence of these definitions, we have the following result. If
g is a function from 2<ω (the set of finite bit strings) to 2<ω, then g is Turing-
computable if and only if g is ω-computable with every computation of a
value of g having a finite time bound. Note that there is an ω-computation
of the Turing machine halting problem, but it requires ω time, as stated in
the next section.

Imagine that an infinite-time Turing machine has performed an un-
countable number of steps without halting. Then one may speculate that
this machine will never terminate. Consequently, if an infinite-time Turing
machine halts, then one may deduce that it has performed a countable num-
ber of steps. This conjecture has been proved by Hamkins and Lewis [74].
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Theorem 4.2.1 Every halting infinite-time computation is countable.

An instantaneous description of a computation is a complete description
of the configuration at some particular moment. An instantaneous descrip-
tion specifies the program being used, the state and position of the head,
and the complete contents of each of the tapes. Before proceeding with the
following definition, let us say that it is quite possible for a machine that has
entered an infinite loop to break the loop and continue its computation or
even halt. For example, this could happen if the limit of the instantaneous
descriptions of the repeated commands is different from these instanta-
neous descriptions.

Definition 4.2.4 If an instantaneous description of some computation oc-
curs at two limit-ordinal stages and between these two stages the cells that
are 0 in the limit never turn to 1, we say that the computation repeats itself.

Notice that it is allowed for the ones to turn to zero. Based on this, one can
prove the following statement.

Corollary 4.2.1 Every infinite-time computation either halts or repeats itself
in countably many steps.

4.2.2 On the Power of Infinite-Time Machines

The first question that pops into one’s mind regards the computational
power of infinite-time Turing machines: are they more powerful than Tur-
ing machines or not? Clearly, one should notice that the halting problem
for Turing machines is infinite-time decidable, since one can easily simu-
late an ordinary Turing machine computation with an infinite-time Turing
machine. Either the simulation halts in a finite number of steps, or after
ω steps the machine reaches the limit state. So by giving the output “Yes”
or “No,” respectively, in these two situations, the halting problem is solved.
Thus, infinite-time Turing machines are more powerful than ordinary Tur-
ing machines, since they can decide sets that are undecidable by Turing
machines. The next theorem gives a first hint as to the real computational
power of these machines.

Theorem 4.2.2 Any arithmetic set is infinite-time decidable.

Assume that � is a relation in X ×X , where X ⊂ ω; then � can be coded
by the real number x such that x(〈n, k〉) = 1 if and only if n � k. Here 〈.,.〉 is
some standard pairing function (i.e., a function that reversibly maps N×N

onto N). In this way every real x codes some relation �. Suppose that WO
is the set of reals coding well-orderings. The set WO is a complete Π1

1 set,
in the sense that if A is another Π1

1 set, there is a recursive function f on
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the real numbers such that x ∈ A if and only if f (x) ∈ WO. The following
statement gives a property of the set WO.

Theorem 4.2.3 The set WO is infinite-time decidable.

More generally, one can prove the following statement.

Corollary 4.2.2 Every Π1
1 set is infinite-time decidable, and hence every Σ1

1
set is infinite-time decidable.

But the properties of the collection of decidable sets extend further up the
analytical hierarchy. Before elaborating on this matter, we need a definition
from [52].

Definition 4.2.5 Assume that β is a recursive ordinal. Then A ⊆ ωω is β-Π1
1

if and only if Aα ⊆ ωω exists for each α ≤ β with Aβ = ∅ and there exists a
recursive well-ordering of a subset E of ω with order type β such that if |n|
is the order type of n ∈ ω in this well-ordering, then

{
(k, x) ∈ E × ωω

∣
∣
∣ x ∈ A|k|

}
∈ Π1

1

and
A =

{

x ∈ ωω
∣
∣
∣ ∃α ≤ β

(
(α odd) ∧ (x ∈

⋂

γ<α

Aγ \ Aα)
)}

.

An ordinal is even if and only if it has the form α + 2n, and it is odd if
and only if it has the form α + 2n + 1, where n ∈ ω and α is a limit ordinal
(see [167]).

Definition 4.2.6 Suppose that an infinite-time Turing machine starts with
input the number 0 and when it halts, the real number x appears on its
output tape. Then x is called writable. Also, an ordinal is writable if there
is a writable real number that codes it.

Assume that A is β-Π1
1 , where β is a writable ordinal. Let us consider an al-

gorithm that first writes the relation R coding β on a section of the scratch
tape that is fed to the Π1

1 algorithm in order to make a list of those numbers
n with the property that the input x is in A|n|. Finally, by counting through
the relation coding β, the algorithm searches for an odd ordinal α < β such
that x ∈ ∩δ<αAδ \ Aα. So the algorithm will decide whether x is in A, thus
proving the following corollary.

Corollary 4.2.3 If β is a writable ordinal, then every β-Π1
1 set is decidable.

The following statement gives a characterization of decidable and semide-
cidable sets.
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Arithmetic

Hyperarithmetic

∆1
1
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1 Π1

1

Decidable

Semi-
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Co-
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Decida-

ble

∆1
2...

Σ1
2 Π1

2

Figure 4.4: The semidecidable and cosemidecidable sets in the analytic hierarchy.

Theorem 4.2.4 Assume that G is the graph of an infinite-time computable
function. Then G ∈ ∆1

2. More generally, every decidable set and every semide-
cidable set is ∆1

2.

Every cosemidecidable set is also ∆1
2, also the semidecidable sets form

a proper subclass of the ∆1
2 sets (see Figure 4.4). The following statement

identifies the classes of sets that are decidable by algorithms that need to
take relatively few limits.

Theorem 4.2.5 The arithmetic sets are exactly the sets that can be decided
by an algorithm using a bounded finite number of limits.

In addition, the following result concerns the length of computation of
hyperarithmetical sets:

Theorem 4.2.6 If A ∈ ∆1
1, then A can be decided in some bounded recursive

ordinal length of time.
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4.2.3 Clockable Ordinals

In order to measure the time it takes for a halting computation to finish, it
was necessary to introduce the notion of clockable ordinals.

Definition 4.2.7 Let I be an infinite-time Turing machine with input the
number 0. Then if I completes its computational task in exactly α steps
we say that the ordinal α is clockable.

By the previous definition, any natural number is clockable. In addition,
there are many other ordinals that are clockable. Indeed, the following
theorem characterizes some clockable ordinals.

Theorem 4.2.7 Every recursive ordinal is clockable.

A direct consequence of this result is that the clockable ordinals extend at
least up to ωCK

1 . However, the clockable ordinals extend even further.

Theorem 4.2.8 The ordinal ωCK
1 + ω is clockable.

Another interesting fact is captured by the following statement.

Lemma 4.2.1 If α+n is clockable for some natural number n, then α is clock-
able.

It is quite surprising that there are openings in the sequence of clockable
ordinals. In other words, there are intervals of ordinals that no infinite-time
Turing machine can count. The following theorem makes this explicit.

Theorem 4.2.9 There are openings in the sequence of clockable ordinals. In
fact, the first opening above any clockable ordinal has size card(ω).

The following theorems reveal something of the structure of these open-
ings.

Theorem 4.2.10 The openings in the clockable ordinals become large. In-
deed, for every clockable ordinal α, there are openings of size at least card(α)
in the sequence of clockable ordinals.

Theorem 4.2.11 There are many openings in the clockable ordinals. In par-
ticular, if α is a writable ordinal, there are at least card(α) openings of size
at least card(α) in the sequence of clockable ordinals. In addition, if α is ei-
ther clockable or writable, the “number” of openings of size at least card(α)
is neither clockable nor writable.

Theorem 4.2.12 There are no openings in the sequence of writable ordinals.
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The following two results are quite interesting.

Theorem 4.2.13 If α and β are clockable, then α+ β and α · β are also clock-
able.

Theorem 4.2.14 If α is either clockable or writable, the set of reals coding
well-orderings of length less than card(α) is decidable.

4.2.4 On Infinite-Time Halting Problems

Just like ordinary Turing machines, infinite-time Turing machines have
their own halting problems. We say “problems” and not “problem” because
the two sets H = {(p, x) | p halts on input x} and h = {p | p halts on input 0}
are not equivalent as in the classical case. Let us start by stating a theorem
that characterizes these problems.

Theorem 4.2.15 The halting problems h and H are semidecidable.

The following classes of sets are called approximations to the halting prob-
lems:

Hα = {(p, x) | p halts on input x in fewer that α steps},
hα = {p | p halts on input 0 in fewer that α steps}.

It is clear that if α < β, then Hα ⊆ Hβ. In addition, it can be proved that if
α < β, then Hα ⊂ Hβ. The following statements provide more insight into
the halting problems of infinite-time machines.

Theorem 4.2.16 For any limit nonclockable ordinal α, neither Hα nor hα is
α-decidable. In case α is clockable, then both Hα and hα are α-semidecidable
and (α + 1)-decidable.

Theorem 4.2.17 If α is writable or clockable, then Hα and hα are decidable.

Theorem 4.2.18 The set hα is decidable for every α below the supremum of
the clockable ordinals.

Theorem 4.2.19 Assume that γ is the supremum of the clockable ordinals.
Then Hγ is semidecidable.
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4.2.5 Machines with Only One Tape

Assume that we have an ordinary Turing machine that operates in transfi-
nite ordinal time. A natural question that comes up is whether this machine
is as powerful as the infinite-time Turing machine with three tapes. This
question has been addressed by Hamkins and Daniel Evan Seabold [76].
Here are their main results.

(i) A set is decidable if and only if it is one-tape decidable.

(ii) A function f :R→R whose range is not dense in R is computable if
and only if it is one-tape computable.

(iii) There is a computable function f :R→R that is not one-tape com-
putable.

(iv) The class of one-tape computable functions is not closed under com-
position; closing it under composition yields the class of all com-
putable functions.

(v) Every clockable ordinal is one-tape clockable, except certain isolated
ordinals that end gaps in the clockable ordinals.

4.2.6 Infinite-Time Machines with Oracles

An infinite-time oracle Turing machine is an infinite-time machine equipped
with an auxiliary tape. The oracle of an infinite-time Turing machine can
be either a single real number or, more generally, a set of reals. However,
for reasons I will explain later, in general it is not possible to print the
elements of a set of real numbers on the cells of this auxiliary tape. Assume
that p is a machine using an oracle tape. Then φx

p will denote the resulting
function that uses a real number x as an oracle. Such functions will be
referred to as infinite-time x-computable functions.

Assume that A is a closed interval of real numbers in R. Then A is un-
countable, and so it is not possible to print out the elements of A on an
oracle tape. Therefore, for this (not particularly rare) case, we need a dif-
ferent method for using such a set of real numbers as an oracle. Hamkins,
in a personal communication has suggested that one may think of the oracle
tape as a buffer on which a number x is printed out during a computation
in order to allow the machine to query whether x belongs to A. Depending
on what gets printed on the cell that lies beneath the scanning head at this
given moment, it is assumed that the oracle gives the response either Yes
or No, thus replying to the question “x ∈ A?”. By employing this counter-
intuitive method, the machine has the capability to determine whether a
real y that appears on the oracle belongs to a set A. In addition, such a
machine can decide membership in A of an arbitrary real number z. Also,
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the characteristic function of A can be computed by assuming that A is the
oracle. If the number z appears on the input tape, we just copy it on the
oracle tape and query the oracle to see whether z belongs to A. The answer
is clearly the value of χA(z). Obviously, there is no limit to the number of
times the machine can seek advice from the oracle.

Suppose that p is an infinite-time Turing machine. When running p on
input x and oracle A, the result of a halting computation will be written as
φA

p (x).

Definition 4.2.8 A function f is infinite-time A-computable if it can be
computed as φA

p for some machine p.

Assume that A and B are two oracles; we will say that A is infinite-time
computable from B, written A ≤∞ B, if the characteristic function of A
is infinite-time B-computable.1 This definition is meaningful for any kind
of oracle (i.e., a set of real numbers or an individual real number if a real
number is considered as a subset of ω).

The relation ≤∞ is transitive and reflexive; thus, we can easily obtain
the notion of infinite-time degrees: A ≡∞ B. This is an equivalence rela-
tion, and equivalence classes are denoted by [A]∞. In addition, for a real x,
we have x ≡∞ Ax, where Ax is a set of finite approximations of x appended
with zeros. Also, we write A <∞ B if A ≤∞ B and A �≡∞ B. Moreover, it is
not difficult to define the corresponding notions of infinite-time semidecid-
ability, clockability and writability for infinite-time oracle Turing machines.

Assume that A and B are two oracles. Then the expression A ⊕ B will
be used to denote an oracle that codes, in some standard manner, the infor-
mation contained in A and B. Obviously, A ⊕ B is the least upper bound of
A and B with respect to ≤∞.

Given an oracle A, the strong jump of A, written A�, is defined as fol-
lows:

A� = HA = {(p, x) | φA
p (x)↓}.

Notice that φA
p (x)↓ means that φA

p (x) is convergent. The weak jump of A is
the set

A� = A ⊕ hA = A ⊕ {p | φA
p (0)↓}.

The set A is included in A� because some particularly complex sets of real
numbers cannot be computed only from hA. Now we are ready to present
the main results concerning infinite-time oracle machines.

Theorem 4.2.20 A <∞ A� <∞ A�.

Corollary 4.2.4 The set A� is not computable from A ⊕ z for any real z. In
particular, 0� is not computable from any real.

1. Clearly, this notion is an extension of Turing reducibility: A is Turing reducible to B, written
A ≤T B, if A is recursive in B.
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Notice that 0� and 0� are actually equivalent to h and H , respectively.
Let α be an ordinal number that is coded by some real z that is A�.

The iterates A�(α) with respect to z are defined by induction on α such that
A�(α) = A ⊕ wα for some real wα. The iterates start with w0 = 0, so that
A�(0) = A ⊕ 0. At successor stages we want

A�(β+1) = (A�(β))� = (A ⊕ wβ)⊕ hA�(β)

,

so we demand that wβ+1 = wβ⊕hA�(β)
. At limit stages δ, we let wδ =

⊕
β<δ wβ

and depend on z for the organization of the information.

Theorem 4.2.21 A�� ≡ A�. Indeed, for any ordinal α that is A�-writable,
A�(α)� = A�.

Theorem 4.2.22 ∆1
2 is closed under the jump operators � and �.

Theorem 4.2.23 The relation x ≤∞ y is semidecidable but not decidable.

4.2.7 Post’s Problem for Supertasks

Hamkins and Lewis[75] address the equivalent of Emil Leon Post’s prob-
lem in the setting of infinite-time computing. But first, let us recall Post’s
original problem. If A ≤T B and B ≤T A, then we write A ≡T B. The
equivalence classes of ≡T are called Turing degrees or T -degrees. A set A
is complete if it is recursively enumerable and also for every set B that is
recursively enumerable it holds that B ≤T A. Post’s problem asks whether
there are recursively enumerable sets that are neither recursive nor com-
plete. Here is the answer to the supertask analogue of Post’s problem as
stated in [75]:

Theorem 4.2.24 Depending on the context, the supertask analogue of Post’s
problem has both positive and negative solutions. Specifically:

(i) In the context of the reals, there are no degrees strictly between 0 and
0�.

(ii) In the context of sets of reals, there are degrees strictly between 0 and
0�. Indeed, there are incomparable semidecidable degrees.
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4.3 Infinite-Time Automata

A finite automaton, or finite-state machine, is a conceptual computing de-
vice that has as input a string (i.e., a sequence of symbols that belong to
some alphabet A) and produces no output at all other than an indication
of whether the input is acceptable. A finite automaton has an input tape,
which is divided into cells each of them holding one symbol of the input.
A scanning head moves on the tape, reading the contents of each cell. A
finite control changes the state of the automaton according to the current
state and the symbol just read. Initially, the scanning head is placed at the
leftmost cell and always moves to the right just after each read operation,
and the finite control is set in a designated initial state. When the scanning
head reaches the end of the input string, the finite automaton indicates the
acceptance or rejection of the input string according to the state it has en-
tered. Since we have extended the functionality of Turing machines so they
may perform an infinite number of steps to achieve their computational
tasks, it is quite reasonable to expect to be able to extend the functionality
of any kind of automaton so it can perform an infinite number of steps to
achieve a computational task. Indeed, J. Richard Büchi has introduced fi-
nite automata operating on infinite sequences. In addition, David E. Müller
has defined deterministic automata on infinite words.

Grégory Lafitte [105] presents a two-way Wojciechowski automaton, or
W2-automaton, that can recognize a finite, infinite, or transfinite string
in a transfinite number of steps. Formally, a Wojciechowski automaton is
defined as follows.

Definition 4.3.1 A Wojciechowski automaton, or W-automaton, is a quin-
tuple (Q,Σ, δ, ι, F ) with Σ a finite alphabet, Q the finite set of its states,
δ ⊆ (2Q ∪ Q) × Σ × Q the transition relation, i ∈ Q the initial state, and
F ⊆ (2Q ∪ Q) the finite set of its final states.

In discussing the operation of a Wojciechowski automaton, by state we
mean an element of 2Q ∪ Q.

A W2-automaton is a W-automaton on a two-way countable tape. At a
limit stage, the scanning head is placed automatically on top of the first
cell. In addition, if at a previous successor stage the scanning head was on
top of a cell for at least one stage, the symbol on this cell will change to � if
something else was printed on the cell before, and otherwise, it is replaced
by � if the symbol � was printed on it. Practically, the symbol printed on the
cell changes from � to � and vice versa.

Definition 4.3.2 A W2-automaton is a quintuple A = (Q,Σ, δ, i, F ), where
Σ is a set of distinct symbols called the alphabet, Q is a finite set of states,
δ ⊆ (2Q ∪ Q)× Σ ∪ {�, �} × W × {←, ↓,→} is the transition relation, i ∈ Q is
the initial state, and F ⊆ (2Q ∪ Q) is the finite set of final states.
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Let Σ be a finite alphabet and let α be an ordinal number. Then all strings of
length α will be called α-sequences. We now define continuous α-sequences,
which are necessary for the discussion that follows:

Definition 4.3.3 An α-sequence φ on Q is continuous if for any successor
ordinal β, we have φ(β) ∈ Q and if for any limit ordinal β,

φ(β) =
{

q ∈ Q
∣
∣
∣ {γ < β|φ(γ) = q} is cofinal to β

}
.

A run with label σ ∈ (Σ∪ {�, �})ωα, that is, σ : α → (ω → (Σ∪ {�, �})), where α
is an ordinal number, of a W2-automaton A = (Q,Σ, δ, i, F ) is a continuous
(α + 1)-sequence (φq,φpos) on 2Q × N such that φq(0) = i, φpos(0) = 0,
σ(0) ∈ Σω is the original content of the tape, and for any ordinal β < α,

(
φq(β), σ

(
β
)(
φpos(β)

)
,φq(β + 1), ρ

(
φpos(β + 1)− φpos(β)

))
∈ δ,

where ρ(1) =→, ρ(0) =↓, ρ(−1) =←, and σ(β) specifies the contents of the
tape at stage β. Also, φq and φpos return the state of the machine and the
position of the scanning head at every stage.

W2-automata are unexpectedly powerful conceptual computational de-
vices. Indeed, the following result makes this precise.

Theorem 4.3.1 Both finite- and infinite-time decidable languages can be ac-
cepted by W2-automata.

In other words, W2-automata have the power of infinite-time Turing ma-
chines.

4.4 Building Infinite Machines

In the previous section we have presented a theory of machines that can
perform an infinite number of steps to accomplish their computational
tasks. However, unless it is possible to perform supertasks, the theory pre-
sented so far is merely a mathematical curiosity.2 The possibility of creat-
ing such machines depends mainly on the properties of our universe. For
instance, if time and space are continuous, in spite of quantum gravity ex-
pecting them to be granular, then in principle, it is possible to perform
a supertask.3 Similarly, in a Newtonian universe (i.e., a universe in which
the laws of the Newtonian mechanics hold) space, time, and matter are

2. This is not quite true, since, for example, there are systems that operate virtually forever
(e.g., operating systems), and so infinite-time Turing machines may have some unexpected
applications.
3. See Chapter 8 for more regarding this issue.
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continuous, and thus it is possible to build such machines. Indeed, E. Brian
Davies [47] explores the possibility of building an infinite machine in such
a universe. In the rest of this section I will briefly describe his construction.

Davies starts with the assumption that it is possible to construct a ma-
chine that contains an infinite number of parts with no lower limit on their
sizes. However, it is necessary to give a detailed description of the machine
to avoid paradoxes. Davies assumes that it is possible to construct a ma-
chine M1 that contains a Babbage-type computer (i.e., a machine resem-
bling Charles Babbage’s difference engine) with a specified clock time c1
and a memory of size m1 bytes. It also contains a robotic factory that can
produce a new version of the computer and of the factory (i.e., a new ma-
chine M2). The machine M2 is is not identical to M1. First of all, M2 has
memory size that is twice the memory size of M1, and its components are
16 times smaller than those of M1. From these, one may deduce that the
size (diameter) of M2 is at most s2= s1

8 . We also assume that its clock time is
c2= c1

8 . Practically, this means that signals do not need to travel any faster in
M2 than they do in M1. In short, M2 is smaller, faster, and more powerful
than M1. Clearly, the question regarding our ability to build such machines
depends mainly on the progress of technology. Over the last two centuries,
each generation of tools has been used to produce the next one, and in the
course of time, tools have become steadily smaller, faster, and more accu-
rate. In addition, most machine tools operate in a rather classical manner
(i.e., quantum phenomena are not observable at all). The same remarks ap-
ply to computer design and performance. Thus according to Davies, there
is no obvious inconsistency in making the previous assumption, and so we
can safely continue with our construction.

The machine M2 is capable of building M3 and so on. In the end we have
a series of machines where Mi is directly connected to Mi−1 and Mi+1. The
characteristics of each machine Mn are described by the following equa-
tions:

∀n > 0 : cn =
cn−1

8
, mn = 2mn−1, sn =

sn−1

8
.

It is also possible to estimate the total size of all machines together. Indeed,
their potential total size is at most

s1
∞∑

n=0

8−n =
8s1
7

< ∞.

Assume that Pn is a sequence of propositions whose solutions require
steadily more computation as n increases. Also, assume that the length of
the computation does not increase rapidly with n. The machine M1 is given
the general problem (i.e., the whole sequence Pn) and operates as follows:
it tries to solve the problem for n = 1; if it succeeds, it reports “yes” (e.g.,
by blowing a horn). Otherwise, it constructs M2 and passes to it the entire
problem together with the number n = 2. The second machine behaves
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similarly. At the ith stage the machine Mi tries to solve the problem for the
case n = i, and if it succeeds, it informs Mi−1, which passes the message
up the chain. If it fails, it constructs Mi+1 and passes the problem down the
chain. After a suitable finite length of time, M1 either gets the good news
that the problem has been solved or can deduce that it is not soluble for
any n.

The machines have the capability to deduce whether a program will run
forever on a Turing machine. Given the program, starting with the case
n = 1, we run it on Mn until either it has stopped, the memory of Mn is
full, or Mn has carried out 2n steps. If at that time the program has not
stopped, we pass the same program to Mn+1. If the program stops on any
of the machines, then a report is sent back to M1. In case M1 has not
received any report after a certain finite length of time, it can deduce that
the program does not halt.

4.5 Metaphysical Foundations for Computation

Steinhart [193] attempted to define metaphysical foundations for compu-
tation capable of supporting both classical computers and hypercomputers.
Using this formalism it is quite possible to directly compare machines and
their computational power.

A logical space is filled with individuals that combine with properties.
Both individuals and properties are sets. For the rest of the discussion
D = {i1, i2, . . .} and P = {p1, p2, . . .} will denote sets of individuals and
properties, respectively. Notice that both sets may be infinite. A property
that combines with n individuals is dubbed an n-place property. In partic-
ular, properties that combine with many individuals are relations. As an
example, let us consider the sets D = {A, B} and P = {p, q, r}, where both
p and q are one-place properties, and r is a two-place property (i.e., a rela-
tion).

Definition 4.5.1 A fact over individuals and properties is a list of the form
(p, i1, . . . , im), where p is an m-place property and i1,. . . , im are individuals.

For instance, (r, A, B) and (p, A) are facts.

Definition 4.5.2 A logical space over individuals and properties is the set
of all facts over these particular individuals and properties.

For example, the logical space F of D and P is the set

{(p, A), (p, B), (q, A), (q, B), (r, A, B), (r, B, A)}.
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Definition 4.5.3 A situation over a logical space is any subset of the logical
space.

We will denote by S the set of all situations over a logical space F . Clearly,
S is the power set of F (i.e., S = 2F ).

Situations can be ordered in the obvious way. Thus, for any two situa-
tions a, b ∈ S, a ≤ b if and only if a ⊆ b. Depending on the nature of the
situations it is possible to define additional ordering schemes.

Definition 4.5.4 A series is a function from an ordinal µ to some ordinary
set V . In particular, a series H of situations over some set S of situations is
simply a function H : µ → S. We say that the series H is indexed by µ.

If (S,≤) is a linear order, a series H of situations is

constant ⇔ (∀n, m ∈ µ)
(

H(n) = H(m)
)

,

increasing ⇔ (∀n, m ∈ µ)
(
(n < m) ⇔ (H(n) ≤ H(m))

)
,

decreasing ⇔ (∀n, m ∈ µ)
(
(n < m) ⇔ (H(m) ≤ H(n))

)
.

A series H of situations that is not constant and neither increasing nor
decreasing is termed oscillating. If a series H is increasing or decreasing,
then it converges to U if and only if U is respectively the least upper bound
or the greatest lower bound of H .

It is not totally unrealistic to assume that an algorithm is a well-defined
computational rule on a domain (i.e., a function). And it is equally reason-
able to assume that such a rule is a formula in the language of set theory.
Thus, we will call any function instantiating such a rule an operator. In
particular, any function f : S → S is a successor operator if there is a rule
R such that f (x) = y ⇔ R(x, y).

Definition 4.5.5 A series H is recursive for successor ordinals if there is a
successor operator f such that for every ordinal λ less than µ, H(λ + 1) =
f (H(λ)).

Let us denote by S∞ the set of infinite series of situations over S. In
addition, let 〈H(α)〉 denote any infinite series in S∞.

Definition 4.5.6 A (partial) function l : S∞ → S is a limit operator if

(i) there is a rule R such that R(〈H(α)〉, y) ⇔ l(〈H(α)〉) = y, and

(ii) 〈H(α)〉 somehow converges to y.

The set-theoretic least upper bound ∪α<λ〈H(α)〉 is an example of a limit
operator.
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Definition 4.5.7 Given a series H , if there is a limit operator l such that

∀λ < µ : H(λ) = l
({

H(α) = h
∣
∣
∣α < λ

})

,

then H is continuous at limit ordinals.

Definition 4.5.8 A series H is called well behaved if

(i) it is recursive for successor ordinals, and

(ii) it is continuous at limit ordinals.

Definition 4.5.9 A series H indexed by µ is algorithmic if

(i) H is well behaved, and

(ii) there is an α < µ such that H(α) is a fixed point, that is, H is constant
above α.

Any algorithm can be identified by an inductively defined property that is
free in some variable H and is defined on an ordinal number α. In addition,
the free variable H ranges over series of situations. The most general form
of an algorithm defined this way is

(∀n)
(
(n < α) ⇒ C(H, n)

)
,

where C(H, n) is the conjunction of three components in which neither H
nor n is a bound variable. More specifically, these components specify the
values of H for various types of ordinals. The initial component is used to
specify the value of H for 0, the first ordinal. The successor component is
used to specify the successor operators that can determine the value of H
for ordinals that are less than α. The limit component is used to specify the
limit operators that determine H for limit ordinals that are less than α. Let
us now see how one can define an algorithm that computes the factorial of
an integer m (where we define ω! = ω):

m! =λH .(∀n)
(
(n ≤ (ω + 1)

)
⇒

( (

(n = 0) ⇒
(

H(n) = 0
))

∧
(

(0 < n < ω) →
(

H(n) = H(n − 1) · m
))

∧
(

(n = ω) ⇒
(

H(n) = ω
))

)

.

Now it is quite reasonable to ask, “What is the relation between ma-
chines and algorithms?” The answer is very simple.
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Definition 4.5.10 A machine is a series of situations that implement an
algorithm.

Thus, one can specify a machine (e.g., Turing machine) as a series of situ-
ations that implements a particular algorithm.

Definition 4.5.11 An algorithm over some set S of situations is an induc-
tively defined property of some series in S.

A machine is a series of situations that implements (realizes or models) an
algorithm. Any series of sets that is well behaved and converges is an algo-
rithmic series of sets. We are now ready to define logically possible machines.

Definition 4.5.12 A logically possible machine is any algorithmic series of
sets.

To understand this definition, let us first note that finite machines are spe-
cial cases of their infinite counterparts, and physically possible machines
are special cases of metaphysically possible machines. Now, a metaphysi-
cally possible machine is just a special case of a logically possible machine.
But is the concept of algorithmic series of sets so powerful that it tran-
scends Turing computability? This question can be addressed by means of
an example borrowed from set theory.

Assume that X and Y are two arbitrary sets. Then X � Y if and only if
there is an injection f : X → Y . If X � Y , then there is an injection g :
X → Z, for some Z ⊆ Y . If X is an infinite set, the aleph function, written
ℵ(X ), is the next cardinal greater than X . Formally, ℵ(X ) = ∩{κ|κ �� X}.
The first aleph is ℵ0 = ω, the next cardinal greater than ℵ0 is ℵ(ℵ0), and the
next cardinal greater than ℵ(ℵ0) is ℵ(ℵ(ℵ0)), and so on. In general, ℵn+1 =
ℵ(ℵn) when n is a successor ordinal, and

ℵλ =
⋃

β<λ

ℵβ

when λ is a limit ordinal. Let us now define the superaleph series as follows:

µ0 = ℵ0; µn+1 = ℵµn ; θ =
⋃

{µn|n ∈ ω}.

The first few elements of the superaleph series are: ℵ0, ℵℵ0 , ℵℵℵ0
, . . . . Let

us now explain how we can generate the elements of the superaleph series.
Suppose that have at our disposal an element ζi of the superaleph series.
Then the next element, ζi+1, is obtained by replacing the zero in ζi with ℵ0.
For instance, by replacing the zero in ℵℵℵ0

with ℵ0 we get ℵℵℵℵ0
, which is

the next element of the superaleph series. The limit θ of the superaleph
series is denoted by an endless series of subscripted ℵ’s, that is,

θ = ℵℵℵ
. . .

.
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Observe that ℵ(θ) = ℵθ = θ. In other words, θ is a fixed point of the aleph
function. This implies that if we start an interaction from ℵ0 up to the
superalephs, we will stop at θ. In general, the aleph series is algorithmic,
since it is also well behaved. In addition, this is a proof that algorithmic
series exceed Turing computability.

The theory presented so far can be used to classify any computing de-
vice, provided that interaction does not count as a new paradigm, which, of
course, is not true. The theory can be used not only to classify machines, but
minds as well, provided, of course, that minds are purely computational de-
vices. Indeed, Steinhart [194] has examined this idea. However, there is no
proof that all phenomena in nature are computational and that minds are
some sort of computing device. Following Copeland, Steinhart calls himself
a “wide mechanist” (i.e., a computationalist that rejects the Church–Turing
thesis), and so it was quite natural for him to postulate the existence of su-
perminds. Although, I agree with Steinhart and Copeland that minds have
hypercomputational capabilities, I favor the idea that minds have both hy-
percomputational and paracomputational capabilities, that is, capabilities
that cannot be classified as computational, and that is why I call them hy-
perminds. So Steinhart’s theory can only partially classify hyperminds.



V. Interactive Computing

Traditionally, a computational task is considered successful only if it halts
after some finite amount of time. However, if we insist on this simple re-
quirement, most modern computer-based equipment will be considered as
a failure. For example, a computer-controlled mechanical respiration sup-
port system cannot stop operating, or else the patient being supported by
this system will die. In addition, operating systems and word processors are
written to receive unbounded input over time and therefore do not halt.
Also, a rover maneuvering on the surface of another planet should not stop
operating before its projected life expectancy,1 or else it will be considered
a (partial) failure.

Apart from this, another aspect of modern computing is that many pro-
grams do not compute any function at all. For instance, one may won-
der what function is computed by a web server or an FTP client? Quite
naturally, one may respond to this question that any web server actually
computes some bizarre, huge, unwieldy function. But by going one step
further, one can assume that walls, chairs, and even fish tanks ompute such
functions (and I will discuss these ideas later). However, one should note
that a web server may crash because of a power failure, a random attack, or
just because the system administrator shuts it down for maintenance. Since
such events are usually not scheduled, one cannot possibly conclude that
web severs actually compute something, unless one is a mystic. These and
similar observations make it clear that the classical foundations of com-
puter science are inadequate, because they fail to capture many charac-
teristics of modern computer systems. One way out of this dilemma is to
introduce interaction into our formal apparatus, and that is exactly the sub-
ject of this chapter—how interaction broadens the concept of computability.

5.1 Interactive Computing and Turing Machines

Let us start with a simple question: is the Turing model of computation
sufficient to explain and describe modern computer systems? The answer

1. For a system with practically unlimited power supply, this is not really an issue.
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is clearly no. The inadequacy of the classical model was briefly presented in
the introductory chapter and the paragraph above; however, it is necessary
to provide rigorous arguments in favor of the deficiency of this model in
describing and explaining the functionality of modern computer systems.
Clearly, the adoption of the Turing machine as a complete model for algo-
rithms and general problem-solving lies at the heart of the problem. Most
readers will agree with Lynn Andrea Stein’s [192] remark that

Computation is a function from its inputs to its outputs. It is
made up of a sequence of functional steps that produce—at its
end—some result that is the goal. This is what I was taught when
I was trained as a computer scientist. It is a model that com-
puter scientists by and large take for granted. It is something
the members of the field share.

To be fair, Stein is not a proponent of this point of view. On the contrary,
she is in line with Peter Wegner and Eugene Eberbach, who claim [217]
that

The T[uring]M[machine] model is too weak to describe prop-
erly the Internet, evolution or robotics, because it is a closed
model. . . In the case of the Internet, the Web clients “jump” into
the middle of interaction, without a knowledge of the server
state and previous history of other clients. A dynamic set of
inputs and outputs, parallel interaction of multiple clients and
servers, a dynamic structure of the Internet communication links
and nodes, is outside what a sequential, static and requiring full
specification Turing machine can represent.

Of course, Wegner has expressed similar thoughts in other instances (e.g.,
see [218, 215]), but this is the most recent account of these ideas. Sim-
ilar views are expressed in a milder tone by Jan van Leeuwen and Jiři
Wiedermann [208]:

The given examples of interactive and global computing indi-
cate that the classical Turing machine paradigm should be re-
vised (extended) in order to capture the forms of computation
that one observes in the systems and networks in modern infor-
mation technology.

In addition, the classical model artificially imposes limits to what can be
done with modern computers. Here is what Stein has to say about this [192]:

Increasingly, however, the traditional computational metaphor
limits, rather than empowers, us today. It prevents us from con-
fronting and working effectively with computation as it actually
occurs. This is true both within computer science, which still
clings fervently to the metaphor, and in other disciplines where
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dissatisfaction with the computational metaphor [i.e., the idea
that the brain is like a computer] has in some cases caused an
anticomputationalist backlash.

It is really debatable whether the anticomputationalist backlash was caused
by a dissatisfaction with the classical computational metaphor. On the con-
trary, computationalism asserts that all mental processes are mechanical in
their nature. In other words, according to computationalism, mental pro-
cesses can be implemented by either computers or hypercomputers. And
precisely this is the reason for the anticomputationalist backlash. Apart
from this, the essence of the whole argument is that the traditional model
of computation is clearly inadequate for modern computer practice. For ex-
ample, young students who are trained to program sequentially on systems
with a single processor, are not adequately prepared for the real world, in
which most modern programming tasks involve some kind of concurrency,
and in many cases one has to implement “algorithms” on machines with
more than one processor.

A typical counterargument to the previous rhetoric would be that all
parts of various interactive systems can be modeled by Turing machines.
However, a Turing machine always computes a result; but then, one should
be able to answer the following question raised by Stein: “What is it that
the world-wide web calculates?” In addition, one may ask what an Inter-
net relay chat server computes. Naturally, one may raise similar questions
for many other instances in which modern computer equipment is in use
today. Our inability to give convincing answers to such questions is a clear
indication that the Turing machine is an outdated model of computation
that has a very limited role to play in modern-day computing.

Bertil Ekdahl [56] argues that interactive computing can be simulated
by oracle Turing machines. However, this argument is clearly a fallacy: The
oracle of a Turing machine contains quite specific information (e.g., the
characteristic function of a set) that is used in the course of the opera-
tion of the machine. Thus, one may say that an oracle machine is thereby
able to communicate with the external world. But a typical interactive sys-
tem has bidirectional communication with the environment, which is not
the case for an oracle machine. Also, oracle machines have all the draw-
backs of ordinary Turing machines that make then inadequate as models
of interactive systems (i.e., they expect their input at the beginning of the
computation and succeed in computing something only when they stop). In
addition, one should not forget that interaction is a primitive notion (e.g.,
the π-calculus, which was introduced by Robin Milner, Joachim Parrow,
and David Walker [133], was built around this primitive notion), just as
the notion of sequentially reading from and writing to a storage medium is
a primitive notion in which the Turing machine model rest.

Doug Lea [109] remarks that just as “the few constructs supporting se-
quential programming lead to a wide range of coding practices, idioms, and
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design strategies, a few concurrency constructs go a long way in opening up
new vistas in programming.” Consequently, as Stein notes, if we discour-
age (or even prevent) students from adopting certain styles of thinking and
understanding just because they deviate from the unrelenting sequential-
ism of the computational metaphor, students are not learning new coding
practices, idioms, and design strategies, and eventually become ill prepared
for today’s software market.

If Turing machines are inadequate for describing modern computer sys-
tems, then we clearly need other formalisms that can deal with the various
aspects of these systems. Indeed, there have been a number of calculi and/or
conceptual devices that address these issues. In the rest of this chapter I am
going to give an overview of some of them.

5.2 Interaction Machines

When Turing proposed his famous machine, he actually set the founda-
tions of sequential computing. However, in the case of interactive comput-
ing, things proceeded in the opposite direction. First, programmers im-
plemented interactive systems and practiced interactive programming, and
only then did theoreticians start to formulate theories that dealt with cer-
tain aspects of interactive computing (for example, see [4, 129]). However,
an integrated theory of interactive computing appeared only in 1998 when
Wegner published his paper “Interactive foundations of computing” [216].

In this paper Wegner discusses the basic characteristics of interaction
machines as well as their computational power. In addition, he presents
“interaction grammars” that extend the Chomsky hierarchy of grammars.

An interaction machine is simply a Turing machine that is augmented
with the capability of performing dynamic read and/or write actions that
provide it with a way of directly interacting with the external world. This
additional capability can be implemented by allowing interaction machines
to be connected with their environment—more specifically, with a single or
multiple input stream or via synchronous or asynchronous communication.
From a practical point of view this means that there is no single definition
of the structure of an interaction machine. Moreover, all interaction ma-
chines are open systems. The observable behavior of interaction machines
is specified by interaction histories, which take the form of streams that are
the interactive time-sensitive analogue of strings. Formally, if A is a set,
then by a stream over A we mean an ordered pair s = (a, s′) where a ∈ A
and s′ is another stream.2 The following statement is a clear indication that
the additional “hardware” is not just some kind of accessory.

2. Streams are objects that do not belong to the standard set-theoretic universe, but they do
belong to the universe of non-well-founded sets (see [8] for details).
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Proposition 5.2.1 It is not possible to model interaction machines by Turing
machines. [216]

Interaction machines can be viewed as mappings over streams that take
time into account. Such mappings cannot be classified as functions, since
functions are timeless. In other words, interaction machines extend the
theory of computability by introducing computable nonfunctions over histo-
ries. This nonfunctional facet of interaction machines applies also to other
aspects of these machines. This can be demonstrated by a simple example:
consider a rover maneuvering on the surface of another planet. Clearly, the
rover is an interactive system that must respond to external stimuli. For
instance, when it encounters a boulder it must change its course; when it
is going down into a crater it must use its brakes to reduce its speed, while
when it is going up a hillside it must boost its engines. In many cases, the
software loaded into the rover’s memory cannot handle totally unexpected
situations, and so a new, updated software is uploaded to the rover. None
of these actions can be predicted, and sometimes they are not among the
actions one initially expects the rover to face. In other words, these actions
cannot be described by a function, and thus one may say that they cannot be
described algorithmically. From this example it is not difficult to see that
the behavior of interaction machines cannot be described by Turing com-
putable functions. An interesting and, to some degree, unexpected effect of
interaction is that if we enhance algorithms with interactive behavior, we
create systems that operate in a smart (not intelligent!) way, or in Wegner’s
own words, “[e]xtending algorithms with interaction transforms dumb al-
gorithms into smart agents.” The crux of the ideas presented so far have
been summarized by Wegner in the form of a thesis.

Thesis 5.2.1 Inductive computing: Algorithms (Turing machines) do not
capture the intuitive notion of computing, since they cannot express inter-
active computing and intuitive computing includes interaction [216].

