
Chapter 7

Topological Hypothesis on the Origin of
Phase Transitions

In the previous chapter we have reported results of numerical simulations
for the fluctuations of observables of a geometric nature (e.g., configuration-
space curvature fluctuations) related to the Riemannian geometrization of the
dynamics in configuration space.1 These quantities have been computed, using
time averages, for many different models undergoing continuous phase transi-
tions, namely ϕ4 lattice models with discrete and continuous symmetries and
XY models. In particular, when plotted as a function of either the temperature
or the energy, the fluctuations of the curvature have an apparently singular
behavior at the transition point. Moreover, we have seen that the presence of
a singularity in the statistical-mechanical fluctuations of the curvature at the
transition point has been proved analytically for the mean-field XY model.

The aim of the present chapter is to try to understand on a deeper level the
origin of this peculiar behaviour. In Section 7.1, we will show, using abstract
geometric toy models, that a singular behavior in the fluctuations of the curva-
ture of a Riemannian manifold can be associated with a change in the topology
of the manifold itself. By “change of topology” we mean the following. Let us
consider a surface Sε that depends on a parameter ε in such a way that upon
varying the parameter, the surface is continuously deformed: as long as the
different deformed surfaces can be mapped smoothly one onto another,2 the
topology does not change; however, the topology changes if there is a critical
value of the parameter, say εc, such that the surface Sε>εc can no longer be
mapped smoothly onto Sε<εc .

The observation that a singularity in the curvature fluctuations of a
Riemannian manifold, of the same type as those observed numerically at phase
transitions, can be associated with a change in the topology of the manifold
leads us to conjecture that it is just this mechanism that could be the basis

1 More precisely, we considered the enlarged configuration space-time, endowed
with the Eisenhart metric.

2 The different surfaces are then said to be diffeomorphic to each other (see
Appendix A).
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of thermodynamic phase transitions. Such a conjecture was originally put
forward in [92] as follows: a thermodynamic transition might be related to a
change in the topology of the configuration space, and the observed singular-
ities in the statistical-mechanical equilibrium measure and in the thermody-
namic observables at the phase transition might be interpreted as a “shadow”
of this major topological change that happens at a more basic level. We will
refer to this conjecture as the topological hypothesis (TH).

In a first part of this chapter, we report about the logical path that,
through heuristic and indirect evidence, led us to formulate the TH. In the
second part of this chapter, a first direct numerical support to the validity of
the TH is given for a specific model.

7.1 From Geometry to Topology: Abstract
Geometric Models

Let us now describe how a singular behavior of the curvature fluctuations of
a manifold can be put in correspondence with a change in the topology of the
manifold itself. For the sake of clarity, we shall first discuss a simple example
concerning two-dimensional surfaces [90,92], and then we will generalize it to
the case of N -dimensional hypersurfaces [194,195].

The simple geometric model we are going to describe concerns surfaces
of revolution. A surface of revolution S ∈ R

3 is obtained by revolving the
graph of a function f around one of the axes of a Cartesian plane, and can be
defined, in parametric form, as follows [196]:

S(u, v) ≡ (x(u, v), y(u, v), z(u, v)) = (a(u) cos v, a(u) sin v, b(u)) , (7.1)

where either a(u) = f(u) and b(u) = u, if the graph of f is revolved around
the vertical axis, or a(u) = u and b(u) = f(u), if the graph is revolved
around the horizontal axis; in both cases, u and v are local coordinates on the
surface S: v ∈ [0, 2π] and u belongs to the domain of definition of the function
f .

Let us consider now in particular the two families of surfaces of revolution
defined as

Fε = (fε(u) cos v, fε(u) sin v, u) (7.2)

and
Gε = (u cos v, u sin v, fε(u)) , (7.3)

where
fε(u) = ±

√
ε + u2 − u4 , ε ∈ [εmin,+∞) , (7.4)

and εmin = − 1
4 . Some cases are shown in Figure 7.1.

There exists for both families of surfaces a critical value of ε, εc = 0,
corresponding to a change in the topology of the surfaces: the manifolds Fε

are diffeomorphic to a torus T
2 for ε < 0 and to a sphere S

2 for ε > 0; the
manifolds Gε are diffeomorphic to two spheres for ε < 0 and to one sphere
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Fig. 7.1. Some representatives of the two families of surfaces Fε and Gε defined in
(7.2) and (7.3) respectively. Each family is divided into two subfamilies by the critical
surface corresponding to εc = 0 (middle members in the picture). Members of the
same subfamily are diffeomorphic, whereas the two subfamilies are not diffeomorphic
to each other. From [90].

for ε > 0. The Euler–Poincaré characteristic (see Appendix A) is χ(Fε) = 0
if ε < 0, and χ(Fε) = 2 otherwise, while χ(Gε) is 4 or 2 for ε negative or
positive, respectively.

We now turn to the definition and the calculation of the curvature fluctu-
ations on these surfaces. Let M belong to one of the two families; its Gaussian
curvature K is [196]

K =
a′(a′′b′ − b′a′′)
a(b′2 + a′2)2

, (7.5)

where a(u) and b(u) are the coefficients of (7.1), and primes denote differen-
tiation with respect to u. The fluctuations of K can be then defined as

σ2
K = 〈K2〉 − 〈K〉2 = A−1

∫

M

K2 dS −
(
A−1

∫

M

K dS

)2

, (7.6)

where A is the area of M and dS is the invariant surface element. Both families
of surfaces exhibit a singular behavior in σK as ε → εc, as shown in Figure
7.2, in spite of their different curvature properties on average.3

We are now going to show that the result we have just obtained for
two-dimensional surfaces has a much more general validity: a generic topo-
logy change in an n-dimensional manifold is accompanied by a singularity in
its curvature fluctuations [194]. In order to do that, we have to make use of
some concepts belonging to Morse theory, which will also be used in Section
7.4 below; the basic elementary concepts of Morse theory are sketched in

3 For instance, 〈K〉(ε) = 0 for Fε as ε < 0, while for Gε the same average curvature
is positive and diverges as ε → 0.
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Fig. 7.2. The fluctuation σ of the Gaussian curvature of the surfaces Fε and Gε

is plotted vs. ε; σ is defined in (7.6), and ε is shifted by εmin = 0.25 for reasons of
clarity of presentation. (a) refers to Gε and (b) refers to Fε. The cusps appear at
ε = 0, where the topological transition takes place for both Fε and Gε. From [90].

