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To the memory of my father



Foreword

It is a special pleasure for me to write this foreword for a remarkable book by a
remarkable author. Marco Pettini is a deep thinker, who has spent many years
probing the foundations of Hamiltonian chaos and statistical mechanics, in
particular phase transitions, from the point of view of geometry and topology.

It is in particular the quality of mind of the author and his deep physical, as
well as mathematical insights which make this book so special and inspiring.
It is a “must” for those who want to venture into a new approach to old
problems or want to use new tools for new problems.

Although topology has penetrated a number of fields of physics, a broad
participation of topology in the clarification and progress of fundamental prob-
lems in the above-mentioned fields has been lacking. The new perspectives
topology gives to the above-mentioned problems are bound to help in their
clarification and to spread to other fields of science.

The sparsity of geometric thinking and of its use to solve fundamental
problems, when compared with purely analytical methods in physics, could
be relieved and made highly productive using the material discussed in this
book.

It is unavoidable that the physicist reader may have then to learn some
new mathematics and be challenged to a new way of thinking, but with the
author as a guide, he is assured of the best help in achieving this that is
presently available.

The major mathematical tool used by the author to tackle the problems
mentioned in the title is Riemannian differential geometry, the same as is used
in general relativity. This way a geometric based theory of Hamiltonian chaos
and thermodynamic phase transitions is pursued. Moreover, a connection is
made between the origin of Hamiltonian chaos and phase transitions. In this
approach the origin of both is related to curvature fluctuations of the phase
space of the system.

I note that for the mathematically inclined reader the use of a coordinate-
dependent formulation based on Riemannian geometry may be less satis-
factory than for the physicist reader and might be considered a lack of
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VIII Foreword

mathematical elegance. After all, geometry’s and topology’s virtue is a global
approach to the structure of manifolds and their properties. However, from a
physicist’s point of view one might invoke Boltzmann’s dictum that “elegance
is for tailors.”

The above-mentioned curvature variations in the Riemannian description
of phase space lead then, on the one hand, to Hamiltonian chaos through a
parametric instability mechanism. On the other hand, when they are also due
to the additional cause of a strongly and suddenly changing complex topology,
they are also closely related to phase transitions. In fact, numerical studies
show that a phase transition is invariably marked by a peak in the curvature
fluctuations and by “cuspy” energy dependencies of Lyapunov exponents.

Thus these catastrophic events, due to the highly irregular, “bumpy” land-
scape of phase space, trigger on the deeper level of the topology of phase space
itself the singularities occurring in the usual description of phase transitions
on a higher level.

A remarkable achievement is the proof of two theorems, giving, for a large
class of Hamiltonian systems, a necessary topological condition for a first- or
second-order phase transition to take place. Roughly speaking, these theorems
say, “no topology change in phase space, no phase transition.” However, there
is at present no theorem that gives a sufficient topological condition for the
occurrence of a phase transition.

This may be related to the fact that not every topological transition in
phase space leads to a phase transition, so that the question arises, what
kinds of topological transitions are related to phase transitions and what is,
from a topological point of view, the difference between various types of phase
transitions?

Clearly the elucidation of these questions would deepen our basic under-
standing of two of the most striking phenomena in nature: that of chaos and
that of phase transitions.

It is my conviction that this book makes a courageous attempt to clarify
these fundamental phenomena in a new way.

Therefore, I highly recommend this refreshing and very original book not
only for its factual content but also for the privilege one has in sharing the
author’s deep insights and new approaches and results to some unsolved prob-
lems in physics. I have no doubt that the reader will find this book highly
stimulating and rewarding.

E. G. D. Cohen, professor
The Rockefeller University

New York, July 2006



Preface

Phase transitions are among the most impressive phenomena occurring in
nature. They are an example of emergent behavior, i.e., of collective properties
having no direct counterpart in the dynamics or structure of individual atoms
or molecules: to give a familiar example, the molecules of ice and liquid water
are identical and interact with the same laws of force, despite their remarkably
different macroscopic properties.

That these macroscopic properties must have some relation to microscopic
dynamics seems obvious, for example the molecules in a drop of water are free
to move everywhere in the drop, in contrast to what happens in a crystal
of ice.

However, according to a widespread point of view, when a large number of
particles is involved, since we are unable to follow all their individual histories,
we are compelled to get rid of dynamics and to replace it by a statistical
description. For a long time only a marginal role has been thus attributed
to microscopic dynamics: the large number of particles and our ignorance of
their initial conditions have been considered enough to provide a solid ground
to statistical mechanics.

More recently, much attention has been paid to another source of unpre-
dictability, which is intrinsic to the dynamics itself: deterministic chaos, and,
in particular, Hamiltonian chaos.

The present book is a monograph committed to a synthesis of two basic
topics in physics: Hamiltonian dynamics, with all its richness unveiled since
the famous numerical experiment of Fermi and coworkers at Los Alamos, and
statistical mechanics, mainly for what concerns phase transition phenomena
in systems described by realistic interatomic or intermolecular forces.

The novelty of the theoretical proposal put forward in this monograph
stems from a well-known fact: the natural motions of a Hamiltonian system
are geodesics of appropriately defined Riemannian manifolds. Whence the
possibility of deepening our understanding of the microscopic dynamical
foundations of macroscopic physics of many-particle systems. In fact, the
geometrization of dynamics allows questions like, can we “read” in the
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geometry of these mechanical manifolds something relevant to the under-
standing of basic properties of the dynamics? A major issue is undoubtely
to understand the origin of the chaotic instability of dynamics. The first part
of the book contains what we can call the beginning of a Riemannian theory of
Hamiltonian chaos, which works strikingly well when applied to models (like
the Fermi–Pasta–Ulam model) fulfilling the simplifying hypotheses introduced
to analytically compute the largest Lyapunov exponent. In the spirit of the
Springer Series in Interdisciplinary Applied Mathematics, I have made explicit
in what direction further developments of the theory should go. The second
part of the book stems from another question, again rooted in the Riemannian
theory of chaos: what happens to these mechanical manifolds when a Hamil-
tonian system undergoes a phase transition? and how can we “geometrically
read” the occurrence of a phase transition? It is at this point that topol-
ogy comes into play, and, roughly speaking, considering certain submanifolds
of configuration space, the answer is that necessarily a phase transition can
occur only at a point where the topology of these submanifolds undergoes a
transition, and this is true at least for a large class of systems.

The presentation of the book follows the logic of the historical deve-
lopment of a successful ten-year research program that I carried out with
the help of several collaborators. The many open points are at the same time
highlighted, giving the material presented more the form of an intermediate
stage of publication than the form of a monograph on a mature and already
concluded research program. And it is just this characteristic that, I hope, will
make this book attractive for those, mathematicians or physicists, who might
be interested in contributing to the general theoretical framework, its physical
applications, or the mathematics necessary in the context of applications.

The mathematics involved is not used to clean up or rephrase already
existing results, rather it is constructively used to gain insight. The language of
differential geometry and differential topology is not familiar to the majority of
physicists and has almost never entered statistical mechanics, a circumstance
that might induce skepticism and/or could be discouraging.

Thus, in order to make this book accessible to as wide a readership as
possible, including both mathematicians and physicists, and since it makes
use of concepts that might be not known to everyone, the following format
has been chosen.

The first part of the book is aimed at a reader who is familiar with the
basics of Riemannian geometry, for example at the level of a course in gene-
ral relativity. As to the second part, a knowledge of Morse theory and de
Rham’s cohomology theory at an elementary level is assumed. However, for
those physicists who are not familiar with these branches of mathematics, I
have provided in appendices the main points that are needed to follow the
exposition. Similarly, I assume that the reader is familiar with the basics of
Hamiltonian dynamical systems (theory and phenomenology) and statistical
mechanics, but I have summarized in Chapter 2 the main concepts needed
throughout the book. In all cases references to the literature for the details
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are made. I hope that a reader familiar with the basic mathematical tools and
with the basic physical meaning of the topics treated will be able to read the
book straightforwardly.

I have made a special effort to emphasize logical coherence and the excel-
lent consistency already attained by the ensemble of results presented in the
book. Nevertheless, as mentioned above, these results constitute the starting
of a new theory rather than its completion. This is the reason why this mono-
graph has no pretence at mathematical rigor (with the exception of Chapter
9), nor at mathematical elegance (the geometrization of Hamiltonian flows,
their integrability and instability, in Chapters 3, 4, and 5, respectively, is writ-
ten in a coordinate-dependent style in view of applications and thus of explicit
computations). Nevertheless, I hope that this will not prevent mathematicians
from understanding the meaning of what has been achieved in applying geo-
metrical and topological methods to the study of the relationship between
dynamical systems and statistical mechanics, with special emphasis on phase
transitions. In fact, I would like this monograph to allow the reader, mathe-
matician or physicist, to familiarize herself or himself with this new field and
to stimulate new developments and contributions to the many points that are
still open and explicitly evidenced throughout the text.

The theoretical scenario depicted in this book is based on the outcomes
of a research program inspired and coordinated by the author. However, this
research program has been successfully developed only thanks to the collective
effort of several collaborators and friends. Therefore, among the most senior
of them, my warmest thanks go to Monica Cerruti-Sola, whose continual and
precious collaboration during fifteen years has been of invaluable help. My
warmest acknowledgments also go to Giulio Pettini for having contributed
during a crucial period. I have been honored by the active interest in this
research program demonstrated by E.G.D. Cohen and Raoul Gatto, with
whom stimulating and fruitful collaborations were carried on during several
years.

At the very beginning of my interest in the connection between Hamil-
tonian dynamics and statistical mechanics, there was a collaboration, a long
time ago, with Roberto Livi, Antonio Politi, Stefano Ruffo, and Angelo
Vulpiani, friends and colleagues with whom useful discussions and scientific
interchanges have never ceased.

I had the chance to work with several gifted and very brilliant PhD stu-
dents. Among them, my warmest acknowledgments go to Lapo Casetti, who
has creatively, brilliantly, and courageously contributed to most of the fun-
damental steps of this research program since its very beginning; as well, my
warmest acknowledgments go to Roberto Franzosi, whose brilliant, creative,
and continual collaboration during the last ten years has been of invaluable
help in making crucial leaps forward in the topological theory of phase tran-
sitions.

It is with a feeling of deepest sorrow that my memory goes to another
student and dear friend of mine, Lando Caiani, who died while he was at
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SISSA-ISAS in Trieste for his PhD. Lando was an outstanding, very promising,
and cultivated young physicist.

A precious contribution to the Riemannian approach to the study of Hamil-
tonian chaos and to the early developments of the topological approach to
phase transitions was given by Cecilia Clementi, whose intelligence and pro-
ductivity were nothing but absolutely impressive.

It is a pleasure to acknowledge the precious help of Lionel Spinelli in
working out rigorous results on the topological theory of phase transitions, of
Guglielmo Iacomelli, with whom we worked on extensions of these methods
to quantum systems, and of Guido Ciraolo, with whom we worked on the
Riemannian theory of Hamiltonian chaos of low-dimensional systems.

A timely and very fruitful collaboration with Luca Angelani, Giancarlo
Ruocco, and Francesco Zamponi is warmly acknowledged.

I have profited from many helpful discussions about mathematics with
Gabriele Vezzosi, whose friendly and continuous interest for this work has
been an effective encouragement.

I warmly thank another friend, A.M. Vinogradov, for many illuminating
discussions on several topics in mathematics.

During many years, I have profited from useful suggestions,
remarks, comments by, and discussions with V.I. Arnold, E. van Bejieren,
G. Benettin, S. Caracciolo, P. Cipriani, P. Collet, E. Del Giudice, R. Dorfman,
J.P. Eckmann, Y. Elskens, D. Escande, L. Galgani, P. Giaquinta, C. Giardinà,
A. Giorgilli, T. Kambe, M. Kastner, J. Lebowitz, A. Lichtenberg, R. Lima,
C. Liverani, H. Posch, M. Rasetti, D. Ruelle, S. Schreiber, R. Schilling,
Ya. Sinai, A. Tenenbaum, S. Vaienti, M. Vittot; my thanks to all of them.

My scientific activity has been supported by the Osservatorio Astrofisico
di Arcetri, Firenze, Italy (now part of the Istituto Nazionale di Astrofisica,
I.N.A.F.). Its former director, Franco Pacini, is warmly acknowledged for his
collaboration and support. For many years, this scientific activity has been
financially supported by the Istituto Nazionale di Fisica Nucleare (I.N.F.N.),
which is here warmly acknowledged.

While writing this book I have been supported in many ways by my beloved
children Eleonora and Leonardo.

Last, but not least, this book would have not seen the light of day without
the invaluable help of Massimo Fagioli, psychiatrist and eminent scientist,
who, having unveiled fundamental dynamical processes of the unconscious
mind, in Rome has been conducting, since 32 years, the so-called Analisi
Collettiva, a very large group in which an emergent phenomenon (as in the
case of phase transitions!), due to the unconscious interactions among people,
has a strong healing power. In this way Massimo Fagioli drew me out of what
T.S. Eliot would have called a “waste land,” where I was wandering after my
father’s passing away.

Florence, September 2006 Marco Pettini
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Chapter 1

Introduction

This book reports on an unconventional explanation of the origin of chaos in
Hamiltonian dynamics and on a new theory of the origin of thermodynamic
phase transitions. The mathematical concepts and methods used are borrowed
from Riemannian geometry and from elementary differential topology, respec-
tively. The new approach proposed also unveils deep connections between the
two mentioned topics.

Written as a monograph on a new theoretical framework, this book is
aimed at stimulating the active interest of both mathematicians and physi-
cists in the many still open problems and potential applications of the theory
discussed here.

Thus we shall focus only on those particular aspects of the subjects treated
that are necessary to follow the main conceptual construction of this volume.
Many topics that would naturally find their place in a textbook, despite their
general relevance will not be touched on if they are not necessary for following
the leitmotif of the book.

In order to ease the reading of the volume and to allow the reader to
choose where to concentrate his attention, this introduction is written as a
recapitulation of the content of the book, giving emphasis to the logical and
conceptual development of the subjects tackled, and drawing attention to the
main results (equations and formulas) worked out throughout the text.

In this book, we shall consider physical systems described by N degrees
of freedom (particles, classical spins, quasi-particles such as phonons, and so
on), confined in a finite volume (therein free to move, or defined on a lattice),
whose Hamiltonian is of the form

H =
1
2

N∑
i=1

p2i + V (q1, . . . , qN ) , (1.1)

which we call “standard,” where the q’s and the p’s are, respectively, the
coordinates and the conjugate momenta of the system. Our emphasis is on
systems with a large number of degrees of freedom. The dynamics of the

1
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system (1.1) is defined in the 2N -dimensional phase space spanned by the q’s
and the p’s.

Historically, long before the atomistic nature of matter was ascertained,
Hamiltonian dynamics described the motion of celestial bodies in the solar
system, which apparently move regularly, at least on human time scales of
observation. This regularity, however, eluded analytic integrability of the equa-
tions of motion even when only three interacting bodies were considered, as
Poincaré admirably proved. As a consequence, an ensemble of approximate
methods, known as classical perturbation theory, was developed.

Since the formulation of the kinetic theory of gases and then with the birth
of statistical mechanics, Hamiltonian dynamics has had to cope with dynami-
cal behaviors of a qualitatively opposite kind with respect to those of celestial
mechanics. In fact, Boltzmann’s Stosszahlansatz (the hypothesis of molecular
chaos), is not simply the consequence of our ignorance of the positions and
momenta of the atoms or molecules of a system at some conventionally initial
time, but, as was later understood by Krylov, there is an intrinsic instability
of the dynamics.

This dynamical instability, which in the present context is called
Hamiltonian chaos, is a phenomenon that makes finite the predictability
time scale of the dynamics. Cauchy’s theorem of existence and uniqueness
of the solutions of the differential equations of motion formalizes the deter-
ministic nature of classical mechanics; however, predictability stems from the
combination of determinism and stability of the solutions of the equations of
motion. Roughly speaking, stability means that in phase space the trajectories
group into bundles without any significant spread as time passes, or with an
at most linearly growing spread with time. In other words, small variations
of the initial conditions have limited consequences on the future evolution of
the trajectories, which remain close to one another or at most separate in a
nonexplosive fashion.

Conversely, Hamiltonian chaos is synonymous with unpredictability of a
deterministic but unstable Hamiltonian dynamics. A locally exponential mag-
nification with time of the distance between initially close phase space trajec-
tories is the hallmark of deterministic chaos.

A concise introduction to Hamiltonian mechanics is contained in
Chapter 2, where the basic definitions and concepts are given, the framework
of classical perturbation theory is outlined together with some of its most
important results, and the classical explanation of the origin of Hamiltonian
chaos based on homoclinic intersections, as well as the definition of Lyapunov
characteristic exponents, is outlined.

The natural differential geometric language for Hamiltonian dynamics is
that of symplectic geometry. However, in the present book, we resort to a
geometrization of Hamiltonian dynamics by means of Riemannian geometry,
whose basic elements are given in Appendix B, and we sketch the possibility
of using Finsler geometry. The Riemannian geometrization of Hamiltonian
dynamics, outlined in Chapter 3, is actually possible because for standard
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Hamiltonians (1.1) the Legendre transform to a Lagrangian formulation
always exists, and from the Lagrangian

L =
1
2

N∑
i=1

q̇2i − V (q1, . . . , qN ) , (1.2)

the equations of motion are derived in the Newtonian form

q̈i = −∂V
∂qi

, i = 1, . . . , N . (1.3)

The use of symplectic geometry in Hamiltonian mechanics is very elegant and
powerful, for example, to investigate Hamiltonian systems with symmetries.
Then why do we neglect it in favor of Riemannian geometry? the reason is that
on Riemannian manifolds we know how to measure the distance between two
points of the manifold, which we cannot do with symplectic manifolds. More-
over, the equations of motion (1.3) stem from the stationarity condition for
the action functional (for isoenergetic paths)

δ

∫ q(t1)

q(t0)

dt W (q, q̇) = 0 , (1.4)

where W (q, q̇) = {[E − V (q)] q̇iq̇i}1/2, which is equivalent to the variational
definition of a geodesic line on a Riemannian manifold, which is a line of
stationary or minimum length joining the points A and B:

δ

∫ B

A

ds = 0 . (1.5)

If configuration space is given the non-Euclidean metric of components

gij = 2[E − V (q)]δij , (1.6)

whence the infinitesimal arc element ds2 = 4[E−V (q)]2dqi dqi, then Newton’s
equations (1.3) are retrieved from the geodesic equations

d2qi

ds2
+ Γ i

jk

dqj

ds

dqk

ds
= 0 . (1.7)

This is a nice well-known fact since the time of Levi-Civita. However, this
would not be so useful without the equation stemming from the second varia-
tion of the length functional (1.5), the Jacobi–Levi-Civita (JLC) equation for
the geodesic deviation vector field J (J locally measures the distance between
nearby geodesics), which in a parallel-transported frame reads

d2Jk

ds2
+Rk

ijr

dqi

ds
Jj dq

r

ds
= 0 . (1.8)
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Applied to the configuration space of a physical system, this is a powerful
tool to investigate the (in)stability of the phase space trajectories by relating
(in)stability to the curvature features of the configuration space manifold;
Ri

jkl are the components of the Riemann curvature tensor.
For the sake of completeness, before discussing the Riemannian geometric

approach to chaos, in Chapter 4 we briefly discuss how the problem of inte-
grability fits into the Riemannian framework. Integrability is a vast field in
Hamiltonian mechanics, and reviewing it here, even in a sketchy fashion, would
be out of place. We just show that with the aid of Riemannian geometry some
constructive work can also be done about integrability, and in doing this we
also understand the reason why integrability is so exceptional.

We remark that in Chapter 4, as well as throughout the book, we mainly
adopt a geometric language that is coordinate-dependent. Though less elegant
than an intrinsic formulation, it has the advantage of a direct link with the
constructive analytic expressions to be used in practical computations.

In Chapter 5 the core of the Riemannian theory of Hamiltonian chaos is
discussed. No matter in which metric equation (1.8) is explicitly computed,1

it requires the simultaneous numerical integration of both the equations
of motion and the (in)stability equation. Using the Eisenhart metric in
an extended-configuration space-time, (1.8) yields the standard tangent
dynamics equation, which is currently used to compute Lyapunov exponents,
whereas using the so-called Jacobi metric (1.6) one obtains equation (3.84) of
Chapter 3, which is definitely more complex. At first sight the Riemannian
geometrization of the dynamics could seem a not very helpful rephrasing of
things. However, an equation relating (in)stability with geometry makes one
hope that some global information about the average degree of instability
(chaos) of the dynamics is encoded in global geometric properties of the
mechanical manifolds.2 That this might happen is proved by the special
case of constant-curvature (isotropic) manifolds, for which the JLC equation
simplifies to

d2J i

ds2
+KJ i = 0 , (1.9)

where K is any of the constant sectional curvatures of the manifold. On a
positively curved manifold, the norm of the separation vector J does not grow,
whereas on a negatively curved (hyperbolic) manifold, that is, with K < 0,
the norm of J grows exponentially in time, and if the manifold is compact, so
that its geodesics are sooner or later obliged to fold, this provides an example
of chaotic geodesic motion.

The remarkable properties of geodesic flows on hyperbolic manifolds have
been known to mathematicians since the first decades of last century [1];

1 As explained in Chapter 3, there are different ambient spaces and different metrics
to rephrase Newtonian dynamics in the Riemannian geometric language.

2 Since the JLC equation involves the Riemann curvature tensor, the relevant geo-
metric properties must be related to curvature.
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Fig. 1.1. On a manifold of constant positive curvature, the distance between any
pair of nearby geodesics—issuing from a neighborhood—is oscillating and bounded
from above (right). This is illustrated in the case of a 2D sphere (left), whose geo-
desics are great circles.

Fig. 1.2. On a manifold of constant negative curvature, the geodesics issuing from
any neighborhood exponentially separate from each other (right). This is pictorially
illustrated in the case of a 2D saddle (left).

it was Krylov who thought of using these results to account for the fast
phase space mixing of gases and thus for a dynamical justification of the
ergodic hypothesis in finite times, which is necessary to make statistical
mechanics useful to physics [2]. Krylov’s work has been very influential
on the development of the so-called abstract ergodic theory [3], where
Anosov flows [4] (e.g., geodesic flows on compact manifolds with negative
curvature) play a prominent role. Ergodicity and mixing of these flows
have been thoroughly investigated. From time to time, Krylov’s intuitions
have been worked out further. An incomplete excerpt of the outcomes of
these developments can be found in [6–14]. What has been invariably dis-
covered, is that, surprisingly, geodesic flows associated with chaotic physical
Hamiltonians do not live on everywhere negatively curved manifolds. Few
exceptions are known, in particular two low dimensional models [15,16], where
chaos is actually associated with negative curvature.
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The somewhat biased search for negative curvatures has been the main
obstacle to an effective use of the geometric framework originated by Krylov
to explain the source of chaos in Hamiltonian systems. On the other hand, it
is true that the Jacobi equation, which describes the (in)stability of a geodesic
flow, is in practice only tractable on negatively curved manifolds, formidable
mathematical difficulties are encountered in treating the (in)stability of geo-
desic flows on manifolds of non-constant and not everywhere negative curva-
ture. Nevertheless, a successful theory of Hamiltonian chaos can be started
by giving up the idea that chaos must stem from negative curvature, and by
initially accepting to work under some restrictive assumptions.

In fact, in Chapter 5, we discuss a successful strategy to work out from
(1.8) the effective instability equation (5.27),

d2ψ

ds2
+ 〈kR〉μ ψ + 〈δ2kR〉1/2

μ η(s)ψ = 0 , (1.10)

where ψ is such that ‖ψ2(t)‖ ∼ ‖J2(t)‖, kR is the Ricci curvature of the
mechanical manifold, 〈·〉μ stands for averaging on it, and η(s) is a Gaussian-
distributed Markov process. This equation is independent of the dynamics, it
holds only if some suitable geometric conditions, which we call quasi-isotropy,
are fulfilled by the given system of interest, and it puts in evidence the
existence of another mechanism, besides hyperbolicity, to make chaos: the vari-
ability of the curvature probed by a geodesic activates parametric instability.

Fig. 1.3. Pictorial representation of how two geodesics—γ1 and γ2 issuing respec-
tively from the close points A and B—separate on a 2D “bumpy” manifold where
the variations of curvature activate parametric instability.
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This seems to be an ubiquitous mechanism responsible for chaos in physical
Hamiltonians. A sort of “statistical-mechanical” treatment of the dynamics
itself is the nice outcome of the geometric theory of Hamiltonian chaos, hence
the possibility of an analytic computation of the largest Lyapunov exponent
through the general formula (5.40) for the rate of the exponential growth of
‖ψ2(t)‖+ ‖ψ̇2(t)‖, which is

λ(k0, σk, τ) =
1
2

(
Λ− 4k0

3Λ

)
, (1.11)

Λ =

⎛⎝σ2
kτ +

√(
4k0
3

)3

+ σ4
kτ

2

⎞⎠1/3

,

where k0 = 〈kR〉μ, σk = 〈δ2kR〉μ and τ is a characteristic time defined through
a geometric argument. Three applications are considered: to a chain of har-
monic oscillators also coupled through a quartic anharmonic potential (the
FPU model), to a chain of coupled rotators, and to the so-called mean-
field XY model. In the first two cases, an impressively excellent fitting of
the numerical values of the largest Lyapunov exponents, as a function of the
energy per degree of freedom, has been obtained, whereas for the mean-field
XY model the quantitative agreement is less good.

Chapter 5 contains the beginning of a Riemannian-geometric theory of
Hamiltonian chaos, the excellent results therein reported suggest that it is
worthwhile to pursue research in this framework. The successful analytic com-
putation of Lyapunov exponents proves that our understanding of the origin
of Hamiltonian chaos is correct, whereas it would be reductive and wrong to
consider this geometric approach as a mere recipe for analytically estimating
Lyapunov exponents or the formula (1.11) as always valid.

The numerical test of the hypotheses that lead to (1.10), as well as the
somewhat tricky correction to the bare result obtained for the chain of cou-
pled rotators, hints at future developments beyond the assumption of quasi-
isotropy, involving also configuration-space topology. In fact, in the FPU case,
for which the hypothesis of quasi-isotropy seems well confirmed by numerical
tests and for which the straightforward application of (1.11) leads to the cor-
rect result, the configuration space manifolds are topologically trivial at any
energy value. In contrast, in the case of coupled rotators, the straightforward
application of (1.11) leads to a mismatch between numerical and analytical
results for the Lyapunov exponents in the strongly chaotic phase. This seems
reasonable in the light of the numerical tests of the quasi-isotropy assumption
for this model. At the energy density where the mentioned mismatch starts,
critical points of the potential appear, that is, points qc = [q1, . . . , qN ] such
that ∇V (q)|q=qc

= 0. From Morse theory we know that the occurrence of
critical points (of a suitable function defined on a manifold) is generically
associated with a non-trivial topology. In order to grasp why topology affects
the degree of instability of the dynamics, let us consider the tangent dynamics



8 Chapter 1 Introduction

Fig. 1.4. Pictorial representation of how topology can affect geodesic separation.
Two initially close geodesics, γ1 and γ2, respectively issuing from the points A and
B, have very different evolutions because γ2 is temporarily “trapped” by the handle,
and, after some windings, it can be released in any direction.

equation (JLC equation in the Eisenhart metric) commonly used to numeri-
cally compute Lyapunov exponents,

d2J i

dt2
+
(
∂2V

∂qi∂ql

)
q(t)

J l = 0 , (1.12)

and remembering that in the neighborhood of any critical point qc, by the
Morse lemma, there always exists a coordinate system for which

V (q̃) = V (qc)− q̃21 − · · · − q̃2k + q̃2k+1 + · · ·+ q̃2N , (1.13)

where k is the index of the critical point, i.e., the number of negative eigen-
values of the Hessian of V , let us note that in the neighborhood of a critical
point, (1.13) yields ∂2V/∂i∂ql = ±δil, which, substituted into (1.12), gives k
unstable directions that contribute to the exponential growth of the norm of
the tangent vector J . In other words, the neighborhoods of critical points are
“scatterers” of the trajectories, which enhance chaos by adding to parametric
instability another instability mechanism, reminiscent of local hyperbolicity.
However, if in the case of the chain of coupled rotators a nontrivial topology is
responsible for the enhancement of chaos, with respect to the prediction based
only on the quasi-isotropy assumption, things seem to go in the opposite direc-
tion for the mean-field XY model, though also in this case configuration-space
topology is highly nontrivial (as discussed in Chapter 10). This is to say that
a lot of interesting work remains to be done.

We can surmise that a first step forward, beyond the restrictive assumption
of quasi-isotropy and encompassing the role of nontrivial topology, should lead
to a generalization of the instability equation (1.10) that could be of the form

d2

ds2

(
ψ
φ

)
+
(
κ(s) α
β γ

)(
ψ
φ

)
= 0 , (1.14)
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where κ(s) = 〈kR〉μ ψ + 〈δ2kR〉1/2
μ η(s) and where α, β, γ are functions, to be

specified by the future developments of the theory, accounting for the relative
frequency of encounters of neighborhoods of critical points, for the average
number of unstable directions, and for the interplay between the two insta-
bility mechanisms (parametric modulations can have also stabilizing effects,
as is the case of the reversed pendulum stabilized by a fast oscillation of its
pivotal point). Then the instability exponent from (1.14) would be the average
growth rate of ‖ψ2‖+ ‖ψ̇2‖+ ‖φ2‖+ ‖φ̇2‖.

To summarize, let us compare the advantages of the Riemannian the-
ory over the conventional one based on homoclinic intersections of perturbed
separatrices. The traditional explanation of the origin of Hamiltonian chaos
requires the use of action-angle coordinates; it is of a perturbative nature and
thus applies only to quasi-integrable models; it works constructively only for
1.5 or 2 degrees of freedom; and even the basic result on which it relies—the
Poincaré–Birkhoff theorem—has no known extension at N > 2. Last but not
least, no computational relationship exists between homoclinic intersections
and Lyapunov exponents. In contrast, the Riemannian theory works with the
natural coordinates of a system, it is valid at any energy, it explains the cause
of chaotic instability in a clear and intuitive way, and it makes a natural link
between the explanation of the origin of chaos and the quantitative way of
detecting it through Lyapunov exponents.

Chapter 6 bridges the first part to the second part of the book. Therein
the attention begins to focus on the geometry of the dynamics of systems
with phase transitions. The logical connections proceed as follows. As we
have recalled in Chapter 2, the crossover in the energy dependence of the
largest Lyapunov exponent λ, first observed in the Fermi–Pasta–Ulam model,
has been phenomenologically attributed to a transition from weak to strong
chaos, or slow and fast phase space mixing, respectively. This is called the
strong stochasticity threshold (SST). We have surmised in the past that this
transition has to be the consequence of some “structural” change occurring in
configuration space, and in phase space as well. This dynamical transition has
been observed in every nonintegrable many-degrees-of-freedom Hamiltonian
system for which λ(ε), ε = E/N , has been computed. Then, a natural question
arises: could some kind of dynamical transition between weak and strong
chaos (possibly a very sharp one) be the microscopic dynamical counterpart
of a thermodynamic phase transition? And if this were the case, what kind
of difference in the λ(ε) pattern would discriminate between the presence or
absence of a phase transition? And could we make a more precise statement
about the kind of “structural” change to occur in configuration space when
the SST corresponds to a phase transition and when it does not?

Actually, the λ(ε) patterns, numerically found for the ϕ4 model with sym-
metry groups O(1), O(2), O(4) in two- and three-dimensional lattices, for the
classical Heisenberg XY model in two and three dimensions, and analyti-
cally computed in the so-called mean-field XY model, show abrupt tran-
sitions between different regimes of chaoticity. Typically, a “cuspy” point
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in λ(ε) appears in correspondence with the phase transition point. This is
observed also for other models studied in the literature. Then, since Lyapunov
exponents are tightly related to the geometry of the mechanical manifolds in
configuration space, it is natural to try to characterize the above-mentioned
“structural” changes through the geometric ingredients that enter the analytic
formula (1.11) for λ, namely the average Ricci curvature and its variance. The
intriguing surprise is that the phase transition point is invariably marked by
a peak in the curvature fluctuations. What do we learn from this?

The answer is given in Chapter 7. Here we start with the observation that
the topology change driven by a continuously varying parameter in a family
of two dimensional–surfaces is accompanied by a sharp peak in the variance
of the Gaussian curvature. This is confirmed by computing the variance of the
curvature of the level sets of a generic function in the neighborhood of one of
its critical points. This is an example at large dimension.

In other words, the tempting idea was that of attributing to the deeper
level of configuration space topology the responsibility for the appearance
of the strong and sudden “structural” change necessary to entail a phase
transition. An important step forward in this direction was obtained by
studying the Ricci curvature fluctuations of the configuration-space manifolds
(Mu, g) of one and two dimensional lattice ϕ4 models equipped with different
Riemannian metrics g(k), having nothing to do with the “dynamical” metric
(1.6). In the manifolds (Mu, g

(k)), Mu is defined by the potential function
V (q) of the model, i.e., Mu = {q = (q1, . . . , qN ) ∈ R

N |V (q) ≤ u}, and the
metrics g(k) used are arbitrary and independent of V (q). The results strongly
support the idea that at the phase transition point in the two-dimensional
model, something happens that is to some extent independent of the metric
structure imposed on the configuration–space submanifolds Mu.

This is resumed in the formulation of a topological hypothesis. Concisely,
consider the microcanonical volume

Ω(E) =
∫ E

0

dη
(2πη)N/2

ηΓ (N
2 )

∫ E−η

0

du

∫
Σu

dσ

‖∇V ‖ ; (1.15)

the larger N the closer to some Σu are the microscopic configurations that sig-
nificantly contribute to the statistical averages, and therefore the idea is that
in order to observe the development of singular behaviors of thermodynamic
observables computed through Ω(E) in (1.15), it is necessary that a value
uc exist such that Σu<uc

are not diffeomorphic to (have a different topology
from) the Σu>uc

.
Chapter 7 ends with a direct and remarkable confirmation of this working

hypothesis. Confirmation is achieved by means of the numerical computation,
again for the one- and two-dimensional lattice ϕ4 models, of a topologic
invariant of the equipotential hypersurfaces of configuration space, i.e., Σu =
V −1(u) ≡ {q = (q1, . . . , qN ) ∈ R

N |V (q) = u}. The topologic invari-
ant, a diffeomorphism invariant, is the Euler–Poincaré characteristic χ(Σu)
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of equipotential hypersurfaces computed through the Gauss–Bonnet–Hopf
formula

χ(Σu) = γ

∫
Σu

KG dσ , (1.16)

where γ = 2/vol(Sn
1 ) is twice the inverse of the volume of an even

n-dimensional sphere of unit radius, n = N − 1; KG is the Gauss–
Kronecker curvature of the manifold; dσ =

√
det(g)dx1dx2 · · · dxn is the

invariant volume measure of Σu; and g is the Riemannian metric induced
from R

N .
Two things are evident from the numerical computations: the first is that

the u-pattern of χ(Σu) clearly makes a big difference between presence and
absence of a phase transition; moreover, it unambiguously locates the transi-
tion point. The second fact is that topology changes considerably even in the
absence of a phase transition; it is its way of changing with u that is suddenly
modified at the transition point.

What we are after is the possible deepening of our mathematical under-
standing of the origin of phase transitions. In fact, the topological properties
of configuration space submanifolds, both of equipotential hypersurfaces Σu

and of the regions Mu bounded by them, are already determined when the
microscopic potential V is assigned and are completely independent of the
statistical measures. The appearance of singularities in the thermodynamic
observables could then be the effect of a deeper cause: a suitable topological
transition in configuration space.

With Chapters 8 and 9 we put forward the fundamental elements for a
topological theory of phase transition phenomena. In Chapter 10 we go back
to models, but this time working out exact analytic results.

In Chapter 8 we unveil the existence of a quantitative connec-
tion between geometry and topology of the energy landscape in phase
space, or in configuration space, and thermodynamic entropy defined as
SN (E) = (kB/2N) log[

∫
ΣE

dσ /‖∇H‖]:

S(E) ≈ kB
2N

log

[
vol(S2N−1

1 )
2N−1∑
i=0

bi(ΣE) +
∫

ΣE

dσ
R̃(E)
N !

]
+ r(E) , (1.17)

where bi(ΣE) are the Betti numbers of the constant energy hypersurfaces
in phase space. Betti numbers are fundamental topological invariants of a
manifold. Another version of this formula reads

S(v) ≈ kB
2N

log

[
vol(S2N−1

1 )

(
μ0 +

N−1∑
i=1

2μi(Mv) + μN

)
+R(E(v))

]
+r(E(v)),

(1.18)

which now holds in configuration space and where the μi(Mv) are the Morse
indexes (in one-to-one correspondence with topology changes) of the submani-
foldsMv of configuration space. These formulas are approximate, but following
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a different reasoning, and using the definition S(−)
N (v) = kB/N log[

∫
Mv

dNq],
also an exact formula can be derived, which reads

S
(−)
N (v) =

kB
N

log

⎡⎣vol[Mv \
N (v)⋃
i=1

Γ (x(i)
c )] +

N∑
i=0

wi μi(Mv) +R(N, v)

⎤⎦ ,

(1.19)

where the first term in the square brackets is the configuration-space volume
minus the sum of volumes of certain neighborhoods of the critical points of the
interaction potential, the second term is a weighed sum of the Morse indexes,
and the third term is a smooth function. This formula is proved in Chapter 9
as Theorem 9.39.

Since the above formula provides an exact relation between a thermo-
dynamic function and some quantities peculiar to the mathematics that we
are using, it is of special interest. In fact, it is thanks to this formula that
we can convince ourselves, with the aid of Theorem 9.39 of Chapter 9, that
topology is relevant to phase transitions. So we come to Chapter 9, which
contains a major leap forward: the proof of two theorems that establish a
necessary topological condition for the occurrence of first- or second-order
phase transitions. A thermodynamic phase transition point necessarily stems
from a corresponding topological transition point in configuration space. The
theorems apply to a wide class of smooth, finite-range, and confining poten-
tials VN bounded below, describing systems confined in finite regions of space
with continuously varying coordinates. The relevant configuration-space sub-
manifolds are both the level sets {Σv := V −1

N (v)}v∈R of the potential function
VN and the configuration space submanifolds enclosed by the Σv defined by
{Mv := V −1

N ((−∞, v])}v∈R, where N is the number of degrees of freedom and
v is the potential energy. The proof of Theorem 9.14 proceeds by showing
that under the assumption of diffeomorphicity of the equipotential hypersur-
faces {Σv}v∈R, as well as of the {Mv}v∈R, in an arbitrary interval of values
for v̄ = v/N , the Helmholtz free energy is uniformly convergent in N to its
thermodynamic limit, at least within the class of twice differentiable func-
tions, in the corresponding interval of temperature. This theorem is used to
prove that in (1.19) the origin of the possible unbound growth with N of a
derivative of the entropy, that is, of the development of an analytic singularity
in the limit N → ∞ and thus of a phase transition, can be due only to the
topological term

∑
wi μi(Mv). Thus the topological hypothesis turns into a

necessity theorem.
As already seen at the end of Chapter 7, where we have reported the

results of the computation of χ(Σv) for one- and two-dimensional lattice ϕ4

models, there is not a one-to-one correspondence between topology variations
and phase transitions. This means that the converse of the just-mentioned
theorems is not true, and this can be easily understood by inspection of
(1.19). In fact, if we keep in mind that it is only the topological term that
can induce nontrivial behaviors of S(v), we see that “soft” variations with
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Fig. 1.5. Pictorial representation of a transition beteween complex topologies.
Two cobordant surfaces of high genus are represented. From the ground level up
to the crossover level vc, the manifolds Mv have a genus which increases with v.
Above the crossover level vc, the manifolds Mv have also a nonvanishing linking
number which increases with v. This is a low-dimensional metaphor of what could
be at the origin of a phase transition.

v of the topology of the Mv cannot be transformed into something much
different by S(v). As a consequence, the problem of the mathematical defi-
nition of sufficiency conditions is open. In Chapter 10 we report the results
obtained for some exactly solvable models. Fortunately, there is a number of
models (all of mean-field kind) for which we can exactly compute the canon-
ical partition function, hence their thermodynamic behavior, and for which
we can exactly compute also a topological invariant, the Euler characteris-
tic of the submanifolds Mv of configuration space. The models considered
in Chapter 10 are the mean-field XY model, the k-trigonometric model, the
mean-field spherical model, the mean-field lattice ϕ4 model. All these systems
are described by long-range forces (all the degrees of freedom interact with
all the others) and thus are out of the validity domain of the present formu-
lation of the theorems of Chapter 9; by the way, the limitation to short-range
interactions has been introduced to ease the proof of Theorem 9.14, but we
strongly suspect that the truly important assumption should be that of addi-
tivity, relaxing the restrictive assumption of short-range forces. Nevertheless,
the exact results reported in Chapter 10 together with the numerical results
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worked out for the lattice ϕ4 model (which belongs to the validity domain
of Theorems 9.14 and 9.39), provide precious hints to orient future investi-
gations of these challenging questions: What kind of topological transitions
entail a phase transition? And what, from the topological standpoint, makes
the difference between different kinds of phase transitions?

A preliminary concise summary of the hints hitherto available is as follows.
By probing topology changes in configuration space through χ(Σv) for the

lattice ϕ4 model, we have seen that the phase transition point corresponds to a
sudden change in the rate of change of χ(v). Remarkably, already with a small
system of 7×7 lattice sites the χ(v) pattern sharply marks a major qualitative
difference with respect to the one-dimensional case (see Chapter 7), whereas
no thermodynamic observable (like the specific heat) is able to discriminate
which system undergoes a phase transition with only N = 49.

By probing topological changes in configuration space through χ(Mv) in
the mean-field XY model, and by comparing Figures 10.5 and 10.3, we have
seen that at the phase transition point the topology change of the Mv cor-
responds to the simultaneous attachment of handles of N

2 different types, in
contrast to the one-dimensional nearest-neighbor XY model, in which no such
abrupt topological variation occurs and no phase transition is present.

By probing topological changes in configuration space through χ(Mv) in
the k-trigonometric model, we have found also in this case sharp and unam-
biguous differences among the k = 1 case (no phase transition), the k = 2
case (second-order transition), and the k = 3 case (first-order transition).
By computing μ(v) =

∑
i μi(Mv), we observe that also μ(v) clearly discrimi-

nates among these three different possibilities; moreover, very similar patterns
of μ(v) are found for both the XY mean-field and k-trigonometric models,
as is evident by comparing Figures 10.7, 10.8, and 10.20. Remarkably, both
χ(v) and μ(v) make a clear distinction between first- and second-order phase
transitions.

Chapter 10 ends with some comments on recently appearing articles on
topology and phase transitions. Though providing interesting results that can
contribute to the advancement of the subject, some of these papers are mis-
leading for what concerns the proposed interpretations.

Let us conclude with a few general comments. Earlier attempts at introduc-
ing topological concepts in statistical mechanics concentrated on macroscopic
low-dimensional parameter spaces. Actually, this happened after Thom’s
remark that the critical point shown by the van der Waals equation corre-
sponds to the Riemann–Hugoniot catastrophe [17]. Hence some applications
of the theory of singularities of differentiable maps to the study of phase tran-
sitions followed [18]. Other approaches resorted to geometric concepts [19] or
topological concepts [20] in macroscopic low-dimensional parameter spaces.
An elegant formulation of phase transitions as due to a topological change
of some abstract manifold of macroscopic variables was obtained using the
Atiyah–Singer index theorem [21, 22], and this has been applied to the 2D
Ising model.



1 Introduction 15

Throughout the present book we establish a completely new kind of link
between the study of phase transitions and elementary differential topology. In
fact, here we deal with the high-dimensional microscopic configuration space
of a physical system. The level sets of the microscopic interaction potential
among the particles, or the manifolds bounded by them, are the configuration
space submanifolds that necessarily have to change their topology in corre-
spondence with a phase transition point. The topology changes implied here
are those described within the framework of Morse theory through attachment
of handles [23].

Notice that in all the cases considered so far the role of the potential
V is twofold: it determines the relevant submanifolds of configuration space
and it is a good Morse function on the same space. However, for example, in
the case of entropy-driven phase transitions occurring in hard-sphere gases,
the fact that the (singular) interaction potential can no longer play the role
of Morse function does not mean that the connection between topology and
phase transitions is lost; it rather means that other Morse functions are to be
used.3

This topological approach also makes a subtle link between dynamics and
thermodynamics because it affects both of them, the former because it can be
seen as the geodesic flow of a suitable Riemannian metric endowing configu-
ration space [24], the latter because we have worked out an analytic relation
between thermodynamic entropy and Morse indexes of the configuration-space
submanifolds.

Though at present in the framework that we have developed, including the
theorems of Chapter 9, we have considered only first- and second-order phase
transitions, the topological approach seems to have the potential of unify-
ing the mathematical description of very different kinds of phase transitions.
For example, there are “exotic” kinds of transitional phenomena in statistical
physics, such as the glassy transition of amorphous systems to a supercooled
liquid regime, or the folding transitions in polymers and proteins, that are
qualitatively unified through the so-called landscape paradigm [25, 26], which
is based on the idea that the relevant physics of these systems can be under-
stood through the study of the properties of the potential energy hypersurfaces
and, in particular, of their stationary points, usually called “saddles.” That
this landscape paradigm naturally goes toward a link with Morse theory and
topology has been hitherto overlooked.

Last but not least. Sometimes it happens that a physical phenomenon is
to some extent identified with its explanation. This seems to be the case of
phase transitions, which are often identified with nonanalytic behaviors of
3 Perhaps for hard spheres a good Morse function could be the sum of all the

pairwise Euclidean distances between the hard spheres of a system: it is real-
valued; and it has a minimum when the density is maximum, that is, for close
packing, meaning that this function is bounded below. It is unclear whether it is
nondegenerate, but Morse functions are dense and degeneracy is easily removed
if necessary.
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thermodynamic observables. Historically, this is due to the fact that these
phenomena occur in thermal equilibrium and have been observed at a macro-
scopic level, so that thermodynamic observables have been the natural candi-
dates to experimentally characterize a phase transition. In particular, on the
basis of the experimental phenomenology, the translation in mathematical
terms of the discontinuity of the physical properties (condensation, melting,
and so on) has been that of the development of nonanalytic singular behav-
iors at the transition point. But as is well known, the statistical measures are
analytic at any N , and the only way out is to work in the N → ∞ limit.
However, let us think of a small snowflake that melts into a droplet of water,
or of a filamentary polymer chain that acquires a globular configuration, or
of a protein that folds to its native structure, not to mention Bose–Einstein
condensation or other transitional phenomena in small quantum systems at
nanoscopic or mesoscopic levels; all these systems (and many others) display
major qualitative physical changes also at very small N , much smaller than
the Avogadro number, and perhaps thermodynamic observables are no longer
so relevant. Once we have understood that the above-mentioned mathemati-
cal singularities are due to a deeper phenomenon, at least for a wide class of
systems, the basic mathematical cause of the appearance of a phase transition
is already there at finite, even small, N , and one can find it by looking at the
microscopic-configuration-space topology.



Chapter 2

Background in Physics

In this first chapter we will give an outline of some fundamental elements
of statistical mechanics, of Hamiltonian dynamics, and of the relationship
between them.

The general problem of statistical physics is the following. Given a
collection–in general a large collection–of atoms or molecules, given the
interaction laws among the constituents of this collection of particles, and
given the dynamical evolution laws, how can we predict the macroscopic
physical properties of the matter composed of these atoms or molecules?

At the epoch of the founding fathers of statistical physics, Boltzmann and
Gibbs, there were no means to attack the problem from the side of microscopic
dynamics, and thus all the efforts aimed at getting rid of it. We will briefly
recall what kind of arguments have been used to achieve this goal.

The Gibbs ensemble formulation of statistical mechanics accounts for
the laws of thermodynamics, and, in principle, should allow one to derive all
the macroscopic equilibrium properties of a system on the basis of the know-
ledge of the interatomic or intermolecular forces. Moreover, there are experi-
mental facts (even belonging to our common everyday experience) such as the
phenomenon of condensation of a gas, or solidification of a liquid, in general a
change of state of matter, that also call for an explanation in the same frame-
work of statistical mechanics. This last topic is part of a huge and fascinating
field encompassing many other collective phenomena: phase transitions. A few
basic notions on this phenomenon will be given, with some emphasis given to
the Yang–Lee theory.

At the dawning of the computer era, as admirably realized by E. Fermi,
J. von Neumann, and S. Ulam, a new insight into the foundations of statis-
tical mechanics became possible through the “long-time” numerical solution
of the differential equations of motion of a collection of up to a few hundreds
of interacting particles, nothing with respect to the Avogadro number, but
surprisingly enough to discover an unsuspected richness of the dynamics and,
later on, enough to give birth to so-called molecular dynamics, a numerical
ab initio computational method to estimate macroscopic properties (such as

17
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viscosity, specific heat, magnetic susceptibility, and elastic constants) of real
materials.

The dynamical phenomenology of many-particle Hamiltonian systems has
been widely investigated during the last decades. Among other phenomena,
phase transitions have been investigated from the point of view of microscopic
dynamics. An outline of some of these results will be given in the final part
of this chapter, where our choice is biased by the need to provide the reader
with the basic “experimental facts” about dynamics that have stimulated the
development of a geometric statistical theory of chaotic dynamics and the
topological theory of phase transitions. Chapters from 3 to 6, and from 7 to
10, are devoted to a detailed discussion of these two topics.

2.1 Statistical Mechanics

In the following we will simply speak of particles or of degrees of freedom,1

instead of atoms or molecules. Consider N point particles, of mass m, con-
tained in a volume V, described by a Hamiltonian function

H =
N∑

i=1

[
p2

i

2m
+ U(ri)

]
+
∑
i<j

Φ(|ri − rj |) , (2.1)

where the interaction potential Φ(r) is in general assumed to consist of an
attractive region with a finite range and a repulsive region at short distances
that, if the potential is very steeply increasing, represents a hard core. The
forces are assumed to have the additivity property and are not allowed, at
short distances, to become infinitely attractive (as is the case of pure Coulomb
or gravitational forces). The potential U(ri) accounts for the external forces
acting on the ith particle as well as for the forces exerted by the walls of the
container constraining the particles to move inside the volume V.