Before we proceed with the presentation of interaction grammars, we
will briefly recall the definitions of formal grammar and the Chomsky hi-
erarchy of grammars, as well as their relationship to various forms of au-
tomata. Readers familiar with these notions can safely skip this material.
Assume that Σ is an arbitrary set and that ε denotes the empty string. Then

Σ∗ = {ε} ∪ Σ ∪ Σ× Σ ∪ Σ× Σ× Σ ∪ · · · .

is the set of all finite strings over Σ. Let us now recall the definition of a
grammar.

Definition 5.2.1 A grammar is defined to be a quadruple G = (VN , VT , S,Φ)
where VT and VN are disjoint sets of terminal and nonterminal (syntactic
class) symbols, respectively; S, a distinguished element of VN , is called the
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starting symbol. Φ is a finite nonempty relation from (VT ∪ VN )∗VN (VT ∪
VN )∗ to (VT ∪ VN )∗. In general, an element (α,β) is written as α → β and is
called a production or rewriting rule [204].

Grammars are classified as follows:

Unrestricted grammars There are no restrictions on the form of the pro-
duction rules.

Context-sensitive grammars The relation Φ contains only productions of
the form α → β, where |α| ≤ |β|, and in general, |γ| is the length of
the string γ.

Context-free grammars The relation Φ contains only productions of the
form α → β, where |α| = 1 and α ∈ VN .

Regular grammars The relation Φ contains only productions of the form
α → β, where |α| ≤ |β|, α ∈ VN , and β has the form aB or a, where
a ∈ VT and B ∈ VN .

Syntactically complex languages can be defined by means of grammars. To
each class of languages there is a class of automata (machines) that accept
(i.e., they can answer the decision problem “s ∈ L?,” where s is a string and
L is a language) this class of languages, which are generated by the respec-
tive grammars. In particular, finite automata accept languages generated
by regular grammars, push-down automata accept languages generated by
context-free grammars, linear bounded automata accept languages gener-
ated by context-sensitive grammars, and Turing machines accept recursive
languages, that is, a subclass of the class of languages generated by unre-
stricted grammars.

An interaction grammar is not used to recognize strings but rather
streams defined above.

Definition 5.2.2 An interaction grammar IG is defined to be a quadruple
(VN , VT , S, R), where VN , VT , and S have their “usual” meaning and R is a
set of production rules. Given a production ruleα → β,βmay be formed using
the “listening” operator . and the “nondeterministic choice” operator +.3

Generally speaking, the . operator waits for input, while the + operator se-
lects nondeterministically an event from a list of events when input arrives.
Thus, an interactive grammar containing only the production rule

BinDigit → (0 + 1).BinDigit

describes infinite streams, expressing reactive systems that react to a con-
tinuous (nonhalting) stream of zeros and ones over time.

3. Although it is not explicitly stated, one may use parentheses for clarity.
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It is known that one can compose sequential processes and create a new
process that has the combined effect of the two processes. Practically, this
means that one can compose two Turing machines to create paired Turing
machines that compute exactly what the two distinct machines compute.
On the other hand, it is not possible to compose interaction machines in
a similar way. However, we can combine interaction machines by means
of the parallel composition operator, denoted by |. Thus, the behavior of
P|Q is “equal” to the behavior of P, the behavior of Q, and the interaction
that takes place between P and Q. It is interesting to note that parallel
composition is a commutative operation, that is, A|B = B|A.

Interactive identity machines are a special form of interaction machines
that immediately output their input without transforming it. These ma-
chines can express richer behavior than Turing machines, because they
trivially model Turing machines by simply echoing their behavior. Interac-
tive identity machines can be used to model “echo intelligence” (a
behavior that is best exemplified by the legendary Eliza program by Joseph
Weizenbaum [221]).

5.3 Persistent Turing Machines

Persistent Turing machines, which were introduced by Dina Goldin [69],
are extended Turing machines that can describe a limited form of inter-
active behavior. In particular, they can be employed to describe sequential
interactive computations that are applied to a dynamic stream consisting
of input/output pairs and have their state stored in some medium [70]. A
persistent Turing machine is a Turing machine that operates on a number
of different tapes. In addition, the contents of a distinguished tape, which
is called the persistent work tape (or just work tape), are preserved between
any two complete computational tasks. This distinguished tape plays the
role of the permanent memory of the machine, and its contents specify the
state of the machine before and after a computation. The states of a persis-
tent Turing machine are represented by strings with no restriction on their
length (i.e., they may even be infinite).

A persistent Turing machine P defines a partial recursive function
φP :I×W →O×W , where I , O, and W denote its input, output, and work
tape. To demonstrate how we can define this function, I will borrow an ex-
ample from [69]. A telephone answering machine A is actually a persistent
Turing machine that defines the following function:

φA (record x, y) = (ok, yx),
φA (play back, x) = (x, x),

φA (erase, y) = (done, ε).
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The answering machine can record, play back, and erase messages. In addi-
tion, the work tape of the answering machine contains a stream of recorded
messages. Thus, φA fully describes the observable behavior of the answer-
ing machine. Notice that the contents of the work tape are only part of the
definition of φA and by no means affect the behavior of A .

Let us summarize: a persistent Turing machine P transforms an input
stream (i1, i2, . . .) to an output stream (o1, o2, . . .) using a function φP . Ini-
tially, the state of P is empty. In the course of its operation the state of
P changes. For instance, in the case of our answering machine, a possible
input stream may be

(record A, record BC, erase, record D, record E,play back, . . .).

This input stream generates the output stream

(ok, ok,done, ok, ok, DE, . . .),

while the state evolves as follows:

(ε, A, ABC, ε, D, DE, DE, . . .).

Assume that I and O are the input and output streams of a persistent Tur-
ing machine P . Then the interaction stream of P is a stream of pairs,
where the first part of each pair comes from the input stream and the
second part from the output stream. Thus, the interaction stream of our
answering machine has the following form:

(
(record A, ok), (record BC, ok), (erase,done), (record D, ok), . . .

)
.

In order to compare two different conceptual computing devices, Goldin
uses the notion of behavioral equivalence. Two conceptual computing de-
vices are equivalent if they have the same behavior. In the case of string-
manipulating devices (e.g., ordinary Turing machines), the collection of
strings that are processed and generated by the device constitutes its be-
havior. For example, the behavior of a Turing machine is formed by the
strings that are read and printed by its scanning head. More generally, the
behavior of a conceptual computing device D can be modeled by its corre-
sponding language L(D). For instance, for any persistent Turing machine
P, the set of all interaction streams makes up its language L(P). Since the
language of a conceptual computing device models its behavior, one can say
that two such devices D1 and D2 are equivalent if L(D1) = L(D2).

A persistent Turing machine processes an arbitrary input stream that
is generated by its environment. Clearly, this is not a realistic assumption,
since the external environment cannot yield an arbitrary input stream (e.g.,
the winning numbers in a lottery drawing are usually in the range 1 to 48,
and these numbers are the input for the lottery players). This remark has
led Goldin to a general definition of equivalence in the following way.
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Definition 5.3.1 Assume that C is a set of conceptual computing devices
and B a function that returns the behavior of some machine. Then an envi-
ronment O for C is a function O : C → βO that is consistent, which means
that

∀M1, M2 ∈ C : B(M1) = B(M2) ⇒ O(M1) = O(M2).

The elements of βO are called feasible behaviors (within the environment
O). If O(M1) �= O(M2), then M1 and M2 are distinguishable in O; otherwise,
they appear equivalent in O.

Given a set C of conceptual computing devices with behavior B, then
any environment O for C can be used to partition C into equivalence
classes. Each of these classes is called a behavioral equivalence class, since
the members of each equivalence class appear equivalent in O. Based on
this, it is possible to classify environments.

Definition 5.3.2 Given two environments O1 and O2, then O1 is richer than
O2 if its behavioral equivalence classes are strictly finer that those of O2.

Quite naturally, it is possible to define an infinite sequence Θ of finite per-
sistent Turing machines’ environments Θ = (O1, O2, . . .), provided that for
any k, Ok(M ) is the set of prefixes of interaction streams, of length less than
or equal to k. It can be proved that for any such sequence, Ok+1 is richer
than Ok. The main result concerning environments is the following.

Theorem 5.3.1 The environments in Θ induce an infinite expressiveness hier-
archy of persistent Turing machine behaviors, with Turing machines at the
bottom of the hierarchy [69].

Goldin admits that the behavior of any persistent Turing machine is not
rich enough to describe an arbitrary interactive system. However, as men-
tioned above, these machines can be used to describe any sequential interac-
tive computation. This observation has been formulated in [70] as follows.

Thesis 5.3.1 Any sequential interactive computation can be performed by a
persistent Turing machine.

On the other hand, the behavior of a Turing machine is at the bottom of
the expressiveness hierarchy, which simply implies that Turing machines
are an inadequate model of computation for modern computer equipment.

5.4 Site and Internet Machines

Site and Internet machines were introduced by van Leeuwen and Wieder-
mann [209] to model individual machines, possibly connected with other



78 Chapter 5–Interactive Computing

machines, and a network of site machines. More specifically, a site machine
models a normal personal computer that is equipped with a hard disk hav-
ing potentially unlimited capacity. A site machine can communicate with
its environment by sending and receiving messages via a number of ports.
One may think of a site machine as a random-access machine that can use
sockets to communicate with its environment. The messages that a site
machine may receive or send consist of symbols from a finite alphabet Σ.
The special symbol τ ∈ Σ is used to designate the end of some communi-
cation. One may think that τ is something like the ASCII EOT (End Of
Transmission) character that signals the end of the current transmission.

Typically, the hardware and/or software of a site machine can be changed
by an external operator called an agent. The agent is part of the environ-
ment and communicates with a site machine via its ports. As in real life,
when the configuration of the machine changes (e.g., when it is being main-
tained by the agent), either the machine is temporarily switched off or its
communication with the environment is temporarily blocked. Since site
machines are equipped with a permanent memory, no data is lost during
hardware or software upgrades. When the upgrade process is finished, the
machine will be able to resume its operation and consequently, its commu-
nication with the environment. It is quite possible to define a function γ
that returns a description of the hardware or software upgrade that is tak-
ing place at time t. If no such operation is taking place, one may assume
that γ returns an empty string. Generally speaking, the function γ is non-
computable (in the classical sense of the word) and its values are not a priori
known. These remarks are justified because one cannot foresee the actions
of any agent. In other words, one cannot tell beforehand what might go
wrong with a computer system. If we could actually compute such a func-
tion, then the notion of a computable future would be no exaggeration!

A site machine performs a computation by transforming an infinite mul-
tiplex input stream into a similar output stream. More specifically, if a site
machine has n input ports and m output ports, it processes a stream of
n-tuples to produce a stream of m-tuples. In other words, a site machine
computes mappings Φ of the form (Σn)∞ → (Σm)∞. Note that if A is an
alphabet, then Aω denotes the set of infinite strings over the alphabet A.
Also, A∞ = A∗ ∪ Aω, which is the set of finite and infinite strings over the
alphabet A.

Clearly, a site machine is not a basic conceptual computing device. Thus,
if one wants to study the computational power of site machines, it is nec-
essary to design a conceptual computing device that mimics the behavior
of a site machine. Most attempts to define new conceptual computing de-
vices are based on the Turing machine. In general, this approach is based
on the conservative idea that the Turing model is simple and valid, so all
extensions should be based on it. Thus, we are going to construct a new con-
ceptual device that is basically a Turing machine augmented with a number
of new features. More specifically, our new extended Turing machine will
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be equipped with three new features: advice, interaction, and infinity of
operation.

Any candidate mechanism that models the change of software or hard-
ware must satisfy the following two requirements:

(i) changes should be independent of the current input read by the ma-
chine up to the moment of the actual change, and

(ii) changes should not be large.

These requirements can be met once we demand that the description of
new hardware or software depend only on the moment t it actually happens.
In addition, the size of the description has to be “at most polynomial in t”
(i.e., it has to be reasonably short).

Oracles can be used to enter new, external information into the ma-
chine. However, “ordinary” oracles are too “loose” for our case, and so van
Leeuwen and Wiedermann have opted to use advice functions. Turing ma-
chines with advice were studied by Karp and Lipton [94]. Assume that
S ⊂ B, where B = {0, 1}∗. In addition, suppose that h : N → B. Next, we
define the set

S : h =

{

wx
∣
∣
∣
(

x ∈ S
)
∧
(

w = h(|x|)
)}

.

Recall that |x| denotes the length of the bit string x. Let S be any collection
of subsets of B. Also, let F be any collection of functions from the set of
natural numbers to the set of natural numbers. Then

S/F =

{

S
∣
∣
∣ (∃h)

(
(λn.|h(n)| ∈ F) ∧ (S : h ∈ S)

)}

.

The intuitive meaning of S/F is that it is the collection of subsets of B
that can be accepted by S with F “advice.” In this book we will be con-
cerned only with the class P/poly. Notice that the P/poly class of languages
is characterized by a Turing machine that receives advice whose length is
polynomially bounded and computes in deterministic polynomial time. By
substituting the set {0, 1} with Σ, one may get similar definitions and re-
sults.

In order to make a Turing machine with advice able to interact with
its environment, we must equip it with a (finite) number of input and out-
put ports. In addition, in order to accommodate infinite computation, one
may consider the modus operandi of infinite-time Turing machines. Having
roughly specified how advice, interaction, and infinity of operation can be
accommodated in a single conceptual computing device, we need to give a
description of how the resulting machine will operate. Initially, the tapes of
the machine are assumed to be filled with blanks. In addition, the machine’s
operation depends on some controlling device. At each step, the machine
reads the symbols that appear in its input ports and writes some symbols
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to its output ports. What the machine will do next depends on what it has
read, what lies under its scanning heads, and the instruction being exe-
cuted. Also, at any time t the machine can consult its advice only for values
of t1 ≤ t. Machines that have these characteristics are termed interactive
Turing machines with advice.

Theorem 5.4.1 For every site machine there exists an interactive Turing ma-
chine with advice A that has the same computational power. In addition, for
every interactive Turing machine with advice there exists a site machine that
has the same computational power.

The following theorem makes precise the equivalence stated in the previous
theorem.

Theorem 5.4.2 Assume that Φ : (Σn)∞→ (Σm)∞, n, m > 0, is a function. Then
the following statements are equivalent:

(i) The function Φ can be computed by a site machine.

(ii) The function Φ can be computed by an interactive Turing machine with
advice.

The Internet is the international computer network of networks that
connects government, academic, and business institutions. Every machine
that is part of the Internet has its own address. Internet machines are a
model of the Internet. As such, an Internet machine consists of a number
of different site machines. All machines that make up an Internet machine
have their own unique addresses. As in the case of a simple network, we
need to know which machines are active at any given moment. Thus, we
define a function α that returns the list of addresses of those machines
that are active at time t. In addition, we can safely assume that for all t,
the size of the list α(t) is polynomially bounded.4 Also, we assume that the
site machines making up an Internet machine operate asynchronously and
communicate by exchanging messages.

Typically, an IP packet is a chunk of data transferred over the Internet
using the standard Internet protocol. Each packet begins with a header
containing the address of the sender, the address of the receiver, and gen-
eral system control information. Similarly, the header of any message that
site machines exchange contains the address of both the sender and the
receiver. Naturally, it is unnecessary to include any system control informa-
tion, since we are defining a conceptual device in the broad sense of the
term. In the real world, it is impossible to predict the amount of time it
takes for a message to arrive at a destination machine from the moment it

4. A function f (n) is polynomially bounded if f (n)=O(nk) for some constant k. Practically, this
means that there are positive constants c and l such that f (n)≤cnk for all n≥ l. The values of
c and l must be fixed for the function f and must not depend on n.
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has been sent, not to mention the possibility that the message never gets
delivered. This implies that the time it takes for a message emitted by a site
machine to reach its destination should not be predictable. However, one
can give an estimate of this time. Thus, at any given moment t, for any two
site machines i, j ∈ α(t), one can define a function β that will “compute” the
estimated delivery time. For messages that are addressed to some machine
k �∈ α(t), the sending machine will receive an error message just after the
message has been sent. Clearly, not all machines are directly connected and
thus the message is actually sent from a machine that resides in the prox-
imity of where the non-existing machine is supposed to be. Messages that
have the same (existing) recipient enter a queue if they arrive at same time,
and consequently, they will be processed accordingly. At any time t and for
any machine i ∈ α(t), the function γ returns a (formal) description of the
hardware or software upgrade that might take place at t on machine i.

Functions α, β, and γ fully specify the operation of a given Internet
machine. Generally speaking, these functions are noncomputable and their
return values are “computed” by consulting a number of finite tables.

It is not hard to see that Internet machines compute mappings that are
similar to those that can be computed by site machines. However, since
an Internet machine consists of a number of site machines that may have
different numbers of input and output ports, this obviously affects the map-
pings that can be computed by a given Internet machine. Without getting
into the technical details, one can prove that for every Internet machine
there exists an interactive Turing machine with advice that sequentially re-
alizes the same computation as the Internet machine. Clearly, the opposite
also holds true.

Site and Internet machines are conceptual computing devices that are
supposed to model our personal computers and the Internet, respectively.
Both these conceptual computing devices seem to transcend the capabili-
ties of the Turing machine. They seem to transcend even the capabilities
of interaction machines. In spite of the fact that it has not been directly
demonstrated how these machines can tackle classically unsolvable prob-
lems, we still classify them provisionally as hypermachines, since they seem
to transcend the capabilities of Turing machines.

5.5 Other Approaches

If we assume that the Church–Turing thesis is indeed valid, then for every
effectively computable function f there is a λ-term and vice versa. Let us
now hypothesize that there exists a calculus that is built around a notion
more “fundamental” than the corresponding notion on which the λ-calculus
is built. Also, assume that this new calculus is general enough so one can
simulate the λ-calculus within it, but at the same time, it is impossible
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to simulate this new calculus within the λ-calculus. Clearly, this hypotheti-
cal new calculus is more expressive than the λ-calculus. In addition, it would
be interesting to see whether classically noncomputable functions become
“computable” in this new framework, provided that we are able to define
an equivalent model of computation. The very existence of such a calcu-
lus, and its accompanying model of computation, would affect the validity
of the Church–Turing thesis. Naturally, a direct consequence would be a
“broadening” of the thesis.5 The most important question is whether such
a calculus actually exists.

The π-calculus [132] is a process algebra that is built around the prim-
itive notion of interaction. The calculus is particularly well suited for the
description of systems in which mobility 6 plays a central role. In addition,
the π-calculus has as a special case the λ-calculus [130]. In other words,
for every λ-term there is an “equivalent” π-calculus process expression,
but not vice versa. Moreover, if there are two λ-terms that are equated
using λ-calculus means, their translations can be distinguished in the π-
calculus, which makes the π-calculus strictly more expressive than the λ-
calculus [19].

Let us now see how we can translate a λ-term into the π-calculus. Since
this translation is purely syntactic, we need to briefly review the syntax of
both calculi. The set of π-calculus process expressions is defined by the
following abstract syntax:

P ::= Σi∈Iπi.Pi

∣
∣
∣ P1|P2

∣
∣
∣ new α P

∣
∣
∣ !P .

If I = ∅, then Σi∈Iπi.Pi = 0, which is the null process that does nothing.
In addition, πi denotes an action prefix that represents either sending or
receiving a message, or making a silent transition:

π ::= x( y)
∣
∣
∣ x̄〈 y〉

∣
∣
∣ τ .

The expression Σi∈Iπi.Pi behaves just like one of the Pi’s, depending on
what messages are communicated to the composite process; the expression
P1|P2 denotes that both processes are concurrently active; the expression
new α P means that the use of the message α is restricted to the process
P; and the expression !P means that there are infinitely many concurrently
active copies of P .

The set of λ-terms is defined by the following abstract syntax:

M ::= x
∣
∣
∣ λx.M

∣
∣
∣ MN .

We are now ready to present the translation of any λ-term into the π-
calculus.
5. This is true, as evidenced by the fact that the authors of the various models of interactive
computation presented in this chapter have reformulated the Church–Turing thesis.
6. The term “mobility” here means among others things that processes may move in a virtual
space of linked processes or that processes move in a physical space of computing sites.
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mail
queue . . . . . .

1 2 n

Xn actor machine

Figure 5.1: An abstract representation of an actor.

Definition 5.5.1 Assume that M is an arbitrary λ-term. Then its translation
[[M]] into the π-calculus is an abstraction defined inductively as follows:

[[x]](u) def
= x̄〈u〉,

[[λx.M]](u) def
= u(xv).[[M]]〈v〉,

[[(MN )]](u) def
= new v

(
[[M]]〈v〉 | new x(v̄〈xu〉 | !x[[N]])

)
.

Notice that in the last equation, x is a bound name in N . Also, [[M]](u)
denotes that [[M]] is actually an abstraction that is applied to an argument
list u.

The π-calculus is not really a model of computation; it is rather a math-
ematical theory with which one can describe the functionality of computa-
tional models or systems. A theory that is closer to what one may call a true
model of interactive computation is the actors model of concurrent compu-
tation created by Carl Hewitt, Henry Baker, and Gul Agha [4]. The actors
model is an untyped theory that is a generalization of the λ-calculus. Actors
communicate with each other by sending messages. Incoming communica-
tion is mapped to a triple that consists of:

(i) a finite set of messages sent to other actors,

(ii) a new behavior that is a function of the communication accepted (and
thus the response to the next communication depends on it), and

(iii) a finite set of newly created actors.

Each actor has its own mail address and its own mail queue, with no limit
on the number of messages it can hold. Notice that the behavior of an actor
is determined by the relationships among the events that are caused by it.
Also, it is rather important to note that an actor is defined by its behavior
and not by its physical representation. Figure 5.1 depicts an abstract rep-
resentation of an actor. The information contained in the actor machine
determines the behavior of the actor; thus, it can be sensitive to history.
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Actors are a model of computation that is more powerful than the clas-
sical model of computation. For instance, it is not difficult to simulate ar-
bitrary sequential processes (e.g., Turing machines) or purely functional
systems based on the λ-calculus by a suitable actor system, but it is not pos-
sible to simulate an actor system by a system of sequential processes. The
reason why the converse is not possible is the ability of any actor to create
other actors. And this is one of the reasons the π-calculus is more expres-
sive than the λ-calculus: by using the replication operator, !, one can specify
the generation of an unbounded number of copies of a given process.



VI. Hyperminds

Dexter Jettster: . . . Those analysis droids only focus
on symbols. Huh! I should think that
you Jedi would have more respect
for the difference between knowl-
edge and. . . wisdom!

Obi-Wan Kenobi: Well, if droids could think there’d be
none of us here, would there?

From a dialog in the movie Star Wars
Episode II: The Attack of the Clones,
produced and directed by George Lu-
cas.

Is the mind just a computing device, or is it something more? This and
similar questions have prompted a number of thinkers and researchers
to propose various theories that aim to falsify the general belief that the
mind is actually a computing device. In this direction, one may argue that
computers are actually “mental prostheses or orthoses, not stand-alone
minds” [198]. Indeed, it is not an overstatement to say that computers
dully execute commands and deliver results that only a conscious mind
can interpret. Obviously, it is not an exaggeration to say that this naive
remark forms a basis for more rigorous arguments against computational-
ism, such as the Chinese room argument. Interestingly enough, cognitive
science (i.e., “the interdisciplinary study of mind and intelligence, embrac-
ing philosophy, psychology, artificial intelligence, neuroscience, linguistics,
and anthropology” [201]) began by assuming that the human mind is in-
deed a Turing machine. Because of its impact on modern thinking, any
voice against the kernel of cognitive science is faced with great skepticism.

This chapter is a short presentation of various attacks against compu-
tationalism. First, there is a presentation of various arguments based on
results from mathematical logic, such as Gödel’s incompleteness theorems.
Then we present a number of purely philosophical arguments against the
idea that the mind is a Turing machine. In addition, there is a more elab-
orate discussion of the Chinese room argument and related issues. Next,

85
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there is a discussion of the mind from a neurobiological point of view, and
we conclude with a discussion of the cognitive aspects of the human mind.

6.1 Mathematics and the Mind

6.1.1 The Pure Gödelian Argument

John Lucas was probably the first to use Gödel’s famous incompleteness
results to attack computationalism.1 The essence of his argument [116] is
that since machines are “concrete instantiations of a formal system,” they
should not be able to prove a particular proposition that a mind can clearly
see to hold true. Thus, minds are not machines. It is rather interesting to
note that Paul Benacerraf examined Lucas’s argument and concluded that:
“If I am a Turing machine, then I am barred by my very nature from obey-
ing Socrates profound philosophic injunction: KNOW THYSELF” [13].
As a side effect, Benacerraf concluded [13] that

Psychology as we know it is therefore impossible. For, if we are
not at best Turing machines, then it is impossible, and if we are,
then there are certain things we cannot know about ourselves or
any others with the same output as ourselves. I won’t take sides.

Lucas’s argument was expounded by Roger Penrose in The Emperor’s
New Mind [150] and its sequel Shadows of the Mind [151]. In accordance
with Lucas, Penrose believes that minds are not machines, and in addition,
he believes that computers cannot simulate brain processes. The summary
of Penrose’s argument that follows is based on Searle’s summary that ap-
pears in Chapter 4 of [175]:

(i) Classically, the halting problem, which is a specific version of Gödel’s
incompleteness theorem, cannot be solved. Thus, this can be used to
show that our conscious behavior is not computable. In particular,
Penrose considers some nonstopping computational processes that
cannot be shown to be nonstopping by purely computational methods,
but at the same time we can see that the processes are nonstopping.

(ii) The operation of a neuron can be simulated by computer. Thus, the
behavior of neurons is computable. This implies that neurons cannot
be used to explain consciousness, since consciousness has noncom-
putable features.

1. Actually, as Lucas admits in the first page of [116], the purpose of his work was to attack
mechanism (i.e., the doctrine that all natural phenomena are explicable by material causes and
mechanical principles), which one might say is a forerunner of computationalism.
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(iii) A theory of consciousness should be based on noncomputable phe-
nomena that might take place at the level of microtubules in neurons.
But in order to understand these phenomena we need a new physics.

Although many thinkers and researchers are convinced that a computa-
tional model of the mind is extremely implausible, still they are not con-
vinced by Penrose’s argument. For instance, Solomon Feferman [61] shows
that there are flaws in Penrose’s argument. Interestingly enough, Penrose
was “happy to agree with all the technical criticisms and corrections that
Feferman refers to in his section discussing” his “treatment of the logical
facts” [153]. Feferman also points out that it is misleading to assume that
the equivalence between formal systems and Turing machines can be used
to derive a general methodology for proving theorems. After all, mathe-
maticians arrive at proofs “through a marvellous combination of heuristic
reasoning, insight and inspiration (building, of course, on prior knowledge
and experience)” [61]. Another attack on the Gödelian argument has been
put forth by Selmer Bringsjord and Michael Zenzen [26].

From the discussion above, it should be clear that Penrose not only re-
jects “strong AI,” but also “weak AI.” Quite naturally, he believes that no
computer program can have the qualities of awareness and understanding.
Obviously, it is one thing to believe that no computer program can possess
these qualities, and another to believe that no machine can possess these
qualities. Humans, which may be viewed as biological machines, have both
qualities and thus trivially refute the idea that no machine can have aware-
ness and understanding. However, John McCarthy, in his attack against
Penrose’s ideas [124], supports the idea that computer programs can have
awareness and understanding. More specifically, he advocates [123] that in-
terrupts,2 which are supported by many popular programming languages,
might form the basis for the implementation of self-awareness in com-
puter programs. Clearly, we have a situation in which a hardware device
sends some unintelligent message that is processed by a computer program,
which is dully executed by a CPU. In addition, a conscious biological ma-
chine (e.g., Peter) assigns meaning to all of these, and just because of this
assignment, the computer program might be self-aware! Although I believe
that one day there will be conscious machines, built atop a very different
yet to be discovered machine architecture, the current machine architec-
ture is not, at best, a promising direction. And of course, this may explain
why space probes landing on other planets rarely survive more than their
expected “life” span.

The debate over the Gödelian argument is quite active and recently
Michael Redhead [164] presented a simplified version of that argument,
presented in the framework of the system Q (a form of arithmetic), which

2. Roughly, an interrupt is a signal created and sent to the CPU, which is caused by some
action taken by a hardware device. For example, pressing certain key combinations can cause
hardware interrupts.
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has the following axioms (recall that S(x) = x + 1):

(y = 0) ∨ (∃ x)
(

y = S(x)
)

,

0 �= S(x),
S(x) = S( y) ⇒ x = y,

x + 0 = x,
x + S( y) = S(x + y),

x · 0 = 0,
x · S( y) = (x · y) + x.

Observe that in this set of axioms there is no provision for proof by mathe-
matical induction. Now consider the following statement:

for all n, m ∈ N there exists a proof that m × n = n × m. (A)

First, notice that we cannot switch the order of the quantifiers to get

there exists a proof that for all n, m ∈ N : m × n = n × m. ( B)

The reason for this deficiency is the lack of an induction axiom. Notice also
that the proof of (A) depends on the specific numbers n and m that are
chosen, and the length of the proof will increase as the numbers get bigger
and bigger. But it should be clear that the length of the proof is finite. On
the other hand, the proof of (B) is by no means finite, since it must cover
every possible case. It is interesting that we can argue that

for all n, m ∈ N : m × n = n × m. (C)

is actually true in system Q. Since the axioms and the theorems of system
Q are analytically true (i.e., they express defining properties of the natural
numbers), we may replace (A) by

for all n, m ∈ N it is true that m × n = n × m. ( D)

But ( D) is strictly equivalent to

it is true that for all n, m ∈ N : m × n = n × m. ( E)

The essence of this statement is that the commutative law of multiplication
is true. Notice that truth commutes with the universal quantifier, whereas
provability does not. This argument can also be viewed as a first step at
showing that system Q is incomplete, since we have found a sentence that
we agree is true but not provable in Q. Of course, this is not the only such
sentence. For example, other such sentences are the associative laws of
addition and multiplication. Since Q is not a recursive theory, one may
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say that human mathematical reasoning is stronger than any nonrecursive
theory. Figuratively speaking, human mathematical reasoning beats Turing
machines.

Dale Jacquette [90] has proposed a variant of the Turing test in which
the interrogator asks questions about the truth values of Gödel sentences
and their negations. Since I do not expect all readers to be familiar with
the Turing test, I will briefly explain it.

The Turing test was proposed by Turing [207] as a means to tackle
the question whether machines can actually think. The test has the form
of a game called the “imitation game.” In this game, we have a person, a
machine, and an interrogator, who is in a room separated from the per-
son and the machine. The aim of the game is to allow the interrogator to
ask questions to both the person and the machine and to determine from
their responses which one is the person and which one is the machine. The
interrogator knows the person and the machine by labels “X” and “Y,” re-
spectively, and at the end of the game she says either “X is a person and Y
is a machine” or “X is a machine and Y is a person.” The interrogator is
allowed to put questions to the person and the machine thus:

Will X please tell me the length of her hair?

(For a detailed discussion of the Turing test and related issues, see [144].)
According to Jacquette, the mind3 may use an nonprogrammable non-

algorithmic procedure to judge whether some Gödel sentence is true. The
procedure can be characterized as an “intensional conditional in the im-
perative mood” [90, p. 5]:

(P) If S says that S is unprovable [relative to some recur-
sively based logic], then answer (print): “S is true.”

Jacquette claims that his is a nonalgorithmic implementable procedure,
which can be interpreted as the claim that no programming language can
be used to implement this procedure. However, this procedure is realiz-
able by a mind simply because a mind understands the meaning of Gödel
sentences and, most importantly, the meaning of the negation of Gödel
sentences. This crucial information is used by the mind to decide when a
sentence S says that it is unprovable. Interestingly enough, if the interroga-
tor decides to explain that S = ¬Thm(n) and Gn(¬Thm(n)) = n (recall that
Gn(A) denotes the Gödel number of any well-formed formula A), then both
minds and machines can deduce that S is formally undecidable. However, if
the interrogator has opted to choose predicates other than ¬Thm to repre-
sent unprovability, this information will become useless. Also, one might
observe that the appearance of the external negation symbol in ¬Thm

3. Clearly, only a mind that has mastered the complexities of mathematical logic can sit next
to a machine and play this version of the imitation game. Thus, for the rest of this discussion,
the word mind will not just mean any ordinary mind, but a mind well versed in mathematical
logic.
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could be used to distinguish Gödel sentences from their negations by first
translating “problematic” constructions into prenex form, which are then
checked for occurrences of an outermost negation symbol. But even this
approach will not have the expected results, since, for example, one may
replace ¬Thm with NoThm with the expected semantic meaning. Thus,
if both Gödel sentence formulations are tried out by the interrogator, the
machine that employs the prenex trick will inevitably confuse Gödel sen-
tences of the first formulation with negations of Gödel sentences in the
second formulation.

The crux of Jacquette’s argument against mechanism is that the mind’s
procedure is at the same time intensional and nonalgorithmic. A mind has
no problem understanding any Gödel sentence as well as its negation. Thus,
it can determine when a sentence says of itself that it is either unprovable
or provable. In addition, Jacquette claims that a mind’s intensionality and
understanding of a sentence’s meaning cannot really be simulated by a ma-
chine. This means that a machine cannot really fool the interrogator, since
she can ask about the truth values of alternatively formulated Gödel sen-
tences and their negations, thus forcing the machine into making mistakes.

Storrs McCall has put forth another argument against computational-
ism, initially in [121] and later on in [122]. This argument is based on the
assumption that Turing machines know only what they can prove from a
set of axioms and a set of well-defined rules of inference. Based on this,
McCall tried to show that no Turing machine can know whether the Gödel
sentence G of the form, “This statement is unprovable,” is true. In a nut-
shell, the reason why this makes sense is that the truth value of G depends
on the consistency of Peano arithmetic. Notice that Peano arithmetic, or
just PA, is the theory of natural numbers defined by the five Peano axioms
(named after the Italian mathematician Giuseppe Peano, who proposed
them in 1889):

(i) 0 ∈ N (zero is a natural number);

(ii) for each x ∈ N, there exists exactly one S(x) ∈ N, called the successor
of x;

(iii) S(x) �= 0 (zero is not the successor of any natural number);

(iv) (S(x) = S(y)) ⇒ (x = y); and

(v) (induction schema) if φ is an arithmetic property such that 0 has this
property and if φ(x) implies φ(S(x)) for every x, then every number
has the property φ.

Since it is not known whether PA is consistent, it is possible to argue about
G by cases:

A1. If PA is consistent, then G is not provable in PA.
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A2. If PA is consistent, then ¬G is not provable in PA.

McCall assumes that whatever statement holds,4 truth and provability di-
verge because if PA is consistent, then G is true and unprovable; but if it is
inconsistent, then G is provable and false. Thus, PA contains nontheorems
that are true or theorems that are false. According to McCall, the impor-
tance of this observation is that humans can distinguish the two entities,
but Turing machines fail to do so. Let us assume that statement A1 holds.
In addition, the predicate Prov(Gn(A)) will denote that A is provable (or
that A is not a theorem). Now, first note that G ≡ ¬Prov(Gn(G)). If by
Cons(PA) we symbolize the statement “PA is consistent,” then statement
A1 can be written formally as follows:

Cons(PA) ⇒ ¬Prov(Gn(G)).

Equivalently, statement A1 can be written as

Cons(PA) ⇒ G.

McCall assumes that this is a theorem that can be proved. However, this
may not be correct, since the proof has to be in PA itself and not in the
metatheory. Let us now consider the formal version of A2:

Cons(PA) ⇒ ¬Prov(Gn(¬G)).

According to McCall, it can be shown that this statement is true (see [121]
for details). However, one cannot have a formal proof of the “theoremhood”
of this statement, and according to McCall, “there are good reasons to
believe that [the formal version of statement A2] is in fact unprovable in
PA.” The final result is that a Turing machine programmed to enumerate
theorems in PA will almost certainly never include the statement above in
the set of PA theorems. This, in turn, implies that there is a difference
between human and machine thinking. Indeed, no computer program can
model all of human reasoning.

Ignoring for the moment the remarks made by Tennant, one would
not expect someone to find any flaws in this argument. However, Panu
Raatikainen [162] has shown that there is a flaw in McCall’s argument.
In particular, Raatikainen has derived the formal equivalent of A1, which
implies that machines can make the distinction between true and derivable
sentences. More specifically, by assuming Cons(PA), one may get5

Cons(PA) Cons(PA) ⇒ G
G ⇒ E .

4. As Neil Tennant [199] observes, the reasons for claiming that the first sentence is true (it
can be proved within PA) are very different from the reasons for claiming that the second
sentence is true (even if it is true, it is not provable within PA).
5. Assume that � is a logical operator. Then the symbols �E and �I denote an elimination
rule for � and an introduction rule for �, respectively.
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As was noted previously, ¬Prov(Gn(G)) ≡ G, which can be written as

(¬Prov(Gn(G)) ⇒ G) ∧ (G ⇒ ¬Prov(Gn(G))).

This, in turn, is used as a premise in the following deduction:

(¬Prov(Gn(G)) ⇒ G) ∧ (G ⇒ ¬Prov(Gn(G)))

G ⇒ ¬Prov(Gn(G))
∧2E .

Since G holds, we get

G G ⇒ ¬Prov(Gn(G))

¬Prov(Gn(G))
⇒ E .

There is a small problem here: G cannot be proved inside PA. If we now
apply ∧I, we get

G ¬Prov(Gn(G))

G ∧ ¬Prov(Gn(G))
∧I .

And finally, by applying ⇒ I we get

[Cons(PA)]....
G ∧ ¬Prov(Gn(G))

Cons(PA) ⇒ (G ∧ ¬Prov(Gn(G)))
⇒ I .

The conclusion is just the formal counterpart of A1. Raatikainen finishes
his paper by saying that although McCall’s argument is not valid, this does
not mean that computationalism is actually correct.

Bringsjord and his colleagues at the Rensselaer Artificial Intelligence
and Reasoning (RAIR) Laboratory [25] reported their Gödelian argument
for minds whose computational capabilities transcend the capabilities of
the Turing machine. The members of the RAIR lab were involved in an
effort to devise a (partial) solution to the busy beaver problem, and their
efforts led to the formulation of their argument. Before going on, it is nec-
essary to explain what this problem is about. The description of the prob-
lem that follows is from the busy beaver section of RAIR’s lab web page:6

Consider a binary-alphabet Turing Machine which is given an
infinite, blank tape as input. If this machine halts, we define its
productivity as the number of 1’s left on the tape after the ma-
chine is run to completion. If it does not halt, the machine
is given a productivity value of zero. Now consider all of the
binary-alphabet Turing Machines that have n states. The ma-
chine in this set which has the highest productivity is called a
Busy Beaver, and its productivity is the result of the Busy Beaver
function Σ(n). Alternatively, the productivity score can be de-
fined as the number of transitions made before halting.

6. http://www.cs.rpi.edu/~kelleo/busybeaver/.
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For reasons of brevity, the solution will not be discussed. Interested read-
ers should point their web browsers to RAIR’s busy-beaver web page for
details.

The argument’s goal is to refute computationalism, when it is under-
stood as the supporting theory of the thesis that people are computers,
which, in turn, are realizations of Turing machines. Assuming that p ranges
over persons and m over Turing machines, this thesis can be stated as fol-
lows:

∀p∃m p � m, (C )
where � is pronounced “are.” This means that p � m can be interpreted
as p instantiates (or realizes) m. Assume that each person is a realization
of some Turing machine. If a measure of the mental capabilities of any
person is equal to the measure of the complexity of a Turing machine (e.g.,
the number of states plus the number of transitions used), then all people
are Turing machines whose measure of complexity is at or below some
threshold. More specifically, if we assume that C is a function that has a
Turing machine as argument and returns a number that characterizes its
complexity, then the idea just presented can be written formally as follows:

∀p∃m ( p � m ∧ C(m) ≤ k ), (C ′ )

where k ∈ N is the threshold. The goal of Bringsjord’s team was to devise
an argument (not a proof) to refute the thesis that people are computers.
The argument goes as follows:

• There are persons who have managed to determine the productiv-
ity of the initial segment of Turing machines (e.g., such persons are
members of the RAIR lab; see [25] for details):

∃p
(

D( p,Σ(1)) ∧ · · · ∧ D( p,Σ(6))
)
. (1)

• There is a natural number at and beyond which Turing machines
with measure of complexity less than or equal to k fail to determine
productivity:

∃n ∀m
(

C(m) ≤ k ⇒ ¬D(m,Σ(n)) ∧ ¬D(m,Σ(n + 1)) ∧ · · ·
)
. (2)

• If a person can determine the productivity for n, then this same per-
son can determine the productivity for n + 1:

∀n ∀p
(

D(p,Σ(n) ⇒ D(p,Σ(n + 1))
)
. (3)

• Assume that computationalism, as expressed by (C ′), actually holds.
Also, suppose that p∗, who is an arbitrary person, determines the ini-
tial segment of the busy-beaver problem, that is,

D(p∗,Σ(1)) ∧ · · · ∧ D(p∗,Σ(n)). (3′)
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Since (C′) holds for any person, it must hold true for p∗, that is,

∃m
(

p∗ � m ∧ C(m) ≤ k
)
. (4)

Let us randomly choose an m∗ and an n∗ such that
(

p∗ � m∗ ∧ C(m∗) ≤ k
)

(5)

and such that

∀m
(

C(m) ≤ k ⇒ ¬D(m,Σ(n∗)) ∧ ¬D(m,Σ(n∗ + 1)) ∧ · · ·
)
. (6)

Clearly, (6) holds for m∗:
(

C(m∗) ≤ k ⇒ ¬D(m∗,Σ(n∗)) ∧ ¬D(m∗,Σ(n∗ + 1)) ∧ · · ·
)
. (7)

From (5) and (7) we can deduce

¬D(m∗,Σ(n∗)) ∧ ¬D(m∗,Σ(n∗ + 1)) ∧ ¬D(m∗,Σ(n∗ + 2)) ∧ · · · .