Appendix C, where also references to the literature are given. We consider
then a hypersurface of R

N which is the u-level set of a function f defined in
R

N , i.e., a submanifold of R
N of dimension n = N−1 defined by the equation

f(x1, . . . , xN ) = u ; (7.7)

such a hypersurface can then be referred to as f−1(u). Let us now assume4

that f is a Morse function, i.e., such that its critical points (i.e., the points of
R

N where the differential df vanishes) are isolated. One of the most important
results of Morse theory is that the topology of the hypersurfaces f−1(u) can
change only by crossing a critical level f−1(uc), i.e., a level set containing at
least one critical point of f . This means that a generic change in the topology
of the hypersurfaces can be associated with critical points of f . Now, the
hypersurfaces f−1(u) can be given a Riemannian metric in a standard way
[197], and it is possible to analyze the behavior of the curvature fluctuations
in a neighborhood of a critical point. Let us assume, for the sake of simplicity,
4 This is not a strong assumption: in fact, it can be shown that Morse functions

are generic (see Appendix C).
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Fig. 7.3. Fluctuations of the Gauss curvature of a hypersurface f−1(u) of R
N vs.

u close to a critical point. Here σ
2/N
k is reported because it has the same dimen-

sions of the scalar curvature. Also dim(f−1(u)) = 100, and the Morse indexes are
1, 15, 33, 48, represented by solid, dotted, dashed, and long-dashed lines respectively.
From [194].

that this critical point is located at x0 = 0 and belongs to the level uc = 0. Any
Morse function can be parametrized, in the neighborhood of a x0, by means
of the so-called Morse chart, i.e., a system of local coordinates {yi} such that
f(y) = f(x0) −

∑k
i=1 y

2
i +

∑N
i=k+1 y

2
i (k is the Morse index of the critical

point). Then standard formulas for the Gauss curvature K of hypersurfaces
of R

N [197] can be used to compute explicitly the fluctuations of the curvature,
σK , of the level set f−1(u). Numerical results for the curvature fluctuations
are reported in Figure 7.3 and show that also at high dimension σ2

K develops
a sharp, singular peak as the critical surface is approached (for computational
details are reported in [195]).

7.2 Topology Changes in Configuration Space
and Phase Transitions

As we have discussed in Chapter 6, the curvature fluctuations of the configu-
ration space exhibit cusplike patterns in the presence of a second-order phase
transition. A truly cuspy pattern, i.e., an analytic discontinuity, is mathemati-
cally proven in the case of mean-field XY model. In Section 7.1, we have shown
that singular patterns in the fluctuations of the curvature of a Riemannian
manifold can be seen as consequences of the presence of a topology change.
Hence, we are led to the topological hypothesis (TH), i.e., to conjecture that
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at least continuous, symmetry-breaking phase transitions are associated with
topology changes in the configuration space of the system.5

However, an important question arises, in that the fluctuations of the
curvature considered in Chapter 6 have been obtained as time averages,
computed along the dynamical trajectories of the Hamiltonian systems under
investigation (or as statistical averages computed analytically, as in the case
of the mean-field XY model). Now, time averages of geometric observ-
ables are usually found to be in excellent agreement with ensemble aver-
ages [86, 89, 90, 92, 131], so that one could argue that the above-mentioned
singular-like patterns of the fluctuations of geometric observables are simply
the precursors of truly singular patterns due to the fact that the measures
of all the statistical ensembles tend to become singular in the limit N → ∞
when a phase transition is present. In other words, geometric observables,
like any other “honest” observable, already at finite N would feel the even-
tually singular character of the statistical measures, i.e., of the probability
distribution functions of the statistical-mechanical ensembles. If this were the
correct explanation, we could not attribute the cusplike patterns of the cur-
vature fluctuations to any special geometric features of configuration space,
and the cusp-like patterns observed in the numerical simulations could not be
considered as (indirect) confirmations of the TH.

In order to elucidate this important point, three different paths have been
followed: (i) purely geometric information about certain submanifolds of con-
figuration space has been worked out independently of the statistical measures
in the case of the two-dimensional ϕ4 model, and the results lend indirect sup-
port to the TH [194]; (ii) a direct numerical confirmation of the TH has been
given in [198] by means of the computation of a topologic invariant, the Euler
characteristic, in the case of a 2D lattice ϕ4 model; (iii) a direct analytic con-
firmation of the TH has been found in the particular case of the mean-field
XY model [199] and of a trigonometric model with k-body interactions. We
report on items (i) and (ii) in this chapter and (iii) in Chapter 10.

7.3 Indirect Numerical Investigations of the Topology
of Configuration Space

In order to separate the singular effects due to the singular character of sta-
tistical measures at a phase transition from the singular effects due to some
topological transition in configuration space, the first natural step is to con-
sider again σ2

K as an observable, and to integrate it on suitable submanifolds
of configuration space by means of a geometric measure, i.e., by means of a
measure that has nothing to do with statistical ensemble measures.

Consider as ambient space the N -dimensional configuration space M of
a Hamiltonian system with N degrees of freedom, which, when N → ∞,
5 As we shall see in the following chapters, also first-order phase transitions are

necessarily driven by topological changes.
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undergoes a phase transition at a certain finite temperature Tc (or critical
energy per degree of freedom εc), and let V (ϕ) be its potential energy.

Then the relevant geometrical objects are the submanifolds of M
defined by

Mu = V −1(−∞, u] = {ϕ ∈M : V (ϕ) ≤ u} , (7.8)

i.e., each Mu is the set {ϕi}N
i=1 such that the potential energy does not exceed

a given value u. As u is increased from −∞ to +∞, this family covers suc-
cessively the whole manifold M . All the submanifolds Mu can be given a
Riemannian metric g whose choice is largely arbitrary. On all these manifolds
(Mu, g) there is a standard invariant volume measure:

dη =
√

det(g) dϕ1 · · · dϕN , (7.9)

which has nothing to do with statistical measures. Let us finally define the
hypersurfaces Σu as the u-level sets of V , i.e.,

Σu = V −1(u) , (7.10)

which are nothing but the boundaries of the submanifolds Mu.
According to the discussion reported in Section 7.1, an indirect way to

study the presence of topology changes in the family {(Mu, g)} is to look at
the behavior of the fluctuations of the Gaussian curvature, σ2

K , defined as

σ2
K = 〈K2

G〉Σu
− 〈KG〉2Σu

, (7.11)

where 〈·〉 stands for integration over the surface Σu, as a function of u. The
presence of cusplike singularities of σ2

K for some critical value of u, uc, would
eventually signal the presence of a topology change of the family {(Mu, g)}
at uc [194]. Such an indirect geometric probing of the presence of critical
points seems an expedient way to probe the possible topology changes of the
manifolds (Mu, g). In fact, the properties of the manifolds Mu are closely
related to those of the hypersurfaces {Σu}u≤uc , as can be inferred from the
equation ∫