Now, if the thermal de Broglie wavelength of the particles is much smaller
than the average interparticle distance, i.e.,

�

(2mkBT )1/2

(
N

V

)1/3

 1 ,

where 3
2kBT is the average kinetic energy per particle, then instead of

describing the microscopic motions through the Schrödinger equation, we can
use classical Newtonian mechanics. Nevertheless, a nontrivial trace of the fact
that the microscopic world is surely governed by the laws of quantum mechan-
ics is concealed in the existence of an attractive part in typical interparticle
interaction potentials, an essential feature for the stability of matter that
cannot be explained by classical physics.
1 This terminology is more general and encompasses, for example, spin variables

on a lattice, and discretized versions of field models.
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The basic assumptions about the Hamiltonian in (2.1) can be insufficient
to describe the great richness of the physical properties of matter at macro-
scopic and mesoscopic levels, properties that probably can be explained only
if more-complicated internal structures of molecules, as well as other kinds of
a forces of quantum nature or the interaction with a self-consistent electro-
magnetic field, are considered. However, the domain of application of classical
statistical mechanics can be extended very far from that of its original for-
mulation. To give an important example, let us mention that a mathematical
relationship can be established between classical statistical mechanics and
quantum field theory, a seminal relationship that has been widely exploited
in recent years and that witnesses that the theoretical relevance of classical
statistical mechanics, in particular for what concerns phase transitions, is not
limited to classical physics.

In what follows, to ease the notation and to underline that we refer to a
larger class of systems with respect to a collection of atoms or molecules, we
assume that the standard Hamiltonian function for a system with N degrees
of freedom reads as

H(p, q) =
N∑

i=1

1
2
p2i + V (q1, . . . , qN ) , (2.2)

where V (q) is the potential energy and the qi’s and the pi’s are, respectively,
the canonically conjugated coordinates and momenta. From now on, p =
(p1, . . . , pN ) and q = (q1, . . . , qN ).

2.1.1 Invariant Measure for the Dynamics

The Γ -space, or phase space of a Hamiltonian system with N degrees of free-
dom, is the 2N -dimensional space whose coordinates are q1, . . . , qN , p1, . . . , pN .
A given point x0 = (q01 , . . . , q

0
N , p

0
1, . . . , p

0
N ) ∈ Γ represents a microscopic state

of a system, and in the course of time, it moves in Γ -space according to the
Hamilton equations of motion

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, 2, . . . , N. (2.3)

A fundamental theorem is Liouville’s theorem. Consider any measurable set
(in the sense of Lebesgue) A0 of points of the phase space Γ of a given system.
This set is transformed by the natural motion into another set At at time t;
the theorem asserts that for any t the measure of the set At coincides with the
measure of A0.

To prove this assertion, let us use the notation xi = qi and xN+i = pi,
and Xi = ∂H

∂pi
, XN+i = −∂H

∂qi
, for i = 1, . . . , N . With this notation the (2.3)

simply reads as
dxi

dt
= Xi(x1, . . . , x2N ) . (2.4)
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Let us observe that the vector field X is divergence free, i.e.,

2N∑
i=1

∂Xi

∂xi
=

N∑
i=1

(
∂2H

∂pi∂qi
− ∂2H

∂qi∂pi

)
= 0 . (2.5)

Since the system of differential equations (2.4) is of the first order, if at some
initial time t0 we assign the initial conditions x(0)

i , i = 1, . . . , 2N , the solutions
of the equations of motion will be given as a set of functions

xi = fi(t;x
(0)
1 , . . . , x

(0)
2N ) . (2.6)

Let us now denote by μ(At) the measure of the set At given by

μ(At) =
∫

At

dx1 · · · dx2N , (2.7)

and introduce the coordinate change

xi = fi(t; y1, . . . , x2N ) , (2.8)

where (y1, . . . , y2N ) is any point of A0 and (x1, . . . , x2N ) ∈ At. Then μ(At) is
also given by

μ(At) =
∫

A0

det(J) dy1 · · · dy2N , (2.9)

where det(J) is the determinant of the Jacobian matrix of the coordinate
change due to the natural motion, that is,

det(J) =
∣∣∣∣∂(x1, . . . , x2N )
∂(y1, . . . , y2N )

∣∣∣∣ . (2.10)

The time variation of μ(At) is given by

dμ(At)
dt

=
∫

A0

∂ det(J)
∂t

dy1 · · · dy2N . (2.11)

The derivative of the determinant of a matrix B is computed by means of
Jacobi’s formula d det(B) = tr[Adj(B) dB], where B = {βij} and Adj(B) =
{αij} with αij = (−1)i−jdet(B[ji]), having set B[ji] = B (without the jth row
and ith column), so that det(B) =

∑
k βikαki. Jacobi’s formula then yields

d det(B) =
∑

j

∑
i αji dβij whence

∂ det(J)
∂t

=
2N∑
i=1

∣∣∣∣∂(x1, . . . , ∂xi/∂t, . . . , x2N )
∂(y1, . . . , y2N )

∣∣∣∣ =
2N∑
i=1

∣∣∣∣∂(x1, . . . , Xi, . . . , x2N )
∂(y1, . . . , y2N )

∣∣∣∣ ,
where we have used ∂xi

∂t = dxi

dt = Xi. If now {αij} = Adj(J), we have



2.1 Statistical Mechanics 21∣∣∣∣∂(x1, . . . , Xi, . . . , x2N )
∂(y1, . . . , y2N )

∣∣∣∣ =
2N∑
k=1

∂Xi

∂yk
αki

=
2N∑
k=1

(
2N∑
r=1

∂Xi

∂xr

∂xr

∂yk

)
αki =

2N∑
r=1

∂Xi

∂xr

2N∑
k=1

∂xr

∂yk
αki

=
2N∑
r=1

∂Xi

∂xr

∣∣∣∣∂(x1, . . . , xi−1, xi, xi+1, . . . , x2N )
∂(y1, . . . , y2N )

∣∣∣∣ ,
(2.12)

but if r �= i, then the Jacobian matrix has two rows that are equal and thus
its determinant vanishes. In conclusion,

∂ det(J)
∂t

=
2N∑
i=1

2N∑
r=1

∂Xi

∂xr

∣∣∣∣∂(x1, . . . , xr, . . . , x2N )
∂(y1, . . . , y2N )

∣∣∣∣ δri

=
2N∑
i=1

∂Xi

∂xi
det(J) = det(J)

2N∑
i=1

∂Xi

∂xi
= 0 (2.13)

which inserted into (2.11) yields

dμ(At)
dt

= 0 , (2.14)

which proves that the Liouville measure μ(At) =
∫
At
dx1 · · · dx2N in Γ -space

is invariant under the natural Hamiltonian motion. Any given measurable
set of initial conditions in phase space is deformed by the dynamics, but its
measure is kept constant.

In other words, a measurable set of initial conditions evolves in phase
space as if it were an incompressible fluid whose “particles” are the represen-
tative points of different microscopic realizations of a same macroscopic state.
With Gibbs, this will be called an ensemble of mechanical systems in Γ -space.
The distribution of this ensemble, which later will be given the meaning of a
probability distribution, is defined for an arbitrary number N of representa-
tive points whose relative distribution, that is, the fraction ΔN/ΔΓ , where
ΔN is the number of them contained in the phase volume ΔΓ = ΔNpΔNq
located at the point (p, q) at time t, has a density function ρ(p, q, t) as its
continuum limit. A consequence of the invariance of the Liouville measure is
that dN/dt = 0, whence dρ(p, q, t)/dt = 0, or equivalently,

∂ρ

∂t
+ {ρ,H} = 0 , (2.15)
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which is the Liouville equation, where {ρ,H} are the Poisson brackets

{ρ,H} = −
N∑

i=1

(
∂H

∂qi

∂ρ

∂pi
− ∂H

∂pi

∂ρ

∂qi

)
.

Note that in the language of fluid dynamics, Liouville’s theorem expressed by
(2.14) and (2.15) corresponds to the “Lagrangian” and “Eulerian” descriptions
respectively.

A simple consequence of Liouville’s theorem is that for any function f(ρ)
of the density, the integral∫

Γ

f(ρ) dp1 · · · dpN dq1 · · · dqN

is independent of time.
Moreover, it can be readily verified that any density distribution that

depends on the coordinates p, q only through the Hamiltonian H(p, q),

ρeq(p, q) = f(H(p, q)) , (2.16)

is stationary, and thus we will call it an equilibrium density distribution and
the ensemble described by ρeq an equilibrium ensemble.

2.1.2 Invariant Measure Induced on ΣE

The Hamiltonian dynamics of an isolated system corresponds to the con-
strained motion of its representative point on a constant-energy hypersurface
ΣE ⊂ Γ defined by H(x) ≡ H(p, q) = E. Therefore we wonder how to build
an invariant measure on ΣE out of the Liouville invariant measure (2.7).

To this end, consider any measurable set A ⊂ ΣE . Then, with the outward
normal at each point, define the volume element γ ⊂ Γ bounded by A and
A′ ⊂ ΣE+ΔE and filled by the outward normals to A joining ΣE and ΣE+ΔE .
By Liouville’s theorem, the volume∫

γ

dx1 · · · dx2N =
∫

E<H(x)<E+ΔE

χ(x) dx1 · · · dx2N

is left invariant by the natural motions; the function χ(x) is defined by χ(x) = 1
if x ∈ γ, and χ(x) = 0 otherwise. Also, the ratio (1/ΔE)

∫
γ
dx1 · · · dx2N is

a Liouville invariant in Γ for any ΔE, however small. Hence, in the limit
ΔE → 0, by applying the derivation formula (8.13) given in Chapter 8,
we get

lim
ΔE→0

1
ΔE

∫
E<H(x)<E+ΔE

χ(x) dx1 · · · dx2N =
∫

ΣE

χ(x)
dσ

‖∇H‖ =
∫

A

dσ

‖∇H‖ ,



2.1 Statistical Mechanics 23

and the invariant measure on ΣE is readily obtained by defining

μ
E
(A) =

∫
A

dσ

‖∇H‖ .

The volume of the whole energy surface is

Ω(E) =
∫

ΣE

dσ

‖∇H‖ ,

and, using again the derivation formula (8.13), we see that

Ω(E) =
d

dE
ME ,

where ME =
∫
H(x)≤E

dx1 · · · dx2N .
For any measurable function f(y), with y ∈ ΣE , the expression

〈f〉 =
1

Ω(E)

∫
ΣE

f(y)
dσ

‖∇H‖ (2.17)

is given the meaning of the average of f on ΣE .

2.1.3 The Irreversible Approach to Equilibrium. The Zeroth Law
of Thermodynamics

A long debate animated the initial development of statistical mechanics about
an apparent conflict between the time-reversibility of microscopic dynamics
and the irreversible approach to equilibrium at the macroscopic level. The
problem is that of explaining why an isolated (conservative) mechanical sys-
tem composed of a large number of atoms or molecules, independently of its
initial state, always approaches thermal equilibrium, that is, its microscopic
dynamics is such that all macroscopic observables relax toward steady values.
This is referred to as the zeroth law of thermodynamics, and expresses the
commonly observed typical behavior of macroscopic systems that irreversibly
evolve to thermal equilibrium.

The mentioned conflict is drastically shown by an important consequence
of the existence of an invariant measure for Hamiltonian flows ϕH

t , expressed
by the Poincaré recurrence theorem. This states that for any measurable set
A ⊂ ΣE , with ΣE ⊂ Γ , μ(ΣE) < ∞, and μ(A) > 0, almost all the points
x ∈ A return to A infinitely many times.

We can see how this happens by considering an arbitrary measurable set
A and choosing an arbitrary time unit τ ∈ R

+ so that the set ϕ−nτ (A),
that is, the preimage of A at the time t = −nτ , represents the set of points
that in n time “steps” will enter the set A. Then the set Tn =

⋃∞
i=n ϕ−iτ (A),

i, n ∈ Z
+, is the set of points of ΣE that will enter A after n or more time

steps; T0 is the set of points that already belong to A or will enter it after an



24 Chapter 2 Background in Physics

arbitrary number of steps. Thus A ⊂ T0. Since by increasing the index n of
Tn we have fewer sets in the union defining Tn, the following ordering holds:
Tn ⊂ Tn−1 ⊂ · · · ⊂ T1 ⊂ T0. Now, the set of points starting from A that
return to A after an arbitrarily long time mτ or more is A ∩ (

⋂m
n=0 Tn). We

observe that μ(Tn) = μ(ϕτ (Tn)) because μ is an invariant measure for the
flow. Then we observe that ϕτ (Tn) = Tn−1, so that

μ(Tn) = μ(ϕτ (Tn)) = μ(Tn−1) <∞ .

Then we use the ordering by inclusion of the Tn’s to write2

μ(A ∩ (
m⋂

n=0

Tn)) = μ(A ∩ T0)−
m∑

n=1

μ(A ∩ (Tn−1\Tn))

and compute its limit for m→∞. Since A∩T0 = A, Tn ⊂ Tn−1 and μ(Tn) =
μ(Tn−1), we have μ(Tn−1\Tn) = 0. In conclusion, the measure of the arbitrary
set A ⊂ ΣE equals the measure of the set of points that will return to A, while
the measure of the points of A that will never return to A is zero.

A direct consequence of the Poincaré recurrence theorem is known as the
Zermelo paradox, which states that for almost all initial states, an arbitrary
function of phase space will infinitely often assume its initial value within an
arbitrarily small error, provided that the system remains in a finite region of
phase space. Zermelo’s paradox makes more precise the reason why micro-
scopic reversibility of the dynamics seems incompatible with macroscopic
irreversibility of thermalization processes. To give an example of its physical
meaning, consider the situation in which, at some initial time, a piece of ice
is put in a pot of hot water. The ice melts and the reversibility of Hamilton’s
equations of motion together with the Poincaré recurrence theorem tell us
that sooner or later we should observe a piece of ice that pops up in the pot
of hot water, an event which–we can safely bet–we will never observe and
nobody has ever observed. A way out of this paradox is as follows. Suppose
that A ⊂ ΣE is the set of representative points in phase space that correspond
to the initial conditions of the water molecules, some belonging to the piece
of ice and the others to the hot liquid water, the probability of observing the
recurrence of the piece of ice is bounded from above by the estimate for less
“extreme” recurrences by exp(−CN), where C depends on the total energy,
density, and so on. Thus if N ≈ 1023, that is, on the order of Avogadro’s
number, the waiting time ∝ [μ(A)]−1 can be huge, even with respect to the
estimated age of the universe. In contrast, if N is very small, say a few tens,
irreversibility becomes a somewhat fuzzy concept.

The symmetry of Hamilton’s equations of motion with respect to time
inversion, t → −t, entails another apparently paradoxical situation known
as Loschmidt’s paradox. This states that for each process there exists a cor-
responding time-reversed process; thus for each thermalization process there
2 Note that if C ⊂ B ⊂ A, then μ (A ∩ B ∩ C) = μ (A ∩ B) − μ (A ∩ (B\C)).
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exists a corresponding process of spontaneous departure from equilibrium, in
contradiction to the existence of irreversible processes.

The solution of Loschmidt’s paradox is to invoke the chaotic instability of
microscopic dynamics. In fact, a chaotic system loses memory of the initial
condition in a finite time, on the order of the inverse of its largest Lyapunov
exponent,3 and this breaks the time inversion symmetry: given two configura-
tions with the same positions and opposite velocities, the two corresponding
phase space trajectories can have a reasonably good superposition only of a
finite length; that is, after a finite time they will separate from each other.
Earlier evidence of this fact was given by an old numerical experiment [27] on
Loschmidt’s paradox. Following the dynamics of a collection of 100 hard disks
colliding in a box, which is a strongly chaotic system, it was observed that the
Boltzmann entropy quickly relaxed to its equilibrium value. By inverting the
velocities, after a certain number of collisions, the entropy was observed to
retrace back its decay pattern. However, the larger the number of collisions
before the velocity inversion, the smaller the maximum value attained by the
entropy with respect to its initial value.

More generally, the Boltzmann–Gibbs picture of the approach to equilib-
rium is based on the assumption that the motion of the representative Γ -point
on an energy hypersurface ΣE has no preference for any of its regions and that
sooner or later any accessible part of ΣE will be reached. A reasonable con-
sequence of this assumption of a priori equiprobability of microstates is that
the Γ -point will spend in a region A ⊂ ΣE a time τ(A) proportional to the
measure μ(A) of A. Then one assumes that the macroscopic state4 is specified
by giving the values of some phase functions fi(y), y ∈ ΣE , such that (i) each
macroscopic state corresponds to all the microscopic states belonging to a
region of ΣE ; (ii) at large N , there is a set of values of the fi that corresponds
to a region of ΣE that is overwhelmingly the largest in measure. This latter
condition characterizes the thermal equilibrium of the system. In fact, if a
system is not in thermal equilibrium, i.e., its initial condition belongs to a
region of ΣE of small measure, then it almost surely will go into the state of
very large measure. If the system is in the equilibrium state, i.e., its initial
condition belongs to the region of overwhelmingly large measure, then it will
almost surely remain there, though fluctuations will possibly drive the system
a bit out of equilibrium for short time intervals.

As a final remark, consider the phase space density function ρ(p, q, t = 0)–
normalized to unity to give it the meaning of a probability–representing at
some initial time t = 0 a system prepared in a nonequilibrium macroscopic
state. Therefore, ρ(p, q, t = 0) will be nonvanishing only in some restricted

3 This time scale is shorter than and distinct from the relaxation time to
equilibrium.

4 The definition of macroscopic observables is somewhat arbitrary, so we assume
that macroscopic observables are those quantities that are measured in the
experiments that one wants to explain.
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region R of ΣE . The time evolution of the normalized ρ(p, q, t) will be given
by the Liouville equation (2.15), and thus the volume of R will be conserved
but not its shape. We have to think of an extremely complicated filamentation
of R, diffusing everywhere on ΣE and finely sampling it, so that in the course
of time the distribution ρ(p, q, t) will become more and more uniform on ΣE ,
at least in a suitably coarse-grained sense.

A more precise formulation of the idea that in the course of time the
Γ -point fills the whole energy hypersurface, so that if A ⊂ ΣE

lim
T→∞

τ(A)
T

=
μ(A)
μ(ΣE)

,

can be given by means of the ergodic theorem discussed in the following
section.

2.1.4 Ergodicity

In order to quantitatively derive the macroscopic properties–that is, to com-
pute the expected values of macroscopic observables–of a large collection of
atoms or molecules, one should compute some suitable time average along
the microscopic phase space trajectory. Let f be a macroscopic observ-
able, mathematically representable as a function of the microscopic states
x = (p1, . . . , pN , q1, . . . , qN ) ∈ Γ . Ideally, for a given initial condition x =
(p(0)1 , . . . , p

(0)
N , q

(0)
1 , . . . , q

(0)
N ) and for a time interval T shorter than some char-

acteristic observational time scale, a prediction of the outcome of a laboratory
measurement would be obtained by computing

f
T

=
1
T

∫ T

0

f [x(t)] dt , (2.18)

where x(t) is the solution of the equations of motion (2.4). Needless to say,
until the advent of electronic computers there was no hope of working out such
computations, not even for a few particles.5 Therefore, statistical mechanics
has been formulated just to get rid of microscopic dynamics. This is made
possible by the ergodic hypothesis, the fundamental assumption. Roughly
speaking, if the time needed to measure a macroscopic physical quantity is
sufficiently long (in a sense to be made more precise), instead of computing
averages as in (2.18), the prescription is to compute “static” phase space ave-
rages as in (2.17). Of course, the ergodic hypothesis has raised an ergodic
problem, and thus it has stimulated an enormous effort to find rigorous

5 As we shall see at the end of the present chapter, digital computers have made
possible a major leap forward in the study of the microscopic-dynamical origin of
macroscopic properties of physical systems. Besides a deepening of our theoretical
understanding of the subject, this has also led to the development of molecular
dynamics, a precious practical tool for ab initio computations.
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arguments in its favor. It is conceptually intriguing and mathematically formi-
dable problem that has led to the formulation of several ergodic theorems.
However, though interesting from the mathematical viewpoint, the existing
results do not allow one to decide whether a given Hamiltonian corresponds to
an ergodic flow. Despite this status of the art, statistical mechanics has grown
into a successful and powerful theory; in other words, the ergodic problem has
never represented a practical problem for physically relevant Hamiltonians
that for the purposes of statistical mechanics can be generically considered
truly ergodic.6 On the basis of some of the existing results in ergodic theory
and in KAM theory (see Section 2.2.1), we can understand the reason why
the ergodic hypothesis works so well.

First of all there is Birkhoff’s ergodic theorem, a major achievement. Let
us give, without proof, its two main steps.

Theorem 2.1. Let ΣE ⊂ Γ be a finite-volume subset of phase space, invari-
ant for the natural motions, that is, ϕH

t ΣE = ΣE, where ϕH
t represents the

Hamiltonian flow, x(t) = ϕH
t x(0), and let f(x) be a measurable phase function

defined on ΣE. The limit

f = lim
T→∞

1
T

∫ T

0

f [x(t)] dt

exists for almost all x ∈ ΣE, that is, with the exception of at most a set
of vanishing measure. Moreover, f is independent of the choice of the initial
point of the given trajectory.

This limit is the time average of f . Now consider the situation in which ΣE

cannot be decomposed into two invariant subsets A ⊂ ΣE and B ⊂ ΣE , with
ϕH

t A = A and ϕH
t B = B. In this case ΣE is called metrically transitive.

Setting μ
E
(ΣE) = 1, the measure of any invariant subset of a metrically

transitive set is either 1 or 0. Having defined the phase average 〈f〉 as in
(2.17), the following ergodic theorem holds.

Theorem 2.2. If a measurable invariant space ΣE ⊂ Γ is metrically transi-
tive, then for any measurable function f , we have

f = 〈f〉 ,

and also the converse is true; that is, metrical transitivity is equivalent to
ergodicity.

A widespread opinion about Birkhoff’s theorem was that it did not really
advance our understanding of the ergodic problem, because it converts
the ergodic problem into another equally difficult problem, that of prov-
ing the metric indecomposability of ΣE . However, this is not entirely true,

6 Obviously, integrable systems are nonergodic, but these are the exception, not
the rule.
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at least from the physicist’s viewpoint. Let us see why. After the Poincaré–
Fermi theorem (see Section 2.2.1), the generic situation for nonintegrable
Hamiltonian systems is that there are no invariants of motion besides
the energy, which makes the whole ΣE topologically accessible. In princi-
ple one could argue that after the KAM theorem (see Section 2.2.1), and
despite the Poincaré–Fermi theorem, invariant regions of positive measure
can exist on ΣE . However, as is mentioned in Section 2.2.1, this occurs for
exceedingly tiny deviations from integrability that are unphysical.

Moreover, metrical transitivity is entailed by the mixing property of the
dynamics. Mixing is defined as follows. For any pair of measurable sets
A ⊂ ΣE and B ⊂ ΣE , with the normalization μ

E
(ΣE) = 1, if

lim
t→∞μE

[(ϕH
t A) ∩B] = μ

E
(A)μ

E
(B) (2.19)

then the dynamics is mixing. This means that after a lapse of time equal
to t, the fraction of A in B is μ

E
[(ϕH

t A) ∩B]/μ
E
(B), and it converges to the

measure of A as a whole. With a classical example, mix together two different
liquids, say “red” and “blue,” in a given proportion, and then stir the mixture.
After a sufficiently long time, any portion of the mixture will contain the “red”
and “blue” liquids in the same initially assigned proportion.

If we take A ⊂ ΣE and B = A, with A an invariant measurable set,
we have

(ϕH
t A) ∩A = A ,

so that from (2.19), asymptotically μ
E
(A) = [μ

E
(A)]2, that is, μ

E
(A) = 0, 1,

the condition for metrical transitivity. We conclude that a mixing dynamics
is also ergodic. Apart from special systems, such as geodesic flows on com-
pact hyperbolic manifolds, for which a rigorous proof of mixing can be given,
we know from early investigations of N.S. Krylov [2] that a requisite for the
dynamics to be mixing is the exponential sensitivity to the variation of initial
conditions. In modern terms, a positive largest Lyapunov exponent, that is,
a chaotic dynamics (see Section 2.2), is required to have a mixing dynam-
ics. Notice that a mixing dynamics, rather than a simply ergodic dynamics,
is necessary to ensure a finite-time convergence of time averages to ensemble
averages, as was noticed already by Krylov, and this is a physically funda-
mental condition, since any laboratory measurement is performed during a
finite time. In conclusion, since generic nonintegrable Hamiltonian systems
are chaotic, and since at large N , that is, N � 3, their phase space trajec-
tories fill the whole constant-energy hypersurface on which the system has
been prepared, from the physicist’s standpoint this is sufficient to ensure the
bona fide mixing property–and thus after Birkhoff’s theorem also ergodicity–
of the dynamics of generic many-particle systems. Nothing seems to seriously
threaten the general validity of statistical mechanics. Nevertheless, as we shall
see at the end of the present chapter, the mixing characteristic time can be a
nontrivial function of the energy of the system, so that also very slow relax-
ations (even apparent freezing) of time to ensemble averages can be observed.
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2.1.5 From Micro to Macro: The Link with Thermodynamics

We have seen that the time averages of a physical observable can be replaced
by static ensemble averages under rather generic physical conditions. As far as
thermodynamic macroscopic observables are concerned, making the link with
a thermodynamic potential is enough, because all the other observables can be
worked out using the standard macroscopic relations (such as Maxwell’s rela-
tions). The usual approach is to define entropy in the microcanonical ensemble
as the logarithm of phase space volume. Then one shows that the proposed
definition has all the properties that entropy is expected to have. Then one
proceeds by considering a large-N subsystem of a larger system (to be called
thermostat), so that the total energy of the subsystem is no longer a con-
stant, and by working out the ensemble density in the phase space of the
subsystem, one is led to define a canonical ensemble where the basic math-
ematical object, the partition function, is directly related to the Helmholtz
free energy. Then, letting also N fluctuate, one defines the grand-canonical
ensemble whose grand-partition function directly gives the pressure. Of course
all this is fine because a consistent theory is built. Loosely speaking, this is a
“bottom up” approach to the problem of making a link between microscopic
and macroscopic descriptions of a physical system.

Instead of sketching here this standard presentation of the bases of
ensemble theory of statistical mechanics, we propose an equivalent concep-
tual construction, which we could define as a “top-down” approach, based on
an old and almost forgotten work by L. Szilard [28], which, in the author’s
words, allows one “to construct statistical thermodynamics on the basis
of the second law from purely thermodynamic considerations.” In other
words, the second law of thermodynamics is the founding physical principle
of ensemble statistical mechanics. We propose this unusual approach because
it has the advantage of making clearer the physics that is incorporated in the
theory and, consequently, the limits of its validity.7

Let us now recall Szilard’s work, which surprised many, including Einstein
and von Laue, in which the author showed that the second law of thermo-
dynamics provides information not only about the mean values of macroscopic
observables but also about their fluctuation properties.
7 To give an example, if we were to use statistical mechanics to cope with some basic

energy conversion mechanism in living matter, we would come up against a para-
dox concerning the high efficiency of energy production in mammals and humans:
according to the estimates provided by electrochemistry (see, for example, [29]),
the efficency of energy-conversion processes at microscopic level is about 50%.
On the other hand, the human body has a temperature T sligthly above 300 K
with an excursion ΔT of a few degrees, whence—according to the second law
of thermodynamics—the thermodynamic efficiency ΔT/T should be about 1%,
much lower indeed. This is already enough to affirm that ensemble statistical
mechanics is of no or only little use to describe these kinds of fundamental
processes in living matter at the microscopic level, which therefore must stem
from a strongly correlated and coherent dynamics.
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In his work, Szilard, disregarding the kinetic substratum of macroscopic
systems, assumes that any system, after sufficiently long contact with an
infinite thermal reservoir (thermostat), is at equilibrium.

Depending on the moment at which the contact with the thermostat is
interrupted, the energy content E of the system will be a random function of
the temperature T of the reservoir, distributed with a probability P (E, T ).
The same distribution describes the energy statistics of a series of an infinite
number of replicas of the same system after sufficiently long contact with a
reservoir at the same temperature.

Then it is shown that the distribution P (E, T ) must be a stable distribu-
tion, that is, the energy statistics cannot be changed, keeping the mean energy
fixed, without some compensation; this energy statistics is also called normal
statistics. The property of P (E, T ) of being stable is a major consequence
of the second law of thermodynamics. In fact, if this were not the case, one
could use infinitesimal thermal cycles exploiting the fluctuation phenomena
to violate the second law by constructing a perpetuum mobile of the second
kind.

Let us consider two ensembles E1 and E2 of many replicas of systems S1 and
S2, with energy distributions P1(E) and P2(E) respectively. To each sample
of E1 we associate a sample of E2 and bring them into thermal contact. The
probability distribution P (E) for the composite system is given by

P (E) =
∫ E

0

dη P1(η) P2(E − η) .

The stability requirement implies that the original distributions are retained
after contact, provided that the two sets were initially given in their normal
statistics. This is enough to work out the equilibrium distribution. Moreover,
if the equilibrium of each system in E1 has been reached independently of each
system in E2, no information about the energy content of a system in E2 can
be obtained by knowledge of the energy content of its companion in E1. This
initial statistical independence is assumed to remain true after the contact
between S1 and S2 has occurred.

Now let us establish a thermal contact between some S1 and its associated
S2. The energy of both systems will fluctuate. After a sufficiently long lapse
of time the connection is broken. The energy of S1 belongs to the interval
(E1, E1 + dE1) with a probability

W12(E1, E) dE1 ,

and similarly, the energy of S2 belongs to the interval (E2, E2 + dE2) with
a probability W21(E2, E) dE2. After sufficiently long contact, the distribu-
tion W will depend only on the total energy E, independently of its initial
repartition between the two systems.

The function W12, independent of T , can be computed by means of
P1(E1, T ) and P2(E2, T ) as follows. Under the hypothesis of stability of P ,
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the distributions P1 and P2 do not change before and after the contact be-
tween S1 and S2. Moreover, under the hypothesis of statistical independence,
after removing the contact between the members of a pair, the probability
that the energy of S1 is within E1 and E1 + dE1 and that the energy of S2 is
at the same time within E2 and E2 + dE2 is

P1(E1, T )P2(E2, T ) dE1 dE2 .

The state of a pair of systems can be also characterized by E1, the total energy
E = E1 + E2, and the probability

p = P1(E1, T )P2(E − E1, T ) dE dE1 . (2.20)

This probability can be also computed by choosing all the pairs of systems
whose energy is between E and E+dE; and then by selecting those for which
the energy of S1 belongs to the interval (E1, E1+dE1), we will find these latter
pairs with a probability W12(E1, E). On the other hand, the probability of
finding a pair of systems in the above-mentioned subset is given by P (E, T )dE.
In order to satisfy both conditions, we will find suitable pairs with probability

p = W12(E1, E)P (E, T ) dE dE1 , (2.21)

so that by equating (2.20) and (2.21), one obtains

W12(E1, E) =
P1(E1, T )P2(E − E1, T )∫ E

0
dη P1(η) P2(E − η)

. (2.22)

Hence we can conclude that8

P2(E2, T ) = C(T )g(E) exp[ϕ(T )E] . (2.23)

Similarly, using W21, we can find the same expression for P1. Since g(E)
remains indeterminate, the normalization condition

∫∞
0
dE P (E, T ) = 1 yields

the following expression for the function C(T ):

C(T ) =
[∫ ∞

0

dE g(E) eϕ(T )E

]−1

. (2.24)

8 By taking the logarithms of both members of (2.22) we get ln W12(E1, E) +
ln P (E, T ) = ln P1(E1, T )+ ln P2(E −E1, T ); then we take the partial derivatives
of both sides with respect to E1 at constant T and evaluate the result at E1 = 0,
obtaining

∂

∂E
ln P2 = − ∂

∂E1
ln W12

∣∣∣
E1=0

+
∂

∂E1
ln P1

∣∣∣
E1=0

= ψ(E) + ϕ(T ) .

Integrating on E we obtain ln P2(E, T ) = Ψ(E) + ϕ(T )E + c(T ), whence, setting
C(T ) = ec(T ) and g(E) = eΨ(E), the result of (2.23) follows.
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From the distribution function P (E, T ) we can compute

〈E〉 =
∫ ∞

0

dE E P (E, T ) (2.25)

and
σ2

E =
∫ ∞

0

dE (E − 〈E〉)2 P (E, T ) . (2.26)

If the fluctuations are small, from the relation∫ ∞

0

dE f(E) P (E, T ) ≈ f(〈E〉) +
(
d2f

dE2

)
E=〈E〉

σ2
E

2

one finds that

d〈E〉
dT

=
dϕ

dT

∫ ∞

0

dE E(E − 〈E〉)C(T )g(E)eϕ(T )E ,

whence the identity

dϕ

dT
=

1
σ2

E

d〈E〉
dT

(
≡ 1
χ(T )

)
. (2.27)

It is at this point that the second law of thermodynamics enters the game. In
fact, it can be shown that χ(T ) must be the same for all the systems, and thus
dϕ/dT is a universal function of the temperature. By showing that during a
“free” adiabatic expansion the statistics must remain normal if the second law
is to hold, a closed differential equation for χ(T ) is obtained, which gives

ϕ(T ) = − 1
kT

, (2.28)

where k is an integration constant; thermodynamics does not say anything
about its numerical value; it demands only that it be the same for all systems.
Thus, for obvious reasons, it has to be identified with the Boltzmann constant.

The final expression for the distribution P (E, T ) is thus

P (E, T ) =
g(E) exp[−E/kBT ]∫∞

0
dE g(E) exp[−E/kBT ]

. (2.29)

Nothing can be said about g(E). It is here, however, that the link can be made
between the macroscopic level of phenomenological thermodynamics and the
microscopic level of atomic and molecular description of matter. In fact, g(E)
is a weight function that we can naturally interpret as a density of states of
energy E. To make an ansatz for g(E), we can proceed as follows: in order
to link the macroscopic and microscopic levels, g(E) must be built using the
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positions and momenta of all the particles, and at any given E these variables
need to be constrained on a constant-energy surface. Thus we have to con-
sider an integral on ΣE , and the natural candidate for this purpose satisfying
Liouville’s theorem whose measure is bona fide ergodic for the microscopic
dynamics and naturally accounts for the energy dependence of the relative
variation of the microscopic states compatible with the macroscopic value E
of the energy is

g(E) ≡ ΩN (E) =
∫

ΣE

dσ

‖∇H‖ . (2.30)

The normalization factor of P (E, T ), that is, ZN (T ) = C−1(T ), now reads

ZN (T ) =
∫ ∞

0

dE e−E/kBT

∫
ΣE

dσ

‖∇H‖ ≡
∫
dNp dNq e−H(p,q)/kBT , (2.31)

where we have assumed that E = 0 is the energy minimum and where a
standard coarea formula9 has been used to write the right-hand side. Thus we
obtain the equilibrium density function ρeq(p, q) in Γ -space

ρeq(p, q) =
1

ZN (T )
e−H(p,q)/kBT (2.32)

which is “imposed” by the second law of thermodynamics. Yet the link with
thermodynamic observables is lacking. To this end, let us note that ZN (T ) in
(2.31) is formally the Laplace transform of ΩN (E) in (2.30), so that we can
invert the relation between ZN (T ) and ΩN (E) by Laplace antitransforming

ΩN (E) =
1

2πi

∫ β′+i∞

β′−i∞
ZN (β)eβEdβ

=
1
2π

∫ +∞

−∞
ZN (β′ + iβ′′) e(β

′+iβ′′)Edβ′′

=
1
2π

∫ +∞

−∞
exp{log[ZN (β′ + iβ′′)] + (β′ + iβ′′)E}dβ′′ , (2.33)

where β′ > λ0, with λ0 the convergence abscissa of the Laplace transform.
Since E and ZN (β) are proportional to N , in the limit N →∞ the only con-
tribution to the integral above comes from the neighborhood of the maximum
of the integrand. This occurs for β = β�, with β� determined by the equation

∂ logZN (β�)
∂β�

= −E , (2.34)

9 This formula is used repeatedly throughout this book, in Chapters 7, 8, 9 the
reader will find an appropriate reference.
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and so β� = β�(E). The exponent in the last integral above is then expanded
in the neighborhood of β�. Thus

ΩN (E) =
1
2π

∫ ∞

−∞
exp

[
logZN (β�) + β�E − 1

2
∂2 logZN (β�)

∂β�2 β′′2 + · · ·
]
dβ′′

= exp [logZN (β�) + β�E]
[
2π
∂2 logZN (β�)

∂β�2

]− 1
2

{1 + · · ·} . (2.35)

Using (2.31) we find that ∂2 logZN (β�)/∂β�2
= 〈H2〉 − 〈H〉2 > 0, and since

at very large N the exponent has an extremely steep maximum at β′′ = 0,
the most important contribution to the integral (2.35) comes from the neigh-
borhood of β′′ ≈ 0. Then, performing the integration over β′′, we obtain the
second equation in (2.35). Taking the logarithm of both sides gives

logΩN (E) = [ logZN (β�) + β�E ] +

[
log

(
2π
∂2 logZN (β�)

∂β�2

)− 1
2

+ · · ·
]
.

(2.36)

The first term in the right-hand side of this equation is O(N), whereas the
second term in square brackets is O(logN), so that at large N it can be
ignored in comparison with the first. Hence

logΩN (E) ≈ logZN (β�) + β�E . (2.37)

In the thermodynamic limit N →∞, this approximate relation becomes exact
in the form

lim
N→∞

1
N

logΩN (E) = lim
N→∞

[
1
N

logZN (β�) + β� E

N

]
. (2.38)

Now, by putting β� = 1/kBT , we immediately recognize that (2.34) and (2.37)
coincide with the Legendre transformation

S(E) =
1
T

[E − F (T )] ,
∂(F/T )
∂(1/T )

= E , (2.39)

which relates the entropy S(E) with the Helmholtz free energy F (T ), provided
that we make the identifications10

S(E) = kB logΩ(E) (2.40)

and
F (T ) = −kBT logZ(T ) . (2.41)

This makes the desired link between the microscopic description of a
many-body system and thermodynamics.
10 These are extensive definitions; the corresponding intensive ones, SN (E) =

kB
N

log Ω(E) and FN (T ) = − 1
N

kBT log Z(T ), are in general more practical.
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The two quantities ΩN (E) and ZN (T ) are the fundamental mathematical
objects in the Gibbsian statistical ensemble theory.

More precisely, when both the total energy E and the number N of degrees
of freedom of a system are given, the representative statistical ensemble is
the so-called microcanonical ensemble, and ΩN (E) is the state density of the
system. By solving E = E(S,V) from (2.40), the thermodynamic internal
energy is U(S,V) = E(S,V), and thus

T =
(
∂U

∂S

)
V
, P = −

(
∂U

∂V

)
S

,

are the absolute temperature and pressure, respectively. Moreover, F =U −TS
gives the Helmholtz free energy, G = U +PV −TS gives the Gibbs potential,
and

CV =
(
∂U

∂T

)
V

is the heat capacity at constant volume. Equivalently, we have also

1
T

=
∂S(E,V)
∂E

, C−1
V =

∂T (E)
∂E

.

It is worth mentioning that in order to avoid Gibbs paradox,11 the correct
expression for the microcanonical volume is

ΩN (E) =
1

hNN !

∫
ΣE

dσ

‖∇H‖ ,

where h is a dimensional constant (an action) to be numerically set equal to
Planck’s constant, and N ! overcomes the mentioned paradox.

An equivalent definition [up to additive constant terms O(logN)] of
entropy in the microcanonical ensemble is

S(E) = kB logω(E) , (2.42)

where

ω(E) =
∫

H(p,q)≤E

dNp dNq ≡
∫ E

0

dη

∫
Ση

dσ

‖∇H‖ . (2.43)

When N is assigned but energy fluctuates because the system under con-
sideration is put in contact with a heat bath at temperature T , the representa-
tive ensemble is the canonical ensemble and ZN (T ) is the canonical partition
function. Now the internal energy U(V, T ) is given by

U(V, T ) ≡ 〈H〉 =
1

ZN (T )

∫
dNp dNq H(p, q) e−H(p,q)/kBT , (2.44)

11 Gibbs paradox consists of the unreasonable prediction of an entropy increase when
two identical systems made of the same ideal gas are allowed to mix.
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and using Maxwell’s relations, entropy and pressure read

S = −
(
∂F

∂T

)
V
, P = −

(
∂F

∂V

)
T

;

the Gibbs potential is G = F +PV; and the heat capacity at constant volume
is found to be

CV =
〈H2〉 − 〈H〉2

kBT 2
.

Also the canonical partition function has to be divided by hNN ! to avoid
paradoxes. This so-called correct Boltzmann counting factor has no practical
consequence in the computation of averages, such as, for example, in (2.44).

In general, and at large N , canonical and microcanonical ensembles are
equivalent. In fact, the distribution of energy in the canonical ensemble is a
Gaussian distribution centered at 〈H〉 whose variance is

σE =
√
kBT 2CV ,

and since 〈H〉 ∝ N and CV ∝ N , the ratio σE/〈H〉 goes to 0 as N → ∞. In
other words, the larger N , the closer to a δ-function is the canonical energy
distribution, so that the microstates that really contribute to the canonical
statistical averages are those lying on the energy hypersurface Σ〈H〉.

However, equivalence no longer holds true in the case of long-range forces
and when additivity of energy, entropy, and other thermodynamic functions
is lost [30, 31]. In the case of long-range forces, for example, negative heat
capacity is allowed in the microcanonical ensemble, whereas it is strictly for-
bidden in the canonical ensemble. Said differently, entropy is always a concave
function of energy in the canonical ensemble, whereas it can be both convex
and concave as a function of the energy in the microcanonical ensemble.

If we assume that only the average number of particles of the system under
consideration is known, while the actual number N of degrees of freedom
fluctuates, and the energy E fluctuates because of the contact with a heat
bath, the representative statistical ensemble is the grand-canonical ensemble.
The Γ -space of this ensemble is spanned by all the coordinates and momenta of
all the realizations of a physical system obtained with 0, 1, 2, 3, . . . , N degrees
of freedom. The distribution function ρ(p, q,N) of the representative points in
Γ -space, giving the density of points representing systems with N degrees of
freedom with momenta and coordinates (p, q), can be obtained in the form12

ρ(p, q,N) =
zN

hNN !
e−βPV−βH(p,q) , (2.45)

where z = eβμ is called the fugacity and μ the chemical potential. Then one
allows the volume of the system to become infinite, and hence N varies in the
12 One has to consider a canonical ensemble of N particles, volume Ṽ, and temper-

ature T . Then one focuses on a small subsystem with N degrees of freedom in a
volume V to compute ρ(p, q, N) for the subsystem.
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range 0 ≤ N < ∞. Again the internal energy of the system will be given by
the ensemble average of the Hamiltonian H(p, q), while all the other thermo-
dynamic functions are derived from the grand-canonical partition function
Q(z) defined as the power series

Q(z,V, T ) =
∞∑

N=0

zNZN (V, T ) . (2.46)

After integration of both sides of (2.45) over (p, q) for a given N , and after
summation on N from 0 to ∞, one obtains

PV
kBT

= logQ(z,V, T ) , (2.47)

which directly gives the pressure as a function of z,V, T . Given a volume V,
the average number of particles contained in it is

Nav =
∑∞

N=0N zNZN (V, T )∑∞
N=0 z

NZN (V, T )
= z

∂

∂z
logQ(z,V, T ) . (2.48)

The probability that a system in a grand-canonical ensemble has N degrees
of freedom in a volume V is proportional to

W (N) = zNZN (V, T ) = eβμN−βF (N,V,T ) , (2.49)

where F (N,V, T ) is the Helmholtz free energy computed in the canonical
ensemble.

Using[
∂F (N,V, T )

∂N

]
N=Nav

= μ , γ :=
[
∂2F (N,V, T )

∂N2

]
N=Nav

,

we can Taylor expand about Nav the argument of the exponential in the
right-hand side of (2.49) to get

W (N) ≈W (Nav)e
1
2 βγ(N−Nav)2 ,

which is a Gaussian distribution centered at Nav with variance

σN =
√

1
βγ

=

√
kBTN

v2(−∂P/∂v) , (2.50)

where v = V/N is the specific volume (inverse density), and where we
have used P (v) = −(1/N)(∂F/∂v) for the pressure of the system. It is an
experimental fact that (∂P/∂v) ≤ 0 holds always true. From (2.50) we have
σN/N →∞ as N →∞. This implies that at large N almost all the systems in
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a grand-canonical ensemble have the same number Nav of particles; hence the
grand-canonical ensemble is trivially equivalent13 to the canonical ensemble
and the following relation holds,

Q(z,V, T ) ≈ zNavZNav(V, T ),

so that
F (N,V, T ) = −kBT logQ(z,V, T ) + kBTN log z

and eliminating z with the aid of (2.48), we finally obtain the Helmholtz free
energy, from which all the other thermodynamic functions can be derived.

2.1.6 Phase Transitions

Phase transitions involve abrupt major changes of the physical properties of
macroscopic objects when a thermodynamic parameter is even slightly varied
across a critical value. These are both fascinating and challenging physical phe-
nomena. They are fascinating because they are rather mysterious; for example,
in the familiar condensation phenomenon, how do the molecules of a vapor
“know” that at a precise value of the specific volume they must condense and
form two phases? and what makes the transition so sharp? Sometimes these
phenomena are definitely spectacular, as are the cases of superfluidity and
superconductivity. And they are challenging because to explain the observed
phenomenology, they have raised, and to some extent still raise, hard theoret-
ical problems.

Historically, the first known phase-transition phenomena were the transi-
tions between the solid, liquid, and gaseous phases due to temperature and/or
pressure variations. Melting, freezing, boiling, condensation, were very well
known phenomena long before the development of modern physics. But it
was only in 1873, with the formulation of the Van der Waals equation of state
for real gases, that a successful phenomenological description of the liquid–gas
transition was given. This equation of state reads(

P +
a

V 2

)
(V − b) = RT,

and some isotherms described by this equation are shown in Figure 2.1.
The isotherms display a kink, which disappears when the inflection point
of P = P (V ) becomes horizontal. This defines the critical isotherm and cor-
respondingly a critical temperature Tc, a critical pressure Pc, and a critical
volume Vc. A simple computation gives RTc = 8a/27b, Pc = a/27b2 and

13 Actually, the discussion about the equivalence between canonical and grand-
canonical ensembles requires a thorough investigation of the cases for which
(∂P/∂v) = 0, typically encountered in the coexistence region of a first-order
phase transition.
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Fig. 2.1. Van der Waals isotherms obtained from 2.51. Below Tc a kink appears
signaling the condensation transition (gas–liquid).

Vc = 3b. Then we define P = P/Pc, V = V/Vc, T = T/Tc, so that the Van der
Waals equation becomes(

P +
3
V2

)
(V − 1

3
) =

8
3
T , (2.51)

which is an equation valid for any substance: one says that this equation
expresses the law of corresponding states. We find here a property of univer-
sality that is well verified experimentally [32].

Experimentally, the transition between the gas phase and the liquid phase
occurs at constant temperature and pressure. If we start from a state in which
only liquid is present, the addition of heat results in the conversion of some
liquid into gas until all the liquid is converted into gas. During the phase
transition both P and T remain constant. Below Tc, the isotherms in the P−V
plane join two branches, describing the liquid and the gas phases respectively,
through a horizontal line representing the gas–liquid mixture: when a certain
amount of liquid is converted into gas, the volume expands.

This phenomenology is typical of a first-order phase transition. The kinks
displayed by the isotherms of the Van der Waals equation are thus unphysical,
and in fact they imply a negative compressibility. This can be attributed to
the implicit assumption of homogeneity, excluding phase coexistence. Through
the Maxwell construction this problem can be cured (see [33]). On the P − T
plane there are transition lines separating different phases. Let � be the tran-
sition line that separates the stability domain of phase I from that of phase II.
The Clapeyron equation (

dP

dT

)
�

=
ΔS

Δv
(2.52)



40 Chapter 2 Background in Physics

Fig. 2.2. Van der Waals isotherms obtained from 2.51 plus Maxwell’s construction.
The horizontal lines, below Tc, correspond to the gas–liquid coexistence.

then holds. It describes the vapor pressure in any first-order transition, where
ΔS = SII−SI and Δv = vII−vI are the discontinuities of entropy and specific
volume, respectively, passing from phase I to phase II. The quantity TΔS is
the latent heat of transition, which is directly proportional to the discontinuity
of the first-order derivative of the Gibbs thermodynamic potential G = F +
PV , where F is the free energy, since (∂G/∂T )P = −S.

Other transition phenomena, experimentally observed and theoretically
studied since the beginning of the twentieth century, were not considered
to have any relation to phase transitions because of the absence of a latent
heat. For example, to mention a few of them, the phenomenon known today,
of polymorphism of crystals, induced by suitable variations of temperature
and pressure, was first observed in sulfur in the eighteenth century. Also,
the ferromagnetic–paramagnetic transition, observed as a loss of spontaneous
magnetization of ferromagnetic materials heated at high temperature, was
already known to Faraday, who observed this phenomenon before the system-
atic investigations by P. Curie. Langevin, who first attempted a theoretical
explanation of the phenomenon, considered ferromagnetism and paramag-
netism as two distinct states somehow analogous to the gaseous and liquid
states. However, the absence of a discontinuity associated with the transi-
tion between ferromagnetism and paramagnetism prevented him from estab-
lishing a deeper connection. The same occurred with the investigations of
ordered structures in metallic alloys. The description of how the degree of
order changes with temperature was proposed by Bragg and Williams and
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first applied to β-brass. This is an equiatomic alloy of copper and zinc whose
atoms–at high temperature–are randomly distributed at the sites of a cubic-
centered lattice, whereas at low temperature copper and zinc tend to prefer-
ably occupy the sites of two simple cubic sublattices. At T = 0, the ordering
is perfect. At increasing temperature the degree of order lowers until it van-
ishes for a critical value of the temperature. This critical temperature is the
analogue of the Curie temperature for which the spontaneous magnetization
of a ferromagnet vanishes. Also in this case, the transition between order and
disorder is continuous, in contrast to an ordinary change of state. Thus Bragg
and Williams defined this as a “continuous transition.”

The study of the physical properties of liquid helium, which was produced
by H. Kammerling Onnes in 1908, brought about an advancement of the
problem of classifying those transitional phenomena that are not ordinary
changes of state.

Several experiments concurred to indicate that liquid helium could exist
in two different forms: a sort of polymorphism, occurring at the transition
temperature of 2.19 K. In particular, at this temperature discontinuities were
observed of the thermal dilatation coefficient, of the dielectric constant, and
of the constant-volume specific heat. The two forms of liquid helium were
denoted by He I and He II. Above 2.19 K, He I was stable, whereas He II was
stable below this temperature. This was called the λ-transition because of the
shape of the graph of specific heat as a function of T .

The discontinuities of the above-mentioned physical parameters suggested
that the transition between He I and He II perhaps should have been con-
sidered a change of state. However, this was in contrast to the experimen-
tal datum of vanishing latent heat, which made the Clapeyron equation
inapplicable. A tiny thermodynamic cycle, experimentally implemented by
W.H. Keesom in 1933 across the transition line in the P − T plane (made
of two isotherms and two isobars), led to the following replacement of the
Clapeyron equation: (

dP

dT

)
λ

=
ΔCP

TvΔαP
, (2.53)

where the subscript λ denotes the transition line,ΔCP is the jump of constant-
pressure specific heat passing from He I to He II, ΔαP is the jump of the
thermal dilatation coefficient at constant pressure, and v is the specific volume.