By identity elimination and induction using (3), (5), and (3′), we can
infer ∀n D(m∗,Σ(n)), which is a contradiction. From this it follows
that since humans are information processors with capabilities lying
somewhere in the arithmetic hierarchy and if humans are ordinary
Turing machines they have a certain fixed size k, humans are hyper-
computers.

Clearly, no one expects such an argument to win critical acclaim with-
out any objection. On the contrary, there are issues that even Bringsjord
et al. have spotted. For example, for skeptics, premise (3) practically im-
plies that sooner or later people will be able to solve any problem. First
of all, Bringsjord et al. respond by saying that what they claim does not
mean that given enough time, anything is possible. They note that there
are problems that even infinite-time Turing machines cannot solve, and
such problems cannot be solved by any human. The essence of their argu-
ment is that if humanity “gets to n in the Σ problem, it can get to n + 1.”
And this is exactly the difference between Turing machines and humans:
Turing machines cannot solve the problem for n+1 if they have successfully
solved the problem for n; while it is also true that there is a limit to what
humans can do, it is just above the limit of what machines can achieve.

Stewart Shapiro [179] has given an interesting account of the battle
between computationalists and the Lucas–Penrose side over the Gödelian
argument. Shapiro starts by exploring the meaning of the words “machine”
and “human” in the context of this battle. Generally speaking, one may as-
sume that when computationalists speak of machines they actually mean
Turing machines, and when the Lucas–Penrose side speaks of humans they
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actually mean creatures that have unlimited lifetimes, attention spans and
energy, as well as unlimited resources at their disposal. In addition, another
crucial assumption concerning these idealized human beings is that they do
not make any mistakes! Both parties assume that there exists a set K con-
sisting of “all and only the analogues of arithmetic theorems, sentences in
the language of first-order arithmetic that can be known with unassailable,
mathematical certainty” [179, p. 277]. This set is called the set of knowable
arithmetic sentences. Since each element of K can be identified with its
Gödel number, one may assume that K ⊂ N. Computationalists, quite ex-
pectedly, take it for granted that the Church–Turing thesis is valid and thus
assume that K is recursively enumerable. Of course, the Lucas–Penrose side
does not agree with this conclusion and argues that that there are proce-
dures employed by humans that cannot be simulated by a Turing machine.
Interestingly, its seems that hypercomputation has no place in this battle:
computationalists completely deny it and the Lucas–Penrose side assumes
that noncomputable processes are necessarily nonmechanical. Obviously, in
the eyes of a proponent of hypercomputation both views are wrong: since
the Church–Turing thesis is not valid, K is not recursively enumerable,
while there are processes that transcend the Church–Turing barrier and
that are purely mechanical. In spite of this, let us continue with Shapiro’s
analysis.

If T is the set of truths of first-order arithmetic, then by assumption
K ⊆ T. However, let us suppose that K = T. Assume that Φ is an arithmetic
proposition. Then either Φ ∈ T or (¬Φ) ∈ T. If Φ ∈ T, then Φ ∈ K and so
Φ is knowable. Otherwise, (¬Φ) ∈ T and (¬Φ) ∈ K and so it is knowable in
principle that Φ is false. Let us recapitulate: if in the language of first-order
arithmetic T = K, then for every arithmetic proposition Φ, an idealized
human can determine whether Φ is true or false; that is, every arithmetic
proposition can be decided by an idealized human being. Now, by Tarski’s
theorem on truth in arithmetic, no program can output a correct true or
false value for every statement of number theory, which implies that T is
not recursively enumerable. Thus, if T = K and every arithmetic truth
can be proved by an idealized human being, the set K is not recursively
enumerable and the computationalists are wrong.

In order to defend their own belief, computationalists demand that T �=
K. Assume that Φ ∈ T and Φ �∈ K. Then Φ is an unknowable truth. This
implies that both Φ and ¬Φ are absolutely undecidable, and so even an ideal-
ized human being cannot decide whether Φ is true or false. In other words,
if what computationalists believe is true, there are absolutely undecidable
arithmetic propositions.

In conclusion, this battle will be over once we know whether T = K.
However, computationalists can easily avoid losing this battle, since
“[they] are having trouble coming up with a reasonable mechanistic the-
sis for Lucas and Penrose to attack” [179, p. 300]. However, it seems that
the whole battle is like trying to convince Alfred Square, resident of the
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two-dimensional Edwin A. Abbott’s Flatland [2], that there is a three-
dimensional world. Clearly, this is almost impossible unless Alfred is able
to enter the three-dimensional world in order to realize that his world is
just part of this brave new world!

6.1.2 The Argument from Infinitary Logic

Another mathematically oriented argument, which is based on the isolation
and exploitation of mathematical reasoning, is the argument from infini-
tary logic. Mathematical reasoning seems to be infinitary in nature and,
consequently, one may argue that it is also irreducible to language usage.
However, this seems to be a side issue irrelevant to the present discussion.
The argument from infinitary logic aims at showing that the infinitary na-
ture of mathematical reasoning is in general part of what makes a mind a
hypermind. Our presentation is based on the exposition of the argument
that is included in [26].

In order to apprehend the argument, it is necessary to be familiar with
infinitary logic. The brief, rough exposition that follows is based on [11].
Assume that µ and λ are two infinite cardinals such that λ ≤ µ and that L
is a fixed first-order language. Also, suppose that Φ is a set of formulas of
L such that card(Φ) < µ. Then

∧
Φ and

∨
Φ will denote infinite conjunc-

tions and disjunctions with card(Φ) conjuncts or disjuncts, respectively. In
addition, if X is a set of individual variables such that card(X ) < λ and φ
is an L-formula, then ∃Xφ and ∀Xφ are formulas. Moreover, if φ and ψ
are L-formulas, then φ ∧ ψ and ¬φ are formulas. More generally, all L-
formulas are formulas. A language having these characteristics is an infini-
tary language, denoted by L(µ,λ). In particular, the language L(ω1,ω), where
ω1 denotes the set of countable ordinals, is one that allows countably infi-
nite conjunctions but only finite quantifications. Now we can proceed with
the argument from infinitary reasoning as presented in [26]:

(i) All reasoning is computable.

(ii) For every case of reasoning R there exists a Turing machine (or any
equally powerful device) M such that some computation C of M is
such that R = C [from (i)].

(iii) For every computation C of every Turing machine M there is an
equivalent deduction D in some instantiation of LI (i.e., first-order
logic).

(iv) For every case of reasoning R there exists a deduction D in some
instantiation of LI such that R = D [from (ii), (iii); universal elimi-
nation, hypothetical syllogism, and universal introduction].
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(v) There exists a case of reasoning R∗, namely reasoning with L(ω1,ω),
that is such that for every deduction D in some instantiation of the
first-order logic LI , R∗ �= D.

(vi) It is not the case that all reasoning is computable [reductio ad absur-
dum; (iv), (v) contradictory].

The designers of this argument claim that it is valid because the infer-
ences are formally correct. In addition, they discuss a number of objections
to this argument. The first objection is that this argument is not really
convincing. Their response to this objection is simple: it is one thing to
have a convincing argument and another thing to have a sound argument.
Furthermore, it is important to notice that the history of science is full of
unconvincing but sound theories, such as the theory that the Earth moves
around the Sun.

Another objection concerns reasoning in and about L(ω1,ω) that is simply
manipulation of finite expressions that are clearly computable, such as the
following expression borrowed from [26, p. 108]:

∨

n<ω

∃x1· · ·∃xn∀y(y = x1 ∨ · · · ∨ y = xn).

The essence of the response to this objection is that although Hilbert no-
ticed that proofs are presented as finite strings on finite sheets of paper and
consequently put forward the ideas we presented in the introductory chap-
ter, Gödel managed to abolish Hilbert’s ideas. In addition, Gödel proved
that “human mathematical reasoning is not always limited to Hilbertian
reasoning: some form of infinitistic reasoning must be employed for some
proofs of formulas about N” [26, p. 109].

6.1.3 The Modal Argument

According to Selmer Bringsjord and Konstantine Arkoudas [23], there are
basically two methods for attacking computationalism when starting from
mathematical results in the realm of incompleteness. The first method is
the one described in the previous section, while the second method is the
one that will be presented in this section. The proof that minds are not Tur-
ing machines is a two-stage process. First, it is necessary to make suitable
idealizations of minds and machines, and then one must prove a formally
valid modal argument.

Like Shapiro, Bringsjord and Arkoudas believe that idealized comput-
ers can be identified with ordinary Turing machines. Unlike Shapiro’s ide-
alized humans with unlimited capacities, the idealized humans of Bringsjord
and Arkoudas take input and yield output that reflects decisions based on
the inputs taken. Also, they assume that (part) of the human mind is actu-
ally an information-processing device.
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Let us consider the following decision problem: Given a Turing machine
M0 and an input string w, does M0 halt on input w? It has been proved that
there is no algorithm (i.e., no Turing machine) that can decide this prob-
lem. Assume that D(M , M ′, i) is a predicate that stands for the sentence,
“Turing machine M determines whether Turing machine M ′ halts on in-
put i.” Using this predicate we can formally specify the undecidability of
the problem above in quantified modal logic as follows:

∀M∃i¬�D(M , M0, i). (M1)

Notice that the modality � is associated to logical or mathematical possi-
bility, that is, �φ if and only if it is logically or mathematically possible that
φ. Assume that M(x) stands for “x is a Turing machine,” P(x) for “x is a
person,” and I(x) for “x is input for a Turing machine.” Then (M1) can be
written as follows

∃x
(

M(x) ∧ ∀y
(

M(y) → ∃u
(
I(u) ∧ ¬�D(y, x, u)

))
)

.

For the sake of argument let us assume that persons are indeed Turing
machines, or, more accurately, that persons are physically realized Turing
machines. This assumption can be specified in the following way:

∀P∃M P � M . (M2)

From (M1) and (M2) we deduce that

∀P∃i¬�D(P, M0, i). (M3)

Bringsjord and Arkoudas conclude that since there are persons, (M3) is
inconsistent with

∀P∀i�D(P, M0, i). (M4)

And so if we can prove (M4), we have an indirect proof of ¬(M1), which
means that computationalism is false.

The crucial question is whether (M4) is actually true. Before going on,
it is necessary to clarify that the “modal argument is not inseparably linked
to a particular formal derivation or a particular proof theory.” This means
that one may present this argument even in first-order logic. However, the
authors have presented their argument in this manner because they hap-
pen to be comfortable with it. Clearly, this book is about hypercomputa-
tion, and so far we have presented a good number of conceptual devices
that transcend the capabilities of the Turing machine that are eventually
realizable. Assume that H stands for any hypermachine. Then it follows
that

∀H ∀i�D(H , M0, i). (M5)
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If we are inclined to assume that a person may be a hypermachine and not
just a Turing machine, we can formally express this as follows:

(
∀H ∀i�D(H , M0, i)

)
→

(
∀P∀i�D(P, M0, i)

)
. (M6)

Proposition (M4) follows by modus ponens from (M5) and (M6).
No argument remains unchallenged, and this argument is no exception.

In the remainder of this section I will present two objections to the modal
argument as well as the responses offered by the designers of the argument.

If one assumes that computationalism is the belief that people are phys-
ical computers, then one may hope to refute the modal argument. In partic-
ular, if we assume that C ranges over embodied computers, then the formal
expression describing computationalism takes the following form:

∀P∃C P � C. (M2′)

Based on this, proposition (M1) must be replaced with

∀C∃i¬�D(C, M0, i). (M1′)

But this proposition is false, since there is some machine C0 (e.g., an ora-
cle Turing machine, a trial-and-error machine) that can solve the halting
problem for M0. Computationalism is the doctrine that advocates that per-
sons are just symbol processing “machines” and not hypermachines, which
implies that (M1′) cannot possibly be true.

Let us now discuss the second objection, which is based on the com-
mon belief that modern physical computers running some program P are
physically instantiated Turing machines. Obviously, at this point we should
pretend that there is no empirical evidence for the view that modern digital
computers are not Turing machines. Suppose that B ranges over modern
digital computers running some program P . Then proposition (M2) takes
the following form:

∀B∃M B � M . (M2′′)

It follows from (M1) and (M2′′) that

∀B∃i¬�D(B, M0, i). (M3′′)

But this proposition is inconsistent with

∀B∀i�D(B, M0, i). (M4′′)

This means that digital computers running some program are not com-
puters! The problem is that proposition (M4′′) is true only if every digital
computer is actually a hypercomputer, while on the other hand, proposi-
tion (M3′′) is true only if modern digital computers are instantiations of
Turing machines.
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6.2 Philosophy and the Mind

The mind as an object of philosophical inquiry has been a very attractive
subject of study for several thousand years. Almost every philosopher has
had something to say about the mind, which in many cases has affected peo-
ple’s lives in quite unexpected ways. In particular, various prejudices and
folk beliefs have deeply affected the formation of philosophical doctrines,
which, in turn, reflect these prejudices and beliefs. For instance, as Searle
notes in [176], Cartesian dualism gave the material world to scientists and
the mental world to theologians. Thus the new scientific discoveries of the
time posed no threat to traditional religion. Although the philosophy of the
mind is a very interesting subject, we will concentrate on arguments against
computationalism. The reader with a general interest in the subject should
consult any textbook on the philosophy of mind.

6.2.1 Arguments Against Computationalism

Let us now present a number of important arguments against computation-
alism. The presentation of these arguments is highly influenced by Searle’s
presentation in [176].

The term qualia (singular: quale) refers to the ways things seem to us.
In particular, qualia describe the qualitative character of conscious experi-
ences. To make things clear, imagine that you and a friend are staring at a
landscape at sunset. The way it looks to you—the particular, personal, sub-
jective visual quality of the landscape—is the quale of your visual experience
at the moment. Perhaps, that is why no color model (i.e., a mechanism by
which we can describe the color formation process in a predictable way) can
accurately describe colors. Since qualia really exist and computationalism
does not take them into account, one may conclude that computationalism
is false. Note that we assume here that computationalism and functional-
ism are being conflated. Functionalism, which is a doctrine quite similar to
computationalism, argues that what it takes to be a mind is independent of
its physical realization.

Thomas Nagel [139] argues that although one may have perfect knowl-
edge of a bat’s neurophysiology, she will not be able to say what it is like to
be a bat. Even if she could by gradual degrees be transformed into a bat, she
could not imagine the way she would feel when, eventually, she would be
metamorphosed into a bat. The argument is based on the observation that
bats have a sensory apparatus considerably different from ours, and it aims
to show that having complete knowledge of everything that goes on inside
the body of an animal is still insufficient to explain consciousness. Yujin
Nagasawa [137] has put forth an interesting objection to Nagel’s argument.
More specifically, Nagasawa claims that if we have a vivid imagination
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or a sophisticated simulation system, there is no problem for us to know
what it is like to be bat without being a bat like creature. However, an im-
mediate response is that one cannot really say how it feels like to “enjoy”
smoking a cigarette when one has never smoked one. Imagination is simply
not enough!

A similar argument is the one that Frank Jackson published in [89]. As-
sume that it is possible to create a dome inside of which everything is black
and white. Maria grows up in this dome and she is educated by watch-
ing distant-learning programs on a black-and-white television set and by
reading black-and-white books and magazines. In this way Maria learns
everything other pupils learn about the physical world that surrounds us.
Thus, she knows there are objects that are red, but she has never seen any
red object in her life. Now, if Maria knows everything she should know, she
should have no problem recognizing the red Ferrari in a full-color photo of
sport cars. But this is not true, since the very moment she sees the red Fer-
rari in the photo, she will learn what it is like to sense red. In a nutshell,
knowledge is not enough to know what it is like to sense colors.

Another argument against computationalism has been put forward by
Ned Block. This argument is considered by many as an immediate an-
tecedent to the Chinese room argument. Block’s argument goes like this:
Assume that the brain of a typical human being consists of around 1.5 bil-
lion neurons.7 Also, assume that each Chinese citizen plays the role of a
neuron. For instance, neuron firing can be simulated by the act of call-
ing another person using a cellular phone. This “artificial” brain lacks
mental states (e.g., one cannot claim that it “feels” wrath), and thus it
cannot be classified as a real brain. A similar argument was advanced by
Searle [174]. This argument has been dubbed the “Chinese gym” argu-
ment, while Block’s argument is known as the “Chinese nation” argument.
Searle’s argument goes like this. Imagine that there is a hall containing
many monolingual English-speaking men. These men would carry out the
same operations as the neurons of a connectionist architecture (i.e., neu-
ral networks) that models the brain process that take place on the brain
of the human in the Chinese room argument. No one in the gym speaks
any Chinese, and there is no way to imagine that the system considered as
a single entity, understands Chinese. Yet the system gives the impression
that it understands Chinese.
7. Actually, the brain of an adult human has more than 100 billion neurons [181], but the core
of Block’s argument is that the entire population of China will implement the functions of
neurons in the brain. Thus, we cannot actually use the real figure for the presentation of the
argument.



102 Chapter 6–Hyperminds

6.2.2 The Chinese Room Argument Revisited

In 2004, the Chinese room argument (CRA) turned 25 years old, but age
is not slowing the CRA down. It is still a subject of debate as well as a
source of inspiration for members of the scientific community. And the
recent collection of selected papers on the CRA [159], which was edited
by John Preston and Mark Bishop, as well as Jerome Wakefield’s recent
paper on the CRA [214], which was the most viewed paper on the “Minds
and Machines” web site in 2003, are clear proofs of this. Apart from its
popularity, the real question is whether the CRA is still valid. And that is
exactly the subject of this section.

An interesting idea concerning the validity of the CRA was put forth by
Bruce MacLennan [118], who rightly claims that if one accepts the CRA in
the digital setting, then one should also accept it in the analog setting, and
conversely, if one does not accept it in the digital setting, then one should
not accept it in the analog setting. Here the term “analog setting” refers to
analog computation (see Chapter 9). MacLennan does not believe in the
validity of the CRA. He has proposed the “granny room argument,” that
is, the analogue of the CRA in an analog computing setting, in order to
refute the CRA based on his view that one has to accept or reject the appli-
cability of the CRA in both the digital and analog settings. In the granny
room there is a person who is exposed to a continuous visual image and
produces a continuous auditory output. By making use of various analog
computational aids the person in the room “implements the analog com-
putation by performing a complicated, ritualized sensorimotor procedure.”
When the system sees an image of MacLennan’s grandmother it will re-
spond, “Hi, Granny!” MacLennan believes that his argument refutes the
CRA, but the truth is that this argument does not actually do so. In fact,
one may question the point of substituting symbol recognition with face
recognition. Assume that the person inside the room has photos for each
face that can possibly appear, and depending on the face seen, she produces
what MacLennan calls a (continuous) auditory image. For example, when
she sees face A, she has to say, “Hello, Stella!” Practically, this argument
does not differ from the classical “digital” version of the CRA. The point
is that facial recognition is no different from symbol recognition, and thus
the CRA remains immune from attack even in the “analog” setting.

Jerome C. Wakefield [214] presents some interesting ideas concerning
the CRA. In particular, he criticizes the formulation of the CRA as pre-
sented by Searle in [175, pp 11–12]:

i. Programs are entirely syntactic.

ii. Minds have a semantics.

iii. Syntax is not the same as, nor by itself sufficient for, semantics.

∴ Programs are not minds.
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According to Wakefield, this syllogism is problematic because the third
premise is a “straightforward denial of computationalism,” since “the no-
semantics-from-syntax intuition is precisely what strong AI proponents are
challenging with their computationalistic theory of content.” However, we
feel that it is necessary to see first what Searle has to say in [175] about the
third step:

[T]he general principle that the Chinese Room thought exper-
iment illustrates: merely manipulating formal symbols is not in
and of itself constitutive of having semantic contents, nor is it
sufficient by itself to guarantee the presence of semantic con-
tents. It does not matter how well the system can imitate the
behavior of someone who really does understand, nor how com-
plex the symbol manipulations are; you cannot milk semantics
out of syntactical processes alone.

To claim that 2 is a set is clearly counterintuitive. In addition, depend-
ing on which sets one identifies with the natural numbers, there are many
other things that are equally counterintuitive (e.g., 2 ∈ 3). However, the
existence of such counterintuitive results does not mean that the reduction
of numbers to sets is problematic. Similarly, one cannot claim that since
there some counterintuitive results in the thought experiment associated
with the CRA, one can object to the claim that certain computer states
are beliefs, which, in a nutshell, is the essentialist objection to the CRA.
Wakefield claims that this is a valid objection to the CRA and argues that
the CRA can be reinterpreted in such a way as to make it immune to the
essentialist attack. In particular, if we explain the meaning of the CRA in
an indeterminate way, the new argument still poses a challenge to com-
putationalism and strong AI. This new formulation of the CRA has been
dubbed the Chinese Room Indeterminacy Argument, or just CRIA.8 Wake-
field’s CRIA goes as follows [214]:

i. There are determinate meanings of thoughts and intentions-in-action.
In addition, a thought about a syntactic shape is different from any
thoughts that possess the semantic content that is expressed by the
syntactic shapes.

ii. Any syntactic fact underdetermines, and at the same time leaves in-
determinate, the contents of thoughts and intentions-in-action.

∴ The content of thoughts and intentions-in-action cannot be consti-
tuted by syntactic facts.

And as Wakefield notes, “[t]his indeterminacy argument provides the needed
support for Searle’s crucial third premise.”

8. An argument is called indeterminate when it is open to multiple incompatible interpreta-
tions consistent with all the possible evidence.
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If one could have demonstrated that syntax is indeed the same as seman-
tics, then she would have managed to refute the CRA. And the easiest way
to achieve this goal would be to show or at least to provide evidence that
some computer program understands. By following this line of thinking,
Herbert Alexander Simon and Stuart A. Eisenstadt [184] describe three
programs they believe provide evidence that computer programs can un-
derstand and thus falsify the CRA. For instance, they present a program
called ZBIE that simulates human language learning. The program has as
inputs sentences in any natural language and description lists that repre-
sent simple scenes (e.g., “The boy pulls on the oar under the lash.”). Af-
ter some time, the program acquires a vocabulary of words related to the
scenes it has as input and a vocabulary of relational structures. In addition,
using sentences in two languages as inputs, instead of sentences and scenes,
ZBIE can learn to translate from one language to another. However, there
are some issues with these “astonishing” capabilities. First, notice that even
modern specialized programs fail to provide meaningful translations. For
instance, the author used a mechanical language translator to translate the
sentence above to Greek and the resulting text back to English only to get
back the completely different sentence, “the boy pulls in the oar under the
whip.” And of course, if a modern professional tool does this kind of work,
what should one expect from a tool of the early 1970s? On the other hand,
when someone learns a new word, she tries to associate this new word with
her own experiences so as to grasp its real meaning. For example, when
a juvenile learns the word “orgasm,” she will not really understand the
real meaning of the word until the day she first experiences an orgasm.
So syntax is simply not enough to understand what an orgasm is. In other
words, Jaak Panksepp’s question, “Could you compute me an orgasm?” has
a negative answer. More generally, it is meaningless to say that a computer
program understands just because some talented computer programmer
has figured out a number of cases that make a computer program appear
as if it really understands. A clever set of rewriting rules cannot possibly be
equated with understanding.

6.3 Neurobiology and the Mind

The brain is part of the central nervous system and includes all the higher
nervous centers. It is also the center of the nervous system, and the seat of
consciousness and volition. As such, it is of great importance to neurobiol-
ogists. Until recently, most biologists employed reductionism (i.e., the idea
that the nature of complex things can always be explained by simpler or
more fundamental things) to explain biological phenomena (e.g., the dis-
covery of the structural and chemical basis of living processes is a result of
the application of reductionism to biology). However, it is quite surprising,
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particularly for nonspecialists, that biologists are gradually abandoning
reductionism in favor of emergence, which is roughly the idea that some
properties of a system are irreducible. Indeed, as Marc Van Regenmortel
notes [210]:

Complex systems are defined as systems that possess emergent
properties and which, therefore, cannot be explained by the prop-
erties of their component parts. Since the constituents of a com-
plex system interact in a non-linear manner, the behaviour of
the system cannot be analysed by classical mathematical meth-
ods that do not incorporate cooperativity and non-additive ef-
fects.

And he concludes by stating that “reductionism is not the panacea for un-
derstanding the mind.” Interestingly enough, biological naturalism is an
explanation of the so-called mind–body problem (i.e., “How can a decision
in my soul cause a movement of a physical object in the world such as my
body?” [176, p. 17]) that is based on exactly these principles. More specif-
ically, biological naturalism is based on the following theses [176, pp. 113–
114]:

(i) Conscious states, with their subjective, first-person ontology, are real
phenomena in the real world. It is impossible to do an eliminative re-
duction of consciousness in order to show that it is just an illusion. In
addition, it is not possible to reduce consciousness to its neurobiolog-
ical basis, because such a third-person reduction would leave out the
first-person ontology of consciousness.

(ii) Conscious states are entirely caused by lower-level neurobiological
processes in the brain. Conscious states are thus causally reducible
to neurobiological processes. However, they have absolutely no life of
their own independent of the neurobiology. Causally speaking, they
are not something “over and above” neurobiological processes.

(iii) Conscious states are realized in the brain as features of the brain sys-
tem, and thus exist at a level higher than that of neurons and synapses.
Individual neurons are not conscious, but portions of the brain system
composed of neurons are conscious.

(iv) Because conscious states are real features of the real world, they func-
tion causally. For instance, the reader’s conscious thirst causes him or
her to drink water.

As a direct consequence, one can surely simulate in principle the function-
ing either of parts of the brain or of the whole brain in a computer. How-
ever, it is impossible for the computer simulation to become conscious.
In order to make things clear, let us give a somewhat trivial argument.
Many people are aware that water is the chemical compound H2O and that
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ethanol is the chemical compound CH3CH2OH. Each water molecule con-
sists of atoms, which, in turn, consist of electrons, neutrons and protons.
And of course the same applies to the ethanol molecules. The question is,
since both water and ethanol consist of exactly the same basic building
blocks, why do they taste different, and more generally, why do they have
different properties? Certainly, the answer is that their molecules consist
of different numbers of electrons, neutrons, and protons and that these el-
ementary particles are arranged in different ways. So it is not enough to
know the constituents of a compound to have a complete image of its prop-
erties. Analogously, one may say that it is not enough to study the properties
of neurons and how they are connected in order to (fully) understand the
brain and its operations.

If we suppose that the computational theory of the mind is indeed true,
then we should expect that the brain operates in a discrete manner. Indeed,
according to “modern” computationalism, the brain operates in discrete
manner in a discrete universe. However, to the disappointment of many
computationalists, Michael Spivey and his colleagues Marc Grosjean and
Günther Knoblich [188] reported that there is compelling evidence that
language comprehension is a continuous process. In their experiment, Spi-
vey and his colleagues had at their disposal forty-two volunteers, who were
Cornell University undergraduate students who took psychology courses.
Each volunteer was presented with color images of two objects on a screen,
and a prerecorded audio file instructed them to click one of the images with
a mouse. One of the objects had the role of a distractor object and the other
the role of a target object. When the students were instructed to click one
of the two objects and the names of the objects did not sound alike, such as
apple and jacket, the trajectories of their mouse movements were straight
and direct to the objects they were instructed to click on. On the other
hand, when the students were instructed to click on an “apple” and were
presented with two objects with similar sounding names (e.g., “apple” and
“maple”), they were slower to click on the correct object, and in addition,
their mouse trajectories were much more curved.

This experiment provided powerful support for models of continuous
comprehension of acoustic–phonetic input during spoken-word recogni-
tion. In addition, the data gathered from this experiment provide support
to the claim that the continuous temporal dynamics of motor output reflect
continuous temporal dynamics of lexical activation in the brain. In other
words, one may say that cognition does not operate by entering and leaving
states (e.g., like a state machine or automaton) but rather can have values
in between (e.g., it may be partially in one state or another) and eventu-
ally stabilizes to a unique interpretation, which, for example, can be the
recognition of a certain word.

Panksepp is the father of the emerging field of affective neuroscience,
which supports the idea that affective and cognitive mental processes are
distinct. A summary of “recent conceptual and empirical advances in
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understanding basic affective process of the mammalian brain and how
we might distinguish affective from cognitive processes” was presented
in [146]. The following short presentation of affective neuroscience is based
on this paper.

It is a common belief, shared particularly among nonscientists, that
emotional processes have both cognitive and affective attributes. In addi-
tion, these attributes rank highest among a number of other attributes
emotional processes may have. However, because of the difficulty unam-
biguously distinguishing the two attributes in the laboratory, many scien-
tists have begun to question the utility of this distinction. In spite of this
skepticism, Panksepp believes that this very distinction may prove helpful
in deciphering the neurobiological nature of the basic affective quality of
conscious actuality. Panksepp advances this idea because affective feelings
are, not completely but to a considerable degree, distinct neurobiological
processes from an anatomical and a neurochemical point of view. Also, this
distinction is evident to a similar degree with respect to peripheral bod-
ily interactions. Emotional and motivational feelings “push” organisms to
make cognitive choices (e.g., to find food when hungry, water when thirsty,
companionship when lonely). If this idea is indeed true, then it is necessary
to develop special techniques to understand affective organic processes in
neural terms, which, in turn, may provide a solid basis for the construction
of a coherent science of the mind. As a side effect of such a development,
new psychiatric therapeutics will be advanced. Interestingly, the foundation
on top of which emotional and motivational processes are built is analog in
nature. In addition, this foundation is to a large degree the result of evo-
lutionary process. Let us now see why Panksepp advocates the distinction
between affects and cognitions.

First of all, emotional states are inherently characterized by valence. In
other words, they are characterized by either aversive or attractive feelings
that do not accompany pure cognitions. It is not entirely unreasonable to
suppose that various basic emotional and motivational responses and the
accompanying types of valence have their origin in inherently evolution-
arily controlled states of the nervous system. These mental abilities of the
brain are not built just from the perceptions of external events and the
cognition that follows. Instead, they have an intrinsic structure of their
own. However, emotions are not just disturbances of the physical setting
in which they occur. In addition, they help control the way we perceive the
world around us.

Although many forms of brain damage severely impair cognitions, still
emotional responses and many basic affective tendencies are not affected.
This dictum is based on the fact that early decortication (i.e., removal of
the outer covering of the brain) of neonatal rats affects the ability of these
animals to learn while their emotional and motivational behaviors remain
almost intact. Ralph Adolphs, Daniel Tranel, and Antonio Damasio [3] re-
ported the results of their study to test the hypothesis that the recognition
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of emotions is probably “composed” in different brain regions, which de-
pends on the nature of the stimuli that have caused these emotions. Adolphs
et al. studied a person who had suffered extensive bilateral brain lesions,
and their findings support the dictum above. These and similar observa-
tions have led Panksepp to conclude that, “Cognitions are largely cortical
while affects are largely subcortical.”

It is an everyday observation that children are very emotionally alive,
which suggests that “affective competence is elaborated more by earlier
maturing medial brain systems than more rostrally and laterally situated
cognitive systems” [146, p. 10]. These remarks affirm that affects are more
likely to be evolutionary “givens.” The higher cortico-cognitive processes
that keep in check emotionality appear gradually as the organisms mature.

Processes that resemble discrete computational processes may generate
cognitions, while neurochemical processes that resemble analog computa-
tional processes may be responsible for the generation of affects. A direct
consequence of this observation is that in the case of long-term emotional
learning, the conditioning of holistic “state” responses plays an important
role, while in the case of cognitive learning, the temporal resolution of for-
mal operations and propositions plays an important role. Probably, this is
the reason why it is hard to activate cognitions by directly stimulating the
brain, while this does not hold true for affects.

Cognitions do not generate facial or bodily expressions and do not have
any effect on the tone of our voice, while emotions generate such expres-
sions and changes in tone. Although the importance of facial expressions
in the study of emotional feelings has not remained unchallenged, still it
is clear that these emotional actions can cause congruent feelings. And
in cases in which someone has suffered cortical damage, full emotional
expressions cannot be generated by cognitive means, while they can be
aroused by spontaneous emotional states.

Over the past 15 or more years, various studies have revealed emotional
asymmetry and asymmetries in motor output (for instance, see [46, 78, 91,
185]). There are two general theories of emotional asymmetry: the right-
hemisphere hypothesis and the valence hypothesis. According to the right-
hemisphere hypothesis, the right hemisphere is the center of all forms of
emotional expression and perception. On the other hand, the valence hy-
pothesis posits that emotional valence deeply affects hemispheric asymme-
try for expression and perception of emotions. More specifically, the right
hemisphere is dominant for negative emotions and the left hemisphere is
dominant for positive emotions. Both hypotheses have received empirical
support.

It is an unfortunate fact that our way of thinking and perceiving the
world around us is constrained by prevailing cultural and scientific as-
sumptions. And this is why affective issues have been confronted with great
skepticism. However, this attitude is changing, and a growing number of
researchers now recognize the importance of affects. One of the main
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reasons for this turnaround is that by understanding what affects really
are, we may hope to understand what consciousness really is.

6.4 Cognition and the Mind

The arguments and ideas presented in this section have appeared in peri-
odicals whose scope is marginally related to the philosophy of mind.

In Section 3.1.2 we presented a model of the mind based on the assump-
tion that the mind is a trial-and-error machine. Here we follow a different
path by assuming that the mind is a machine that has semantic content.

People are definitely not computers, but people are definitely (some sort
of) machines, since they can calculate, memorize, etc. And naturally the
question is, What kind of machines are people? James H. Fetzer presents
some interesting ideas on this matter in [62]. A sign is a generalization of
the concept of a symbol. Charles Sanders Peirce divides signs into three
categories: icons, indices, and symbols. Here is how Peirce explains the dif-
ference among these three categories:9

There are three kinds of signs. Firstly, there are likenesses, or
icons; which serve to convey ideas of the things they represent
simply by imitating them. Secondly, there are indications, or in-
dices; which show something about things, on account of their
being physically connected with them. Such is a guidepost, which
points down the road to be taken, or a relative pronoun, which is
placed just after the name of the thing intended to be denoted,
or a vocative exclamation, as “Hi! there,” which acts upon the
nerves of the person addressed and forces his attention. Thirdly,
there are symbols, or general signs, which have become associ-
ated with their meanings by usage. Such are most words, and
phrases, and speeches, and books, and libraries.

One may say that an icon is a thing that resembles that for which it stands,
an index is a cause or an effect of that for which it stands, and a symbol is
merely habitually or conventionally associated with that for which it stands.
Based on this division, Fetzer suggests that there should be at least three
kinds of minds. More specifically, Type I minds that can process icons,
Type II minds that can process icons and indices, and Type III minds that
can process icons, indices, and symbols. Although Fetzer stopped here, we
can go on and introduce Type IV minds as minds that manipulate only
indices and Type V minds as minds that manipulate only symbols. However,
computers process symbols according to their form and not the meaning

9. The excerpt is from Peirce’s paper entitled What Is a Sign? which is available online from
http://www.iupui.edu/~peirce/ep/ep2/ep2book/ch02/ep2ch2.htm.
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that may be associated to them by usage. On the other hand, a mind capable
of processing symbols, while aware of the meaning associated with their
“meaning,” is clearly different from a Type V mind. Let us call these minds
Type VI minds. It seems that the sci-fi androids are Type VI minds, but I
will not argue about this idea.

A Type III mind is actually a semiotic system; while a modern computing
system (i.e., a Type V “mind”) is a symbolic system. There are two differ-
ences between semiotic and symbolic systems. First, a symbolic system is
able to process syntax (i.e., it is able to manipulate meaningless marks),
while a semiotic system is able to process signs that are meaningful for this
system. Second, a symbolic system manipulates marks by executing some
computational procedure, but a semiotic system manipulates signs by non-
computational procedures. Human thought processes cannot be described
by symbol systems, but they can be described by semiotic systems. Another
important difference between semiotic and symbolic systems is that in the
case of semiotic systems there is a “grounding” relationship between signs
and what they stand for, while in the case of symbolic systems, such a rela-
tion does not exist.

These observations have led Fetzer to propose that the mind is actually
a semiotic engine. As such, the mind processes information in a nonalgo-
rithmic way.

Quite recently, Chris Eliasmith discovered a major flaw in functional-
ism and reported it in [57]. Recall that the Turing machine is a conceptual
device, and as such, its properties are independent of any particular real-
ization. In addition, it is easy to characterize a Turing machine from its
input, the state of the machine, and the program being executed. Func-
tionalists believe that what makes something a mental state depends on
its function in the cognitive system of which it is a part. More specifi-
cally, mental states are functional relations between sensory stimulations
(input), behavior (state of the machine), and their mental states (the pro-
gram being executed). Thus, cognitive functions can be completely char-
acterized by high-level descriptions abstracted from their implementation.
Also, “two systems are functionally isomorphic if there is a correspondence
between the states of one and the states of the other that preserves functional
relations” [161]. This implies that any system isomorphic to a mind is a
mind. Assume that there are two functionally isomorphic systems having
different implementations. Then these will have the same mental states (if
any). This is the thesis of multiple or universal realizability (i.e., the fal-
lacious claim that anything can be described as implementing a computer
program), which Eliasmith refutes in [57].

The argument against the multiple realizability thesis is based on the
idea that two computing devices that are equivalent (or isomorphic if you
prefer this term) are not equal. In particular, machine equivalence provides
little information regarding the way a machine actually computes some-
thing, and it is this way that is cognitively relevant. For instance, although
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a modern CISC machine is equivalent to a RISC machine, in the sense
that one can compile and execute exactly the same programs on both ma-
chines, a RISC machine is faster (e.g., consider operating systems, such as
OpenSolaris and GNU/Linux, that are available for both architectures and
think about their performance). Clearly, if we compile the same program
under the same operating system running on two different architectures
the resulting binary files will be completely different. Obviously, both bi-
naries will produce the same results, but one will be executed much faster
than the other. The reason for this difference in performance is due to
the simplicity of the RISC architecture or to the complexity of the CISC
architecture. Clearly, this means that the implementation, contrary to the
functional belief, really matters. In other words, a system that is function-
ally isomorphic to a mind is not necessarily a mind.

By having as a starting point “the cognitive study of science,” Roland
Giere [64] shows that only “distributed cognition” can be employed to un-
derstand cognition as it occurs in modern science. Giere uses an example
to demonstrate the validity of his ideas. In particular, he considers the large
hadron collider of the European Center for Nuclear Research (known as
CERN), which is coupled with a very large detector called ATLAS. The
ATLAS project involves many scientists, technicians, and support person-
nel and aims to obtain direct experimental evidence of the existence of the
Higgs boson.10 Since there is no reason to explain all the details involved,
it sufficies to say that the experiment involves the acceleration of certain
elementary particles to very high energies and their subsequent collision in
the detector. Depending on what goes on in the detector, one may decide
whether the Higgs boson actually exists.

When finished, the ATLAS project will produce some knowledge, which
is actually a cognitive product. Thus, one may view the ATLAS project as
a cognitive process. Clearly, one may wonder about the nature of scientific
cognition starting with this particular example. As expected, the “stan-
dard” answer to this problem is that a cognitive agent, which is a human
or artificial individual, acquires a symbolic representation that is computa-
tionally processed according to a set of syntactic rules. This answer is prob-
lematic for a number of reasons. First of all, it is not clear who or what
this cognitive agent is. A typical answer to this question is that the cog-
nitive agent is the person who interprets the final output. There are two
problems with this response. First, if we assume that such a person indeed
exists, then this person “operates” by manipulating and thus is incapable
of understanding anything. Second, there is actually no such person, since
the final output is the result of a complex interaction among people with
different kinds of expertise who consult sophisticated equipment. Thus, we
cannot find a single person who has the required property.

A partial solution to these problems emerges if we consider the notion

10. The Higgs boson is a hypothetical particle whose very existence would validate the “stan-
dard” mechanism by which particles acquire mass.
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of collective cognition. In this setting, we assume that each individual par-
ticipating in the project is actually a computational system. We may there-
fore say that the final output is the conjunction of the outputs produced
by each individual. Clearly, this solution insists that humans are computers
and as such is simply unacceptable. Apart from that, it does not take into
consideration the artifacts that play a crucial role in the project.

A better idea is to use the notion of distributed cognition (i.e., a cognitive
system that is collective but includes not only persons but also instruments
and other artifacts as parts of the cognitive system). In this new setting,
scientists, technicians, machines, sensors, etc., interact harmoniously to
achieve a final result. Obviously, this does not mean that machines and sen-
sors are conscious. Instead, when the cognitive system is viewed as a whole,
one may easily say that it is a computational system. But does it make sense
to say that the ATLAS project is actually a computational project?