Mu

fdη =
∫ u

0

dv

∫

Σv

f |Σv
dω/‖∇V ‖ , (7.12)

where dω is the induced measure6 on Σu and f a generic function [200]. From
Morse theory (see Appendix C) we know that the surface Σuc

defined by
V = uc is a degenerate quadric, so that in its vicinity some of the principal
curvatures [197] of the surfaces Σu≈uc tend to diverge.7 Such a divergence

6 If a surface is parametrically defined through the equations xi = xi(z1, . . . , zk),
i = 1, . . . , N , then the metric gij induced on the surface is given by

gij(z
1, . . . , zk) =

∑N

n=1
∂xn

∂zi
∂xn

∂zj . See Appendix B.
7 The principal curvatures are the inverse of the curvature radii measured, at any

given point of a surface, in suitable directions. At a Morse critical point some of
these curvature radii vanish.
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is generically detected by any function of the principal curvatures, and thus
for practical computational reasons, instead of the Gauss curvature (which is
the product of all the principal curvatures) we shall consider the total second
variation of the scalar curvature R (i.e., the sum of all the possible products of
two principal curvatures) of the manifolds (Mu, g), according to the definition

σ2
R(u) = [Vol(Mu)]−1

∫

Mu

dη

[
R− [Vol(Mu)]−1

∫

Mu

dηR
]2

(7.13)

with R = gkjRl
klj , where Rl

kij are the components of the Riemann curvature
tensor [see Appendix B] and Vol(Mu) =

∫
Mu

dη. The subsets Mu of config-
uration space are given the structure of Riemannian manifolds (Mu, g) by
endowing all of them with the same metric tensor g. However, the choice of
the metric g is arbitrary in view of probing possible effects of the topology on
the geometry of these manifolds.

What has been hitherto discussed now requires the choice of a model to
perform a numerical investigation. A good candidate is represented by the
so-called ϕ4 model on a d-dimensional lattice Z

d with d = 1, 2, described by
the potential function

V =
∑

i∈Zd

(
−µ2

2
ϕ2

i +
λ

4
ϕ4

i

)
+
∑

〈ik〉∈Zd

1
2
J(ϕi − ϕk)2 , (7.14)

where 〈ik〉 stands for nearest-neighbor sites. This system has a discrete
Z2-symmetry and short-range interactions; therefore, in d = 1 there is no
phase transition whereas in d = 2 there is a symmetry-breaking transi-
tion, at a finite temperature, of the same universality class of the 2D Ising
model. In [194], three different types of metrics have been considered for this
model, i.e.,

(i) g
(1)
µν = [A− V (ϕ)]δµν , i.e., a conformal deformation (Section B.3.2) of the

Euclidean flat metric δµν , where A > 0 is an arbitrary constant chosen
large enough to be sure that in the relevant interval of values of u the
determinant of the metric is always positive;

(ii)g(2)
µν and g

(3)
µν are generic metrics (no longer conformal deformations of the

flat metric) defined by

(g(k)
µν ) =

⎛

⎝
f (k) 0 1
0 I 0
1 0 1

⎞

⎠ , k = 2, 3 , (7.15)

where I is the (N −2)-dimensional identity matrix, g(2) is obtained by set-
ting f (2) = 1

N

∑
α∈Zd ϕ4

α +A, and g(3) by setting f (3) = 1
N

∑
α∈Zd ϕ6

α + A,
with A > 0, and α labels the N lattice sites of a linear chain (d = 1) or of
a square lattice (d = 2, N = n× n).
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These choices are completely arbitrary, however, and only if metrics of very
simple form are chosen are both analytical and numerical computations fea-
sible also for rather large values of N . Thus the first metric has been chosen
diagonal, and the other two metrics concentrate in only one matrix element all
the nontrivial geometric information. Moreover, the first metric still contains a
reference to the physical potential, whereas the other two define metric struc-
tures that are completely independent of the physical potential and contain
only monomials of powers sufficiently high that they do not vanish after two
successive derivatives have been taken (needed to compute curvatures). The
topology of the subsets of points Mu and Σu of R

N is already determined
(though well concealed) by the definitions of (7.8) and (7.10); the task is to
“capture” some information about their topology through a mathematical
object or structure, defined on these sets of points, that is capable of mirror-
ing the variations of topology through the u-pattern of an analytic function.
This idea follows the philosophy of standard mathematical theories of dif-
ferential topology. For example, within Morse theory, the information about
topology is extracted through the critical points of any function—defined on
a given manifold—satisfying some conditions (necessary to be a good Morse
function, see Appendix C), or, within cohomology theory, topology is probed
through vector spaces of differential forms (the de Rham cohomology vector
spaces, see Appendix A) “attached” to a given manifold. Provided that good
mathematical quantities are chosen as topology-variation detectors, arbitrary
Riemannian metric structures could work as well.

For the above-defined metrics g(k), k = 1, 2, 3, simple algebra leads from
the definition of the scalar curvature (see Appendix B) to the following explicit
expressions:

R(1) = (N − 1)
[

�V

(A− V )2
− ‖∇V ‖2

(A− V )3

(
N

4
− 3

2

)]
, (7.16)

R(k) =
1

(f (k) − 1)

[
‖∇̃f (k)‖2

2(f (k) − 1)
− �̃f (k)

]
, k = 2, 3 , (7.17)

where ∇ and � are the Euclidean gradient and Laplacian respectively, and ∇̃
and �̃ lack the derivative ∂/∂ϕα with α = 1 in the d = 1 case, and lack the
derivative ∂/∂ϕα with α = (1, 1) in the d = 2 case.

The numerical computation of the geometric integrals in (7.13) is worked
out by means of a Monte Carlo algorithm [169, 195] to sample the geomet-
ric measure dη by means of an “importance sampling” algorithm suitably
modified (see Section 7.6.1).

In Figures 7.4 and 7.5, σ2
R(u), where u = u/N , are given for the one-

and two-dimensional cases obtained for two different lattice sizes with g(1)

(Figure 7.4), and at given lattice size with g(2,3) (Figure 7.5). Peaks of σ2
R(u)

appear at a certain value uc = uc/N , of u in the two-dimensional case, whereas
only smooth patterns are found in the one-dimensional case, where no phase
transition is present.
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Fig. 7.4. Variance of the scalar curvature of Mu vs. u/N computed with the metric
g(1). Full circles correspond to the 1D ϕ4 model with N = 400. Open circles refer to
the 2D ϕ4 model with N = 20 × 20 lattice sites, and full triangles refer to 40 × 40
lattice sites (whose values are rescaled for graphical reasons). From [194].