The experimental study of the transition between normal (ohmic)
conduction and the superconductive state in metals, cooled at very low tem-
peratures, also revealed a discontinuity in the specific heat at the transition
point. Furthermore, the Weiss “molecular field” theory of the paramagnetic–
ferromagnetic transition yielded a similar discontinuous pattern of the specific
heat at the transition point.

These results, and the comparison between (2.52) and (2.53), led
P. Ehrenfest to attempt a generalization of the concept of change of state. He
proposed to define first-order phase transitions as those transition phenomena



42 Chapter 2 Background in Physics

that are characterized by discontinuities of physical observables related to the
first derivative of the Gibbs potential, as is the case of the entropy, and to
define second-order phase transitions as those transition phenomena for which
the discontinuities of physical observables are related to the second derivative
of the Gibbs potential, as is the case of specific heat.

Ehrenfest’s classification of phase transitions had the great merit of putting
together different kinds of transition phenomena within a common framework.
However, it soon turned out to be not sufficiently accurate. In fact, take,
for example, the ferromagnetic transition associated with the Ising model.14

While the Weiss mean-field theory predicts for the two-dimensional model a
finite discontinuity of the specific heat at the transition point, Onsager’s exact
solution for the same model predicts a logarithmic divergence to infinity of
specific heat at the transition point. A way out of this difficulty is provided
by an important contribution given to the theory of phase transitions by
L.D. Landau in 1937.

Spontaneous Symmetry-breaking and Phase Transitions

Landau noted that phase transitions with vanishing latent heat were accom-
panied by a symmetry change of the physical states of a system. For example,
the disordered phase of β-brass has a cubic-centered structure, while in the
ordered phase it is simply cubic, that is, less symmetric. In fact, the two
simply cubic sublattices, equivalent in the disordered phase, are no longer
equivalent in the ordered phase where the permutation invariance of the two
sublattices is violated. A symmetry has been lost in the transition. Actually,
many (though not all) phase transitions are such that one phase is more sym-
metric than the other, and the transition from the more-symmetric phase to
the less-symmetric one is called a spontaneous symmetry-breaking phenom-
enon. The maximal set of the possible symmetries that a physical system can
have is represented by all the symmetries of the Hamiltonian describing it. In
general, at low temperatures the accessible states of a system can lack some
of the symmetries of the Hamiltonian, so that the corresponding phase is the
less symmetric one, whereas at higher temperatures the thermal fluctuations
allow the access to a wider range of energy states having more, and eventually
all, the symmetries of the Hamiltonian.15

In the broken-symmetry phase, an extra variable is required to character-
ize the physical states belonging to it. Such a variable, of extensive nature,
is called an order parameter. The order parameter vanishes in the more-
symmetric phase and is different from zero in the less-symmetric phase.
14 The Ising model is described by the Hamiltonian H = −J

∑
〈i,j〉 sisj , where 〈i, j〉

stands for nearest-neighbors on a d-dimensional lattice and si = ±1.
15 In view of the topological theory of phase transitions that will be presented in

the second part of the book, let us make the following remark. Any state of a
system undergoing a symmetry-breaking phase transition either possesses or does
not possess the relevant symmetry.Thus, it is not possible to analytically deform
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In view of another classification (beyond Ehrenfest’s) of phase transitions,
which will be summarized in the next section, it is important to remark that
there are also systems for which one can define an order parameter in the
presence of a latent heat, as is the case of the para-ferroelectric transition
in some materials (such as BaTiO3) for which the electric polarization is the
order parameter.

Let us briefly sketch some basic facts of the Landau theory. Consider a
thermodynamic system whose free energy F is a function of temperature T ,
pressure P , and some other extensive macroscopic parameters mi, that is,
F = F (P, T,mi). The parameters mi are defined to be all vanishing in the
most symmetric phase. Thus, as a function of the mi, F (P, T,mi) is invariant
with respect to the transformations of the symmetry group G0 of the most-
symmetric phase of the system. A state of the system is represented by a
vector |m〉 = |m1, . . . ,mn〉 belonging to a vector space E of all the states of
the system. In E we can construct a linear representation of G0 that associates
with any g ∈ G0 a matrix M(g) of rank n. In general, the representation
M(g) is reducible. By decomposing E into invariant irreducible subspaces
E1,E2, . . . ,Ek, of basis vectors |e(n)

i 〉, with n = 1, 2, . . . , ni and ni = dimEi,
the state variables mi are transformed into new variables η(n)

i = 〈e(n)
i |m〉. In

terms of irreducible representations Di(g) induced by M(g) in Ei one has

M(g) = D1(g)⊕D2(g)⊕ · · · ⊕Dk(g) .

If at least one of the η(n)
i is non zero, then the system no longer has the symme-

try G0. This symmetry has been broken, and the new symmetry group is Gi,
associated with the representation Di(g) in Ei. The variables η(n)

i are order
parameters, and now the free energy is F = F (P, T, η(n)

i ). The actual values
of the η(n)

i as functions of P and T are variationally determined by imposing
the condition of thermodynamic equilibrium, that is, by minimizing F .

In order to make a continuous transition from the symmetry G0 to an-
other symmetry Gi, the η(n)

i must vanish at the transition point, assuming in
its vicinity infinitesimal values. Thus F (P, T, η(n)

i ) can be expanded in power
series of the η(n)

i in the neighborhood of the transition point. Moreover, since
the free energy must be invariant with respect to any coordinate transfor-
mation, and in particular with respect to the transformations of the group
G0, the power expansion of F must contain only invariant combinations of
the η(n)

i . Now, no irreducible representation of a group has a linear invariant,

a state belonging to a phase into a state belonging to another phase possessing
a different symmetry. This is suggestive of a similar impossibility of analytically
deforming one into the other the level sets of the Hamiltonian of a system [say
ΣE = H−1(E) and Σ′

E = H−1(E′)] that correspond to different phases. In other
words, it seems natural to surmise that these level sets associated with different
phases are nondiffeomorphic, that is, topologically inequivalent.
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while it has a quadratic invariant that is a positive quadratic form of the η(n)
i .

As a consequence, the lowest-order expansion of F reads

F (P, T, η(n)
i ) = F0(P, T, 0) +

∑
n

A(n)(P, T )
∑

i

[η(n)
i ]2 +O([η(n)

i ]3) , (2.54)

where the A(n)(P, T ) are positive functions of P and T for all n above Tc.
A broken symmetry phase, that is, the occurrence of nonzero η(n)

i below Tc,
requires that at least one of the coefficients A(n)(P, T ) change its sign at
T = Tc. Since only one of the representations of Gi ⊂ G0 corresponds to
thermodynamic instability of a disordered phase, in the expansion (2.54) we
can keep only the term that changes its sign at Tc. The quantities η(n)

i that
are nonzero below Tc, that is, in the ordered state, are called the order para-
meters. Henceforth we drop the suffix n with the assumption that the relevant
representation is the one that corresponds to the thermodynamic instability
at Tc.16 Moreover, we generically denote by G the subgroup Gi of G0. With
the notation η =

∑
i η

2
i , and considering higher orders in the expansion (2.54),

we have

F (P, T, η) = F0(P, T, 0)+A(P, T )η2+C(P, T )η3+B(P, T )η4+O(η5) . (2.55)

Though the transition point is a singular point for F , it is, however, assumed
that this does not conflict with the regular expansion given above. In the
symmetric phase the minimum of F , given by (∂F/∂η) = 0, has to correspond
to η = 0, while in the broken-symmetry phase the stable state minimizing F
has to correspond to η �= 0. This entails that at the critical temperature Tc of
the transition point we must have

Ac(P, Tc) = 0 , Cc(P, Tc) = 0 , Bc(P, Tc) > 0 .

When the index17 of G ⊂ G0 is 2, no cubic invariant of G is allowed; thus
C(P, T ) = 0 identically, and we are left with the expansion

F (P, T, η) = F0(P, T, 0) +A(P, T )η2 +B(P, T )η4

with B > 0.

16 Note that a simultaneous change of sign of more than one single coefficient A(n)

can occur only at isolated points in the (P, T ) plane. Moreover, an order parameter
is not only a quantity that vanishes in a phase and is different from zero in the
broken-symmetry phase; it is also necessary that its fluctuations grow with N at
the transition point. This leads to the concept of dominant representation within
the set of irreducible representations of the symmetry group. Fluctuations are not
accounted for in the Landau theory.

17 The number of cosets of a finite group G0, generated by a subgroup G, is called
the index of G in G0: if G0 = G ∪ aG, with a /∈ G, then G is of index 2 in G0;
if G0 = G ∪ aG ∪ bG, with a /∈ G and b /∈ G ∪ aG, then G is of index 3 in G0.
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We have assumed that, near Tc, A is regular, so that it can be expanded as
A(P, T ) = Ac(P, Tc)+a(P )(T −Tc) = a(P )(T −Tc), where Tc is the transition
temperature, whence, setting B(P ) = B(P, Tc), it follows that

F (P, T, η) = F0(P, T, 0) + a(P )(T − Tc)η2 +B(P )η4 . (2.56)

In order to find the temperature-dependence η(T ) of the order parameter,
we have to minimize the free energy, i.e., to compute (∂F/∂η) = 0, which
gives

η2 = − A

2B
=

a

2B
(Tc − T ) (2.57)

and the root η = 0, which corresponds to the symmetric phase (in this case,
with A < 0, F has a maximum and not a minimum at η = 0). Neglecting
higher orders of η, we compute

S = −∂F
∂T

= S0 −
∂A

∂T
= S0 +

a2

B
(T − Tc) (2.58)

while in the symmetric phase, being η = 0, it is S = S0. Thus it is evident
that the entropy is continuous at T = Tc. Then we can compute the behavior
of the specific heat CP = T (∂S/∂T )P at the transition point. In the broken-
symmetry phase it is

CP = (CP )0 +
a2

B
T

∣∣∣∣
T=Tc

= (CP )0 +
a2

B
Tc , (2.59)

whereas in the symmetric phase, S = S0, so that CP = (CP )0. In other words,
at the critical point of a second-order phase transition, the specific heat makes
a finite jump, since B > 0, CP > (CP )0, that is, the specific heat is larger in
the broken-symmetry phase than in the symmetric phase. This jump of CP

brings about discontinuous jumps of many thermodynamic quantities (such
as the compressibility and the thermal dilatation coefficient).

A graphical presentation of the families of curves F (η), plotted at different
temperatures, whose functional forms are those given by (2.56) and by (2.55),
helps in understanding the difference between a first- and a second-order phase
transition. In Figure 2.3 the patterns F (η) are reported for T > Tc, T = Tc and
T < Tc. The stability conditions for the thermodynamic equilibrium require
that near Tc one have (∂2F/∂η2)|η=0 > 0 for T > Tc, and (∂2F/∂η2)|η=0 < 0
for T < Tc. Hence at the transition point (∂2F/∂η2)|η=0,T=Tc = 0. The func-
tion η(T ) is continuous at Tc, as prescribed by (2.57).

In Figure 2.4, the patterns of F (η), containing also a term proportional to
η3, are reported at different temperatures. In this case, the function η(T ) is
discontinuous at Tc, as can be easily grasped by observing that below Tc, F (η)
has an absolute minimum for η �= 0 that at Tc rises to the same level of the
relative minimum of F (η) at η = 0, so there is coexistence of the two phases.
For T > Tc there is a reversal between these minima, so that the absolute
minimum of F (η) occurs at η = 0, hence the jump of the order parameter.
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Fig. 2.3. Landau theory illustrated for a second-order transition. To the left the
shapes are shown of the Helmholtz free energy F (η) as a function of the order
parameter η, above, at, and below the critical temperature Tc. To the right the
bifurcation diagram of the order parameter values η corresponding to the minima
of F (η) is reported as a function of the temperature.

Critical Exponents and Universality

Landau’s theory of phase transitions was an important achievement. However,
being a mean-field theory that neglects thermodynamic fluctuations,18 it is
inaccurate in the vicinity of phase transition points. As a matter of fact, fluc-
tuations play a major role in second-order phase transitions. To clarify this,
let us return to the Van der Waals isotherms. We have already seen that a
critical temperature exists (which depends on the fluid), for which the crit-
ical isotherm has a horizontal inflection point where the V -interval of phase
coexistence shrinks to zero, this means that here the latent heat vanishes and
the transition from vapor to liquid is continuous. The vanishing of the deriv-
ative (∂P/∂V ) at the critical point entails the divergence of the isothermal
compressibility

κT =
1

V (−∂P/∂V )T
,

18 The applicability of the Landau theory is subject to the satisfaction of the
Ginzburg criterion. This criterion is satisfied when the fluctuations are sufficiently
weak [34].
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Fig. 2.4. Landau theory illustrated for a first-order transition. To the left the shapes
are shown of the Helmholtz free energy F (η) as a function of the order parameter
η, above, at, and below the critical temperature Tc. To the right the bifurcation
diagram of the order parameter values η corresponding to the minima of F (η) is
reported as a function of the temperature. The asymmetric shapes of F (η) are such
that at Tc a jump of η(T ) is produced.

and since κT is related to the density fluctuations through the so-called
fluctuation-response theorem, that is, 〈N2〉−〈N〉2 = 〈N〉2kTκT /V , the diver-
gence of κT implies the divergence of the amplitude of the density fluctuations.
By the same theorem, the compressibility is also related to the correlation
function G(r) by ∫

dr G(r) = kTκT ,

and for a fluid in d dimensions, G(r) is of the form

G(r) ∝ e−|r|/ξ

|r|(d−1)/2ξ(d−3)/2
.

The quantity ξ is the correlation length and is a measure of the effective
range of interaction of the particles in the system. Now, the important con-
sequence of the relation between the integral of the correlation function and
the isothermal compressibility is that the divergence of κT implies also the
divergence of the correlation length ξ at the critical point. Therefore, since
the number of degrees of freedom effectively interacting with each other is
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∝ ξd, this number diverges at the critical point, so that there is no longer a
characteristic length scale in the system except for ξ. The assumption that
ξ is the only characteristic scale left when T is very close to Tc—so that
the critical behavior of all the thermodynamic functions is derived from the
critical behavior of ξ—is known as the scaling hypothesis and has important
theoretical consequences.

When the microscopic variables of a system are linearly coupled to an
external field B, we can define the susceptibility χ = (∂η/∂B)|B=0, which,
again through the fluctuation-response theorem, is functionally related to the
Fourier transform of the correlation function. Thus, also the susceptibility
diverges at the critical point because of the divergence of the correlation
length. The remarkable experimental fact is that all the diverging physical
quantities, near Tc obey power laws, for example,

C ∼ |T − Tc|−α specific heat,
χ ∼ |T − Tc|−γ susceptibility,
ξ ∼ |T − Tc|−ν correlation length,

and a power law also describes the nondivergent behavior of the order parame-
ter near Tc: η ∼ |Tc−T |β for T < Tc. The exponents α, β, γ, ν are called critical
exponents. The great relevance of critical exponents is due to the observation
that phase transitions occurring in different systems happen to have the same
critical exponents, a phenomenon that is known as universality and that allows
a unified treatment of critical phenomena in a large number of physical sys-
tems. Actually, experiments show that the values of these exponents do not
depend on the details of microscopic interactions, nor on the kind of lattice
(for on-lattice models), nor on the value of Tc, nor on other physical details
of the system. The only parameters that seem to affect the critical exponents
are the spacial dimension of the system, the dimensionality of the order para-
meter, and the kind of symmetry (discrete or continuous) of the Hamiltonian.
All the systems possessing the same set of values of the critical exponents
are said to belong to the same universality class. Moreover, experience has
largely confirmed that the critical exponents, even though they belong to dif-
ferent universality classes, and therefore they take different numerical values,
satisfy universal relations called scaling laws. An example that involves the
above-mentioned critical exponents is α+ 2β + γ = 2.

Finally, we just mention that a powerful theoretical method to system-
atically reduce the number of degrees of freedom, by integrating over short-
wavelength fluctuations, was devised by Kadanoff, Wilson, and others, who
have developed the renormalization group theory of critical phenomena.

Classification of Phase Transitions

To summarize, beyond the old Ehrenfest classification scheme of phase tran-
sitions, a more modern one is the following:



2.1 Statistical Mechanics 49

• First-order phase transitions. These transitions involve a latent heat and
are associated with phase-coexistence.19 Belonging to this class we find
(i) Phase transitions without an order parameter for which the symmetry
groups of the two phases are such that none of them is strictly included in
the other; (ii) phase transitions for which the symmetry group of the less-
symmetric phase is a subgroup of index 3 of the symmetry group of the
more-symmetric phase, entailing that the order parameter is discontinuous
at the transition point.

• Second-order phase transitions. These are continuous transitions with
no associated latent heat. In this case the symmetry group of the less-
symmetric phase is a subgroup of index 2 of the symmetry group of the
more-symmetric phase, whence the order parameter is continuous at the
transition point. Continuous transitions have many interesting properties
in the vicinity of the transition point. These properties and the associated
phenomena are called critical phenomena (see the preceding section).

• Infinite-order phase transitions. These are continuous transitions that do
not break any symmetry. The Kosterlitz–Thouless transition occurring in
the two-dimensional classical Heisenberg XY model provides a paradig-
matic example.

There is a great variety of phase transition phenomena observed in physi-
cal systems and predicted by theoretical models. They extend from quantum
field theory of elementary particles to cosmology, with the breaking of symme-
tries in the laws of physics during the early life of the universe. Many, or even
most, of these transition phenomena satisfactorily fit in the above given clas-
sification scheme and are well understood with the aid of the existing theories.
Nevertheless, there are several problems in traditional condensed-matter and
soft-matter systems that still challenge our understanding of those transitional
phenomena that occur, for example, in glasses, spin glasses, and polymers,
not to speak of living-matter systems, where a wide variety of equilibrium
and nonequilibrium transitional phenomena take place at a mesoscopic or
nanoscopic level; for example, just to mention a few of them, the hard prob-
lem of protein folding; the structural changes in biomembranes; the formation
of cytoskeletal microtubules; the formation of electrets of the so-called vicinal
water around proteins, around microtubules, and other filamentary structures;
the formation of arrays of pseudo-Josephson junctions of these electrets; the
emergence of qualitatively new properties in networks (of neurons, of biochem-
ical reactions, of genetic regulation, and so on) modeled as phase transitions,
for instance, of random graphs.

Many of the above-mentioned systems undergoing phase transitions that
are not yet well understood are often put in the family of complex systems,

19 For example, in a pot of boiling water, vapor bubbles coexist with liquid water;
in a pot of freezing water, pieces of ice can coexist with liquid water. In both
cases, adding or draining heat does not result in a change of temperature but in
a modification of the relative amounts of water in the coexisting phases.
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which seem naturally to call for the topological approach to phase transitions
that will be discussed in the second part of this book.

The Yang–Lee Theory of Phase Transitions

We have seen in the preceding sections that a common property of all phase
transitions is that the thermodynamic variables, as functions of the state
variables, seem to lose their analyticity properties at the transition points.
These nonanalytic points are the boundaries between different phases of the
system.

However, the microcanonical volume, the canonical partition function, and
the grand-canonical partition function are analytic, and thus the thermo-
dynamic functions derived from them are necessarily analytic as well (with the
possible exception of the case of vanishing temperature, i.e., the point T = 0).

As first suggested by Kramers, the thermodynamic limit, where the number
N of degrees of freedom and the volume of the sample both tend to infinity
while the density is kept fixed, must be invoked to explain the existence of true
singularities of the thermodynamic variables.20 A first confirmation of this
hypothesis was given about ten years later by the Onsager’s exact solution of
the 2D Ising model. From a mathematical point of view, then, no singularities
or no phase transitions can exist as long as N is finite. Real systems are always
finite,21 so that the phase transition point is not a singular point in a strict
mathematical sense. The unusual behavior of thermodynamic variables at
phase transitions in real systems can, however, be understood as a consequence
of the true singularity that would be present in the thermodynamic limit [37].

Kramers’s suggestion has been put on a rigorous basis by Yang and
Lee [36], whose theory relies on the well-known mathematical fact that a
sequence of smooth functions can have a nonsmooth limit, provided that the
convergence is not uniform.

The Yang–Lee theory applies to generic systems of N particles in a volume
V interacting through a Van Hove potential φ(r):

φ(r) =

⎧⎨⎩+∞ if r ≤ r0 ,
< 0 and > −ε if r0 < r < r1 ,
0 r ≥ r1 ,

r = ‖ri − rj‖ ,
∀ i, j ∈ {1, 2, . . . , N} . (2.60)

This is a generic short-range attractive potential, bounded below, with a repul-
sive hard core. This kind of potential prevents the particles from getting closer
20 According to G.E. Uhlenbeck [35], the use of the thermodynamic limit as an

explanation of the singularities of the partition function was suggested for the
first time by Kramers in the 1938 Leiden conference on statistical mechanics.

21 Common wisdom says that the Avogadro number is so large that it is “practically”
close to infinity. However, apart from phase transitions occurring in small systems
with N of a few hundreds or a few thousands, there are cases in which the relevant
quantities approach their thermodynamic limit with a logarithmic N -dependence,
and the logarithm of the Avogadro number is a small number.
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to one another than a minimum distance r0. Therefore, in a given volume V,
the number of particles that can be closely packed into it has a maximum
M(V).

For N > M(V), the partition function ZN (V) vanishes because of the
divergence of the interaction energy. Thus, the grand-partition function
Q(z,V) is a polynomial of degree M(V) of the fugacity z:

Q(z,V, T ) = 1 + Z1(V, T )z + Z2(V, T )z2 + · · ·+ ZM (V, T )zM

=
M(V)∏
k=1

(
1− z

ζk

)
, (2.61)

where ZN =
∫

exp(−βφ(r))dNr is the canonical partition function with N
degrees of freedom, and the ζk are the M(V) roots of the algebraic equation

M(V)∑
N=0

ZN (V, T ) zN = 0 . (2.62)

Since all the ZN are positive, the roots of this equation are complex, and the
equation of state, expressed in parametric form as

P

kT
=

1
V logQ(z,V, T ) ,

1
v

=
1
V z

∂

∂z
logQ(z,V, T ) , (2.63)

entails that for any finite volume V, the pressure P = P (z) and the specific
volume v = v(z) are analytic in a region of the complex fugacity plane that
contains the positive real axis. As a consequence, also the function P = P (v)
is analytic, and all the other thermodynamic functions are free of singularities.
Moreover, the following properties hold: (i) P (v) ≥ 0, (ii) V/M(V) ≤ v <∞,
(iii) (∂P/∂v) ≤ 0.

Now, in the limit V → ∞, the equation of state is given by

P

kT
= lim

V→∞
1
V logQ(z,V, T ) ,

1
v

= lim
V→∞

1
V z

∂

∂z
logQ(z,V, T ) , (2.64)

where the operations limV→∞ and (z ∂/∂z) can be interchanged only if the
limit is uniform. We see here that a nonuniform limit could offer a possibi-
lity of finding singularities that would correspond to phase transitions. More
precisely, when V increases, the number of roots of (2.62) also increases, and
if some of these zeros of Q(z,V, T ) converge to a point z0 on the real axis
of z, then, by Vitali’s theorem in complex analysis,22 for V → ∞ the radius
22 Consider a sequence of regular functions fn(z) in a domain D such that for every

n and z in D, |fn(z)| ≤ A, and such that as n → ∞, fn(z) converges to a limit
point in D. Then fn(z) converges uniformly to an analytic limit inside D.
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of the neighborhood of a point z0 on the real axis, a neighborhood where
FV(z) = V−1 logQ(z,V) converges uniformly, would shrink to zero, and the
limit function could be nonanalytic. This is the fundamental idea of the Yang–
Lee theory, which is rigorously expressed by the following two theorems:

Theorem 2.3. The limit

F∞ ≡ lim
V→∞

1
V logQ(z,V)

exists for any z > 0, and is a continuous nondecreasing function of z. This
limit is also independent of the shape of the volume. It is assumed that as
V → ∞, the area of the surface of V does not increase with the volume faster
than V2/3.

Theorem 2.4. Let us consider a region R of the complex plane of the vari-
able z that contains a segment of the real axis. If in R there are no zeros of
the grand-partition function, then for any z ∈ R and V → ∞, the quantity
V−1 logQ(z,V) converges uniformly to a limit function of z that is analytic
for any z ∈ R.

On the basis of the second theorem, a single thermodynamic phase will be
identified by all the values of z belonging to the same region R. In fact, in
such a region the two operations of limit and of derivation can be interchanged,
so that by the first theorem, the equation of state in parametric form

P (z)
kT

= F∞(z) , (2.65)

1
v

= z
∂

∂z
F∞(z) ,

is expressed in terms of analytic functions. If the region R contains the whole
real axis, then no phase transition can exist; this situation is represented in
Figure 2.5. In contrast, if in the limit V → ∞ the zeros of Q(z,V) converge to
a point z0 on the real axis, then two distinct regions R1 and R2 are formed
where Theorem 2.4 holds separately; this situation is represented in Figure 2.6.
In this case, by Theorem 2.3, the pressure function P (z) is still continuous at
z = z0, while the specific volume v(z) can be discontinuous at the same point.
In such a case, the system would have two distinct thermodynamic phases,
corresponding to the regions with z < z0 and z > z0. With the aid of (2.48)
and (2.63), one finds that for any finite V,

z
∂

∂z

[
1
v(z)

]
= 〈(N/V)2〉 − 〈N/V〉2 ≥ 0 .

That is, 1/v(z) is a nondecreasing function of z, and if z1 ∈ R1 and z2 ∈ R2

with z2 > z1, then 1/v(z2) ≥ 1/v(z1). A discontinuity that 1/v(z) can develop
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Fig. 2.5. Absence of phase transitions. The region R of the complex fugacity plane
is free of zeros of the grand-partition function, correspondingly, the P − v diagram
is regular and describes a single thermodynamic phase.

Fig. 2.6. Figure (a) shows the complex fugacity plane separated into two regions,
R1 and R2, by a zero of the grand-partition function located at z0. Each region
corresponds to regular behaviors of thermodynamic functions, that, however, match
at z0 in a nonanalytic way. Figure (b) describes a two-phase system undergoing a
first-order phase transition; the P − v diagram displays a coexistence line. Figure
(c) describes a two-phase system undergoing a second-order phase transition.
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in the thermodynamic limit, together with this monotonic character of 1/v(z),
describes a first-order phase transition when the horizontal coexistence line
in the P − v plane is generated. This is illustrated by Figure 2.6b, where
we have to keep in mind that the jump in the pattern of 1/v(z) is a limiting
feature; at finite volume this is a sharply increasing but continuous function. In
Figure 2.6c the case is shown in which both P (z) and dP (z)/dz are continuous
at z = z0, but it is the second derivative, d2P (z)/dz2, that is discontinuous,
thus representing a second-order phase transition.

In conclusion, the equation of state (2.64) can account for the existence
of phase transition phenomena, provided that phase transitions are mathe-
matically identified with a loss of analyticity of thermodynamic functions,
hence the thermodynamic limit dogma to describe phase transitions within
the framework of statistical mechanics.

The fact that the distribution of the zeros of the grand-partition function
completely determines the equation of state is a remarkable one. However, this
could remain too abstract, because of the a priori great difficulty of computing
the distribution of the roots in the complex plane. Fortunately, there is a
class of physically interesting systems for which the roots are not dispersed
everywhere in the complex plane but distribute themselves on a fixed circle.
This is the case of the Ising model in an external magnetic field and of a
lattice gas. The gas on a lattice is such that on each lattice site there can be
one atom or a vacancy. To prevent the occupation of a lattice site by more
than one atom, the interaction energy u between two atoms is u = +∞ if two
atoms occupy the same site; if two atoms occupy nearest-neighboring sites
their interaction energy is assumed to be u = −2ε, otherwise u = 0. This
lattice gas and the Ising model with an external magnetic field are completely
equivalent, in the sense that the thermodynamic properties of one of these
systems can be derived from those of the other, provided that a table of
correspondence among the different quantities is introduced.

Lee and Yang [38] proved the following remarkable result:

Theorem 2.5 (circle theorem). If the interaction u between two atoms of
a lattice gas is such that
u = +∞ if the atoms occupy the same lattice site,
u ≤ 0 otherwise,
then all the zeros of the grand-partition function lie on the unit circle in

the complex fugacity plane.

In the N →∞ limit, the roots of Q(z,V) = 0 can be described by means
of a density function g(θ) such that Ng(θ)dθ is the number of roots with z
belonging to the interval [eiθ, ei(θ+dθ)]. One obviously has

∫ 2π

0
g(θ)dθ = 1.

For the lattice gas it turns out that

P

kT
=
∫ π

0

g(θ) log(z2 − 2z cos θ + 1)dθ ,

1
v

= 2z
∫ π

0

g(θ)
z − cos θ

z2 − 2z cos θ + 1
dθ . (2.66)
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Thus knowledge of the distribution function g(θ) allows one to compute the
isotherms in the P–v plane for the lattice gas to describe the phenomenon of
condensation. After the replacements P = −F − B (F is the Helmholtz free
energy and B the external field) and v = 2/(1−M) (M is the magnetization),
the same equations give the isotherms in the M−B plane for the Ising model.

For a chain of N spins with periodic boundary conditions, Lee and Yang
computed the angular distribution g(θ) and found that the roots do not close
in on the real axis: a finite-arc segment, crossing the real axis, remains void
of roots for any N . This is in agreement with the absence of a ferromag-
netic transition in the one-dimensional Ising model. In contrast, in the case
of the two-dimensional Ising model with vanishing external field, for which a
phase transition exists, the roots on the unit circle are distributed so as to get
arbitrarily close to the real axis in the limit of arbitrarily large N .

2.2 Hamiltonian Dynamics

As we have seen above, statistical mechanics is a successful theory of the
average behavior of a large collection of atoms or molecules; it gets rid
of microscopic dynamics, which is the very origin of macroscopic physics,
under the apparently reasonable hypotheses of ergodicity and mixing. These
hypotheses spawned an “ergodic problem,” which, according to different lines
of thought, has been given different degrees of emphasis.

As is witnessed by the content of this book, the efforts to deepen our
understanding of the validity limits of the basic assumptions of statistical
mechanics are far reaching, and go far beyond a mere confirmation of the
solidity of its grounds. Some scholars, among whom we mention L. Landau
and A.I. Khinchin, claimed that the ergodic problem had nothing to do with
microscopic dynamics and that its solution would rather stem from probability
theory, due to the huge number of particles in macroscopic systems.

Others, among whom E. Fermi played a key role, were rather inclined to
look for a justification of the ergodic hypothesis through a development of our
understanding of generic properties of Hamiltonian dynamics. There are some
fundamental analytical results, which will be sketchily reviewed in this section,
and some fundamental “experimental” results, worked out by numerically
solving the equations of motion of paradigmatic models and concisely reviewed
in Section 2.3, that convincingly support the physical relevance and soundness
of the assumption of generic validity of ergodicity and mixing.

2.2.1 Perturbative Results for Quasi-integrable Systems

The motions of a Hamiltonian system are the solutions of the equations (2.3).
In general, the integration by quadrature of 2N first-order ordinary differ-

ential equations needs the knowledge of 2N first integrals of motion. However,
since the Hamiltonian flow has to preserve the symplectic structure of phase
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space, the canonical equations (2.3) require the knowledge of only N first
integrals of motion, F1, . . . ,FN , provided that these are in involution, that is,
their Poisson brackets {Fi,Fj} = 0 with each other vanish. In this case, the
phase space motions belong to an invariant subspace (fixed by the initial con-
ditions) that is isomorphic to an N -torus T

N , so that by means of a canonical
transformation to action-angle variables, it is always possible to represent the
phase space motion as a translation on the torus. More precisely, we have the
following:

Theorem 2.6 (Liouville-Arnold). Let H(p, q) be the Hamiltonian of an
N -degrees-of-freedom system.23 Assume that this system has N independent
first integrals of motion in involution, F1, . . . ,FN , with F1 = H. If we con-
sider the space Mf that is implicitly defined by the level sets of the functions
F by F1 = f1, . . . ,FN = fN , then this space is an invariant set for the mo-
tion of the system. Moreover, if the space Mf is connected and compact, then
in a neighborhood of Mf a completely canonical transformation exists from
the variables (p, q) to action-angle variables (J, θ) such that the transformed
Hamiltonian depends only on J = (J1, . . . , JN ), and such that the motion
of the system with respect to the new variables is a translation on the torus
T

N with frequency ω = (ω1, . . . , ωN ) = (∂H(J)/∂J1, . . . , ∂H(J)/∂JN ). Thus
Hamilton’s equations can be integrated by quadrature.

Integrability will be discussed in Chapter 4. Let us now make a quick
survey of some fundamental results concerning the dynamics of those systems
(the overwhelming majority) for which the exact solution by quadrature of
the equations of motion is ruled out.

Generically, adding to an integrable Hamiltonian, thus representable
as a function of the actions only, H = H(J), an arbitrarily small term
H1(J, θ) that depends also upon the angle variables θ canonically conjugate to
J integrability is lost.

Definition 2.7. A Hamiltonian system is said to be quasi-integrable if its
Hamiltonian function has the form

H(J, θ, ε) = H0(J) +
∞∑

r=1

εrHr(J, θ), (2.67)

where (J, θ) ∈ R
N × T

N , ε is a small parameter and H0 is the Hamiltonian
function of a completely integrable system.

The perturbation parameter ε has to be small in the sense that, a norm ‖ · ‖
in the space of Hamiltonians having been defined, the condition

‖H −H0‖  ‖H0‖ (2.68)

23 Here again, we use the notation p = (p1, . . . , pN ) and q = (q1, . . . , qN ), and with
N degrees of freedom we mean N pairs of canonically conjugate variables.
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has to be satisfied. The above given definition of quasi-integrability makes it
possible to develop a perturbative treatment of nonintegrable systems. How-
ever, from the very beginning, the domain of application of the method that
we are going to sketch is severely limited by the above given condition on the
strength of the perturbation amplitude and by the need of an unperturbed
reference system expressed in action-angle coordinates. This is due to the
fact that Poincaré [39] originally developed the perturbative method to tackle
problems in celestial mechanics, where only few bodies are involved, which
move quite regularly on human observational time scales.

The perturbative method consists in searching a sequence of canonical
coordinate transformations, which we denote by24 W

(1)
ε : (J, θ) → (P (1), Q(1))

for the first-order step, andW (n)
ε : (P (n−1), Q(n−1)) → (P (n), Q(n)) at generic

order n, which, by means of successive iterations, eliminate the functional
dependence on the angular variables in the transformed Hamiltonians at
successive orders in ε. The first-order step will be achieved by a function
W

(1)
ε : (J, θ) → (P (1), Q(1)) that is ε-near to the identity because in the limit

ε→ 0 the Hamiltonian H is already independent of the variables θ. Thus we
can assume that the generating function has the form

W (1)
ε (P (1), θ, ε) =

N∑
i=1

P
(1)
i θi + εW (1)(P (1) , θ) (2.69)

whence the following condition for the vanishing of the second-order terms is
obtained:

N∑
i=1

[
∂H0

∂Ji

∂W (1)

∂θi

]
P (1),Q(1)

+H1(P (1), Q(1)) = 0. (2.70)

This is the fundamental equation of perturbation theory. In view of the periodic
dependence on the angular variables of the functions we are dealing with,
we can use Fourier series developments like

H1(P (1), θ) =
∑
κ	=0

H1,κ(P (1))eiκ·θ , (2.71)

W
(1)
1 (P (1), θ) =

∑
κ	=0

Wκ(P (1))eiκ·θ , (2.72)

where κ = (k1, . . . , kN ) and 0 stands for the null vector, and substituting
these Fourier developments into (2.70) we obtain

iκ · ω W (1)
κ (P (1)) +H1,κ(P (1)) = 0 (2.73)

∀ κ ∈ Z
N \ {0},

24 We use P (n) and Q(n) to denote N -components vectors. To denote the single
components we use subscripts, e.g., P

(n)
i .
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where ω = (ω1, . . . , ωN ) = (∂H0(J)/∂J1, . . . , ∂H0(J)/∂JN ). It immediately
follows that if κ · ω �= 0, we get the following formal solution25 for (2.70):

W (1)
κ (P (1)) = i

H1,κ

κ · ω . (2.74)

The possibility of performing the transformation to the variables (P (1), Q(1))
crucially depends on the unperturbed frequency that we are considering.

Definition 2.8. Let ω ∈ R
N . The subset of Z

Ngiven by

Mω = {κ ∈ Z
N | κ · ω = 0} (2.75)

is called the resonance module Mω of the frequency vector ω.

According to the dimension 0 ≤ dimMω ≤ N−1 of the resonance module, the
orbit on the unperturbed torus T

N can be periodic, and in this case dimMω =
N −1 corresponds to complete resonance; or dense on the whole T

N , in which
case dimMω = 0, corresponding to nonresonance; or again, dense on a torus
of dimension N − d, immersed in T

N , and now dimMω = d, 0 < d < N − 1.26

Thus, if the unperturbed motion is periodic, then there is no way to work out
an analytic form for W (1)

ε . Yet, if the unperturbed motion is quasi-periodic,
there will always be values of κ ∈ Z

N that can make the denominator in
the right-hand side of (2.74) arbitrarily small, thus preventing the series from
converging. This is the famous problem of small denominators, which has
plagued perturbation theory since its beginning. Actually, Poincaré proved
a theorem, later generalized by Fermi, that under generic conditions denies
the possibility of convergence for the perturbative series and is enunciated as
follows:

Theorem 2.9 (Poincaré–Fermi). Let an N-degrees-of-freedom Hamiltonian
system, with N ≥ 3, be described by

H(J, θ, ε) = H0(J) + εH1(J, θ). (2.76)

If H0 satisfies the nondegeneracy condition det
∣∣∣ ∂2H0
∂Ji∂Jk

∣∣∣ �= 0, and if all the
coefficients in the Fourier development of H1 do not vanish (hypothesis of
generic perturbation),27 then there are no analytic (Cω) first integrals of H,
25 The fundamental equation of perturbation theory is formally solved by the treat-

ment that we are sketching in the sense that we ignore the problem of convergence
of the series involved.

26 When dimMω �= N − 1 the motions are said to be quasi-periodic.
27 Actually, both hypotheses–of generic perturbation and of nondegeneracy of the

unperturbed part–can be considerably weakened by exploiting Birkhoff’s pertur-
bation theory [41] so that the theorem applies to a very broad class of systems of
physical interest.
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defined on an open set of phase space, that are functionally independent
of H.

This asserts that neither analytic (Poincaré) [39] nor smooth (Fermi) [40]
integrals of motion besides the energy can survive a generic perturbation of
an integrable system with three or more degrees of freedom. Thus, in the
absence of other isolating integrals of motion, any constant energy surface of
these generic systems is expected to be everywhere accessible to the phase
space trajectory. In fact, were the perturbative series convergent, it would be
possible to recover a functional dependence of the Hamiltonian on the action
variables only, which is possible only for integrable systems. The nonexistence
of analytic prime integrals of motion for a generic quasi-integrable system
hinders complete integrability, that is, it is no longer possible that all the
motions are bounded and quasi-periodic. On the other hand, there is no hin-
drance to the survival of some of the unperturbed quasi-periodic motions also
in the presence of the perturbation. In other words, phase space is no longer
regularly foliated into invariant tori, but it could happen that some of them
survive for ε �= 0, provided that we give up their regular dependence on J , for
J varying in an open subset A ⊂ R

N . Such a result can be worked out under
suitable hypotheses about the frequencies and amplitudes of the perturbation:
this is the celebrated KAM theorem, enunciated as follows:

Theorem 2.10 (Kolmogorov–Arnold–Moser). Consider a quasi-
integrable Hamiltonian system described by

H(θ, J) = H0(J) + εH1(θ, J) (2.77)

if H0 satisfies the nondegeneracy condition,28 and if the perturbation is suf-
ficiently small (ε < εc). Then some of the invariant tori associated with H0

are deformed under the action of the perturbation but are still invariant for
the flow of the complete Hamiltonian H. These tori are those corresponding
to the unperturbed frequencies that satisfy the Diophantine condition29

|κ · ω| ≥ γ(ε)‖κ‖−N ∀ κ ∈ Z
N \ {0} . (2.78)

The ensemble Ωγ of the unperturbed frequencies that satisfy this condition is
a Cantor set. Moreover, the measure of the complement of Ωγ is small with
the perturbation

lim
ε→0

μ(Ω \Ωγ) = 0 . (2.79)

28 The original formulations of this theorem are found in [42]. An extension to the
case of Hamiltonians of the form H(θ, J) = ω · J + εH1(θ, J), representing a
collection of perturbed harmonic oscillators, can be found in [41].

29 This condition means that we are considering the effect of a nonintegrable pertur-
bation acting on non-resonant and sufficiently irrational tori of H0. The degree of
irrationality of a real number is higher the slower the convergence of its continued
fraction development.
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Summarizing: The consequence of the Poincaré–Fermi theorem is that the
whole constant-energy hypersurface ΣE of the phase space of a generic non-
integrable Hamiltonian system is topologically accessible; the KAM theorem
specifies that for quasi-integrable Hamiltonian systems, below a threshold
value for the perturbation parameter ε and for particular choice of the initial
condition the phase space trajectory can be confined to a restricted region
of ΣE . Apparently, this theorem could seriously threaten the foundations of
statistical mechanics because it goes against ergodicity. In order to assess the
actual relevance of this menace, for a casual choice of the initial conditions
we have to estimate the probability of being in the domain of validity of the
KAM theorem. If the number N of degrees of freedom is large, the theorem
has in practice no physical relevance because of the strong N -dependence of
the threshold value εc on the perturbation amplitude [43], typically30

εc(N) ∼ e−N log N , (2.80)

so that for large-N systems–which are dealt with by statistical mechanics–the
admissible perturbation amplitudes for the KAM theorem to apply drop down
to exceedingly tiny values of no physical meaning.

A remarkable improvement of KAM theory started with the Nekhoroshev
theorem, which deals with finite-time stability of regular orbits in phase space
instead of infinite-time stability as in the KAM theorem. Still considering
quasi-integrable systems, we can wonder how long a nonintegrable trajectory–
issuing from an initial condition close to an invariant torus of H0(J)–will
remain almost “stuck” to it. An estimate for this confinement time is given
by the following theorem:

Theorem 2.11 (Nekhoroshev). Let the analytic quasi-integrable N degrees
of freedom Hamiltonian

H(θ, J) = H0(J) + εH1(θ, J) (2.81)

satisfy the nondegeneracy condition31 det
∣∣∣ ∂2H0
∂Ji∂Jk

∣∣∣ �= 0. There exist a critical
value εc and suitable constants C,α, τ, β such that for ε < εc, every solution
(θ(t), J(t)) of the equations of motion of H with initial conditions at least at
a distance Cεα from the boundary of the domain where the variables J are
defined, one has

|J(t)− J(0)| ≤ Cεα for t ≤ τe(1/ε)β(N)
. (2.82)

30 The N -dependence of εc depends, to some extent, on general properties of the
interaction potential; for example, in [44] it is found that εc ∼ N−δ, but the value
worked out for δ is so huge that the physical consequences are the same.

31 The original and refined formulations of this theorem can be found in [45]; the
theorem can be extended also to the case of Hamiltonians of the form [46]
H(θ, J) = ω · J + εH1(θ, J).
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A comment about the relevance of this result for statistical mechanics is
in order. The absence of a truly invariant set for the dynamics now prevents
any conflict with the ergodic hypothesis. However, since any experiment or
measure lasts only a finite time, also quasi-invariance of the actions could lead
to the inadequacy of the statistical-mechanical predictions. Observation time
scales and “ergodization” time scales now enter the game, and their compar-
ison could in principle lead to a practical violation of ergodicity. Also in this
case it is necessary to focus attention on the dependence on the number of
degrees of freedom of the constants entering the theorem. Again the pertur-
bation amplitude ε must be smaller than some critical value εc, and even the
optimal estimates give εc very small and

β(N) ∼ 1
N
,

so that the lower bound for the stability time drops down to O(1) already at
rather small N .

There are exceptions: for a special Hamiltonian system, a Nekhoroshev-
like result [47] gives just 1 for the relevant constant independently of N , but
this requires a very large gap between the acoustic and optical branches of
the Brillouin frequency spectrum of the unperturbed system.

However, the Nekhoroshev theorem has in general only little relevance, if
any, for statistical mechanics.

2.2.2 Hamiltonian Chaos

For a long time, the equations of Newtonian mechanics have been the para-
digm of classical determinism, conceptually identified with the notion of pre-
dictability at any time. But during the last decades, it has been realized that
“determinism” and “predictability” are far from being the same concept,
and that predictability crucially depends upon the stability of the solutions of
the dynamical differential equations. Determinism implies that once an initial
condition is given, the trajectory is uniquely determined for all later times;
stability means that two initially close trajectories will remain close in the
future. If this is not true, it becomes impossible to predict the evolution of a
system even for very small times.

As long as nonlinear dynamical systems are considered, stability is the
exception rather than the rule. Even if this relies—at least from a conceptual
point of view—upon mathematical results that have been known since the
end of the nineteenth century, its importance has been completely realized
only with the aid of a new and powerful approach: numerical simulation. The
very complicated structure of some trajectories that can arise in nonlinear
dynamical systems was discovered by Poincaré [39] in the late nineteenth
century, but the physics community became fully aware of the existence and
the meaning of these structures only when they were visualized by computer
simulation in the work of Hénon and Heiles [48].
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The instability we are referring to is known as intrinsic stochasticity of
the dynamics, or deterministic chaos. These terms mean that the dynam-
ics, although completely deterministic, yet exhibits some features that make
it indistinguishable from a random process. The characteristic feature of a
chaotic system, which is at the basis of the unpredictability of its dyna-
mics, is the sensitive (exponential) dependence on initial conditions: locally,
the distance between two trajectories that originate in very close-by points
in phase space grows exponentially in time, so that the system loses the
memory of its initial conditions. Regular dynamics, i.e., quasiperiodic motion,
is—as far as conservative systems are considered—a “weak” property, because
it is destroyed by very small perturbations of the system. In contrast, chaos is
a strong property, because given a dynamical system in which chaos is present,
in many cases it will be present even after the system has been subjected to
significant perturbations [49].

As we have seen in the preceding section, the most relevant results—
at least in view of their potential impact on statistical mechanics—worked
out in the framework of classical perturbation theory apply to those regions
of phase space where the motions are sufficiently far from resonance of the
involved frequencies. While the N -tori of an integrable Hamiltonian can
survive to sufficiently weak nonintegrable perturbations, provided that these
tori are sufficiently irrational, completely different is the fate of resonant tori.
In fact, no matter how small the perturbation εH1 is, the resonant tori of H0

are destroyed. According to a theorem due to Poincaré and Birkhoff, which
holds forN = 2, under the action of a generic perturbation, resonant tori break
into an even number of fixed points (on the Poincaré surface of section), half
of them elliptic and half hyperbolic. Near these hyperbolic points, the nonin-
tegrable perturbation originates the phenomenon of homoclinic intersections,
which entail a chaotic dynamics. Let us now take a glance at what happens
in the resonant regions of phase space.

Consider the simplest situation of a one-degree-of-freedom system subject
to a time-dependent perturbation

H(θ, J) = H0(J) + εV (θ, J, t) , ε 1, N = 1. (2.83)
Let V (t) = V (t + T ) be a periodic time-dependent perturbation of period
T = 2π/ν such that we can write

V (θ, J, t) =
1
2

∑
k,l

Vk,l(J)ei(kθ−lνt) + c.c. , (2.84)

with Vk,l = −V �
−k,−l. Hence the equations of motion

J̇ = −ε∂V
∂θ

= − i
2
ε
∑
k,l

kVk,l(J)ei(kθ−lνt) + c.c. ,

θ̇ =
∂H

∂J
=
dH0

dJ
+ ε

∂V

∂J
= ω(J) +

1
2
ε
∑
k,l

dVk,l(I)
dJ

ei(kθ−lνt) + c.c. .

(2.85)
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For any pair of integers such that

kω − lν ≈ 0 ,

equations (2.85) have a resonant solution. The approach to tackle resonances
consists in “extracting” out of (2.85) the “dangerous” resonance and then
studying the dynamics as if it were essentially determined by this “danger-
ous” resonance. Then one tries to evaluate the effect of the initially neglected
nonresonant terms. Of course, more than a single “dangerous” resonance can
exist. However, for the sake of simplicity, we assume that one of them has
a dominant role. Let k0, l0, J0 be the parameters of the dominant resonance,
that is, such that k0ω(J0) − l0ν = 0. Thus we can drastically simplify the
Fourier developments in (2.85) by retaining only the resonant harmonic

J̇ = εV0k0 sin(k0θ − l0νt+ ϕ) ,

θ̇ = ω(J) + ε
dV0

dJ
cos(k0θ − l0νt+ ϕ) , (2.86)

having put Vk0,l0 = |Vk0,l0 |eiϕ = V0e
iϕ. Now we introduce a new phase variable

ψ = k0θ − l0νt+ ϕ and rewrite the equations above as

J̇ = εk0V0(J) sinψ ,

ψ̇ = k0ω(J)− l0ν + ε
dV0(J)
dJ

cosψ . (2.87)

Though these equations considerably simplify the initial problem, they are
still rather difficult to study. A further simplification can be introduced by
noting that if ε is sufficiently small, then J̇ is small as well, and the deviation
of J from its resonant value J0 is also small. Suppose that J is very close to J0.
The effect of the resonance will be that of making the action J grow with time,
and since the frequency ω is a function of J , the growth of J switches off the
resonance. The nonlinearity of the system saturates the growth of the action
variable near a resonance, and for small ε we have to expect a small-amplitude
oscillation of J around the resonant value J0. Now put ΔJ = J − J0, and
assuming that it is small note that equations (2.87) practically correspond to
a Hamiltonian H = H0(J0) + εV0(J) cosψ. Then we make a series expansion
of H0(J) in powers of ΔJ up to the second order, i.e.,

H(ψ, J) = H0(J0)+ω(J0)ΔJ+
1
2

[
dω(J)
dJ

]
J=J0

(ΔJ)2+εV0(J0) cosψ . (2.88)

By means of the canonical transformation

(θ, J) → (k0θ − l0νt,ΔJ) , ν = ω(J0) ,

equation (2.88) becomes

HR = k0H − l0νΔJ , (2.89)
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which, apart from an irrelevant constant, is

HR =
1
2
a(ΔJ)2 + b sinψ (2.90)

with

a = k0

(
dω

dJ

)
J=J0

, b = εV0k0 .

The Hamiltonian HR in (2.90) is the universal Hamiltonian for a nonlinear
resonance. The Euler–Lagrange equation of motion associated with HR is

d2q

dt2
+Ω2

0 sin q = 0 (2.91)

with q = ψ+π and Ω2
0 = [εV0(dω/dJ)J0 ]

1/2. Equation (2.91) is the equation of
motion of a nonlinear pendulum whose phase space is sketched in Figure 2.7.