The whole project is not computational at all. First of all, when ele-
mentary particles interact, no symbolic representation is transformed by
syntactic-like operations. And since computation is identified with the trans-
formation of symbolic representations by syntax-manipulation operations,
one easily deduces that elementary-particle interaction is not a computa-
tional process. Unfortunately, not everybody shares this idea. For instance,
there are those who believe that even the whole universe is a gigantic com-
puter that computes its next state. However, such beliefs are based on un-
justified assumptions (see Section 8.5 for a more detailed discussion of these
issues). But it is equally interesting to say that it is the beauty of compu-
tation in general and the “desire for a single, overarching explanation for
everything” that has compelled many thinkers and researchers to support
the idea that the universe is a computer. Nevertheless, the project is par-
tially computational in the sense that there are computers that do actually
compute. Thus, Project ATLAS is a hybrid system. There are some further
questions related to the very nature of knowledge, but a proper treatment
of such questions falls outside the scope of this book.



VII. Computing Real Numbers

As was mentioned in the introduction of this book, a typical Turing ma-
chine can compute real numbers. However, not all real numbers are com-
putable in the classical sense of the word. For instance, if we consider the
universal Turing machine U and the countably infinite set of tapes that
may be used by it, then we can define a real number RU as follows:

the nth digit of RU =

{
1 if U halts on the nth tape,
0 if U does not halt on the nth tape.

Clearly, the number RU is not Turing computable. Thus, any conceptual
or real computing device that would allow one to compute such a number
would be automatically classified as a hypermachine. In other words, real
number computation is a promising research area in the field of hypercom-
putation.

In this chapter, we briefly outline Type-2 machines and their accom-
panying theory of effectivity. Strictly speaking, Type-2 machines are not
hypermachines, but some of their extensions can be classified as hyperma-
chines. And this is the raison d’être of including this short introduction
to Type-2 computability theory. Next, we present an extension of the the-
ory of Type-2 machines, which is followed by a short discussion of the so-
called BSS-machines and a presentation of a model of feasible real-number
random-access machines.

7.1 Type-2 Theory of Effectivity

The Type-2 theory of effectivity is an extension of classical computability
and complexity theories developed by Klaus Weihrauch and his colleagues.
The Type-2 theory of effectivity is a theory of computable analysis. Notice
that since in this book we are mainly concerned with computability, we
will not discuss the part of the theory extending complexity theory. The
discussion that follows is based on Weihrauch’s recent book [219].

113
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Figure 7.1: A Type-2 machine in action.

7.1.1 Type-2 Machines

A Type-2 machine is basically a Turing machine equipped with more than
one input tape, a number of working tapes, and one output tape. Each tape
has its own scanning head for reading and writing symbols on it. In general,
the symbols that can be printed on the various tapes are not drawn from
identical alphabets. In particular, the symbols that may be printed on the
output tape and on any input tape belong to the set Σ, while the symbols
that may be printed on the work tapes belong to the set Γ. By definition,
Σ ∪ {b−} ⊆ Γ, where b− is a special symbol that is not an element of Σ. In
addition, it is necessary to state that a Type-2 machine may process both
finite and infinite input strings, which gives it additional expressive power
compared to an ordinary Turing machine. Figure 7.1 depicts a typical Type-
2 machine.

Assume that k is an integer greater than zero. Then a type specification
is a tuple (Y1, . . . , Yk, Y0), where Yi ∈ {Σ∗,Σω}. A type specification actually
denotes the type of a function f : Y1×· · ·×Yk → Y0 computable by a Type-2
machine. In other words, a type specification is a template specifying the
form of its arguments and its return value. A program is a flowchart operat-
ing on the output tape and the various input tapes. The stock of commands
that can be used to make a program for a Type-2 machine follows:

• the “HALT” command with its obvious meaning,

• the “i:left” command that moves the scanning head on tape i one cell
to the left,

• the “i:right” command that moves the scanning head on tape i one
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cell to the right,

• the “i:write(a)” command that writes the symbol a ∈ Γ on the cell
being scanned by the scanning head of i, and

• the “i:if(a)” command that checks whether a is the symbol that is
being scanned by the scanning head that sits atop tape i.

Notice that the commands “i:left” and “i:write(a)” are not allowed on an in-
put tape i, while on the output tape only sequences “0:write(a);0:right” are
allowed. We are ready to give a formal definition of Type-2 machines [219].

Definition 7.1.1 A Type-2 machine M is a Turing machine with k one-way,
read-only input tapes together with a type specification (Y1, . . . , Yk, Y0)
with Yi ∈ {Σ∗,Σω}, giving the type for each input tape and the one-way
output tape.

Previously, it was speculated that Type-2 machines are more expressive
than Turing machines just because they can handle infinite strings. How-
ever, this speculation is not enough to characterize a Type-2 machine as a
hypermachine. On the other hand, it is interesting to consider the class of
strings that can be recognized by a Type-2 machine and the class of real
numbers that can be computed by this conceptual computing device, since
it can handle infinite-length strings. The first question will be addressed in
the rest of this subsection, while the second question will be addressed in
the remainder of this section.

Suppose that M is a Type-2 machine that can compute a function f
having the following type specification:

(Y1, Y2, . . . , Yk, Y0).

This particular device handles k-tuples (i.e., (a1, . . . , ak), where ai ∈ Yi).
Each element of the k-tuple is printed on the corresponding input tape
(i.e., the first element is printed on the first input tape, the second ele-
ment on the second input tape, etc.). More specifically, the symbols mak-
ing up each element of the k-tuple, which can be either finite or infinite,
are printed on consecutive cells, starting from the cell that is next to the
cell on which the scanning head rests. In addition, all other cells should
be empty and this is denoted by printing the special symbol b− on all other
cells. Also, all other tapes have to be completely blank (i.e., the symbol b−
will be printed on each cell of each tape). Assume that f (a1, . . . , ak) = a0,
where a0 ∈ Σ∗ (i.e., Y0 = Σ∗). Then the machine M , after processing its
input, will print the string a0 on the output tape in a finite amount of time
and halt. However, if a0 ∈ Σω (i.e., Y0 = Σω), then M will be printing the
symbols making up the a0 on the output tape ad infinitum. In other words,
a string function f : Y1×· · ·×Yk → Y0 is computable by a Type-2 machine
M if for each argument (a1, . . . , ak), the machine prints on its working tape
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the string f (a1, . . . , ak). When f (a1, . . . , ak) is undefined, then the machine
never ceases operation, and at the same time it will print only finitely many
symbols on the output tape. It is worth mentioning that a typical Type-2
machine does not take into consideration partial results in the way that
infinite-time Turing machines do. Thus, Type-2 machines differ fundamen-
tally from infinite-time Turing machines. Clearly, it should not be difficult
to define a new conceptual computing device that is structurally equiva-
lent to a Type-2 machine, but operates in transfinite time. In this case, it
would be interesting to see whether these machines are more powerful than
infinite-time Turing machines.

From the discussion so far, it follows that Type-2 machines can compute
strings falling into the following categories:

(i) All strings w ∈ Σ∗ are computable.

(ii) An infinite string s ∈ Σω is computable if and only if the constant
function f : {( )} → Σω, f ( ) = s, is computable.

(iii) Any k-tuple (a1, a2, . . . , ak), ai ∈ Σ∞, is computable if and only if each
component ai is computable.

If string functions are Type-2 computable, then there should be a way to
characterize the computability of the composition of computable functions.
Indeed, the following result provides such a characterization:

Theorem 7.1.1 Supposethatk, n∈NandX1,. . ., Xk, Y1, . . . , Yn, Z ∈ {Σ∗,Σω},
and that for all i = 1, . . . , n,

gi : X1 × · · · × Xk → Yi and f : Y1 × · · · × Yn → Z,

are computable functions. Then the composition

f ◦ ( g1, . . . , gn) : X1 × · · · × Xk → Z

is computable if Z = Σω or Yi = Σ∗ for all i.

A set A ⊆ Σ∗ is recursive or decidable if its characteristic function is
computable. Also, a set is called recursively enumerable if it is the domain
of a computable function f : Σ∗ → Σ∗.

Definition 7.1.2 Assume that X ⊆ Z ⊆ Y = Y1×· · ·×Yk, where k ≥ 1 and,
as usual, Yi ∈ {Σ∗,Σω}. Then

(i) the set X will be recursively enumerable open in Z if X = dom( f )∩Z,
where f : Y → Σ∗ is a computable function, and

(ii) the set X is decidable in Z if X and Z \X are recursively enumerable
in Z.
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In case Z = Y , it is not necessary to include the “in Z” part of the termi-
nology.

The following theorem characterizes decidable sets.

Theorem 7.1.2 A set X is decidable in Z if and only if there exists a com-
putable function f : Y → Σ∗ such that f (z) = 1 if z ∈ X and f (z) = 0 if
z ∈ Z \ X.

7.1.2 Computable Topologies

It is not really difficult to see that computability on Σ∗ and Σω can actually
be reduced to computability on 2∗ and 2ω, respectively. More specifically,
suppose that

Σ = {a1, a2, . . . , an}
is an alphabet; then a possible encoding of the symbols ai is the following:

ai �→ 1 . . . 1︸ ︷︷ ︸
i−1

0, for all i < n, and an �→ 1 . . . 1︸ ︷︷ ︸
n

.

More generally, given a set M it is not difficult to define functions that
map finite or infinite strings to elements of the set M . In particular, the
surjective functions ν : Σ∗ → M and δ : Σω → M are called a notation
and a representation of M , respectively. Notations and representations are
collectively known as naming systems. The fact that a naming system is a
surjective function implies that for every element of M there is a name. In
addition, it should be clear that any element of M may have more than one
name.

For the sets N, Z, and Q we define the following “standard” notations:

(i) The binary notation νN : 2∗ → N of the natural numbers is defined by
dom(νN) = {0} ∪ 1{0, 1}∗ and νN(ak . . . a0) =

∑k
i=0 ai · 2i, where ai ∈ 2.

(ii) The integer notation νZ : Σ∗ → Z of integer numbers is defined by
dom(νZ) = {0}∪1{0, 1}∗∪-1{0, 1}∗, νZ(w) = νN(w), νZ(-w) = −νN(w),
for all w ∈ dom(νN) \ {0}, and νZ(0) = 0.

(iii) The rational notation νQ : Σ∗ → Q of rational numbers is defined by
dom(νQ) = {u + "/" + v | u ∈ dom(νZ), v ∈ dom(νN), νN(v) �= 0} and
νQ(u + "/" + v) = νZ(u) / νN(v), where + is the string concatenation
operator.

At this point we should warn readers that what follows demands famil-
iarity with basic topological notions. Thus, readers not familiar with basic
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topology are advised to consult either an introductory book on topology or
the précis of topology included in Section D.3.

Assume that γ : Y → M is a naming system. Also, suppose that x ∈ M
and X ⊆ M . Then

(i) x is called γ-computable if x = γ( y) for some computable y ∈ Y .

(ii) X is called γ-open, or γ-decidable if γ−1[X] is open or decidable in
dom(γ).

The set τγ of the γ-open subsets of M is called the final topology of γ on
M . Let us now define effective and computable topological spaces.

Definition 7.1.3 Assume that M is a nonempty set and σ ⊆ 2M is a count-
able set of subsets of M such that

x = y if {A ∈ σ | x ∈ A} = {A ∈ σ | y ∈ A},

and ν : Σ∗ → σ is a notation of σ. Then the triple S = (M, σ, ν) is an effective
topological space.

We will denote by τS the topology on M generated by the subbase σ.

Definition 7.1.4 Let S = (M, σ, ν) be an effective topological space. Then
if the set {

(u, v)
∣
∣
∣
(

u, v ∈ dom(ν)
)
∧
(
ν(u) = ν(v)

)}

is recursively enumerable, then the topological space S is computable.

Effective topological spaces are associated with representations. Indeed,
the following definition makes precise this association.

Definition 7.1.5 Assume that S = (M, σ, ν) is an effective topological space.
Then its standard representation δS : Σω → M is defined by means of the
following sentence:

( ∀w ∈ Σ∗)( ∀x ∈ M)( ∀p ∈ Σω)
([((

p ∈ dom(δS)
)
∧
(
ι(w) � p

))

⇒
(

w ∈ dom(ν)
)
]

∧
[
(
δS(p) = x

)
⇔

(
{A ∈ σ | x ∈ A} = {ν(w) | ι(w) � p}

)
])

.

Note that for any two strings u and x we write u � x if u is a substring of x,
and the function ι : Σ∗ → Σ∗ is defined as follows:

ι(a1a2 . . . an) = 110a10a2 . . . 0an011,

for all n ∈ N \ {0} and a1, a2, . . . , an ∈ Σ.



7.1–Type-2 Theory of Effectivity 119

7.1.3 Type-2 Computability of Real Numbers

Any real number x is represented by a convergent sequence of closed ratio-
nal intervals (I0, I1, I2, . . .) with rational endpoints (i.e., if Ij = [a, b], then
a < b and a, b ∈ Q) such that In+1 ⊆ In, for all n ∈ N, and {x} = ∩n∈NIn.
Suppose that σ is an infinite string encoding the sequence (I0, I1, . . .). Then
σ is a name of x. Thus, the real number x is computable if and only if σ is
computable by a Type-2 machine. Clearly, in order to have a full theory, we
need to specify how to encode a sequence of rational intervals into a string.

In general, a sequence of open rational intervals can be identified with
a sequence of open balls.

Definition 7.1.6 Let n ∈ N. Then the set

Cb(n) = {B(a, r) | a ∈ Qn, r ∈ Q, r > 0}

is the set of open rational balls of dimension n, where

B(a, r) = {x ∈ Rn | d(x, a) < r}.

Notice that for any x, y ∈ Rn their maximum distance is

d(x, y) = ‖x − y‖,

where ‖x‖ denotes the maximum norm of x defined as follows.

Definition 7.1.7 Let n ∈ N. Then for (a1, . . . , an) ∈ Rn, the maximum norm
of this tuple is defined as follows:

‖(a1, . . . , an)‖ = max{|a1|, . . . , |an|}.

The notation In of the set Cb(n) is defined as follows:

In(ι(v1) . . . ι(vn)ι(w)) = B((v1, . . . , vn), w),

where x = νQ(x). Notice that I1(ι(u)ι(v)) is the open interval (u−v, u+v). Let
us now proceed with the definition of three special computable topological
spaces:

(i) S= = (R,Cb(1), I1),

(ii) S< = (R, σ<, ν<), where ν<(w) = (w,∞), and

(iii) S> = (R, σ>, ν>), where ν>(w) = (−∞, w).

The standard representations of these computable topological spaces are
denoted by ρ = δS=

, ρ< = δS<
, and ρ> = δS>

. In addition, the sets σ< and σ>
are defined implicitly.

The following result characterizes the final topologies of the represen-
tations presented above.
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Lemma 7.1.1 The real line topology τR (i.e., the set of all open subsets of R)
is the final topology of ρ. Similarly,

τρ< = {(x,∞) | x ∈ R}

and
τρ> = {(−∞, x) | x ∈ R}

are the final topologies of ρ< and ρ>, respectively.

As has been pointed out already, not all real numbers are computable,
and clearly the characterization presented above is not the only one. For in-
stance, the reader may recall that on page 7 we presented Turing-computable
real numbers. Since the theory of Type-2 computability has been designed
as an extension of Turing computability that does not actually go beyond
the Church–Turing barrier, it follows that it should be equivalent to Tur-
ing computability of real numbers. And this should be valid for a number
of similar approaches. Indeed, the following result makes this equivalence
explicit.

Lemma 7.1.2 Let x ∈ R. Then the following statements are equivalent:

(i) x is ρ-computable.

(ii) x is computable in the sense of Definition 1.2.1.

(iii) There is a computable function g : N → Σ∗ such that

(∀n ∈ N)
(
|x − (νQ ◦ g)(n)| ≤ 2−n

)
.

(iv) There is a computable function f : N → N such that

(∀n ∈ N)

(∣
∣
∣
∣|x| −

f (n)
n + 1

∣
∣
∣
∣ <

1

n + 1

)

.

(v) There are computable functions s, a, b, e : N → N with
∣
∣
∣
∣x − (−1)s(k)

a(k)
b(k)

∣
∣
∣
∣ ≤ 2−N , if k ≥ e(N ), for all k, N ∈ N.

7.1.4 The Arithmetic Hierarchy of Real Numbers

Closely related to ρ-computability is the notion of left-computability and
right-computability. More specifically, a real number x is called left-com-
putable or right-computable if it is ρ<-computable or ρ>-computable, respec-
tively. It is not difficult to show that if a real number x is left-computable,
then −x is right-computable. Also, x is computable if and only if it is both
left- and right-computable.
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Proposition 7.1.1 Let x ∈ R. Then x is left- or right-computable if and only
if there exists a computable function f :N → Q such that x = supi f (i) or
x = infi f (i), respectively.

Let us denote by Σ1 the set of all left-computable numbers and by Π1

the set of all right-computable numbers. Then ∆1 = Σ1 ∩ Π1 is the set of
all computable numbers. These sets form the basis of the arithmetic hi-
erarchy of real numbers, which was constructed by Xizhong Zheng and
Weihrauch [232]. Let us now proceed with the presentation of this
hierarchy.

Before we actually present the way we can construct the sets of the
hierarchy, we need a few auxiliary definitions. For Q, the set of rational
numbers, we define the function µQ : N → Q by µQ(〈i, j, k〉) = (i − j) /
(k+1).1 A function f :Nn→Q is called A-recursive if there is an A-recursive
function g :Nn →N such that f (i1, . . . , in) = µQ ◦ g(i1, . . . , in). The set of all
total A-recursive functions from Nn, n ∈ N, to Q is denoted by ΓA

Q.
The sets Σ0, Π0, and ∆0 are all equal and contain all the computable real

numbers. For n > 0,

Σn =

{

x ∈ R : (∃ f ∈ ΓQ)x = sup
i1

inf
i2

sup
i3

. . .Θin f (i1, . . . , in)

}

,

Πn =

{

x ∈ R : (∃ f ∈ ΓQ)x = inf
i1

sup
i2

inf
i3

. . .Θin f (i1, . . . , in)

}

,

∆n = Σn ∩Πn,

where Θin denotes supin if n is odd, and infin if n is even; conversely, Θin
denotes infin if n is odd, and supin if n is odd.

7.1.5 Computable Real Functions

Assume that f : R → R is a real function. We say that f is computable if
there is a Type-2 machine that takes a ρ-name of a real number x ∈ dom( f )
as input and produces as output the ρ-name of a real number y, which is
the value of f (x). Clearly, functions with n arguments can be computed by
a Type-2 machine with n input tapes. The following statement is the main
result of the Type-2 theory of effectivity.

Theorem 7.1.3 Every ρ-computable real function is continuous with respect
to the real-line topology τR.

1. 〈i, j〉 = 1
2 (i + j)(i + j + 1) + j is the Cantor pairing function. For all i, j, k ∈ N it holds that

〈i, j, k〉=〈i, 〈j, k〉〉.
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It is interesting to note that a number of functions that can be easily
defined are not ρ-computable, since they are not continuous. Although this
restriction can be removed, we will not discuss this issue here. The inter-
ested reader should consult Weihrauch’s monograph [219]. Let us now see
which real functions are computable:

(i) (x1, . . . , xn) �→ c, where c ∈ R is computable real number,

(ii) (x1, . . . , xn) �→ xi, where 1 ≤ i ≤ n,

(iii) x �→ −x,

(iv) (x1, x2) �→ x1 + x2,

(v) (x1, x2) �→ x1 · x2,

(vi) x �→ 1 / x for x �= 0,

(vii) (x1, x2) �→ min(x1, x2),

(viii) (x1, x2) �→ max(x1, x2),

(ix) x �→ |x|,

(x) (i, x) �→ xi, for all i ∈ N and all x ∈ R; by convention 00 = 1,

(xi) every polynomial in n variables with computable coefficients.

If we have two computable real functions, then their composition is also
a computable function. In addition, there are a number of derived func-
tion operations that yield computable functions when fed with computable
functions. In particular, if f, g : Rn → R are computable functions, then
x �→ a · f (x) (if the real number a is computable), x �→ f (x) + g(x), x �→
f (x) · g(x), x �→ max{ f (x), g(x)}, x �→ min{ f (x), g(x)}, and x �→ 1 / f (x) are
computable functions.

Previously, it was stated that only continuous functions are computable.
However, Martin Ziegler [233, 235] shows how it is possible to overcome
this restriction and make computable noncontinuous functions. The key
to Ziegler’s solution is nondeterminism: any nondeterministic Turing ma-
chine can be simulated by a deterministic one since the choices are finitely
many, but in the case of a Type-2 machine it is impossible to simulate a
nondeterministic machine by a deterministic one, since both machines deal
with infinite strings.

Definition 7.1.8 Assume that A and B are two uncountable sets whose rep-
resentations are α : Σω → A and β : Σω → B, respectively. Also, assume that
f : A → B is a function. Then f is nondeterministically (α → β)-computable
if there is some nondeterministic one-way machine with the following char-
acteristics:
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• it has as input an α-name (i.e., given a ∈ A, there is an α-name x such
that α(x) = a), and

• it computes and consequently outputs a β-name for b = f (a).

As in the deterministic case, in the nondeterministic case the composition
of two computable functions is a computable function.

Lemma 7.1.3 Suppose that the function f : A → B is nondeterministically
(α → β)-computable and the function g : B → C is nondeterministically
(β → γ)-computable, then their composition g ◦ f : A → C is non-determin-
istically (α → γ)-computable.

7.2 Indeterministic Multihead Type-2 Machines

A typical Type-2 machine manipulates strings consisting of symbols drawn
from arbitrary alphabets, which are representations of real numbers. How-
ever, as we have already noted above, this representation is not unique (i.e.,
more than one string may be the name of a real number). Clearly, this im-
plies that the various properties of the numbers represented may not be
evident. On the other hand, it is quite desirable to be able to define the
computability of real functions by considering an embedding of real num-
bers into the set of infinite strings on which a Type-2 machine operates.
This approach has been considered by Hideki Tsuiki [205]. In particular,
Tsuiki presents an embedding that is called Gray code embedding, which is
yet another binary expansion of real numbers. Using this method, any real
number x is represented as an infinite string of ones and zeros interspersed
with at most one ⊥ symbol (in this case pronounced indefiniteness). How-
ever, a sequential access machine cannot manipulate strings containing the
⊥ symbol. A way out is to have two scanning heads on a single tape and
to allow indeterministic behavior. The resulting machines are called, quite
naturally, indeterministic multihead Type-2 machines.

Binary reflected Gray code, or simply Gray code, is a binary encoding
of natural numbers. It is easy to get the Gray code of a number once we
have at our disposal the ordinary binary representation of the number. In
particular, if s is a list containing the digits of the binary representation of
a natural number n, then we can define a Haskell function that does the
job as follows:2

convert s = map xor (zip s (0:s))

2. Haskell is a standardized purely functional programming language featuring static typing,
higher-order functions, polymorphism, type classes, and monadic effects, which was named
after the logician Haskell Brooks Curry (see http://www.haskell.org for more information).
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The function xor implementing the “eXclusive OR” operator can be de-
fined in the following way:

xor (0, 0) = 0
xor (0, 1) = 1
xor (1, 0) = 1
xor (1, 1) = 0

Since a real number is an infinite list of binary digits, one can apply the
function defined above to get the Gray code of a real number. To over-
come the problem of multiple sequences representing the same number,
the modified Gray code expansion has been defined.

Definition 7.2.1 The Gray code embedding of I =(0, 1) is an injective func-
tion G :I →Σω

⊥,1, where Σω
⊥,1 is the set of infinite strings over Σ in which the

indefiniteness symbol may appear at most one time.3 More specifically, the
function G maps a real number x belonging to I to an infinite sequence
a0a1 . . . using the following rule: if there is an odd number m such that
m × 2−i − 2−(i+1) < x < m × 2−i + 2−(i+1), then ai = 1; if there is an even m
such that the previous relation holds, then ai = 0; and if x = m×2−i−2−(i+1)

for some integer m, then ai = ⊥.

Definition 7.2.2 Assume that Σ and Γ are the input/output alphabet and
the work-tape alphabet, respectively. Notice that b− ∈ Γ. An indeterministic
multihead Type-2 machine with k inputs consists of

(i) k input tapes I1, I2, . . . , Ik and one output tape O, and each tape has
two scanning heads H1(T ) and H2(T );

(ii) several work tapes, each tape having one scanning head;

(iii) a finite set of states Q = {q0, q1, . . . , qm}, where q0 is the initial state;

(iv) computational rules having the following form:

q, ii(ci), . . . , ir(cr), w1(d1), . . . , ws(ds)

⇒ q′, o(c), w′
1(d

′
1), . . . , w′

t(d
′
t), M1(w′′

1 ), . . . , Mu(w′′
u ),

where q, q′ ∈ Q, ij denote scanning heads of different input tapes, o
is a scanning head of the output tape, wj , w′

j , and w′′
j denote scanning

heads of work tapes, cj , c ∈ Σ, 1 ≤ j ≤ r, dj, d′
j ∈ Γ, and Ml , 1 ≤ l ≤ u

is either the symbol + or the symbol −. It is important to say that
each part of a rule is optional, and thus we may even have empty
rules. When the machine is in state q and the scanning heads ij and
we sit atop cells on which the symbols cj and de are printed, then the

3. In general, Σω
⊥,n, n ∈ N, denotes the set of infinite strings drawn from the alphabet Σ, which

may contain at most n copies of the indefinite symbol ⊥.
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machine enters state q′ and prints the symbols c and d′
j on the cells

where the scanning heads o and w′
j have stopped. Also, the scanning

heads w′′
j will move to the right or left depending on the value of Mj

(a plus means move to the left and a minus move to the right); the
scanning heads ij and o will change their position according to the
following rule. If either ij or o is the first of the two scanning heads,
then it takes the place of the second scanning head and the second
one moves to the next cell (i.e., to the right); otherwise, the position
of the first scanning head remains the same and the second scanning
head moves to the cell next to the first one.

We add that initially the output tape is filled with ⊥’s and the work tapes
with b−’s, the scanning heads of the work tapes rest above the first cell,
and the two scanning heads of the input/output tapes are placed above the
first and the second cells, respectively. At each step of the computation an
applicable rule is chosen. When more than one rule can be chosen, a rule
is chosen in a random way.

Indeterministic multihead Type-2 machines compute correspondences.4

Definition 7.2.3 An indeterministic multihead machine with k inputs real-
izes a correspondence F : (Σω

⊥,1)
k ⇒ Σω

⊥,1 if when the input tapes are filled
with symbols (p1, . . . , pk) ∈ dom(F ), all computational paths yield infinite
outputs, and the set of outputs is a subset of F (p1, . . . , pk). So F is indeter-
ministic multihead computable if it is realizable by some indeterministic
multihead Type-2 machine.

The previous definition can be adapted to cover correspondences of the
form F : Y1 × · · · × Yk ⇒ Y0, where Yi ∈ {Σ∗,Σω

⊥,1}. Naturally, the next
question is, what functions are actually computable?

In the case of Type-2 machines, computable functions are necessarily
continuous. Thus, this may lead one to the conclusion that something sim-
ilar must hold true for this case. Indeed, computable functions are those
that are continuous, not in the real-line topology but in the Scott topology
(see Section D.3) induced from the poset ({⊥, 0, 1},≤), where ⊥ < 0 < 1.

Although the theory discussed so far concerns the open unit interval I ,
it is not difficult to extend the theory to cover the whole real line R.

7.3 BSS-Machines

BSS-machines are a model of real-number computation named for their
inventors Lenore Blum, Michael Shub, and Stephen Smale. The theory

4. A correspondence from a set A to a set B is a triple f =(A, B, Rf ) such that Rf ⊆ A × B. A
correspondence f from A to B is denoted by f : A ⇒ B. Correspondences are also known as
multivalued functions or relations.
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of BSS-machines is described in [16], which is coauthored by the inven-
tors of BSS-machines and Felipe Cucker. The main difference between
BSS-machines and most of the other models of computation presented so
far is the fact that BSS-machines manipulate the numbers themselves and
not some representation of them. Figuratively speaking, we may say that
a BBS-machine is a sort of Turing machine in which real numbers are
read from, and/or written to, cells. In what follows we will discuss finite-
dimensional machines over a field, (general) machines over a field, and
parallel machines.

7.3.1 Finite-Dimensional Machines

In its simplest form, a BSS-machine can be thought of as a formalization
of a flow chart. Instead of giving a formal definition of this simple BSS-
machine, it is better first to introduce the various concepts by means of an
example.

An approximation of a Julia set can be drawn on a computer monitor
using the so-called pixel game. Roughly, a computer program scans each
pixel of a computer screen, and when a pixel with coordinates (x, y) corre-
sponding to the complex number x+ iy belongs to a particular prisoner-set
approximation, it is painted black (see [149, p. 798] and Figure 7.2 (a) for
more details). Figure 7.2 (b) depicts a general flowchart machine M “im-
plementing” the pixel game. Let us first assume that c has a specific value
(e.g., 4). Machine M has four nodes (the boxes), each of a different kind.
The topmost node is an input node, which is followed by a computation
node, a branch node, and an output node. In addition, the halting set of
M consists of all z ∈ C that when fed to the machine do not make it loop
forever (here C is the set of complex numbers).

Let ΩM be the halting set of M. Then the input–output map Φ is de-
fined on ΩM with values in C, that is, Φ : ΩM → C. The flowchart M
is a machine over the real numbers because the branching depends on a
comparison between real numbers. Thus, one may view M as a machine
that transforms a pair of real numbers to another pair of real numbers.
Thus, one may say that Φ is defined on R2 and its values are in R2, that is,
Φ : R2 → R2. In addition, we may consider that the “input space,” “state
space,” and “output space” of M are each the set R2. In general, after
making such “changes” to a flowchart machine we get a machine that is a
finite-dimensional machine over a ring or a field (see section D.2).

Definition 7.3.1 A finite-dimensional machine M over a ring R, without di-
visors of zero, consists of a finite directed connected graph that has four
different types of nodes: input, computation, branch, and output. The only
input node has no incoming edges and only one outgoing edge. All other
node types may have more than one incoming edge; while computation
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i ← 0

Input ζ

z ← ζ

i < k ?

Yes

No

i ← i + 1

z ← z2 + c

|z| > R ?

Yes
No

Output 0
(ζ ∈ E)

Output 1
(ζ ∈ P)

Input z

z ← z2 + c

|z| > R ?

Yes
No

Outout z

(a) Approximation algorithm (b) Flowchart machine

Figure 7.2: A Julia set approximation algorithm and the corresponding flowchart machine.

nodes have only one outgoing edge, branch nodes have exactly two (a Yes
edge and a No edge), and output nodes have no outgoing edges. The ma-
chine has three spaces: the input space IM = Rn, the state space SM = Rm,
and the output space OM = Rl , where m, n, l ∈ N. Maps of these spaces as
well as next node assignments are associated with each node of the graph.
In particular,

(i) a linear map I : IM → SM and a unique next node are associated with
the input node;

(ii) a polynomial (or rational if R is a field) map gη : SM → SM and unique
next node βη are associated with each computation node η;

(iii) a linear map O : SM → OM is associated with each output node.

[Recall that a polynomial (or rational) map g : Rm → Rm is given by m
polynomials (or rational functions) gi : Rm → R, i = 1, . . . , m. If R is a field,
we assume that each gi equals pi /qi, where pi and qi are polynomials.]

Previously, we stated that a BSS-machine manipulates real numbers, which
implies that the machine must be able to insert these numbers into memory
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cells. Each machine is equipped with exactly m such cells. In particular, if
a machine is in state x = (x1, . . . , xm) ∈ Rm, then each xi is a register with
address i.

If we assume that R is a ring, M a machine over R, N = {1, . . . , N}
the set of nodes of M , and S the state space of M , then N × S is the full
space of M , and H is a function from N × S to N × S that maps each pair
(η, x) to the next pair (η′, x′). The mapping is determined by the graph of
M and its associated maps. The function H is called the natural computing
endomorphism. This function is very important in the development of the
theory of simple BSS-machines, since it is used to define basic notions such
as the halting set ΩM and the input–output map ΦM .

Suppose that x ∈ IM is some input and S � x0 = I(x). Then the ini-
tial point z0 = (1, x0) generates the the computation z0, z1, . . . , zk, . . . . In
other words, the computation generated by z0 is identical to the orbit of z0
generated by repeated application of H , that is,

z0 = (1, x0),

z1 = H(z0),
...

zk = H(H(H(H(
︸ ︷︷ ︸

k−times

· · · z0 · · · )))).

In order to make clear the notion of an orbit, let us recall that one can
identify the Mandelbrot set with the recurrent equation

zn+1 = z2n + z, n = 0, 1, 2, . . . ,

where z0 = 0. This particular sequence of points zi is an orbit for each value
z. In particular, z belongs to the Mandelbrot set if and only if its orbit does
not tend to infinity.

Assume that the function πN : N × S → N is the projection of the
full state space onto N . Then the sequence of nodes 1, η1, . . . , ηk, . . ., where
ηk = πN (zk), is the computation path γx traversed on input x.

A computation halts if there is a time T such that zT = (N, u) for some
u ∈ S. In this case, the finite sequence z0, . . . , zT is a halting computation.
In addition, the finite sequence 1, η1, . . . , ηT of nodes is a halting path tra-
versed by x. The halting time TM (x) is defined by

TM (x) = min
{

Ti|zTi = (N, ui)
}

,

and from this we define

ΦM (x) = O(xTM (x)) ∈ OM .
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If M does not halt on input x, and consequently, there is no such TM (x),
then ΦM (x) is undefined and we assume that TM (x) = ∞. The halting set
of M is defined to be the set of all inputs on which M halts, that is,

ΩM = {x ∈ IM | TM (x) < ∞}.
Now that we have defined the basic notions associated with BSS-

machines, let us see when a set is decidable.

Definition 7.3.2 A set S ⊂ Rn is decidable over R if its characteristic func-
tion is computable over R; otherwise, it is called undecidable over R.

An interesting related question that has been put forth by Roger Penrose is
whether the Mandelbrot set is decidable. Clearly, this question is strange,
since decidability is closely associated with computability, and in addition,
one can very easily write a computer program in almost every computer
programming language to draw (approximations to) the Mandelbrot set.
Quite surprisingly, it has been proved that the Mandelbrot set is undecid-
able.

Theorem 7.3.1 The Mandelbrot set is not decidable over R [16, p. 55].

Peter Hertling [81] presents some interesting results concerning the com-
putability of the Mandelbrot set.

7.3.2 Machines over a Commutative Ring

Assume that R is a ring that is commutative under multiplication and has
a unit element. Then we define the space R∞ as follows:

R∞ =
⋃

n≥0

Rn.

The space R0 is the zero-dimensional module with just one point 0. Also,
Rn, for n > 0, is the standard n-dimensional module over R. The space R∞
is the bi-infinite direct sum space over R. This set consists of tuples of the
form

(. . . , x−2, x−1, x0 • x1, x2, x3, . . .),
where xi ∈ R for all i ∈ Z, xk = 0 if the absolute value of k is sufficiently
large, and • is a distinguished marker between x0 and x1. The space R∞ is
equipped with two natural shift operations: the shift left operation σl and
the shift right operator σr . These operations are defined as follows:

σl(x)i = xi+1, σr(x)i = xi−1.

The shift left operation shifts each element of the sequence x one coor-
dinate to the left; shift right is the inverse operation. Let us now define
machines over R.
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Definition 7.3.3 A machine M over R is a finite-dimensional machine that
has in addition a set ΣM of shift nodes with associated maps. Also, R∞ is
both its input and output space (i.e., IM = R∞ and OM = R∞), and R∞ is
its state space (i.e., SM = R∞).

A shift node is basically a computation node that might have several in-
coming edges and one outgoing edge. Each shift node η is associated with
a map gη ∈ {σl , σr}.

It is not difficult to define a probabilistic version of machines over a
ring. Indeed, all we need is an additional type of node and a mechanism to
implement it.

Definition 7.3.4 A probabilistic machine M over R is a machine over R
with an additional type of node, which is called probabilistic. Such nodes
have two next nodes and no associated maps. When a computation reaches
a probabilistic node, a “lottery is drawn” to choose the next node: the lottery
draws one of two numbers, which correspond to the next nodes.

Let us now see what it means for a set to be decidable by a probabilistic
machine over a ring.

Definition 7.3.5 Assume that S ⊆ R∞. Then the error probability of a prob-
abilistic machine M with respect to S is the function eM : R∞ → R defined
by

eM (x) = Pr(M accepts x and x �∈ S) + Pr(M rejects x and x ∈ S),

where Pr(E) denotes the probability associated with event E.

7.3.3 Parallel Machines

A good number of problems have solutions that are inherently parallel.
This simply means that they can be solved by machines with more than
one processor. To put it simply, a parallel BSS-machine is a machine that
has two or more processors that operate in a synchronous manner. Thus, in
order to define parallel machines we need first to define processors.

Definition 7.3.6 A processor M is a finite directed, connected graph that
has nodes of the following types: input, output, integral branch, real branch,
computation, communication, shift, and halt. In addition, a processor has
a state space SM = Zk × R∞, k ∈ N, and a linear projection πM : Zk → Z.
By convention, Zk and R∞ are denoted by SZ

M and SR
M , respectively.

As in the case of ordinary machines, each node of a processor is associ-
ated with maps and next nodes. In particular, the unique input node has no
incoming edges and only one outgoing edge; the unique output node and
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any halt node have no outgoing edges. All other nodes may have several
incoming edges and one outgoing edge, except the branch nodes, which
have two outgoing edges. The maps that are associated each node type are
described below:

(i) A computation node η has an associated map (z, y) �→ (gZ,η(z), gR,η( y)),
where gZ,η is an integer polynomial and gR,η is a rational map.

(ii) An integral branch node has an associated polynomial function hη :
Zη → Z. The next nodes β−

η and β+
η are associated with hη’s negative

and nonnegative values, respectively. Similarly, a real branch node has
an associated rational function hη :R∞ → R, and the corresponding
next nodes are associated with the corresponding values of hη.

(iii) A shift node η is associated with a map gη : SR
M → SR

M .

(iv) A halt node has no next node and does not alter the current state.

Now we are ready to define parallel machines.

Definition 7.3.7 A parallel machine P is a sequence of identical proces-
sors Mi that comes with an associated activation function p : N → N,
an input space IP = R∞, an output space OP = R∞, and a state space
SP = ∪∞

h=1(SM )h. In addition, the input node is associated with a map
IP : IP → SP and the output node has an associated function OP : SP → OP .

7.4 Real-Number Random-Access Machines

As noted on page 15, a random-access machine is an alternative, more
computer-oriented, formulation of the classical model of computation. This
remark has prompted researchers in the area of real-number computation
to try to define the analogues of random-access machines in this expanded
framework. Clearly, a BSS-machine is a form of real-number random-access
machine. Since it is not directly derived from the random-access machine
model, however, we have decided not to discuss it alongside real random-
access machines.

Vasco Brattka and Peter Hertling [22] have presented a feasible random-
access machine without the drawbacks of other related approaches to the
design of real random-access machines. In particular, this model takes into
account the fact that common representations of real numbers are infinite
in length (e.g., they may have an infinite number of digits),5 and has been

5. In general, this is not true. For instance, Yaroslav Sergeyev [177] presents a way to represent
real numbers with finite means.
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Name Notation Cost Comment
Assignment of constants ni := m 1 m ∈ N

ri := q 1 q ∈ Q

Simple copy command ni := nj �(nj)
ri := rj �(rj)

Mixed copy command ri := nj �(nj)
ni :=  rj!nk �(rj , nk)

Natural arithm. operat. ni := nj ⊗ nk �(nj, nk) ⊗ ∈ {+, .—, ∗,/, %}
Real arithm. operations ri := rj ⊗ rk �(rj , rk) ⊗ ∈ {+,−, ∗}

ri := rj /rk �(rj , 1/rk)
Comparison operations ni = nj �(ni, nj)

n1 < nj �(ni, nj)
ri <nk rj �(ri, rj , nk)

Table 7.1: Operations and their costs, where � is the maximum of the lengths of the binary
representations of the integer part of its arguments, % is the modulus operator, and �x�k

is the finite-precision staircase operation.

designed to provide a meaningful comparison operator. But first, we need
a few auxiliary definitions.

The finite-precision staircase operation is defined as follows:

 x!k
def
=

{
n ∈ N

∣
∣
∣ n − 1

k + 1
< x < n + 1

}
∪
{
0
∣
∣
∣ x < 0

}
, ∀x ∈ R.

The result of the finite-precision staircase operation is not always unique.
Thus, computations may become indeterministic. Also, the operator .— is
defined as follows:

x .— y =

{
x − y if x ≥ y,
0 if x ≤ y.

We are now ready to define these new conceptual machines.

Definition 7.4.1 A real-number random-access machine is a triple M =
(X, Y, F ), where X and Y denote the input space and output space, respec-
tively, and F is a finite flowchart whose nodes are labeled by a finite set
Q ⊆ N that necessarily contains zero, which is reserved as a label for the
initial node. The input and output spaces are finite products of the sets N

and R. Each node of F is associated with an operation from Table 7.1 and
a finite list of successor nodes. When the operation is a comparison, there
are two successor nodes. In addition, the final node has no successor node.
In all other cases, a node has exactly one successor node.