Fig. 7.5. σ2
R(u) of Mu vs. u/N computed for the ϕ4 model with metric g(2) in 1D,

N = 400 (open triangles); metric g(2) in 2D, N = 20 × 20 (full triangles); metric
g(3) in 1D, N = 400 (open circles); metric g(3) in 2D, N = 20 × 20 (full circles).
From [194].

According to the discussion above, these peaks can be considered as
indirect evidence of the presence of a topology transition in the manifolds
Mu at u = uc in the case of the two-dimensional ϕ4 model. It is in particu-
lar the persistence of cusplike patterns of σ2

R(u) independently of the metric
chosen that lends credence to the idea that this actually reflects a topological
transition. Now we want to argue that the topological transition occurring at
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uc/N is related to a thermodynamic phase transition that occurs in the ϕ4

model. In order to do that, in [194] the average potential energy per particle

u(T )
N

=
〈V 〉
N

(7.18)

has been numerically computed, as a function of T , by means of both Monte
Carlo averaging with the canonical configurational measure and Hamiltonian
dynamics. In the latter case the temperature T is given by the average kinetic
energy per degree of freedom, and u is obtained as the time average. Figure 7.6
shows a perfect agreement between time and ensemble averages. The phase
transition point is well visible at uc = uc/N ≈ 3.75. Looking at Figures 7.4
and 7.5, we realize that within the numerical accuracy, the critical value of
the potential energy per particle uc/N where the topological change occurs
equals the statistical-mechanical average value of the potential energy at the
phase transition. At this point the doubt, formulated at the beginning of this
chapter, about the possible nongeometrical origin of the “singular” cusplike
patterns of σ2

R(u) has been dissipated. These results have been found inde-
pendently of statistical-mechanical measures and of their singular character
in the presence of a phase transition. These results are also independent—at
least to the limited extent of the three metric tensors reported above—of the
geometric structure given to the family {Mu}. Thus they seem most likely to
have their origin at a deeper level than the geometric one, i.e. at the topo-
logic level. Hence the observed phenomenology strongly hints that some major
change in the topology of the configuration-space submanifolds {Mu} occurs
when a second-order phase transition takes place.

Fig. 7.6. Average potential energy vs. temperature for the 2D lattice ϕ4 model with
O(1) symmetry. Lattice size N = 20 × 20. The solid line is made out of 200 points
obtained as time averages. Full circles represent Monte Carlo estimates of canonical
ensemble averages. The dotted lines locate the phase transition. From [194].
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7.4 Topological Origin of the Phase Transition
in the Mean-Field XY Model

Until now we have not yet given any direct analytic evidence of the valid-
ity of the TH. Let us now consider again the mean-field XY model (6.13).
As we shall see in detail in Chapter 10, for this model we can analytically
compute both its thermodynamics and a topological invariant (the Euler–
Poincaré characteristic) of the submanifolds Mv of its configuration space.
Hence, it is possible to show analytically that a particular topological change
in the configuration space is related to the thermodynamic phase transition.
However, in this chapter we begin by discussing a first simplified approach
to the model [199] giving evidence of the topological transition in a space of
collective variables.

Let us consider again, as was already done in Section 7.3, the family Mv

of submanifolds of the configuration space defined in (7.8); now the potential
energy per degree of freedom is that of the mean-field XY model, i.e.,

V(ϕ) =
V (ϕ)
N

=
J

2N2

N∑

i,j=1

[1− cos(ϕi − ϕj)]−
h

N

N∑

i=1

cosϕi , (7.19)

where ϕi ∈ [0, 2π]. Such a function can be considered a Morse function on M ,
so that, according to Morse theory (see Appendix C), all these manifolds have
the same topology until a critical level V−1(vc) is crossed, where the topology
of Mv changes.

A change in the topology of Mv can occur only when v passes through a
critical value of V. Thus in order to detect topological changes in Mv we have
to find the critical values of V, which means solving the equations

∂V(ϕ)
∂ϕi

= 0 , i = 1, . . . , N . (7.20)

For a general potential energy function V, the solution of the (7.20) would be
a formidable task [202], but in the case of the mean-field XY model, the mean-
field character of the interaction greatly simplifies the analysis, allowing an
analytical treatment of the (7.20); moreover, a projection of the configuration
space onto a two-dimensional plane is possible.

We recall that in the limit h → 0, the system has a continuous phase
transition, with classical critical exponents, at Tc = 1/2, or εc = 3/4, where
ε = E/N is the energy per particle. Let us now show that this phase transition
has its foundation in a basic topological change that occurs in the configura-
tion space M of the system. To begin with, note that since V(ϕ) is bounded,
−h ≤ V(ϕ) ≤ 1/2+h2/2, the manifold is empty as long as v < −h, and when
v increases beyond 1/2 + h2/2 no changes in its topology can occur, so that
the manifold Mv remains the same for any v > 1/2 + h2/2, and is then an
N -torus. To detect topological changes we have to solve (7.20). To this end
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it is useful to define the magnetization vector, i.e., the collective spin vector
m = 1

N

∑N
i=1 si, which as a function of the angles is given by

m = (mx,my) =

(
1
N

N∑

i=1

cosϕi,
1
N

N∑

i=1

sinϕi

)
. (7.21)

Due to the mean-field character of the model, the potential energy (6.13) can
be expressed as a function of m alone (remember that J = 1), so that the
potential energy per particle reads

V(ϕ) = V(mx,my) =
1
2
(1−m2

x −m2
y)− hmx . (7.22)

This allows us to write (7.20) in the form (i = 1, . . . , N)

(mx + h) sinϕi −my cosϕi = 0 . (7.23)

Now we can solve these equations and find all the critical values of V. The
solutions of (7.23) can be grouped into three classes:

(i) The minimal energy configuration ϕi = 0 ∀i, with a critical value
v = v0 = −h, which tends to 0 as h→ 0. In this case, m2

x + m2
y = 1.

(ii) Configurations such that my = 0, sinϕi = 0 ∀i. These are the config-
urations in which ϕi equals either 0 or π; i.e., we have again ϕi = 0 ∀i, but
also the N configurations with ϕk = π and ϕi = 0 ∀i = k, as well as the
N(N − 1) configurations with 2 angles equal to π and all the others equal
to 0, and so on, up to the configuration with ϕi = π ∀i. The critical values
corresponding to these critical points depend only on the number of π’s, nπ,
so that v(nπ) = 1

2 [1− 1
N2 (N − 2nπ)2]− h

N (N − 2nπ). We see that the largest
critical value is, for N even, v(nπ = N/2) = 1/2 and that the number of
critical points corresponding to it is O(2N ).