A simple estimate from (2.90) of the largest oscillation width, the so-called
resonance width, is

maxq {ΔJ} =

[
εV0

(
dω

dJ

)−1

J0

]1/2

,

where we can observe that, in contrast to what usually happens with per-
turbation theory, the variation of ΔJ is proportional to ε1/2 instead of being
proportional to ε, and since ε  1 we have ε1/2 � ε, and thus it is much
larger.

Let us now consider the case of internal resonances, that is, resonances
that are due not to an external forcing term but to the existence of two or

Fig. 2.7. Phase-space trajectories of a simple pendulum. The closed curves are
the oscillations; the curves above and below the separatrix S are clockwise and
counterclockwise rotations, respectively.
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more degrees of freedom. Consider the case of N = 2 and a system described
by the Hamiltonian

H =
2∑

i=1

H0i(Ji) + εV (J1, J2, θ1, θ2).

In this case the resonance can take place between the two degrees of freedom.
For this to occur it is necessary that

nω1(J0
1 )−mω2(J0

2 ) = 0 , n,m ∈ N .

Also in this case we start by considering the Fourier series development of the
perturbation, out of which we shall extract only the resonant term; thus we
write

V =
1
2

∑
n1n2

Vn1n2(J1, J2)ei(n1θ1−n2θ2) + c.c. ,

and we also develop H0i, and the associated frequencies ωi, about (J0
1 , J

0
2 ).

As in the preceding case, the Hamiltonian (2.2.2) reads

HR =
1
2

2∑
i=1

ω′
i(ΔJi)2 + εV0 cosψ ,

where

ω′
i =

(
dω(Ji)
dJi

)
J0

i

, ΔJi = Ji − J0
i ,

the phase is given by ψ = nθ1 −mθ2 + ϕ, and

Vnm(J0
1 , J

0
2 ) =

∣∣Vnm(J0
1 , J

0
2 )
∣∣ eiϕ ≡ V0e

iϕ .

The equations of motion derived from (2.2.2) are

J̇1 =
d(ΔJ1)
dt

= εnV0 cosψ ,

J̇2 =
d(ΔJ2)
dt

= −εmV0 cosψ ,

ψ̇ = nω′
1ΔJ1 −mω′

2ΔJ2 . (2.92)

Multiplying the first equation by m, the second one by n, and summing them,
one immediately sees that the quantity

mJ1 + nJ2 = cost (2.93)

is a constant of motion. Moreover, by introducing again q = ψ+ π and differ-
entiating the third of equations (2.92) we get

d2q

dt2
+Ω2

0 sin q = 0 , (2.94)
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where Ω2
0 = εV0(n2ω′

1 + m2ω′
2), which is again the pendulum equation of

motion. In the N > 2 case, more than two degrees of freedom can resonate,
that is,

M≤N∑
i=1

miωi(J1 · · · JN ) = 0 .

This entails the existence of several equations like (2.93), while the resonance
process is still described by a single equation for the oscillating phase ψ again
in the form of (2.94). There is a major limitation to this method due to the
generic possibility of multiple resonances, so that considering the motion of
a system near a nonlinear resonance constitutes an oversimplification of the
problem, acceptable, at most, in very special regions of phase space.

Homoclinic Intersections near a Perturbed Separatrix

We have seen that in the presence of a nonlinear resonance the local repre-
sentation of the phase space orbits coincides, apart from deformations, with
the phase space orbits of a pendulum.

The limiting phase space trajectory, separating librations from rotations,
is called a separatrix. The cuspy points of the separatrix are unstable equi-
librium points, called hyperbolic points because of the shape of linearized
motions close to them. Each hyperbolic point is associated with eigendirec-
tions corresponding to real positive and negative eigenvalues of the linearized
motion. These directions are the asymptotes of the hyperbolic trajectories of
the linearized motion, and are also the sets of points attracted by the fixed
points for t→∞ or t→ −∞. In contrast, the sets of points that, in the exact
motion converge toward the fixed point for t→∞ or t→ −∞ are called the
stable manifold W s and unstable manifold Wu of the fixed point, respectively.
These manifolds are tangent to the eigendirections of the fixed point. For a
pendulum, or in the case of Hamiltonians describing nonlinear resonances, the
two manifolds, W s and Wu are superposed and jointly form the separatrix.
However, there is no reason for this to happen in general. To the contrary,
we learn from Melnikov’s theory [50] that the addition of an arbitrarily small
perturbation to an integrable system entails transverse intersections of Wu

and W s.
Suppose that Wu and W s intersect at h0 (see Figure 2.8b); this point

is called homoclinic. The image h1 of h0 (transformed by the action of the
Hamiltonian flow or of the Poincaré application on the surface of section) by
definition of Wu and W s must belong to both Wu and W s, thus also h1 is a
homoclinic point.

The oriented tangents T+
0 and T−

0 at h0 are transformed into oriented tan-
gents T+

1 and T−
1 at h1. The conservation of the orientation (which is related

to general properties of canonical transformations) implies the existence of a
structure as shown in Figure 2.8c, that is, the existence of an intermediate
homoclinic point h′0. By iterating forward and backward in time, an infinity
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Fig. 2.8. Homoclinic intersections. In Figure (a) the phase portrait of a quartic
oscillator—described by H(p, q) = 1

2
p2 − 1

2
q2 + 1

4
q4—is shown. The stable and

unstable manifolds issuing from the hyperbolic point X are superposed to form an
eight-shaped separatrix. After the addition of a perturbation, the stable and unstable
manifolds no longer superpose but intersect transversally; Figure (b) shows one inter-
section point, h0, out of a countable infinity of them. In (c) the image h1—under
the Hamiltonian flow— of h0 is shown.

of images and preimages of h0 and h′0 are generated. At large n, the images
hn of h0 along W s converge to the fixed point and their separation exponen-
tially decreases.32 Therefore, in order to conserve the areas of the lobes of
Wu to satisfy Liouville’s theorem, the lobes must be exponentially stretched.
Moreover, self-intersections of W s and Wu are forbidden because otherwise
the conservation of areas would prevent the points belonging to a lobe pro-
duced by such an intersection from converging to the fixed point for t→ ±∞.
As a consequence the lobes are constrained to take on increasingly contorted
shapes, getting thinner and thinner (see Figure 2.9) and generating new sets
of homoclinic points having an infinity of images and preimages of their own.
A formidably complex structure is thus generated, of which Poincaré wrote:

These intersections form a sort of texture, or of a net whose meshes
are infinitely tight; each of these two curves can never intersect itself,
but has to fold in a complicated way as to intersect all the meshes of
the net an infinite number of times. One is amazed by the complexity
of this picture, which I do not even attempt to draw.

The intersections between W s and Wu are called homoclinic intersections.
Their existence, together with the just-mentioned stretching and folding of the
32 In fact, the velocity of the motion along an unperturbed separatrix is, for a

pendulum, p0(t) = 2 sech t.
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Fig. 2.9. Homoclinic intersections of W u and W s for a quartic oscillator plus a
generic perturbation that breaks integrability.

lobes formed by W s and Wu, makes us understand the origin of the erratic
appearance of the orbits belonging to a stochastic layer that replaces a sepa-
ratrix destroyed by a generic perturbation. Any trajectory in the stochastic
layer tends to stick to W s or W s and thus to assume all its complexity.
An abstract version of the effect of the combined action of stretching and
folding is provided by the Smale horseshoe [51], and in fact, homoclinic
intersections–by the Smale–Birkhoff homoclinic theorem–generate a hyper-
bolic invariant set [52–54].

To better understand the effect of a generic perturbation on a nonlinear
resonance, we consider a forced pendulum

q̈ + sin q = ε cosωt , (2.95)

where ω is a constant angular frequency and ε is a small parameter. For any
small but finite value of ε, equation (2.95) is not integrable, i.e., it has no
analytic integral of motion. There is a method, due to Melnikov, to prove
that (2.95) is not integrable. Rewrite (2.95) in the form

ẋ = X0(x) + εX1(x, t) , (2.96)

where x ∈ R
2, X0 is a Hamiltonian vector field of Hamiltonian H0, and X1

is a periodic Hamiltonian field with period T and Hamiltonian H1. Assume
that X0 has a homoclinic orbit x(t) such that for t→∞, x(t) → x0, with x0

a hyperbolic fixed point, and consider the Melnikov function

M(t0) =
∫ ∞

−∞
{H0,H1} (x(t− t0), t) dt ,
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where {, } stands for the Poisson bracket. There is a theorem [54, 55] stating
that if M(t0), considered as a periodic function of t0, has simple zeros, then
(2.96) has transversally intersecting manifoldsW s andWu, that is, homoclinic
intersections. To apply the method to the forced pendulum, set x = (q, q̇) so
that (2.95) becomes

d

dt

(
q

q̇

)
=
(

q̇

− sin q

)
+ ε

(
0

cosωt

)
.

The homoclinic orbit is given by

x(t) =
(
q(t)
q̇(t)

)
=
(±2 tan−1(sinht)

±2 sech t

)
,

and with

H0(q, q̇) =
1
2
q̇2 − cos q ,

H1(q, q̇, t) = εq cosωt ,

the Melnikov function is

M(t0) = ±
∫ ∞

−∞

(
∂H0

∂q

∂H1

∂q̇
− ∂H0

∂q̇

∂H1

∂q

)
dt

= ± ε
∫ ∞

−∞
q̇ cosωtdt = ± ε

∫ ∞

−∞
[2 sech(t− t0) cosωt]dt .

After a change of variables, since the hyperbolic secant is even and the cosine
is odd, one gets

M(t0) = ± ε
[∫ ∞

−∞
sech t cosωt dt

]
cos (ωt0) ,

whence finally
M(t0) = ±2πε sech

(πω
2

)
cos(ωt0) ,

which clearly has simple zeros.
As a consequence of the presence of these intersections, in a neighborhood

of the region in phase space that was occupied by the separatrix in the inte-
grable case, a chaotic layer suddenly appears. The chaotic layer is the region
irregularly filled by dots in Figure 2.10, where a two-dimensional section33 of
the 3D phase space of the system is shown. If one follows the evolution of
two initially close points in the chaotic layer, one finds that their separation
locally grows exponentially in time, so that the dynamics in the chaotic sea is
unpredictable.
33 This section has been obtained as a stroboscopic Poincaré section [56], so that

each point on the plot corresponds to an intersection of a trajectory of the system
with the planes t = 2nπ/ω.
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Fig. 2.10. Section of the phase space of a perturbed pendulum, showing the
appearance of chaotic seas close to the separatrix of the unperturbed system (the
solid line in the figure). The dots are obtained from a single trajectory issuing from
a point very close to the unperturbed separatrix. The amplitude of the perturbation
is ε = 10−4.

The appearance in phase space of irregular regions such as the chaotic
layer could justify by itself the use of the term “chaotic dynamics.” However,
there are also other properties of the dynamics described by (2.95) that justify
the use of such a term. For example, if we introduce a symbolic coding of the
dynamics in which the symbol 0 is associated with each passage through
the point q = 0 with q̇ > 0 and the symbol 1 to each passage through the
same point with q̇ < 0, then given any bi-infinite sequence of zeros and ones,
for example generated by coin tosses, this sequence corresponds to a real
trajectory of the system (2.95). Aspects of the motion of the system, though
deterministic, are thus indistinguishable from a random process.

This example is extremely simple but contains the essential features of
the problem. However, even in the simple low-dimensional cases, by means of
concepts like homoclinic intersections, it is possible only to give a qualitative
description of the onset of chaos, but a quantitative description of the sto-
chastic regions is not at hand, i.e., there is no recipe to compute how fast two
initially close-by points separate. For N -dimensional systems the situation is
obviously even worse.

To obtain quantitative information on chaotic dynamics we must introduce
Lyapunov exponents.

2.2.3 Lyapunov Exponents

The standard operational way to detect chaos and to quantify its strength
is through Lyapunov characteristic exponents (LCE). A trajectory is said to
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be chaotic if its (largest) Lyapunov exponent is positive. The mathematical
definition of LCE relies on Oseledeč’s multiplicative theorem [57].

Let us recall that for a generic flow ϕt : M →M on a manifold M , given
an invariant measure, μ, and denoting by dϕt

x : TxM → T(ϕtx)M its tangent
dynamics, Oseledeč’s theorem ensures that ∀x ∈M1, ∀e ∈ TxM (e �= 0), with
M1 ⊂M and such that μ(M1) = 1, the quantity

λ(x, e) = lim
t→∞

1
t

ln ‖ dϕt
x(e)‖,

which is independent of the metric of M , exists and is finite. The definition
relies of the largest Lyapunov exponent relies on this theorem. More explicitly,
let J(x) be the Jacobian matrix of the Hamiltonian flow ϕt at the point
x = (p1, . . . , pN , q1, . . . , qN ). Denoting by ξ the variation vector, the tangent
dynamics dϕt is described by

dξi
dt

= Jik(x(t))ξk.

Thus J : TxM → T(ϕtx)M .
Take a vector ξx ∈ TxM and its transformed ξ(ϕtx) ∈ T(ϕtx)M ; notice

that
〈ξ(ϕtx), J ξx〉 = 〈J∗ξ(ϕtx), ξx〉

and that the product appearing at the left-hand side belongs to T(ϕtx)M , while
the product of the right-hand side necessarily belongs to TxM , i.e., J∗ξ(ϕtx) ∈
TxM , and in general ‖ξ(ϕtx)‖ �= ‖ξx‖, whence J∗ �= J−1. Therefore J maps
the tangent vectors forward in time, while J∗ maps these vectors backward
in time but not retracing the forward evolution of ξ(t). Having defined G =∏n

i=1 Ji(ϕi−1x), Oseledeč’s theorem states that the limiting matrix

Λx = lim
n→∞(G∗G)1/2n

exists and is finite, and thus for any n the product (
∏n

i=1 J
∗
i )(

∏n
k=1 Jk) maps

an arbitrary vector ξ0x ∈ TxM into a vector ξnx ∈ TxM , i.e., into the same
tangent space TxM . Thus an eigenvalue problem for Λx is well defined in
the vector space TxM . Since the matrix Λx is positive semidefinite by con-
struction, its eigenvalues {γi} are real and non-negative. Moreover, since Λx

is symplectic (since the Jacobians Ji and their products are symplectic), its
2N eigenvalues are paired 34 as {γi, γ

−1
i }. The 2N Lyapunov characteristic

exponents λ1, . . . , λ2N are then defined as

λi = log γi ,

λ2N−i+1 = −λi , i = 1, . . . , N . (2.97)
34 This symmetry in the Lyapunov spectrum is necessary to ensure the satisfaction

of Liouville’s theorem and thus holds for Hamiltonian flows, though it has been
recently generalized also to a class of non-Hamiltonian systems [58].
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The set of 2N values
λ1 ≥ λ2 ≥ · · · ≥ λ2N (2.98)

is called the Lyapunov spectrum. The tangent space Tx(0)M , where x(0) is the
initial condition in phase space, admits a decomposition into linear subspaces,

Tx(0)M = E1 ⊕E2 ⊕ · · · ⊕E2N , (2.99)

and each λi is associated with the corresponding subspace Ei in that a vector
ξ(0) ∈ Ei will grow exponentially with the exponent λi. If there exists on
the phase space a probability measure μ that is ergodic and invariant for the
dynamics, then the numbers λi do not depend on the initial condition x(0),
apart from a possible subset of initial conditions of measure zero with respect
to μ.

In practice, the evolution of the norm of a tangent vector is sensitive only to
the first—the largest—exponent, because a generic initial vector ξ(0) will have
a nonvanishing component in the E1 subspace, so that the largest exponent
λ1 will always dominate in the long-time limit. In fact,

‖ξ(t)‖2 = 〈ξ(t), ξ(t)〉 = 〈G(t)ξ(0), G(t)ξ(0)〉 = 〈G∗(t)G(t)ξ(0), ξ(0)〉 ,

and due to the fact that

G∗(t)G(t)ξ(0) = (e2λ1tξ1(0), e2λ2tξ2(0), . . . , e2λ2N tξ2N (0))

one asymptotically has

‖ξ(t)‖ = eλ1t‖ξ1(0)‖
(

1 +
ξ22
ξ21
e2(λ2−λ1)t + · · ·+ ξ22N

ξ21
e2(λ2N−λ1)t

)1/2

∼ eλ1t‖ξ1(0)‖ .

Hence, the asymptotic definition of the largest Lyapunov exponent immedi-
ately follows as

λ1 = lim
t→∞

1
t

log
‖ξ(t)‖
‖ξ(0)‖ , (2.100)

which measures the degree of instability of a trajectory: if λ1 is positive, the
trajectory is unstable with a characteristic instability time λ−1

1 .
According to this definition, Lyapunov exponents are not given a local

meaning because they are defined as asymptotic quantities. In other words,
this definition does not allow us to properly think of Lyapunov exponents
as averages of local divergence rates of phase space trajectories. This can be
illustrated by means of an example borrowed from random matrices. An infi-
nite product of matrices representing elliptic rotations with a random change
of the rotation parameters (semiaxes of the ellipse), has a limiting matrix
with positive Lyapunov exponent, i.e., it represents a hyperbolic rotation
(Fürstenberg’s theorem) [59]. Indeed, it is evident that the average of the



2.2 Hamiltonian Dynamics 73

largest eigenvalue of the single matrices in the product (average of the local
exponents) necessarily gives a vanishing Lyapunov exponent.

This is to warn about the apriori nonnegligible difference between the
abstract definition of LCE and their practical evaluation in numerical simu-
lations. In fact, as we shall see below, the standard numerical method used to
estimate Lyapunov exponents is never asymptotic; it is more like an average of
the local divergence rates of nearby trajectories, and one never computes LCE
through the eigenvalues of a product matrix Λx, which could be computed for
a finite, possibly long, number of time steps.

As we shall see in the following chapters, at least for Hamiltonian flows,
pseudo-Lyapunov exponents, as we might call numerical Lyapunov exponents,
can be given a proper geometrical definition and description independently of
Oseledeč’s theorem.

Let us now give a more intuitive definition of Lyapunov exponents. Our
discussion will be aimed at showing how to define and compute the (pseudo)35

Lyapunov exponents for a flow. For a more general discussion of Lyapunov
exponents, see Eckmann and Ruelle [60].

Let us consider a dynamical system whose trajectories in an n-dimensional
phase spaceM are the solutions of the following system of ordinary differential
equations:

ẋ1 = X1(x1, . . . , xn) ,
...

...
ẋn = Xn(x1, . . . , xn) .

(2.101)

If we denote by x(t) = (x1(t), . . . , xn(t)) a given reference trajectory whose
initial condition is x(0), and by y(t) another trajectory that is initially close
to x(t), and we denote by ξ(t) the vector

ξ(t) = y(t)− x(t) , (2.102)

then the evolution of ξ describes the local separation of the two trajectories
in phase space. The vector ξ is assumed to obey the linearized equations
of motion, because it is assumed to be initially small. These equations are,
as can be shown by inserting (2.102) into the equations of motion (2.101) and
expanding in a power series up to the linear terms,

ξ̇1 =
n∑

j=1

(
∂X1

∂xj

)
x(t)

ξj ,

...
...

ξ̇n =
n∑

j=1

(
∂Xn

∂xj

)
x(t)

ξj ,

(2.103)

35 Henceforth, no distinction will be made between “true” and “pseudo” Lyapunov
exponents.



74 Chapter 2 Background in Physics

and are referred to as the tangent dynamics equations.36 Note that (2.103) is
a system of linear differential equations, whose coefficients, however, depend
on time. According to the definition (2.102), the norm ‖ξ‖ of the vector ξ, i.e.,

‖ξ(t)‖ =

[
n∑

i=1

ξ2i (t)

]1/2

, (2.104)

locally measures the distance of the two trajectories as a function of t. If the
trajectory x(t) is unstable, all its perturbations grow exponentially, so that
‖ξ(t)‖ ∝ exp(λt). If the elements of the Jacobian matrix ∂Xi/∂xj , which are
the coefficients of the linear equations (2.103), were either constant or periodic,
it would be possible to solve the system, but since the Jacobian matrix depends
on the trajectory x(t), its entries are in general neither constant nor periodic,
so that the rate of exponential divergence varies with time.

Using the definition (2.100) of λ1, and the compact notation

ξ̇i = Jik[x(t)]ξk ,

observing that

1
2
d

dt
log(ξT ξ) =

ξT ξ̇ + ξ̇T ξ
2ξT ξ

=
ξTJ [x(t)]ξ + ξTJT [x(t)]ξ

2ξT ξ
,

and setting J [x(t), ξ(t)] = {ξTJ [x(t)]ξ + ξTJT [x(t)]ξ}/(2ξT ξ), we have

λ1 = lim
t→∞

1
t

log
‖ξ(t)‖
‖ξ(0)‖ = lim

t→∞
1
t

∫ t

0

dτ J [x(τ), ξ(τ)] , (2.105)

which formally gives λ1 as a time average.
Let us now apply the above to a standard Hamiltonian system whose

Hamiltonian is of the form (1.1); the dimension of the phase space is n = 2N ,
and the equations of motion (2.101) are Hamilton equations

q̇k = pk ,

ṗk = − ∂V
∂qk

, k = 1, . . . , N , (2.106)

and also the linearized dynamics (2.103) can be cast in the canonical form

ξ̇1 = ξN+1 ,

...
...

ξ̇N = ξ2N ,

36 This notation follows from the fact that the dynamics of the vector ξ takes place
in the tangent space Tx(t)M of the phase space M .
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ξ̇N+1 = −
N∑

j=1

(
∂2V

∂q1∂qj

)
q(t)

ξj , (2.107)

...
...

ξ̇2N = −
N∑

j=1

(
∂2V

∂qN∂qj

)
q(t)

ξj .

These equations describe the tangent dynamics for a Hamiltonian flow. To
measure the largest Lyapunov exponent λ in a numerical simulation, one
integrates numerically both (2.106) and (2.108), and then makes use of the
definition (2.100), which can be rewritten in this case as

λ1 = lim
t→∞

1
t

log

[
ξ21(t) + · · ·+ ξ2N (t) + ξ̇21(t) + · · ·+ ξ̇2N (t)

]1/2

[
ξ21(0) + · · ·+ ξ2N (0) + ξ̇21(0) + · · ·+ ξ̇2N (0)

]1/2
, (2.108)

where we have used that ξ̇i = ξi+N (see (2.108)). More precisely, in a numerical
simulation one uses the discretized version of (2.108), i.e.,

λ1 = lim
m→∞

1
m

m∑
i=1

1
Δt

log
‖ξ(iΔt+Δt)‖
‖ξ(iΔt)‖ , (2.109)

where, after a given number of time steps Δt, for practical numerical reasons
[61] it is convenient to renormalize the value of ‖ξ‖ to a fixed one.

The definition (2.100) does not allow one to measure the other exponents
of the Lyapunov spectrum. To measure them, one has to observe that they can
be related to the growth of volumes in the tangent space. A two-dimensional
area V2 in the tangent space spanned by two linearly independent tangent
vectors ξ(1) and ξ(2) will expand according to

V2(t) ∝ exp[(λ1 + λ2)t] , (2.110)

a three-dimensional volume, as

V3(t) ∝ exp[(λ1 + λ2 + λ3)t] , (2.111)

and so on, so that, choosing k ≤ n linearly independent and normalized vectors
ξ(1), ξ(2), . . . , ξ(k) ∈ TxM , we obtain

lim
t→∞

1
t

log ‖ξ(1)(t) ∧ ξ(2)(t) ∧ · · · ∧ ξ(k)(t)‖ =
k∑

i=1

λi . (2.112)

Therefore the algorithm (2.109) can be generalized to obtain an algorithm
to compute numerically the whole Lyapunov spectrum [62]. However, such a
computation is rather hard when the number N is large.
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The sum of all the n Lyapunov exponents in the Lyapunov spectrum,∑n
i=1 λi, measures the expansion rate of n-volumes in phase space. Therefore,

for a Hamiltonian system, this sum has to vanish.
The numerical integration of (2.103) and the consequent measure of λ—or

of the spectrum {λi} when it is possible in practice—is the standard technique
to characterize Hamiltonian chaotic dynamics. An operative definition of a
chaotic dynamical system can be stated as follows: a system is chaotic if it
has at least one positive and one negative Lyapunov exponent. In fact this
ensures that the system shows (almost everywhere with respect to the ergodic
measure μ used to define the Lyapunov exponents) the distinctive features of
chaos as described in the example of the forced pendulum. In fact, the presence
of a positive exponent ensures the presence of an exponential divergence of
nearby orbits, and the presence of a negative one ensures that they also fold
and mix in a very complicated way, so that they can produce those structures
we referred to as “chaotic seas.” However, as long as autonomous Hamiltonian
systems are considered, the antisymmetry of the spectrum (2.97) ensures that
the presence of a positive exponent implies the presence of a negative one
with the same absolute value, so that a single (the largest) positive exponent is
sufficient to have chaos; indeed, if the largest exponent vanishes, the dynamics
will be regular. These facts, together with that the largest Lyapunov exponent
λ measures the smallest instability time scale, show how natural the use of
the value of λ is to measure chaos in such systems.

It is important to specify with respect to what invariant ergodic measure
μ the Lyapunov exponents are defined: this may be also a δ-measure con-
centrated on a single trajectory, in which case we could speak of a chaotic
trajectory rather than of a chaotic system. In Hamiltonian systems with
a large number of degrees of freedom we expect the microcanonical mea-
sure of the chaotic regions to be overwhelmingly larger than the measure
of the regular regions; the existence of these regular regions is ensured—as
we have seen in Section 2.2.1—by the KAM theorem. However, as we have
already commented, these regular regions can exist only for exceedingly tiny,
thus unphysical, deviations from integrability. Therefore, already for N of a
few tens, the relevant measure in the definition of Lyapunov exponents is
indeed the microcanonical measure. Numerical experiments are in agreement
with this expectation, since no relevant dependence of the Lyapunov exponent
on the initial conditions has ever been detected in large systems, and this is the
reason why throughout this book we never refer to any possible dependence
of λ on μ, treating the Lyapunov exponent as any other “thermodynamic”
observable. It is only for small systems (especially N = 2, which is the
best-known case) that the simulations show that the measure of the chaotic
regions may be very small in a very large energy range; these systems are often
referred to as mixed systems, since they are in between completely chaotic and
regular ones.

Since we are interested in large systems, up to the thermodynamic limit,
a number of questions naturally arises: What is the behavior of the Lyapunov
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exponents as n increases? Does a thermodynamic limit exist for the Lyapunov
spectrum? And so on. Numerical results [63] have shown that as n → ∞
the Lyapunov spectrum {λi} appears indeed to converge to a well-behaved
function

λ(x) = lim
n→∞λxn . (2.113)

The function λ(x) is a nonincreasing function of x ∈ [0, 1]. Some rigorous
work in this respect has been done by Sinai [64]. The existence of a limiting
Lyapunov spectrum in the thermodynamic limit has many important conse-
quences that we will not review here; a good discussion can be found in [65].
We only want to remark here that the existence of a thermodynamic limit
for the Lyapunov spectrum implies that the largest Lyapunov exponent is
expected to behave as an intensive quantity as N increases.

2.3 Dynamics and Statistical Mechanics

After World War II, the advent of electronic digital computers opened the
possibility of numerically tackling problems whose solutions were not only
unknown but also far from intuition and hard to grasp even heuristically.

Already in the 1950s, these highly nontrivial and far-reaching potentialities
of electronic computers were clearly present to the minds of scientists such as
J. von Neumann, S. Ulam, and E. Fermi.

In a foreword to their coauthored work reprinted in the Fermi collected
papers [66], S. Ulam wrote:

After the war, during one of his frequent summer visits to Los
Alamos, Fermi became interested in the development and potentiali-
ties of the electronic computing machines. He held many discussions
with me on the kind of future problems which could be studied through
the use of such machines. We decided to try a selection of problems
for heuristic work where in the absence of closed analytic solutions
experimental work on a computing machine would perhaps contribute
to the understanding of properties of solutions. This could be particu-
larly fruitful for problems involving the asymptotic—long time or “in
the large”—behaviour of nonlinear physical systems. In addition, such
experiments on computing machines would have at least the virtue of
having the postulates clearly stated. This is not always the case in
an actual physical object or model where all the assumptions are not
perhaps explicitly recognized. Fermi expressed often the belief that
future fundamental theories in physics may involve nonlinear opera-
tors and equations, and that it would be useful to attempt practice in
the mathematics needed for the understanding of nonlinear systems.
The plan was then to start with the possibly simplest such physi-
cal model and to study the results of the calculation of its long-time
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behaviour. Then one would gradually increase the generality and the
complexity of the problem calculated on the machine. . . perhaps prob-
lems of pure kinematics, e.g. the motion of a chain of points subject
only to constraints but no external forces, moving on a smooth plane
convoluting and knotting itself indefinitely. These were to be stud-
ied preliminary to setting up ultimate models for motion of systems
where “mixing” and “turbulence” would be observed. The motivation
then was to observe the rates of mixing and “thermalization” with the
hope that the computational results would provide hints for a future
theory. One could venture a guess that one motive in the selection
of problems could be traced to Fermi’s early interest in the ergodic
theory. . . .

These words were a lucid anticipation of the since then ever increasing
importance of numerical experiments in filling theoretical or mathematical
gaps. For example, statistical mechanics is based on the ergodic hypothesis,
and we have already explained why the stronger assumption of phase mixing
is necessary. But what about the actual properties of Hamiltonian dynam-
ics? Numerical simulations have made possible a substantial advance of our
understanding of generic properties of Hamiltonian dynamics. For instance,
Poincaré grasped the complexity of the motions near perturbed separatrices,
but it was only after the numerical experiment of Hénon and Heiles that the
consequences of homoclinic intersections became clear, and thereafter a lot of
work on Hamiltonian chaos was begun.

By means of numerical experiments we can compute time averages of
physical observables along nontrivial phase space trajectories, thus making
possible a direct comparison with statistical ensemble averages. Of course,
numerical simulations can be performed with N values much smaller than
the Avogadro number, but it soon became evident that already with N of a
few hundreds many observables attain their thermodynamic limit values. This
circumstance, already several decades ago, stimulated the development of a
practical application of numerical simulations of Hamiltonian dynamics, called
molecular dynamics, which was devised to perform ab initio computations in
condensed-matter physics and in chemical physics.

As far as the foundations of statistical mechanics are concerned, numerical
simulations went—from the very beginning—far beyond a simple confirmation
of the validity of the basic assumptions of statistical mechanics, revealing a
rich and unexpected phenomenology. Three different kinds of problems have
been and can be studied: (i) transient nonequilibrium phenomena (thermal-
ization processes); (ii) stationary nonequilibrium phenomena (gradient-driven
transport phenomena); (iii) equilibrium phenomena.

The numerical study of transient nonequilibrium phenomena aims at fol-
lowing the zeroth law of thermodynamics at work; its early developments are
sketchily given in the next section.
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The numerical study of stationary nonequilibrium phenomena has its para-
digmatic problem in the Fourier law of heat conduction in the presence of a
temperature gradient. The experimental datum of a linear variation of the
spatial temperature profile between the two extrema cannot be reproduced by
considering harmonic systems (this is a classical result due to E. Schrödinger).
Nonlinearities and strong chaos play a crucial role in explaining this kind of
nonequilibrium phenomena [67] and are at the grounds of recent developments
of a general formulation of nonequilibrium statistical mechanics [68].

The numerical study of equilibrium phenomena is based on phase space
trajectories issuing from “equilibrium initial conditions,” that is, from
microstates compatible with a macroscopic equilibrium property (for exam-
ple energy equipartition). Dynamical equilibrium computations can convey
more information than statistical computations because there are observables,
like Lyapunov exponents, that have no statistical ensemble counterpart. In
Section 2.3.1 this fact is briefly illustrated through the discovery of what has
been called strong stochasticity threshold, a dynamical property of large-N
flows with very interesting physical consequences. Finally, a major topic
among equilibrium phenomena is represented by phase transitions, and in
Section 2.3.2 we briefly illustrate how their dynamical investigation proceeds.

2.3.1 Numerical Hamiltonian Dynamics at Large N

The dawning of the “numerical simulation epoch” dates back to the problem
devised originally by E. Fermi, J. Pasta, and S. Ulam (FPU) in 1954 [66].
Their purpose was to check numerically that a generic but very simple non-
linear many-particle dynamical system would indeed behave for large times
as a statistical mechanical system, that is, it would approach equilibrium if
initially not in equilibrium. In particular, their purpose was to obtain the
usual equipartition of energy over all the degrees of freedom of a system for
generic initial conditions. To their surprise, for the system FPU considered—
a one-dimensional anharmonic chain of 32 or 64 particles with fixed ends and
in addition to harmonic, cubic (α-model), or quartic (β-model) anharmonic
forces between nearest neighbors—this was not observed. The Hamiltonians
of the two models read

H(p, q) =
N∑

k=1

[
1
2
p2k +

1
2
(qk+1 − qk)2 +

α

3
(qk+1 − qk)3

]
(2.114)

for the α-model, and

H(p, q) =
N∑

k=1

[
1
2
p2k +

1
2
(qk+1 − qk)2 +

β

4
(qk+1 − qk)4

]
(2.115)
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for the β-model. If we switch off the anharmonic terms, the orthogonal coor-
dinate transformation (for fixed endpoints, i.e., q0 = qN = 0)

Qk(t) =

√
2
N

N∑
n=1

qn(t) sin
πkn

N
(2.116)

diagonalizes both Hamiltonians to

H(P,Q) =
1
2

N∑
k=1

(P 2
k + ω2

kQ
2
k) ,

where ωk = 2 sin(πk/2N) are the frequencies of the so called normal modes.
At equilibrium, statistical mechanics predicts equipartition of energy among
these normal modes. However, if the system is prepared in an arbitrary state, it
will remain there forever. In contrast, in the presence of the anharmonic terms,
all the normal modes interact with each other and—according to the value
of the coupling constant—they will exchange energy more or less efficiently.
Eventually thermal equilibrium should set in.

After the coordinate change in (2.116), the α-model Hamiltonian becomes

H(P,Q) =
1
2

N∑
k=1

(P 2
k + ω2

kQ
2
k) + α

N∑
i,j,k=1

CijkQiQjQk (2.117)

and that of the β-model

H(P,Q) =
1
2

N∑
k=1

(P 2
k + ω2

kQ
2
k) + β

N∑
i,j,k,l=1

DijklQiQjQkQl , (2.118)

where the coefficients have a complicated dependence on the indexes.
Contrary to expectation, a variety of manifestly nonequilibrium and non-

equipartition behaviors was seen, including quasi-periodic recurrences to the
initial state. In Figure 2.11 the oscillation in time is displayed of the energy
content of a few normal modes of the α-model. At t = 0 all the energy was
concentrated in the longest wave-length mode. In fact, a behavior reminiscent
of that of a dynamical system with few degrees of freedom was found, rather
than the expected statistical-mechanical behavior. These results raised the
fundamental question about the validity—or at least the generally assumed
applicability—of statistical mechanics to nonlinear systems, of which the sys-
tem considered by FPU seemed to be a typical example.

Fermi’s early interest in ergodic theory is witnessed by his contribution to
the theorem due to Poincaré and thenceforth known as the Poincaré–Fermi
theorem that we have already met in Section 2.2.1. After this theorem, no hin-
drance to ergodicity seems to be possible, whence the surprise of Fermi, Pasta,
and Ulam (FPU), when no apparent tendency to equipartition was observed
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Fig. 2.11. FPU α-model. Oscillation of the energy content of the normal modes.
All the energy is initially concentrated in the lowest mode.

in their numerical experiment. Fermi himself considered what they found a
“little discovery.” The effort to resolve the so-called FPU problem has led to
enormous advances in our understanding of nonlinear dynamical systems—
for a review we refer to [69]—because most of the attempts to clarify this
difficulty have approached the problem as one in dynamical systems theory.
These analyses have revealed many very interesting properties of the FPU
system and uncovered a number of possible explanations for the resolution
of the observed conflict with statistical mechanics. For example, a seminal
idea was to explain the FPU recurrences as echoes due to the free stream-
ing of coherent nonlinear excitations, since then called solitons [70], which
are stable solutions of the Korteweg–de Vries (KdV ) field equation with cu-
bic nonlinearity (which is a continuum limit of the lattice FPU α-model),
or of the modified Korteweg–de Vries (mKdV) field equation with quartic
nonlinearity (which is a continuum limit of the lattice FPU β-model). The
stability of the solutions of these nonlinear field equations would correspond
to a regular dynamics of the lattice models from which they are derived and,
consequently, to a lack of equipartition. On the other hand, the stability loss
of these solutions would correspond to the onset of a chaotic dynamics of
the corresponding lattice models and of their good statistical behavior [71].
Though very interesting, this approach does not provide a conclusive answer
to the FPU problem because it relies on a somewhat arbitrary, and certainly
not unique, continuum limit of the lattice models.

Another approach to the problem, after pioneering work by Ford and
Waters [72], ascribed the lack of equipartition in the FPU β-model to the
absence of stochasticity, an idea that was made more precise and explicit in
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a paper by Izrailev and Chirikov [73]. After an approximation based on an
averaging technique due to Bogoliubov and Krylov, the equations of motion
for the normal mode amplitudes Qk in (2.116) were cast in the form

Q̈k + ω2
kQk

[
1− 3β

4N
ω2

k(2− ω2
k)Q3

k

]
=

β

8N

∑
m

Fkm cos θkm ,

where the coordinatesQk are those given in (2.116), ωk is the normal mode lin-
ear frequency, θ̇km are nonlinear mode frequencies, and Fkm are complicated
combinations of the mode amplitudes. By applying Chirikov’s resonance over-
lap criterion for the onset of stochasticity, for weak anharmonicity and initial
excitation of low-order modes, Izrailev and Chirikov worked out the prediction
of the threshold energy value Ec,

Ec ≥
N

βk
, k  N ,

for the transition to stochasticity. Though pioneering, this prediction was
somewhat too local in normal-mode space to draw convincing conclusions on
the global properties of phase space.

The almost contemporary announcement by Kolmogorov of the starting of
what would later become the celebrated KAM theorem seemed to provide an
explanation to the unexpected FPU results. But later developments of KAM
theory, including optimal estimates of the N -dependence of the perturbation
thresholds and the Nekhoroshev theorem, revealed that this is not really an
adequate framework to explain the FPU problem (see Section 2.2.1).

The rich variety of the numerical phenomenology accumulated over time
seemed to keep off “the hope that the computational results would provide
hints for a future theory.” In fact, “rates of mixing and thermalization” have
a startling and complicated dependence on energy, number of degrees of free-
dom, and initial conditions. Actually, any dynamical evolution of the system
depends on the starting point in phase space and on the “landscape” of its sur-
roundings. Thus, there can be a huge variety of dynamical behavior entailed
by the preparation of the system in an initial condition out of equilibrium.
As a consequence, in order to get some global information on the phase space
structure, independently of the initial conditions, one has to look at the chaotic
component of phase space. This way of tackling the FPU problem is very illu-
minating and leads to the conclusion that the FPU problem does not threaten
the validity of statistical mechanics. Indeed, this has stimulated the starting
of the theory of Hamiltonian chaos that is discussed in the present book.

Stochasticity Threshold at Large N

By focusing on chaos rather than on energy equipartition, a modern revisita-
tion [74] of Fermi’s original numerical experiment on the α-model has given
strong support to the physicist’ viewpoint that generic Hamiltonian flows are,
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at large N , bona fide ergodic and mixing, a point of view on which we have
already commented in the preceding sections.

Notice that the FPU α-model can be derived as a third-order truncation of
the power series expansion of the Toda lattice potential, a nonlinear integrable
system described by the Hamiltonian

H(p, q) =
N∑

k=1

1
2
p2k +

a

b

N∑
k=1

[
e−b(qk+1−qk) + b(qk+1 − qk)− 1

]
. (2.119)

Thus the deviation from integrability of the FPU α-model is O[(qk+1 − qk)4],
a weak deviation indeed, whose consequence is the smallness of the largest
Lyapunov exponent, and hence the need for heavy numerical computations.37

The outcome λ(ε,N) of the numerical computation of the largest
Lyapunov exponent at different values of the energy per degree of freedom ε,
and at different N values, is shown in Figure 2.12. These results strongly sug-
gest the existence of a threshold value εc(N) of the energy density, such that

Fig. 2.12. FPU α-model. The largest Lyapunov exponents λ(ε, N) are shown for
different values of the energy density ε and a sine wave initially excited. Open squares
refer to N = 32, solid triangles refer to N = 64, open circles refer to N = 128,
respectively; here the arrows are upper bounds for λ. From [74].

37 The reliability of long-time numerical computations is ensured by the use of sym-
plectic integration schemes; see Section 2.3.2.
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above this threshold the motion is chaotic, and below it the trajectories
belong to an apparently regular region of phase space. Thus it seems natural
to call this threshold a stochasticity threshold (ST).

Fermi and coworkers chose an initial condition well below this ST (the
energy density corresponding to their initial condition is marked by the
vertical dotted line in Figure 2.12); had they taken a ten times larger ampli-
tude of the initial excitation, they would have observed equipartition during
the integration time they used. This is the simple but nontrivial explanation
of the lack of statistical-mechanical behavior observed in the original FPU
numerical experiment.

The main question, from the point of view of statistical mechanics,
concerns the stability of the stochasticity threshold with respect to N . Unam-
biguous information about this point is provided by computing the Lyapunov
exponents with random (i.e., generic) initial conditions, and then by compar-
ing the patterns of λ(ε) obtained for different values of N (see Figure 2.13).

At large ε, there is a tendency of all the sets of points to join, while they
tend to separate at small ε: the larger N , the smaller the energy density

Fig. 2.13. FPU α-model. The largest Lyapunov exponents λ(ε, N) are plotted
vs. the energy density ε, for different values of N . Random initial conditions are
chosen. Starlike polygons refer to N = 8, crosses to N = 16, asterisks to N = 32,
and starlike squares to N = 64, respectively. The arrows have the same meaning as
in Figure 2.12. From [74].
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at which the separation occurs. The “critical” energy density εc at which
the separation occurs shows the N -dependence εc(N) ∝ 1/N2. Independent
evidence of the vanishing with N of the ST of the FPU α-model is reported
in [75]. Similarly, also the equipartition threshold for a class of initial exci-
tations is found to vanish as 1/N2 in the FPU β-model in [76]. In [76] it
has been shown that the equipartition threshold corresponds to the transition
between two different N -dependences of the relaxation times: from a power-
law dependence to an exponential dependence. We could thus think that the
ST is a transition between a weak chaos and an even weaker chaotic regime,
for example, from an Arnold-like diffusion along bands of overlapping reso-
nances (originating the so-called modulational diffusion; see [49]) to a true
and bare Arnold diffusion that is extremely slow.

The lack of equipartition in the original FPU experiment is not repre-
sentative of a global property of phase space: apparently regular, soliton-like
structures, similar to those of Zabusky and Kruskal, have a very long, possibly
infinite, lifetime below the stochasticity threshold, whereas, above the same
threshold, they have only a finite lifetime [74].

Since the threshold energy density for the onset of chaos shows a clear
tendency to vanish at an increasing number of degrees of freedom (∼1/N2),
the so-called FPU problem does not invalidate the (generic) approach to equi-
librium and the validity of equilibrium statistical mechanics.

Notice that in contrast to the case of the FPU α-model, no ST has been
numerically detected for the FPU β-model. The explanation is as follows. The
FPU α-model can be seen as a fouth-order perturbation (truncation) of the
Toda model (integrable), while the FPU β-model can be seen as a third-order
perturbation (removal of the third order term by a counterterm) of the same
Toda model; in other words, the FPU α is “more” integrable than the FPU β.
Thus an ST in the β-model is expected to exist at much lower energy den-
sity than in the α-model, with the consequence that, in order to detect a
ST in the β-model, one should measure very small Lyapunov exponents, and
this would make the computing time exceedingly long. However, through a
different kind of numerical analysis, based on the approach to equipartition
of initial excitations of a few low-frequency modes, it has been found in [76]
that an equipartition threshold does exist at R = (N + 1)6β

π2E ≈ 1, where R
is the ratio of nonlinear to linear energy in the system. Since the equiparti-
tion threshold—which is identified with a stochastic transition—occurs at
R ≈ 1, we get that the transition energy per degree of freedom goes as
εc ≈ π2/(6βN2), whence εc ≈ 0.001 at N = 128, εc ≈ 0.00025 at N = 256, for
which the upper bounds of the largest Lyapunov exponents are λ ≈ 4× 10−8

and λ ≈ 2.5× 10−9 respectively (by extrapolating the low-energy part of the
curve in Figure 2.14), actually exceedingly small values. [76] contains also an
interesting theoretical explanation for the numerically found N -dependence
of the equipartition/stochasticity threshold.
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Fig. 2.14. FPU β-model. The equipartition time τR (open circles and open squares),
in units of the fastest linear frequency, versus the energy density ε = E/N , for
N = 128 and four initially excited modes of low frequency. Full circles represent the
largest Lyapunov exponents λ1, and the dashed lines are power laws ε2 and ε2/3.
From [78].

Strong Stochasticity Threshold

Several years ago, in [77] was introduced a time dependent spectral entropy
S(t) = −∑

i wi(t) logwi(t), where wi(t) = Ei(t)/
∑

k Ek(t) is the normalized
energy content of the ith harmonic normal mode, defined so as to detect energy
equipartition (when S(t) attains its maximum value) and to measure the time
needed to reach it. By means of this spectral entropy, in [78,79] the relationship
was investigated between equipartition times, measured through the time re-
laxation patterns of this spectral entropy, and the chaotic properties of the
dynamics in nonlinear large Hamiltonian systems. For the FPU β-model, it
turns out that at different initial conditions and at long times, the spectral en-
tropy always relaxes toward its maximum value signaling equipartition. How-
ever, depending on the value of the total energy density, the relaxation occurs
with quite different rapidity. The relaxation time is approximately constant
for energy densities greater than some threshold value εc, but it steeply grows
by decreasing the energy density below this threshold. Moreover, the largest
Lyapunov exponent shows a crossover in its ε-dependence corresponding to
this threshold value. This phenomenological result can be interpreted as the
(smooth) transition, at εc, between two different regimes of chaoticity, weak
chaos and strong chaos, whence the definition of this transition as a strong sto-
chasticity threshold (SST) [79]. Weak and strong chaos are qualitative terms
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to denote slow and fast phase space mixing respectively. In [78,79] a random
matrix model for the tangent dynamics was introduced to try to make more
precise and quantitative the definitions of weak and strong chaos.

Applied to the FPU β-model, for the largest Lyapunov λ, this random-
matrix approximation predicts the scaling λ(ε) ≈ ε2/3 in the range ε = 0
up to ε ≈ 50. However, at low energy density, the ε-scaling of λ is numer-
ically found to be much steeper, λ(ε) ≈ ε2, so that λ is much smaller, and
vanishes faster with ε, than the random-matrix prediction. For this reason
we say that here chaos is weak. In the energy density range where also the
numerical results give λ(ε) ≈ ε2/3, we say that chaos is strong because the
random-matrix model assumes that the dynamics looks like a random uncor-
related process (if suitably sampled in time). At very high energy density, the
numerically observed pattern of λ(ε) gradually changes to λ(ε) ∼ ε1/4, which
is still associated with a strongly stochastic regime though not explained by
the random-matrix model; the reason is that a free parameter, a time scale
of unknown ε dependence, entering the random matrix model, is arbitrarily
assumed constant. Figure 2.15 shows the behavior of λ(ε) for N = 128 and
different initial conditions. The pattern of λ(ε) is observed to be independent
of the initial conditions.

Since the SST is independent of the initial conditions, it has to be ascribed
to some change in the global properties of the phase space. For this reason it
has to have major consequences on the dynamics. An interesting explanation
based on a model for phase space diffusion is given in [80].

Fig. 2.15. FPU β-model. Independence of SST from initial conditions. Largest
Lyapunov exponents λ vs. energy density ε at N = 128 and at different initial
conditions: random at equipartition (circles), wave packets at different average wave
numbers (squares, triangles, and asterisks). From [79].
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A remarkable feature of the SST is also that it is found to be independent
of the number N of degrees of freedom, which makes it relevant for equilib-
rium statistical mechanics. The stability with N of the SST is an outcome of
numerical simulations confirmed by an analytical prediction for λ(ε) worked
out in the limit N → ∞, as is evident in Figure 5.4, where a perfect agree-
ment is shown among the numerical values of λ(ε) obtained for N = 256 and
N = 2000 and the analytic prediction (see Chapter 5). Let us remark again
that in numerical simulations equipartition is always attained, both in the
weakly and strongly chaotic regimes, provided that ε exceeds the ST. On the
other hand, we have seen that the ST vanishes at increasing N .

The SST has been found to be correlated with changes in the transient
nonequilibrium behavior (e.g., relaxation to equipartition) [78,79,81], and has
been found also to be correlated with stationary nonequilibrium phenomena
such as heat conduction [67]. Among the model-dependent consequences of
the existence of the SST, it is worth mentioning that in the FPU β model, at
ε < εSST

c high-frequency excitations yield longer relaxation times with respect
to low frequencies. This is in agreement with the common belief that high
frequencies have the tendency to freeze; at ε > εSST

c the situation is reversed.
High-frequency excitations yield a quicker relaxation than low frequencies [79].

By combining the FPU α and β models into an FPU (α + β) model,
described by the Hamiltonian

H(p, q) =
N∑

k=1

[
1
2
p2k +

1
2
(qk+1 − qk)2 +

α

3
(qk+1 − qk)3 +

β

4
(qk+1 − qk)4

]
,

it is possible to observe the coexistence of both the ST and the SST. This
model Hamiltonian, with the choice of α = 0.25 and β = 2

3α
2, is a fourth-order

expansion of the Toda model (2.119). Consequently, its potential function is
very close to interatomic potentials of the Morse or Lennard-Jones type in
condensed matter, provided that a suitably restricted energy density range is
considered.

This model, with particles of unit mass, unit harmonic coupling constant,
fixed end-points (q1 = qN+1 = 0), and random initial conditions, has been
studied [82]. The results of the computation of the largest Lyapunov expo-
nents at different energy densities and for different values of N are shown in
Figure 2.16. The patterns of λ(ε,N) therein reported display some remarkable
features. For small values of the energy density, there is a sudden drop of λ,
which, in close analogy with [74], allows us to define an ST below which we can
assume that the overwhelming majority of the trajectories in phase space are
regular. This ST moves to smaller and smaller values of ε as N is increased.
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Fig. 2.16. FPU (α + β) model. The largest Lyapunov exponents λ(ε, N) are shown
for different values of the energy density ε for various values of N . Starlike squares
refer to N = 8, asterisks to N = 16, open squares to N = 32, open triangles to
N = 64, open circles to N = 128, starlike polygons to N = 512 and crosses to
N = 1024, respectively. Full squares refer to N = 32 and excitation amplitudes A
ranging from 5 to 50. Solid lines are the theoretically expected asymptotic scalings
ε2 and ε1/4 at low and high energy density, respectively. From Ref. [82].