It should be noted that most of the operators of Table 7.1 can be defined
in terms of the most “elementary” ones. For example, here is how one can
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define the real-number comparison operator:

(ri <nk rj) =
(
 1 + ri − rj!nk = 0

)
.

Let us now describe how a computation proceeds. Like a BSS-machine, the
machine begins its operation from the start node, while the input is stored
in the respective input registers. It then follows a computation path that
is specified by F . Since for one input there may be several computational
paths, the outcome of some computation cannot be predicted. Thus, it is
possible that identical input data may yield quite different output data. Di-
vision by zero crashes the machine and so it yields no output. When a final
state is reached, the computation stops and the result of the computation
is stored in the output registers.

7.5 Recursion Theory on the Real Numbers

The arithmetic hierarchy presented in Section 7.1.4 is not the only way
to classify real numbers and functions according to their “incomputabil-
ity.” Indeed, Christopher Moore [136] has defined recursive functions on
the real numbers in the spirit of the corresponding definitions for natural
numbers (see Section 2.2). These numbers and functions are computable by
conceptual analog machines operating in continuous time (see Chapter 9
for an overview of analog (hyper-)computation).

As in the case for natural numbers, we first need to define our function
builders in order to define the notion of recursive function. The function
builders are completely analogous to their classical counterparts. In par-
ticular, provided that f and g are already defined, we define the following
function builders:

(i) Composition:
h(x1, . . . , xn) = f (g(x1, . . . , xn)).

(ii) Differential recursion:

h(x1, . . . , xn, 0) = f (x1, . . . , xn),
∂

∂y
h(x1, . . . , xn, y) = g(x1, . . . , xn, y, h(x1, . . . , xn, y)).

These two equations imply that h = f when y = 0; otherwise, the
partial derivative of h with respect to y depends on h, y, and x1,. . . ,
xn. The previous equations can be presented more compactly in the
following form:

h(x1, . . . , xn, y) = f (x1, . . . , xn) +

∫ y

0
g(x1, . . . , xn, y′, h(x1, . . . , xn, y′))dy′.
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Notice that h is defined only when a finite and unique solution of the
previous integral equation exists.

(iii) µ-recursion:

h(x1, . . . , xn) = µy f (x1, . . . , xn, y) = inf{ y | f (x1, . . . , xn, y) = 0}.

Based on these definitions, we define R-recursion.

Definition 7.5.1 A function h :Rn →Rm is termed R-recursive if it can be
generated from the constants 0 and 1 with the function builders defined
above.

A number of common functions are R-recursive. Indeed, it can be proved
that the following functions are R-recursive:

(i) addition: f (x, y) = x + y;

(ii) multiplication: f (x, y) = xy;

(iii) reciprocal: f (x) = 1 / x;

(iv) division: f (x, y) = x / y;

(v) exponentiation: f (x) = ex;

(vi) natural logarithm: f (x) = ln x;

(vii) power function: f (x, y) = xy;

(viii) trigonometric functions: sin x, cos x, and tan x;

(ix) modulus function: x mod y;

(x) Kronecker’s δ-function: δ(x) = 1 if x = 0 and 0 otherwise;

(xi) the function returning the absolute value: |x|;

(xii) the step function: Θ(x) = 1 if x ≥ 0 and 0 if x < 0;

(xiii) constants: −1, e, and π.

Clearly, the constants −1, e, and π are not functions, but they are com-
putable in the sense of the following definition.

Definition 7.5.2 Suppose that x is a real number such that x = g(0), where
g is a R-recursive function. Then x is a R-recursive number.
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Obviously, when x equals g( y), it is also R-recursive provided that both
g and y are R-recursive, since if y = h(0) for some R-recursive h, then
x = g(h(0)), and so x is R-recursive by closure under composition.

The set K of all R-recursive numbers includes at least the rational num-
bers (i.e., Q ⊂ K , and since Z ⊂ Q, it follows that Z ⊂ K ) and the alge-
braic numbers (i.e., numbers that are roots of some polynomial equation
anxn + an−1xn−1 + · · · + a1x + a0 = 0, where ai ∈ Z).

Assume that s(x1, . . . , xm) is an R-recursive mathematical expression.
Then we define its µ-number with respect to xi, denoted by Mxi (s), as fol-
lows:

• Mx(0) = Mx(1) = Mx(−1) = 0,

• Mx(h( g1, g2, . . .)) = maxi

{
Mxi (h) + Mx( gi)

}
,

• Mx

(
h= f +

∫ y

0
g(x1, . . . , xn, y′, h)dy′

)
=max

{
Mx( f ), Mx( g), Mh( g)

}
,

• My

(
h = f +

∫ y

0
g(x1, . . . , xn, y′, h)dy′

)
= max

{
My′( g), Mh( g)

}
,

• Mx(µyf (x1, . . . , xn, y)) = max
{

Mx( f ), My( f )
}
+ 1.

To put it simply, Mx(s) is the depth of nested µ’s surrounding x in s. For any
R-recursive function h we define M(h) = maxi Mxi (s) for all expressions s
that define h. The µ-hierarchy is built from the sets Mi = {h| M(h) ≤ i},
and the set of all R-recursive functions is the union ∪iMi. The following
result makes clear the relationship between the arithmetic hierarchy and
the µ-hierarchy.

Proposition 7.5.1 It holds that ∆0
i ⊂ M2i and Π0

i ⊂ M2i+1 for all i > 0.

Similar results also hold for the analytical hierarchy.

Proposition 7.5.2 It holds that ∆1
i ⊂ M3+4i and Π1

i ⊂ M3+4i for all i > 0.

A corollary of Proposition 7.5.1 is that K contains many real numbers that
are not Turing-computable. In addition, it follows from the previous result
that the hyperarithmetic sets as well as all arithmetic sets are contained in
M7.

When a function is part of a step of a ladder of some computational
hierarchy, this simply means that it can be computed by a class of (real
or merely conceptual) computing devices. Functions that are R-recursive
can be computed by Claude Elwood Shannon’s General Purpose Analog
Computer (GPAC), which is a mathematical model of the differential ana-
lyzer that was invented by Vannevar Bush in 1927 (see Section 9.2). Moore
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believes that there are a number of issues that make the GPAC an imprac-
tical model of computation. First of all, he assumes that time is granular,
and this is something that prohibits the GPAC from doing accurate cal-
culations. However, Moore’s assumption is countered by recent scientific
evidence (for instance, see the discussion at the end of Section 8.3). An-
other problem is that quantum effects and noise may interfere with the
machine’s operation. Although it is not a trivial task to tackle these prob-
lems, still they do not make the realization of the GPAC impossible. It is
important to state that the existence of the GPAC would pose a threat to
the validity of the Church–Turing thesis.



VIII. Relativistic and Quantum
Hypercomputation

The theory of infinite-time Turing machines is practically useless unless it
is possible to perform a supertask. If we can find ways to perform super-
tasks, we have in our hands a real tool to study a particular form of hy-
percomputation. In this chapter, I present a number of approaches to the
problem of hypercomputation via supertasks as well as a short discussion
of the physical limits of computation. In addition, I describe quantum adi-
abatic computing, a special form of quantum computation that is claimed
to lead to hypercomputation.

8.1 Supertasks in Relativistic Spacetimes

John Earman [54] has given an account of the feasibility of supertasks in
the framework of the general theory of relativity. In particular, he presents
a number of spacetimes (see Definition D.5.2) that provide ways for car-
rying out supertasks, or more precisely, the functional equivalents of su-
pertasks. Generally speaking, we have two parties that operate in such a
spacetime. The first party has available an infinite amount of time, while
the second party can use only a finite amount of time and is so situated that
its past light cone1 contains the entire world line2 of the first party. Since
the first party has no time limits, it can, for instance, check the digits of the
number π to see whether they are random and communicate the result to
the second party. Clearly, this is a supertask. Now, the second party should
be able to know whether the digits of π are random in a finite amount of
time, but it has a price to pay: to surrender to the effects of unbounded
forces that will definitely end its life. Certainly, there are ways to overcome

1. A light cone is a double cone centered at each event E in spacetime. The future light cone
consists of all the paths of light that begin at E and travel into the future, while the past light
cone consists of all the paths of light that stop at E and come from the past.
2. The world line of an object is the sequence of spacetime events corresponding to the history
of the object. World lines are timelike curves in spacetime.

137
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such “difficulties” by exploiting spacetimes with unusual properties. Let us
now examine these exotic spacetimes and problems associated with them.

Even those whose exposure to relativity is from popular science believe
that supertasks are physically impossible, mainly because there is a limit to
the speed with which things can move in the universe. However, the same
theory that sets an upper limit on the speed of information transmission is
based on the assumption that time is relative to the observer. This feature of
any relativistic spacetime can be exploited in certain spacetimes to achieve
time dilation in order to perform supertasks. Indeed, Itamar Pitowsky was
the first thinker to set up a thought experiment in order to demonstrate
how we can perform supertasks [155].

Suppose that there are no restrictions on the size of the computation
space and so only time is of importance. Assume that Angelene is a math-
ematician obsessed with Ludwig Josef Johann Wittgenstein’s problem: are
there three consecutive 7’s in the decimal expansion of π? In order to find
the answer to this question, she travels to a satellite orbiting the Earth. The
satellite has such a powerful engine that its instantaneous tangential veloc-
ity is v(t) = c

√
1− e−2t, where t is time in Earth’s frame and c is the speed

of light. In addition, the engine keeps the satellite in a fixed orbit. Let us
denote by τ the satellite’s local time; then dτ = e−tdt. Since

∫∞
0 e−tdt = 1,

we have that when one second passes on the satellite, an infinite amount of
time has passed on Earth. While Angelene orbits the planet on the satel-
lite, her students and colleagues are examining the decimal expansion of
π to see whether it has three consecutive 7’s. When these people get old,
they ask their students and young colleagues to continue their work, and so
on. If three consecutive 7’s are encountered in the decimal expansion of π,
the good news is transmitted to the satellite. Angelene has just one second
to hit the brakes and return safely home. If no message arrives within one
second, then Angelene will disintegrate, knowing that there are no three
consecutive 7’s in the decimal expansion of π. Formally, the previous story
can be described as follows.

Definition 8.1.1 A pair (M ,g), where M is a connected four-dimensional
Hausdorff C∞ manifold and g is a Lorentz metric, is a Pitowsky spacetime if
there are future-directed timelike half-curves γ1, γ2 ∈ M such that

∫
γ1

dτ =

∞,
∫
γ2

dτ < ∞, and γ1 ⊂ I−(γ2), where I−(γ2) denotes the past set (i.e., the
collection of all past events of γ2) [54].

Here γ2 corresponds to Angelene and γ1 to her colleagues and students.
Pitowsky believes that his story is impossible simply because the operations
described, demand an infinite computational space. Strictly speaking, this
is not true, since it has been shown that it is possible to compute just the
nth digit of many transcendentals in almost linear time and logarithmic
space [5]. Also, there are spacetimes with infinite mass and space. In ad-
dition, Earman has spotted two flaws in Pitowsky’s story. First of all, the



8.1–Supertasks in Relativistic Spacetimes 139

magnitude of the acceleration that Angelene undergoes is et/
√

1− e−2t,
which “blows up rapidly.” Practically, this means that Angelene will be
quickly crushed by enormous g-forces. Consequently, it is possible that she
will never know whether there are three consecutive 7’s in the decimal ex-
pansion of the number π even if such a sequence exists. The second problem
is related to the “fact” that somehow Angelene in the end will know whether
the answer to her question is affirmative or negative. In case it is affirmative,
she will receive a message announcing that three consecutive 7’s have been
found in the decimal expansion of π. Otherwise, she will never receive any
message. However, for Angelene it is not clear what the absence of a message
means. It is reasonable for her to believe that the message she is eagerly
awaiting may not yet have arrived. Nevertheless, it is equally reasonable for
Angelene to believe that her colleagues have not found three consecutive 7’s
in the decimal expansion of π. Thus, at no definite moment in her life does
Angelene know the answer to Wittgenstein’s problem.

David Malament and Mark Hogarth, in order to solve the problems in
Pitowsky’s setup, have proposed an alternative spacetime structure.

Definition 8.1.2 A pair (M ,g), where M is a connected four-dimensional
Hausdorff C∞ manifold and g is a Lorentz metric, is a Malament–Hogarth
spacetime if there are a timelike half-curve γ1 ⊂ M and a point p ∈ M such
that

∫
γ1

dτ = ∞ and γ1 ⊂ I−(p).

It is clear that in this case, our fictitious mathematician plays no direct role,
since there is no reference to γ2. In this spacetime, there is a future-directed
timelike curve γ2 stretching from a point q of the chronological past of p
(i.e., q ∈ I−(p)) to p. In other words,

∫
γs(q,p) dτ < ∞. This means that if An-

gelene’s colleagues and students proceed as before to check out her favorite
problem, then she will know for sure that if at event p she has received no
message from her colleagues and students, then there are no three consecu-
tive 7’s in the decimal expansion of π. As Earman notes in [54], this setting
can be used to “effectively decide” membership in a recursively enumerable
but nonrecursive set of integers. Naturally, one may wonder why supertasks
can be performed in a Malament–Hogarth spacetime. The answer lies in
the following result.

Lemma 8.1.1 A Malament–Hogarth spacetime is not globally hyperbolic.

This simply means that in a Malament–Hogarth spacetime, events are not
related to each other by cause and effect (i.e., Laplace’s demon does not live
there). Let us now see how we can construct a hypermachine H that can
solve the halting problem in a Malament–Hogarth spacetime.

The construction is due to Oron Shagrir and Itamar Pitowsky [178].
Machine H consists of a pair of communicating standard computers, which
we will denote by CA and CB. Machine CB moves along γ1, and CA along
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a future-directed timelike curve joining the initial point q of γ1 with p.
Machine CA travels from q to p in finite time, say one minute, while ma-
chine CB moves along γ1 in infinite time. Machine H operates as follows:
initially, CA takes as input a number n ∈ N, which is emitted to CB with
a signal. Machine CB is a universal machine that computes the Turing-
computable function f (n) that returns what the nth Turing machine com-
putes with input the number n provided that this machine halts; otherwise,
it returns no value. Suppose that CB halts. Then it will send a message
back to CA, or else it never sends a message. If CA receives no message,
after, say, one minute, while it is traveling it will print out “yes;” otherwise
it will print out “no.” Thus, H computes the following function:

h(n) =
{

0, if f (n) is undefined,
1, otherwise.

Function h is clearly noncomputable, but it is hypercomputable. In other
words, H is a hypermachine. In spite of this, there are objections to the
feasibility of this construction.

First of all, one should note that CB demands infinite memory, which
renders H a nonphysical device. There are two responses to this objec-
tion: first one should note that even a Turing machine demands infinite
memory, and second, Reissner–Nordström spacetimes, which are special-
ized Malament–Hogarth spacetimes [54], are spatially infinite and allow
the construction of H . A second objection concerns the computational na-
ture of H : one may argue that this is not a computer at all, since it only
delivers the values of h, but it does not compute them. However, this ob-
jection is based on the fact the CB may never halt, and thus it cannot be
classified as a machine performing a computational task, at least in the clas-
sical sense of the word. Clearly, in an expanded theory of computation this
is not correct. After all, one may consider that CB is an infinite-time Turing
machine. According to the third objection, H is indeed a computer, but it
is incapable of computing the function h. For instance, when the machine
prints 0, then CB ceases to exist, and so H cannot proceed with another
computation. In view of this, H may not be able to compute h, but it does
something that no Turing machine is able to do: it prints out the halting
status of an arbitrary but fixed machine.

8.2 SAD Machines

Mark Hogarth [85, 86] has presented his SAD machines and their compu-
tational power. His construction is based on the notion of a past temporal
string, or just string. A string is formed from a collection of nonintersect-
ing open regions Oi that belong to a spacetime (M ,g). The open regions
Oi have the following properties:
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(i) for all i, Oi ⊂ I−(Oi+1), and

(ii) there is a point q ∈ M such that for all i, Oi ⊂ I−(q).

The upper left part of Figure 8.1 shows a schematic representation of a
string.

Strings make it possible to construct complex spacetimes. In particular,
the arithmetic-sentence-deciding spacetimes of order n, or SADn for short,
form a hierarchy of spacetimes that is inductively defined as follows.

Definition 8.2.1 If a spacetime (M ,g) is a Malament–Hogarth spacetime,
then it is a SAD1 spacetime. If a spacetime (M ,g) admits strings of SADn−1

spacetimes, then it is a SADn spacetime.

In general, a SADn spacetime is a spacetime that contains a string of
SADn−1 spacetimes. In this hierarchy of spacetimes, it is feasible to con-
struct a corresponding hierarchy of arithmetic-sentence-deciding computers
of order n, or just SADn. On the bottom of the hierarchy lies the finite Tur-
ing machine (FTM), which is an ordinary Turing machine that exists for
only a finite time. Next in the hierarchy lies the ordinary Turing machine
(OTM). Then we have the sequence of SADi machines. And on the top of
the hierarchy lies the arithmetic-deciding computer, or just AD. Figure 8.1
shows a schematic representation of these computers. Notice that in these
figures a lower-filled dot represents an initial event, an upper-filled dot rep-
resents a solution event (i.e., the latest point where the machine has to de-
liver the result or no-result of its computation, and it this point where the
machine user, i.e., the distant observer, stays), a line represents a “hard-
ware” world line, an empty dot represents “the edge of spacetime at in-
finity” (e.g., a point at infinity in the sense of compactification), and three
dots represent an infinite sequence of hardware boxes. Thus, in the FTM
diagram a simple Turing machine exists for a finite amount of time, but
it never reaches a specified solution event. The situation is considerably
different for the OTM diagram where the Turing machine surpasses the
solution event. In the case of SAD1 the whole world line of the Turing ma-
chine lies below the solution event, while the machine never stops, thus
allowing it to decide “simple” relations, as we will see later on. A SAD2

machine is a string of SAD1 machines, while the AD machine is a string of
increasingly more powerful SAD machines.

Let us now state a few results that indicate the power of SAD machines.

Lemma 8.2.1 Some SAD1 machine can decide any relation of the form ei-
ther S(z) = ∃xR(x, z) or S(z) = ∀xR(x, z), where R is recursive.

The previous result can be extended as follows. Assume that R(x1, x2, x3) is
a recursive relation. Then either

S2(x3) = ∀x1∃x2R(x1, x2, x3) or S′
2(x3) = ∃x1∀x2R(x1, x2, x3)
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Figure 8.1: A string and Hogarth schemas of some Turing machine based computers.
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is decidable by some SAD2 machine. More generally, if R(x1, . . . , xn+1) is a
recursive relation, then either

Sn+1(xn+1) = ∀x1∃x2 · · · ∀xn−1∃xnR(x1, . . . , xn+1)

or
S′

n+1(xn+1) = ∃x1∀x2 · · · ∃xn−1∀xnR(x1, . . . , xn+1)

is decidable by some SADn machine. Even more generally, one can prove
the following.

Proposition 8.2.1 Arithmetic is decidable by the AD machine.

Since AD can compute exactly ℵ0 functions, there are functions that this
machine cannot compute. The following fully characterizes the computa-
tional power of SADn machines.

Proposition 8.2.2 SADn can decide Π0
n ∪ Σ0

n but not Π0
n+1 ∪ Σ0

n+1.

Thus far, I have presented spacetimes and machines that operate in
these particular spacetimes. Clearly, the important question is whether
these spacetimes are physically possible and physically realistic. As has been
noted above, a Reissner–Nordström spacetime is actually a Malament–
Hogarth spacetime. This implies that at least some Malament–Hogarth
spacetimes are physically possible. In addition, in Earman’s own words
“Malament–Hogarth spacetimes meet the (necessarily vaguer) criteria for
physically realistic spacetime arenas.” A serious problem with Malament–
Hogarth spacetimes is that all of them violate Penrose’s strong cosmic
censorship hypothesis (i.e., the hypothesis that no singularity created by
an imploding star is ever visible to any observer). In addition, there are
Malament–Hogarth spacetimes that violate even the weak cosmic censor-
ship hypothesis (i.e., the hypothesis that singularities are never “naked,”
that is, they do not occur unless surrounded by a shielding event horizon;
this is an immaterial surface in spacetime that divides spacetime into two
regions: that which can be observed, and that which cannot). There are
many physicists who are convinced that the cosmic censorship conjecture
is true, which makes the physical possibility of Malament–Hogarth space-
times unlikely. However, in 1991, Stuart L. Shapiro and Saul A. Teukolsky
performed computer simulations of a rotating plane of dust that indicated
that general relativity allows for naked singularities (see [180] for details).
Notwithstanding the validity of these computer simulations, it is possible to
overcome the problem of cosmic censorship, and indeed, this is the subject
of the next section.
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Figure 8.2: The three-dimensional setup of a relativistic computer.

8.3 Supertasks near Black Holes

In 1963, Roy Kerr published a paper giving a solution of Einstein’s field
equations that describes every rotating black hole that can possibly exist. In
general, it is believed that there are many such objects in our universe. For
example, astronomers are almost certain that a massive rotating black hole
of several million times the mass of our sun resides at the core of the Milky
Way. Rotating black holes with no electrical charge have been dubbed Kerr
black holes. If a Kerr black hole is charged, then it is called a Kerr–Newman
black hole. The exterior of such a black hole forms a Kerr–Newman space-
time, which is actually a Malament–Hogarth spacetime. This observation
has prompted Gábor Etesi and István Németi [58] to propose the construc-
tion of a general computing system (i.e., a computing system that is feasible,
but may not exist yet due to current technological limitations only) that can
perform supertasks.

The relativistic computer G = (γP, γO) operates in a vacuum Kerr space-
time (M ,g), where γP and γO are timelike curves around a slowly rotating
Kerr black hole. In particular, γP is a computer traveling around the Kerr
black hole in a stable circular orbit in the equatorial plane, and γO is a
freely falling observer that crosses the outer event horizon of the black hole
and enters the inner horizon, which is not globally hyperbolic, but does not
continue into the singularity (see Figure 8.2). The computer has as its sole
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task to check all theorems of ZFC3 in order to see whether mathematics
is consistent. Both the observer γO and the computing device γP start from
the same point q ∈ M . Also, the length of γP is infinite (i.e., ‖γP‖ = ∞),
while the length of γO is finite (i.e., ‖γO‖ < ∞).

Assume that T is a Turing machine that enumerates all the theorems
of ZFC, that is, T realizes a function

fT : N → {F | F is a ZFC formula}

such that the range of fT is the set of all ZFC theorems. The computer has
as a subsystem such a Turing machine. Also, the observer is accompanied by
an identical Turing machine that will be used to verify the validity of any
information received from γP . The observer departs on a journey toward
the black hole, and the computer executes the following pseudocode while
orbiting around the black hole:

i=0;
while (true) {

Derive ith theorem from ZFC set theory;
if (the ith theorem coincides with x �= x) {

SendSignalTo(γO);
break;

}
i++;

}

Suppose that at some moment the computer has found an i ∈ N such that
the ith theorem of ZFC coincides with x �= x. At this given moment, the
computer has to send a message to the observer informing her that ZFC is
inconsistent. The message has to be unique so that it cannot be confused
with any other incoming signal. For example, this problem can be tackled
by sending a Morse-like sequence of “short” and “long” light impulses.
But let us see what is happening to the observer. She is traveling toward
the black hole in order to reach the point p where the Malament-Hogarth
event will take place. If the observer has reached p and she has received no
message from the computer, she can be sure that ZFC is consistent. On the
other hand, if she has received a message, then she is absolutely sure that
ZFC is inconsistent. It is important to note that the observer never enters
the black hole, so she can come back and inform her colleagues about the
outcome of her experiment.

3. The axioms proposed by Ernst Friedrich Ferdinand Zermelo and Adolf Abraham Halevi
Fraenkel as a foundation for set theory yield the Zermelo–Fraenkel set theory (ZF). When
the axiom of choice (i.e., the postulate that given a set A having as elements nonempty sets,
there exists a set B that contains exactly one element from each of the sets belonging to A) is
included in the list of axioms, the resulting system is called ZFC (for example, see [88] for
more information).
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It is well known that there are infinitely many relations R ∈ Σ0
1 \Π0

1 (i.e.,
relations that are recursively enumerable, but not decidable). Nonetheless,
one can prove the following.

Proposition 8.3.1 Assume that R ∈ Σ0
1 \Π0

1 . Then there is a relativistic com-
puter G = (γO, γP ) that decides R.

In addition, the following statement can be proved.

Proposition 8.3.2 Suppose that n > 0; then there are infinitely many rela-
tions R ∈ Σ0

2 \ (Σ0
1 ∪ Π0

1), R ⊂ Nn, such that R is decidable by a relativistic
computer.

Relativistic computers can also solve the halting problem for Turing ma-
chines.

Proposition 8.3.3 There is a relativistic computer that has as input the pro-
gram of a Turing machine together with its input and is able to determine
whether this Turing machine will halt on this input.

In the description so far we have not explained why we need a Kerr
black hole and not a Schwarzschild black hole (named for the German as-
tronomer Karl Schwarzschild), that is, a nonrotating chargeless black hole.
The answer is that in the case of a Kerr black hole there is a second inner
event horizon. The spacetime between the outer event horizon and the in-
ner event horizon has the properties of a Malament-Hogarth spacetime.

There are two objections related to the physical possibility of the rela-
tivistic computer described in this section. The first is related to black hole
evaporation and the second is related to time granularity. In 1974, Stephen
William Hawking [80] proposed that black holes emit thermal radiation,
now known as Hawking radiation, due to quantum effects. Thus, any black
hole will vanish sometime in the future. If Hawking radiation is indeed a
real phenomenon, then it is possible that a relativistic computer G will not
be able to finish a particular supertask it was assigned to finish. The rea-
son is that the black hole that the computer orbits around might evaporate
years before the computer completes its task. Moreover, Hawking radiation
should play a role in cases in which the black hole has very small mass. For
instance, a black hole of one solar mass will evaporate in 1067 years, while
a black hole of 1016 kg will evaporate in 3 billion years. Let us now discuss
the second issue.

It is a common belief among quantum-gravity theoreticians that space-
time becomes “foamy” at the Planck scale, that is, time intervals ∆t ≤ tP =√

�G / c5 ≈ 10−44 sec, and consequently, with lengths that are less than or
equal to lP = ctP ≈ 10−33 cm. More specifically, at the Planck scale, the
topology of spacetime may take various forms with different probabilities.
In other words, space and time cannot be accurately measured at the Planck
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Figure 8.3: The white rings around the stars (white disks) are called Airy rings.

scale. This observation is crucial for the thought experiment presented,
since observer γO is required to be able to measure time with any imagin-
able accuracy. Although it is widely believed that both time and space are
discrete, still there is no experimental evidence to justify this belief. On
the contrary, recently Richard Lieu and Lloyd Hillman [112] proposed (but
see also [163]) a technique to detect spacetime foam4 by observing images
of distant galaxies. In particular, the detection of diffraction rings (also
known as Airy rings; see Figure 8.3) in images of distant galaxies can be
used to refute models of quantum gravity. Indeed, Lieu and Hillman ap-
plied their technique to images of the galaxy PSK1413+135 and used their
findings to rule out the majority of modern models of quantum gravity,
including the “standard” one. However, these incredible results have been
challenged by Jack Ng [142], who argues that Lieu and Hillman arrived
at their conclusion by wrongly calculating the cumulative statistical phase
dispersion as

∆φ = 2π
vp

vg

L
λ

,

where vp is the phase velocity of a light wave and vg is the group velocity of
propagation. Ng argues that the correct result is

∆φ = 2πa
la
PL1−a

λ
.

Quite unexpectedly, Ng uses the Lieu–Hillman technique to rule out two of
the three major models of quantum gravitation. However, it is clear that for
the time being, nobody really knows the truth regarding spacetime gran-
ularity. So until we have undeniable experimental proof in favor of either
view of the world, we can safely assume that γO can measure time with any
accuracy she wishes.

For reasons of completeness, it is important to say that Németi and
Gyula Dávid [140] have concluded that since γO need not observe an infi-
nite sequence of events happening in its causal past, the time measurement

4. The expression spacetime foam should not be taken literally to mean that there is such a
substance. On the contrary, it just refers to the hypothetical probabilistic structure of space
and time at Planck scale.
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Figure 8.4: A classical supertask.

objection becomes void. Actually, the authors support the new idea that the
general computing system involves a pseudosupertask and not a “proper”
supertask. The term pseudosupertask has been coined by John David
Barrow in [7] to characterize cases in which an observer sees a moving
machine carrying out an infinite sequence of actions in what seems to be a
finite amount of time.

8.4 Quantum Supertasks

The supertasks discussed in this section are not directly related to hyper-
computation. Thus, readers not interested in supertasks in general can
safely skip this section. On the other hand, this section is almost essential
reading for those with an interest in supertasks.

Jon Pérez Laraudogoitia [106] (but see also [107]) has described one of
the simplest classical supertasks; it illustrates the spontaneous acquisition
of energy and momentum while sustaining indeterministic time develop-
ments. In particular, Laraudogoitia’s system consists of an infinite set of
elastic spheres, having the same mass m, that are placed along the open
interval (0, 1

2 ) using the following rule: sphere σi is placed at point xi =
1
2i ,

where i = 1, 2, 3, . . . (see Figure 8.4). Notice that the size of the spheres
must decrease, while their density must increase. At point x0 = 1 there
is another sphere, σ0, with equal mass, that moves toward σ1 with constant
speed v. After some finite time, the two spheres collide and σ0 stops at point
x1 =

1
2 and will remain at this position, while sphere σ1 moves with constant

speed v toward sphere σ2. The two spheres collide, exchange energy (i.e., σ1
loses all its kinetic energy and stops at x2 = 1

4 , and σ2 starts moving), and
a new collision takes place, and so on. In the end, all spheres σi will stop
moving, while each of them will rest at point 1

2i+1 .
In classical mechanics, time is reversible, and thus one may consider

the reverse of this supertask. Initially, an infinite number of spheres σi,
i = 0, 1, 2, . . ., are at rest at positions xi =

1
2i . Without any apparent external

cause, a series of collisions begins at the end where an infinite number of
spheres have accumulated and has as a final effect the ejection of the first
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Figure 8.5: Masses and springs.

sphere. Clearly, this system is not deterministic and also violates the laws
of energy and momentum conservation.

John Norton [143] argues that this supertask cannot be easily translated
into a quantum setting. Therefore, he proposes another, quite similar, clas-
sical supertask that can be easily translated into a corresponding quantum-
mechanical supertask [143]. In particular, this new supertask involves an
infinite sequence of spheres that are connected by springs, all of them hav-
ing spring constant k (see Figure 8.5). It is not hard to show that this system
is indeterministic: while in an equilibrium state it can spontaneously set its
masses in motion. Before proceeding, the reader should ponder the feasi-
bility of a translation of this supertask into a quantum-mechanical setting.

To set up the quantum equivalent of the classical springs and masses
supertask, Norton considers infinitely many particles, each having its own
Hilbert space H1, H2, H3,. . . . The state vectors of particles in space Hi,
where i = 1, 2, 3, . . ., will be written |Ψ〉i. To make things simple, Norton
assumes that each particle admits just two energy eigenstates |0〉i and |1〉i of
the “particle Hamiltonian” Hpart

i that acts in space Hi. Notice that i〈0|0〉i =

i〈1|1〉i = 1, and thus

Hpart
i |0〉i = 0|0〉i = 0, Hpart

i |1〉i = 1|1〉i = |1〉i,

for i = 1, 2, 3, . . . . The infinite particles of the supertask are represented by
vectors of an infinite-dimensional product space

H1 ⊗ H2 ⊗ H3 ⊗ · · · .

The natural basis vectors of this infinite-dimensional space, which is not a
Hilbert space since it admits vectors that cannot be normalized, are

|a1〉1 ⊗ |a2〉2 ⊗ |a3〉3 ⊗ · · · ,

where ai ∈ {0, 1}. These vectors are used to define other vectors (funda-
mental states) that describe interactions that mimic the classical supertask
(only a few cases are shown):

|0〉 = |0〉1 ⊗ |0〉2 ⊗ |0〉3 ⊗ |0〉4 ⊗ · · · ,
|1〉 = |1〉1 ⊗ |0〉2 ⊗ |0〉3 ⊗ |0〉4 ⊗ · · · ,
|2〉 = |0〉1 ⊗ |1〉2 ⊗ |0〉3 ⊗ |0〉4 ⊗ · · · ,
|3〉 = |0〉1 ⊗ |0〉2 ⊗ |1〉3 ⊗ |0〉4 ⊗ · · · .
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Notice that |j〉i refers to an individual particle state, and in particular |0〉i
and |1〉i refer to a rest state and an excited state, respectively. The total
Hamiltonian of this system is

H = Hpart + H int,

where

Hpart =
∞ or N∑

n=1

|n〉〈n|, (8.1)

H int =
∞ or N−1∑

n=1

ia|n + 1〉〈n| − ia|n〉〈n + 1|. (8.2)

Observe that the Schrödinger equation requires that

i
d
dt

|Ψ(t)〉 = H |Ψ(t)〉 (8.3)

for a state vector |Ψ(t)〉 =
∑∞ orN

n=0 Cn(t)|n〉. By substituting this expression
into (8.3) and using expressions (8.1) and (8.2), we get the following set of
equations:

i
dC0

dt
= 0,

i
dC1

dt
= C1 − iaC2,

i
dC2

dt
= C2 + ia(C1 − C3),

...

i
dCn

dt
= Cn + ia(Cn−1 − Cn+1),

...

An analysis of the time development of the state vector shows that if it is
controlled only by (8.3), then it is indeterministic, which is the main result
of Norton’s work. For more details, the reader should consult Norton’s
paper [143].

Alisa Bokulich [17] addressed the question whether it is possible to per-
form an infinite number of quantum-mechanical measurements in a finite
amount of time. Her starting point is Zeno’s paradox in quantum theory,
which was discovered by Baydyanath Misra and George Sudarshan. The
first published account of this paradox appeared in [135]. It involves sys-
tems with unstable quantum states, such as a system that involves the ra-
dioactive disintegration of nuclei. Initially, the system is in some undecayed
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state. The system evolves, and we can always ask at any given moment
for the probability that the system has decayed. The fundamental claim of
Zeno’s paradox in quantum theory is that the probability that the system
has not decayed is proportional to the frequency of measurements made
to determine whether the system has decayed. In other words, the more
measurements we make, the higher the probability that the system will re-
main in its initial state. And if it is possible to perform an infinite number
of measurements, the system will never change its initial state. But is it
possible to perform such a measurement? Surprisingly, quantum nonde-
molition (QND) measurements, which do not necessarily lead to Zeno’s
paradox in quantum theory but also circumvent the limitations imposed by
Heisenberg uncertainty principles, allow such measurements with respect
to fundamentals. What exactly are these quantum nondemolition measure-
ments?

It is a fundamental principle of quantum mechanics that a precise mea-
surement at the microscopic scale is impossible without the introduction of
“back action,” which is inherent to the very fact of measurement. This prin-
ciple can be directly related to Heisenberg’s uncertainty principles. Sup-
pose that A and B are some observables (i.e., linear operators representing
“measurable” quantities of a quantum system). Then AB �= BA, since A
and B are noncommuting operators. The Heisenberg principles state that
the product of the dispersions of A and B has a lower bound:

∆A ∆B ≥ 1

2
|〈AB − BA〉|.

In other words, if A and B are represented by noncommuting operators, a
very precise measurement of A resulting in a very small dispersion ∆A will
cause a large dispersion ∆B. The real problem is that although this does not
directly restrict the precision in the measurement of A, the large fluctua-
tion induced in B most probably will couple back to A, which will result in
“back action” in the measurement of A. To circumvent this problem, one
has to resort to quantum nondemolition measurements [21], in which we
pick a measurement strategy that avoids the undesirable effects of back ac-
tion. This is accomplished by devising measurement schemes in which the
“back action” noise is kept entirely within unwanted observables, so that
the quantity of interest remains intact by a measurement thus allowing re-
peated measurements with arbitrarily high accuracy. Observables with such
properties are called QND observables. Formally, a QND observable A is
one that commutes with itself at all times of measurement:

A(ti)A(tj)− A(tj)A(ti) = 0.

For example, the momentum of a free particle is a continuous QND ob-
servable. In general, any observable that commutes with the Hamiltonian
(i.e., AH − HA = 0 and A(t) = A(t0)) is actually a QND observable. Also,
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no quantum mechanical principle imposes any limit to the frequency with
which QND measurements can be made. In addition, if we identify the
limit of an infinite number of discrete QND measurements with continu-
ous measurements, then the latter are possible in principle. Ergo, a quan-
tum measurement supertask is possible in principle.

8.5 Ultimate Computing Machines

At the end of Section 8.3 I discussed at some length efforts to resolve the is-
sue of spacetime granularity. It was pointed out that the issue has not been
resolved in spite of (controversial?) experimental findings. However, this
does not seem to be an obstacle for researchers who are in favor of space-
time granularity to assume such granularity, in order to put forth “new”
ideas. In particular, Seth Lloyd and Jack Ng [115] present a semipopular
account of their search for the ultimate computing device (which, in my
eyes, is quite similar to the quest for the Holy Grail). More specifically,
Ng [141] claims that a black hole is actually a “simple” computer whose
speed ν (i.e., the number of operations per bit per unit of time) and the
number I of bits of information in its memory space are both delimited by
the following inequality:

Iν2 ≤ t−2
P ≈ 1086 sec−2.

Notice that the number ν̃ of operations per unit of time is given by ν̃ =
Iν. In addition, Lloyd [114] argues that the “ultimate” laptop, which is a
“computer” with a mass of 1kg and a volume of 1 l, is able to perform
2mc2 /π� = 5.4248 × 1050 logical operations per second on ≈ 1031 bits.
The temperature inside the ultimate laptop is approximately 109 kelvins.
To recapitulate: according to Lloyd and Ng there are limits imposed by
nature on how fast we can compute, regardless of the meaning of the word
“compute.” In addition, a black hole is the ultimate computing device!

Lloyd and Ng went one step further and proposed that the whole uni-
verse (whatever that means) is a gigantic computer computing itself! Clearly,
such a statement constitutes the apotheosis of computationalism. Accord-
ing to their view, the universe, “powered by Standard Model software,”
computes “quantum fields, chemicals, bacteria, human beings, stars and
galaxies.” But if one supposes that the universe is itself a computer and
that John Archibald Wheeler’s it from bit5 hypothesis holds, it is reasonable

5. “It from bit symbolizes the idea every item of the physical world has at bottom—at a very bot-
tom, in most instances—an immaterial source and explanation: that which we call reality arises
in the last analysis from the posing of yes–no questions and the registering of equipment-
evoked responses; in short, that all things physical are information-theoretic in origin and
this is a participatory universe” [226].
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to assume that all concrete objects (e.g., books, walls, etc.) are themselves
computers. But what is the deeper meaning of this fatuous remark?

If everything is a computer, then the chair you are sitting on is a com-
puter, the book you are reading now is a computer, the window you are
looking through is a computer, the wall behind your back is a computer,
and so on. But what can be said about the wall that is behind the back of
Melany, who is making a presentation, and on which a standard projec-
tion system connected to her laptop computer is shining light? Searle [173]
has explained how Melany, based on the standard textbook definition of
computation and by assuming that there is no problem with universal real-
izability, can argue that the wall behind her back is actually implementing
the presentation program that she is using! Now let us go one step fur-
ther: if the universe computes itself, what does the chair you are sitting on
compute? Also, does the book you are reading right now compute the same
thing as the wall behind you? To answer these questions one must clearly
define what is meant by “computation.” In this book, we have presented
various models of computation and all have as common denominator the
ability to manipulate symbols. So, either we can very broadly define compu-
tation as a symbol manipulation procedure (recall that computing systems
are Type V minds, see page 109) or we can adopt an elaborate definition
like Stevan Harnad’s.

Definition 8.5.1 Computation is an implementation-independent, system-
atically interpretable, symbol manipulation process [77].

Based on these remarks, what is the book you are reading right now com-
puting? Searle argues [173] that “Computational states are not discovered
within the physics, they are assigned to the physics.” In other words, the
book you are reading computes the sum of two numbers just because you
have opted to assign this particular computational task to the book you are
reading. Clearly, even digital computers compute things just because we
interpret the outcome of a particular computational procedure the way we
do. But on the other hand, we are not entirely free to assign to any object
any computational task. For instance, Block [15] presents a good example
that makes this point clear:

[a]ny physical device that can be interpreted as an inclusive OR
gate can also be interpreted as an AND gate (and conversely).
To see this, note that an AND gate outputs a ‘1’ just in case
both inputs are ‘1’—and otherwise outputs a ‘0’. Any physical de-
vice that acts this way can have its states reinterpreted. Suppose
the interpretation that made it an AND gate was: 4 volt poten-
tial is interpreted as ‘0’, 7 volts as ‘1’. But we could reverse the
interpretation, reading 4 volts as ‘1’ and 7 volts as ‘0’. Then we
would have a device that outputs a ‘0’ just in case both inputs
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are ‘0’ (otherwise ‘1’), and that is an OR gate. So a mere change
in interpretation can change an OR to an AND gate.