(iii) Configurations such that mx = −h and my = 0, which correspond to
the critical value vc = 1/2 + h2/2, which tends to 1/2 as h→ 0. The number
of these configurations grows with N not slower than N ! [199].

Configurations (i) are the absolute minima of V, (iii) are the absolute
maxima, and (ii) are all the other stationary configurations of V.

Since for v < v0 the manifold is empty, the topological change that
occurs at v0 is the one corresponding to the “birth” of the manifold from
the empty set; subsequently there are many topological changes at values
v(nπ) ∈ (v0, 1/2] till at vc there is a final topological change that corresponds
to the “completion” of the manifold. We remark that the number of critical
values in the interval [v0, 1/2] grows with N and that eventually the set of these
critical values becomes dense in the limit N →∞. However, the critical value
vc remains isolated from other critical values also in that limit. We observe
that it is necessary to consider a nonzero external field h in order that V be
a Morse function, because if h = 0 all the critical points of classes (i) and (ii)
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are degenerate, in which case topological changes do not necessarily occur.8

This degeneracy is due to the O(2)-invariance of the potential energy in the
absence of an external field. To be sure, for h = 0, V may not be a Morse
function on the whole of M either, but only on Mv with v < vc, because
the critical points of class (iii) may also be degenerate, so that vc does not
necessarily correspond to a topological change. However, this difficulty could
be dealt with by using that the potential energy can be written in terms of
the collective variables mx and my, as in (7.22). This implies that we consider
the system of N spins projected onto the two-dimensional configuration space
of the collective spin variables. According to the definition (7.21) of m, the
accessible configuration space is now not the whole plane, but only the disk

D = {(mx,my) : m2
x + m2

y ≤ 1} . (7.24)

Thus we want to study the topology of the submanifolds

Dv = {(mx,my) ∈ D : V(mx,my) ≤ v} . (7.25)

The sequence of topological transformations undergone by Dv can now be
very simply determined in the limit h → 0 (see Figure 7.7), as follows. As
long as v < 0, Dv is the empty set. The first topological change occurs at
v = v0 = 0, where the manifold appears as the circle m2

x + m2
y = 1, i.e., the

boundary ∂D of D. Then as v grows Dv is given by the conditions

1− 2v ≤ m2
x + m2

y ≤ 1 , (7.26)

i.e., it is the ring with a hole centered at (0, 0) (punctured disk) contained
between two circles of radii 1 and

√
2v. As v continues to grow, the hole

shrinks and is eventually completely filled when v = vc = 1/2, where the
second topological change occurs (see Section A.5 on the fundamental group).
In this coarse-grained two-dimensional description in D, all the topological

v = 0 0 < v < 1/2 v = 1/2

Fig. 7.7. The sequence of topological changes undergone by the manifolds Dv with
increasing v in the limit h → 0.

8 It would also be possible to avoid this problem by considering an improved version
of Morse theory, referred to as equivariant Morse theory [203].
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changes that occur in M between v = 0 and v = 1/2 disappear, and only
the two topological changes corresponding to the extrema of V, occurring at
v = v0 and v = vc, survive. This means that the topological change at vc

should be present also in the full N -dimensional configuration space, so that
the degeneracies mentioned above for the critical points of class (iii) should
not prevent a topological change.

Now we want to argue that the topological change occurring at vc is related
to the thermodynamic phase transition of the mean-field XY model. Since the
Hamiltonian is of the standard form (1.1), the temperature T , the energy per
particle ε, and the average potential energy per particle u = 〈V〉 obey, in the
thermodynamic limit, the following equation:

ε =
T

2
+ u(T ) , (7.27)

where we have set Boltzmann’s constant equal to 1. Substituting the values
of the critical energy per particle εc = 3/4 and of the critical tempera-
ture Tc = 1/2 we get uc = u(Tc) = 1/2, so that the critical value of the
potential energy per particle vc where the last topological change occurs equals
the statistical-mechanical average value of the potential energy at the phase
transition,

vc = uc . (7.28)

Thus although a topological change in M occurs at any N , and vc is
independent of N , there is a connection of such a topological change and
a thermodynamic phase transition only in the limit N → ∞, h → 0+, when
indeed a thermodynamic phase transition can be defined.

Since not all topological changes correspond to phase transitions, those
that do correspond remain to be determined to make the conjecture of [92]
more precise. In this context, we consider one example where there are topo-
logical changes very similar to the ones of our model but no phase transitions,
i.e., the one-dimensional XY model with nearest-neighbor interactions, whose
Hamiltonian is of the class (1.1) with interaction potential

V (ϕ) =
1
4

N∑

i=1

[1− cos(ϕi+1 − ϕi)]− h
N∑

i=1

cosϕi . (7.29)

In this case the configuration space M is still an N -torus, and using again the
potential energy per degree of freedom V = V/N as a Morse function, we can
see that also here there are many topological changes in the submanifolds Mv

as v is varied in the interval [0, 1/2] (after taking h→ 0+). However there are
critical points of the type ϕj = ϕk = ϕl = · · · = π, ϕi = 0 ∀i = j, k, l, . . .; in
contrast to the mean-field XY model, it is now no longer the number of π’s
that determines the value of V at the critical point, but rather the number of
domain walls, nd, i.e., the number of boundaries between “islands” of π’s and
“islands” of 0’s: v(nd) = nd/2N . Since nd ∈ [0, N ], the critical values lie in the
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same interval as in the case of the mean-field XY model; but now the maximum
critical value v = 1/2, instead of corresponding to a huge number of critical
points, which rapidly grows with N , corresponds to only two configurations
with N domain walls, which are ϕ2k = 0, ϕ2k+1 = π, with k = 1, . . . , N/2,
and the reversed one. There are also “spin-wave-like” critical points, i.e., such
that eiθk = const e2πikn/N with n = 1, . . . , N [204]; their critical energies are
contained in the interval above but again there is not a critical value associated
with a huge number of critical points.

Thus this example suggests the conjecture that a topological change in
the configuration-space submanifolds Mv occurring at a critical value vc is
associated with a phase transition in the thermodynamic limit only if the
number of critical points corresponding to the critical value vc is sufficiently
rapidly growing with N and makes a big jump at vc. On the basis of the
behavior of the mean-field XY model we expect then that such a growth
should be at least exponential. Furthermore, a relevant feature appears to
be that vc remains an isolated critical value also in the limit N → ∞: in
the mean-field XY model this holds only if the thermodynamic limit is taken
before the h → 0+ limit: this appears as a topological counterpart of the
noncommutativity of the limits h → 0+ and N → ∞ in order to get a phase
transition in statistical mechanics.