Slightly below ε ≈ 1.0, the pattern of λ(ε,N) is observed to enter the ∼ε2
scaling (Figure 2.16), due to a crossover between two asymptotic power-law
behaviors, ∼ε2 at small ε and ∼ε1/4 at large ε, where the latter has been
attributed to the existence of an SST [78, 79]. This crossover is the signature
of the transition from weak to strong chaos, as already discussed in [78,79].

It is remarkable that the existence of the SST is not only a characteris-
tic of the FPU β model. In fact, it has been detected in the following one-
dimensional lattices: with diatomic Toda interactions (i.e., with alternating
masses that break integrability) [83]; with single-well ϕ4 interactions [78]; with
smoothed Coulomb interactions [83]; with Lennard-Jones interactions [83]; in
an isotropic Heisenberg spin chain [84]; in a coupled-rotators chain that dis-
plays two thresholds separating two regions of weak chaos (occurring at low
and high energies) from an intermediate region of strong chaos [85, 86]; in
a “mean-field” XY chain [87]; and in homopolymeric chains [88]. It has also
been detected in two- and three-dimensional lattices, with two-well ϕ4 interac-
tions [89,90], and with XY Heisenberg interactions [91,92]. Therefore the SST
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seems to be a generic property of Hamiltonian systems with many degrees of
freedom.

Despite the existence of a vast literature on Hamiltonian dynamics, we
have focused our attention only on stochastic transitions. The reason for this
is that the attempt at explaining the origin of the SST has stimulated the deve-
lopment of the Riemannian theory of Hamiltonian chaos, which is discussed
the next chapters. Moreover, as we shall also see in the following chapters,
the systematic observation that in the presence of a phase transition the SST
becomes very sharp, with the appearance of a “cuspy” pattern of λ(ε), has
stimulated the development of the topological theory of phase transitions.

2.3.2 Numerical Investigation of Phase Transitions

The theoretical description of phase transitions is a topic of statistical
mechanics (see Section 2.1.6), which makes no reference to microscopic
dynamics, though in real physical systems dynamics is always there. Even
when it is necessary to resort to numerical computations, the standard
numerical approach to phase transitions is based on the Monte Carlo method,
which, to compute statistical averages of macroscopic observables, resorts
to a special sampling technique of the canonical Gibbs measure.38 In other
words, in numerical statistical mechanics, the ergodic invariant measure of
the commonly used Monte Carlo method is by construction the canonical
ensemble one.

But we can also approach the study of phase transitions by means of direct
numerical simulation of the microscopic (Hamiltonian) dynamics. As we have
already seen at the beginning of the present chapter, in this case the ergodic
invariant measure is the microcanonical one. Therefore, investigating phase
transitions by means of Hamiltonian dynamics is equivalent to a microcanon-
ical approach to the subject. For a wide class of systems, the well-known
equivalence—in the thermodynamic limit—among all the statistical ensem-
bles warrants an a priori equivalence of the approaches of canonical Monte
Carlo and Hamiltonian dynamics.

However, sometimes the ensemble equivalence fails to be true, as is the
case of long-range interactions [31], as was shown analytically for a particular
model by Hertel and Thirring [30]. This inequivalence is mainly revealed by
the appearance of negative values of the specific heat [20, 94], and in some
cases, such as a self-gravitating N -body system, the inequivalence is so strong
that a phase transition, observed in the microcanonical ensemble, disappears
with canonical Monte Carlo computations [95].

The microcanonical description of phase transitions, and thus their numer-
ical study through Hamiltonian dynamics, seems to offer some advantages in
38 The ensemble averages are computed along suitable Markov chains generated by

means of the so-called Metropolis importance sampling of the Gibbs canonical
measure in phase space (in Chapter 9 this method of sampling a given measure
is constructively defined).
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tackling first-order phase transitions [96], and seems considerably less affected
by finite-size scaling effects with respect to the canonical ensemble computa-
tion [97]. This notwithstanding, a natural question arises: what do we learn
through Hamiltonian dynamics that we didn’t already know through Monte
Carlo? The answer is given in Chapter 6, where it is shown how Lyapunov
exponents and other related geometric quantities bring about a nontrivial
seminal novelty.

Models

There is a great variety of physical systems and of theoretical models dis-
playing phase transitions. Among them, only those described by continuous
configurational variables admit a Hamiltonian dynamical description. These
Hamiltonian models displaying phase transitions can be divided into two main
families: lattice models (describing either discretized versions of field theories
or condensed-matter systems), and off-lattice models (describing fluids, amor-
phous systems, polymers). Below, we give a few model Hamiltonians that have
been used to study the microscopic dynamical counterpart of phase transi-
tions and, as we shall see in Chapter 6, stimulated the early development of
the topological theory of phase transitions.

The first model is a lattice version of a classical ϕ4 field model. This can be
studied in one, two, and three spatial dimensions, in scalar and vector versions.
All these different versions of the model are defined by the Hamiltonian

H[ϕ, π] = ad
∑
α

∑
i

[
1
2
(πα

i )2 +
J

2a2

d∑
μ=1

(ϕα
i+eμ

− ϕα
i )2 − 1

2
m2(ϕα

i )2
]

+
λ

4

∑
i

[∑
α

(ϕα
i )2

]2

, (2.120)

where the index α runs from 1 to n for an O(n) symmetry group, the index i
labels the spatial lattice sites, eμ is the unit vector in the direction μ, (πi, ϕi)
are the canonically conjugated variables, a is the lattice spacing, and d is the
number of spatial dimensions of the lattice.

Another interesting model that has been considered describes a collection
of planar, classical “spins” (in fact rotators) with the ferromagnetic coupling
V = −∑

〈i,j〉 JSi · Sj (where |Si| = 1). In two dimensions, for example on
a square lattice of N = n × n sites, with the addition of a standard kinetic
energy term, the Hamiltonian is

H =
n∑

i,j=1

{
1
2
p2i,j + J

[
2− cos(qi+1,j − qi,j)− cos(qi,j+1 − qi,j)

]}
, (2.121)

where qi,j are the angles with respect to a fixed direction on the reference plane
of the system. This system, known as the classical Heisenberg XY model,
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by the Mermin–Wagner theorem [98] cannot have a symmetry-breaking phase
transition because of the combined conditions of short-range interactions,
continuous symmetry, and two spatial dimensions. Actually, it undergoes a
Kosterlitz–Thouless phase transition. In order to elude the “no go” condi-
tions of the Mermin–Wagner theorem, one has to consider the same system
on a cubic lattice of N = n× n× n sites and described by the Hamiltonian

H =
n∑

i,j,k=1

{
1
2
p2i,j,k + J

[
3 − cos(qi+1,j,k − qi,j,k)− cos(qi,j+1,k − qi,j,k)

− cos(qi,j,k+1 − qi,j,k)
]}

. (2.122)

Since the “spins” are constrained on planes, this is called the anisotropic
Heisenberg XY model.

An example of an off-lattice model is provided by a system of N gravita-
tionally interacting point masses described by the Hamiltonian

H =
N∑

i=1

1
2mi

(
p2xi + p2yi + p2zi

)
− G

2

N∑
i,j=1

(1− δij)
mimj

|ri − rj |
(2.123)

where ri ≡ (xi, yi, zi), which undergoes a clustering phase transition when a
well-known rescaling invariance (of time, lengths, and energy) is broken [95].

Numerics

There is a wide literature concerning numerical integration of systems of ordi-
nary differential equations. However, the numerical integration of Hamilton’s
equations of motion (2.3) associated with a standard Hamiltonian (2.2) is
correctly performed only by means of symplectic integration schemes. These
algorithms satisfy energy conservation (with zero mean fluctuations around a
reference value of the energy) for arbitrarily long times as well as the conser-
vation of all the other Poincaré invariants, among which there is the phase
space volume, so that also Liouville’s theorem is satisfied by a symplectic
integration. The simplest symplectic integrator is the leap-frog scheme

qi(t+Δt) = qi(t) + pi(t) Δt ,
pi(t+Δt) = pi(t) + Fi(t+Δt) Δt , (2.124)

where the Fi(t + Δt) = −[∂V (q)/∂qi]t+Δt are the forces. This discrete-time
mapping is a canonical (thus symplectic) coordinate change from the variables
qi(t), pi(t) to the variables Qi = qi(t+Δt), Pi = pi(t+Δt), as is immediately
recognized with the aid of the generating function

F (Q, p) = −
∑

i

Qipi +ΔtH(Q, p) .
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Higher-order very precise and efficient (that is, very accurate even with “large”
time steps Δt) symplectic algorithms are available [99–101]. From a theoret-
ical viewpoint, in spite of the ubiquitous chaotic instability of Hamiltonian
dynamics, an interpolation theorem due to J. Moser [102] ensures that the
numerical phase space trajectories are always close to a true phase space tra-
jectory of the Hamiltonian flow with a slightly modified initial condition [103].

Given any observable A = A(p, q), one computes its time average as

〈A〉t =
1
t

∫ t

0

dτ A[p(τ), q(τ)]

along the numerically computed phase space trajectories. For sufficiently long
integration times, and for generic nonlinear (chaotic) systems, these time
averages are used as estimates of microcanonical ensemble averages in all
the expressions given below.

Temperature

The basic macroscopic thermodynamic observable is temperature. In the
microcanonical ensemble, as already mentioned in Section 2.1.5, temperature
is derived from entropy—the basic thermodynamic potential in microcanonical
ensemble—as

1
T

=
(
∂S

∂E

)
V
, (2.125)

where the entropy is given by either

S(N,E,V) = kB log
∫
dp1 · · · dpNdq1 · · · dqN δ[E −H(p, q)] (2.126)

or

S(−)(N,E,V) = kB log
∫
dp1 · · · dpNdq1 · · · dqN Θ[E −H(p, q)] . (2.127)

By means of a Laplace transform technique [104], from (2.125) and (2.127)
one obtains

T =
2

kBN
〈K〉 , (2.128)

where 〈K〉 is the microcanonical ensemble average of K = E − V (q), that is,
of the kinetic energy. In practical numerical simulations, one has to compute
(setting kB = 1)

T =
2
N

1
t

∫ t

0

dτ
N∑

i=1

1
2
p2i (τ) (2.129)

for t sufficiently large, so that T has attained a stable value (in general this
is a rapidly converging quantity).
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The equivalent use of (2.125) and (2.126), which in principle is more
accurate for Hamiltonian dynamical computations because of the constant
energy constraint, gives [104]

T = 2
[
(N − 2)〈K−1〉

]−1
. (2.130)

At large N the two definitions are perfectly equivalent.

Order Parameter

We have already discussed in Section 2.1.6 how the definition of an order
parameter is related to the relevant symmetry of a system that is broken
below the phase transition point.

For what concerns the lattice ϕ4 models, because of the Mermin–Wagner
theorem, the interactions being of short range, in two dimensions with the
symmetry group O(1), which is the same as Z2, a symmetry-breaking phase
transition is allowed, whereas, for n > 1 the O(n) symmetry is a continu-
ous one and thus a second-order phase transition can exist only on three-
dimensional lattices. The order parameter for these models is

〈ϕ〉 =

〈(∑
α

〈ϕ〉2α

)1/2〉
,

〈ϕ〉α =
∑
i

ϕα
i .

The order parameter for the Heisenberg XY model in two dimensions,
since its Hamiltonian is invariant under the action of the group O(2), is the
bidimensional vector

〈M〉 = (
n∑

i,j=1

Sx
i,j ,

n∑
i,j=1

Sy
i,j) ≡ (

n∑
i,j=1

cos qi,j ,
n∑

i,j=1

sin qi,j), (2.131)

which describes the mean spin orientation field.
The order parameter for the anisotropic Heisenberg XY model in three

dimensions, whose Hamiltonian is still invariant under the action of the group
O(2), is the bidimensional vector

〈M〉 = (
n∑

i,j,k=1

Sx
i,j,k,

n∑
i,j,k=1

Sy
i,j,k) ≡ (

n∑
i,j,k=1

cos qi,j,k,
n∑

i,j,k=1

sin qi,j,k) .

(2.132)

After the numerical computation of 〈ϕ〉(ε), or of 〈|M|〉(ε), the temperature
dependence of the order parameter 〈ϕ〉(T ), or 〈|M|〉(T ), is parametrically
given by 〈ϕ〉(ε), or 〈|M|〉(T ), with T = T (ε).
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By following the time evolution of the order parameter one can obtain
very interesting information, for example, in [105] a Goldstone mode at
work has been visualized. Bifurcations of the order parameter are in general
very clear and allow a good numerical estimate of the corresponding critical
exponent [89].

However, the best way to detect a phase transition and to locate the tran-
sition point is described in the following section.

Locating the Transition by Binder Cumulants

The critical properties of the infinite system can be inferred from the values
of the thermodynamic observables in finite samples of different sizes using
finite-size scaling [106,107]. In particular, the transition point can be located
by means of the so-called Binder cumulants [106]. The Binder cumulant g is
defined as

g = 1− 〈φ4〉
3〈φ2〉2 , (2.133)

where 〈φ〉 is a canonical average of the order parameter φ. For the lattice
ϕ4 models it is 〈φ〉 ≡ 〈ϕ〉, while for the XY models it is 〈φ〉 ≡ 〈|M|〉. By
computing g = g(T,N) for at least three different values of N , the intersection
point g∗ of the corresponding temperature patterns g = g(T ) is a universal
quantity at the critical point [107]. As long as canonical and microcanonical
ensembles are equivalent, one computes the averages 〈φ2n〉 as time averages
along the numerical solutions of the Hamilton equations of motion of the
model under investigation; hence g = g(ε,N). The critical energy density
of a phase transition point, ε∞c , is then defined from the intersection of the
curves g(ε,N) worked out at different N values. Energy is the fundamental
control parameter in Hamiltonian numerical simulations, and therefore the
critical temperature Tc of a phase transition is obtained from g∗ → ε∞c and
the caloric curve T (ε).

Specific Heat

Another important macroscopic observable to characterize phase transitions
is the specific heat. The numerical computation, by means of Hamiltonian
dynamics, of the constant-volume specific heat CV can proceed in different
ways. Let us begin with a microcanonical estimate of the canonical specific
heat. To this end, one considers a well-known formula that relates the average
fluctuations of a generic observable computed in canonical and microcanonical
ensembles [108], which specialized to the kinetic energy fluctuations reads

〈δK2〉micro = 〈δK2〉can −
β2

CV

(
∂〈K〉can
∂β

)2

, (2.134)
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where CV = (∂E/∂T ), and where 〈·〉micro and 〈·〉can stand for microcanonical
and canonical averages respectively. The quantity 〈δK2〉micro can be com-
puted as a time average along the numerical trajectories. Considering that
〈K〉micro = 〈K〉can = N/2β, 〈δK2〉can = N/(2β2), by inverting (2.134),
one has

cV(T ) =
CV
N

→

⎧⎨⎩ cV(ε) =
kBd

2

[
1− Nd

2
〈K2〉 − 〈K〉2

〈K〉2
]−1

,

T = T (ε) ,
(2.135)

where d is the number of degrees of freedom for each particle. Time averages
of the kinetic-energy fluctuations computed at any given value of the energy
density ε yield CV(T ), according to its parametric definition in (2.135).

In order to compute a microcanonical constant-volume specific heat, we
have to start from its microcanonical definition 1/CV = ∂T (E)/∂E, and then,
according to the definition of the entropy that is adopted, in (2.126) and
(2.127), two different formulas can be worked out [104], which are both exact
at any value of N [in contrast to the expression (2.135)], and which coincide
in the limit of arbitrarily large N . The first formula, derived from the entropy
in (2.127), reads

cV(ε) =
CV
N

= [N − (N − 2)〈K〉〈K−1〉]−1 , (2.136)

whereas that derived from the entropy in (2.126) is

cV(ε) =
CV
N

=
N(N − 2)

4

[
(N − 2)− (N − 4)

〈K−2〉
〈K−1〉2

]−1

, (2.137)

and these are the natural expressions to work out the microcanonical spe-
cific heat, the second one being more appropriate to Hamiltonian dynamical
simulations.

Let us remark that, as is well known, all the thermodynamic quantities
remain regular functions of the temperature, or of the energy, as long as N
is finite, and no breaking of ergodicity and symmetry appears. Nevertheless,
some marks of the transition show up neatly also in a finite system. The spe-
cific heat does not diverge, but exhibits a peak at some temperature TCV

c (N).
The height of the peak grows with the size of the system. Rigorously, the
order parameter φ is expected to vanish on the whole temperature range for
any finite value of N . In practice, e.g., in a canonical Monte Carlo simulation
as well as in Hamiltonian dynamics (where the length of the sampling of φ is
necessarily finite), the system is trapped in one phase for a time that grows
exponentially with N [109]. A fictitious symmetry breaking is thus observed
at a temperature Tφ

c (N), different in general from TCV
c (N), even if

lim
N→∞

TCV
c (N) = lim

N→∞
Tφ

c (N) = T∞
c . (2.138)
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The Equation of State

The equation of state, worked out using the definition of entropy given in
(2.126), is (again having chosen kB = 1)

P =
N

V T −
〈(

∂V

∂V

)
E

K−1

〉
〈K−1〉−1 , (2.139)

where P is the pressure, T is the microcanonical temperature computed
according to (2.130), V is the potential function of the microscopic inter-
actions entering the Hamiltonian, and K is again the kinetic energy. The
brackets 〈·〉 again stand for microcanonical averages to be numerically com-
puted by means of time averages along the dynamical trajectories. In order
to compute the volume derivative of the potential V , a standard method is to
make the coordinate transformation qi = V1/dq′i, i = 1, . . . , N , where d is the
space dimension (see [104]).

This is very useful for fluids or, in general, off-lattice systems. For example
it has been successfully used to study the clustering transition in a self-
gravitating N -body system [95] putting in evidence the absence of latent heat.

An Excerpt of Numerical Studies of Phase Transitions

To exemplify how clean and unequivocal the outcomes of the above-described
dynamical study of phase transitions are, a few pictures are reported here
(more details can be found in the cited papers). These refer to the models
defined in (2.120) and studied in [89, 90], in (2.121) and (2.122) and studied
in [105], in (2.123) and studied in [95]. Other interesting studies are reported
in [110–116].

Let us begin with the 2D lattice ϕ4 model with O(1) symmetry group
obtained by specializing (2.120) accordingly. In Figures 2.17, 2.18, and 2.19
it is shown what the order parameter, Binder cumulants, and the specific
heat look like. The tendency of both the order parameter and specific heat
to sharpen at increasing number of lattice sites is evident. These results look
very similar to those commonly obtained by means of canonical Monte Carlo
simulations.

On three-dimensional lattices one finds similar but sharper results in the
case of O(1) symmetry (see Figure 2.23, where the order parameter versus
temperature is reported for a cubic lattice of N = 83 sites, results to be
compared with those of Figure 2.17; the same figure also shows a comparison
with canonical Monte Carlo simulations). For O(2) and O(4) symmetries,
the ϕ4 model has no symmetry-breaking phase transition on two-dimensional
lattices (by the Mermin–Wagner theorem) and one must necessarily consider
the 3D case in order to observe a second-order phase transition.
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Fig. 2.17. 2D lattice ϕ4 model with O(1) symmetry. Absolute magnetization 〈|ϕ|〉
versus energy density ε. Symbols: N = 102 (solid circles), N = 202 (open circles),
N = 302 (solid triangles), N = 502 (open triangles). From [89].

Fig. 2.18. Binder cumulants g versus energy density ε. The vertical dotted line
marks the estimated transition value εc ≈ 21.1. The transition region is magnified
in the inset. Symbols are the same as in Figure 2.17. From [89].
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Fig. 2.19. Constant-volume specific heat cV versus energy density ε. Symbols are
the same as in Figure 2.17. From [89].

A similar situation holds in the case of the 2D classical Heisenberg XY
model: since the model has a continuous symmetry, O(2), one has to con-
sider the three-dimensional case in order to observe a second-order phase
transition.

Notice that both the 2D ϕ4 and 2D XY models undergo a Kosterlitz–
Thouless phase transition, that is, an infinite-order transition (see the clas-
sification given in Section 2.1.6). In Figures 2.20 and 2.21 the magnetization
and the specific heat are respectively reported for the 3D XY model. Again
a phenomenology is found that is familiar when the same models are tackled
using Monte Carlo canonical computations. Finally, an example of the out-
come of the computation of an isoenergetic (instead of isothermal) curve in
the P −V plane is given. This has been obtained for a self-gravitating N -body
system in three spatial dimensions and off-lattice using the equation of state
(2.139). This system, when a spatial scale is fixed, for example through some
external confinement potential (the simplest way to realize it is through a
“box”), undergoes a clustering phase transition at some critical energy value
scaled with N5/3 (because of the nonadditivity of the system [95]). Apart from
the other ways of detecting it, this transition is also signaled by a sudden
change from a polytropic curve (P ∝ V−4/3) corresponding to the clustered
phase to a standard perfect gas curve (P ∝ V−1) proper to the nonclustered
phase.
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Fig. 2.20. Order parameter ρ(T ) = 〈|M|〉(T ) versus temperature T for the 3D XY
model. N = 10×10×10 (full circles) and N = 15×15×15 (open circles). From [105].

Fig. 2.21. Constant-volume specific heat versus temperature for the 3D XY model.
N = 8 × 8 × 8 (open triangles); N = 10 × 10 × 10 (open circles); N = 12 × 12 × 12
(open stars); N = 15 × 15 × 15 (open squares). The vertical dotted line points out
the critical temperature Tc = 2.17 at which the phase transition occurs. From [105].
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Fig. 2.22. Equation of state, pressure versus volume, for a self-gravitating N -body
system with N = 100. Full circles correspond to the negative specific heat clustered
phase and follow a polytropic law P ∝ V−4/3. Open circles refer to the nonclustered
(gas) phase and the data fit on a P ∝ V−1 curve. From [95].

Fig. 2.23. Order parameter 〈|ϕ|〉 versus temperature for the O(1) ϕ4 model on a
three-dimensional lattice of N = 8×8×8 sites. Open circles refer to the outcomes of
Hamiltonian dynamics, stars refer to canonical Monte Carlo simulations. From [117].



Chapter 3

Geometrization of Hamiltonian Dynamics

A Hamiltonian system whose kinetic energy is a quadratic form in the
velocities is referred to as a standard, or natural, Hamiltonian system.
Every Newtonian system, that is, a system of particles interacting through
forces derived from a potential, i.e., of the form (1.1), belongs to this class.
The trajectories of a standard system can be seen as geodesics of a suitable
Riemannian manifold. This classical result is based on the variational formula-
tion of dynamics. In fact, Hamilton’s principle states that the natural motions
of a Hamiltonian system are the extrema of the functional (Hamiltonian
action S)

S =
∫
Ldt , (3.1)

where L is the Lagrangian function of the system, and the geodesics of a
Riemannian manifold are the extrema of the length functional

� =
∫
ds , (3.2)

where s is the arc-length parameter. Once a connection between length and
action is established, by means of a suitable choice of the metric, it will be
possible to identify the geodesics with the physical trajectories.

3.1 Geometric Formulation of the Dynamics

The Riemannian formulation of classical dynamics is not unique, even if we
restrict oureselves to the case of natural systems. There are several possible
choices for the ambient space and its metric. The most commonly known
choice—dating back to the nineteenth century—is the so-called Jacobi metric
on the configuration space of the system. Actually this was the geometric
framework of Krylov’s work. Among other possibilities, we will also consider

103
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a metric originally introduced by Eisenhart on an enlarged configuration
space-time. The choice of the metric to be used will be dictated mainly by
practical convenience in performing computations.

These choices do not exhaust all the possibilities of geometrizing conserv-
ative dynamics. For instance, with regard to systems whose kinetic energy is
not quadratic in the velocities—the classical example is a particle subject to
conservative as well as velocity-dependent forces, such as the Lorentz force—it
is impossible to give a Riemannian geometrization, but this becomes possible
in the more general framework of a Finsler geometry [118]. In this chapter,
a quick survey is given of some basic ways of putting into correspondence
standard Hamiltonian flows with geodesic flows.

For a summary of the notation and the concepts of differential geometry
that will be used in the following we refer the reader to Appendix B. The sum-
mation convention over repeated indices will be always used, if not explicity
stated otherwise.

3.1.1 Jacobi Metric on Configuration Space M

Let us consider an autonomous dynamical system, i.e., a system with inter-
actions that do not explicitly depend on time, whose Lagrangian can be
written as

L = T − V =
1
2
aik q̇

iq̇k − V (q) , (3.3)

where the dot stands for a derivative with respect to the parameter on
which the q’s depend,1 and q is a shorthand notation for all the coordi-
nates q1, . . . , qN . Both these conventions will be used throughout the following
chapters when there is no possibility of confusion.

As is well known, according to Hamilton’s least action principle, the
natural motions of the system are the phase space paths satisfying the integral
condition

δ

∫ t1

t0

L(q, q̇)d t = 0 , (3.4)

or, equivalently, the Lagrange equations of motion, which are derived
from (3.4).

The autonomous Hamiltonian H(p, q) = T (p) + V (q), with pi = aik q̇
i, is

a constant of motion equal to the energy value E of the initial conditions.
The fact that the motions must be isoenergetic with energy E implies that
the accessible part of the configuration space M is not the whole space, but
only the subspace ME ⊂M defined by

ME = {q ∈M : V (q) ≤ E} . (3.5)

1 Such a parameter is the time t here, but could also be the arc length s in the
following.
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In fact, a curve γ′ that lies outside ME will never be parametrizable in such
a way that the energy is E, because γ′ will then pass through points where
V > E and the kinetic energy is positive.2

Now, using L = piq̇
i − E we can rewrite (3.4) in terms of the simplified

action as

δ

∫ t1

t0

piq̇
id t = 0 (3.6)

together with the condition 1
2aik q̇

iq̇k + V = E = const. Hence (3.6) reads
also as

δ

∫ t1

t0

aik q̇
iq̇kd t = 0 , (3.7)

and from the condition E = const,

aik q̇
iq̇k = 2(E − V ) = 2T . (3.8)

Now, with a time reparametrization t = t(τ) such that

aik[q(τ)]
dqi

dτ

dqk

dτ
= 1 , (3.9)

from

aik[q(τ)]
dqi

dτ

dqk

dτ

(
dτ

dt

)2

= 2T (3.10)

one gets

d t =
dτ√
2T

. (3.11)

In such a way the trajectories are constrained on constant-energy surfaces,
and from (3.7) and (3.11),

δ

∫ t1

t0

aik[q(t)]q̇i(t)q̇k(t)d t = δ

∫ t1

t0

2T [q(t)]d t

= δ

∫ τ1

τ0

2T [q(t)]
dt

dτ
d τ = δ

∫ τ1

τ0

{2T [q(τ)]}1/2d τ = 0 . (3.12)

Then, substituting the implicit definition of τ given in (3.9), the last integral in
(3.12) is rewritten in a form that is independent of the time parameterization
of the trajectories, i.e.,

δ

∫
γ

{2[E − V (q)]aikdq
idqk}1/2 = 0 , (3.13)

2 The accessible configuration space ME can then be seen as the union of all the
“configuration subspaces” {q ∈ M : V (q) = E − T} that one gets for all the
possible values of T , 0 ≤ T ≤ E.
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where γ labels any isoenergetic curve joining two fixed endpoints q(0) and
q(1); the varied paths are now asynchronous (with respect to physical time).3

The meaning of (3.13) is that the mechanical motions derived from Hamilton’s
principle satisfy the condition

0 = δ

∫
2T dt = δ

∫ (
gij q̇

iq̇j
)1/2

dt = δ

∫
ds . (3.14)

That is, the natural motions are the geodesics of ME , provided that its arc-
length element ds is such that ds2 = gik(q)dqidqk = 2[E − V (q)]aikdq

idqk.
In other words, the region ME of the configuration space M of a dynamical
system with N degrees of freedom has a differentiable manifold structure, and
the Lagrangian coordinates (q1, . . . , qN ) can be regarded as local coordinates
on M . The latter, endowed with a proper metric stemming from the consid-
erations given above, is a Riemannian manifold. For the sake of simplicity,
considering systems of the form (1.1), for which the kinetic energy matrix
is diagonal and the masses are all equal to one, i.e., aik = δik, the metric
tensor is

gik(q) = 2[E − V (q)]aik ≡ 2[E − V (q)] δik . (3.15)

This metric is referred to as the Jacobi metric, and its arc-length element is

ds2 ≡ gijdqidqj = 2[E − V (q)]
dqi

dt

dqi
dt
dt2 = 4[E − V (q)]2 dt2 . (3.16)

We denote by (ME , gJ ) the mechanical manifolds endowed with the Jacobi
metric.

In slightly more formal terms, let us consider the configuration space as
a smooth N -dimensional manifold M . Let TM =

⋃
q∈M TqM be its tangent

bundle. The function L : TM → R defined by L = 1
2 〈v, v〉 is a free Lagrangian

describing a free motion onM . In this case L ≡ T , i.e., the Lagrangian has only
a kinetic part. The scalar product 〈v, v〉 for all the tangent vectors v provides
a Riemannian metric on M . In local coordinates one has L = gij q̇

iq̇j , where
gij is the metric tensor on M .

Let ωL be the Lagrangian closed 2-form on TM ; ωL is associated
with the canonical symplectic form ω0 =

∑N
i=1 dq

i ∧ dpi defined on T ∗M
(phase space) by means of the Legendre transform FL : TM → T ∗M , so:
ωL = (FL)∗ω0. In local coordinates, putting Lq̇iq̇j = (∂2L/∂q̇i∂q̇j), one has
ωL =

∑N
i,j=1(Lq̇iqjdqi ∧ dqj + Lq̇iq̇jdqi ∧ dq̇j). We denote by XE the unique

Lagrangian vector field on TM such that

ωL(XE , Y ) = dE(Y )

for each arbitrary vector field Y on TM ; E is the “energy” given by E = S−L
with S : TM → R defined by S(vx) = FL(vx)vx.
3 This version of the least action principle is known as Maupertuis’s least action

principle.
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The solutions of the Euler–Lagrange equations are the natural motions
of the system described by the Lagrangian L. Moreover, the natural
motions are the integral curves of the vector fieldXE . Notice that second-order
equations are possible on TM but not on T ∗M .

The so-called base integral curves of XE are given by the canonical projec-
tion of the integral curves of XE from TM to M . Conversely, for each curve
γ0 : R →M a natural lift exists from M to TM , that is, γ0 → (γ0, γ̇0).

It can be proved that γ0 : R → M is a base integral curve of XE if and
only if γ0 is a geodesic for M , that is, ∇γ̇0 γ̇0 = 0 with ∇γ̇0 the covariant
derivative of the canonical Levi-Civita connection associated to gij .

In local coordinates, having set γ0(s) = (q1(s), . . . , qN (s)), one has

d2qi

ds2
+ Γ i

jk

dqj

ds

dqk

ds
= 0 ,

where s is the proper time and, as usual, summation over repeated indices
is implicitly assumed; Γ i

jk are the Christoffel coefficients of the Levi-Civita
connection associated with gij and are given by

Γ i
jk =

1
2
gim

(
∂gmk

∂qj
+
∂gmj

∂qk
− ∂gjk

∂qm

)
. (3.17)

Now, if V : M → R is a potential energy function on M , we can incorporate
it into the Lagrangian by defining

LV =
1
2
〈v, v〉 − V (πMv) , (3.18)

where πM : TM → M is the canonical projection of the tangent bundle,
and then define energy as E(v) = 1

2 〈v, v〉 + V (πMv). Then γ0(s) is a base
integral curve of the corresponding Lagrangian vector field XE if and only if
∇γ̇0 γ̇0(s) = −gradV (γ0(s)) that is, in local coordinates,

d2qi

ds2
+ Γ i

jk

dqj

ds

dqk

ds
= −gij ∂V

∂qj
,

which are the Euler–Lagrange equations.
Assuming M to be a compact manifold, there exists a number E such

that E > V (q) for q ∈M . Then with such a number E one can associate the
kinetic energy metric, or Jacobi metric, on M , by putting g̃ = (E − V (q))g;
evidently g̃ is conformally equivalent to g, and in coordinates

g̃ij = (E − V (q))gij .

It can be shown that the base integral curves of the Lagrangian (3.3) coincide
with geodesics of the Jacobi metric (3.15) up to a reparametrization with
energy 1.
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If we denote by Γ̃ i
jk the connection coefficients derived from the metric

(3.15), the corresponding geodesics are given by

d2qi

ds2
+ Γ̃ i

jk(q)
dqj

ds

dqk

ds
= 0 . (3.19)

Let us restrict to those systems whose kinetic-energy term, with a suitable
choice of local coordinates, can be diagonalized, and so let us assume that
g̃ij = (E − V (q))δij ; hence, with T = E − V and T,i = ∂T/∂qi = −∂V /∂qi,
(3.19) gives

d2qi

ds2
+

1
2T

(
2T,j

dqj

ds

dqi

ds
− g̃ijT,j g̃kl

dqk

ds

dql

ds

)
= 0 ;

finally, using ds2 = 2T 2dt2, this yields

d2qi

dt2
= −∂V

∂qi
,

i.e., Newton’s equations associated with LV of (3.18).
To summarize, a general result for the Riemannian geometrization of

natural Hamiltonian dynamics is the following:

Theorem 3.1. Given a dynamical system on a Riemannian manifold (M,a),
i.e., a dynamical system whose Lagrangian is

L =
1
2
aij q̇

iq̇j − V (q) ,

then it is always possible to find a conformal transformation of the metric

gij = eϕ(q)aij

such that the geodesics of (M, g) are the trajectories of the original dynamical
system; this transformation is defined by

ϕ(q) = log[E − V (q)] .

The proof proceeds as above, simply replacing all the δij matrices with the
kinetic-energy matrix aij ; for details, see, e.g., [7].

3.1.2 Eisenhart Metric on Enlarged Configuration Space M × R

A first alternative choice of the ambient space and Riemannian metric, to
reformulate Newtonian dynamics in a geometric language, was proposed in
[119]. This makes use of an enlarged configuration space M × R, with local
coordinates (q0, q1, . . . , qN ), where a proper Riemannian metric Ge is defined
to give

ds2 = (Ge)μν dq
μdqν = aij dq

idqj +A(q) (dq0)2 , (3.20)
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where μ and ν run from 0 to N and i and j run from 1 to N , and the function
A(q) does not explicitly depend on time. With the choice 1/[2A(q)] = V (q)+η
and under the condition

q0 = 2
∫ t

0

V (q) dτ + 2ηt , (3.21)

for the extra variable it can easily be seen that the geodesics of the manifold
(M × R, Ge) are the natural motions of standard autonomous Hamiltonian
systems. Since 1

2gij q̇
iq̇j + V (q) = E, where E is the energy constant along

a geodesic, we can see that the following relation exists between q0 and the
action:

q0 = −2
∫ t

0

T dτ + 2(E + η)t . (3.22)

Explicitly, the metric Ge is

Ge =

⎛⎜⎜⎜⎝
[2V (q) + 2η]−1 0 · · · 0

0 a11 · · · a1N

...
...

. . .
...

0 aN1 · · · aNN

⎞⎟⎟⎟⎠ , (3.23)

and together with the condition (3.22), this gives an affine parametrization
of the arc length with the physical time, i.e., ds2 = 2(E + η)dt2, along the
geodesics that coincide with natural motions. The constant η can be set equal
to an arbitrary value greater than the largest value of |E| so that the metric
Ge is nonsingular. Although this metric is a priori very interesting, because it
seems to have some better property than the Jacobi metric and than another
metric also due to Eisenhart and defined in the next section, we have not yet
investigated how it works in practical applications.4 In the case of a diago-
nal kinetic-energy metric, i.e. aij ≡ δij , the only non vanishing Christoffel
symbols are

Γ i
00 =

(∂V/∂qi)
[2V (q) + 2η]2

, Γ 0
i0 = − (∂V/∂qi)

[2V (q) + 2η]
, (3.24)

4 Let us consider a few examples. In contrast to the Jacobi metric gJ , on the
boundary V (q) = E the metric Ge is nonsingular; moreover, by varying E we get
a family of different metrics gJ , whereas by choosing a convenient value of η, at
different values of the energy the metric Ge remains the same. The consequence
is that a comparison among the geometries of the submanifolds of (M ×R, Ge)—
where the geodesic flows of different energies “live”—is sensible. In contrast, this
is not true with (ME , gJ). In some cases, the possibility of making this kind of
comparison can be important (see Chapter 7). With respect to the Eisenhart
metric ge on M × R

2 in the next section, the metric Ge on M × R defines a
somewhat richer geometry, for example the scalar curvature of ge is identically
vanishing, which is not the case of Ge.
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whence the geodesic equations

d2q0

ds2
+ Γ 0

i0

dqi

ds

dq0

ds
+ Γ 0

0i

dq0

ds

dqi

ds
= 0 , (3.25)

d2qi

ds2
+ Γ i

00

dq0

ds

dq0

ds
= 0 , (3.26)

which, using the affine parametrization of the arc length with time, i.e., ds2 =
2(E + η)dt2, with (dq0/dt) = 2[V (q) + η] from (3.21), give

d2q0

dt2
= 2

dV

dt
,

d2qi

dt2
= −∂V

∂qi
, i = 1, . . . , N , (3.27)

respectively. The first equation is the differential version of (3.21), and equa-
tions (3.27) are Newton’s equations of motion.

3.1.3 Eisenhart Metric on Enlarged Configuration
Space-Time M × R

2

Eisenhart also proposed a geometric formulation of Newtonian dynamics that
makes use, as ambient space, of an enlarged configuration space-time M ×R

2

of local coordinates (q0, q1, . . . , qi, . . . , qN , qN+1). This space can be endowed
with a nondegenerate pseudo-Riemannian metric [119] whose arc length is

ds2 = (ge)μν dq
μdqν = aij dq

idqj − 2V (q)(dq0)2 + 2 dq0dqN+1 , (3.28)

where μ and ν run from 0 to N + 1 and i and j run from 1 to N , and
which, from now on, will be referred to as the Eisenhart metric, and whose
metric tensor will be denoted by ge. The relation between the geodesics of
this manifold and the natural motions of the dynamical system is contained
in the following theorem [120]:

Theorem 3.2 (Eisenhart). The natural motions of a Hamiltonian dyna-
mical system are obtained as the canonical projection of the geodesics of
(M × R

2, ge) on the configuration space-time, π : M × R
2 �→ M × R. Among

the totality of geodesics, only those whose arc lengths are positive definite and
are given by

ds2 = c21dt
2 (3.29)

correspond to natural motions; the condition (3.29) can be equivalently cast
in the following integral form as a condition on the extra coordinate qN+1:

qN+1 =
c21
2
t+ c22 −

∫ t

0

Ldτ , (3.30)
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Fig. 3.1. Enlarged configuration space-time.

where c1 and c2 are given real constants. Conversely, given a point P ∈M×R

belonging to a trajectory of the system, and given two constants c1 and c2, the
point P ′ = π−1(P ) ∈M ×R

2, with qN+1 given by (3.30), describes a geodesic
curve in (M × R

2, ge) such that ds2 = c21dt
2.

For the full proof, see [120]. Since the constant c1 is arbitrary, we will always
set c21 = 1 in order that ds2 = dt2 on the physical geodesics.

From (3.28) it follows that the explicit table of the components of the
Eisenhart metric is given by

ge =

⎛⎜⎜⎜⎜⎜⎝
−2V (q) 0 · · · 0 1

0 a11 · · · a1N 0
...

...
. . .

...
...

0 aN1 · · · aNN 0
1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ , (3.31)

where aij is the kinetic energy metric. The non vanishing Christoffel symbols,
in the case aij = δij , are only

Γ i
00 = −ΓN+1

0i = ∂iV , (3.32)

so that the geodesic equations read

d2q0

ds2
= 0 , (3.33)

d2qi

ds2
+ Γ i

00

dq0

ds

dq0

ds
= 0 , (3.34)

d2qN+1

ds2
+ ΓN+1

0i

dq0

ds

dqi

ds
= 0 ; (3.35)
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using ds = dt one obtains

d2q0

dt2
= 0 , (3.36)

d2qi

dt2
= −∂V

∂qi
, (3.37)

d2qN+1

dt2
= −dL

dt
. (3.38)

Equation (3.36) states only that q0 = t. The N equations (3.37) are Newton’s
equations, and (3.38) is the differential version of (3.30).

The fact that in the framework of the Eisenhart metric the dynamics can
be geometrized with an affine parametrization of the arc length, i.e., ds = dt,
will be extremely useful in the following, together with the remarkably simple
curvature properties of the Eisenhart metric (see Section 3.4).

3.2 Finslerian Geometrization of Hamiltonian Dynamics

There is another natural way, which makes use of Finsler spaces, of rephrasing
in geometric terms Hamilton’s least-action principle. Below we outline some
basic ideas in a coordinate-dependent formulation of this geometric setting of a
variational problem. Details can be found in the classic book by H. Rund [118]
or, in modern language, in [121].

Consider a differentiable manifold M and a vector X tangent to M at a
point P , that is, X ∈ TPM . The norm ‖X‖ of this vector—in analogy with its
definition in a Euclidean space with curvilinear coordinates—will be given by
the modulus of some function F (xj , Xj) of the coordinates xj of the point P
and of the components Xj of the vector X. This function, to properly define
the norm of a vector, has to satisfy the following conditions: (i) F (xj , Xj) has
to be smooth; (ii) F (xj , Xj) has to remain invariant under generic coordinate
changes onM ; (iii) F (xj , Xj) has to be positively homogeneous of first degree
in the variables Xj , i.e., F (xj , λXj) = |λ|F (xj , Xj) for any λ > 0.

Condition (i) means that the norm of a vector does not depend on
the choice of coordinates on M , and condition (iii) means that, for any
λ > 0, the norm ‖λX‖ of the vector whose components are λXj is given
by ‖λX‖ = λ|F (xj , Xj)|.

Then consider a curve c(t) on M , represented in local coordinates by
xj = xj(t). The infinitesimal displacement ds along c(t) is ds = F (xj , dxj)
with dxj = ẋjdt; note that ds is a proper arc length if F (xj , dxj) > 0. The
arc length �AB of the piece of c(t) between the endpoints A and B is

�AB =
∫ B

A

F (xj , dxj) =
∫ tB

tA

F (xj , ẋj) dt ,
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and, as can be easily verified, this arc length is invariant for arbitrary
twice-differentiable and invertible time reparametrizations t → τ(t) with
τ̇ > 0.

Euler’s theorem on homogeneous functions states that ẋj∂ẋjF (x, ẋ) =
F (x, ẋ), where ∂ẋj ≡ ∂/∂ẋj , and thus also ẋh∂2

ẋj ẋhF (x, ẋ) = 0, which entails

det[∂2
ẋj ẋhF (x, ẋ)] = 0 .

Now, from
1
2
∂F 2(x, ẋ)
∂ẋj

= F (x, ẋ)
∂F (x, ẋ)
∂ẋj

we get

1
2
∂2F 2(x, ẋ)
∂ẋj∂ẋh

=
∂F (x, ẋ)
∂ẋj

∂F (x, ẋ)
∂ẋh

+ F (x, ẋ)
∂2F 2(x, ẋ)
∂ẋj∂ẋh

,

and using the above-mentioned consequences of Euler’s theorem for homo-
geneous functions, it follows that

F 2(x, ẋ) =
1
2
∂2F 2(x, ẋ)
∂ẋj∂ẋh

ẋj ẋh . (3.39)

Putting

gjh(x, ẋ) =
1
2
∂2F 2(x, ẋ)
∂ẋj∂ẋh

, (3.40)

equation (3.39) is rewritten as

F 2(x, ẋ) = gjh(x, ẋ)ẋj ẋh . (3.41)

The norm ‖X‖ of a vector X ∈ TPM is then

‖X‖ = ‖gjh(x,X)XjXh‖1/2 ,

and with the components dxj of an infinitesimal displacement at the point P ,
the line element ds reads

ds2 = gjh(x, dx)dxjdxh .

The quantities gjh(x, ẋ) are the components of a (0, 2)-type symmetric tensor,
as can be easily verified by explicitly computing how they transform under
a nonsingular coordinate transformation xj = xj(xh). If (i) F (x, ẋ) ≥ 0,
(ii) F (x, ẋ) = 0 iff ẋ1 = ẋ2 = · · · = ẋN = 0, and (iii) the rank of ∂2F/∂ẋj∂ẋh

is N − 1, then the manifold M is said to be a Finsler space, or a Finslerian
manifold.

In order to get a regular variational problem from Hamilton’s least-action
principle, the Lagrangian function L(qi, q̇i) has to satisfy the conditions given
above. In order to satisfy the request of invariance for time reparametrization,
the function L(qi, q̇i) has to be homogeneous of degree one in the velocities,
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that is, L(qi, λq̇i) = λL(qi, q̇i), λ > 0. This condition is not so stringent as
it may appear. In fact, by adding a supplementary dimension, to be later
identified with the physical time, it is possible to define a parametrically
invariant extension of the initial Lagrangian on the space M = M × R as
follows [122]:

Λ(qa, q′a) = L(qi, q′i/q′0)q′0 , a = 0, 1, . . . , N ; i = 1, . . . , N , (3.42)

where the parametric representation qa(u) is expressed as a function of an
arbitrary parameter u. We have put q′a = dqa/du and dqi/dt = q′i/q′0. The
function Λ(qa, q′a) in (3.42) is homogeneous of degree one in the velocities.
Then taking u as integration variable, the Hamiltonian action is given by

S =
∫ u1

u0

Λ(qa, q′a)du (3.43)

where the explicit expression of Λ reads as

Λ(qa, q′a) =
1
2
aij
q′iq′j

q′0
− V (q)q′0 .

In such a way, trajectories of a Hamiltonian system in configuration space-
time are given by the extremals of the functional (3.43), and the formalism is
invariant with respect to time reparametrizations.

To define a Finsler metric, the function Λ(qa, q′a) has to be positive val-
ued on the tangent bundle TM. This is ensured by adding a convenient
constant to the potential function, or by adding to the Lagrangian a suit-
able “gauge” function in the form of total time derivative [123], that is,
L(q, q′) → L(q, q′)+(dG(q)/dt). The metric tensor gab(qa, q′a), defined through
the metric function Λ as

gab =
1
2
∂2Λ2

∂q′a∂q′b
,

provides the manifold M with a Finslerian structure. For standard systems
one obtains

g00 =
1
2
∂2Λ2

∂2(q′0)2
= 3T 2 + V 2 ,

g0i =
1
2
∂2Λ2

∂q′0∂q′i
= −2Taij

q′j

q′0
, (3.44)

gij =
1
2
∂2Λ2

∂q′i∂q′j
= aihajkq

′hq′k
(
q′0

)−2
+ aij (T − V ) .

The geodesic equations are

d2qa

ds2
+ γa

bc(q, q
′)
dqb

ds

qc

ds
= 0 , (3.45)
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where s is the arc length, and

γa
bc(q, q

′) =
1
2
gar

(
∂gcr

∂qb
+
∂gbr
∂qr

− ∂gbc
∂qr

)
. (3.46)

These geodesic equations on M, associated with the extended Lagrangian Λ,
give

dpi

du
− q′0 ∂L

∂qi
= 0 i = 1, . . . , N ,

d

du

∂Λ

∂q′0
=
dH

du
= 0 ,

where pi = ∂Λ/∂q′i and H is the Hamiltonian function associated with L.
The first N equations, written in terms of the initial parameter t

(i.e., q0 = t), are the equations of motion associated with the Lagrangian
L(q, q̇), while the zeroth equation is nothing but the energy conservation
along any geodesic.

Different definitions can be given for the connection on a Finslerian man-
ifold, hence of the covariant derivation, and consequently, different curvature
tensors can be defined. However, there is an axact analogue in the Finsler
setting of the canonical Levi-Civita connection on Riemannian manifolds: the
Cartan connection. The Cartan connection is almost torsion free (in a sense
that can be made precise), and it reduces to the Levi-Civita connection when
the Finsler metric reduces to a Riemannian metric.

Finsler geometry has been successfully used to approach the study of
Hamiltonian chaos in [123,124] where dynamical systems with few degrees of
freedom have been considered. A priori this could be a very useful geometric
framework to tackle dynamical systems involving electromagnetic interactions.

3.3 Sasaki Lift on TM

It is natural to wonder whether a Riemannian description of Hamiltonian
dynamics is possible that makes use, as ambient space, of the tangent bun-
dle TM , the cotangent bundle T ∗M (phase space), or of the constant-energy
hypersurface ΣE ⊂ TM , which is the manifold in which the trajectories of
an autonomous Hamiltonian system are naturally defined. The answer is yes,
and one possibility is to lift the Jacobi metric up to the tangent or cotangent
bundle. As long as standard Hamiltonian systems, like those we are mainly
interested in, are considered, the tangent and cotangent bundle can be inter-
changed, and we consider only TM , which for simplicity is also referred to as
the phase space of our system. The particular lift of the Jacobi metric that
we briefly consider is the so-called Sasaki—or diagonal—lift.

This metric can be defined as follows [125]: Given a Riemannian mani-
fold (M, g) let us consider two vectors X and Y tangent to to TM at the
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point (q, v). Suppose that X and Y are tangent at t = 0 to the curves
ᾱ(t) = (α(t), V (t)) and β̄(t) = (β(t),W (t)) respectively. Denote by ∇V/dt
and ∇W/dt the covariant derivatives of the vector fields V (t) and W (t) along
α(t) and β(t). Then the Sasaki metric gs on TM at (q, v) is defined by

gs|(q,v) (X,Y ) = g(α̇(0), β̇(0)) + g
(∇V
dt

∣∣∣∣
0

,
∇W
dt

∣∣∣∣
0

)
. (3.47)

This metric is perhaps the most natural metric on TM depending only on
the Riemannian structure defined on M . It is worth noticing that the tra-
jectories of the geodesic flow, i.e., the flow on TM given by the solutions of
the geodesic equations on (M, g), are geodesics of (TM, gs) [126, 127]; hence
this metric is the natural tool to geometrize dynamics using the phase space
as ambient manifold. Given an orthonormal frame (e1, . . . , eN ) on an open
set U ⊂ M , with (q1, . . . , qN ) a local coordinate system on U , the natural
coordinate system on π−1(U) is (q1, . . . , qN , v1, . . . , vN ), defined as follows:

qi(q, v) = qi , vi(q, v) = vi , (q, v) ∈ π−1(U) ,

where v =
∑

i v
iei(q). In this coordinate system the components of gs are

given by [128]

gs =

⎛⎝ gij + gklΓ
k
imΓ

l
jnv

mvn gikΓ
k
jlv

l

gikΓ
k
jlv

l gij

⎞⎠ , (3.48)

where the Γ ’s are the Christoffel symbols of the canonical connection associ-
ated with g. The reason why this metric is also referred to as the diagonal lift
of g to TM is that it is possible to find a reference frame in which the metric
is diagonal. A curve γ̄ : I ⊂ R �→ TM , t �→ (γ(t), V (t)), is horizontal if the
vector field V (t) is parallel along γ = π(γ̄). A vector on TM is horizontal if
it is tangent to a horizontal curve, or vertical if it is tangent to a fiber. Let
γ : I �→M , t �→ γ(t) be a curve through the point q = γ(0). For each tangent
vector v ∈ TqM there exists a unique horizontal curve γH : I �→ TM through
(q, v) that projects onto γ. This curve is defined by

γH(t) = (γ(t), V (t)) ,

where V (t) is obtained from v by parallel transport along γ. The curve γH is
called a horizontal lift of γ. The horizontal lift of a vector field X on M is the
unique vector field XH on TM that is horizontal and that projects onto X.
Let us denote by Γ i

j the quantities defined by5

∇Xej = Γ i
j (X)ei ; (3.49)

5 These Γ i
j (X) must not be confused with the Christoffel symbols Γ i

jk; the two
quantities are linked by the relation Γ i

jk = 〈Γ i
j (ei), ek〉.
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then in terms of the local frame the horizontal lift is defined by

XH = X − Γ i
j (X)vj ∂

∂vi
, (3.50)

while the vertical lift of X is

XV = Xi ∂

∂vi
. (3.51)

Vertical and horizontal vectors are orthogonal with respect to gs. For each
pair of vectors X and Y on M , we have

gs(XH , Y H) = gs(XV , Y V ) = g(X,Y ) ,
gs(XH , Y V ) = 0 . (3.52)

Hence the frame (eH1 , . . . , e
H
N , e

V
1 , . . . , e

V
N ) is orthonormal and the components

of the Sasaki metric in this frame become

gs =
(
gij 0
0 gij

)
. (3.53)

Let us remark that the metric induced on the fibers π−1(q) is Euclidean. This
condition, together with the condition of orthogonality of the vertical and
horizontal fields, uniquely determines the Sasaki metric.