Although a physical device that can be interpreted as an AND gate can also
be interpreted as an OR gate, it cannot nevertheless be interpreted as a
NAND gate. And of course, the AND gate does execute a logical operation
just because a conscious individual has constructed it to do exactly this and
nothing else. In the light of these remarks, one can surely say that the book
you are reading as well as a black hole compute absolutely nothing! On the
other hand, a computer does actually compute something because it has
been constructed for this particular purpose.

To be fair, it is important to note that Lloyd and Ng are not the first
researchers to put forth the idea that the universe is a computer. In 1969,
Konrad Zuse published a monograph entitled “Rechnender Raum” (Com-
puting Universe) [236], in which he proclaimed the idea that the whole
universe is a cellular automaton (i.e., a computing device). Furthermore,
Stephen Wolfram developed ideas almost identical to Zuse’s. His work,
which has been summarized in his latest book [228], is an effort to show
not that everything can be simulated by computers, but that everything is
actually a computer! And of course Wolfram’s ideas are based on the as-
sumption that space and time are not continuous, or as Steven Weinberg
puts it [220]:

Only if Wolfram were right that neither space nor time nor any-
thing else is truly continuous (which is a separate issue) would
the Turing machine or the rule 110 cellular automata be compu-
tationally equivalent to an analog computer or a quantum com-
puter or a brain or the universe.

8.6 Quantum Adiabatic Computation

The idea of using a computer that operates according to the laws of quan-
tum mechanics was introduced to the public by Richard Feynman in 1982.6
Generally speaking, the universal quantum Turing machine (i.e., the quan-
tum computational counterpart of Turing’s conceptual computing device)
has the same computational power as its classical counterpart. This im-
plies that the universal Turing machine can, in principle, simulate the op-
eration of its quantum counterpart. However, its simulation is incredibly
inefficient, so much so that the classical machine is incapable of feasibly
performing many tasks that the quantum machine can easily perform. For

6. Strictly speaking, Paul Benioff was the first to propose the theoretical construction of a
computer based solely on quantum-mechanical principles, which, however, had only the power
of a classical computer.
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completeness, let me describe in a nutshell the basic ingredients of quan-
tum computing.

Generally speaking, quantum machines operate on quantum bits using
quantum gates to manipulate them and thus perform a computation. A
quantum bit, or qubit, is represented by a two-level quantum mechanical
system, whose two basic states are conventionally labeled |0〉 and |1〉. For
instance, the two polarization states of a photon would constitute a physical
implementation of a qubit. Mathematically, a qubit is represented by a two-
dimensional Hilbert space H2, and so a general state of a single qubit is a
vector

c0|0〉 + c1|1〉,
where |c0|2 + |c1|2 = 1. Roughly speaking, a quantum register is a 2n-level,
n ∈ N, quantum system (e.g., for n = 2 the product space H2⊗H2 represents
such a system). To put it simply, a quantum register is a sequence of qubits.
Also, a quantum gate is just a mapping Hm → Hn, for some m = 2k and
n = 2l .

As was pointed out above, a quantum system evolves according to the
Schrödinger equation

i�
d
dt

|Ψ(t)〉 = H(t)|Ψ(t)〉.

If H(t) is slowly varying, then we can use the adiabatic theorem of quantum
mechanics to see how it will evolve. This capability was initially utilized by
Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser to
devise a quantum algorithm for solving instances of the satisfiability prob-
lem (see [60] for more details and Appendix A for a description of the
satisfiability problem). The idea behind their solution is to find the ground
state of a Hamiltonian HP . Unfortunately, finding the ground state of the
Hamiltonian of some problem may turn out to be a difficult task, although
the specification of the Hamiltonian is straightforward. A solution to this
problem is to consider another Hamiltonian HB that is straightforward to
construct and whose ground state is easy to find. The next step involves the
deformation of HB in time T into HP through a time-dependent process:

H
( t

T

)
=
(
1− t

T

)
HB +

t
T

HP . (A)

According to the adiabatic theorem, if the deformation is slow enough, the
initial state will evolve into the desired ground state with high probability.
The longer it takes for the deformation to take place, the higher the prob-
ability that it will evolve into the desired state. Note that another criterion
for identifying the ground state is described in [95]. However, we will not
describe it, and the reader is referred to Tien Kieu’s paper for details.

The use of the adiabatic theorem in quantum computational processes
to solve particularly hard problems inspired Kieu to construct a quantum
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algorithm that is supposed to solve Hilbert’s tenth problem.7 For the time
being, there are no quantum computers to verify Kieu’s algorithm, but then
again, there are no quantum computers to verify the validity of any other
quantum algorithm;8 and of course no one has yet built any hypercomputer.
Kieu’s algorithm was originally published in [95], while an elaborated dis-
cussion of the algorithm and its properties is presented in [97, 96]. Before
I present the algorithm itself, it would be useful to give a rough idea of
the inner workings of the algorithm. For this purpose, we will consider a
particular Diophantine equation

D(x, y, z) = (x + 2)3 + y2 − 4z5 − 2xy = 0.

A quantum-mechanical method to check whether this particular equation
has a nonnegative integer solution requires the realization of an infinite
Fock space.9 In general, the Hamiltonian corresponding to

D(x1, x2, . . . , xm)

has the following form:

HP =
(

D(a†
1a1, . . . , a†

mam)
)2

.

So, the Hamiltonian corresponding to the particular Diophantine equation
above is

HP =
(
(a†

xax + 2)3 + (a†
yay)

2 − 4(a†
zaz)

5 + 2(a†
xax)(a†

yay)
)2

.

Before proceeding, let me briefly explain the characteristics of the creation
a† and annihilation a operators. These operators arise in the case of the
one-dimensional simple harmonic oscillator with Hamiltonian

HSHO = P2 + X2 − 2,

which can be rewritten
HSHO = a†a +

1

2
.

7. The use of the word algorithm in conjunction with Hilbert’s tenth problem constitutes an
oxymoron, but the word algorithm is used to denote a method or a procedure that is carried
out to achieve a particular task.
8. Strictly speaking, there are no general-purpose quantum computers, although some re-
searchers have already built some rudimentary quantum computers (see [92]). In addition,
recently, D-Wave Systems, a private company based in Canada, announced the launch of the
world’s first “commercial” quantum computer. According to the company’s founder and chief
technology officer, their machine is a 16–qubit processor that employs the adiabatic theorem
to deliver results. Although it is difficult to say when (commercial) general-purpose quan-
tum computers will be widely available, Scott Aaronson was the first to impugn D-Wave
Systems’ project [27]. Interestingly, he has also criticized quantum adiabatic computing (see
Appendix B).
9. A Fock or Fok space is a special Hilbert space introduced by Vladimir Alexandrovich Fok.
It is used to analyze such quantum phenomena as the annihilation and creation of particles.
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The relationship between the momentum and position operators and the
creation and annihilation operators is defined by the following equations:

X =
1√
2
(a + a†),

P =
i√
2
(a − a†).

Observe that [a, a†] = 1 and [a, a] = [a†, a†] = 0, where in general, [a, b] =
ab − ba. Also, a Fock space has as basis the states |n〉, n ∈ N, with the
following properties:

a†|n〉 =
√

n + 1|n + 1〉,
a|n〉 =

√
n|n − 1〉,

(a†a)|n〉 = n|n〉.

Here |0〉 is the vacuum state, which has the additional property that a|0〉 =
0. Let us return to the Hamiltonian of the Diophantine equation.

The ground state |g〉 of HP has the following properties:

Nj |g〉 = nj |g〉,

HP |g〉 =
(
(a†

xax + 2)3 + (a†
yay)

2 − 4(a†
zaz)

5 + 2(a†
xax)(a†

yay)
)2

|g〉

≡ Eg |g〉,

where the ni are the nonnegative integer eigenvalues of the number opera-
tors Ni = a†

i ai and [Ni, HP] = 0 = [Ni, Nj], for i �= j. By projectively mea-
suring the energy Eg of the ground state |g〉, we can determine whether the
Diophantine equation we are studying has a solution. In particular, it has
at least one integer solution if and only if Eg = 0 and none otherwise. Al-
though it is possible to find out the values of various unknowns, this is not
the main task of the algorithm, but rather a side effect. Let us recapitulate:

(i) Let D(x1, . . . , xm) = 0 be a Diophantine equation; we have to simulate
the quantum Hamiltonian

HP =
(

D(a†
1a1, . . . , a†

mam)
)2

on some appropriate Fock space.

(ii) Assuming that the ground state can be found with high probability,
while at the same time it can be verified that this particular ground
state has the required properties, then a measurement of appropriate
observables would lead to an answer to the decision problem.
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So in order to solve this kind of decision problem we need to have at our
disposal a countably infinite number of Fock states to be able to construct,
or at least simulate, a suitable Hamiltonian and to determine and verify its
ground state.

After this rather long but also quite condensed introduction, we can
proceed with the presentation of the algorithm itself. As was remarked
previously, it is rather easier to implement a Hamiltonian than to find its
ground state. Instead, we define another Hamiltonian whose ground state
is easily obtainable and then deform this Hamiltonian in time T into the
Hamiltonian whose ground state we are looking for. The deformation goes
through a time-dependent process that can be represented by an interpo-
lating Hamiltonian H(t / T ). Let us assume that we start with the Hamil-
tonian

HI =
m∑

i=1

(a†
i − α∗

i )(ai − αi),

which has as ground state the easily achievable coherent state

|gI〉 = |α1 . . .αm〉.

Clearly, the next step involves the formation of the slowly changing Hamil-
tonian H(t / T ) (see equation (A) on page 155) that interpolates in the
time interval [0, T ] between HI and HP :

(i) Set the evolution time T , a probability p, and an accuracy 0 < ε < 1,
which is arbitrarily small.

(ii) Perform the physical quantum process, which is time-dependent, is
governed by H(t / T ), and terminates after time T .

(iii) Projectively measure either the observable HP or the number opera-
tors N1, . . . , Nm to obtain some state | . . . ni . . .〉.

(iv) Repeat the physical process of the two previous steps in order to build
a histogram of measurement frequencies. This loop will exit when
we have obtained a probability distribution P(T ; ε) at time T with
an accuracy ε for measured states. Note that the convergence of this
repetitive process is guaranteed by the weak law of large numbers in
probability theory.10

(v) On a classical machine, successively apply the displaced creation op-
erators b†

i ≡ (a†
i − α∗

i ) on the initial state and choose a truncated basis
of M vectors made up of |α1 . . .αm〉 and its excited states.11

10. Given a set of Xn, n ≥ 1, of observations, the law of large numbers deals with the question,
“when does Xn =

∑n
i=1 Xi /n converge to some parameter ξ?”

11. Kieu has claimed in a message posted to the FOM (Foundations Of Mathematics) mailing-
list that “truncation is not essential to the algorithm at all.”
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(vi) On a classical machine, solve the Schrödinger equation in the basis
for ψ(T ), with initial state ψ(0) = |α1 . . .αm〉, to derive a probability
distribution Pest(T ;M).

(vii) On a classical machine, enlarge the truncated basis by increasing the
size of M when |Pest(T ;M)− P(T ; ε)| ≥ ε. Repeat step (vi).

(viii) Since now the two probability distributions are uniformly within the
desired accuracy (i.e., |Pest(T ;M) − P(T ; ε)| < ε), use this truncated
basis on a classical machine to diagonalize HP to get the appropriate
ground state |g′〉 and its energy Eg′ , with an accuracy that can be
determined from ε.

(ix) On a classical machine, estimate in this truncated basis the gap be-
tween the ground state and the first excited state. Next, use the adi-
abatic theorem to choose a time T such that the system has a high
probability of being mostly in the ground state:

∣
∣
∣|〈g′|ψ(T )〉|2 − 1

∣
∣
∣ < ε.

(x) Go to step (ii) with this value of T to confirm that the candidate
ground state is actually the real ground state.

Before proceeding with the presentation of some issues related to this al-
gorithm, it is worth mentioning that Andrés Sicard, Mario Vélez, and Juan
Ospina [182] have presented an alternative quantum algorithm that per-
forms the same task. In particular, instead of using the simple harmonic
oscillator, they use the infinite square well, that is, a particle under the
influence of the following potential:

V (x) =
{

0, 0 ≤ x ≤ πl,
∞, (x < 0) ∨ (x > πl).

In this case, the particle is free (i.e., no forces are applied to this particle)
between x = 0 and x = πl, while it cannot escape this region since the
forces at the edges are infinite. The Hamiltonian operator H ISW and the
energy levels EISW

n are

H ISW = − �2

2m
d2

dx2
− �2

2ml2
and EISW

n =
�2

2ml2
n(n + 2),

respectively. In addition, H ISW|n〉 = EISW
n |n〉. The “constitutive elements”

of this algorithm are drawn from the Lie algebra su(1, 1) (see section D.2),
which satisfies the following commutation relations:

[K−, K+] = K3, [K−, K3] = 2K−, [K+, K3] = −2K+,
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where K+, K−, and K3 are called creation, annihilation, and Cartan opera-
tors, respectively. In addition, the following equalities hold:

K+|n〉 =
√

(n + 1)(n + 3)|n + 1〉,
K−|0〉 = 0,

K−|n〉 =
√

n(n + 2)|n − 1〉,
K3|n〉 = (2n + 3)|n〉.

From these, the Hamiltonian can be written as

H ISW =
�2

2ml2
K+K−,

while the new number operator N ISW is defined as

N ISW =
1

2
(K3 − 3).

In this new solution, the Hamiltonian corresponding to a Diophantine
equation has the following form:

H ISW
B =

(
D(N ISW

1 , . . . , N ISW
k )

)2
.

The new initial Hamiltonian H ISW
I is constructed from the creation and

annihilation operators of su(1, 1):

H ISW
I =

k∑

i=1

(K+i − z∗i )(K−i − zi),

where |z〉 are eigenstates of K−. From these two equations, one can get the
time-dependent Hamiltonian

H ISW
A (t) =

(
1− t

T

)
H ISW

I +
( t

T

)
H ISW

B .

Let us now proceed with the presentation of some objections related to
Kieu’s algorithm.

A first remark concerning the algorithm just presented is that it ter-
minates and solves Hilbert’s tenth problem. However, in the introductory
chapter it was stated that Matiyasevich proved that Hilbert’s tenth prob-
lem is Turing undecidable, yet Kieu claims that his algorithm can decide
Hilbert’s tenth problem. Therefore, it seems that something is wrong here.
However, one has to understand that Hilbert’s tenth problem cannot be
decided by a Turing machine, but in the light of hypercomputation, this
does not imply that there is no way to solve this problem. Indeed, Kieu’s
algorithm is actually a hyperalgorithm.
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Another objection to this algorithm is related to Cantor’s diagonaliza-
tion argument. In particular, since it has been shown using the diagonal
construction that no Turing machine can solve its halting problem, the ex-
istence of any machine capable of solving any incomputable problem will
lead to logical inconsistency. Thus, it is impossible to solve Hilbert’s tenth
problem. Before demonstrating why such a conclusion is at least mislead-
ing, let us briefly present the proof that no Turing machine can solve its
halting problem.

The diagonalization argument was devised by Georg Ferdinand Ludwig
Philip Cantor to show that the set of real numbers is not countably infinite.
Is based on the diagonalization principle, a fundamental proof technique,
which can be stated as follows:

Principle 8.6.1 (Diagonalization Principle) Assume that R is a binary re-
lation on a set A. Also, assume that D, the diagonal set for R, is the set

{
a
∣
∣ (a ∈ A) ∧

(
(a, a) �∈ R

)}
.

For each a ∈ A, suppose that Ra = {b | (a, b) ∈ R}. Then D is distinct from
each Ra.

Paulo Cotogno [39] has presented a simplified proof of the insolvability
of the halting problem: Assume that ψ1, ψ2, ψ3,. . . is an enumeration of
the computable (partial) functions. In addition, let us define the halting
function

f (x, y) =
{

1, if ψx( y) converges,
0, if ψx( y) does not converge,

and the diagonal monadic function

g(x) =
{

1, if f (x, x) = 0
undefined, if f (x, x) = 1.

Suppose that g(x) is computable. Then there is an i such that g(x) = ψi(x).
This implies that ψi(i) = 0, that is, g(i) = 0. The last equation is equivalent
to f (i, i) = 0 and this implies that ψi(i) is undefined, which is obviously a
contradiction.

The interesting thing about Turing’s proof is that it holds for all def-
initions of computability. In other words, if we consider a class of hyper-
machines, then it is impossible for them to compute their own halting
functions. However, this does not mean that some hypermachine cannot
solve the halting problem for Turing machines—there is no logical incon-
sistency here. Indeed, most models of hypercomputation, including Kieu’s
algorithm, have been examined by Toby Ord and Tien Kieu [145], who
found that none of them is able to solve its own halting problem. In particu-
lar, accelerating Turing machines cannot solve their own halting functions
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because the functions computed by these machines are closed under com-
position. Also, infinite-time Turing machines cannot compute their own
halting functions because they cannot determine whether a coded machine
diverges when applied to its own code. Moreover, Kieu’s method cannot
determine whether a given input encodes a machine in the class. And this
simply means that there is nothing logically wrong with Kieu’s method.

Even though there is nothing logically wrong with Kieu’s algorithm,
Warren Douglas Smith has spotted some “flaws” in it that are described
in [186]. More specifically, Smith claims that Kieu was under the impres-
sion that he should consider only Diophantine equations with unique solu-
tions. In this case, HP has unique (“nondegenerate”) ground states. Smith
admits that this is not a serious error, since he has managed to find a way
to repair t his flaw. However, Smith shows that a second error is serious.
In particular, this error is due to the assumption that independently of the
value T > 0, no nonground “decoy” state will ever achieve an occupation
probability greater that 1

2 . Quite surprisingly, he claims that this is valid
in a number of limiting cases. However, Smith’s claims have prompted
Kieu to investigate them thoroughly [99, 98]. Kieu’s conclusion is that
Smith’s work is groundless and therefore poses no real threat to his re-
search project.

8.7 Infinite Concurrent Turing Machines

It has been noted in the previous section that a quantum-mechanical method
to check whether some Diophantine equation has a nonnegative integer so-
lution requires the realization of an infinite Fock space. Very roughly, one
may imagine that each dimension of an infinite Fock space corresponds to
a Turing machine that solves a tiny part of the total problem. This idea
prompted Ziegler [234] to investigate the computational power of an in-
finite number of classical Turing machines operating concurrently. Before
presenting his key results, it is necessary to explain what it means for infi-
nite concurrent Turing machines to solve a problem.

First of all, it is important to say that here the word “problem” is identi-
fied with a set P ⊆ N. When we say that a countably infinite family (Mk)k∈N

of Turing machines solves a problem P, then:

(i) each Mk eventually terminates when presented with some input x ∈
N;

(ii) for any x ∈ N, it holds that x ∈ P if and only if there is at least one
machine Mk that can “attest to” this fact;

(iii) when presented with some input x ∈ N, all machines Mk terminate
within some finite time that clearly depends on x;
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(iv) a distinguished machine M0 is capable of computing the Gödel num-
ber of any machine Mk, when it is fed with the number k.

Having made clear how infinite concurrent Turing machines operate, we
proceed with the key results.

Theorem 8.7.1 Infinite concurrent Turing machines can solve the halting
problem.

In other words, infinite concurrent Turing machines are a hypermachine.

Theorem 8.7.2 A problem P ⊆ N is solvable by infinite concurrent Turing
machines if and only if it is semidecidable.

However, there are limits to what can be accomplished.

Theorem 8.7.3 Infinite concurrent Turing machines cannot solve the totality
problem, that is, they cannot decide whether an arbitrary Turing machine
halts on all inputs.



IX. Natural Computation
and Hypercomputation

Hypercomputation is not only about the falsification of the Church–Turing
thesis, but also about the broadening of the concept of computation. This
implies that the Turing machine model of computation, which is based on
a small number of assumptions, cannot and should not form the basis for
proposing or studying new models of computation inspired by natural pro-
cesses. Unfortunately, in many instances this is not the case and computa-
tional models inspired by nature are treated like some sort of exotic Turing
machine. In this chapter we will discuss the general characteristics of nat-
ural computing. Next, there is a discussion of analog computation followed
by a discussion of ideas that make evident that there are indeed formally
incomputable natural phenomena. There is also a discussion of the rela-
tionship between neural networks and analog computation, a presentation
of a new model of optical computation, and some ideas regarding cellu-
lar computing and hypercomputation. We conclude with a presentation of
analog X-machines and their computational power.

9.1 Principles of Natural Computation

Natural computation is a broad term that encompasses disciplines that
study computation inspired by nature. Such disciplines include DNA com-
puting, analog computing, and cellular computing. In Section 8.5 it was
stressed that in our own perspective, computation does not really occur in
nature, but it is we that interpret certain sequences of events as computa-
tion. So when we speak about natural computing, we will mean exactly this:
a natural system has been set up and its activity is perceived as a compu-
tation by a conscious agent. This assumption will not have a great impact
on the discussion that follows, but it should be obvious that no cell or DNA
strand or anything else performs computation ex nihilo.

Analog computation can be viewed as an important branch of natural
computing. Indeed, Eriko Tokuda, Noboru Asahi, Takashi Yamada, and
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Yoshihito Amemiya [203] define analog computation as

a way of processing that solves a mathematical problem by apply-
ing an analogy of a physical system to the problem. To solve the
problem in this way, you prepare an appropriate physical system
and represent each problem variable by a physical quantity in
the system. If the mathematical relations between the physical
quantities are analogous to those of the problem, then you can
find the solution to the problem by observing the behavior of the
system and measuring the corresponding physical quantities.

An important facility of analog computers is that they can perform op-
erations in a truly parallel manner and operate in continuous time using
continuous variables. Obviously, these characteristics set them apart from
Turing machines and their accompanying theory of computability, which is
completely discrete.

In Section 8.5 we defined computation as a symbol-manipulation pro-
cess. Certainly, the word symbol should not be taken literally to mean sym-
bols that can be composed using some keyboard or a similar device. On
the contrary, it merely means something that represents an object by as-
sociation, resemblance, or convention. Thus, we are in agreement with
MacLennan [119] who defines computation as follows.

Definition 9.1.1 Computation is a physical process [in the sense described
in the previous page] the purpose of which is the abstract manipulation of
abstract objects.

Obviously, there are differences between analog and digital computing that
are not captured by a simple definition of this kind. So apart from the
differences presented above, in an analog setting there is no notion of an
“algorithm” (but see Section 9.5), in the sense of a effective procedure that
can, for example, be carried out by a human using only paper and pencil. Of
course, one may come up with the analogue of an algorithm in the setting of
analog computing. In addition, there is no need to translate quantities into
some formal form, since variables are represented by physical quantities on
which operations are performed.

Continuity (and of course discontinuity) and discreteness may charac-
terize the flow of time and/or the state space (i.e., the “collective state of all
the devices comprised by the computer’s memory” [118]) of a computational
process. Thus, computational processes are classified into three important
categories:

C: Continuous-time process over continuous state space.

CD: Discrete-time process over continuous state space.

D: Discrete-time process over discrete state space.
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Category DC, continuous-time processes over discrete state spaces, is ex-
cluded by the laws of physics we presently know. Any ordinary computer
program belongs to class D; Newton’s algorithm belongs to class CD; and
systems of differential equations belong to class C.

MacLennan [119] presents a number of considerations that are relevant
to natural computing in general. First of all, in natural computing the com-
putational system/process must be able to respond in real time. This is an
almost obvious requirement, since, for instance, organisms are, to a certain
degree adaptable and so able to respond immediately to external stimuli.
So any artificial system mimicking a biological system should be able to
respond immediately to an external stimulus. Clearly, this is a requirement
that even some digital systems must satisfy to be reliable (e.g., hard real-
time operating systems in particular, and interactive systems in general).
However, in a digital system the range of responses is usually somehow
fixed, although it may be enlarged when a (remote) human operator inter-
venes in its operation and thus acts as an “oracle.”

As was hinted in the previous paragraph, what matters is not only the
speed with which a system responds but also whether its “arsenal” of re-
sponses is fixed or flexible, that is, whether the system can respond to a
new, “never seen before,” stimulus in a proper way. To get an idea of the
importance of this property, think of how the immune system responds
when a new unidentified microorganism enters the body. This property is
closely related to the notion of adaptability. By definition, an immune sys-
tem that can easily find a way to handle unknown microorganisms is one
that is adaptable. Similarly, natural computational processes that can deal
with new, unknown, external events are termed adaptable. It is possible
to have natural computing systems that are not adaptable. However, these
systems should easily accommodate adaptation in order to be characterized
as natural.

Any animal, and of course any plant, may get hurt several times during
its life. However, in most cases, the organism should be able to recover
from the wound and so continue its life normally. Even when an organism
is severely wounded, in many cases it can partially recover and continue
living, albeit with problems. This implies that natural computing systems
have to be able to recover from damage, faults, and errors and to be able to
work under heavy noise.

Let us now see how these considerations may affect our efforts to spec-
ify a model of natural computation. Clearly, a natural computational system
must be physically realizable. In particular, MacLennan assumes that phys-
ical realization implies that “all physically instantiated quantities must be
finite.”

Throughout this book it has been noted that most (if not all) discrete
computing systems blindly manipulate symbols without paying any atten-
tion to the (possible) meaning of these symbols. Similarly, it is reasonable
to suppose that for natural computational systems, the computation does
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not take into consideration any meaning that is possibly attached to the
representations. In other words, natural computational systems ignore any
semantic aspect of the ingredients of such a system and take into consider-
ation only syntax (i.e., abstract relationships between symbols). Obviously,
here we are talking about a formal system for which continuity is an es-
sential aspect. Continuous formal systems have been called simulacra by
MacLennan, who has studied them quite extensively in [117].

A simulacrum is continuous not only in syntax, but also in computation.
Images are the notational vehicle for representing continuous formal sys-
tems. Images are not merely reproductions of form, but may be pictures,
written language, maps, auditory signals (i.e., music, speech, etc.), gestures
(which are classified as three-dimensional images), etc. In general, to each
syntactic entity is attached some denotation, which assigns some meaning
to it. This does not mean that the symbols themselves bear any meaning,
but instead that a conscious being interprets the symbols in a certain way.
Each syntactically correct expression has a denotation. For instance, the
denotation of the expression 3 > 2 is tt, while the expression 3 � 2 has
no denotation (i.e., it is undefined) if the relational operator � is not de-
fined. In a continuous setting, one cannot merely assert that an image is
syntactically correct or not. An image has a denotation to the degree that it
is well formed (i.e., syntactically correct). Figuratively speaking, syntactic
correctness of images is not a black-or-white matter, but rather a gray-scale
matter. Let us demonstrate this idea with a simple example. Consider the
following list of glyphs, which are images of the character “latin capital

letter a”:

ABCDEFGHI
Since the leftmost glyph has all the known characteristics of the latin cap-

ital letter a, it can be very easily identified as a faithful representation of
this character. On the other hand, this does not hold true for the rightmost
glyph, since is not clear whether this glyph represents this character. Situ-
ations like this are very common in everyday experiences, and the theory of
fuzzy (sub)sets has been employed to model them mathematically. Fuzzy set
theory is a theory that generalizes the concept of the set (for an overview,
see, for example [101]; also, see [227] for a discussion of the power of clas-
sical fuzzy conceptual computing devices). In fuzzy set theory, an element
of a fuzzy subset belongs to it to a degree, which is usually a number be-
tween 0 and 1. More specifically, given a set X , which we call a universe,
a fuzzy subset of X is a function A : X → I, where I is the unit interval
(i.e., I = [0, 1]) or, more generally a frame (see Section D.1). Thus, when
A(x) = i, we say that the degree to which x ∈ X belongs to A is i. For exam-
ple, one can construct a fuzzy subset having as elements the glyphs above
in the following way:
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G(A) = 1.00, G(B) = 0.98,
G(C) = 0.95, G(D) = 0.85,

...
...

...
...

...
...

The intermediate values are not the outcome of some “algorithm,” which is
how values are usually assigned, that is, nonalgorithmically. In this partic-
ular case, they have been chosen to make the whole point clear. Although
MacLennan has developed a basic theory of interpretability, we will not go
into the details, since we feel that the theory is not mature enough.

Any system of natural computation has to process continuous repre-
sentations of information. This means that the system must process the
information in a continuous way, which does not mean that it has to oper-
ate continuously. In addition, systems of natural computation should never
terminate, and thus they violate one of the basic principles of Turing com-
putability. This is a justified requirement, since a natural computing system
should be able to interact continuously with its surrounding environment,
and this interaction terminates only when the system ceases to exits.

9.2 Models of Analog Computation

This section is a short description of the two of the most important mod-
els of analog computation: the GPAC and the extended analog computer
(EAC). Shannon defined the GPAC as a conceptual computing device that
consists of a number of nodes that make up a finite directed graph proba-
bly with directed cycles. GPACs operate in continuous time. Functions are
represented by connecting a number of five different types of nodes [157].

Integration: A two-input, one-output node with a setting for initial con-
ditions. If u(x) and v(x) are inputs, the output will be the Riemann–
Stieltjes integral

∫ x
x0

u(x)dv(x) + c, where c is a constant that depends
on the initial conditions. The Riemann–Stieltjes integral is a general-
ization of the definite integral normally encountered in calculus texts.
Assume that u(x) and v(x) are real-valued bounded functions defined
on a closed interval [a, b]. Also, consider a partition of the interval
a = x0 < x1 < x2 · · · < xn−1 < xn = b, and take the Riemann sum
∑n−1

i=0 u(ξi)[v(xi+1) − v(xi)] with ξi ∈ [xi, xi+1]. If the sum tends to a
fixed number k as max(xi+1 − xi) → 0, then k is called the Riemann–
Stieltjes integral of u with respect to v and is denoted by

∫
u(x)dv(x).

Constant multiplier: For each real constant k, there is a node having as
input a unary function u(x) and as output the product ku(x).

Adder: This node has as input the unary functions u(x) and v(x) and as
output their sum u(x) + v(x).



170 Chapter 9–Natural Computation and Hypercomputation

Variable multiplier: A node having as inputs two unary functions u(x) and
v(x) and as output their product u(x) · v(x).

Constant function: This node has as input any unary function u(x) and
always as output the number 1.

Marian Boykan Pour-El [157] has given an alternative but equivalent
definition of GPACs, which nevertheless is considered as the standard def-
inition for GPACs nowadays.

Definition 9.2.1 The unary function y(x) is generated by a general-purpose
analog computer (GPAC) on the closed bounded interval I with nonempty
interior if there exists a set of unary functions y2(x), . . . , yn(x) and a set of
initial conditions yi(a) = y∗

i , where a ∈ I , such that:

(i) {y2, . . . , yn} is the unique solution on I of a set of differential equations
of the form

(E) A(x,�y)
d�y
dx

= b(x,�y)

satisfying the initial conditions and where the vector �y has compo-
nents y2, . . . , yn; A(X,�y) is an (n−1)×(n−1) matrix; b(x,�y) is a (n−1)×1
matrix; and each entry of A and b must be linear in 1, x, y2, . . . , yn.

(ii) For some i such that 2 ≤ i ≤ n, y(x) ≡ yi(x) on I .

(iii) (a, y∗
2 , . . . , y∗

n) has a domain of generation with respect to (E), that is,
there exist closed intervals J1, . . . , Jn with nonempty interiors such
that (a, y∗

2 , . . . , y∗
n) is an interior point of J1 × J2 × · · ·× Jn. In addition,

whenever (b, z∗2, . . . , z∗n) ∈ J1×J2×· · ·×Jn there exists a set of functions
{z2, . . . , zn} such that

(a) zi(b) = z∗i for i = 2, . . . , n;
(b) (z2, . . . , zn) satisfies (E) on some interval I∗ for which b ∈ I∗;
(c) (z2, . . . , zn) is locally unique (i.e., unique on I∗ and on any subin-

terval of I∗ containing b).

It can be proved that if a function y(x) is generable on I in the “graph-
theoretic” sense, it is generable on I in the sense of the previous definition.
More generally, if a function y(x) is generable on I , then we say that it is
GPAC-computable.

The major drawbacks of the GPAC is its inability to compute a num-
ber of important functions. For example, the function Γ(x) =

∫∞
0 tx−1e−tdt,

known as Euler’s gamma function, and Riemann’s zeta function, which on
the real line with x > 1 can be defined by ζ (x) = 1/Γ(x)

∫∞
0

ux−1

eu−1du, are not
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computable by a GPAC. This and some other inabilities of the GPAC pro-
vided the motivation for the design of new, more powerful conceptual ana-
log computing devices. Such conceptual devices include the EAC and some
extensions of the GPAC that were proposed by Daniel Silva Graça [71]. All
these devices compute the Γ and ζ functions.

There is a relationship between computable analysis and GPAC-com-
putability.

Theorem 9.2.1 A function f : [a, b] → R is computable if and only if it is
GPAC-computable [20].

As Lee Albert Rubel [168] has admitted, one of the main motivations
for introducing the EAC was his conviction that the brain is an analog
computer. Just like the GPAC, the EAC is a conceptual computing device
that consists of a number of nodes that make up a finite directed graph,
probably with directed cycles. It has a number of initial settings, s1, . . . , sm,
which can be arbitrary real numbers. In addition, an EAC has any finite
number of independent variables, x1, . . . , xk, and the output is a set of real-
analytic functions of these variables (i.e., the output is a set of functions
such that each of them has a Taylor series about each point x belonging to
the domain of each corresponding function that converges to the function
itself in an open neighborhood of x). Internally, there is a hierarchy of levels
in which output generated at level i is fed as input to level i+1. At level zero,
polynomials are manipulated algebraically. At level one, work is done with
differentially algebraic functions that have real numbers as input, which
are generated at level zero. The inputs and outputs are functions of a finite
number of independent variables xi. Computation is carried out by nodes,
which are of the following types:

Constant: These nodes produce arbitrary real constants, which are not
necessarily computable by a Turing machine.

Independent variable: Nodes with no input that produce any of the vari-
ables xi.

Adders: These nodes have as input any two functions u1(x1, . . . , xk) and
u2(x1, . . . , xk) and yield their sum u1(x1, . . . , xk) + u2(x1, . . . , xk) as out-
put.

Multipliers: These nodes have as input any two functions u1(x1, . . . , xk) and
u2(x1, . . . , xk) and yield their product u1(x1, . . . , xk) · u2(x1, . . . , xk) as
output.

Substituters: When the functions

u1(x1, . . . , xk), . . . , ul(x1, . . . , xk)
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and v(x1, . . . , xl) are inputs, this node produces as output the function

v(u1(x1, . . . , xk), . . . , ul(x1, . . . , xk)).

Inverters: Assume that at level n − 1 the machine has produced the func-
tions

f1(x1, . . . , xn, xn+1, . . . , xn+l), . . . , fl(x1, . . . , xn, xn+1, . . . , xn+l).

Given the variables x1, . . . , xn, xn+1, . . . , xn+l as input, the inverters solve
the following equations:

f1(x1, . . . , xn, xn+1, . . . , xn+l) = 0,
...

fl(x1, . . . , xn, xn+1, . . . , xn+l) = 0,

for xn+1, . . . , xn+l as well-defined real-analytic functions of x1, . . . , xn.

Differentiators: For each function f (x1, . . . , xn), these nodes produce at
level n any (mixed) partial derivative

∂α1+···+anf
∂xα1

1 . . . ∂xαn
n
.

Analytic continuation: The nodes start with a function f such that A =
dom( f ), produced at level n, and a set A∗ produced by that time, with
A ∩ A∗ �= ∅. It may be that f has a unique analytic continuation f ∗

(i.e., a way of extending the domain over which f is defined as an
analytic function) from A ∩ A∗ to all of A∗. This node produces, at
level n, the function that is f on A and f ∗ on A∗ if it is well-defined.

Quintessential: This is a “boundary-value-problem” node that solves a fi-
nite system of partial differential equations (PDE), which may in-
clude some ordinary differential equations (ODE), on a set A. The
system of PDEs is subject to certain prescribed boundary values and
bounds. Each PDE is of the form

F (x1, . . . , xk : u, u1, . . . , ul) = 0,

where F is a function computed at a previous level and the ui are
partial derivatives of u. An example of a typical boundary-value re-
quirement is u = u0 on a piece γ0 of the boundary of A, where we use
only functions u0 that have been defined by level n − 1. The set A has
to be defined by level n − 1 + 1

2 . Note that the machine is capable of
producing certain sets in Euclidean space at “half-levels” such as 21

2 .
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If at level n, the machine has produced the function f (x1, . . . , xk), with
Λ = dom( f ), at level n + 1

2 it can produce both

Λ1 =
{
(x1, . . . , xk) ∈ Λ

∣
∣ f (x1, . . . , xk) > 0

}

and
Λ′
1 =

{
(x1, . . . , xk) ∈ Λ

∣
∣ f (x1, . . . , xk) ≥ 0

}
.

If the sets Λ1, . . . ,Λl are produced at level n+ 1
2 , then the machine can

produce at the same level both their union and intersection. After this
parenthesis, let us finish the presentation of quintessential nodes. The
bounds, for example on a function u occurring in the boundary-value
problem, should be defined by level n.

As it stands, the EAC can produce any real-analytic function. However,
Rubel was not comfortable with this idea. He believed that any real or con-
ceptual device can be called a computer only if there are some numbers or
functions that it cannot compute. So he decided to restrict the capabilities
of the EAC to make it a real computing device. More specifically, assume
that a function g is produced at level n − 1 and a set A is produced by level
n − 1 + 1

2 ; also suppose that B ⊂ A is also produced by level n − 1 + 1
2 . Then

we allow the function φ, with B = dom(φ), if for every x0 ∈ B,

lim
x∈A
x→x0

g(x) = φ(x0).

Similar requirements are put on the derivatives of φ. This process is “im-
plemented” by restricted limit nodes.

In general, the nodes can be freely interconnected. However, no two
outputs should be connected to the same input, and each input has to be
hooked up to at least one output. Also, outputs of level n are connected
only to inputs of level n + 1

2 , n + 1, n + 3
2 , n + 2,. . . . We run the machine

by successively running it at levels 0, 1, . . . , n, where n has been preselected.
The outputs generated at any of these levels are the outputs of the machine.

The EAC is more powerful that the GPAC.

Theorem 9.2.2 There are functions computable by EACs that no GPAC can
compute.

Also, one can prove the following.

Theorem 9.2.3 The Γ function, the ζ function, and Barnes’s G function,
where G is defined by

G(z + 1) = (2π)z/2e−z(z+1)/2−γz2/2
∞∏

n=1

{(
1 +

z
n
)ne−z+z2/(2n)

}
,

can be computed by EACs.
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9.3 On Undecidable Problems of Analysis

In the years 1960–1961, Bruno Scarpellini constructed a set of functions
representing predicates. Then he examined whether there is a function
among these that represents a nonrecursive predicate. He managed to find
such a function and thus to establish that certain natural phenomena are
actually noncomputable. Originally, he published his work in German, but
later it was published in English [170] along with a note [169] that presents
his original results with a fresh look. In what follows we will briefly describe
Scarpellini’s work.

Assume that P(n1, . . . , ns) is a predicate of s arguments over the natural
numbers including zero. Also, assume that φ(α1, . . . ,αs) is a 2π-periodic
analytic (possibly complex valued) function of real variables.

Definition 9.3.1 The function φ represents the predicate P if

(i) φ(α1, . . . ,αs) =
∑

ni≥0

An1n2...nse
in1α1ein2α2 · · · einsαs ,

(ii) P(n1, . . . , ns) ⇔ An1n2...ns > 0.

The Fourier series appearing in the previous definition converges abso-
lutely. In what follows we will use the notation [φ]n1n2...ns to stand for
An1n2...ns .

Two functions φ(α1, . . . ,αs) and ψ(α1, . . . ,αs) are similar if

[φ]n1n2...ns > 0 ⇔ [ψ]n1n2...ns > 0.

In what follows, we will consider only functions whose Fourier coefficients
[φ] are nonnegative.

For any two functions φ(α1, . . . ,αs) and ψ(α1, . . . ,αs) we define the con-
volution operation as follows:

φ ∗ [α1, . . . ,αs]ψ =
1

(2π)s

∫ +π

−π

· · ·
∫ +π

−π

φ(α1 − β1, . . . ,αs − βs)ψ(β1, . . . ,βs)dβs.

The following result shows how one can represent the conjunction of two
predicates.

Lemma 9.3.1 Suppose that P(x1, . . . , xs, z1, . . . , zn) is represented by

φ(α1, . . . ,αs,β1, . . . ,βn)

and that Q(x1, . . . , xs, y1, . . . , ym) is represented by

ψ(α1, . . . ,αs, γ1, . . . , γm).