The sequence of topological changes occurring with growing V makes the
configuration space larger and larger, till at vc the whole configuration space
becomes fully accessible to the system through the last topological change.
From a physical point of view, this corresponds to the appearance of more and
more disordered configurations as T grows, which ultimately lead to the phase
transition at Tc.

7.5 The Topological Hypothesis

Let us consider the canonical partition function ZN for an N -degrees-of-
freedom system described by a standard Hamiltonian H(p, q) =

∑
p2/2 +

V (q), where p and q are vectors. For these systems, after a trivial integration
of the kinetic energy term, it reads

Z(β,N) =
∫

dNp dNq e−βH(p,q) =
(
π

β

)N
2
∫

dNq e−βV (q) , (7.30)

showing that its nontrivial part is the configurational partition function

Zc(β,N) =
∫

RN

dNq e−βV (q) =
∫ +∞

0

dv e−βv

∫

Σv

dσ

‖∇V ‖ , (7.31)
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where a coarea formula [200] has been used to unfold the structure integrals

ΩN (v) ≡
∫

Σv

dσ

‖∇V ‖ , (7.32)

an infinite collection of integrals on the equipotential hypersurfaces Σv of the
configuration space defined by Σv ≡ {q ∈ R

N |V (q) = v} ⊂ R
N , and dσ is

the volume form induced by the immersion of Σv in R
N .

Equation (7.31) shows that, formally, Zc is the Laplace transform of the
structure integral.

Then, if we consider the microcanonical ensemble, the basic mathematical
object is the phase space volume

Ω(E) =
∫ E

0

dη Ω(−)(E − η)
∫

dNp δ

(
∑

i

1
2
p2

i − η

)

where

Ω(−)(E − η) =
∫

dNq Θ[V (q)− (E − η)] =
∫ E−η

0

dv

∫

Σv

dσ

‖∇V ‖ , (7.33)

whence

Ω(E) =
∫ E

0

dη
(2πη)N/2

ηΓ (N
2 )

∫ E−η

0

dv

∫

Σv

dσ

‖∇V ‖ . (7.34)

Here too, as in the above decomposition of Zc(β,N), the only nontrivial
objects are the structure integrals (7.32).

Once the microscopic interaction potential V (q) is given, the configura-
tion space of the system is automatically foliated into the family {Σv}v∈IR of
equipotential hypersurfaces independently of any statistical measure we may
wish to use. Now, from standard statistical-mechanical arguments we know
that the larger the number N of particles, the closer to some Σv are the
microstates that significantly contribute to the statistical averages of thermo-
dynamic observables. At large N , and at any given value of the inverse
temperature β, the effective support of the canonical measure is narrowed
very close to a single Σv = Σv(βc); similarly, in the microcanonical ensemble,
the fluctuations of potential and kinetic energies tend to vanish at increasing
N so that the effective contributions to Ω(E) come from a close neighborhood
of a Σv = Σv(Ec).

Now, the topological hypothesis consists in assuming that some suit-
able change of the topology of the {Σv}, occurring at some vc = vc(βc)
(or vc = vc(Ec)), is the deep origin of the singular behavior of thermody-
namic observables at a phase transition (by change of topology we mean that
{Σv}v<vc

are not diffeomorphic to the {Σv}v>vc
). In other words, the claim

is that the canonical and microcanonical measures must “feel” a big and
sudden change, if any, of the topology of the equipotential hypersurfaces of
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their underlying supports, the consequence being the appearance of the typi-
cal signals of a phase transition, i.e., almost singular energy or temperature
dependencies of the averages of appropriate observables. The larger N the
narrower is the effective support of the measure and hence the sharper can
be the mentioned signals. Eventually, in the N → ∞ limit this sharpening
will lead to nonanalyticity.

On the basis of this and what was found in [92,194,199], we formulate the
TH as follows:
Topological Hypothesis: The basic origin of a phase transition lies in a
topological change of the support of the measure describing a system. This
change of topology induces a change of the measure itself at the transition
point.

In other words, this hypothesis stipulates that some change of the topo-
logy of the {Σv}, occurring at some vc = vc(βc), could be the origin of the
singular behavior of thermodynamic observables at a phase transition rather
than measure singularities, which in this view are induced from a deeper level
where the topological changes take place.

Remark 7.1. As we shall see in the following chapters, topological changes of
the manifolds Σv and Mv are associated to the existence of critical points of
the potential function, i.e., points where ∇V = 0. By looking at the defin-
ition of the structure integral (7.32), one could naively infer that since the
denominator ‖∇V ‖ vanishes at the critical points, entailing a divergence of
the structure integral, the critical points, and thus topology, must be relevant
to the divergence of thermodynamic observables. However, such a kind of rea-
soning would be completely wrong and misleading. On large–N hypersurfaces
the integration measure regularizes the structure integral also at the critical
points so that the vanishing of the denominator does not entail any diver-
gence of the structure integral (Consider, for example, that Σv is a large–N
hypersphere, and write ∇V near a critical point as a quadratic form using the
Morse chart). The way topology induces the appearance of thermodynamic
singularities is by far more subtle, as will be clarified in the next chapters.

7.6 Direct Numerical Investigations of the Topology
of Configuration Space

The first successful attempt at obtaining a direct evidence that topologi-
cal changes are associated with phase transitions, and thus the first direct
evidence supporting the topological hypothesis, is numerical.

Since the counterpart of a phase transition is expected to be a suitable
breaking of diffeomorphicity among the surfaces Σv, it is appropriate to choose
a diffeomorphism invariant to probe whether and how the topology of the Σv

changes as a function of v. This is a very challenging task because one has
to deal with high-dimensional manifolds. Fortunately, a topological invariant
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exists whose computation is feasible, yet demands a big effort. This is the Euler
characteristic, a diffeomorphism invariant, expressing fundamental topological
information (see Appendix A).