3.4 Curvature of the Mechanical Manifolds

In this section we give some elementary formulae concerning basic curvature
properties of the manifolds hitherto introduced to geometrize Hamiltonian
flows.

Curvature of (ME, gJ)

We have already observed that the Jacobi metric is a conformal deformation of
the kinetic-energy metric, whose components are given by the kinetic-energy
matrix aij . In the case of systems whose kinetic-energy matrix is diagonal,
this means that the Jacobi metric is conformally flat (see Appendix B, Section
B.3). This greatly simplifies the computation of curvatures. It is convenient
to define then a symmetric tensor C whose components are [7]

Cij =
N − 2

4(E − V )2

[
2(E − V )∂i∂jV + 3∂iV ∂jV − δij

2
|∇V |2

]
, (3.54)

where V is the potential, E is the energy, and∇ and |·| stand for the Euclidean
gradient and norm, respectively. The curvature of (ME , gJ ) can be expressed
through C. In fact, the components of the Riemann tensor are

Rijkm =
1

N − 2
[Cjkδim − Cjmδik + Cimδjk − Cikδjm] . (3.55)
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By contraction of the first and third indices, we obtain the Ricci tensor, whose
components are (see Appendix B)

Rij =
N − 2

4(E − V )2
[2(E − V )∂i∂jV + 3∂iV ∂jV ]

+
δij

4(E − V )2
[
2(E − V )�V − (N − 4)|∇V |2

]
, (3.56)

and by a further contraction we obtain the scalar curvature (see Appendix B)

R =
N − 1

4(E − V )2
[
2(E − V )�V − (N − 6)|∇V |2

]
. (3.57)

Curvature of (M × R, Ge)

The basic curvature properties of the Eisenhart metric Ge can be derived
by means of the Riemann curvature tensor, which is found to have the non-
vanishing components

R0i0j =
∂i∂jV

(2V + 2η)2
− 3(∂iV )(∂jV )

(2V + 2η)3
, (3.58)

where ∂i ≡ ∂/∂qi and whence, after contraction, using G00 = 2V + 2η the
components of the Ricci tensor are found to be

Rkj =
∂k∂jV

(2V + 2η)
− 3(∂kV )(∂jV )

(2V + 2η)2
,

R00 =
�V

(2V + 2η)2
− 3(∇V )2

(2V + 2η)3
, (3.59)

where �V =
∑N

i=1 ∂
2V /∂qi 2, and thus we find that the Ricci curvature at

the point q ∈M × R and in the direction of the velocity vector q̇ is

KR(q, q̇) = �V +Rij q̇
iq̇j (3.60)

and the scalar curvature at q ∈M × R is

R(q) =
�V

(2V + 2η)
− 3(∇V )2

(2V + 2η)
. (3.61)

Curvature of (M × R
2, ge)

The curvature properties of the Eisenhart metric ge are much simpler than
those of the Jacobi metric and also simpler than those of the Eisenhart metric
Ge, and this is obviously a great advantage from a computational point of
view. The only nonvanishing components of the Riemann curvature tensor are

R0i0j = ∂i∂jV ; (3.62)
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hence the Ricci tensor has only one nonzero component,

R00 = �V , (3.63)

so that the Ricci curvature is

KR(q, q̇) = R00q̇
0q̇0 ≡ �V ,

and the scalar curvature is identically vanishing,

R(q) = 0 . (3.64)

Curvature of (TME, gs)

We already observed that the Sasaki metric is the most natural metric on the
tangent bundle of a Riemannian manifold, since it depends only on the metric
of M . Hence also the curvatures of (TME , gs) can be expressed through the
curvatures of (M, gJ ) (see, e.g., [128]). Unfortunately, the expressions for the
curvatures are very complicated. A “simple” expression has been established
in [125] for the scalar curvature, which reads

Rs(q, v) = R(q)− 1
4

N∑
i,j,k,l,m=1

Rijkm(q)Rijlm(q)vkvl . (3.65)

The constant-energy hypersurface ΣE = {(q, p) : H(q, p) = E} is a subman-
ifold of TM after identifying p with the tangent vector v, which is possible
in the case of the standard Hamiltonians that we are considering. In fact
ΣE = T1M , i.e., it is the set of all the pairs (q, v) such that the tangent vec-
tors v have length 1 with respect to the Jacobi metric. Moreover, ΣE is also a
Riemannian submanifold of (TME , gs), and the remarkable result is that it is a
totally geodesic submanifold. In fact, since the trajectories of the geodesic flow
on TM are geodesics of (TME , gs) and by energy conservation these curves
are constrained on ΣE , every geodesic of TM that starts on ΣE remains on
ΣE , and this is one of the definitions of a totally geodesic submanifold. The
consequences are particularly important as long as the curvature properties
are concerned, in fact the curvature of a totally geodesic submanifold N of M
equipped with the induced metric is simply given by the restriction to N of
the curvature of M . Hence measuring the curvature of (TME , gs) at a point
(q, v) ∈ ΣE we directly measure the curvature of ΣE equipped with the metric
induced by the immersion in (TME , gs).

Curvature of (M × R) with a Finsler Metric

On a Finsler manifold, several plausible analogues of the covariant derivation
on Riemannian manifolds can be given. The first useful definition concerns
the so-called δ-derivative, which for a vector field X reads

δXa

δu
=
dXa

du
+ P a

bc(q, q
′)Xbqc , (3.66)
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where P a
bc(q, q

′) = γa
bc(q, q

′) − Ca
bd(q, q

′)γd
rc(q, q

′)q′r, with γa
bc(q, q

′) defined in
(3.46) and Ca

bc = garCrbc with the coefficients Crbc defined below. Then, by
computing the commutator of a double δ-derivation one obtains the analogue
of the Riemann–Christoffel curvature tensor, whose components, for a Finsler
space, read [118]

Ka
bcd(qr, q′r) =

(
∂Γ ∗a

bc

∂qd
− ∂Γ ∗a

bc

∂q′s
∂Gs

∂q′d

)
−
(
∂Γ ∗a

bd

∂qc
− ∂Γ ∗a

bd

∂q′s
∂Gs

∂q′c

)
+Γ ∗a

sd Γ
∗s
bc − Γ ∗a

sc Γ
∗s
bd , (3.67)

where

Ga =
1
2
Γ a

bd q
′bq′d , (3.68)

Γ ∗c
db = Γ c

db − gac

(
Cbas

∂Gs

∂q′d
+ Cdas

∂Gs

∂q′b
− Cdbs

∂Gs

∂q′a

)
(3.69)

and
Cabd =

1
2
∂gab

∂q′d
. (3.70)

If we restrict to the Riemannian case g = g(qa), the symbols Cabc identically
vanish, so that the coefficients Γ ∗a

bd reduce to the usual Christoffel symbols
Γ a

bd, and the curvature tensor Ka
bcd reduces to the Riemann tensor. With the

curvature tensor Ka
bcd we can define the analogue of sectional curvatures,

of the Ricci curvature tensor and of the scalar curvature. Just to call the
reader’s attention to the different degrees of complexity of the geometries of
the different frameworks reviewed in the present chapter, we give the analytic
expression of the scalar curvature R(q, q′) of an (N + 1)-dimensional Finsler
space:

R(q, q′) =
Ka

bca(q, q′)q′bq′c

NΛ2(q, q′)(q′0)2
. (3.71)

It is reasonable to think that the different degrees of complexity of the geo-
metries of the different ambient manifolds have to correspond to different
capabilities of “capturing” information on the dynamics.

3.5 Curvature and Stability of a Geodesic Flow

The possibility of identifying a Hamiltonian flow with a geodesic flow on
a Riemannian manifold provides a real practical resource for studying the
stability/instability properties (chaos) of Hamiltonian dynamics. In fact,
the geometrization of dynamics allows one to borrow from geometry the link
between the curvature features of a given manifold and the stability/instability
properties of its geodesics.
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Studying the instability of dynamics means determining the evolution
of perturbations of a given trajectory, as has already been discussed in
Section 2.2.2.

Let us now translate the stability problem into geometric language. By
writing, in close analogy to what has been done above in the case of dynamical
systems, a perturbed geodesic as

q̃i(s) = qi(s) + J i(s) , (3.72)

and then inserting this expression in the equation for the geodesics, one finds
that the evolution of the perturbation vector J is given by the following
equation:

∇2Jk

ds2
+Rk

ijr

dqi

ds
Jj dq

r

ds
= 0 , (3.73)

where Rk
ijr are the components of the Riemann–Christoffel curvature tensor

(see Appendix B). Equation (3.73) is referred to as the Jacobi equation, and
(∇Jk/ds) = dJk/ds+Γ k

ij (dqi/ds)Jj is the covariant derivative of the tangent
vector field J known as the Jacobi geodesic separation field. Since in the con-
text of Riemannian geometry this equation was first studied by Levi-Civita,
it is also often referred to as the equation of Jacobi and Levi-Civita. For a
derivation we refer to Appendix B, Section B.4, where it is also shown that
one can always assume that J is orthogonal to the velocity vector γ̇ along the
geodesic i.e.,

〈J, γ̇〉 = 0 , (3.74)

where 〈·, ·〉 stands for the scalar product induced by the metric (see Appendix
B). The remarkable fact is that the evolution of J—and then the stability or
instability of the geodesic—is completely determined by the curvature of the
manifold. Therefore, if the metric is associated with a physical system, as in
the case of Jacobi or Eisenhart metrics, such an equation links the stability or
instability of the trajectories to the curvature of the “mechanical” manifold.
Let us begin by computing the left-hand side of (3.73).

From (∇Jk/ds) = dJk/ds+ Γ k
ij (dqi/ds)Jj we have

∇2

ds2
Jk =

d

ds

(
dJk

ds
+ Γ k

ij

dqi

ds
Jj

)
+ Γ k

rt

dqr

ds

(
dJ t

ds
+ Γ t

ij

dqi

ds
Jj

)
; (3.75)

trivial algebra leads to

∇2

ds2
Jk =

d2Jk

ds2
+2Γ k

ij

dqi

ds

dJj

ds
+
(
∂rΓ

k
ij + Γ k

rtΓ
t
ij − Γ k

tjΓ
t
ri

) dqr
ds

dqi

ds
Jj , (3.76)

where ∂i ≡ ∂/∂qi. Then, we use the expression for the components of the
Riemann–Christoffel tensor to obtain

Rk
ijr

dqi

ds
Jj dq

r

ds
=
(
Γ t

riΓ
k
jt − Γ t

jiΓ
k
rt + ∂jΓ

k
ri − ∂rΓ

k
ji

) dqr
ds
Jj dq

i

ds
, (3.77)
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Fig. 3.2. Jacobi vector field J . Figure (a) shows a congruence of geodesics γ(τ, s)
issuing from a neighborhood I. Each geodesic is labeled by a continuous parameter τ ;
on a reference geodesic γ(0, s) the separation vector field J(s) is defined by J(s) =
[∂γ(τ, s)/∂τ ]τ=0. Figure (b) shows that J locally measures the distance between
close geodesics. From [129].

and by substituting (3.76) and (3.77) into (3.73) we finally get

d2Jk

ds2
+ 2Γ k

ij

dqi

ds

dJj

ds
+
(
∂Γ k

ri

∂qj

)
dqr

ds

dqi

ds
Jj = 0 , (3.78)

which has general validity independently of the metric of the ambient manifold.

Geodesic Spread Equation for the Jacobi Metric gJ

Let us now derive its explicit form in the case of the Jacobi metric. This metric
is a conformal deformation of the pure kinetic energy metric, i.e., (gJ)ij =
e−2faij . Since we are mainly interested in studying standard Hamiltonian
systems, aij = δij is assumed. For a conformal metric (gJ )ij = e−2fδij one
readily obtains the following expression for the Christoffel coefficients: Γ k

ij =
−δkj f,i−δki f,j +δijf ,k, where f,i = ∂if ≡ ∂f/∂qi. Hence (3.78) is transformed
into
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d2Jk

ds2
− 2

df

ds

dJk

ds
− 2

dqk

ds

d

ds
(fjJ

j) + 2fk
dqi

ds
δij
dJj

ds
+ fkjJ

je2f = 0 , (3.79)

and using the relation ds = e−2fdt, we can express it in terms of the physical
time t instead of the proper time s:

d2Jk

dt2
+ 2

(
f ,kδij

dqi

dt
− f,j

dqk

dt

)
dJj

dt
+
(
f,kje

−2f − 2f,ji
dqi

dt

dqk

dt

)
Jj = 0 ,

(3.80)
where f,ij = ∂2

ijf . Finally, since the Jacobi metric corresponds to f =
1
2 ln[1/2(E − V )], one obtains

f,i =
∂iV

2(E − V )
, (3.81)

f,ij =
∂2

ijV

2(E − V )
+

(∂iV )(∂jV )
2(E − V )2

, (3.82)

e−2f = 2(E − V ) , (3.83)

so that the final expression for the JLC equation for (ME , gJ ) is

d2Jk

dt2
+

1
E − V

(
∂kV δij

dqi

dt
− ∂jV

dqk

dt

)
dJj

dt
+ [∂2

kjV ] Jj

+
1

E − V

[
(∂kV )(∂jV )−

(
∂2

ijV +
(∂iV )(∂jV )
E − V

)
dqi

dt

dqk

dt

]
Jj = 0 .

(3.84)

This equation has been used in [130] to numerically work out a quantitative
measure of the strength of chaos in a system with many degrees of freedom.
The outcome of these computations has been found to be in excellent quan-
titative agreement with the outcome of standard numerical computations of
the largest Lyapunov exponent for the same model.

Geodesic Spread Equation for the Eisenhart Metric Ge

Let us now give the explicit form of (3.78) in the case of (M × R, Ge), the
enlarged configuration space equipped with one of the Eisenhart metrics. Since
the nonvanishing Christoffel coefficients are Γ i

00 and Γ 0
0i, then using the affine

parametrization of the arc length with physical time, we obtain

d2Jk

dt2
+

2(∂kV )
2V + 2η

dJ0

dt
+
[
∂2

kjV − 4(∂kV )(∂jV )
2V + 2η

]
Jj = 0 ,

(3.85)
d2J0

dt2
− 2(∂iV )q̇i

2V + 2η
dJ0

dt
− 2(∂iV )

dJ i

dt
−
[
∂2

ijV − 2(∂iV )(∂jV )
2V + 2η

]
q̇iJj = 0 ,

(3.86)
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where the indexes i, j, k run from 1 to N . These equations have not yet
been used to tackle Hamiltonian chaos, but they certainly deserve a thorough
investigation.

Geodesic Spread Equation for the Eisenhart Metric ge

Let us now give the explicit form of (3.78) in the case of (M × R
2, ge), the

enlarged configuration space-time equipped with Eisenhart metric. One easily
finds [131] that only the following Christoffel coefficients do not vanish: Γ i

00 =
(∂V/∂qi) and ΓN+1

0i = (−∂V/∂qi). Thus, the Jacobi equation (3.73) takes the
form (we recall that the manifold now has dimension N + 2; all the indices
i, j, k, . . . run from 1 to N)

∇2J0

ds2
+R0

i0j

dqi

ds
J0 dq

j

ds
+R0

0ij

dq0

ds
J i dq

j

ds
= 0 , (3.87)

∇2J i

ds2
+Ri

0j0

(
dq0

ds

)2

Jj +Ri
00j

dq0

ds
J0 dq

j

ds
+Ri

j00

dqj

ds
J0 dq

0

ds
= 0 , (3.88)

∇2JN+1

ds2
+RN+1

i0j

dqi

ds
J0 dq

j

ds
+RN+1

ij0

dqi

ds
Jj dq

0

ds
= 0 , (3.89)

where, for the sake of clarity, we have written out (3.5) separately for the 0,
the i = 1, . . . , N , and the N + 1 components, respectively. Since Γ 0

ij = 0 (see
3.32) we obtain, from the definition of covariant derivative (see Appendix B),
∇J0/ds = dJ0/ds, and since R0

ijk = 0 (see Section 3.4), we find that (3.87)
becomes

d2J0

ds2
= 0 , (3.90)

so that J0 does not accelerate, and without loss of generality, we can set
dJ0

ds

∣∣∣
s=0

= J0(0) = 0. Combining the latter result with the definition of
covariant derivative we obtain

∇J i

ds
=
dJ i

ds
+ Γ i

0k

dq0

ds
Jk , (3.91)

and using dq0/ds = 0 we finally get

∇2J i

ds2
=
d2J i

ds2
, (3.92)

so that (3.88) gives, for the projection in configuration space of the separation
vector,

d2J i

ds2
+

∂2V

∂qi∂qk

(
dq0

ds

)2

Jk = 0 . (3.93)
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Equation (3.89) describes the evolution of JN+1, which, however, does not
contribute to the norm of J because gN+1N+1 = 0, so we can disregard it.

Along the physical geodesics of gE , ds2 = (dq0)2 = dt2, so that (3.93) is
exactly the usual tangent dynamics equation

d2J i

dt2
+

∂2V

∂qi∂qk
Jk = 0 , (3.94)

provided the identification ξ = J is made.
It is a very interesting fact that the JLC equation (3.73) yields the usual

tangent dynamics equation (2.108) for Hamiltonian flows, when explicitly
worked out for the Eisenhart metric on M × R

2.
This circumstance allows one to make a direct link between the cur-

rently derived “experimental” data on Hamiltonian chaos, that is, between
the numerical Lyapunov exponents discussed in Section 2.2.2, and the geo-
metric treatment of a chaotic geodesic flow. This connection is a crucial point
in the development of a geometric theory of Hamiltonian chaos without intro-
ducing any new definition of chaos in the geometric context.

Geodesic Spread Equation for a Finsler Space

In close analogy with Riemannian geometry, also in the case of Finsler geo-
metry we can define a geodesic deviation equation. If we denote by ζ the vector
field of geodesic separation, which locally measures the distance between pairs
of points belonging to nearby geodesics at the same proper time s, the follow-
ing equation is worked out for its evolution [118]:

δ2ζi

δs2
+Ki

jhk(q, q′)
dq′j

ds

dq′h

ds
ζk = 0 , (3.95)

where the δ-derivation and the curvature tensor are those defined in Section
3.2. By introducing a normalized vector field X defined along a geodesic and
having the same direction of ζ, there exists a scalar function z(s) such that
ζi = zXi, which can be shown to satisfy the equation

d2z

ds2
+ z

[
R(q, q′, X)− gij(q, q′)

δXi

δs

δXj

δs

]
= 0 , (3.96)

where R(q, q′, X) is a sectional curvature defined as in the Riemannian
case by replacing the Riemann curvature tensor with Ki

jhk(q, q′). In the
two-dimensional case, the equation above simplifies to

d2z

ds2
+R(q, q′)z = 0 ,
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where R(q, q′) is the scalar curvature defined in (3.71), in strict analogy with
the Riemannian case. This equation could be used to study the chaotic dyna-
mics of 1.5-degrees-of-freedom Hamiltonian systems, that is, those described
by a time-dependent Hamiltonian function with only a pair of conjugated p−q
variables. Also, Schur’s theorem for constant-curvature Riemannian manifolds
can be generalized to Finsler spaces, allowing, in principle, an extension to
(3.96) of the quasi-isotropy assumption that will be developed in Chapter 5
for the Riemannian case.

Some successful applications of equation (3.95) to the study of Hamiltonian
chaos in few degrees of freedom Hamiltonian systems are discussed in [123,
124,132].

3.5.1 Concluding Remark

To summarize, we have shown that the dynamical trajectories of a
Hamiltonian system of the form (1.1) can be seen as geodesics of the con-
figuration space, or of at least three different enlargements of it,6 or of the
tangent bundle of configuration space. In each case one has to define an
appropriate metric. The general relationship that holds between dynamical
and geometrical quantities regardless of the precise choice of the metric can
be sketched as follows:

dynamics geometry

(time) t ↔ s (arc− length)
(potential energy) V ↔ g (metric)

(forces) ∂V ↔ Γ (Christoffel symbols)
(“curvature” of the potential) ∂2V, (∂V )2 ↔ R (curvature of the manifold)

(3.97)

In the case of the Eisenhart metric, all these relations are extremely simple
(maybe as simple as possible). In fact, the physical time t can be chosen as
equal to the arc length s; the metric tensor ge contains only the potential
energy V , the nonvanishing Christoffel symbols Γ are equal to the forces ∂V ;
and the components of the Riemann curvature tensor R contain only the
second derivatives ∂i∂jV of the potential energy.

We have also shown how the stability of the dynamical trajectories can be
mapped onto the stability of the geodesics, which is completely determined by
the curvature of the manifold. We have seen that in the case of the Eisenhart
metric, as a consequence of its remarkably simple properties, also the relation-
ship between the stability of the trajectories and the stability of the geodesics

6 Notice that the space M ×R being equipped with the Eisenhart metric Ge is not
the same as M × R to be equipped with a Finsler metric. In the former case,
the extra variable is related to the action, whereas in the latter case the extra
variable coincides with the physical time.
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becomes as simple as possible, i.e., the Jacobi equation (3.73) becomes iden-
tical to tangent dynamics equation (3.94) that is used to compute numerical
Lyapunov exponents.

In Chapter 5 we shall see that the geometric framework, and in partic-
ular the link between curvature and stability, provides us with a natural
explanation of the origin of the chaotic instability of Hamiltonian flows, thus
overcoming all the difficulties and severe limitations of the traditional expla-
nation based on homoclinic intersections.



Chapter 4

Integrability

4.1 Introduction

The problem of integrability in classical mechanics has been a seminal one.
Motivated by celestial mechanics, it has stimulated a wealth of analytical
methods and results. For example, as we have discussed in Chapter 2, the
weaker requirement of only approximate integrability over finite times, or the
existence of integrable regions in the phase space of a globally nonintegrable
system, has led to the development of classical perturbation theory, with all
its important achievements. However, deciding whether a given Hamiltonian
system is globally integrable still remains a difficult task, for which a general
constructive framework is lacking.

The topic of integrability is a vast one, and reviewing it is beyond the aim
of the present monograph. For the sake of completeness, in this chapter we
briefly discuss how the classical problem of integrability is rephrased in the
Riemannian-geometric framework for the Hamiltonian dynamics introduced
in Chapter 3.

In general, the existence of conservation laws, and of conserved quantities
along the trajectories of a Hamiltonian system, is related to the existence of
symmetries. The link is made by Noether’s theorem [133]. A symmetry is seen
as an invariance under the action of a group of transformations, and in the case
of continuous symmetries, this can be related also to the existence of special
vector fields: Killing vector fields on the mechanical manifold generating the
transformations.

On a generic manifold M , a flow σ : R ×M → M is generated by the
ensemble of the integral curves of a vector field X on the manifold:

d

dt
σμ(t, x0) = Xμ(σ(t, x0)) , μ ∈ {1, . . . ,dim(M)} . (4.1)

Given t ∈ R, σ(t, ·) is a diffeomorphism of M to itself. The summation in R

endows σ with the structure of a commutative group

σ(t, ·) ◦ σ(s, ·) = σ(t+ s, ·); (4.2)

129
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such a group is called a one-parameter group of transformations σt : M →M .
Under the action of σε, with ε infinitesimal, a point x of coordinates xμ is
transformed as

σμ
ε (x) = σμ(ε, x) = xμ + εXμ(x). (4.3)

In this framework, the vector field X is called the infinitesimal generator of
the transformation σε. If two flows are given, σ(t, x) and τ(t, x), generated by
the vector fields X and Y respectively,

dσμ(s, x)
ds

= Xμ(σ(s, x)) , (4.4)

dτμ(t, x)
dt

= Y μ(τ(t, x)) , (4.5)

the Lie derivative LXY of the vector field Y along the flow σ of X is defined by

(LXY )(x) = lim
ε→0

1
ε
[(σ−ε)∗(Y (σε(x)))− Y (x)] , (4.6)

where by (σ−ε)∗ : Tσε(x)M → TxM we denote the derivative of σ−ε. This
amounts to evaluating the variation of a vector field Y along a flow of σ, and
this can also be extended to a tensor field A:

(LXA)(x) = lim
ε→0

1
ε
[(σ−ε)∗(A(σε(x)))−A(x)] . (4.7)

On Riemannian manifolds (M, g), a special class of vector fields can be defined:
Killing vector fields. A field X is such a vector field if

LXg = 0 . (4.8)

It directly follows from (4.7) that a vector field is a Killing field iff the
one-parameter group of transformations associated with it is an isometry.1

This means that along the flow σt, geometry does not change, and therefore
a Killing field represents an infinitesimal symmetry of the manifold. However,
through Noetherian symmetries, and thus Killing vector fields, only a limited
set of conservation laws can be accounted for. This is easily understood
because only invariants that are linear functions of the momenta can be
constructed by means of Killing vectors, while the energy, an invariant for
any autonomous Hamiltonian system, is already a quadratic function of the
momenta. The possibility of constructing invariants along a geodesic flow that
are of higher order than linear in the momenta is related to the existence of
Killing tensor fields on the mechanical manifolds [134–136].

In general, the components of any Killing tensor field on a mechanical
manifold are solutions of a linear inhomogeneous system of first-order partial
differential equations. Since the number of these equations always exceeds

1 An isometry f : M → M is a diffeomorphism preserving distance: f∗g = g.
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the number of the unknowns, the system is always overdetermined. The
existence of Killing tensors thus requires compatibility. However, compati-
bility is generically very unusual, which suggests a possible explanation, at
least of a qualitative kind, of the exceptionality of integrability with respect
to nonintegrability.

4.2 Killing Vector Fields

On a Riemannian manifold, for any pair of vectors V and W , the following
relation holds:

d

ds
〈V,W 〉 =

〈∇V
ds
,W

〉
+
〈
V,
∇W
ds

〉
, (4.9)

where 〈V,W 〉 = gijV
iW j and ∇/ds is the covariant derivative along a curve

γ(s). If the curve γ(s) is a geodesic, for a generic vector X we have

d

ds
〈X, γ̇〉 =

〈∇X
ds
, γ̇

〉
+
〈
X,

∇γ̇
ds

〉
=
〈∇X
ds
, γ̇

〉
≡ 〈∇γ̇X, γ̇〉 , (4.10)

where (∇γ̇X)i = dxl

ds
∂Xi

∂xl + Γ i
jk

dxj

ds X
k, so that in components it reads

d

ds
(Xiv

i) = vi∇i(Xjv
j) , (4.11)

where vi = dxi/ds; with Xjv
i∇iv

j = Xj∇γ̇ γ̇
j = 0, because geodesics are

autoparallel, this can obviously be rewritten as

d

ds
(Xiv

i) =
1
2
vjvi(∇iXj +∇jXi) , (4.12)

telling that the vanishing of the left-hand side, i.e., the conservation of Xiv
i

along a geodesic, is guaranteed by the vanishing of the right-hand side, i.e.,

∇(iXj) ≡ ∇iXj +∇jXi = 0 , i, j = 1, . . . ,dimME . (4.13)

If such a field exists on a manifold, it is called a Killing vector field (KVF).
Equation (4.13) is equivalent to LXg = 0. On the mechanical manifolds
(ME , gJ ), the unit vector dqk

ds is proportional to the canonical momentum
pk = ∂L

∂q̇k = q̇k, (aij = δij), and is tangent to a geodesic. The existence of a
KVF X implies that the quantity, linear in the momenta,

J(q, p) = Xk(q)
dqk

ds
=

1√
2(E − V (q))

Xk(q)
dqk

dt
=

1√
2W (q)

N∑
k=1

Xk(q)pk

(4.14)
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is a constant of motion along the geodesic flow. Thus, for an N -degrees-
of-freedom Hamiltonian system, a physical conservation law involving a
conserved quantity linear in the canonical momenta can always be related to
a symmetry on the manifold (ME , gJ ) due to the action of a KVF on the
manifold. These are conservation laws of Noetherian kind. Equation (4.13) is
equivalent to the vanishing of the Poisson brackets

{H,J} =
N∑

i=1

(
∂H

∂qi
∂J

∂pi
− ∂H

∂pi

∂J

∂qi

)
= 0 , (4.15)

the standard definition of a constant of motion J(q, p). In fact, a linear function
of the momenta

J(q, p) =
∑

i

Ci(q)pi , (4.16)

if conserved, can be associated with the vector of components

Xk = [E − V (q)]Ck(q). (4.17)

The explicit expression of the system of equations (4.13) is obtained by
writing in components the covariant derivatives associated with the connection
coefficients (3.17), and it finally reads

[E − V (q)]
[
∂Ci(q)
∂qj

+
∂Cj(q)
∂qi

]
− δij

N∑
k=1

∂V

∂qk
Ck(q) = 0, (4.18)

or equivalently

1
2

N∑
k=1

p2k

[
∂Ci(q)
∂qj

+
∂Cj(q)
∂qi

]
− δij

N∑
k=1

∂V

∂qk
Ck(q) = 0, (4.19)

which, according to the principle of polynomial identity, yields the following
conditions for the coefficients Ci(q):

∂Ci(q)
∂qj

+
∂Cj(q)
∂qi

= 0 , i �= j , i, j = 1, . . . , N ,

∂Ci(q)
∂qi

= 0 , i = 1, . . . , N ,

N∑
k=1

∂V

∂qk
Ck(q) = 0 . (4.20)

One can easily check that the same conditions stem from (4.15). As an
elementary example, we can give the explicit expression of the components
of the Killing vector field associated with the conservation of the total
momentum P (q, p) =

∑N
k=1 pk .
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In this case the coefficients are Ci(q) = 1, so that the momentum
conservation can be geometrically related to the action of the vector field
of components Xi = E − V (q), i = 1, . . . , N , on the mechanical manifold.
At least this class of invariants has a geometric counterpart in a symmetry of
(ME , gJ ).

However, in order to achieve a fully geometric rephrasing of integrabi-
lity, we need something similar for any constant of motion. If a one-to-one
correspondence is to exist between conserved physical quantities along a
Hamiltonian flow and suitable symmetries of the mechanical manifolds
(ME , gJ ), then integrability will be equivalent to the existence of a number of
symmetries at least equal to the number of degrees of freedom (= dim ME).

If a Lie group G acts on the phase space manifold through completely
canonical transformations, and there exists an associated momentum map-
ping,2 then every Hamiltonian having G as a symmetry group, with respect
to its action, admits the momentum mapping as a constant of motion [137].
These symmetries are usually referred to as hidden symmetries, because even
though their existence is ensured by integrability, they are not easily recog-
nizable.3

4.3 Killing Tensor Fields

Let us now extend what has been just presented about KVFs in an attempt
trying to generalize the form of the conserved quantity along a geodesic flow
from J = Xiv

i to J = Kj1j2...jr
vj1vj2 · · · vjr , with Kj1j2...jr

a tensor of rank r.
Thus, we look for the conditions that entail

d

ds
(Kj1j2...jr

vj1vj2 · · · vjr ) = vj∇j(Kj1j2...jr
vj1vj2 · · · vjr ) = 0 . (4.21)

In order to work out from this equation a condition for the existence of a
suitable tensor Kj1j2...jr

, which is called a Killing tensor field (KTF), let
us first consider the rank-2r tensor Kj1j2...jr

vi1vi2 · · · vir and its covariant
derivative along a geodesic, i.e.,

vj∇j(Kj1j2...jr
vi1vi2 . . . vir )

= vj

(
∂Kj1...jr

∂xj
−Klj2...jr

Γ l
j1j − · · · −Kj1...lΓ

l
jrj

)
vi1 · · · vir

2 This happens whenever this action corresponds to the lifting to the phase space
of the action of a Lie group on the configuration space.

3 An interesting account of these hidden symmetries can be found in [138], where
it is surmised that integrable motions of N -degrees-of-freedom systems are the
“shadows” of free motions in symmetric spaces (for example, Euclidean spaces
R

n, hyperspheres S
n, hyperbolic spaces H

n) of sufficiently large dimension n > N .
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+Kj1...jr

(
vj ∂v

i1

∂xj
+ Γ i1

jl v
lvj

)
vi2 · · · vir + · · ·

+Kj1...jr
vi1 · · · vir−1

(
vj ∂v

ir

∂xj
+ Γ ir

jl v
lvj

)
= vi1vi2 · · · virvj∇jKj1j2...jr

, (4.22)

where we have again used vj∇jv
ik = 0 along a geodesic, and a standard

covariant differentiation formula B. Now, by contraction on the indices ik
and jk, the rank-2r tensor of the right-hand side of (4.22) provides a new
expression for the right-hand side of (4.21), which reads

d

ds
(Kj1j2...jr

vj1vj2 · · · vjr ) = vj1vj2 · · · vjrvj∇(jKj1j2...jr) , (4.23)

where ∇(jKj1j2...jr) = ∇jKj1j2...jr
+ ∇j1Kjj2...jr

+ · · · + ∇jr
Kj1j2...jr−1j , as

can be easily understood by rearranging the indices of the summations in the
contraction of the 2r-rank tensor in the last part of (4.22) (a direct check
for the case N = r = 2 is immediate). The vanishing of (4.23), entailing
the conservation of Kj1j2...jr

vj1vj2 · · · vjr along a geodesic flow, is therefore
guaranteed by the existence of a tensor field satisfying the conditions

∇(jKj1j2...jr) = 0 . (4.24)

These equations generalize (4.13) and give the definition of a KTF on a
Riemannian manifold. These Nr+1 equations in (N + r − 1)!/r!(N − 1)!
unknown independent components4 of the Killing tensor constitute an over-
determined system of equations. Thus, a priori, we can expect that the exis-
tence of KTFs has to be rather exceptional.

If a KTF exists on a Riemannian manifold, then the scalar

Kj1j2...jr

dqj1

ds

dqj2

ds
· · · dq

jr

ds
(4.25)

is a constant of motion for the geodesic flow on the same manifold.
Let us consider, as a generalization of the special case of rank one given

by (4.16), the constant of motion

J(q, p) =
∑

{i1,i2,...,iN}
Ci1i2...iN

pi1
1 p

i2
2 · · · piN

N , (4.26)

which, with the constraint i1 + i2 + · · · + iN = r, is a homogeneous polyno-
mial of degree r. The index ij denotes the power with which the momentum
pj contributes. If r < N then necessarily some indices ij must vanish. By
repeating the procedure developed in the case r = 1, and by identifying
4 This number of independent components, i.e., the binomial coefficient

(
N+r−1

r

)
,

is due to the totally symmetric character of Killing tensors.
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J(q, p) ≡ Kj1j2...jr

dqj1

ds

dqj2

ds
· · · dq

jr

ds
, (4.27)

we get the relationship between the components of the Killing tensor of rank r
and the coefficients Ci1i2...iN

of the invariant J(q, p), that is,

K1 . . . 1︸ ︷︷ ︸
i1

,2 . . . 2︸ ︷︷ ︸
i2

,...,N . . .N︸ ︷︷ ︸
iN

= 2r/2[E − V (q)]rCi1i2...iN
. (4.28)

With the only difference of a more tedious combinatorics, also in this case
it turns out that the equations (4.24) are equivalent to the vanishing of the
Poisson brackets of J(q, p), that is,

{H,J} = 0 ⇐⇒ ∇(jKj1j2...jr) = 0 . (4.29)

Thus, the existence of Killing tensor fields satisfying (4.24) on a mechanical
manifold (M, gJ ) provides the rephrasing of integrability of Newtonian equa-
tions of motion, or equivalently, of standard Hamiltonian systems, within the
Riemannian-geometric framework.

At first sight, it might appear too restrictive that prime integrals of motion
have to be homogeneous functions of the components of p. However, as we shall
discuss in the next section, the integrals of motion of the known integrable
systems can actually be cast in this form. This is in particular the case of
total energy, a quantity conserved by any autonomous Hamiltonian system.

4.4 Explicit KTFs of Known Integrable Systems

The first natural question to address concerns the existence of a KT field, on
any mechanical manifold (M, gJ ), to be associated with total energy conser-
vation. Such a KT field actually exists and coincides with the metric tensor
gJ . In fact, by definition it satisfies5 (4.24).

One of the simplest case of integrable system is represented by a decoupled
system described by a generic Hamiltonian

H =
N∑

i=1

[
p2i
2

+ Vi(qi)
]

=
N∑

i=1

Hi(qi, pi) (4.30)

for which all the energies Ei of the subsystemsHi, i = 1, . . . , N , are conserved.
On the associated mechanical manifold, N KT fields of rank 2 exist. They are
given by

K
(i)
jk = δjk{Vi(qi)[E − V (q)] + δij [E − V (q)]2} . (4.31)

5 A property of the canonical Levi-Civita connection, on which the covariant deriva-
tive is based, is just the vanishing of ∇g.



136 Chapter 4 Integrability

In fact, these tensor fields satisfy (4.24), which explicitly reads

∇kK
(i)
lm +∇lK

(i)
mk +∇mK

(i)
kl

=
∂K

(i)
lm

∂qk
+
∂K

(i)
mk

∂ql
+
∂K

(i)
kl

∂qm
− 2Γ j

klK
(i)
jm − 2Γ j

kmK
(i)
jl − 2Γ j

lmK
(i)
jk = 0 ,

(4.32)

k, l,m = 1, . . . , N .

The conserved quantities J (i)(q, p) are then obtained by saturation of the
tensors K(i) with the velocities dq/ds:

J (i)(q, p) =
N∑

jk=1

K
(i)
jk

dqj

ds

dqk

ds
= Vi(qi)

1
E − V (q)

N∑
k=1

p2k
2

+
p2i
2

= Ei . (4.33)

This equation suggests that to require that the constants of motion be homo-
geneous polynomials of the momenta is not so restrictive as might appear. In
fact, through the constant quantity

1
E − V (q)

N∑
k=1

p2k
2

= 1 , (4.34)

homogeneous of second degree in the momenta, any even-degree polynomial
of the momenta can be made homogeneous. The possibility of inferring the
existence of a conservation law from the existence of a KTF on (M, gJ ) is
thus extended to the constants of motion given by a sum of homogeneous
polynomials whose degrees differ by an even integer,

J(p, q) = P (r)(p) + P (r−2)(p) + · · ·

+P (r−2n)(p) ∈ C∞(q)[p1, . . . , pN ] (4.35)

homdeg P s = s , s = r, r − 2, . . . , r − 2
[r
2

]
,

so that it can be recast in the homogeneous form

J(p, q) = P (r)(p) + P (r−2)(p)
1

E − V (q)

N∑
k=1

p2k
2

+ · · · (4.36)

+P (r−2n)(p)

[
1

E − V (q)

N∑
k=1

p2k
2

]n

.

4.4.1 Nontrivial Integrable Models

It is worth noting that the geodesic flow on an ellipsoid immersed in Euclidean
three-dimensional space provides one of the simplest nontrivial examples of
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integrability. Besides the constant of motion obtained through the metric
tensor (which corresponds to the energy for physical geodesic flows), the
second constant of the motion is given by [139]

J2 = c

3∑
i=1

(ai)−2

(
dxi

ds

)2

,

where c is a constant, ai are half the major semiaxes, and xi are the coordi-
nates in the immersion space. According to what has been discussed above,
this extra constant of motion has to correspond to a rank-2 KT.6

Nontrivial examples of nonlinear integrable Hamiltonian systems are pro-
vided by the following Hamiltonians:

H =
N∑

i=1

{
p2i
2

+
a

b
[e−b(qi+1−qi) − 1]

}
, (4.37)

known as the Toda model, which is integrable for any given pair of the con-
stants a and b; and

H =
N∑

i=1

p2i
2

+
1
2

(
N∑

i=1

q2i

)2

−
N∑

i=1

λiq
2
i , (4.38)

which is completely integrable for any λ1, . . . , λN [140]. Recursive formulas are
available for all the constants of motion of the Toda model at any N [141];
and also for the second Hamiltonian, the exact form of first integrals is known
[140]. In both cases, the first integrals are polynomials of given parity of the
momenta so that on the basis of what we have said above, each invariant
J (i), i = 1, . . . , N can be derived from a KTF on (M, gJ ). Thus, integrability
of these systems admits a Riemannian-geometric interpretation.

Let us mention here another remarkable example of integrability that
seems to demand a generalization of this Riemannian approach. It concerns
a one-parameter family of Hamiltonian deformations of the Kepler problem
leading to nonsymplectomorphic systems. Such deformations represent the
motion of a charged particle in the field of a magnetic monopole with a
special choice of the potential [142]. The components of a Runge–Lenz vector
Poisson commute with the Hamiltonian and are quadratically dependent on
the velocity. In order to associate with a geodesic flow the trajectories of a
system subject to velocity-dependent forces, as is the case of the deformed
Kepler models, the use of Finsler manifolds is necessary [118, 122], and thus

6 Notice that the set of variables xi is here redundant because of the algebraic
equation defining the ellipsoid. In this case one has to consider the metric on the
surface induced from R

3, which, in contrast to the Jacobi metric on the mechanical
manifolds, is not conformally flat.
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a rephrasing of integrability through KT fields on Finsler manifolds could be
necessary. To the best of our knowledge this is still an open problem.7

4.4.2 The Special Case of the N = 2 Toda Model

Let us consider the special case of a two-degrees-of-freedom Toda model des-
cribed by the integrable Hamiltonian8

H =
1
2
(p2x + p2y) +

1
24

[
e2y+2

√
3x + e2y−2

√
3x + e−4y

]
− 1

8
. (4.39)

From what is already reported in the literature [141], we know that a third-
order polynomial of the momenta has to be found eventually. Therefore,
we look for a rank-3 KT satisfying

∇iKjkl +∇jKikl +∇kKijl +∇lKijk = 0 , i, j, k, l = 1, 2 , (4.40)

where, associating the label 1 to x and the label 2 to y,

{(i, j, k, l)} = {(1, 1, 1, 1); (1, 1, 1, 2); (1, 1, 2, 2); (1, 2, 2, 2); (2, 2, 2, 2)} .

The computation of the Christoffel coefficients according to (3.17) yields

Γ 1
11 =

−∂xV

2[E − V (x, y)]
, Γ 1

22 =
∂xV

2[E − V (x, y)]
, Γ 2

11 =
∂yV

2[E − V (x, y)]
,

Γ 2
22 =

−∂yV

2[E − V (x, y)]
, Γ 1

12 =
−∂yV

2[E − V (x, y)]
, Γ 2

12 =
−∂xV

2[E − V (x, y)]
.

(4.41)

From (4.40) we get the system

∇1K111 = 0 ,

∇1K122 +∇2K112 = 0 ,

∇2K111 + 3∇1K211 = 0 ,

∇1K222 + 3∇2K122 = 0 ,

∇2K222 = 0 , (4.42)

7 The Killing–vector equations in Finsler spaces can be found in [118]. More recently
these equations are studied in [143], where it is argumented that Killing vectors
in Finsler spaces can yield invariants of higher order than linear in the momenta.

8 This is derived from an N = 3 Hamiltonian (4.37) by means of two canonical
transformations of variables removing translational invariance; see, for example,
[49]; the third-order expansion of this new Hamiltonian yields the Hénon–Heiles
model of (4.46) with C = D = 1.
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whence

∂xK111 − 3Γ 1
11K111 − 3Γ 2

11K211 = 0 ,

∂xK122 + ∂yK211 − Γ 1
11K122 − Γ 2

11K222 − 4Γ 1
12K112

−4Γ 2
11K212 − Γ 1

22K111 − Γ 2
22K211 = 0 ,

∂yK111 + 3∂xK211 − 6Γ 1
12K111 − 6Γ 2

12K112

−6Γ 1
11K211 − 6Γ 2

11K212 = 0 ,

∂xK222 + 3∂yK122 − 6Γ 1
21K122 − 6Γ 2

21K222

−6Γ 1
22K112 − 6Γ 2

22K212 = 0 ,

∂yK222 − 3Γ 1
22K122 − 3Γ 2

22K222 = 0 , (4.43)

with the Christoffel coefficients given by (4.41), where one has to replace
V (x, y) with the potential part of the Hamiltonian (4.39) and ∂xV , ∂yV with
its derivatives. The general method of solving a linear inhomogeneous sys-
tem of first-order partial differential equations in more than one dependent
variables can be found in [144]. However, finding the explicit solution to the
system of equations (4.43) is much facilitated because we already know a priori
that this system is compatible and thus admits a solution, and we also have
strong hints about the solution itself because the general form of the integrals
of the Toda model is known [141]. The KTF, besides the metric tensor, for
the model (4.39) is eventually found to have the components [145,146]

K111 = 2(E − V )2[3∂yV + 4(E − V )] ,

= 8(E − V )3 +
1
2
(E − V )2[e2y−2

√
3x + e2y+2

√
3x − 2e−4y] ,

K122 = 2(E − V )2[∂yV − 4(E − V )] ,

= −24(E − V )3 +
1
2
(E − V )2[e2y−2

√
3x + e2y+2

√
3x − 2e−4y] ,

K112 = −2(E − V )2∂xV =
√

3
6

(E − V )2(e2y+2
√

3x − e2y−2
√

3x) ,

K222 = −6(E − V )2∂xV =
√

3
2

(E − V )2(e2y+2
√

3x − e2y−2
√

3x) , (4.44)

as can be easily checked by substituting them into (4.43). Hence, the second
constant of motion, besides energy, is given by

J(x, y, px, py)

= Kijk
dqi

ds

dqj

ds

dqk

ds
= Kijk

dqi

dt

dqj

dt

dqk

dt

1
2
√

2[E − V (x, y)]3

=
1

2
√

2[E − V (x, y)]3
(K111p

3
x + 3K122pxp

2
y + 3K112p

2
xpy +K222p

3
y)

= 8px(p2x−3p2y)+(px+
√

3py)e2y−2
√

3x−2pxe
−4y+(px−

√
3py)e2y+2

√
3x,

(4.45)
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which coincides with the expression already reported in the literature [49] for
the Hamiltonian (4.39).

4.4.3 The Generalized Hénon–Heiles Model

Let us now consider the two-degrees-of-freedom system described by the
Hamiltonian

H =
1
2
(p2x + p2y) +

1
2
(x2 + y2) +Dx2y − 1

3
Cy3 . (4.46)

This model, originally derived to describe the motion of a test star in an
axisymmetric galactic mean gravitational field, provided some of the first
numerical evidence of the chaotic transition in nonlinear Hamiltonian systems
[48]. Hénon and Heiles considered the case C = D = 1. The existence of a
chaotic layer in the phase space of this model means lack of global integra-
bility. However, by means of the Painlevé method, it has been shown [147]
that for special choices of the parameters C and D this system is globally
integrable. Let us now tackle integrability of this model from the viewpoint
of the existence of KT fields on the manifold (M, gJ ). We first begin with the
equations for a Killing vector field. By means of (4.20) we look for possible
coefficients C1(x, y), C2(x, y), thus obtaining

C1 = C1(y), C2 = C2(x) ,

dC1(y)
dy

+
dC2(x)
dx

= 0 , (4.47)

x(1 + 2Dy)C1(y) + (y +Dx2 − Cy2)C2(x) = 0 .

From the second equation of (4.47) it follows that

dC1(y)
dy

= −dC2(x)
dx

= cost. , (4.48)

whence, denoting the constant by α, the possible expressions for C1(y) and
C2(x) are only of the form C1(y) = −αy + β, C2(x) = αx + γ, which, after
substitution into the last equation of (4.47), implies

(x+ 2Dxy)(−αy + β) + (y +Dx2 − Cy2)(αx+ γ) = 0, (4.49)

which has a non-trivial solution only for C = D = 0. On the other hand, for
these values of the parameters the potential simplifies to V (x, y) = 1

2x
2 + 1

2y
2,

whence the existence of the Killing vector field X of components X1 = y and
X2 = −x, which is due to the invariance under rotations in the xy plane.

Let us now consider the case of a rank-2 KTF. Equations (4.40) become

∇iKjk +∇jKik +∇kKij = 0 , i, j, k = 1, 2 , (4.50)
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where, associating again the label 1 to x and the label 2 to y, {(i, j, k)} =
{(1, 1, 1); (1, 1, 2); (1, 2, 2); (2, 2, 2)}. The Christoffel coefficients are still given
by (4.41), where we have to use the potential part of Hamiltonian (4.46)
so that ∂xV (x, y) = x + 2Dxy and ∂yV (x, y) = y + Dx2 − Cy2. The KTF
equations are then

∇1K11 = 0 ,
2∇1K12 +∇2K11 = 0 ,
∇1K22 + 2∇2K12 = 0 ,

∇2K22 = 0 , (4.51)

whence

∂xK11 − 2Γ 1
11K11 − 2Γ 2

11K21 = 0 ,
2∂xK12 + ∂yK11 − 4Γ 1

12K11 − (4Γ 2
12 + 2Γ 1

11)K12 − 2Γ 2
11K22 = 0 ,

∂xK22 + 2∂yK12 − 2Γ 1
22K11 − (4Γ 1

12 + 2Γ 2
22)K12 − 4Γ 2

12K22 = 0 ,
∂yK22 − 2Γ 1

22K12 − 2Γ 2
22K22 = 0 .

(4.52)

Since the Hamiltonian (4.46) is not integrable for a generic choice of the
parameters C and D, we can reasonably expect that the generic property
of the above overdetermined system of equations is incompatibility, i.e., only
the trivial solution Kij = 0 exists for the overwhelming majority of the pairs
(C,D). However, the existence of special choices of C and D for which the
Hamiltonian is integrable suggests that this overdetermined system can be
compatible in special cases. For example, when D = 0 the variables x and y
in (4.46) are decoupled, and thus two KT fields of rank 2 exist according to
(4.31).