Then the conjunction P ∧Q is represented by φ ∗ [α1, . . . ,αs]ψ. In particular,
if s = 0, then P ∧ Q is represented by φ ·ψ.
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It should be clear that if P(x1, x2, . . . , xs) is represented by φ(α1,α2, . . . ,αs),
then the predicate P(x2, x1, . . . , xs) is represented by φ(α2,α1, . . . ,αs). In ad-
dition, given two s-ary predicates P and Q that are represented by the func-
tions φ and ψ, respectively, then the disjunction P ∨ Q can be represented
by φ + ψ, provided that both functions have nonnegative Fourier coeffi-
cients, which is always the case here. However, Scarpellini chose not to use
this fact. Instead, he used the identity a ∨ b = ¬(¬a ∧ ¬b) to express the
conjunction of two predicates. Indeed, if P is an s-ary predicate that is rep-
resented by the function φ, then f − φ is a representation of ¬P, where
f is a function representing the predicate (x1 = x1) ∧ · · · ∧ (xs = xs), and
[ f ]n1n2...ns = [φ]n1n2...nsholds if P holds true. The function f is called a
unit of φ. Now, if P and Q are two s-ary predicates represented by φ and
ψ, respectively, and f and g are the units of φ and ψ, respectively, then
f ∗ g − (f − φ) ∗ (g − ψ) is a representation of P ∨ Q and f ∗ g is a unit of
φ ∗ψ.

Lemma 9.3.2 If φ(α1, . . . ,αs, ζ ) is a representation of P(x1, . . . , xs, y), then
φ(α1, . . . ,αs, 0) is a representation of (∃ y)P(x1, . . . , xs, y).

In what follows, Greek letters will denote variables that assume real val-
ues. In addition, Fn is the set of n-ary complex-valued functions φ(ζ1, . . . , ζn)
that are analytic in Rn and 2π-periodic with regard to each variable ζi. We
put F =

⋃
n Fn.

If M ⊂ F , then the closure M is the smallest set M1 with the following
properties:

(i) M ⊆ M1.

(ii) If φ(α,β) ∈ M1, then φ(β,α),φ(α,α) ∈ M1.

(iii) Suppose that φ(α) ∈ M1. Then if ξ is a real number then φ(ξ) ∈ M1,
and if β is another variable then φ(α± β) ∈ M1.

(iv) If φ,ψ ∈ M1, then φ ·ψ,φ±ψ ∈ M1.

(v) If φ,ψ ∈ M1, then φ ∗ [α1, . . . ,αs]ψ ∈ M1.

(vi) Assume that g(ξ,α1, . . . ,αs), K(ξ, η,α1, . . . ,αs) ∈ M1 and in addition
assume that for no values of α1, . . . ,αs does the integral equation

f (ξ) =
1

2π

∫ +π

−π

K(ξ, η,α1, . . . ,αs) f (η)dη

have a solution other than zero in L2(−π,π) (i.e., a solution square
integrable1 over the interval (−π,π)). Then the (existing and unique)

1. A function f (x) is said to be square integrable over the interval (a, b) if the integral
∫ b

a f (x) f ∗(x)dx is finite, where f ∗(x) is the complex conjugate of f (x).
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continuous solution f (ξ,α1, . . . ,αs) of the integral equation

f (ξ,α1, . . . ,αs) =g(ξ,α1, . . . ,αs)

+
1

2π

∫ +π

−π

K(ξ, η,α1, . . . ,αs) f (η)dη
(9.1)

is in M1.

Equipped with these definitions, we can choose as set M a set M0 as
follows.

Definition 9.3.2 A function f (α1, . . . ,αs) is in M0 exactly if there are two
polynomials p(y1, . . . , ys) and q(y1, . . . , ys) with real coefficients such that

f = p(eiα1 , . . . , eiαs )q(eiα1 , . . . , eiαs )−1

with q �= 0 for all αi, i ≤ s.

One can prove the following theorem.

Theorem 9.3.1 For every recursively enumerable set S there is a function f
in M0 that represents S.

So far, we have considered functions that are generated by admitting
solutions of Fredholm integral equations of the second kind (i.e., integral
equations such as equation 9.1). If instead we consider solutions of Fredholm
equations of the first kind (i.e., f (x) =

∫ b
a K(x, t)φ(t)dt), we can easily con-

struct a representation of

P(n) =
∫ 2π

0
f (α) cos(nα)dα > 0

for every predicate P ∈ Σ0
k and every k > 0.

Assume that we opt to use the solutions of Volterra integral equations2

instead of solutions of Fredholm equations. Then interesting problems arise.
For example, one may ask whether it is possible to construct an analog
computer that can generate functions f (x) for which the predicate

∫

f (x) cos(nx)dx > 0

2. A Volterra integral equation of the first kind has the form

f (x) =
∫ x

a
K(x, t)φ(t)dt,

while a Volterra integral equation of the second kind is an integral equation of the form

φ(x) = f (x) +
∫ x

a
K(x, t)φ(t)dt.

They differ from the corresponding Fredholm equations by having a variable in one of the
integration limits.
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is not decidable while the machine itself decides by direct measurement
whether

∫
f (x) cos(nx)dx is greater that zero. Clearly, the construction of

such a machine, which is no easy task, would possibly illustrate the exis-
tence of noncomputable natural processes. Indeed, this is interesting by
itself, since the established view is that classical mechanics is computable!

Jürg Peter Buser and Bruno Scarpellini [30] have described another
method to obtain undecidable problems of analysis. This approach was first
investigated by Buser [29]. This alternative method as well as the final
result are described briefly in the rest of this section.

Assume that F is the set of functions

f (α1, . . . ,αs) = g(α1, . . . ,αs) + ih(α1, . . . ,αs),

where g and h are analytic functions in αj ∈ [aj, bj], j ≤ s, and aj , bj are
computable reals in the following sense.

Definition 9.3.3 Suppose that f, g : N → N are recursive functions such
that g(n) �= 0. Then a(n) = f (n)/g(n) is a recursive sequence of rationals.
This sequence converges recursively if there is a recursive function k : N →
N that has the following property: given any m ∈ N, if p ≥ k(m) and q ≥
k(m), then |a(p)−a(q)| ≤ 1

m . A real number c is called computable if there is
a recursive sequence a(n) that converges recursively to c (i.e., lima(n) = c).
A complex number a + bi is computable if both a and b are computable.

Note that c is necessarily nonnegative. However, it is trivial to extend the
definitions to negative real numbers.

If M ⊆ F , its elementary hull M is the smallest set M1 with the follow-
ing properties:

(i) M ⊆ M1.

(ii) If g is defined on D =
∏s

j=1[aj, bj], is in M1, and is nonzero on D,
then g−1 ∈ M1.

(iii) If f and g are defined on D and are in M1, then f + g, f − g, and fg
are in M1.

(iv) If f ∈ M1, then f ∗ ∈ M1.

(v) Assume that f (α1, . . . ,αs) ∈ M1, where αj ∈ [aj, bj], and that Aj , Bj ,
Cj , a′

j , b′
j , a′′

j , b′′
j satisfy

Aj + Bjβj + Cjγj ∈ [aj, bj] for βj ∈ [a′
j , b′

j], γj ∈ [a′′
j , b′′

j ],

j ≤ s. Then the function

f (A1 + B1β1 + C1γ1, . . . , As + Bsβs + Csγs),

where βj ∈ [a′
j , b′

j] and γj ∈ [a′′
j , b′′

j ] for j ≤ s, is in M1.
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(vi) Suppose that f (α1, . . . ,αs,β) ∈ M1, where αj ∈ [aj, bj], β ∈ [c, d]. Then

∫ d

c
f (α1, . . . ,αs,β)dβ

is in M1.

Assume that D(ζ ), L(ε) are polynomial n × n matrices, H(ζ ) is a polyno-
mial m×m matrix, P(ζ , ξ), R(ε) are polynomial n-vectors, and Q(ξ) is a poly-
nomial m-vector, where ζ = (ζ1, . . . , ζn), ξ = (ξ1, . . . , ξm), and ε = (ε1, . . . , εn).

Definition 9.3.4 A vector function y ∈ C1([0, T ] × [a, b];Cn) is called ad-
missible if there are D, L, H , P, Q, and R that are polynomial matrices and
vectors of the kind above, and z ∈ C1([a, b];Cm), g ∈ C1([a, b];Cn) such
that

(i) D( y(t, λ))dy
dt = P( y(t, λ), z(λ)), H(z(λ)) dy

dλ = Q(z(λ)), and L(g(λ))dg
dλ =

R(g(λ)), where t ∈ [0, T ] and λ ∈ [a, b];

(ii) det(D( y(t, λ))) �= 0, det(H(z(λ))) �= 0, and det(L(g(λ))) �= 0, where t ∈
[0, T ] and λ ∈ [a, b];

(iii) y(0, λ) = g(λ), where λ ∈ [a, b], and z(a), g(a) are computable.

A function f ∈ C1([0, T ]× [a, b];C) is admissible if there is an admissible
y = (y1, . . . , yn) such that f = yi for some i ≤ n.

Assume that M0 is the set of functions λejs(α1, . . . ,αs), where λ ∈ C is
computable, and ejs(α1, . . . ,αs) = eiαj for j ≤ s. Also, assume that M2 ⊇ M0.

Definition 9.3.5 A function g is in M2 if either g ∈ M0 or if g is admissible
in the sense of definition 9.3.4.

Now, we are ready to state the main result of [30].

Theorem 9.3.2 Assume that P(x) is a recursively enumerable predicate. Then
there is a φ ∈ M2 that represents P(x), where M2 is the class of functions gen-
erated by a GPAC.

The remarks presented above apply also to this particular method. So noth-
ing more will be said.

9.4 Noncomputability in Computable Analysis

As was pointed out in Section 7.1, Weihrauch’s theory of computable anal-
ysis is not the only approach. For example, Pour-El and Jonathan Ian
Richards [158] have presented their own approach to computable analysis,
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which is based on a definition of computable real numbers that is identi-
cal to the fifth case of Lemma 7.1.2 on page 120. The work of Pour-El and
Richards is interesting because they have managed to discover noncom-
putability in ordinary physical systems, such as wave-propagation.

In general, the following PDE describes the wave propagation phe-
nomenon in three dimensions:

∇2ψ =
1

v2

∂2ψ

∂t2
, (9.2)

where v is the velocity of the wave. Assume that v is equal to 1 and let us
consider the equation with initial conditions

∇2ψ− ∂2ψ

∂t2
= 0,

ψ(x, y, z, 0) = f (x, y, z),
∂ψ

∂t
(x, y, z, 0) = 0.

(9.3)

Pour-El and Richards considered the wave equation on compact domains.
These domains must be large enough so that “light rays” from the outside
cannot reach any point in the domain in any time considered. This leads to
the definition of D1 and D2 as follows:

D1 =
{
(x, y, z)

∣
∣
∣ |x| ≤ 1, |y| ≤ 1, |z| ≤ 1

}
,

D2 =
{
(x, y, z)

∣
∣
∣ |x| ≤ 3, |y| ≤ 3, |z| ≤ 3

}
.

Notice that if 0 < t < 2, the solution of the wave equation on D1 does not
depend on the initial values ψ(x, y, z, 0) outside D2. And this leads us to
assume that f has domain D2. With this assumption and using the “First
Main Theorem” of [158], one can show the following.

Theorem 9.4.1 Consider the wave equation (9.2). Moreover, let D1 and D2

be the two cubes defined above. Then there exists a computable continuous
function f (x, y, z) in D2 such that the solution u(x, y, z, t) of (9.3) at time t = 1
is continuous on D1 but is not a computable function there.

Results that deal with the computability/noncomputability of eigenval-
ues and spectra of linear operators T : H → H , where H is a Banach
space that is effectively a separable Hilbert space (i.e., a Hilbert space that
contains a countable dense subset), are particularly important. Recall that
Hilbert spaces are used to model physical phenomena. The main results
of Pour-El and Richards concerning noncomputability and operators on
Hilbert spaces follow.

Theorem 9.4.2 There exists an effectively determined bounded self-adjoint
operator T : H → H whose sequence of eigenvalues is not computable.
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Theorem 9.4.3 There exists an effectively determined bounded self-adjoint
operator T : H → H whose norm is not a computable real number.

Theorem 9.4.4 There exists an effectively determined bounded operator T :
H → H (not self-adjoint or normal) that has a noncomputable real number
as an eigenvalue.

The results presented in this section prove that our universe has properties
that are noncomputable. Whether noncomputability is a general property
of this universe is an open problem.

9.5 The Halting Function Revisited

Newton Carneiro Affonso da Costa and Francisco Antonio Doria have
shown that the halting function can be expressed in the language of calcu-
lus. As explained to the author by Doria in a personal communication, da
Costa and Doria originally were looking for a Rice-like theorem in the lan-
guage of classical analysis in order to derive from it the undecidability (and
Gödel incompleteness) of chaos theory. Only after they had reached their
goal did they notice that their main tool was an expression for the halting
function in that language. Their work has appeared in various journals,
but the current exposition is based on their presentation in [45], which
appeared in a special issue of the Applied Mathematics and Computation
journal devoted to hypercomputation.

In order to proceed, we need to know what a universal Diophantine
polynomial is:

Definition 9.5.1 Assume that U (a1, . . . , ak, x0, x1, . . . , xm) is a polynomial
with integer coefficients. Then U is a universal Diophantine polynomial
if for any Diophantine equation

D(a1, . . . , ak, z1, . . . , zn) = 0,

we can find a code c ∈ N such that
(
∃z1, . . . , zn with D(a1, . . . , ak, z1, . . . , zn) = 0

)

⇐⇒
(
∃x1, . . . , xm with U (a1, . . . , ak, c, x1, . . . , xm) = 0

)
.

Assume that φe : N → N is the partial recursive function with Gödel
number e. Then the following result (essentially equivalent to the Matiyase-
vich–Davis–Robinson resolution of Hilbert’s tenth problem, named after
Matiyasevich, Martin Davis and Julia Bowman Robinson) provides a link
between polynomials and partial recursive functions (see [48] for the proof).
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Proposition 9.5.1 We can algorithmically construct a polynomial pe over
the natural numbers such that

[φe(m) = n] ⇔ [∃x1, . . . , xk ∈ N : pe(m, n, x1, . . . , xk) = 0].

The following result is a steppingstone to our goal of defining the halting
function in the language of the calculus:

Proposition 9.5.2 There is a proper injective function κP : P → A , where P
is the algebra of N-defined and N-valued polynomials having a finite num-
ber of variables, and A is the real-valued and real-defined algebra of polyno-
mials, trigonometric functions, including the number π, absolute value, and
exponentials, closed under sum, product, function composition, derivatives,
and integrals such that:

(i) κP is constructive, which means that if we are provided with the arith-
metic expression of p, there is an effective procedure by means of which
we can obtain the expression for F = κP (p) in A .

(ii) Let x = (x1, . . . , xn). Then there is x ∈ Nn such that p(m,x) = 0 if and
only if there exists x ∈ Rn such that F (m,x) = 0 if and only if there is
x ∈ Rn such that F (m,x) ≤ 1, for p ∈ P and F = κP (p) ∈ A .

Let us define h(x) = x sin x and g(x) = x sin x3. Given F (m,x), if we substi-
tute each xi according to the scheme

x1 = h,
x2 = h ◦ g,
x3 = h ◦ g ◦ g,

...
...

...
xn−1 = h ◦ g ◦ · · · ◦ g

︸ ︷︷ ︸
n − 2 times

,

xn = g ◦ · · · ◦ g
︸ ︷︷ ︸

n times

,

we get the new function G(m, x). Let L(m, x) = G(m, x)− 1
2 .

Proposition 9.5.3 Assume that A1 is the subalgebra A of functions with only
one variable. Then there exists a function κ′ : P → A1 that is constructive
and injective and such that the inclusion κ′(P) ⊂ A1 is proper. In addition,
there is x ∈ Nn such that p(m,x) = 0 if and only if there exists x ∈ R such
that L(m, x) = 0 if and only if there is x ∈ R such that G(m, x) ≤ 1.

Suppose that σ : R → R is the sign function (i.e., σ(±x) = ±1 and σ(0) = 0).
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Theorem 9.5.1 The halting function h(m, i) can be explicitly defined by

h(m, i) = σ
(

Gm,i

)
,

Gm,i =

∫ +∞

−∞
Cm,i(x)e−x2

dx,

Cm,i(x) = |Fm,i(x)− 1| − (Fm,i(x)− 1),
Fm,i(x) = κpm,i,

where pm,i is a one-parameter universal Diophantine polynomial

p(〈m, i〉, x1, . . . , xn)

and 〈.,.〉 is the pairing function.

The solvability of the halting function in the language of calculus formed
the basis for proposing H-computation theory (where the “H” stands for
Hilbert), which was proposed by da Costa and Doria [41]. In particular,
these researchers defined the notion of an H-algorithm in this extended
theory of computation as follows.

Definition 9.5.2 An H-algorithm is a set of instructions described by a fi-
nite string of discrete symbols that operates on finite strings of discrete
symbols such that:

(i) the computation consists of a finite number of discrete steps that can
be coded as a finite string of discrete symbols;

(ii) if and when the computation terminates, the output is expressed by
finite strings of discrete symbols;

(iii) it is always possible to decide whether two smooth lines within a plane
rectangle intersect.

The last condition, which is called the Geometric principle, is enough to
extend the theory of computation. For example, it can be proved that there
is an H-algorithm that can solve Hilbert’s tenth problem. The idea to in-
clude the geometric principle in an extended theory of computation was
the result of a discussion between Doria and Morris Hirsch. Note that the
discovery that Euclid’s parallel postulate is independent of the remaining
axioms of plane geometry was crucial, since

it emphasizes the formal nature of an axiomatic system through
the separation between syntax and semantics, and shows that a
naive-looking, intuitively “true” geometric assertion can be un-
provable from “natural” first principles [40].
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9.6 Neural Networks and Hypercomputation

An artificial neural network, or ANN, is a computational system composed
of many simple processing units operating in parallel whose function is de-
termined by network structure, connection strengths, and the processing
performed at nodes, or neurons. The connection strength is expressed by
a number that is referred to as weight. ANNs have their roots in a paper
written by Warren Sturgis McCulloch and Walter Pitts in 1943 [125]. In
this paper, McCulloch and Pitts had developed a mathematical model for
certain aspects of brain function. Generally speaking, in an ANN, informa-
tion flows in only one direction. In the early 1980s, John Joseph Hopfield
discovered “recurrent networks,” in which information flows from a con-
nection node back to itself via other nodes. Such an artificial network has
complete connectivity, greater resemblance to a real neural network, and a
memory of past events. More specifically, recurrent neural networks have
a sort of long-term memory, but both feed-forward and recurrent neural
networks can have long-term memory in their weights.

An ANN has input channels that mimic dendrites (i.e., fibers that carry
input into the neuron), and output channels that represent the axons (i.e.,
fibers that deliver output from a neuron to other neurons). A synapse,
which is a chemical gate between dendrites and axons, is modeled by an
adjustable weight. ANNs have been very popular because of their capabil-
ity to learn patterns from examples. In particular, a learning algorithm may
adjust the weights of given interconnections to allow an ANN to learn. In
addition, ANNs can create their own organization or representation of the
information they receive during learning time. Finally we should stress that
ANNs are inherently parallel in nature.

In general, it should be clear from this brief presentation why ANNs are
considered a form of natural computation. However, ANNs are not explic-
itly continuous by their construction. Indeed, ANNs are discrete computa-
tional structures, and so they should not be classified as natural computing
devices. However, if we insist that a network update itself continuously and
utilize a continuous configuration space, then the resulting computational
structure is indeed, analog and hence it can be classified as a natural com-
putation device. Along these lines, Hava Siegelmann and her collaborator
Eduardo Sontag proposed an analog recurrent neural network, or ARNN.
The theory of ARNNs has been detailed in Siegelmann’s book [183].

An ARNN is composed of a finite number of elementary processors
called neurons. Each neuron is associated with a local state that depends
on time. More specifically, neuron i is associated with the local state xi(t).
At every time step, a vector u of binary inputs with m components, denoted
by uj , j = 1, . . . , m, is fed to the network. The dynamics of the network are
defined by a map

F : Rn × {0, 1}m → Rn,
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where n is the number of neurons that make up the network, and which
reads componentwise as

xi(t + 1) = σ
( n∑

j=1

aijxj(t) +
m∑

j=1

bijuj(t) + ci

)
, i = 1, . . . , n.

The letter σ represents the response function, which is usually either the
logistic function 1

1+e−x or the piecewise linear function

σ(x) =

⎧
⎨

⎩

0, if x < 0,
x, if 0 ≤ x ≤ 1,
1, if x > 1.

Coefficients aij , bij , and ci are real numbers and are called weights of the
neural network. These coefficients play the same role as the coefficients c2
and � in the equations E = mc2 and E = �ν. However, these coefficients
are not some sort of universal constants: they are just numbers that affect
the behavior of an ARNN. Although a neural network with irrational co-
efficients may seem highly infeasible, many equations describing physical
phenomena involve irrational coefficients. Thus, it is not unreasonable to
consider ARNNs with irrational coefficients. Each neuron updates its re-
sponse value continuously, and these values are not restricted. Thus, one
may characterize ARNNs as analog computational devices. But how pow-
erful are the ARNNs? In other words, what is it that these devices can
compute?

A model of computation is called nonuniform when given a problem P,
a different algorithm is allowed for each input size. Contrast this with Tur-
ing machines, which are uniform models of computation, since a particular
machine solves the same problem for inputs of all sizes. In Section 5.4 we
briefly described Turing machines with advice. These conceptual comput-
ing devices constitute a nonuniform model of computation, because the
different advice strings cannot be generated from finite rules. They clearly
surpass the computational power of (ordinary) Turing machines. In partic-
ular, the P/poly class of functions contains functions that are not Turing-
computable. It has been proved that ARNNs can compute in polynomial
time exactly the functions in P/poly. In other words, ARNNs are hyperma-
chines with an extrinsically defined computational class.

9.7 An Optical Model of Computation

It is surprising how some everyday operations performed by scientists, en-
gineers, and ordinary people have led to the development of new models
of computation (e.g., the Turing machine is a conceptual computing device
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most probably inspired by production lines of factories at Turing’s time).
Indeed, a new model of computation, dubbed the optical model of compu-
tation, introduced by Damien Woods and Thomas J. Naughton in [229],
arises as a realization (possibly physical) of their continuous space machine
(CSM), which was inspired by common optical-information-processing op-
erations. A CSM operates in discrete time steps over a finite number of
two-dimensional complex-valued images of finite size and infinite spatial
resolution. Various optical operations are performed by a finite control.

A CSM consists of a memory that contains a program and an input.
In this respect, CSMs are similar to von Neumann machines. Generally,
the memory has the form of a two-dimensional grid of rectangular ele-
ments as shown in Figure 9.1. This grid has finite size, while each rectan-
gular element is associated with a unique address. In addition, there is a
specific start address labeled sta and two well-known addresses labeled a
and b. The instruction set contains commands that effect optical image-
processing-tasks.

0

1

2

3

0 1 2 3

a b sta

Figure 9.1: The memory of a CSM.

A CSM manipulates images, which are complex-valued functions f :
[0, 1) × [0, 1) → C. The set of all such images is denoted by I. The func-
tion f ∈ I gives the one-dimensional Fourier transformation of its two-
dimensional argument and is defined as

h(f (x, y)) = h′(F (α, y)),

where F (α, y) is the Fourier transformation in the x-direction of f (x, y)
defined as

F (α, y) =
∫ +∞

−∞
f (x, y)ei2παxdx,

where h′(F (α, y)) = F (θα, y), and where θ is a constant that is used to lin-
early rescale F so that F is defined over [0, 1) × [0, 1). Similarly, the func-
tion v : I → I gives the Fourier transformation in the y-direction of its
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two-dimensional argument and is defined as

F (x,β) =
∫ +∞

−∞
f (x, y)ei2πβydy,

where v′(F (x,β)) = F (x,θβ). The function ∗ : I → I returns the complex
conjugate of its argument:

∗(f (x, y)) = f ∗(x, y).

The functions · : I ×I → I and + : I ×I → I return the pointwise complex
product and sum of their arguments, respectively. The function ρ : I × I ×
I → I performs amplitude thresholding3 of its first argument using the
other two arguments, which are real-valued (i.e., zl , zu : [0, 1)× [0, 1) → R),
as lower and upper amplitude thresholds, respectively:

ρ( f (x, y), zl(x, y), zu(x, y)) =

⎧
⎨

⎩

zl(x, y), if | f (x, y)| < zl(x, y),
| f (x, y)|, if zl(x, y) ≤ | f (x, y)| ≤ zu(x, y),
zu(x, y), if | f (x, y)| > zu(x, y).

The operations defined so far are used to formally define CMSs in [229] as
follows.

Definition 9.7.1 A CSM is a quintuple M = (D, L, I, P, O), where

• D = (m, n), m, n ∈ N, is a pair denoting the grid dimensions;

• L =
(
(sξ, sη), (aξ, aη), (bξ, bη)

)
are the designated addresses sta, a, and

b;

• I =
{
(i1, j1), . . . , (ik, jk)

}
are the addresses of the k input images;

• P =
{
(ξ1, p1, q1), . . . , (ξr , pr, qr)

}
, ξi ∈ ({h, v, ∗, ·,+, ρ, st, ld, br, hlt} ∪

N ) ⊂ I are the programming symbols and their addresses, and N is a
finite set of images that encode the CSM’s addresses;

• O =
{
(φ1,ψ1), . . . , (φl ,ψl)

}
are the addresses of the l output images.

The programming symbols and their informal semantics are presented in
Table 9.1.

A configuration of a CSM M is a pair 〈c, e〉, where c ∈ {0, . . . , m − 1} ×
{0, . . . , n − 1} is an address called the control. Also,

e =
(
(i00, 0, 0), . . . , (i(m−1)(n−1), m − 1, n − 1)

)
,

3. Amplitude thresholding is a generalized clipping filter. An example is the clipping of a 3D
surface to a view frustum by setting zu and zl to constants corresponding to the depth of the
hin and yon planes. Because zu and zl are themselves images, this operation can also achieve,
for example, a nonuniform cross-dissolve to a higher-value image by increasing | f | over time.
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Symbol Arguments Description
h 0 Perform a horizontal one-dimensional

Fourier transformation on the two-
dimensional image that is stored in a and
store the result in a.

v 0 Perform a vertical one-dimensional
Fourier transformation on the two-
dimensional image that is stored in a and
store the result in a.

∗ 0 Replace the image stored in a with its
complex conjugate.

· 0 Multiply (point by point) the two images
stored in a and b and store the resulting
image in a.

+ 0 Perform a complex addition of the images
stored in a and b and store the resulting
image in a.

ρ 2 Filter the image stored in a by amplitude
using the first and second arguments as
lower and upper amplitude threshold im-
ages and store the resulting image in a.

st 4 Copy the image in a (automatically
rescalling) into the rectangle of images
designated by the four arguments of this
command; more specifically, the address
of its lower left corner is specified by the
first and the third arguments and the ad-
dress of its upper right corner is specified
by the second and the fourth arguments.

ld 4 Copy into a (automatically rescaling) the
rectangle of images designated by the
four arguments of this command, which
specify the rectangle of images, just as the
four arguments of the st command specify
the corresponding rectangle.

br 2 Unconditionally branch to the address
specified by the two arguments of the
command.

hlt 0 Halt program execution.

Table 9.1: The CSM programming symbols; when a command has arguments it is assumed
that they are stored in consecutive squares.
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where ikl ∈ I is an image stored at address (k, l). Initially, the configuration
of a CSM is 〈csta, esta〉, where csta = (sξ, sη) is the address of sta, and esta
contains all the commands and the images stored in the memory. At the
end of a computation, the configuration of a machine has the form

〈(γ, δ), (u, (hlt, γ, δ), w)〉.

It is fairly straightforward to define a binary relation (M on configurations
in order to formally define the semantics of the commands presented in
Table 9.1 (see [229] for details).

CSMs are interesting analog computing devices, but are they feasible
or are they just another conceptual computing device? The answer is that
there is indeed a realistic optical model of computation. For instance, a
complex-valued image could be represented physically by a spatial coherent
optical wavefront, which can be produced by a laser. The functions h and v
could be physically implemented by two convex cylindrical lenses, oriented
horizontally and vertically, respectively, while the constant θ, which is used
in the definition of h and v, could be implemented using Fourier-spectrum
size reduction techniques. The function ∗ could be effected using a phase-
conjugate mirror. The function · could be realized by placing a spatial light
modulator encoding an image g in the path of a wave front encoding an-
other image h. The wave front immediately behind the modulator would
be the product of the two images. The function + could be implemented
using a 50 : 50 beam splitter. And the function ρ could be realized using an
electronic camera or a liquid-crystal light valve.

The optical model of computation presented so far can be characterized
as a model of computation once we have at our disposal a concrete way to
encode data as images and decode the result of a computation. Indeed, it
is not difficult to provide such an encoding/decoding scheme. Assume that
B = {0, 1}. Then if ψ ∈ B, the following image encodes ψ:

fψ(x, y) =
{

1, if (x = 0.5) ∧ (y = 0.5) ∧ (ψ = 1),
0, otherwise.

There are two ways to represent bit strings: Assume that w ∈ B+. Then w
can be encoded as

fw(x, y) =

{
1, if

(
x = 1− 3

2k−i+2

)
∧ (y = 0.5) ∧ (wi = 1),

0, otherwise,

where i = 1, . . . , k = |w|. We see that ( fw, k) uniquely encodes w. Alterna-
tively, the bit string w can be encoded as follows:

fw(x, y) =

{
1, if

(
x =

2i − 1

2k

)
∧ (y = 0.5) ∧ (wi = 1),

0, otherwise.
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Similarly, we see that ( fw, k) uniquely encodes w. A real number r can be
encoded as an image as follows:

fr(x, y) =
{

r, if (x = 0.5) ∧ (y = 0.5),
0, otherwise.

Here, the real number r is represented by an image with a single peak of
value r.

It also possible to encode an m × n matrix A of real values as follows:

fA(x, y) =

{
aij , if

(
x = 1− 1 + 2k

2j+k

)
∧
(

y =
1 + 2l
2i+l

)
,

0, otherwise,

where
k =

{
1, if j < n,
0, if j = n, l =

{
1, if i < m,
0, if i = m.

The core of this optical model of computation having been presented,
what is left is to discuss the computational power of the CSMs. The main
result concerning the computational power of CSMs can be stated as
follows.

Theorem 9.7.1 There exists a CSM M such that for each ARNN A , M
computes A ’s input/output map, using the Wood–Naughton ARNN input–
output representation.

This result implies that CSMs have at least the computational power of
ARNNs.

9.8 Fuzzy Membrane Computing

Membrane computing is a model of computation inspired by the way cells
live and function. P systems are conceptual membrane-computing devices
built of nested compartments surrounded by porous membranes that define
and confine these compartments. The nested compartments form a tree
structure, called a membrane structure. Figure 9.2 depicts a characteristic
membrane structure.Before proceeding, let us give a formal definition of
membrane structure.
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Figure 9.2: A typical membrane structure.

Definition 9.8.1 Let V = {[, ]} be an alphabet. The set MS is the least set
inductively defined as follows:

(i) [] ∈ MS;

(ii) if µ1,µ2, . . .µn ∈ MS, then [µ1 . . .µn] ∈ MS.

Initially, each compartment contains a number of possibly repeated
objects (i.e., multisets of objects). When “computation” commences, the
compartments exchange objects according to a number of multiset pro-
cessing rules that are associated with each compartment; in the simplest
case, these processing rules are just multiset rewriting rules. The activity
stops when no rule can be applied. The result of the computation is equal
to the number of objects that reside in a designated compartment called
the output membrane. The general theory of P systems has been developed
by Gheorghe Păun and his colleagues, and the major results concerning
P systems are presented in [147].

From the previous short presentation it should be obvious that mem-
brane computing is not really a form of natural computing, since continu-
ity is used nowhere. In addition, although there is provision for some sort
of interaction between a membrane structure and its surrounding environ-
ment, still it is assumed that the membrane structure lives in a quiet and
calm environment, which definitely does not correspond to what happens
in the real world. However, since P systems evolved from an abstraction
of a biological structure, one can view them as a marginal type of natural
computing.

As they stand, P systems provide no real insight into either computabil-
ity theory or complexity theory. For instance, P systems have at most the
computational power of Turing machines (see [147]). However, by prop-
erly extending the definition of P systems, we may get new systems with
interesting properties. For instance, by fuzzifying the data manipulated by
a P system, we get a new structure capable of computing any positive real
number. Also, by replacing the calm and quiet environment that surrounds
ordinary P systems with an active environment that continuously and re-
ciprocally affects membrane structures, we get truly interactive systems.
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P systems with fuzzy data were first defined in [196], leading to the fuzzi-
fication of P systems. When presented with an element x, this either be-
longs or does not belong to a set A. As was explained above (see page 168),
in the case of a fuzzy subset, an element belongs to it to a degree i, which
is a real number in the unit interval I. Assume that we have a multiset that
draws elements from some universe (i.e., a fixed set X); then the multiset
contains a number of copies of each element of the universe. A “fuzzy mul-
tiset” should be a structure that contains the elements of a given multiset
to a degree. These structures have been dubbed multi-fuzzy sets and are
defined as follows [196].

Definition 9.8.2 Assume that M : X → N characterizes a multiset M .
Then a multi-fuzzy subset of M is a structure A that is characterized by
a function A : X → N × I such that if M(x) = n, then A (x) = (n, i).
In addition, the expression A (x) = (n, i) denotes that the degree to which
each of the n copies of x belong to A is i.

Given a multi-fuzzy set A , we can define the following two functions: the
multiplicity function Aπ : X → N and the membership function Aσ : X → I.
If A (x) = (n, i), then Aπ(x) = n and Aσ(x) = i. The cardinality of a multi-
fuzzy set is defined as follows.

Definition 9.8.3 Suppose that A is a multi-fuzzy set having the set X as
its universe. Then its cardinality, denoted by cardA , is defined as

cardA =
∑

a∈X

Aπ(a)Aσ(a).

With these preliminary definitions, we can formally define P systems with
fuzzy data.

Definition 9.8.4 A P system with fuzzy data is a construction

ΠFD = (O,µ, w(1), . . . , w(m), R1, . . . , Rm, i0),

where:

(i) O is an alphabet (i.e., a set of distinct entities) whose elements are
called objects;

(ii) µ is the membrane structure of degree m ≥ 1, which is the depth of
the corresponding tree structure; membranes are injectively labeled
with successive natural numbers starting with one;

(iii) w(i) : O → N × I, 1 ≤ i ≤ m, are functions that represent multi-fuzzy
sets over O associated with the region surrounded by membrane i;
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(iv) Ri, 1 ≤ i ≤ m, are finite sets of multiset rewriting rules (called evolu-
tion rules) over O. An evolution rule is of the form u → v, u ∈ O∗ and
v ∈ O∗

TAR, where OTAR = O ×TAR,

TAR = {here, out} ∪ {inj |1 ≤ j ≤ m}.

The keywords “here,” “out,” and “inj” are used to specify the cur-
rent compartment (i.e., the compartment the rule is associated with),
the compartments that surrounds the current compartment, and the
compartment with label j, respectively. The effect of each rule is the
removal of the elements of the left-hand side of the rule from the
current compartment (i.e., elements that match the left-hand side of
a ruleareremovedfromthecurrentcompartment)andtheintroduction
of the elements of the right-hand side to the designated compart-
ments. Also, the rules implicitly transfer the fuzzy degrees to mem-
bership in their new “home set”;

(v) i0 ∈ {1, 2, . . . , m} is the label of an elementary membrane (i.e., a mem-
brane that does not contain any other membrane), called the output
membrane.

Before stating the main result concerning the computational power of
these systems let us consider a simple P system with fuzzy data, as depicted
in Figure 9.3.

1�
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�

�

2�

�

�

�
∅

A (a) = (n, 1/m)

�

a → (a, in2)

Figure 9.3: A simple P system with fuzzy data.

This P system contains n objects to the degree 1/m in compartment
1, which will be transferred into compartment 2, which is initially empty.
The result of the computation (i.e., the cardinality of the multi-fuzzy set
contained in compartment 2) is equal to n/m. Thus, the result of this
particular computation is a positive rational number. However, there is
nothing that prevents one from computing any real number. This can be
summarized in the following statement.

Theorem 9.8.1 P systems with fuzzy data can compute any positive real
number.
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Skeptical readers may doubt whether P systems with fuzzy data can actu-
ally compute any real number at all. In particular, one may argue that by
associating a number (i.e., a membership degree) with a group of identical
objects, one does not get a concrete way to represent a number. First of all,
I believe that it is important to recall that a Turing machine or a P system
performs a computation because we have set up them up in such a way that
the outcome of their operations corresponds to a “computable” number.
Also, since we have agreed on the form of the input data, it follows that
the output data will have the same form. In other words, if we feed a sys-
tem with strokes or multi-fuzzy sets, we will get strokes or multi-fuzzy sets,
respectively. In our case, we have opted to represent the input data with
multi-fuzzy sets. Thus the output data will be multi-fuzzy sets. Naturally,
the result of a computation is a multi-fuzzy set, which represents a num-
ber, just as the symbol 2.77 is a representation of a number. Whether we
can “translate” this number into a familiar notation is an entirely different
issue, which will not concern us here.

A P system that continuously interacts with its environment (e.g., by
consuming or by dumping objects) is a first step toward a truly natural
computing device that is based on cells and their properties. For this rea-
son, these systems have been dubbed C systems, where the C stands for
cell. The theory of C systems is being developed by the present author and
his colleague Efstratios Doumanis, and the first results have been reported
in [197]. Roughly, speaking, a C system never ceases to operate, and its op-
eration is history-sensitive. Since the theory is not mature enough, we will
not go into any other details.

9.9 Analog X-Machines

X-machines were introduced in 1974 by Samuel Eilenberg, who together
with Saunders Mac Lane introduced category theory back in the 1940s.
Roughly speaking, an X-machine is a labeled transition system, or LTS,
whose states are objects of type X and whose transition labels are functions
that operate on states (i.e., objects of type X). For completeness, let us recall
the definition of an LTS.

Definition 9.9.1 A labeled transition system (LTS) is a triple
(

S, T, { t→ : t ∈ T}
)

,

where S is a set of states, T is a set of transition labels, and t→⊆ S × S is a
transition relation for each t ∈ T .
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Intuitively, an LTS can be depicted as a labeled directed graph, where the
labels attached to each node form the set of states, the labels that are at-
tached to each arc form the set of transition labels, and the triples (s1, t, s2),
where t is the label of an arc that directly connects the nodes with labels s1
and s2, form the transition relation.

One may think of a text-formatter as a stream machine, where a stream
is a finite sequence of ASCII or Unicode characters. Indeed, any text-
formatter supports a number of operations that can be used to insert,
delete, etc., portions of text and thus alter a stream. Thus, one may view
the text-editing commands as the arcs of an X-machine and the text before
and after the application of these commands as the nodes that these arcs
connect. Similarly, a (simple) pocket calculator can be viewed as a number
machine, and so on. In general, X-machines cannot compute beyond the
Turing barrier. In other words, they have at most the computational power
of Turing machines. However, an analog version of the X-machine model
of computation, which was introduced by Stannett [189], seems to be more
powerful than Turing machines. But what is the main idea behind analog
X-machines?

Suppose that we want to construct an integer-machine that computes
the function f (n) = 2n. Obviously, such a machine can be represented by
the diagram in Figure 9.4.

f

Figure 9.4: A diagram representing a simple integer-machine.

In this representation, the computation is informally equivalent to the tra-
versal of the arc. Thus, when we are in the middle of the arc, the result is
half-computed; when we in the first third of the arc, the result is one-third
computed, and so on. Clearly, this implies that if we replace an endpoint
with another that is closer to the first endpoint, we define a new function.
And this is exactly the idea behind analog X-machines. Since we are going
to work in a continuous setting, it makes sense to work with topological
paths4 and not with arrows. Let us now define analog X-machines [189].

Definition 9.9.2 An analog X-machine is a 10-tuple

M = (X,Φ, Q, P, Y, Z,α,β,delay, comp),

4. A topological space X is said to be path-connected if for any two points x, y ∈ X there exists
a continuous function f : [0, 1] → X with f (0) = x and f (1) = y. This function is called a path
from x to y.
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where X is a nonempty set called the fundamental datatype; Φ is a set of
relations on X ; Q is a topological space called the state space; P is a set of
piecewise continuous paths in Q, that is, piecewise continuous functions p :
[0, 1] → Q; Y and Z are the input and output types, respectively; α : Y → X
and β : X → Z are encoding and decoding functions, respectively; delay :
P × [0, 1] → R is a function that is both continuous and monotonically
increasing with respect to its second argument; and comp : P × [0, 1] →
Φ is a function that assigns to each point p(r) along a path p a relation
comp( p, r) ∈ Φ.

Now let us briefly describe how an analog X-machine operates. The
machine can handle only data of type X , but it is assumed that it consumes
data of type Y and produces data of type Z. Consequently, we first need
to encode the input data by applying the encoding function α to the input
data. Similarly, the results of the computation will be decoded using the
decoding function β. For convenience, we may imagine that the paths of the
machine are slightly oblique. At the top of each path we place an imaginary
ball bearing and all of them are released simultaneously when the machine
begins its operation. The ball bearings move down the paths as time passes.
A ball that moves on path p ∈ P gets to point p(r), r ∈ [0, 1], in time
delay(p, r). During this time, the ball has carried out some computation
that is represented by comp(p, r).