Let us recall how it is defined. First, let us consider that a basic way to
analyze a geometrical object is to fragment it into other more familiar objects
and then to examine how these pieces fit together. Take, for example, a surface
Σ in Euclidean three-dimensional space. Slice Σ into pieces that are curved
triangles (this is called a triangulation of the surface). Then count the number
F of faces of the triangles, the number E of edges, and the number V of ver-
tices on the tesselated surface. Now, no matter how we triangulate a compact
surface Σ, χ(Σ) = F−E+V will always equal a constant that is characteristic
of the surface and that is invariant under diffeomorphisms φ : Σ → Σ′. This is
the Euler characteristic of Σ. At higher dimensions this can be again defined
by using higher-dimensional generalizations of triangles (simplices) and by
defining the Euler characteristic of the n-dimensional manifold Σ to be

χ(Σ) =
n∑

k=0

(−1)k(# of “faces of dimension k”). (7.35)

In differential topology an equivalent definition of χ(Σ) is

χ(Σ) =
n∑

k=0

(−1)kbk(Σ) , (7.36)

where the numbers bk, the Betti numbers of Σ, are diffeomorphism invariants
(see Appendix A). While it would be hopeless to try to compute χ(Σ) from
(7.36) in the case of nontrivial physical models at large dimension, there is
a possibility given by a powerful theorem, the Gauss–Bonnet–Hopf theorem,
that relates χ(Σ) to the total Gauss–Kronecker curvature of the manifold,
that is,

χ(Σ) = γ

∫

Σ

KG dσ , (7.37)

which is valid for even dimensional hypersurfaces of Euclidean spaces R
N [here

dim(Σ) = n ≡ N − 1], and where: γ = 2/Vol(Sn
1 ) is twice the inverse of the

volume of an n-dimensional sphere of unit radius; KG is the Gauss–Kronecker
curvature of the manifold; dσ =

√
det(g)dx1dx2 · · · dxn is the invariant volume

measure of Σ, and g is the Riemannian metric induced from R
N . The definition

and significance of the Gauss–Kronecker curvature are given in Chapter 8. The
practical computation of KG at any point x ∈ Σv proceeds from the knowledge
of a basis {v1, . . . ,vn} for the tangent space of Σv at x, so that, using the
directional derivatives ∇vi

V , it is

KG(x) =
(−1)n

‖∇V ‖n

∣∣∣∣∣∣∣∣

⎛

⎜⎜⎝

∇v1∇V
...

∇vn
∇V

∇V

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

⎛

⎜⎜⎝

v1
...

vn

∇V

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣

−1

. (7.38)
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7.6.1 Monte Carlo Estimates of Geometric Integrals

In order to perform a numerical computation of the topological invariant given
by the Gauss–Bonnet–Hopf formula (7.37), the numerical evaluation of mul-
tiple integrals in high-dimensional spaces is needed. To this end, the Monte
Carlo–Metropolis method was devised a long time ago and apart from a large
number of improvements and modifications of the basic scheme to fit it to
different kinds of problems, the main feature remains unaltered: we can com-
pute only densities and not the actual numerical value of the multiple integral
under examination. The basic scheme consists in any algorithm capable of
generating a Markov chain, in the high-dimensional space of interest, whose
asymptotic probability density coincides with the measure of the integral to
compute.

In particular, since we have to compute surface integrals
∫

Σv
g dσ, it is

necessary to devise an efficient algorithm to generate a Markov chain on a
hypersurface. In order to constrain a Markov chain generated with the stan-
dard “importance sampling” [205] on a given Σv, one has to adopt a projection
algorithm.

Suppose that xk ∈ Σv is the point generated at the kth step of the Monte
Carlo Markov chain, and that the updated point at the following step x̃k+1 =
xk + ∆xk is not too far from the preceding one (‖∆xk‖ � 1 in convenient
units). In general, it is x̃k+1 ∈ Σv+∆v; thus x̃k+1 is projected on the tangent
plane at xk to Σv. The coordinates of the updated and projected configuration
are thus the following:

xk+1 = xk −
∆v

‖∇V ‖2 · ∇V , (7.39)

where ∆v = (x̃k+1 − xk) ·∇V is the difference in potential energy between the
two configurations. The projection algorithm allows one to efficiently perform
a random walk on a hypersurface Σv, provided that the new configurations
proposed at each step are generated and/or preselected so as not to be too
far from Σv.

Another important point concerns the measure dσ entering the integral
7.37. This is the canonical volume form associated with the metric tensor
gαγ(v) of the hypersurface that is obtained by restricting the Euclidean metric
of R

N to Σv. Thus we have

gαγ(v) = δαγ +
∂αV ∂γV

∂NV ∂NV
,

where it is understood that gαγ(v)is a function of the point where it is
computed. The volume form is

dσ =
N−1∏

i=1

dxi

√
|g(v)| =

N−1∏

i=1

dxi
‖∇V ‖
|∂NV | . (7.40)
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The Monte Carlo algorithm has to be defined to sample the geometric measure
(7.40) through the standard “importance sampling” method. Let O(x) be the
observable that we want to average with the measure

√
|g(v)|, and let x ∈ Σv

be an arbitrary initial condition. Then one proceeds with a random update of
the coordinates of x so as to obtain a new configuration x̃ = (x + ∆x) ∈ Σṽ

not too far from x; then the coordinates of x̃ are modified by projecting them
according to (7.39) on Σv. Then the following ratio of weights is computed:

ζ =

√
|g(v′)|√
|g(v)|

. (7.41)

If ζ > 1, then the new proposed configuration is accepted; if ζ < 1, then a
random number w ∈ [0, 1] is generated; and if w < ζ, again the new configura-
tion is accepted. Otherwise, it is rejected and the old configuration is counted
once again. The observable O(x) is averaged on the set of all the accepted
configurations

By means of a Monte Carlo algorithm one can estimate only averages of
observables, that is,

〈O〉MC(v) =

∫
Σv

dσO(x)
∫

Σv
dσ

, (7.42)

while we are interested in evaluating the actual values of the integral (7.37).
In order to do this, we should be able to estimate the volume that appears in
the denominator of (7.42). Denote by

ω(v) =
∫

Σv

dσ (7.43)

the volume of interest, and notice that the following identity holds:

d

dv
logω(v) =

ω′(v)
ω(v)

, (7.44)

where ω′(v) stands for the first derivative of the volume (7.43) with respect
to v. In the absence of critical points, Federer’s derivation formula (see
Chapter 8) gives

ω′(v) =
∫

Σv

dσ

‖∇V ‖∇
(

∇V

‖∇V ‖

)
. (7.45)

However, since we tackle potentials that are good Morse functions, the number
of critical values of these potentials is finite in any finite interval of potential
energy values, so that, even in the presence of critical values, (7.45) can be
safely used in Monte Carlo computations. In fact, the probability of numeri-
cally falling exactly on a critical level set is zero. Moreover, the volume ω(v)
and its first derivative are regular (see Theorem 9.14 of the Chapter 9). By
combining (7.44) and (7.45) we get
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d

dv
logω(v) =

∫

Σv

dσ

‖∇V ‖∇
(

∇V

‖∇V ‖

)

∫

Σv

dσ

, (7.46)

which is still in suitable form to be numerically computed through a Monte
Carlo algorithm.