A non trivial solution for the system (4.52) must exist at least for the
pair (C = −6, D = 1). In fact, in this case the modified Hénon–Heiles model
is known to be integrable [147]. An explicit solution for the system (4.52) is
eventually found to be given by [145,146]

K11 = (3− 4y)(E − V (x, y))2 + x2(x2 + 4y2 + 4y + 3)(E − V (x, y)) ,
K12 = 2x(E − V (x, y)) ,

K22 =
1
2
(x2 + 4y2 + 4y + 3)(E − V (x, y)) . (4.53)

The associated constant of motion is therefore

J(x, y, px, py) =
1

(E − V (x, y))2
(K11p

2
x + 2K12pxpy +K22p

2
y)

= x4 + 4x2y2 − p2xy + 4pxpyx+ 4x2y + 3p2x + 3x2. (4.54)
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This expression is identical to that reported in [147], worked out for the same
values of C and D with a completely different method based on the Painlevé
property.9

4.5 Open Problems

Let us now summarize the meaning of the results presented above and point
out some open problems.

• Besides qualitative and quantitative descriptions of chaos, within the
framework of Riemannian geometrization of Newtonian mechanics, also
integrability has its own place. The idea of associating KTFs with
integrability has been essentially developed in the context of classical
general relativity; see, for example, [148–150] and references quoted
therein. That Killing tensors generate “hidden” symmetries associated
with constants of the motion in classical Newtonian mechanics has been
considered in [135, 136], and, more recently, in [151]. In particular, the
integrability conditions for quadratic invariants were obtained in [151].

• The reduction of the problem of integrability of a given Hamiltonian
system to the existence of suitable KTFs on (ME , gJ

) offers several points
of interest; in particular, we have seen that the system of equations in the
unknown components of a KTF of a preassigned rank is overdetermined.
Thus at a qualitative level, integrability seems a rather exceptional
property, and the larger N , the “more exceptional” it seems to be, because
of the rapidly growing mismatch between the number of unknowns and
the number of equations. In principle, the existence of compatibility con-
ditions for systems of linear first-order partial differential equations could
allow one to decide about integrability prior to any explicit attempt at
solving the equations for the components of a KTF. Even better, there
are geometric constraints to the existence of KTFs. Early results in this
sense are reported in [152], so that it seems possible, at least in some
cases, to devise purely geometric criteria of nonintegrability. For example,
hyperbolicity of compact manifolds excludes [152] the existence of KTFs,
and this is consistent with the property of geodesic flows on compact
hyperbolic manifolds of being strongly chaotic (Anosov flows).

• In general, we lack a criterion to restrict the search for KTFs to a small
interval of ranks, and this constitutes a practical difficulty. Nevertheless,
since the involution of two invariants translates into the vanishing of special
brackets—the Schouten brackets [150]—between the corresponding Killing
tensors, a shortcut to proving integrability, for a large class of systems
satisfying the conditions of the Poincaré–Fermi theorem (see Chapter 2),
might be to find only one KTF of vanishing Schouten brackets with

9 This result, worked out in Chapter 2 of [145], was independently found also in [143]
following a different computational strategy.
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the metric tensor. In fact, for quasi-integrable systems with N ≥ 3,
the Poincaré–Fermi theorem states that generically only energy is con-
served. Thus if another constant of motion is known to exist (apart from
Noetherian ones such as angular momentum), then the system must be
integrable and in fact there must be N constants of motion.

• Unlike Killing vectors, which are associated with Noetherian symmetries
and conservation laws, Killing tensors no longer have a simple geometric
interpretation [149, 153]. Therefore the associated symmetries are non-
Noetherian and hidden.

The Riemannian-geometric approach to integrability deserves further attent-
ion and investigation. In fact, among the other reasons of interest, by consider-
ing, for example, the standard Hénon–Heiles model (C = D = 1), we might
wonder whether the regular regions of phase space correspond to a local satis-
faction of the compatibility conditions of the system (4.52), which would lead
to a better understanding of the relationship between geometry and stability
of Newtonian mechanics. Moreover, we could imagine that by suitably defining
weak and strong violations of these compatibility conditions, we could better
understand the geometric origin of weak and strong chaos in Hamiltonian
dynamics (see Chapter 2), and perhaps this might even suggest a starting
point to developing a “geometric perturbation theory” complementary to the
more standard canonical perturbation theory.



Chapter 5

Geometry and Chaos

The purpose of the present chapter is to describe in some detail how it is
possibile, using the Jacobi–Levi-Civita equation for geodesic spread as the
main tool, to reach a twofold objective: first, to obtain a deeper understand-
ing of the origin of chaos in Hamiltonian systems, and second, to obtain
quantitative information on the “strength” of chaos in these systems.

5.1 Geometric Approach to Chaotic Dynamics

A physical theory should provide a conceptual framework for modeling and
understanding—at least at a qualitative level—the observed features of the
system that is the object of the theory, and should also have a predictive
content, i.e., should provide quantitative tools able to compute, at least
approximately, the outcomes of the experiments (whether laboratory experi-
ments or numerical experiments performed on a computer). According to
these requirements, a satisfactory theory of deterministic chaos is certainly
still lacking. In fact, in both aspects the current theoretical approaches to
chaos have some problems, especially if we consider the case of conservative
flows, i.e., of the dynamics of conservative systems of ordinary differential
equations.

To explain the origin of chaos in conservative dynamics one usually invokes
the existence of homoclinic intersections of perturbed separatrices. In order
to quantify the degree of instability of a trajectory or of a system we must
instead resort to the notion of Lyapunov exponents. The Lyapunov exponents
are defined as asymptotic quantities, so that their relation to local proper-
ties of phase space is far from evident; nonetheless they provide the natural
measure of the degree of chaos, measuring the typical time scales over which
a trajectory loses the memory of its initial conditions. A rigorous definition
of the existence of chaotic regions in the phase space of a system, based on
the detection of homoclinic intersections, does not provide any quantitative
tool to measure chaos; on the other hand, Lyapunov exponents allow a very

145
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precise measure of chaos but give no information at all on the origin of such
chaotic behavior. From a conceptual point of view this situation is far from
being satisfactory, not to speak of the fact that the practical application of the
methods based on homoclinic intersections become extremely difficult when
the number of degrees of freedom is greater than two [54, 93]. From the pre-
dictive point of view the situation is even worse, for no analytic method at all
exists to compute Lyapunov exponents, at least in the case of flows of physical
relevance. It is worth noticing that in [154], it has been shown that one could
build, in principle, a field-theoretic framework to compute Lyapunov expo-
nents, but the practical application of such methods is still unclear. Needless
to say, all the tools belonging to canonical perturbation theory, that have
undergone remarkable developments in the last years [155], can hardly be
used to compute quantities such as Lyapunov exponents since in this frame-
work one can describe only the regular, i.e., nonchaotic, features of phase
space.

The geometric approach to dynamical instability allows a unification of
the method to measure chaos with the explanation of its origin. In fact, the
evolution of the field J given by the Jacobi equation (3.73) contains all the
information needed to compute Lyapunov exponents, and makes us also recog-
nize in the curvature properties of the ambient manifold the origin of chaotic
dynamics.

Obviously, this approach encounters also some practical difficulties. For
instance, the only case in which it is possible to rigorously prove that some
definite curvature properties imply chaos in the geodesic flow is the case of
compact manifolds whose curvature is everywhere negative. In this case every
point of the manifold is hyperbolic: In a sense, this is the opposite limit to
the integrable case. Though abstract and unphysical, such systems can help
intuition. In a geodesic flow on a compact negatively curved manifold, the
negative curvature forces nearby geodesics to locally separate exponentially,
while the compactness ensures that such a separation does not reduce to a
trivial “explosion” of the system and obliges the geodesics to fold. The joint
action of stretching and folding of sets of initial conditions in phase space is
the essential ingredient of deterministic chaos.

Krylov tried to apply this framework to explain the origin of mixing in
physical dynamical systems. Unfortunately, for many systems in which chaos
is detected, the curvatures are found to be mainly positive, and there are
examples, for instance the Hénon–Heiles system, see (5.6), geometrized with
the Jacobi metric and the Fermi–Pasta–Ulam model, see (5.49), geometrized
with the Eisenhart metric, where curvatures are always positive even in the
presence of fully developed chaos. Hence even positive curvature must be able
to produce chaos.

Only recently has an example been found of a compact surface with posi-
tive curvature where the presence of chaotic regions coexisting with regular
ones can be rigorously proved [156], and this provides mathematical support
for the available numerical evidence that negative curvature is not necessary
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at all to have chaos in a geodesic flow [86,129,131]. What then is the crucial
feature of the curvature that is required to produce chaos? There is not yet a
definite answer—at least on rigorous grounds—to this question. Nevertheless,
it is sure that if positive, curvature must be nonconstant in order to originate
instability, and we shall see that the curvature fluctuations along the geodesics
can be responsible for the appearance of an instability through a parametric-
instability mechanism.

The advantages of the geometric approach to chaos are not only concep-
tual: also on predictive grounds this framework proves very useful. For starting
from the Jacobi equation, it is possible to obtain an effective stability equation
that allows one to obtain an analytic estimate of the largest Lyapunov expo-
nent in the thermodynamic limit [86,157]. Such an estimate turns out to be in
very good agreement with the results of numerical simulations for a number
of systems (see Section 5.4). In order to understand the derivation of such
an effective stability equation, let us investigate in greater detail the relation
between stability and curvature that was introduced in the last chapter.

5.2 Geometric Origin of Hamiltonian Chaos

Let us consider an N -dimensional Riemannian (or pseudo-Riemannian) man-
ifold (M, g) and a local coordinate frame with coordinates (q1, . . . , qN ).

We already observed that the evolution of the Jacobi field J , that contains
all the information on the stability of the geodesic flow, is completely deter-
mined by the curvature tensor R through the Jacobi equation (3.73). Unfortu-
nately the number of independent components of the tensor R is O(N4)—even
if this number can be considerably reduced by symmetry considerations—so
that (3.73) becomes rather untractable already at fairly small N values.

Nevertheless, there is a particular case in which the Jacobi equation has a
remarkably simple form: the case of isotropic manifolds, where (3.73) becomes

∇2J i

ds2
+K J i = 0 , (5.1)

where K is the constant sectional curvature of the manifold (see Appendix
B). Choosing a geodesic frame, i.e., an orthonormal frame parallel transported
along the geodesic, covariant derivatives become ordinary derivatives, i.e.,
∇/ds ≡ d/ds, so that the solution of (5.1), with initial conditions J(0) = 0
and dJ(0)/ds = w(0), is

J(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w(s)√
K

sin
(√
K s

)
(K > 0) ;

sw(s) (K = 0) ;

w(s)√−K
sinh

(√
−K s

)
(K < 0) .

(5.2)
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The geodesic flow is unstable only if K < 0, and in this case the instability
exponent is just

√
−K.

As long as the curvatures are negative, the geodesic flow is unstable even if
the manifold is no longer isotropic, and by means of the so-called comparison
theorems (mainly Rauch’s theorem; see Appendix B) it is possible to prove
that the instability exponent is greater than or equal to (−maxM (K))1/2 [3].
However, no exact results of general validity have yet been found for the
dynamics of geodesic flows on manifolds whose curvature is neither constant
nor everywhere negative.

Equation (5.1) is valid only if K is constant. Nevertheless, in the case in
which dimM = 2 (surfaces), the Jacobi equation—again written in a geodesic
reference frame for the sake of simplicity—takes a form very close to that for
isotropic manifolds,

d2J

ds2
+K(s)J = 0 , (5.3)

where

K(s) =
1
2
R(s) (5.4)

and, in contrast to (5.1), it is no longer a constant. We let R(s) denote the
scalar curvature of the manifold at the point P = γ(s) (see Appendix B). If
the geodesics are unstable, (5.3) has exponentially growing solutions. As far
as we know [158], the solutions of (5.3) can exhibit an exponentially growing
envelope in two cases:

(i) the curvature K(s) takes negative values;
(ii) the curvature K(s), though mainly or even exclusively positive, fluctuates

in such a way that it triggers a sort of parametric instability mechanism.

In the first case, the mechanism that is at the origin of the instability of
the geodesics is the one usually considered in ergodic theory [3]. But in the
second case a new mechanism of instability that does not require the presence
of negatively curved regions on the manifold shows up, that is, the curvature-
variations along any given geodesic make it unstable.

Let us now turn to physics, i.e., to the case of a mechanical manifold.
In the case of the Jacobi metric with N = 2 the scalar curvature written in
standard (Lagrangian) coordinates reads as

R =
(∇V )2

(E − V )3
+

�V
(E − V )2

, (5.5)

where ∇ and � stand respectively for the Euclidean gradient and Laplacian
operators. Hence we can have R < 0 only if �V < 0, i.e., for stable
physical potentials, when the potential has inflection points. In these cases
Krylov’s idea can work—even if in the high-dimensional case this becomes
very complicated—and we may have dynamical chaos induced by negative
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curvatures of the manifold. Indeed, Krylov was mainly concerned with weakly
nonideal gases, or in general dilute systems, where for typical interatomic
interactions �V < 0 so that the curvatures can be negative (see Krylov’s
PhD thesis in [2]).

An example in which, though chaos is present, curvatures are positive, is
provided by the Hénon–Heiles model. It is described by the Hamiltonian [48]

H =
1
2
(
p2x + p2y

)
+

1
2
(
x2 + y2

)
+ x2y − 1

3
y3 . (5.6)

Introduced in an astrophysical context, as mentioned in Section 4.4.3, it can
also be regarded as a model of a triatomic molecule (after one has used
translational symmetry to eliminate the center-of-mass coordinate) [159]. The
Hénon–Heiles model is a cornerstone in the study of Hamiltonian chaos: it was
the first physical model for which chaos was found and where a transition from
a mainly regular to a mainly chaotic phase space was identified under a varia-
tion of the energy. In this model, (5.3) is exact, but R > 0 everywhere. Hence
chaos in this system cannot come from any negative curvature in the associ-
ated mechanical manifold (ME , gJ ). As we shall see later on (see, e.g., Section
5.4), the absence of negative curvatures in the associated mechanical mani-
folds is not a peculiarity of this model, for it is shared with many systems
of interest for field theory and condensed-matter physics that have chaotic
trajectories. In particular, all the systems that in the low-energy limit behave
as a collection of harmonic oscillators do belong to this class.

In these cases the second of the previously discussed instability mecha-
nisms, the one mentioned in item (ii), comes in: curvature fluctuations may
induce chaos through parametric instability. The latter is a well-known feature
of differential equations whose parameters are time-dependent. The classical
example (see, e.g., Arnold’s book [133]) is the mathematical swing, i.e.,
a pendulum, initially at rest, whose length is modulated in time. If the modu-
lation contains frequencies resonating with the free pendulum’s fundamental
frequency, the stable equilibrium position becomes unstable and the swing
starts to oscillate with growing amplitude. In (5.3),

√
K(s) and s play the

roles of a frequency and a time, respectively, so that this equation can be
thought of as the equation of motion of a harmonic oscillator with time-
dependent frequency, often referred to as a (generalized) Hill’s equation [160].
By expanding K(s) in a Fourier series we get

K(s) = K0 +
∞∑

n=1

[an cos(nωs) + bn sin(nωs)] , (5.7)

where ω = 2π/L and L is the length of the geodesic. The presence of reso-
nances between the average frequency

√
K0 and the frequency in some term in

the expansion (5.7) eventually forces an exponential growth of the solutions of
the equation. In the simplest case, in which only one coefficient of the series
(5.7), say a1, is nonvanishing, the equation is called the Mathieu equation,
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and it is possible to compute analytically both the bounds of the instabi-
lity regions in the parameter space and the actual value of the characteristic
exponent [160]. In contrast to the Mathieu case, in the general case, where a
large number of coefficients of the Fourier decomposition of K(s) are nonzero,
it is much more difficult to do something similar. Hence there is not yet
any rigorous proof of the fact that this kind of parametric instability is the
mechanism that produces chaos in Hamiltonian dynamical systems—in the
two-degrees-of-freedom case or in the general case—and this still remains
a conjecture. Nevertheless, such a conjecture is strongly supported by at
least two facts. First of all, in recent papers [161, 162] it has been shown
that the solutions of the Jacobi equation (5.3) for the Hénon–Heiles model
and for a model of quartic coupled oscillators show an oscillatory behavior
with an exponentially growing envelope—which is precisely what one expects
from parametric instability—in the chaotic regions, while the oscillations are
bounded in the regular regions. Second, also in high-dimensional flows the
components of the Jacobi field J oscillate with an exponentially growing
amplitude as long as the system is non-integrable, whereas they exhibit only
bounded oscillations for integrable systems. Moreover, in the high-dimensional
case (i.e., for systems with a large number of degrees of freedom) it is possible
to establish a quantitative link between the largest Lyapunov exponent and
the curvature fluctuations. In fact, as we shall see in the following, in the high-
dimensional case it is possibile to write down, under suitable approximations,
an effective stability equation that looks very similar to (5.3), but where the
squared frequency K(s) is a stochastic process, and, through this equation,
it is possible to give an analytical estimate of the largest Lyapunov expo-
nent. Since from now on we are going to consider only the largest Lyapunov
exponent, the latter will be referred to as just the Lyapunov exponent.

5.3 Effective Stability Equation in the High-Dimensional
Case

Let us now study the problem of the stability of the geodesics in manifolds
whose dimension N is large: according to the correspondence between geom-
etry and dynamics introduced in Section 3, we are considering a system with
a large number N of degrees of freedom.

Our starting point is the Jacobi equation (3.73). Our aim is to derive from
it an effective stability equation that no longer depends on the dynamics, i.e.,
on the evolution of the particular geodesic that we are following, but only on
the average curvature properties of the underlying manifold. To do that, we
need some assumptions and approximations that are not valid in general but
that are very reasonable in the case of large-N mechanical manifolds.1 For

1 As we shall see in the following, taken alone these assumptions lack something
when the topology of the mechanical manifolds is non-trivial.
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the sake of clarity, we first summarize the assumptions and approximations
leading to our final result, and later on we discuss them more thoroughly.
Further details can be found in the papers where this approach was originally
put forward [86,157].

0. We assume that the evolution of a generic geodesic is chaotic. This
assumption is reasonable in the case of a manifold whose geodesics are
the trajectories of a generic Hamiltonian system with a large number of
degrees of freedom N , for in this case the overwhelming majority of the
trajectories will be chaotic (see Chapter 2, Section 2.2).

1. We assume that the manifold is quasi-isotropic. Loosely speaking, this
assumption means that the manifold can be regarded somehow as a locally
deformed constant-curvature manifold. However, we will give this assump-
tion a precise formulation later, in (5.16). This approximation allows us to
get rid of the dependence of the Jacobi equation (3.73) on the full Riemann
curvature tensor by replacing it with an effective sectional curvature K(s)
along the geodesic; moreover, the Jacobi equation becomes diagonal.

2. To get rid of the dependence of the effective sectional curvature K(s) on
the dynamics, i.e., on the evolution of the geodesic, we model K(s) with a
stochastic process. This assumption is motivated by assumption 0 above.
Moreover, as long as we consider a high-dimensional mechanical manifold
associated with a Hamiltonian flow with N degrees of freedom and we
are eventually interested in taking the thermodynamic limit N →∞, the
sectional curvature is formed by adding up many independent terms, so
that invoking a central-limit-theorem-like argument, K(s) is expected to
behave, in first approximation, like a Gaussian stochastic process.

3. We assume that the statistics of the effective sectional curvature K are
the same as those of the Ricci curvature KR, which is a suitably averaged
sectional curvature (see Appendix B, Section B.3.1). Such an assumption
is consistent with assumption 1 above, for in a constant-curvature manifold
the sectional curvature equals the Ricci curvature times a constant, and
this allows us to compute the mean and the variance of the stochastic
process introduced in assumption 2 in terms of the average and the variance
of KR along a generic geodesic.

4. The last step, which completely decouples the problem of the stability
of the geodesics from the evolution of the geodesics themselves, consists
in replacing the (proper) time averages of the Ricci curvature with static
averages computed with a suitable probability measure μ. If the manifold
is a mechanical manifold, the natural choice for μ is the microcanonical
measure. Again this assumption is reasonable if Assumption 0 is valid.

After these steps, we end up with an effective stability equation that no longer
depends on the evolution of the geodesics, but only on the average and fluc-
tuations of the Ricci curvature of the manifold.
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Let us now discuss more thoroughly the above-sketched procedure. For
that, it is convenient to introduce the Weyl projective tensor W , whose
components are given by [163]:

W i
jkl = Ri

jkl −
1

N − 1
(Rjlδ

i
k −Rjkδ

i
l ) , (5.8)

where Rij = Rm
imj are the components of the Ricci curvature tensor (see

Appendix B). Weyl’s projective tensor measures the deviation from isotropy
of a given manifold, since it vanishes identically for an isotropic manifold.
Then we can rewrite the Jacobi equation (3.73) in the following form [86]:

∇2J i

ds2
+

1
N − 1

Rjk
dqj

ds

dqk

ds
J i − 1

N − 1
Rjk

dqj

ds
Jk dq

i

ds
+W i

jkl

dqj

ds
Jk dq

l

ds
= 0 .

(5.9)
For an isotropic manifold, the third term in (5.9) vanishes because Rjk =
K gjk (see Appendix A), so that Rjkq̇

jJk = K 〈γ̇, J〉, and 〈γ̇, J〉 = 0 (see
3.74). Thus, for an isotropic manifold, (5.9) collapses to (5.1). In fact, the
second term is nothing but K J i. When the manifold is not isotropic, we
see that (5.9) retains the structure of (5.1) up to its second term, since the
coefficient of J i is still a scalar. This coefficient has now the meaning of a
sectional curvature averaged, at any given point, over the N − 1 independent
directions orthogonal to γ̇, the velocity vector of the geodesic. However, such
a mean sectional curvature is no longer constant along the geodesic γ(s),
and is just the Ricci curvature KR divided by N − 1 (see Appendix B). The
fourth term of (5.9) accounts for the local degree of anisotropy of the ambient
manifold.

Let us now rewrite (5.9) as

∇2J i

ds2
+ kR(s)J i − rij(s)Jj + wi

j(s)J
j = 0 , (5.10)

where, to ease the notation, we have put

kR(s) =
KR

N − 1
=

1
N − 1

Rjk
dqj

ds

dqk

ds
; (5.11)

rij(s) =
1

N − 1
Rjk

dqk

ds

dqi

ds
; (5.12)

wi
j(s) = W i

kjl

dqk

ds

dql

ds
. (5.13)

Now let us formulate our assumption 1, namely, that the manifold is quasi-
isotropic, in a more precise way. To do that, we recall that (see Appendix B,
Section (B.3.2)) if and only if the manifold is isotropic, i.e., has constant
curvature, the Riemann curvature tensor and the Ricci tensor can be written
in the remarkably simple forms

Rijkl = K (gikgjl − gilgjk) (5.14)
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and
Rij = K gij , (5.15)

where K is a scalar constant, the sectional curvature of the manifold. The
precise formulation of assumption 1 is now that along a generic geodesic the
Riemann curvature tensor and the Ricci tensor retain the same functional
form as in the case (5.14), i.e., that

Rijkl ≈ K(s) (gikgjl − gilgjk) (5.16)

and
Rij ≈ K(s) gij , (5.17)

where K(s), which is no longer a constant, is an effective sectional curvature.
In the general case we are not able to give a rigorous explicit expression
for K(s), because the functional dependence postulated in (5.17) holds only
for constant-curvature manifolds. However, the effective curvature K(s) is
expected to be essentially the sectional curvature K(γ̇, J) (see Appendix B,
Section (B.3.1)) measured along the geodesic in the directions of the velocity
vector γ̇ = dq/ds and of the Jacobi vector J .

Combining (5.12) and (5.17), and recalling that the vector J is orthogonal
to the velocity of the geodesic, i.e., gij dqi

ds J
j = 0, we find that the third term

in (5.10), −rijJj , vanishes as in the isotropic case. Now we combine (5.8) and
(5.16) to obtain

W i
jkl ≈ K(s)(δijgkl − δilgkj)−

1
N − 1

(Rjlδ
i
k −Rjkδ

i
l ) , (5.18)

so that (5.13) can be rewritten as

wi
j ≈ K(s)δij − kR(s)δij −K(s)

N − 2
N − 1

dqi

ds
gkj
dqk

ds
, (5.19)

where we have used the definition of kR given in (5.11) and the approximation
(5.17) for the Ricci tensor. Let us now insert (5.19) into (5.10): the last term
of (5.19) vanishes after having been multiplied by Jj and summed over j,
because J and dq/ds are orthogonal, and the term kR(s)J i is canceled by the
term −kR(s)J i coming from (5.19), so that (5.10) is finally rewritten as

∇2J i

ds2
+K(s)J i = 0 , (5.20)

and, with respect to a geodesic frame, it becomes

d2J i

ds2
+K(s)J i = 0 . (5.21)

Being a scalar quantity, the value of K(s) is independent of the coordinate
system. Equation (5.21) is now diagonal. However, in order to use it, we should
know the values of K(s) along the geodesic. Here, assumptions 2 and 3 come
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into play: we replace K(s) with a stochastic Gaussian process, and we assume
that its probability distribution is the same as that of the Ricci curvature,

P(K) ≈ P(KR) . (5.22)

Such an assumption is consistent with our assumption 1, because for an
isotropic manifold the sectional curvature is identical to the Ricci curvature
divided by N − 1, so that if the manifold is quasi-isotropic, it is natural to
assume that the probability distributions of the sectional curvature and of
the Ricci curvature are similar. Moreover, such an assumption is also the only
easy one, because we are able to compute, under some further assumptions,
the probability distribution of KR, but we do not know anything about K.

To be consistent with the definition of the sectional and the Ricci curva-
tures (see Appendix B, Section (B.3.1)), the following relations are assumed
to hold for the first two cumulants of (5.22):

〈K(s)〉s =
1

N − 1
〈KR(s)〉s ≡ 〈kR(s)〉s , (5.23)

〈[K(s)−K]2〉s =
1

N − 1
〈[KR(s)− 〈KR〉s]2〉s ≡ 〈δ2kR〉s , (5.24)

where 〈·〉s stands for a proper-time average along a geodesic γ(s). A priori, the
probability distributions (5.22) are unknown. will not be Gaussian, i.e., other
cumulants in addition to the first two will be nonvanishing. However, since
for a large-N system KR is obtained by summing a large number of randomly
varying independent terms, it is reasonable to invoke a central limit theorem
argument to assume that both P(K) and P(KR) are Gaussian distributions.

Our approximation for the effective sectional curvature K(s) is then the
stochastic process

K(s) ≈ 〈kR(s)〉s + 〈δ2kR〉1/2
s η(s) , (5.25)

where η(s) is a random Gaussian process with zero mean and unit variance.
Finally, in order to completely decouple the stability equation from the

dynamics, we use assumption 4 and we replace time averages with static
averages computed with a suitable measure μ. If the manifold is a mechanical
manifold, the geodesics are the natural motions of the systems, and a natural
choice for μ is then the microcanonical ensemble, so that (5.25) becomes

K(s) ≈ 〈kR(s)〉μ + 〈δ2kR〉1/2
μ η(s) . (5.26)

Our final effective (in)stability equation is then

d2ψ

ds2
+ 〈kR〉μ ψ + 〈δ2kR〉1/2

μ η(s)ψ = 0 , (5.27)

where ψ stands for any of the components of J , since all of them now obey
the same effective equation of motion.
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Equation (5.27) implies that if the manifold is a mechanical manifold, the
growth rate of ψ gives the dynamical instability exponent in our Riemannian
framework. Equation (5.27) is a scalar equation that, independently of the
knowledge of the dynamics, provides a measure of the degree of instability of
the dynamics itself through the s-dependence of ψ(s). The peculiar properties
of a given Hamiltonian system enter (5.27) only through the global geometric
properties 〈kR〉μ and 〈δ2kR〉μ of the ambient Riemannian manifold (whose geo-
desics are natural motions) and are sufficient, as long as our assumptions 1–4
hold, to determine the average degree of chaoticity of the dynamics. Moreover,
〈kR〉μ and 〈δ2kR〉μ are microcanonical averages, so that they are functions of
the energy E of the system, or of the energy per degree of freedom ε = E/N ,
which is the relevant parameter as N → ∞. Thus from (5.27) we can obtain
the energy dependence of the geometric instability exponent.

Within the validity of our assumptions 1–4, transforming the Jacobi equa-
tion (3.73) into (5.27), the original complexity of the Jacobi equation has been
considerably reduced: from a tensor equation we have obtained an effective
scalar equation formally representing the equation of motion of a stochastic
oscillator. In fact, (5.27), with a self-evident notation, is of the form

d2ψ

ds2
+ k(s)ψ = 0 , (5.28)

where k(s), the squared frequency, is a Gaussian stochastic process.
Moreover, such an equation admits a very suggestive geometric interpre-

tation: since it is a scalar equation, i.e., it is formally the Jacobi equation on a
2-dimensional manifold whose Gaussian curvature is given, along a geodesic,
by the random process k(s) and can be regarded as an “effective” low-
dimensional manifold approximating the “true” high-dimensional manifold
where the dynamics of the geodesic flow takes place. This is the real
geometrical content of our quasi-isotropy hypothesis. Hence the average
global curvature properties 〈kR〉μ and 〈δ2kR〉μ, in addition to being the ingre-
dients for a geometric computation of the instability exponent, convey also
information on the geometric structure of this effective manifold. Thus we
expect that it will be possible to gain some insight into the global properties
of the dynamics by simply studying the behavior of these average curvature
properties as the energy is varied.

5.3.1 A Geometric Formula for the Lyapunov Exponent

Let us now study the properties of the solutions of (5.28) in order to obtain an
analytic estimate for the Lyapunov exponent. The derivation of the stochastic
oscillator equation does not depend on a particular choice of the metric; within
the approximations discussed above, (5.28) holds regardless of the choice of
the metric. However, to make explicit the connection between the solutions of
(5.28) and the stability of a dynamical system, one has to choose a particular
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metric; in the case of Hamiltonian systems of the form (1.1), the choice of the
Eisenhart metric is the simplest one.

For this reason, we shall from now on restrict ourselves to standard
Hamiltonian systems with a diagonal kinetic energy matrix, i.e., aij = δij ,
choosing as ambient manifold for the geometrization of the dynamics the en-
larged configuration space-time equipped with the Eisenhart metric (3.28).
The case of the Jacobi metric is discussed in [86,164].

The fact that the Jacobi–Levi-Civita equation on (M × R
2, ge) coincides

with the standard tangent dynamics equation (2.108), or, equivalently, (3.94),
clarifies the relationship between the geometric description of the instability
of a geodesic flow and the conventional numerical description of dynamical
instability. We stress that from a formal viewpoint this is a peculiarity of the
Eisenhart metric; nevertheless, the physical content of this result is valid inde-
pendently of the metric used, as long as the identification between trajectories
and geodesics holds true. Indeed, in papers [130, 161, 162] it has been found
that using the Jacobi metric, (ME , gJ ), the instability growth rates of the
solutions of the Jacobi equation (3.84) and of those of the tangent dynamics
equation (3.94)—which in this case are two distinct equations—are the same
at any given energy.

Let us now come to the computation of the instability growth rates of the
solutions of the effective stochastic equation (5.28).

Along a physical geodesic, (dq0)2 = dt2 = ds2. Thus, we replace the arc
length s along the geodesic with the physical time t, and the stochastic oscil-
lator equation (5.28) can be written

d2ψ

dt2
+ k(t)ψ = 0 . (5.29)

The Ricci curvature along a geodesic depends only on the coordinates and not
on the velocities and for the Eisenhart metric reads

KR(q) = �V , (5.30)

so that the mean and variance of k(t) are given by

k0 ≡ 〈kR〉μ =
1
N
〈�V 〉μ , (5.31)

σ2
k ≡ 〈δ2kR〉μ =

1
N

(
〈(�V )2〉μ − 〈�V 〉2μ

)
, (5.32)

where μ is an invariant measure for the dynamics to be identified with
the microcanonical measure. Since we are considering systems with large
N—eventually taking the limit N → ∞—we replaced (N − 1) with N in
(5.31) and (5.32).

The process k(t) is not completely defined unless its time correlation
function,

Γk(t1, t2) = 〈k(t1)k(t2)〉 − 〈k(t1)〉〈k(t2)〉 , (5.33)
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is given. The simplest choice is to assume that k(t) is a stationary random
process which can be approximated2 by a δ-correlated process, so that

Γk(t1, t2) = Γk(|t2 − t1|) = Γk(t) = τ σ2
k δ(t) , (5.34)

where τ is the characteristic correlation time scale of the process.
Before we can actually solve (5.29), we have then to give an explicit expres-

sion for τ . To do that, first we will show how two independent characteristic
correlation time scales, which will be referred to as τ1 and τ2, respectively,
can be defined; then we will estimate τ by combining these two time scales.

A first time scale, which we will refer to as τ1, is associated with the time
needed to cover the average distance between two successive conjugate points
along a geodesic. Conjugate points are the points where the Jacobi vector field
vanishes (see Appendix B). As long as the curvature is positive and its fluc-
tuations are small compared to the average, two nearby geodesics will remain
close to each other until a conjugate point is reached. At each crossing of a
conjugate point the Jacobi vector field increases as if the geodesics were kicked
(this is what happens when parametric instability is active). Thus the aver-
age distance between conjugate points provides a meaningful estimate of the
lower bound of the correlation time scale. It can be proved that if the sectional
curvature K is bounded as 0 < L ≤ K ≤ H, then the distance d between two
successive conjugate points is bounded by d > π

2
√

H
(see Appendix B). The up-

per bound H of the curvature can then be approximated in our framework by

H ≈ k0 + σk , (5.35)

so that we can define τ1 as (remember that dt = ds)

τ1 = d1 =
π

2
√
k0 + σk

. (5.36)

This time scale is expected to be the most relevant only as long as the
curvature is positive and the fluctuations are small, compared to the average.

Another time scale, referred to as τ2, is related to the local curvature
fluctuations. These will be felt on a length scale of order at least l = 1/

√
σk

(the average fluctuation of curvature radius). The scale l is expected to be
the relevant one when the fluctuations are of the same order of magnitude as
the average curvature. Locally, the metric of a manifold can be approximated
by [126]

gik ≈ δik −
1
6
Rikjlu

iuk , (5.37)

where the ui are the components of the displacements from the point around
which we are approximating the metric. When the sectional curvature is posi-
tive (negative), lengths and time intervals on a scale l are enlarged (shortened)
2 Actually, k(t) models K(t) which is a smooth function, thus k(t) can be modeled

by a random process if it represents a sampling of K(t) at time steps larger than
some suitable correlation time scale τ .
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by a factor (l2K/6), so that the period 2π√
k0

has a fluctuation amplitude d2
given by d2 = l2K

6
2π√
k0

; replacing K by the most probable value k0, one gets

τ2 = d2 =
l2k0
6

2π√
k0

≈ k
1/2
0

σk
. (5.38)

Finally, τ in (5.34) is obtained by combining τ1 with τ2 as follows:

τ−1 = τ−1
1 + τ−1

2 . (5.39)

The present definition of τ is obviously by no means a direct consequence
of any theoretical result, but only a rough, physically based estimate. Such
an estimate might well be improved independently of the general geometric
framework.

Now that all the quantities entering (5.29) have been fully defined, we
can proceed to compute the instability growth rate of a generic solution of
(5.29). Whenever k(t) has a nonvanishing stochastic component, any solution
ψ(t) has an exponentially growing envelope [165] whose growth rate provides
a measure of the degree of instability. How can one relate such a growth rate
to the Lyapunov exponent of the physical system? Let us recall that, for a
standard Hamiltonian system of the form (1.1), the Lyapunov exponent can
be computed as the following limit (see (2.108) in Section 2.2.3):

λ = lim
t→∞

1
2t

log
ξ21(t) + · · ·+ ξ2N (t) + ξ̇21(t) + · · ·+ ξ̇2N (t)
ξ21(0) + · · ·+ ξ2N (0) + ξ̇21(0) + · · ·+ ξ̇2N (0)

, (5.40)

where the ξ’s are the components of the tangent vector, i.e., of the pertur-
bation of a reference trajectory, which obey the tangent dynamics equation
(2.108). In the case of the Eisenhart metric, each component of the Jacobi
vector field J can be identified with the corresponding component of the tan-
gent vector ξ; moreover, ψ in (5.29) stands for any of the components of J ,
which obey the same effective equation. Thus, (5.40) becomes

λ = lim
t→∞

1
2t

log
ψ2(t) + ψ̇2(t)
ψ2(0) + ψ̇2(0)

, (5.41)

where ψ(t) is a solution of (5.29). Equation (5.41) is our estimate for the
(largest) Lyapunov exponent.

As a stochastic differential equation, the solutions of (5.29) are properly de-
fined after an averaging over the realizations of the stochastic process: referring
to such an averaging as 〈•〉, we rewrite (5.41) as

λ = lim
t→∞

1
2t

log
〈ψ2(t)〉+ 〈ψ̇2(t)〉
〈ψ2(0)〉+ 〈ψ̇2(0)〉

. (5.42)

The evolution of 〈ψ2〉, 〈ψ̇2〉, and 〈ψψ̇〉, i.e., of the vector of the second moments
of ψ, obeys the following equation, which can be derived by means of a tech-
nique developed by van Kampen and sketched in Section 5.6.
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d

dt

⎛⎝ 〈ψ2〉
〈ψ̇2〉
〈ψψ̇〉

⎞⎠ =

⎛⎝ 0 0 2
σ2

kτ 0 −2k0
−k0 1 0

⎞⎠⎛⎝ 〈ψ2〉
〈ψ̇2〉
〈ψψ̇〉

⎞⎠ , (5.43)

where k0 and σk are the mean and the variance of k(t), defined in (5.31) and
(5.32), respectively. Equation (5.43) can be solved by diagonalizing the matrix
on the right-hand side of (5.43). The result for the evolution of 〈ψ2〉+ 〈ψ̇2〉 is

〈ψ2(t)〉+ 〈ψ̇2(t)〉 =
(
〈ψ2(0)〉+ 〈ψ̇2(0)〉

)
exp(αt) , (5.44)

where α is the only real eigenvalue of the matrix. According to (5.42), the
Lyapunov exponent is given by λ = α/2, so that by computing explicitly α,
one then obtains the final expression

λ(k0, σk, τ) =
1
2

(
Λ− 4k0

3Λ

)
, (5.45)

Λ =

⎛⎝σ2
kτ +

√(
4k0
3

)3

+ σ4
kτ

2

⎞⎠1/3

. (5.46)

All the quantities k0, σk and τ(k0, σk) can be computed as static averages,
as functions of the energy per degree of freedom, ε (see (5.31) and (5.32)).
Therefore—within the limits of validity of the assumptions made above—
equation (5.46) provide an approximate analytic formula to compute the
largest Lyapunov exponent independently of the numerical integration of the
dynamics and of the tangent dynamics.

Let us remark that expanding (5.46) in the limit σk  k0, one finds that

λ ∝ σ2
k , (5.47)

which shows how close the relation is between curvature fluctuations and
dynamical instability.

5.4 Some Applications

Let us now discuss briefly the results of the application of the geometric tech-
niques described up to this point to some Hamiltonian models. In particular,
we shall consider three cases: a chain of coupled nonlinear oscillators (the
FPU β model, introduced in Section 2.3.1), a chain of coupled rotators (the
1D XY model), and the mean-field XY model. The reason for the choice
of these three particular models is that they allow fully analytic calculations
and are well suited to show advantages and limitations of the theory. The
geometric theory developed above has already been applied to many other
cases, some of which will be addressed in Chapter 6. For other applications we
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refer to the literature: in particular, a model of a homopolymer chain has been
studied in [88], a model of a three-dimensional Lennard-Jones crystal has
been studied in [166], and a classical lattice gauge theory has been considered
in [167].

The systems we now consider are 1D models with nearest-neighbor inter-
actions whose Hamiltonians H have the standard form (1.1) with

V =
N∑

i=1

v(qi − qi−1) . (5.48)

The interaction potentials are, respectively,

v(qi − qi−1) =
1
2
(qi − qi−1)2 +

u

4
(qi − qi−1)4 , (FPU β model) (5.49)

v(x) = −J cos(qi − qi−1) , (1D XY model) (5.50)

while the third model is a long-range interaction one, described by the poten-
tial

V =
J

2N

N∑
i,j=1

[
1− cos(qi − qi−1)

]
(mean-field XY model) . (5.51)

In (5.49) we use u instead of the customary β in order to avoid confusion with
the inverse temperature β. We assume u > 0.

As we have seen in the preceding section, to compute the largest Lyapunov
exponent by means of the geometric formula (5.45), we need to compute the
average and the root mean square (r.m.s.) fluctuations of the Ricci curvature
of the mechanical manifold. These are to be computed as microcanonical
ensemble averages. These microcanonical quantities can be computed starting
from the canonical partition function, which can be calculated exactly for an
infinite chain, i.e., N →∞, for all the three models defined above.

The average and fluctuations, within the microcanonical ensemble, of any
observable function f(q) can be computed as follows, in terms of the corre-
sponding quantities in the canonical ensemble. The canonical configurational
partition function Z(β) is given by

Z(β) =
∫
dq e−β V (q) , (5.52)

where dq =
∏N

i=1 dqi. The canonical average 〈f〉can of the observable f can
be computed as

〈f〉can = [Z(β)]−1

∫
dq f(q) e−βV (q) . (5.53)

From this average, we can obtain the microcanonical average of f , 〈f〉μ, in
the following (implicit) parametric form [108].
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〈f〉μ(β) = 〈f〉can(β)

ε(β) =
1
2β

− 1
N

∂

∂β
[logZ(β)]

⎫⎪⎬⎪⎭ → 〈f〉μ(ε) . (5.54)

Note that (5.54) is strictly valid only in the thermodynamic limit; at finite N ,
〈f〉μ(β) = 〈f〉can(β) +O( 1

N ).
In contrast to the computation of 〈f〉, which is insensitive to the choice of

the probability measure in the N → ∞ limit, computing the fluctuations of
f , that is, 〈δ2f〉 = 1

N 〈(f − 〈f〉)2〉, by means of the canonical or microcanoni-
cal ensembles yields different results. The relationship between the canonical,
i.e., computed with the Gibbsian weight e−βH , and the microcanonical fluc-
tuations is given by the Lebowitz–Percus–Verlet formula [108]

〈δ2f〉μ(ε) = 〈δ2f〉can(β)− β2

cV

[
∂〈f〉can(β)

∂β

]2

, (5.55)

where

cV = −β
2

N

∂〈H〉can
∂β

(5.56)

is the specific heat at constant volume. Thus (5.55) also reads

〈δ2f〉μ(ε) = 〈δ2f〉can(β) +
(
∂〈ε〉can
∂β

)−1 [
∂〈f〉can(β)

∂β

]2

, (5.57)

and β = β(ε) is given in implicit form by the second equation in (5.54).
The average k0 and the fluctuations σk of the Ricci curvature per degree

of freedom are then obtained by replacing f with the explicit expression for
Ricci curvature, which, according to the definition given in (5.30), is

KR(q) =
N∑

i=1

∂2

∂q2i
v(qi − qi−1) , (5.58)

in (5.54) and (5.55), respectively.

5.4.1 FPU β Model

For the FPU β model, the dynamical observable that corresponds to the Ricci
curvature reads, according to (5.58),

KR = 2N + 6u
N∑

i=1

(qi+1 − qi)2 . (5.59)

Note that KR is always positive and that this is also true for the sectional
curvature along a physical geodesic. Computing the microcanonical average
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of KR according to (5.54) we find that in the thermodynamic limit, k0(ε) is
implicitly given by (the details are reported in [86])

〈kR〉can(θ) = 2 +
3
θ

D−3/2(θ)
D−1/2(θ)

ε(θ) =
1
8σ

[
3
θ2

+
1
θ

D−3/2(θ)
D−1/2(θ)

]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ → k0(ε) , (5.60)

where the Dν are parabolic cylinder functions [160] and θ is a parameter
proportional to β, so that θ ∈ [0,+∞).

The fluctuations of KR

σ2
k(ε) =

1
N
〈δ2KR〉μ(ε) =

1
N
〈(KR − 〈KR〉)2〉μ . (5.61)

are computed as follows.
According to (5.55), first the canonical fluctuations,

〈δ2kR〉can(β) =
1
N
〈(KR − 〈KR〉)2〉can(β) ,

have to be computed and then a correction term must be added. The canonical
fluctuations are given by [86]

〈δ2kR〉can(θ) =
9
θ2

{
2− 2θ

D−3/2(θ)
D−1/2(θ)

−
[
D−3/2(θ)
D−1/2(θ)

]2
}
, (5.62)

and, by adding the correction term, the final result for the microcanonical
fluctuations of the Ricci curvature is

〈δ2kR〉μ(θ) = 〈δ2kR〉can(θ)− β2

cV (θ)

(
∂〈kR〉can(θ)

∂β

)2

ε(θ) =
1
8μ

[
3
θ2

+
1
θ

D−3/2(θ)
D−1/2(θ)

]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ → σ2

k(ε) , (5.63)

where 〈δ2kR〉can(θ) is given by (5.62), ∂〈kR〉(θ)/∂β is given by

∂〈kR〉(θ)
∂β

=
3

8μθ3
θD2

−3/2(θ) + 2(θ2 − 1)D−1/2(θ)D−3/2(θ)− 2θD2
−1/2(θ)

D2
−1/2(θ)

,

(5.64)

and the specific heat per particle cV is found to be [86,168]

cV (θ) =
1

16D2
−1/2(θ)

{
(12 + 2θ2)D2

−1/2(θ) + 2θD−1/2(θ)D−3/2(θ)

−θ2D−3/2(θ)
[
2θD−1/2(θ) +D−3/2(θ)

]}
. (5.65)
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The microcanonical averages and fluctuations computed in (5.60) and (5.63)
are compared in Figures 5.1 and 5.2 with their corresponding time averages
computed along numerically simulated trajectories of the FPU β model with
the potential (5.49) for N = 128 and N = 512 with u = 0.1. Though the
microcanonical averages have to be computed in the thermodynamic limit,
the agreement between time and ensemble averages is excellent already at
N = 128.

Fig. 5.1. Average Ricci curvature (Eisenhart metric) per degree of freedom, k0,
vs. energy density ε for the FPU β model. The continuous line is the analytic
computation according to (5.60); circles and squares are time averages obtained by
numerical simulations with N = 128 and N = 512 respectively; u = 0.1. From [131].

Fig. 5.2. Fluctuations of the Ricci curvature (Eisenhart metric), σk, vs. energy
density ε for the FPU β model. Symbols and parameters as in Figure 5.1; the
continuous line now refers to (5.63). From [131].
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As we have seen in Chapter 2, Section 2.3.1, the FPU β model, as
many other Hamiltonian dynamical systems at large-N , undergo a transi-
tion between weak and strong chaos. In particular, in the FPU β model, a
weakly chaotic regime is found for specific energies smaller than εc ≈ 0.1/u
[78, 79, 131]. Although in the weakly chaotic regime the dynamics is chaotic
(i.e., the Lyapunov exponent is positive, though small), mixing is very slow, as
witnessed by the existence of a rather long memory of the initial conditions,
i.e., of long relaxation times if the initial conditions are far from equilib-
rium. For ε larger than εc the dynamics is strongly chaotic and relaxations to
equilibrium are fast. The precise origin of these phenomena is still to be un-
derstood. However, the geometric approach described here is able to provide a
suggestive interpretation [131,169]. Let us consider Figure 5.3, where the ratio
of the fluctuations and the average curvature σk/k0 is reported. As ε → 0,
σk  k0, so that the manifold looks essentially like a constant-curvature man-
ifold with only small curvature fluctuations. This situation corresponds to the
weakly chaotic dynamical regime. However, since ε is larger than εc, σk/k0
tends to saturate toward a value of order unity, thus indicating that in the
high-energy (strongly chaotic) regime the curvature fluctuations are of the
same order of magnitude as the average curvature, so that the system no
longer “feels” the isotropic (and integrable) limit. Hence the geometric ap-
proach can give a hint toward understanding, at least qualitatively, the origin
of weak and strong chaos in the Fermi–Pasta–Ulam model. From the knowl-
edge of k0(ε) and σk(ε), via (5.45) and (5.46), the geometric theory allows us
to make a quantitative prediction for the Lyapunov exponent as a function
of the specific energy ε. The analytic result is shown in Figure 5.4 and is

Fig. 5.3. Fluctuations of the Ricci curvature (Eisenhart metric) divided by the
average curvature, σk/k0, vs. energy density ε for the FPU β model.
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Fig. 5.4. Lyapunov exponent, λ, vs. energy density ε for the FPU β model with
u = 0.1. The continuous line is the theoretical computation according to (5.46), while
the circles and squares are the results of numerical simulations with N respectively
equal to 256 and 2000. From [86].

compared with numerical simulations made for different values of N , for the
FPU β case in a wide range of energy densities — more than six orders of
magnitude [86, 157]. The agreement between theory and simulations is strik-
ingly good, which confirms the existence of a nonempty validity domain of
the simplifying assumptions that we had to introduce on physical grounds to
capture some of the essentials of the configuration space geometry.

5.4.2 The Role of Unstable Periodic Orbits

Let us now make a digression about an interesting peculiarity of a special class
of phase space trajectories: unstable periodic orbits (UPO). Surprisingly, this
kind of orbits make a sort of “importance sampling” of the geometry of the
mechanical manifolds. Along some of these trajectories, which can be analyti-
cally computed in the case of the FPU β model, one can also compute the time
averages of the Ricci curvature and of its fluctuations. These averages are used
to obtain a good estimate of the largest Lyapunov exponent. In the following,
we give the details of this computation. The model is described by the poten-
tial function in (5.49), and thus by the Hamiltonian (2.115), with the nonlinear
coupling constant β replaced by u. The linear terms of this Hamiltonian can be
diagonalized by introducing suitable harmonic normal coordinates. The latter
are obtained by means of a canonical linear transformation [170]. Denoting
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the normal coordinates and momenta by Qk and Pk for k = 0, . . . , N − 1, the
transformation is given by

Qk(t) =
N∑

n=1

Sknqk(t) , Pk(t) =
N∑

n=1

Sknpk(t) , (5.66)

where k = 0, . . . , N −1, and Skn is the orthogonal matrix [78] whose elements
are

Skn =
1√
N

[
sin

(
2πkn
N

)
+ cos

(
2πkn
N

)]
, (5.67)

n = 1, . . . , N and k = 0, . . . , N − 1. The full Hamiltonian (2.115) in the new
coordinates reads

H(Q,P ) =
1
2
P 2

0 +
1
2

N−1∑
i=1

(
P 2

i + ω2
iQ

2
i

)
+H1(Q) , (5.68)

where the anharmonic term is

H1(Q) =
u

8N

N−1∑
i,j,k,l=1

ωiωjωkωlCijklQiQjQkQl . (5.69)

The ωk = 2 sin(πk/N), for k ∈ {1, . . . , N − 1}, are the normal frequencies for
the harmonic case (μ = 0), being ωk = ωN−k. By defining

Δr =
{

(−1)m for r = mN with m ∈ Z ,
0 otherwise , (5.70)

the integer-valued coupling coefficients Cijkl are explicitly given by

Cijkl = −Δi+j+k+l +Δi+j−k−l +Δi−j+k−l +Δi−j−k+l . (5.71)

By eliminating the motion of the center of mass (which corresponds to the
zero index), we now easily get the equations of motion for the remaining N−1
degrees of freedom, which, at the second order, read as

Q̈r = −ω2
rQr −

uωr

2N

N−1∑
j,k,l=1

ωjωkωlCrjklQjQkQl , (5.72)

for r = 1, . . . , N − 1.
As shown in [170], the equations of motion (5.72) admit some exact peri-

odic solutions that can be explicitly expressed in closed analytical form. The
simplest ones, consisting of one mode, have only one excited mode, which we
denote by the index e, and thus are characterized by Qj(t) ≡ 0 for j �= e. The
solitary modes are found by setting Creee = 0 ∀r ∈ {1, . . . , N −1} with r �= e;
it is easily verified that this condition is satisfied for

e =
N

4
;
N

3
;
N

2
;

2N
3

;
3N
4
. (5.73)
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Thus, for solutions with initial conditions Qj = 0 and Q̇j = 0 for j �= e, the
whole system (5.72) reduces to a one-degree-of-freedom (and thus integrable)
system described by the equation of motion

Q̈e = −ω2
eQe −

uω4
eCeeee

2N
Q3

e , (5.74)

where Ceeee = 4, 4, 3, 3, 2 for e = N/4, 3N/4, N/3, 2N/3, N/2, respectively.
The harmonic frequencies of the modes (5.73) are ωe =

√
2,
√

2,
√

3,
√

3, 2
for e = N/4, 3N/4, N/3, 2N/3, N/2, respectively. In order to simplify the
notation, in the following, let us set Ĉe = Ceeee.