Suppose that this machine has been running for some time t. In order
to find the current output, we first need to determine the current position
of each ball bearing (i.e., for each p ∈ P we need to find an r such that
delay(p, r) = t). Next, we find the associated relations comp(p, r) and apply
each of them to the given (encoded) inputs. Then, we take these results and
decode them using the function β so to get the current outputs. Let us now
see how the analog X-machine can be used to decide the halting problem.

Assume that (Pn) and (In) are effective enumerations of Turing machine
programs and their potential tape configurations, respectively. Also, as-
sume that Pm(In) ↓ z denotes that the program Pm halts with output z when
presented with the input tape In. Let us now formulate the halting problem
in a form suitable for analog X-machines: is there a program P that when
presented with some suitable coding code of the natural numbers m and n
has the following property?

P(code) ↓ tt if Pm(In) halts,
P(code) ↓ ff if Pm(In) does not halt.

If P is an analog X-machine, then the answer to this problem is affirmative.
But let us see how we can construct such an analog X-machine.

Assume that ζ ∈ [0, 1] is an irrational number. Then we define a bijec-
tion gζ : (0, 1] → (0, 1] as follows:

gζ (r) =
{

r + ζ if 0 < r ≤ (1− ζ ),
r + ζ − 1 if (1− ζ ) < r ≤ 1.
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Take ξ = 0.101001000100001 . . . (notice that the first one is followed by one
zero, the second one by two zeros, the third one by three zeros, the fourth
one by four zeros, and so on). Also, the letter Q will denote the set

Q =
{

gn
ξ (1) | n ∈ N

}
,

and for each a ∈ N, the symbol Qa will denote the set

Qa =
{

gna
ξ (1) | n ∈ N

}
.

Now we are ready to state an important result.

Lemma 9.9.1 Each Qa is dense in [0, 1].

For brevity, we will denote gn
ξ (1) by qn.

Suppose that a Turing machine Pi(Ij) has executed n statements. Then
its tape configuration is denoted by c(i, j;n) (or the terminal configuration
if the machine halts after executing fewer than n statements). In general, a
tape configuration is a pair (s, t), where s is a machine state and t is a finite
string consisting of the symbols printed on the cells of tape so far. Now, for
simplicity we can assume that a tape configuration is just the string t. Let
x ∈ N and r ∈ (0, 1]. Then we define a set of configurations as follows:

f (x, r) =

⎧
⎨

⎩

∅, if x �= 2i3j ,
⋂

δ→0

{
c(i, j;n) | qn ∈ (r − δ, r − δ2)

}
, otherwise.

Let i, j ∈ N. Then define pij : [0, 1] → 2CONF, where

CONF = {In | n ∈ N},

that is, the set of all configurations, by

pij(0) = {Ij},

pij(r) = f (2i3j , r), r ∈ (0, 1].

The following result characterizes pij .

Theorem 9.9.1 The function pij is constant on (0, 1] with image a singleton
if and only if Pi(Ij) halts.

Now we are ready to define an analog X-machine X capable of solving the
classical halting problem.

Definition 9.9.3 The specification of X is as follows.
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• The machine will input two natural numbers and output a Boolean.
Therefore X = N×N×B, where B = {tt, ff }, Y = N×N, and Z = B.
The encoding and decoding functions are given by α(i, j) = (i, j, tt) and
β(x, y, z) = z, respectively.

• The topological space Q and the set P of piecewise continuous paths
in Q are the sets 2CONF and {pij | i, j ∈ N}, respectively.

• The function delay is defined by delay(pij , r) = r.

• The relation comp(pij , r) is defined to be the relation φijr on X , which,
in turn, is defined as follows: Assume that d : (0, 1] → (0, 1]× (0, 1] is
a bijection and that d1, d2 are the associated projections (i.e., d(r) =
(d1(r), d2(r))). Next, we define the predicates Aij on [0, 1] as Aij(a) =
(pij(d1(a)) = pij(d2(a))). And finally,

φijr(x, y, z) =
(

x, y,∧
{
Aij(b) | b ∈ [0, r]

})

.

This uncountable conjunction is well-defined.

• The set Φ of relations on X is the collection of all φijr .

Stannett [191, page 136] notes that the proof of the following result has an
error. More specifically, a certain conjunction that comes up in the proof
is true if and only if pij is constant on (0, 1]. The truth of this conjunction
is used to establish the ability of this analog X-machine to decide the clas-
sical halting problem. However, as required by Theorem 9.9.1, in order to
arrive at the desired result, one needs also to show that the image of pij is
a singleton. But it is not clear to what extent this affects the validity of the
following result.

Theorem 9.9.2 The analog X-machine X can decide the classical halting
problem.

In order to overcome the problem mentioned above, Stannett [190]
proposed a very general extension of the X-machine model of computa-
tion, dubbed “general-timed X-machines.” Here is the definition of general-
timed X-machines, which is slightly different from the one that appears
in [190].

Definition 9.9.4 A general-timed X-machine is an octuple

T = (X, A, I, T, I,O,Σ,Ξ),

where X is the fundamental datatype, A is a set of all function paths a :
[0, 1) → XX , while I ⊂ A and T ⊂ A, I and O are spaces representing the
input and output types, Σ : I × A → A, and Ξ : X × XX → O are the import
and export functions, respectively.
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The general-timed X-machine is general enough, since every X-machine
is actually such a machine. In addition, the general-timed X-machine is a
demonstrably hypercomputational model of computation.



A. The P = NP Hypothesis

Roughly, there are two kinds of solvable problems that are not too dif-
ficult—those that can be solved easily and those that can be solved with
difficulty. In particular, when we say that a problem is difficult, we mean
that (i) if there is an algorithmic solution to this problem we can quickly
check it and (ii) an algorithmic solution will require an impossibly long
time to yield an output. Let us denote by E the class of problems that can
be solved easily and by D the class of problems that can be solved with diffi-
culty. Then it is interesting to see whether these two classes are equal (i.e.,
whether E = D). Although it seems obvious to state that E �= D, this is
a long-standing open problem of computer science and mathematics. The
problem is not directly connected to hypercomputation, but an affirmative
answer to the problem (i.e., a proof that P = NP, which is the “real” name
of the problem) will have a great impact on computer science and conse-
quently on hypercomputation.

Da Costa and Doria have obtained some interesting results concerning
the P = NP problem. However, one cannot fully appreciate their impor-
tance without understanding the P = NP problem. Thus, in the next two
paragraphs I will briefly present the relevant theory. As usual, readers fa-
miliar with this theory can safely skip the next two paragraphs.

A Turing machine that has more than one next state for some combi-
nations of the symbol just read and the current state is called a nondeter-
ministic Turing machine. A polynomial-time Turing machine is a Turing
machine that produces output in polynomially bounded time t (i.e., a ma-
chine that always halts after at most p(n) steps, where n is the length of
the input and p(n) is a polynomial; see footnote on page 80). The class of
decision problems that can be solved by a polynomially bounded determin-
istic Turing machine is denoted by P . Also, the class of decision problems
that can be solved by a polynomially bounded nondeterministic Turing ma-
chine is denoted by NP . The P = NP hypothesis can be precisely specified
in terms of the Boolean satisfiability problem, or SAT problem for short;
therefore, we need to explain SAT.

Assume that X = {x1, x2, . . . , xn} is a finite set of Boolean variables and
X = {x1, x2, . . . , xn}, where x1, x2,. . . , xn are new symbols standing for the
negations of x1, x2,. . . , xn. The set X ∪ X is called the set of (positive and
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negative) literals. A clause C is a nonempty set of literals, that is, C ⊆ X∪X .
A Boolean formula in conjunctive normal form is a set of clauses defined
on X . A truth assignment for a formula F is a function from X to the set
{tt, ff }. A truth assignment T satisfies F if for all C ∈ F there is at least one
variable xi such that either T (xi) = tt, where xi ∈ C, or T (xi) = ff , where
xi ∈ C. A formula F is called satisfiable if there is a truth assignment that
satisfies it. More generally, we denote by SAT the following problem: given
a Boolean formula F in conjunctive normal form, is it satisfiable?

According to da Costa and Doria, the P = NP hypothesis can be (infor-
mally) stated as follows: There is a polynomial-time Turing machine Mm,
where m is its Gödel number, such that it correctly “guesses” a satisfying
line of truth values for every input x ∈ SAT. The authors start from an ex-
otic formulation of the P = NP hypothesis, which is consistent with ZFC,
and from it they derive a consistency result for P = NP . More specifically,
if we assume that f is a strictly increasing total recursive function with one
argument, then we make the following hypothesis.

Hypothesis A.1 There is a Turing machine Mm, with Gödel number m,
and natural numbers a, b such that for every x ∈ SAT, the output Ψ1

M (x)
is a satisfying line for x, and the number tm(x) of steps performed by the
machine with input x is at most |x|f(a) + f(b), where |x| denotes the length of
the input in bits.

This hypothesis will be written [P = NP]f, while the standard formulation
of the P = NP hypothesis will be written [P = NP]. Using a special func-
tion F, da Costa and Doria have proved the following result (see [43] for
more details and [42] for a discussion of earlier results).

Proposition A.1

(i) If ZFC has a model with standard arithmetic, the equivalence

[P = NP]F ↔ [P = NP]

holds for that model.

(ii) If ZFC is consistent, then [P = NP]F is consistent with ZFC.

(iii) If ZFC+ [P = NP]F is ω–consistent,1 then [P = NP] is consistent with
ZFC.

The last result can be rephrased as follows: if there is a model for a
consistent theory ZFC + [P = NP]F, where formal polynomial Turing ma-
chines act as intuitively expected, then ZFC + [P = NP] is consistent.
In addition, we note that these results are in the line of previous results

1. A system F is said to be ω–consistent if there is no formula φ(x) such that F proves ¬φ(n)
for each natural number n, and yet F proves ∃x φ(x).
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by Richard DeMillo and Richard Lipton (consistency of [P = NP] with
fragments of arithmetic; see [49]) and more recently by Attila Máté (con-
sistency of [P = NP] with Peano arithmetic, given an involved technical
model–theoretic condition; see [120]).

The point is that if [P = NP] is proved by ZFC, then the da
Costa–Doria condition holds trivially. Yet it is known that if [P = NP]
is independent of ZFC, then [P = NP] will hold only for models for ZFC
with nonstandard arithmetic, and it is not immediately apparent why there
should be a nonstandard model with the nice, desirable behavior they are
asking for. Their condition for the consistency of [P = NP] with a strong
theory is simple and intuitive: in plain words, there is a model for the theory
where formal objects behave as expected by our intuition.

Although the results presented so far seem to be supportive of the equal-
ity of the two classes, still there are results that seem to be supportive of
exactly the opposite. In particular, Ralf-Dieter Schindler [171] defined the
classes classes Pωω and NPωω , which are supposed to be the corresponding
P and NP classes for infinite-time Turing machines. Then he showed that
Pωω �= NPωω . Also, Vinay Deolalikar, Joel Hamkins, and Ralf Schindler [50]
have shown by extending previous results and by defining new classes of
problems, just as Schindler did, that Pα �= NPα ∩ co-NPα. But all these con-
tradicting results show that the P = NP problem is far from being settled.





B. Intractability
and Hypercomputation

In classical computation theory, first of all it is important to know whether
a problem is solvable. And when a problem is solvable, it is equally im-
portant to see whether it can be solved efficiently. For example, if there
is a problem that is solvable in principle, but whose solution can be com-
puted only in millions of years, then this problem is practically not solv-
able. Generally speaking, complexity theory is the branch of the theory
of computation that studies whether computable problems are practically
computable, that is, whether the resources required during computation to
solve a problem are reasonable.

In Appendix A we presented the class of problems that can be solved
by a polynomially bounded nondeterministic Turing machine, that is, the
class NP . When some problem can be solved by an algorithm that can be
reduced to one that can solve any problem in NP, then it is called NP-hard.
A problem that is both NP and NP-hard is called NP-complete.

Assume that we have a problem Π that is as difficult as the halting prob-
lem (formally, its degree of insolvability is at most 0′). It follows that if a
hypermachine can solve Π, it will be able to solve any NP-complete prob-
lem, since NP-complete problems can be solved by some algorithm. Clearly,
when one finds a general solution to an noncomputable problem, then no
one will care whether the solution is optimal, provided it is feasible. In
other words, in cases like this, efficiency becomes an empty word. However,
a number of researchers in complexity theory have questioned the ability
of certain hypermachines to efficiently solve NP-complete problems, and
thus question the feasibility of these machines. In particular, Aaronson [1]
presented a summary of such objections. Aaronson examines a number
of approaches to hypercomputation and by using a number of supposedly
knockout arguments aimed at showing that hypercomputation proposals
cannot solve NP-complete problems and thus cannot solve noncomputable
problems.

First of all, one should not forget that it is one thing to efficiently
solve NP-complete problems and another to solve noncomputable prob-
lems. Compare airplanes and cars: airplanes can cross oceans and

203



204 Appendix B: Intractability and Hypercomputation

continents, something no car can do, but airplanes cannot be used to go to
work every morning. For the moment, I will ignore this objection in order
to present the arguments against hypercomputation. There are two basic
objections to the feasibility of hypermachines. These two objections can be
summarized as follows: first, it is not known whether quantum mechanics
remains valid in the regime tested by quantum computing (in other words,
are quantum computers feasible?), and second, it is not known whether
quantum gravity imposes limits that make infeasible various models of hy-
percomputation that are based on properties of spacetime.

The reader may recall that the second objection has been discussed in
Chapter 8. Our response was that there is no experimental evidence that
time and space are granular, but on the contrary, there are experimental
indications that space and time are continuous. Quantum gravity is based
on the hypothesis that space and time are granular, while relativity theory
assumes that space and time are continuous. Also, at least one model of hy-
percomputation does not rely on the space and time granularity hypothesis.
Thus, hypercomputation cannot by ruled out based on this hypothesis. And
since there is no proof of the space and time granularity hypothesis, we can
safely assume that space and time are indeed continuous. The first objection
is more serious despite the vast literature on quantum computing. Nowa-
days, there are no general-purpose quantum computers available. Indeed,
there are many obstacles that scientists and engineers have to overcome be-
fore the first general-purpose quantum computer is constructed. However,
it seems that most problems are being successfully tackled one after the
other (for example, see [14, 6, 165, 59, 32]). So it is not unreasonable to
expect that general-purpose quantum computers will be constructed in a
few years. After all, it took only a few years to go from the Turing machine
to the first general-purpose digital computer.



C. Socioeconomic Implications

As mentioned on page 85, cognitive scientists were probably the first schol-
ars to fully adopt the computational metaphor in their research programs.
Later, the computational metaphor was adopted by economists, sociolo-
gists, and others. In particular, economists who bought into the metaphor
were hoping, and still hope, to be able to convincingly explain fluctuations
in oil and currency prices, predict upcoming stock market crashes, forecast
economic growth, etc. Naturally, one may wonder whether such expecta-
tions are reasonable. Certainly, one should not expect to find a full-fledged
answer to this question in an appendix of a book on hypercomputation.
Nevertheless, this appendix serves as a brief exposition of our ideas con-
cerning the use of the computational metaphor in economics and sociology
in the light of hypercomputation and the view that the human mind has
capabilities that transcend the Church–Turing barrier.

John Forbes Nash’s noncooperative game theory has a central impor-
tance in modern economic theory. More specifically, this theory deals with
how intelligent individuals interact with one another in an effort to achieve
their own goals. Consequently, an economic system is a very complex sys-
tem, which, nevertheless, can be modeled by computers, as Axel Stig Bengt
Leijonhufvud has suggested [110]. In addition, Leijonhufvud went on to
give a (new) formulation of what an economy is.

Conjecture C.1 An economy is best conceived of as a network of interacting
processors, each one with less capability to process information than would
be required of a central processor set to solve the overall allocation problem
for the entire system.

Consequently, by assuming this conjecture, Leijonhufvud’s further claim
that “[T]he economy should be looked at as a machine that has to ‘compute’
the equilibrium” is not an exaggeration at all. Needless to say, these ideas
had a profound impact on the development of the field of computational
economics (i.e., a new field of economics that utilizes the computational
metaphor to analyze economic phenomena).

Agent-based computational economics (ACE) “is the computational study
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of economic processes modeled as dynamic systems of interacting agents.”1

Observe that ACE is based on Leijonhufvud’s conjecture regarding the
“true” nature of an economy. More specifically, ACE is based on the as-
sumption that agents (i.e., individuals, social groups, institutions, biological
entities, and physical entities) are computable entities, which is a hypothe-
sis we contest in this book. On the other hand, it is possible that in certain
cases the interaction of noncomputable agents may result in a computable
behavior, but this is something no one can really guarantee. Also, if we
assume that economic behavior is hypercomputational, then we may use
the theory presented in this book as a starting point for a hypercomputa-
tional economics. Indeed, the economist Wolfram Latsch proposed some-
thing similar in [108], but he argues for a noncomputable economic theory
using Penrose’s ideas as a starting point.

Latsch examines evolutionary economics and its relationship to com-
plexity. More specifically, he notes that “evolutionary economics is inter-
ested in the emergence of order out of complex processes” and then shows
how evolutionary economics is related to Wolfram’s view of the cosmos.
In particular, Wolfram is convinced that cellular automata, which are self-
reproducing finite-state machines that may show very complex behavior
from very simple rules, are computing devices that can simulate, if not im-
plement, everything in this world. Thus, one would expect that the use of
cellular automata would be a panacea for economics. However, da Costa
and Doria have shown that if there is a mathematical model for some mar-
ket economy, it is not possible to algorithmically decide whether the econ-
omy has reached some equilibrium set of prices (see [44] for a recent, but
not so formal, discussion of these results). A direct consequence of this re-
sult is that one cannot practically “compute the future.”

Kumaraswamy Vela Velupillai discussed in [211] why, in his opinion,
mathematical economics is unreasonably ineffective. This has prompted
him to look for an alternative formalization of economics. So he has con-
cluded that a “reasonable and effective mathematisation of economics en-
tails Diophantine formalisms.” This implies that economics should suffer
from all the limits and constraints imposed by the Church-Turing thesis.
A broad-minded view should seriously take into consideration hypercom-
putation as presented in this book, at least as a basis for a foundation of
economics.

An economy is part of a society, and it is not an exaggeration to say
that economic activities are actually social activities. So it was not surpris-
ing to see the computational metaphor find its way into the social sciences.
Indeed, computational sociology is a recently developed branch of sociol-
ogy that uses the computational metaphor to analyze social phenomena
(see [65] for a thorough presentation of this new branch of sociology).2

1. See http://www.econ.iastate.edu/tesfatsi/ace.htm for more information.
2. In a way, computational sociologists try to analyze social phenomena by creating virtual
worlds much like the virtual worlds presented in movies like “The Matrix” (written and
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The techniques, the methodologies, and the ideas employed in computa-
tional sociology are similar, if not identical, to those employed in compu-
tational economics. Consequently, computational sociology should and, in
our opinion does, suffer from the same problems computational economics
does. Apart from this, culture3 is one aspect of any society that has to be
taken into account in any serious analysis of social phenomena.

Roy F. Baumeister [10] has examined how culture has affected our men-
tal capabilities. More specifically, he asserts that meaning and language
actually prove that human thought cannot be reduced to brain activity.
Baumeister argues that thought is more than just neuron firing. For him,
“[H]uman thought generally uses language and meaning, which are so-
cial realities that are not contained in the brain.” Obviously, this idea is
akin to Searle’s biological naturalism in particular, and hypercomputation
in general. Note that this view is actually an attack against reductionism in
neurobiology, which assumes that thinking can be reduced to neuron firing.

In order to defend his ideas, Baumeister argues that culture, with its
meaning and language, is like the Internet. In particular, he asserts that
maintaining that “human thought is contained in the brain, or is nothing
more than brain cell activity, is like saying that the Internet is contained
inside your computer, or that the Internet is nothing more than electrical
activity inside your computer” [10, p. 185]. As was explained in Chapter 5,
the Internet cannot be described by the operation of a single computer,
while computers connected to the Internet can actually accomplish more
than isolated machines. Similarly, brains connected to culture do more and
better things than an isolated brain.

In conclusion, one may say that computer simulations in economics and
sociology may provide some insight into certain aspects of economic or
social phenomena, but they cannot give any definitive answers to crucial
problems of computation.

directed by Andy Wachowski and Larry Wachowski; see http://whatisthematrix.
warnerbros.com/ for more information) and “The Thirteenth Floor” (screenplay by Josef
Rusnak and Ravel Centeno-Rodriguez, based on the book “Simulacron 3” by Daniel Francis
Galouye, and directed by J. Rusnak; see http://www.imdb.com/title/tt0139809/ for more
information).
3. For example, see http://www.isanet.org/portlandarchive/bada.html for a brief discus-
sion of what culture actually is.
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D.1 Frames

The presentation of this section is based on [212].

Definition D.1.1 A poset (or partially ordered set) is a set P equipped with
a binary relation ≤ called a partial order that satisfies the following laws:

reflexivity a ≤ a, for all a ∈ P;

transitivity if a ≤ b and b ≤ c, then a ≤ c, for all a, b, c ∈ P;

antisymmetry if a ≤ b and b ≤ a, then a = b for all a, b ∈ P .

Definition D.1.2 A totally ordered set is a poset (P,≤) whose binary relation
satisfies the following additional law, making it a total order.

comparability (trichotomy law) for any a, b ∈ P either a ≤ b or b ≤ a.

Two totally ordered sets (A,≤) and (B,≤′) are order isomorphic if there is
a bijection f : A → B such that for all a1, a2 ∈ A, if a1 ≤ a2 then f (a1) ≤′

f (a2). The order type is the property of a totally ordered set that remains
when the set is considered not with respect to the properties of its elements
but with respect to their order. The order type of (A,≤) is denoted by |A|.
For example, the order type of (N,≤) is ω.

Definition D.1.3 Assume that (P,≤) is a poset, X ⊆ P and y ∈ P . Then y is
a meet (or greatest lower bound) for X if

• y is a lower bound for X , that is, if x ∈ X then y ≤ x, and

• if z is any other lower bound for X then z ≤ y.

The meet for X is denoted by
∧

X . If X = {a, b}, then the meet for X is
denoted by a ∧ b.

209
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Definition D.1.4 Suppose that (P,≤) is a poset, X ⊆ P, and y ∈ P . Then y
is a join (or least upper bound) for X if

• y is an upper bound for X , that is, if x ∈ X , then x ≤ y, and

• if z is any other upper bound for X then y ≤ z.

The join for X is denoted by
∨

X . In addition, if X = {a, b}, then the join
for X is denoted by a ∨ b.

Definition D.1.5 A poset (A,≤) is a frame if

(i) every subset has a join,

(ii) every finite subset has a meet, and

(iii) binary meets distribute over joins:

x ∧
∨

Y =
∨

{x ∧ y : y ∈ Y}.

A function between two frames is a frame homomorphism if it preserves
all joins and finite meets.

D.2 Vector Spaces and Lie Algebras

In general, we can say that an algebraic structure (or algebra) consists of
one or more sets closed under one or more operations satisfying some ax-
ioms. A subalgebra consists of subsets of the sets an algebra consists of,
while the algebraic operations are now restricted to these subsets. Let us
define some common algebraic structures.

Definition D.2.1 A quadruple (G, ·, −1, 1), where G is a set, · : G×G → G a
binary operation, −1 : G → G a unary operation, and 1 ∈ G a distinguished
element called the unit element, is an abelian group if

(i) ∀g1, g2, g3 ∈ G : g1 · (g2 · g3) = (g1 · g2) · g3,

(ii) ∀g ∈ G : g · 1 = 1 · g = g,

(iii) ∀g ∈ G : g · g−1 = g−1 · g = 1, and

(iv) ∀g1, g2 ∈ G : g1 · g2 = g2 · g1.

Definition D.2.2 A set S together with two binary operators + (the “addi-
tion” operator) and * (the “multiplication” operator) is called a ring if it
satisfies the following properties:
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(i) (a + b) + c = a + (b + c),

(ii) a + b = b + a,

(iii) 0 + a = a + 0 = a,

(iv) a + (−a) = (−a) + a = 0,

(v) (a * b) * c = a * (b * c), and

(vi) a * (b + c) = (a * b) + (a * c) and (b + c) * a = (b * a) + (c * a).

Definition D.2.3 A commutative ring (i.e., a *b = b *a) with a “multiplica-
tion” unit 1 (i.e., 1 * a = a * 1 = a) with the property that for all a �= 0 there
exists an element a−1 such that a−1 * a = a * a−1 = 1, is called a field.

The set R (C) and the operations of real (complex) number addition and
multiplication define a field.

Definition D.2.4 A vector or linear space over the field F is an abelian
group V , whose group operation is usually written as +, that is equipped
with scalar multiplication, which is a mapping F × V → V that is usually
denoted by (c,x) �→ cx. In addition, the following axioms must be fulfilled
for all c, c1, c2 ∈ F and x,x1,x2 ∈ V :

(i) c1(c2x) = (c1c2)x,

(ii) (c1 + c2)x = c1x + c2x,

(iii) c(x1 + x2) = cx1 + cx2, and

(iv) 1x = x.

Note that the unit element of V is denoted by 0. Also, the elements of V
are called vectors. A finite subset {x1, · · · ,xn} of a linear space V is called
linearly independent if

k1x1 + k2x2 + · · · + knxn = 0 ⇒ k1 = k2 = · · · = kn = 0.

Every expression of the form k1x1 + · · ·+ knxn is called a linear combination
of x1, . . . ,xn. A subset B ⊂ V is a basis of the linear space V if it is linearly
independent and every element of V is a linear combination of B. The
dimension of a linear finite-dimensional space X is equal to the cardinality
of a basis of X . A linear space that is not finite-dimensional is an infinite-
dimensional space.

Lie algebras are special cases of vector spaces.

Definition D.2.5 A Lie algebra L is a vector space over some field together
with a bilinear multiplication [, ] : L × L → L, called the bracket, that
satisfies two simple properties:
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(i) [a, b] = −[b, a] (anticommutativity) and

(ii) [a[b, c]] = [[a, b], c] + [a, [b, c]] (Jacobi identity).

An associative algebra L, that is, an algebraic structure with a product ab
that is associative (i.e., a(bc) = (ab)c), can be transformed into a Lie algebra
L̄ by the bilinear multiplication

[a, b] = ab − ba.

D.3 Topological Spaces: Definitions

The presentation that follows is based on [113].

Definition D.3.1 Let X be a nonempty set. A class T of subsets of X is a
topology on X if T satisfies the following axioms:

(i) the (trivial) subsets X and the empty set ∅ are in T ;

(ii) the intersection of any finite number of members of T is a member of
T ; and

(iii) the union of any (even infinite) number of members of T is a member
of T .

The members of T are called open sets and the pair (X, T ) is called a
topological space. If O is an open set containing a point x ∈ X , then O is
called an open neighborhood of x.

Let Σ be an alphabet; we are going to define some of the standard
topologies on Σ∗ and Σω. The class τ∗ = 2Σ

∗
= {A | A ⊆ Σ∗} is the dis-

crete topology on Σ∗. The Cantor topology on Σω is τC = {AΣω | A ⊆ Σ∗},
and (Σω, τC) is called the Cantor space over Σ. Note that if A, B ⊆ Σ∗, then
AB = {ab | a ∈ A, b ∈ B}.

Assume that (P,≤) is a poset; a nonempty subset S ⊆ P is directed if for
all x, y ∈ S there is a z ∈ S such that x, y ≤ z.

Definition D.3.2 A poset (P,≤) is a directed complete partial order (or dcpo,
for short) when every directed subset has a join.

A subset U of a dcpo D is Scott open if

(i) U is an upper set, that is if x ∈ U and x ≤ y this implies that y ∈ U ,
and

(ii) U is inaccessible by directed joins, that is for every directed S ⊆ D,
∨

S ∈ U ⇒ S ∩ U �= ∅.



D.3–Topological Spaces: Definitions 213

The collection of all Scott open sets on D is called the Scott topology and
is denoted by σD.

Definition D.3.3 Let (X, T ) be a topological space. A point p ∈ X is an
accumulation point of a subset A of X if every open set O containing p also
contains a point of A different from p, that is,

O open, p ∈ O ⇒ (O \ {p}) ∩ A �= ∅.

Definition D.3.4 Assume that (X, T ) is a topological space. Then a subset
A of X is a closed set if its complement A� is an open set.

Definition D.3.5 Suppose that A is a subset of X , where (X, T ) is a topo-
logical space. Then the closure of A, denoted by Cl(A), is the intersection
of all closed supersets of A.

Definition D.3.6 Assume that A is a subset of X , where (X, T ) is a topolog-
ical space. Then a point p ∈ A is called an interior point of A if p belongs
to an open set O that is a subset of A. The set of interior points of A is
denoted by Int(A).

Definition D.3.7 A subset A of X , where (X, T ) is a topological space, is
nowhere dense in X if Int(Cl(A)) = ∅.

Definition D.3.8 A subset A of X , where (X, T ) is a topological space, is
called dense if Cl(A) = X .

Definition D.3.9 Suppose that p is a point in X , where (X, T ) is a topo-
logical. Then a subset N of X is a neighborhood of p if and only if N is a
superset of an open set O containing p.

Definition D.3.10 Let (X, T ) be a topological space. A class B of open
subsets of X is a base for the topology T if every open set O ∈ T is the
union of members of B.

Definition D.3.11 Let (X, T ) be a topological space. A class S of open sub-
sets of X is a subbase for the topology T if finite intersections of members
of S form a base for T .

Now we need to define the notion of a map between topological spaces.

Definition D.3.12 Assume that (X, T1) and (Y, T2) are topological spaces.
Then a function f : X → Y is continuous if the inverse image f −1(O) of
every open subset O of Y is an open subset of X .
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Metric spaces are special cases of topological spaces. In addition, a metric
space induces a topological space. Let us now define a metric space.

Definition D.3.13 Suppose that X is a nonempty set. Then a function f :
X × X → R is called a metric or distance function on X if it satisfies, for
every a, b, c ∈ X , the following axioms:

(i) d(a, a) = 0;

(ii) d(a, b) > 0 if a �= b;

(iii) d(a, b) = d(b, a); and

(iv) d(a, c) ≤ d(a, b) + d(b, c).

The real number d(a, b) is called the distance from a to b.

Given a metric space (X, d), the distance between a point p ∈ X and a
nonempty subset A of X is defined by

d(p, A) = inf
{

d(p, a)|a ∈ A
}
.

In addition, the distance between two nonempty subsets A and B of X is
defined by

d(A, B) = inf
{

d(a, b)|a ∈ A, b ∈ B
}
.

The diameter of a nonempty subset A of X is defined by

d(A) = sup
{

d(a, b)|a, b ∈ A
}
.

The open sphere with center p and radius δ is defined by

S(p, δ) =
{

x|d(p, x) < δ
}
.

Equally important is the notion of a normed space.

Definition D.3.14 Assume that V is a vector space over the field F . Then
a function that assigns to each vector v ∈ V the quantity ‖v‖ ∈ F is a norm
on V if it satisfies, for all v,u ∈ V and k ∈ F , the following axions:

(i) ‖v‖ ≥ 0 and ‖v‖ = 0 if v = 0;

(ii) ‖v + u‖ ≤ ‖v‖ + ‖u‖;

(iii) ‖kv‖ = k‖v‖.
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A vector space V together with a norm is called a normed vector space.
A cover of a subset A of a topological space is a collection {Ci} of subsets

of X such that A ⊂ ∪iCi. In addition, if each Ci is open, then it is called an
open cover. Furthermore, if a finite subcollection of {Ci} is also a cover of
A, then {Ci} includes a finite subcover.

Definition D.3.15 A subset A of a topological space X is compact if every
open cover of A contains a finite subcover.

Two subsets A and B of a topological space X are said to be separated if

(i) A and B are disjoint and

(ii) neither contains an accumulation point of the other.

Definition D.3.16 A subset A of a topological space X is disconnected if
there exist open subsets O and O′ of X such that A ∩ O and A ∩ O′ are
disjoint nonempty sets whose union is A. In this case, A ∪ O is called a
disconnection of A. A set is connected if it is not disconnected.

An easy way to construct a new topological space from existing ones is
by multiplying them.

Definition D.3.17 Assume that {(Xi, Ti)} is a collection of topological spa-
ces and that X =

∏
i Xi (i.e., X is the product of the sets Xi). The smallest

topology T on X with respect to which all the projections πi : X → Xi
are continuous is called the product topology. The product set X with the
product topology T (i.e., (X, T )) is called the product (topological) space.

Suppose that X is a metric space. A sequence a1, a2, . . . in X is a Cauchy
sequence if for every ε > 0 there is an n0 ∈ N such that for all n, m > n0 it
holds that d(an, am) < ε. Similarly, if X is a normed vector space, then
a1, a2, . . . is a Cauchy sequence if for every ε > 0, there is an no ∈ N such
that for all n, m > n0 it holds that ‖an − am‖ < ε.

A metric space (X, d) is complete if every Cauchy sequence a1, a2, . . . in
X converges to some point p ∈ X .

Definition D.3.18 A topological space X is a Hausdorff space if each pair
of distinct points a, b ∈ X belong to disjoint open sets.

D.4 Banach and Hilbert Spaces

Definition D.4.1 A Banach space is a normed vector space over R or C that
is complete in the metric ‖x− y‖.
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We denote by C( [a, b] ) the Banach space of all continuous functions f on
[a, b], endowed with the uniform norm ‖ f ‖∞ = supx{| f (x)|}. By obvious
modifications the interval [a, b] can be replaced by cubes (i.e., subsets of
R3), squares (i.e., subsets of R2), etc.

Definition D.4.2 A Hilbert space H is a Banach space in which the norm
is given by an inner product H × H → F �→ 〈x|y〉. The inner product of a
Hilbert space induces a vector norm in a natural way:

‖x‖2 = 〈x|x〉.
A function T : X → Y , where X and Y are linear spaces over the same
field F , is called an operator.

Definition D.4.3 An operator T : X → Y is called linear if

(i) for all x1,x2 ∈ X , T (x1 + x2) = T (x2) + T (x2), and

(ii) for all k ∈ F and all x ∈ X , T (kx) = kT (x).

It customary to write Tx instead of T (x). Let us now define some special
linear operators.

Definition D.4.4 A linear operator T : X → Y is called bounded if there
is a constant m ≥ 0 such that

‖Tx‖ ≤ m · ‖x‖, ∀x ∈ X .

The smallest m satisfying the inequality above is called the norm of the
operator T . In addition, the domain of the operator T : X → Y is usually
not X but a subspace D(T ) that is dense in X .

Definition D.4.5 A linear operator T : D(T ) → Y is called closed if for
(xn) ∈ D(T ),

(
‖xn − x‖ → 0

)
∧
(
‖Txn − y‖ → 0

)
⇒

(
(x ∈ D(T )) ∧ (Tx = y

)
.

Let T : H → H be a bounded linear operator. Then the adjoint operator
T ∗ is defined by

〈Tx | y〉 = 〈x | T ∗y〉, ∀x, y ∈ H .

A closed operator T : H → H is called self-adjoint if T = T ∗.
Suppose that T is a closed operator. Then a number λ belongs to the

spectrum of T if the operator (T − λ) does not have a bounded inverse. A
number λ is called an eigenvalue of an operator T if there exists a nonzero
vector x, which is the corresponding eigenvector, such that T (x) = λx.

A closed operator T : H → H is effectively determined if there is a
computable sequence {en} in H such that the pairs {(en, Ten)} form an ef-
fective generating set for the graph of T . Note that effective generating set
means that {(en, Ten)} is computable in H × H and that the linear span of
{(en, Ten)} is dense in the graph of T .
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D.5 Manifolds and Spacetime

The short exposition of manifolds that follows is based on the introduction
to differential geometry provided in [79].

Let us denote by Rn the set of n-tuples (x1, . . . , xn), where −∞ < xi < +∞.
This set forms an n-dimensional vector space over R called Euclidean space
of dimension n. Since a Euclidean space is a metric space, it is also a topo-
logical space with the natural topology induced by the metric. The metric
topology on Rn is called the Euclidean topology. We say that (x1, . . . , xn) ∈
1
2R

n if xi ≤ 0, i = 1, . . . , n. A map φ of an open set O ⊂ Rn to an open
set O′ ⊂ Rm is of class Cr if the coordinates (x′

1, . . . , x′
m) = φ(p) in O′ are

r-times continuously differentiable functions (i.e., the rth derivatives exist
and are continuous) of the coordinates (x1, . . . , xn) of p ∈ O. When a map
is Cr for all r ≥ 0, then it is called a C∞ map.

A function f : O → O, where O is an open subset of Rn, is locally Lip-
schitz if for each open set U ⊂ O with compact closure, there is a constant
C such that for all p, q ∈ U , | f (p)− f (q)| ≤ C|p − q|, where |p| means

√
(

x1(p)
)2

+ · · · +
(

xn(p)
)2

.

A map φ is locally Lipschitz, denoted by C1−, if the coordinates of φ(p) are
locally Lipschitz functions of the coordinates of p. In addition, a map φ is
Cr− if it is Cr−1 and if the (r − 1)th derivatives of the coordinates of φ(p)
are locally Lipschitz functions of the coordinates of p.

Suppose that P ⊂ Rn and P ′ ⊂ Rm. Then a map φ : P → P ′ is a Cr

map if it is the restriction of a map ψ : O → O′, where O and O′ are open
sets and include P and P ′, respectively. We are now ready to give a general
definition of the notion of Cr manifold.

Definition D.5.1 A Cr n-dimensional manifold M is a set M together with
a Cr atlas {Ui,φi}, i = 1, . . . , n, which is a collection of charts (Ui,φi), where
each Ui is a subset of M and φi injectively maps Ui to open sets in Rn such
that

(i) the sets Ui cover M , that is,

M =
⋃

i

Ui,

(ii) if Uk∩Ul �= ∅, the map φk◦φ−1
l , which maps φl(Uk∩Ul) to φk(Uk∩Ul),

is a Cr map of an open subset of Rn to an open subset of Rn.

Each Ui is a local coordinate neighborhood, and the local coordinates xi are
defined by the map φi, that is, if p ∈ Ui, then the coordinates of p are the
coordinates of φi(p) in Rn.
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An atlas {Ui,φi} is locally finite if every p ∈ M has an open neighbor-
hood that intersects only a finite number of the sets Ui. A manifold M is
called paracompact if for every atlas {Ui,φi} there is a locally finite atlas
{Vj ,ψj} such that each Vj is contained in some Ui. A connected Hausdorff
manifold is paracompact if there is a countable collection of open sets such
that any open set is the union of members of this collection.

A Ck curve λ(t) in M is a Ck map of an interval of the real line R1 into
M . The vector (contravariant vector) (∂/∂t)λ|t0 tangent to the C1 curve λ(t)
at the point λ(t0) is the operator that maps each C1 function f at λ(t0) into
the number (∂/∂t)λ|t0 . This means that

(
∂f
∂t

)

λ
is the derivative of f in the

direction of λ(t) with respect to the parameter t, or
(

∂f
∂t

)

λ

∣
∣
∣
t
= lim

s→0

1

s

{
f (λ(t + s)− f (λ(t))

}
.

The curve parameter t obeys the relation
(

∂
∂t

)
λ

t = 1.
If (x1, . . . , xn) are local coordinates in a neighborhood of p, then

(
∂f
∂t

)

λ

∣
∣
∣
t0
=

n∑

j=1

dxj(λ(t))
dt

∣
∣
∣
t=t0

· ∂f
∂xj

∣
∣
∣
λ(t0)

=
dxj

dt
∂f
∂xj

∣
∣
∣
λ(t0)

.

This means that every tangent vector at a point p can be expressed as a
linear combination of the coordinate derivatives

(
∂

∂x1

) ∣
∣
∣
p
, . . . ,

(
∂

∂xn

) ∣
∣
∣
p
.

The space of all tangent vectors to M at p, denoted by Tp, is an n-
dimensional vector space. A one-form ω at p is a real-valued linear function
on the space Tp of vectors at p. The space of all one-forms at p is denoted
by T ∗

p . From the spaces Tp and T ∗
p we can form the Cartesian product

Πs
r = T ∗

p × · · · × T ∗
p

︸ ︷︷ ︸
r factors

×Tp × · · · × Tp
︸ ︷︷ ︸

s factors

.

Clearly, if (ω1, . . . ,ωr , a1, . . . , as) ∈ Πs
r , then the ai’s are vectors and the ωis

are one-forms. A tensor of type (r, s) at p is a function on Πs
r that is linear in

each argument.
A metric tensor g at a point p ∈ M is a symmetric tensor of type (0, 2) at

p. A tensor T of type (0, 2) is symmetric if Tab = 1
2(Tab+Tba). The signature

of g at p is the number of positive eigenvalues of the matrix (gab) at p, minus
the negative ones. A metric whose signature is (n − 2) is called a Lorentz
metric. We are now ready to give the definition of the mathematical model
of a spacetime.
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Definition D.5.2 A spacetime, that is, the collection of all events, is a pair
(M ,g), where M is a connected four-dimensional Hausdorff C∞ manifold
and g is a Lorentz metric.
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