Let us introduce the quantity9

M1 = ∇
(

∇V

‖∇V ‖

)
, (7.47)

which is proportional to the mean curvature, and integrate (7.46) to obtain

ω(v) = ω(v0) exp
{∫ v

v0

dw

〈
M1

‖∇V ‖

〉

MC

}
, (7.48)

so that the potential energy dependence of the volume, ω(v), is determined
apart from a constant ω(v0), which, however, is the same for any value v. This
last equation makes it possible to numerically estimate, by means of a Monte
Carlo algorithm, the integral (7.37), with the only indeterminacy due to the
unknown multiplicative constant ω(v0).

7.6.2 Euler Characteristic for the Lattice φ4 Model

Let us now consider the family of {Σv}v∈R associated again with the lattice
ϕ4 model, described by the potential function (7.14) and show how things
work in practice.

By computing χ(Σv) vs. v according to (7.37), one can probe whether
and how the topology of the hypersurfaces Σv varies with v. A variation of
the Euler characteristic signals a change of topology. However, the converse
can be false. For example, odd-dimensional manifolds have vanishing Euler
characteristic no matter what their topology is. But the Euler characteristic,
as far as a numerical investigation of topology is concerned, seems to be “the
only game in town.” So, in order to make possible the numerical estimate of the
variations of the Euler characteristic, we resort to the Monte Carlo algorithm
described above. By means of a Monte Carlo scheme we can estimate only∫

Σv
KG dσ/

∫
Σv

dσ rather than the total value (7.37) of KG on Σv, hence the
need for an estimate of ω(v) =

∫
Σv

dσ as a function of v. This is achieved by
means of formula (7.48), which requires us to compute also the Monte Carlo
average 〈M1/‖∇V ‖〉Σv

MC. Thus the final outcome of these computations is the
relative variation of the Euler characteristic as a function of v.

The computation of KG at any point x ∈ Σv proceeds by working out an
orthogonal basis for the tangent space at x, orthogonal to ξ = ∇V/‖∇V ‖,

9 In mathematical textbooks, mean curvature is defined as − 1
N
∇
(

∇V
‖∇V ‖

)
.
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by means of a Gram–Schmidt orthogonalization procedure. Equation (7.38)
is used to compute KG at x.

In [198], KG was computed at a number of points on each Σv vary-
ing between 1 · 106 and 3.5 · 106. The computations were performed for
dim(Σv) = 48 and = 80 (i.e., N = 7 × 7, and 9 × 9) and with the choice
λ = 0.6, µ2 = 2, J = 1 for the parameters of the potential.

In order to test the reliability of the numerical procedure to compute
χ(Σv), the method is checked against a simplified form of the potential V in
(7.14), i.e., with λ = J = 0, µ2 = −1. In this case the Σv are hyperspheres and
therefore χ(Sn

v ) = 2 for any even n. The integral
∫

Σv
dσ is analytically known

as a function of the radius
√
v. Therefore, the starting value ω(v0) =

∫
Σv0

dσ

is known, and in this case we can compute the actual values of χ(Σv) instead
of their relative variations only. In Figure 7.8 we report χ(Σv = S

n
v ) vs. v/N

for N = 5× 5; the results are in agreement with the theoretical value within
an error of few percent, a very good precision in view of the large variations
of χ(Σv) that are found with the full expression (7.14) of V .

In Figure 7.9 we report the results for the 1D lattice, which is known
not to undergo any phase transition. Apart from some numerical noise—here
enhanced by the more complicated topology of the Σv when λ, J = 0—a
monotonical (on average) decreasing pattern of χ(v/N) is found. Since the
variation of χ(v/N) signals a topology change of the {Σv}, Figure 7.9 tells
that a “smoothly” varying topology is not sufficient for the appearance of a
phase transition. In fact, when the 2D lattice is considered, the pattern of
χ(v/N) is very different: it displays a rather abrupt change of the topology
variation rate with v/N at some vc/N . This result is reported in Fig. 7.10 for
a lattice of N = 7 × 7 sites. The question is now whether the value vc/N ,
at which χ(v/N) displays a cusp, has anything to do with the thermody-
namic phase transition, i.e., we wonder whether the effective support of the
canonical measure shrinks close to Σv≡vc

just at β ≡ 1/Tc, the (inverse) crit-
ical temperature of the phase transition. The answer is in the affirmative.
In fact, the numerical analysis, already discussed in this chapter, shows that

Fig. 7.8. Numerical computation of the Euler characteristic for 24-dimensional
spheres. Here v is the squared radius. From [198].
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Fig. 7.9. 1D ϕ4 model. Relative variations of the Euler characteristic of Σv vs. v/N
(potential energy density). Lattice of N = 1 × 49 sites. Full line is a guide to the
eye. From [198].

Fig. 7.10. 2D ϕ4 model. Relative variations of the Euler characteristic of Σv vs.
v/N (potential energy density). Lattice of N = 7 × 7 sites. The vertical dotted line
corresponds to the phase transition point. Full line is a guide to the eye. From [198].

with λ = 0.6, µ2 = 2, J = 1, the function 1
N 〈V 〉(T ) and its derivative signal

the phase transition at 1
N 〈V 〉 ≈ 3.75, a value in very good agreement, within

the numerical precision, with vc/N , where the cusp of χ(v/N) shows up. We
see that a sudden “second-order variation” of the topology of these hypersur-
faces is the “suitable” topology change—mentioned at the beginning of the
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present section—that underlies the phase transition of the second kind in the
lattice ϕ4 model.

In conclusion, through the computation of the v-dependence of a topologi-
cal invariant, the hypothesis of a deep connection between topological changes
of the {Σv} and phase transitions is given direct confirmation.

We emphasize, and clarify in the following chapters, that not all topologi-
cal transitions lead to physical phase transitions, as is clearly shown by the
results given above for the 1D version of the ϕ4 model. Being certain that
not every topological transition corresponds to a phase transition, it seems
that on the basis of the above given results, a phase transition corresponds to
a supercombination of many simultaneous elementary topological transitions
taking place,10 where many might mean at least exponentially growing with
the number of degrees of freedom. It seems therefore more like a supertopo-
logically constructed transition, as will be discussed in Chapter 10.

10 With elementary topological transition we mean any change of topology associ-
ated with a single critical point, and thus with the attachment of the correspond-
ing handle. See Appendix C.