The general solution of (5.74) is a Jacobi elliptic cosine

Qe(t) = A cn [Ωe(t− t0) , k] , (5.75)

where the free parameters (modal) amplitude A and time origin t0 are fixed by
the initial conditions. The frequency Ωe and the modulus k of Jacobi elliptic
cosine function [160,171] depend on A as follows:

Ωe = ωe

√
1 + δeA2 , k =

√
δeA2

2(1 + δeA2)
, (5.76)

with δe = uω2
eĈe/(2N). This kind of solution is periodic, and its oscillation

period Te depends on the amplitude A, since it is given in terms of the com-
plete elliptic integral of the first kind K(k) [160,171] and in terms of Ωe by

Te =
4K(k)
Ωe

. (5.77)

The modal amplitude A is one-to-one related to the energy density ε = E/N .
In fact, computing the total energy (5.68) on the one mode solution Qj(t) ≡
δjeQe(t), one obtains

εN =
1
2
(
P 2

e + ω2
eQ

2
e

)
+

u

8N
ω4

eĈeQ
4
e . (5.78)

Since at t = t0 the coordinates are (Qe(t0), Pe(t0)) = (A, 0), by solving the
previous equation for A we get

A =

[
2N

(√
1 + 2uεĈe − 1
uω2

eĈe

)]1/2

. (5.79)

This relation allows us to express all the parameters of the solution (5.75) in
terms of the more physically relevant parameter ε. The period Te is

Te =
4K(k)

ωe(1 + 2uεĈe)1/4
, (5.80)

where k = k(ε) can be found from (5.76) and (5.79).
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In terms of the standard coordinates, the one mode solutions are

qn(t) =
1√
N
Qe(t)

[
sin

(
2πne
N

)
+ cos

(
2πne
N

)]
, (5.81)

where e is one of the values listed in (5.73).
The Ricci curvature along a periodic trajectory, obtained by substituting

(5.81) into (5.59), is

kR(t) = 2 +
6u
N
ω2

eQ
2
e(t) , (5.82)

and its time average kR is

kR = 2 +
6u
N
ω2

eQ
2
e . (5.83)

After simple algebra, using standard properties of the elliptic functions, one
obtains

Q2
e =

1
Te

∫ Te+t0

t0

dt Q2
e =

A2

Kk2

(
E + (k2 − 1)K

)
. (5.84)

The time-averaged Ricci curvature is then

kR = 2 +
12

Kk2Ĉe

[√
1 + 2uεĈe − 1

][
E + (k2 − 1)K

]
, (5.85)

where K and E are the complete elliptic integrals of the first and second kinds
respectively, [160, 171] both depending on the modulus k, which, from (5.76)
and (5.79), is determined by the energy density ε:

k2 =
1
2

(
1− 1√

1 + 2uεĈe

)
. (5.86)

Now, using (5.85) and (5.86), and the tabulated values for E and K, kR is
given as a function of the energy density ε. In Figure 5.5 a comparison is
made between kR versus ε, worked out for the one mode solutions under con-
sideration, and 〈kR〉μE

versus ε, the microcanonical average Ricci curvature
analytically computed in the preceding section. By replacing the microcanon-
ical averages with time averages in the expression

〈δ2KR〉μ =
〈
(KR − 〈KR〉μ)2

〉
μ

= (N − 1)2
[
〈(kR)2〉μ − (〈kR〉μ)2

]
, (5.87)

using (5.83), and after some trivial algebra, we get

δ2kR =
36u2ω4

e

N2

[
Q4

e −Q2
e Q

2
e

]
. (5.88)
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Fig. 5.5. kR versus ε, worked out by means of the three single-mode solutions
identified by the values of e listed in (5.73) (dotted, dashed, and long-dashed lines
refer to e = N/4, 3N/4, e = N/3, 2N/3, and e = N/2, respectively), is compared
with 〈kR〉μE computed in [86] (continuous line). The agreement is very good on a
broad range of values of energy density ε. From [172].

The new term

Q4
e =

A4

Te

∫ Te

0

dt cn4(Ωet, k) =
A4

4K

∫ 4K

0

dθ cn4(θ, k)

can be computed by resorting to standard properties of the elliptic functions,
and the result is

Q4
e =

A4

3Kk4

[
K(2− 5k2 + 3k4) + 2E(2k2 − 1)

]
. (5.89)

Finally, (5.89) and (5.84) in (5.88) yield

δ2kR =
192

[
(k2 − 1) + 2(2− k2) E

K − 3
(

E
K

)2]
(1− 2k2)2Ĉ2

e

. (5.90)

From (5.86) and making use of the tabulated values for E and K, equa-
tion (5.90) provides the mean squaredfluctuations of the Ricci curvature as a
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Fig. 5.6. In this figure we report three curves for δ2kR versus ε computed
by integrating the curvature fluctuations along the three single mode solutions
considered in the present section (dotted, dashed, and long-dashed lines refer to
e = N/4, 3N/4, e = N/3, 2N/3 and e = N/2, respectively), and a comparison is
made with the same quantity computed in [86] (continuous line). Also in this case
the agreement is very good. From [172].

function of ε. In Figure 5.6, the time averages of the Ricci curvature fluctu-
ations δ2kR versus the energy density ε, are compared to the microcanonical
averages 〈δ2kR〉μE

versus ε analytically computed in the preceding section.
The agreement is very good, thus confirming from a completely new point
of view that unstable periodic orbits are special tools for dynamical systems
analysis; in this case, the Ricci curvature of the enlarged configuration space
(M × R, ge), and its fluctuations, are surprisingly well sampled by UPOs be-
cause time averages computed along them are very close to microcanonical
averages performed on the whole configuration space. By replacing 〈KR〉μ and
〈δ2KR〉μ with kR and δ2kR, and by inserting (5.85), (5.86) and (5.90) into the
analytic formula (5.45), the largest Lyapunov exponent can be computed as
a function of the energy density ε.

Figure 5.7 shows that the overall agreement between these analytic results,
those reported in the preceding section, and the results obtained by numerical
integration of the tangent dynamics is very good, especially at high energy
density. At low energy density the discrepancy does not exceed, at worst,
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Fig. 5.7. This figure shows the largest Lyapunov exponent λ1 obtained by integrat-
ing the Ricci curvature and its fluctuations along the three single mode solutions
considered in the present section, plotted vs. ε. Dotted, dashed and long-dashed lines
refer to e = N/4, 3N/4, e = N/3, 2N/3 and e = N/2, respectively. Continuous line
refers to the Lyapunov exponent computed in [86]. The full circles are the values
for λ1 computed by numerical integration. The agreement is again very good on a
broad range of ε values. From [172].

a factor of 2 on a range of many decades of energy density and with the use
of only one unstable periodic orbit.

The theoretically interesting fact is that some geometric quantities, proper
to the configuration-space manifold, are efficiently sampled even by means of
a few unstable periodic orbits, as is shown in Figures 5.5 and 5.6.

Thus unstable periodic orbits can be used to compute Lyapunov expo-
nents, and even though explicit computations have been hitherto performed
only for one specific model, this method could be of more general validity
to remove the ergodic assumption made to work out the effective instability
equation (5.27). While chaotic trajectories can never be known analytically,
in principle UPOs sometimes can, and efficiently do the same job.

5.4.3 1D XY Model

If the canonical coordinates qi and pi are given the meaning of angular coordi-
nates and momenta, the 1D XY model, whose potential energy is given in



172 Chapter 5 Geometry and Chaos

(5.50), describes a linear chain of N rotators constrained to rotate in a plane
and coupled by a nearest-neighbor interaction. This model can be formally
obtained by restricting the classical Heisenberg model with O(2) symme-
try to one spatial dimension. The potential energy of the O(2) Heisenberg
model is V = −J∑〈i,j〉 si · sj , where the sum is extended only over nearest-
neighbor pairs, J is the coupling constant, and each si has unit modulus
and rotates in the plane. To each “spin” si = (cos qi, sin qi), the velocity
ṡi = (−q̇i sin qi, q̇i cos qi) is associated, so that H =

∑N
i=1

1
2 ṡ

2
i −J

∑
〈i,j〉 si · sj .

This Hamiltonian system has two integrable limits. In the small-energy
limit it represents a chain of harmonic oscillators, as can be seen by expanding
the potential energy in a power series,

H(p, q) ≈
N∑

i=1

{
p2i
2

+ J(qi+1 − qi)2 − 1
}
, (5.91)

where pi = q̇i, whereas in the high-energy limit a system of freely rotating
objects is found, because the kinetic energy becomes much larger than the
bounded potential energy.

The dynamics of this system has been extensively studied [145, 168, 173].
Numerical simulations and theoretical arguments independent of the geomet-
ric approach (see in particular [173]) have shown that also in this system there
exist weakly and strongly chaotic dynamical regimes. It has been found that
the dynamics is weakly chaotic in the low- and high-energy density regions,
close to the two integrable limits. In contrast, fully developed chaos is found
in the intermediate-energy region.

According to (5.58), the expression for the Ricci curvature KR, computed
with the Eisenhart metric, is

KR(q) = 2J
N∑

i=1

cos(qi+1 − qi). (5.92)

We note that for this model a relation exists between the potential energy V
and Ricci curvature KR:

V (q) = JN − KR(q)
2

. (5.93)

The average Ricci curvature can be again expressed by implicit formulas
(see [86] for details)

〈kR〉μ(β) = 2J
I0(βJ)
I1(βJ)

ε(β) =
1
2β

+ J
(

1− I1(βJ)
I0(βJ)

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ → k0(ε) , (5.94)
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where the Iν ’s are modified Bessel functions of index ν [160]. The fluctuations
are given by the implicit equations

〈δ2kR〉(β)

=
4J
β

βJI20 (βJ)− I0(βJ)I1(βJ)− βJI21 (βJ)

I20 (βJ)
[
1 + 2 (βJ)2

]
− 2βJI1(βJ)I0(βJ)− 2 [βJI1(βJ)]2

ε(β) =
1
2β

+ J
[
1− I1(βJ)

I0(βJ)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
→ σ2

k(ε).

(5.95)

In Figures 5.8 and 5.9 a comparison between analytical and numerical results
is provided for the average Ricci curvature and its fluctuations. The agreement
between ensemble and time averages is again very good. Looking at Figures
5.8 and 5.9, we realize that the low-energy weakly chaotic region has the
same geometric properties as the corresponding region of the FPU model, as
expected, since the two low-energy integrable limits are the same. However, in
the high-energy weakly chaotic region the fluctuations are far from being small
with respect to the average curvature. The average curvature k0(ε) vanishes
as ε→∞. In this case the weakly chaotic dynamics seems related to the fact
that the manifold (M ×R

2, ge) looks almost flat along the physical geodesics.
The bounds of the two weakly chaotic regions, as estimated in [173], coincide
with the values of ε where the asymptotic behavior of k (low-energy region)
and σk (high-energy region) set in. Moreover, the case of the coupled rotators

Fig. 5.8. Average Ricci curvature (Eisenhart metric) per degree of freedom k0 vs.
specific energy ε for the coupled rotators model. The continuous line is the result
of an analytic computation according to (5.94); the full circles are time averages
obtained by numerical simulations with N = 150; J = 1. From [86].
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Fig. 5.9. Fluctuation of the Ricci curvature (Eisenhart metric), σ2
k, vs. specific

energy ε for the coupled rotators model. Symbols and parameters as in Figure 5.8;
the continuous line now refers to (5.95). From [86].

is very different from the FPU case, since the sectional curvature K(s) along a
geodesic can take negative values. The probability P (ε) that K(s) < 0 can be
analytically estimated in the following simple way. The explicit expression for
the sectional curvature K(γ̇, ξ), relative to the plane spanned by the velocity
vector γ̇ = dq/dt and a generic vector ξ⊥γ̇, is (see Appendix B)

K(γ̇, ξ) = R0i0k
dq0

dt

ξi

‖ξ‖
dq0

dt

ξk

‖ξ‖ ≡
∂2V

∂qi∂qk
ξiξk

‖ξ‖2 , (5.96)

so that computing ∂2V/∂qi∂qk using the explicit form of V (q) given in (5.50),
we get

K(γ̇, ξ) =
J

‖ξ‖2
N∑

i=1

cos(qi+1 − qi)
[
ξi+1 − ξi

]2
(5.97)

for the 1DXY model. We realize, by simple inspection of (5.97), that the prob-
ability of finding K < 0 along a geodesic must be related to the probability of
finding an angular difference larger than π

2 between two nearest-neighboring
rotators. From (5.97) we see that N orthogonal directions of the vector ξ exist
such that the sectional curvatures—relative to the N planes spanned by these
vectors together with γ̇—are just cos(qi+1 − qi). These directions are defined
by the unit vectors of components (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1).
Hence the probability P (ε) of occurrence of a negative value of a cosine is
used to estimate the probability of occurrence of negative sectional curvatures
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along the geodesics. This probability function, calculated using the Boltzmann
weight, has the following simple expression [86,145]:

P (β) =

∫ π

−π
Θ(− cosx)eβJ cos xdx∫ π

−π
eβJ cos xdx

=

∫ 3π
2

π
2
eβJ cos xdx

2πI0(βJ)

ε(β) =
1
2β

+ J
[
1− I1(βJ)

I0(βJ)

]
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

→ P (ε) . (5.98)

where Θ(x) is the Heaviside unit step function and I0 the modified Bessel
function of index 0. The function P (ε) is plotted in 5.10. We see that in the
strongly chaotic region such a probability starts to increase rapidly from a
very small value, while it approaches an asymptotic value P (ε) ∼ 1/2 when
the system enters its high-energy weakly chaotic region.

When the sectional curvatures are positive,3 chaos is produced by curva-
ture fluctuations; hence we expect chaos to be weak as long as σk/k0  1,
and to become strong when σk ≈ k0. In contrast, when K(s) can assume
both positive and negative values, the situation is much more complicated,
for there are now two different and independent sources of chaos: negative
curvature, which directly induces a divergence of nearby geodesics, and the
bumpiness of the ambient manifold, which induces such a divergence via para-
metric instability. The results for the coupled-rotators model suggest that as
long as the negative curvatures are “few,” they do not dramatically change the

Fig. 5.10. Estimate of the probability P (ε) of occurrence of negative sectional
curvatures in the 1D XY model according to (5.98); J = 1. From [86].

3 The sectional curvature is always strictly positive in the FPU β model, see Section
5.5.1; in the 1D XY model, in the low-energy region, negative sectional curvatures
can occur, but have a very small probability.
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Fig. 5.11. Lyapunov exponent λ vs. energy density ε for the 1D XY model with
J = 1. The continuous line is the theoretical computation according to (5.46), while
full circles, squares and triangles are the results of numerical simulations with N ,
respectively, equal to 150, 1000, and 1500. The dotted line is the theoretical result
where the value of k entering (5.46) has been corrected according to (5.100) with
α = 150. From [86].

picture, and may strengthen the parametrically generated chaos, while when
their occurrence is equally likely as the occurrence of positive curvatures, the
two mechanisms of chaos seem to inhibit each other and chaos becomes weak.4

Such a qualitative picture is consistent with the result of the geometric
computation of λ for the coupled-rotator model. The result of the application
of (5.46) to this model is plotted in Figure 5.11 (solid line). There is agreement
between analytic and numeric values of the Lyapunov exponent only at low-
and high-energy densities. As in the FPU case, at low energy, in the quasi-
harmonic limit, we obtain λ(ε) ∝ ε2. At high energy, λ(ε) ∝ ε−1/6; here λ(ε)
is a decreasing function of ε because for ε→∞ the systems is integrable.

However, in the intermediate-energy range our theoretical prediction
underestimates the actual degree of chaos of the dynamics. This energy range
coincides with the region of fully developed (strong) chaos. According to
the above discussion the origin of the underestimation can be found in the
fact that the role of the negative curvatures, which appears to strengthen
chaos in this energy range, is not correctly taken into account. The sectional
4 The fact that the two mechanisms, when comparable, can inhibit rather than

strengthen each other can be considered a “proof” of the fact that their nature is
intrinsically different. A similar situation is found also in some billiard systems,
where there are two mechanisms that can produce chaos: (i) defocusing, due
to positively curved boundaries, and (ii) divergence of the trajectories due to
scatterings with negatively curved boundaries [174].
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curvature K(s), whose expression is given by (5.97), can take negative values
with nonvanishing probability regardless of the value of ε, whereas as long
as ε < J , this possibility is lost in the replacement of K by the Ricci cur-
vature, due to the constraint (5.93), which implies that at each point of the
manifold,

kR(ε) ≥ 2(J − ε). (5.99)

Thus our approximation fails to account for the presence of negative sectional
curvatures at values of ε smaller than J . In (5.97) the cosines have different
and variable weights, (ξi+1 − ξi)2, which make it in principle possible to find
somewhere along a geodesic a K < 0 even with only one negative cosine. This
is not the case for kR where all the cosines have the same weight.

Let us now show how the theoretical results can be improved. Our strategy
is to modify the model for K(s) in some effective way that takes into account
the just-mentioned difficulty of kR(s) to adequately model K(s). This will
be achieved by suitably “renormalizing” k0 or σk to obtain an “improved”
Gaussian process that can better model the behavior of the sectional cur-
vature. Since our “bare” Gaussian model underestimates negative sectional
curvatures in the strongly chaotic region, the simplest way to renormalize
the Gaussian process is to shift the peak of the distribution P(KR) toward
the negative axis to make the average smaller. This can easily be done by the
following rescaling of the average curvature k0:

k0 = 〈kR(ε)〉 → 〈kR(ε)〉
1 + αP (ε)

. (5.100)

This correction has no influence either when P (ε) ≈ 0 (below ε ≈ 0.2) or
when P (ε) ≈ 1/2 (because in that case 〈kR(ε)〉 → 0). The simple correction
(5.100) makes use of the information we have obtained analytically, i.e., of
the P (ε) given in (5.98), and is sufficient to obtain an excellent agreement
of the theoretical prediction with the numerical data over the whole range of
energies, as shown in 5.11. The parameter α in (5.100) is a free parameter, and
its value is determined so as to obtain the best agreement between numerical
and theoretical data. The result shown in 5.11 (dotted line) is obtained with
α = 150, but also very different values of α, up to α = 1000, yield a good
result, i.e., no particularly fine tuning of α is necessary to obtain a very good
agreement between theory and numerical experiment.

5.4.4 Mean-Field XY Model

Now we consider the mean-field XY model, defined by the Hamiltonian [110]

H(p, ϕ) =
N∑

i=1

p2i
2

+
J

2N

N∑
i,j=1

[1− cos(ϕi − ϕj)] . (5.101)
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Here ϕi ∈ [0, 2π] is the rotation angle of the ith rotator. For this model the
canonical partition function can be explicitly computed (for the details see
Chapter 10) and its configurational part reads

Zc =
1
π

N

2βJ

∫ ∞

−∞

∫ ∞

−∞
dz exp [−Nψ(z, J)] ,

where ψ(z, J) = z2/2βJ − ln(2πI0(z)) + βJ/2, with I0 the modified Bessel
function and z the modulus of a vector z ∈ R

2. In the limit N →∞, the
saddle-point method prescribes that one solve the equation ∂ψ/∂z = 0 in
order to estimate the above integral, that is,

z

βJ
− I1(z)
I0(z)

= 0 . (5.102)

For βJ < 2, z = 0 is the solution corresponding to the minimal free energy
and to a vanishing magnetization. For βJ > 2, the solution z is a value of z
that is a function of β. Correspondingly, the magnetization

|M| = I1(z)
I0(z)

(5.103)

bifurcates at the critical value βJ = 2, and since from a simple calculation
one obtains

V (q) =
JN

2
(1− |M|2) ,

the critical energy density is εc = 3J/4.
Coming to the computation of the largest Lyapunov exponent, consider

first that the canonical configurational partition function, worked out by
means of the saddle-point method, reads

Zc(β) ≈ (2π)N Nz

βJ
exp[−Nψ(z, β)]

√
2π [N∂βψ(z, β)]−1/2 .

The Ricci curvature, using the Eisenhart metric, is

kR(q) =
1

N − 1

N∑
i=1

∂2V (q)
∂q2i

= J − 2
N − 1

V (q) ≡ J |M|2 . (5.104)

In the large-N limit, 〈kR〉can and 〈kR〉μ coincide, so that from

〈kR〉can = J +
2
N
∂β logZc ≈ J − 2∂β [ψ(z(β), β)]

= J − 2
dz

dβ
∂zψ

∣∣∣∣
z

− 2β∂βψ|z

= J − 2
(
J

2
− z2

2β2J

)
(5.105)
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we get

〈kR〉can(β) =
[z(β)]2

2β2J

ε(β) =
1
2β

− 1
N

∂

∂β
logZc(β)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ → k0(ε) . (5.106)

We have seen above that up to an O(1/N) correction, it is kR = J |M|2. Thus
〈kR〉μ(ε) must display the the same bifurcation, away from zero, at εc.

Then the computation of 〈δ2kR〉μ proceeds according to (5.57), and noting
that ∂β〈kR〉can = 1

2 〈δ2KR〉can, one finds that

〈δ2kR〉μ(β) = 〈δ2KR〉can
(

1 +
β2

2
〈δ2KR〉can

)−1

, (5.107)

where we have

〈δ2KR〉can =
4
N
∂2

β logZc ≈
4z
β2
J

(
∂βz −

z

β

)
,

whence, together with ε(β), we obtain σ2
k(ε) in parametric form.

The ε-dependence of these geometric averages are shown in Figures
5.12 and 6.11. Then, introducing these geometric quantities into the ana-
lytic formulas (5.45) and (5.46), we get finally λ(ε), which is reported in
Figure 5.13.

Note that this computation holds for ε < εc, the condition of existence of
a nonvanishing solution z(β) of the consistency equation (5.102).

Above the critical energy εc, one gets

Zc(β) ≈ (2π)Ne−NβJ/2

(
1− βJ

2

)−1

.

Since for ε > εc, |M|2 ∼ O(N−1), using kR = J |M|2 − J/N + O(N−2) we
have

〈δ2kR〉μ =
βJ2

N(2− βJ)
+O(N−2) ,

that is, in the N →∞ limit, 〈δ2kR〉μ vanishes. At the same time,

〈δ2KR〉can =
4
N

∂2

∂β2
logZc =

4J2

N
(2− βJ)−2 = O(N−1) ,

that is, 〈δ2KR〉can also vanishes in the N → ∞ limit. The correction term,
since ε(β) ≈ 1/(2β) + J/2, is O(N−2), whence 〈δ2kR〉μ = 〈δ2KR〉can +
O(N−2) = O(N−1), thus also 〈δ2kR〉μ vanishes as O(N−1) in the N → ∞
limit.
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Fig. 5.12. Largest Lyapunov exponent (a), and half the variance of Ricci curvature
fluctuations (b), computed numerically for the mean-field XY model. From [224].

Fig. 5.13. Largest Lyapunov exponent vs. ε, analytically computed for the mean-
field XY model (solid curve). The curves above the transition are finite-N results
for N = 80 and N = 200: here λ ∝ N−1/3.
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Using again formulas (5.45) and (5.46), where we replace the leading-order
terms of 〈kR〉μ and 〈δ2kR〉μ, we finally obtain

λ ≈ 41/3J
√
βJ

(2− βJ)3/2
N−1/3 ,

and this N -scaling of λ at ε > εc, checks very well with the numerical findings
reported in the literature [176]. The overall qualitative agreement below and
above εc is reasonably good, but the quantitative agreement at ε < εc is less
good, because there is a factor 2 missing in the peak level just below ε. As
we shall discuss in Section 5.5.1, we can reasonably doubt that this model
satisfies the quasi-isotropy assumption. In fact, its configuration space has a
highly nontrivial topology, as we shall see in Chapter 10, and this should be
taken somehow into account, also with some phenomenological assumption,
as was the case of the 1D XY model.

5.5 Some Remarks

Let us now comment about some points of the material presented so far. In
particular, we would like to clarify the meaning of some of the approximations
made and to draw the attention of the reader to some of the problems that are
still open. A better understanding of these points could lead, in our opinion,
to a considerable improvement of the theory, which is still developing and can
by no means be considered a “closed” subject.

What has been presented in this chapter has a conceptual implication
that goes far beyond the development of a method to analytically compute
Lyapunov exponents. Rather, the strikingly good agreement between analytic
and numeric Lyapunov exponents—obtained at the price of a restriction of
the domain of applicability5 of the analytic expression worked out for λ—has
three main implications:

(i) the local geometry of mechanical manifolds contains all the relevant
information about (in)stability of Hamiltonian dynamics;

(ii) once a good model for the local source of instability of the dynamics
is provided, then a statistical-mechanical-like treatment of the average
degree of instability of the dynamics can be worked out, in the sense that
we do not need a detailed knowledge of the dynamics, but by computing
total geometric quantities (that is, averages of local quantities computed
on the whole manifold), we obtain a very good estimate of the average
strength of chaos;

5 Actually, the simplifying assumptions made to work out an effective (in)stability
equation from the full geodesic deviation equation might be inadequate for many
systems, as will be explained in the next Section 5.5.1.
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(iii) due to the variational formulation of newtonian dynamics, the
Riemannian-geometric framework a priori seems—and actually seemed
in the past—the natural framework to investigate the instability of
Hamiltonian dynamics, although no evidence at all was available to
confirm such an idea until the above-mentioned development took place.
It is now evident that the efforts to improve the theory by expanding its
domain of applicability are worthwhile.

We must warn the reader, though, against “blind” applications of formula
(5.45), i.e., without any idea about the satisfaction, by the Hamiltonian model
under investigation, of the conditions under which it has been derived.

From a more technical point of view, one of the central results we have
presented so far is the possibility of deriving, from the Jacobi equation, a
scalar equation (equation (5.21)) describing the evolution of the Jacobi field
J for a geodesic spread on a manifold. We would like to stress that such a
result, though approximate, applies to a wide class of Hamiltonian systems.
In fact, the only hypothesis needed to get such an equation is the quasi-
isotropy hypothesis, i.e., the assumption that Rijkl ≈ K(s)(gikgjl − gilgjk).
Loosely speaking, such an assumption means that, locally, the manifold can
be regarded as isotropic, i.e., there is a neighborhood of each point where the
curvature can be considered constant. This does not imply at all that there
are only small-scale fluctuations. There can be fluctuations of curvature on
many scales, provided that they are finite and there is a cutoff at a certain
point. The only case in which such an assumption will surely not hold is that of
curvature fluctuations over all scales. This might happen when the mechanical
manifold undergoes topological changes.

Other approximations come into play when one actually wants to model
K(s) along a geodesic with a stochastic process. It is true that replacing the
sectional curvature by the Ricci curvature requires that the fluctuations be
not only finite, but also small. Moreover, we use global averages to define the
stochastic process, and here it is crucial that the fluctuations not extend over
too large scales. Thus (5.28) has a less general validity than (5.21). A way to
improve the theory might be to try to replace the sectional curvature with
some quantity related also to the gradient of the Ricci curvature, in order to
make the replacement of sectional curvature less sensitive to the large-scale
variations of the Ricci curvature.

To get an explicit solution of (5.21), in addition to the quasi-isotropy
assumption, we made further restrictions through the following steps:

(i) using the Eisenhart metric on the enlarged configuration space-time
(M × R

2, ge);
(ii) considering standard systems where the kinetic energy does not depend

on the q’s;
(iii) estimating the characteristic correlation time τ of the curvature fluctua-

tions.
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As to item (iii), we have already remarked that our estimate given in (5.39)
is by no means a consequence of any theoretical result, but only a reasonable
estimate that could surely be improved.

As to item (ii), the case of a more general kinetic energy matrix aij �= δij ,
though not conceptually different, is indeed different in practice, and the same
final result is not expected to hold in that case.

Finally, item (i) should not reduce significantly the generality of the result.
In fact, considering the Eisenhart metric only makes the calculations feasible,
and in principle nothing should change if one were able to solve (5.28) in the
case of the Jacobi metric (see the discussion in [130] and the numerical results
in [161, 162]). However, Eisenhart and Jacobi metrics are equivalent for what
concerns the computation of the average instability of the dynamics [130],
but they might not be equivalent for other developments of the theory, this
in view of the fact that (ME , gJ ) is a manifold that has better mathematical
properties than (M ×R

2, ge): (ME , gJ ) is a proper Riemannian manifold, it is
compact, all of its geodesics are in one-to-one correspondence with mechanical
trajectories, its scalar curvature does not identically vanish as is the case of
(M × R

2, ge), and it can be naturally lifted to the tangent bundle where
the associated geodesic flow on the submanifolds of constant energy coincides
with the phase space trajectories. Other geometric frameworks that are worth
considering are the enlarged configuration space with the Eisenhart metric
(M × R, Ge) (see Section 3.1.2), and the configuration space-time (M × R)
with a Finsler metric (see Section 3.2). The former framework has never been
considered hitherto, neither for numeric nor for analytic computations, and
the latter has been successfully exploited only for numerical computations of
Hamiltonian flows with two degrees-of-freedom [123,124].

5.5.1 Beyond Quasi-Isotropy: Chaos and Nontrivial Topology

A significant improvement and generalization of the theory is expected by
taking into account the role of nontrivial topology of configuration space.
As is repeatedly stated throughout the present book, nontrivial topology of
configuration space and of its submanifolds corresponds to the existence of
critical points of the potential V : a generic situation indeed, which affects the
(in)stability properties of the dynamics (see the beginning of Chapter 8).

In what follows we briefly draw the reader’s attention to an interesting
difference among the three models for which we have provided an analytic
computation of the largest Lyapunov exponent. This difference consists in the
absence of critical points in the case of the FPU β model and, in contrast, in
the existence of a large number of critical points in the case of both the 1D
and mean-field XY models. This difference is closely related to the different
capabilities of the effective instability equation (5.27) to predict the good
values of the Lyapunov exponent.
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Let us begin by considering the FPU β model, described by the potential
function of the Hamiltonian (2.115), and let us look for its critical points,
i.e., those points where ∇V = 0. For i = 1, . . . , N we have to solve

∇iV = −(qi+1 − qi) + (qi − qi−1)− u(qi+1 − qi)3 + (qi − qi−1)3 = 0 .

Put ξi = (qi − qi−1). It is

∇iV = ξi(1 + uξ2i )− ξi+1(1 + uξ2i+1) = 0 ,

and the solutions are ξi = 0, i = 1, . . . , N , and ξi = ξi+1, i = 1, . . . , N . The
first solution means that for any i, i′ it is qi = qi′ , that is, all the particles
are displaced from their equilibria by the same amount. The second solution
means that for i = 1, . . . , N it is (qi+1− qi) = (qi− qi−1), which has the same
meaning of the previous solution, and both solutions entail that either for fixed
boundary conditions or for periodic boundary conditions plus fixed center of
mass, the only critical point of the potential corresponds to the equilibrium
solution of lowest potential energy, that is, qi = 0, i = 1, . . . , N . At higher
potential energies there are no other critical points. As a consequence, all
the level sets Σv = V −1(v) and the regions bounded by them, Mv = {q ∈
R

N |V (q) ≤ v}, have the same (trivial) topology.
Thus the mechanical manifolds associated with the FPU β model, both

(ME , gJ ) and (M × R
2, gE), which are defined on configuration space, are

topologically trivial. At the same time, we have also seen in Section 5.4.1 that
the quasi-isotropy assumption, which led to the effective (in)stability equation
(5.27), works very well for the FPU β model and thus seems a posteriori well
justified.

Another interesting example, for which the assumption of quasi-isotropy
seems to work very well because of trivial topology of configuration space, is
provided in [177]. The model, introduced to describe DNA denaturation, and
defined by the Hamiltonian

H =
∑

n

[
m

2
ẏ2

n +
K

2
(yn − yn+1)2 +D(e−ayn − 1)2

]
,

corresponds to a topologically trivial configuration space below the unbinding
transition energy [178], that is, where the dynamics is non-trivial, the largest
Lyapunov exponent is non-vanishing, and its analytic prediction through
(5.45) and (5.46) is in excellent agreement with the numerical findings.

In contrast, in the case of the one-dimensional chain of rotators, or 1D
XY model, the quasi-isotropy assumption led to the underestimation of λ in
an intermediate energy range, where chaos is strong. An excess of negative
sectional curvatures with respect to what is predicted by the quasi-isotropy
assumption is responsible for the observed enhancement of chaos. On the
other hand, as we show in Section 10.4.2, there is a large number of criti-
cal points in the configuration space of this model (see Figure 10.8) and as
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we have discussed in the introduction and at the beginning of Chapter 8,
the neighborhoods of critical points of the potential are “scatterers” of the
trajectories, which enhance chaos by adding to parametric instability another
instability mechanism. Necessarily these two facts, excess of negative sectional
curvatures and existence of many neighborhoods of critical points, are the
same phenomenon seen from different viewpoints. Also, the mean-field XY
model, as is largely discussed in Chapter 10, has a huge number of critical
points, but apparently they work in the opposite way with respect to the 1D
XY model. In fact, with respect to the prediction based only on the quasi-
isotropy assumption, the presence of critical points weakens chaos instead of
strengthening it. This is not necessarily surprising; for example, the hyperbolic
critical point of the Hamiltonian of a reversed pendulum can lose its unstable
character by a fast parametric modulation (a fast oscillation of its pivotal
point). In other words, the interplay between the two instability mechanisms
must be nontrivial and, according to the model under consideration, has to
be able either to enhance or to weaken chaos.

Now, since the existence of critical points—and correspondingly of a non-
trivial topology of configuration space—should be a rather common feature
of physical potentials, in order to further develop the Riemannian theory of
Hamiltonian chaos beyond the restrictive assumption of quasi-isotropy, we
have to take into account the role of nontrivial topology by generalizing the
instability equation (1.10) in the form of a vector effective equation, which
might read

d2

ds2

(
ψ
φ

)
+
(
κ(s) α
β γ

)(
ψ
φ

)
= 0 , (5.108)

where α, β, γ are functions, to be worked out by the future developments of
the theory, accounting for the relative frequency of encounters of neighbor-
hoods of critical points, for the average number of unstable directions, and
for the mentioned interplay between the two instability mechanisms. Then
the instability exponent from (5.108) would be the average growth rate of
‖ψ2‖+ ‖ψ̇2‖+ ‖φ2‖+ ‖φ̇2‖.

How to develop the theory so as to transform the wishful thinking rep-
resented by (5.108) into a real theoretical tool, is an open problem of great
relevance within the present context, and it certainly deserves much attention
and effort.

5.6 A Technical Remark on the Stochastic
Oscillator Equation

In the following we will briefly describe how to cope with the stochastic
oscillator problem that we encountered in Section 5.3.1. The discussion closely
follows van Kampen [165], where all the details can be found.
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A stochastic differential equation can be put in the general form

F (x, ẋ, ẍ, . . . , Ω) = 0, (5.109)

where F is an assigned function and the variableΩ is a random process defined
by a mean, a standard deviation, and an autocorrelation function. A function
ξ(Ω) is a solution of this equation, if ∀Ω F (ξ(Ω), Ω) = 0. If equation (5.109)
is linear of order n, it is written as

u̇ = A(t, Ω)u , (5.110)

where

u =

⎛⎜⎜⎜⎜⎜⎝
u1

u2

u3

...
un

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
x
ẋ
ẍ
...
x(n)

⎞⎟⎟⎟⎟⎟⎠ , (5.111)

and A is an n× n matrix whose elements Aμν(t) depend randomly on time.
For the purposes of the present chapter, we are interested in the evolution

of the quantities uνuμ, rather than of the uμ’s themselves. The products uμuν

obey the differential equation

d

dt
(uνuμ) =

∑
k,λ

Ãνμ,kλ(t)(ukuλ) , (5.112)

where
Ãνμ,kλ = Aνkδμλ + δνkAμλ . (5.113)

However, both (5.110) and (5.112) have exactly the same form and can be
solved using the same procedure, thus, let us first consider such a procedure
in general. In the following formulas, u refers to a vector whose components
are either the uμ’s or the uμuν ’s, and A denotes either the matrix A in
(5.110) or the matrix Ã whose elements are given by (5.113). Then we apply
this procedure to the case of the stochastic harmonic oscillator.

Now, solving a linear stochastic differential equation means determining
the evolution of the average of u(t), 〈u(t)〉, where the average is carried over
all the realizations of the process. Let us consider the matrix A as the sum

A(t, Ω) = A0(t) + αA1(t, Ω) , (5.114)

where the first term is Ω-independent and the second one is randomly fluc-
tuating with zero mean. Let us also assume that A0 is time-independent. If
the parameter α which determines the fluctuation amplitude, is small, we can
treat (5.110) by means of a perturbation expansion. It is convenient to use
the interaction representation, so that we put

u(t) = exp(A0t)v(t) (5.115)
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and
A1(t) = exp(A0t)v(t) exp(−A0t) . (5.116)

Formally one is then led to a Dyson expansion for the solution v(t). Then,
going back to the previous variables and averaging, the second-order approx-
imation gives

d

dt
〈u(t)〉 =

{
A0 +α2

∫ +∞

0

〈A1(t) exp(A0τ)A1(t− τ)〉 exp(−A0τ)dτ
}
〈u(t)〉 .
(5.117)

Let us remark that if the stochastic process Ω is Gaussian, (5.117) is more
than a second-order approximation: it is exact. In fact, the Dyson series can
be written in compact form as

〈u(t)〉 = T

[〈
exp

(∫ t

0

A(t′)dt′
)〉]

〈u(0)〉 , (5.118)

where T [· · ·] stands for a time-ordered product. According to Wick’s procedure
we can rewrite (5.118) as a cumulant expansion, and when the cumulants of
higher than the second order vanish (as in the case of a Gaussian process) one
can easily show that (5.117) is exact.

We now apply this general approach to the case of interest for the main
text, i.e., to the stochastic harmonic oscillator equation, which is the second-
order linear stochastic differential equation given by

ẍ+Ω(t)x = 0 , (5.119)

where Ω(t) is the random squared frequency Ω = Ω0 + σΩη(t), where Ω0

is the mean of Ω(t), σΩ is the amplitude of the fluctuations, and η(t) is a
stochastic process with zero mean. In this case, (5.110) has the form

d

dt

(
x
ẋ

)
=
(

0 1
−Ω 0

)(
x
ẋ

)
. (5.120)

In particular, we are interested in obtaining the averaged equation of motion
for the second moments. Using (5.113) and (5.120), one finds that (5.112)
becomes

d

dt

⎛⎝ x2

ẋ2

xẋ

⎞⎠ =

⎛⎝ 0 0 2
0 0 −2Ω
−Ω 1 0

⎞⎠⎛⎝ x2

ẋ2

xẋ

⎞⎠ = A

⎛⎝ x2

ẋ2

xẋ

⎞⎠ . (5.121)

As in (5.114), the matrix A splits into

A(t) = A0 +σΩη(t)A1 =

⎛⎝ 0 0 2
0 0 −2Ω0

−Ω0 1 0

⎞⎠+σΩη(t)

⎛⎝ 0 0 0
0 0 −2
−1 0 0

⎞⎠ , (5.122)
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so that the equation for the averages becomes

d

dt

⎛⎝ 〈x2〉
〈ẋ2〉
〈xẋ〉

⎞⎠ =
{
A0 + σ2

Ω

∫ +∞

0

〈η(t)η(t− t′)〉B(t′)dt′
}⎛⎝ 〈x2〉

〈ẋ2〉
〈xẋ〉

⎞⎠ , (5.123)

where B(t) = A1 exp(A0t)A1 exp(−A0t).
When the process η(t) is Gaussian and δ-correlated, (5.123) is exact, and

the integral can be computed explicitly: writing 〈η(t)η(t− t′)〉 = τδ(t′), where
τ is the correlation time scale of the random process, we obtain

d

dt

⎛⎝ 〈x2〉
〈ẋ2〉
〈xẋ〉

⎞⎠ =
{
A0 +

σ2
Ωτ

2
B(0)

}⎛⎝ 〈x2〉
〈ẋ2〉
〈xẋ〉

⎞⎠ . (5.124)

From the definition of B(t) it follows then that B(0) = A2
1, and by an easy

calculations we obtain

A0 + σ2
ΩτA

2
1 =

⎛⎝ 0 0 2
σ2

Ωτ 0 −2Ω0

−Ω0 1 0

⎞⎠ , (5.125)

which is the result used in Section 5.3.1.



Chapter 6

Geometry of Chaos and Phase Transitions

In the previous chapters we have shown how simple concepts belonging to
classical differential geometry can be successfully used as tools to build a
geometric theory of chaotic Hamiltonian dynamics. Such a theory is able to
describe the instability of the dynamics in classical systems consisting of a
large number N of mutually interacting particles, by relating these proper-
ties to the average and the fluctuations of the curvature of the configuration
space. Such a relation is made quantitative through (5.45), which provides an
approximate analytical estimate of the largest Lyapunov exponent in terms
of the above-mentioned geometric quantities, and which compares very well
with the outcome of numerical simulations in a number of cases, three of which
have been discussed in detail in Chapter 5.

The macroscopic properties of large-N Hamiltonian systems can be
understood by means of the traditional methods of statistical mechanics.
One of the most striking phenomena that may occur in such systems is that
when the external parameters (e.g., either the temperature or the energy) are
varied until some critical value is reached, the macroscopic thermodynamic
quantities may suddenly and even discontinuously change, so that though
the microscopic interactions are the same above and below the critical value
of the parameters, their macroscopic properties may be completely different.
Such phenomena are referred to as phase transitions (see Chapter 2). In
statistical mechanics, phase transitions are explained as true mathematical
singularities that occur in the thermodynamic functions in the limit N →∞,
the so-called thermodynamic limit. Such singularities come from the fact that
the equilibrium probability distribution in configuration space, which in the
canonical ensemble is the Boltzmann weight

!can(q1, . . . , qN ) =
1
Z

exp [−βV (q1, . . . , qN )] , (6.1)

where β = 1/kBT , V is the potential energy, and Z =
∫
dq e−βV (q) is

the configurational partition function, can itself develop singularities in the
thermodynamic limit.

189
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The statistical-mechanical theory of phase transitions is one of the most
elaborate and successful physical theories now at hand, and at least as far as
continuous phase transitions are concerned, also quantitative predictions can
be made, with the aid of renormalization-group techniques, that are in very
good agreement with laboratory experiments and numerical simulations. We
are not going to discuss this here, referring the reader to the vast literature
on the subject [109,179–183].

However, the origin of the possibility of describing Hamiltonian systems
via equilibrium statistical mechanics is the chaotic properties underlying the
dynamics. In fact, though it is not possible to prove that generic Hamiltonian
systems of the form (1.1) are ergodic and mixing, the fact that the trajectories
are mostly chaotic (i.e., for the overwhelmingly majority of the trajectories
positive Lyapunov exponents are found) means that such systems can be
considered ergodic and mixing for all practical purposes.

The observation that chaos is at the origin of the statistical behavior of
Hamiltonian systems and that chaotic dynamics can be described by means
of the geometric methods described above naturally leads to the follwing two
questions:

1. Is there any specific behavior of the largest Lyapunov exponent when the
system undergoes a phase transition?

2. What are the geometric properties of the configuration-space manifold in
the presence of a phase transition?

The aim of the present section is to discuss these two questions. We shall
first give a concise phenomenological description that follows from numerical
experiments, and then we shall report some analytically computed geometric
quantities in the case of the mean-field XY model. From the discussion of the
questions above and from the (at least partial) answers that we find, we are
led to put forward a topological hypothesis about phase transitions, which
will be discussed in Chapter 7.

6.1 Chaotic Dynamics and Phase Transitions

In order to look for an answer to question 1 above, we now review
the numerical results that have been obtained up until now for various
Hamiltonian dynamical systems that show a phase transition when consid-
ered as statistical-mechanical models for macroscopic systems in thermal
equilibrium.

The first attempt to look for a chaotic-dynamic counterpart of an equi-
librium phase transition is in the work by Butera and Caravati (BC) [91].
BC considered a two-dimensional XY model, i.e., a Hamiltonian dynamical
system described by

H =
n∑

i,j=1

{
1
2
p2i,j + J

[
2− cos(qi+1,j − qi,j)− cos(qi,j+1 − qi,j)

]}
, (6.2)
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where the qij ’s are angles, i and j label the sites of a square lattice, and the sum
runs over all the nearest-neighbor sites. This model is the two-dimensional ver-
sion of the one studied in Section 5.4.3. As the temperature is decreased, such
a system undergoes a peculiar phase transition (referred to as the Berežinskij–
Kosterlitz–Thouless, or BKT, transition) from a disordered phase to a quasi-
ordered phase, where, though no true long-range order is present, correlation
functions decay as power laws, as occurs at a critical point [109]. Since there
are no singularities in the finite-order derivatives of the free energy, the BKT
transition is sometimes classified as an “infinite-order” phase transition. BC
computed the Lyapunov exponent λ as a function of the temperature, and
found that λ(T ) followed a rather smooth pattern; however, in a region around
the transition, the dependence of λ on T changed from a steeply increasing
function to a much less steep one.

BC’s pioneering paper was for a long time the only example of a study
of this kind. However, very recently there has been a renewed interest in the
study of the behavior of Lyapunov exponents in systems undergoing phase
transitions, and a number of papers have appeared [87,89,90,92,111–114,116,
175,184–187]. In [92,105], the two-dimensional XY model has been reconsid-
ered, together with the three-dimensional case, defined by the Hamiltonian

H =
n∑

i,j,k=1

{
1
2
p2i,j,k + J

[
3 − cos(qi+1,j,k − qi,j,k)− cos(qi,j+1,k − qi,j,k)

− cos(qi,j,k+1 − qi,j,k)
]}

. (6.3)

We remark that in three spatial dimensions the XY model undergoes a stan-
dard continuous (second-order) phase transition accompanied by the breaking
of the O(2) symmetry of the potential energy (6.3). The behavior of the largest
Lyapunov exponent λ as a function of the temperature T is shown in Figures
6.1 and 6.2. The behavior found for the two-dimensional case confirms the BC
results. The three-dimensional case shows a similar behavior, but the change
of the shape of the λ(T ) function near Tc is somehow sharper than in the
previous case.

Dellago and Posch [113] considered an extended XY model, whose poten-
tial energy is

V = 2− 2
∑
〈i,j〉

cos
(
qi − qj

2

)p2

, (6.4)

which includes the standardXY model (6.2) for p2 = 2. On a two-dimensional
lattice the transition, which is a continuous BKT transition for p2 = 2,
becomes a discontinuous transition for p2 = 100. The results for the Lyapunov
exponent λ show that for any considered value of p2 there is a change in the
shape of λ(T ) close to the critical temperature.
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Fig. 6.1. Lyapunov exponent λ vs. the temperature T for the two-dimensional XY
model defined in 2.121: the circles refer to a 10 × 10, the squares to a 40 × 40, the
triangles to a 50× 50, and the stars to a 100× 100 lattice. The critical temperature
of the BKT transition is Tc ≈ 0.95. From [92].

Fig. 6.2. Lyapunov exponent λ vs. the temperature T for the three-dimensional XY
model, defined in 2.122, numerically computed on an N = 10×10×10 lattice (solid
circles) and on an N = 15× 15× 15 lattice (solid squares). The critical temperature
of the phase transition is Tc ≈ 2.15. From [92].

One of the systems that have received considerable attention in this frame-
work is the so-called lattice ϕ4 model, i.e., a system with a Hamiltonian of
the form (1.1) and a potential energy given by

V =
J

2

∑
〈i,j〉

(ϕi − ϕj)2 +
∑

i

[
−r

2

2
ϕ2

i +
u

4!
ϕ4

i

]
, (6.5)
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where the ϕ’s are scalar variables, ϕi ∈ [−∞,+∞] defined on the sites of a
d-dimensional lattice, and r2 and u are positive parameters. The lattice ϕ4

model has a phase transition at a finite temperature provided that d > 1. The
existence of such a transition, which belongs to the universality class of the
d-dimensional Ising model, can be proved by renormalization-group arguments
(see, e.g., [179, 188]). The cases d = 2 and d = 3 have been considered in [89]
and [90], respectively. Moreover, in [90] also some vector versions of this model
have been considered, namely, systems with potential energy given by

V =
J

2

∑
〈i,j〉

∑
α

(ϕα
i −ϕα

j )2 +
∑

i

⎧⎨⎩−r22 ∑
α

(ϕα
i )2 +

u

4!

[∑
α

(ϕα
i )2

]2
⎫⎬⎭ , (6.6)

where α runs from 1 to n, with the components of the vectors labeled ϕi =
(ϕ1

i , . . . , ϕ
n
i ). The potential energy (6.6) is O(n)-invariant; in the case n = 1

we recover the scalar model (6.5). Figures 6.3 and 6.4 show the behavior of
λ in the ϕ4 model, in two and three dimensions, respectively. Again we see
that the Lyapunov exponent is sensitive to the presence of the transition,
and that the shape of λ(T ) close to the transition is highly model-dependent.
Moreover, such a shape can be significantly different within the same model
as its parameters are varied. For instance, in the ϕ4 model, λ either can be
a monotonically increasing function of T or can display a maximum close to
Tc, depending on the values of r2 and u [89].

The Lyapunov exponents of systems undergoing phase transitions of the
solid–liquid type have been recently determined numerically: Dellago and

Fig. 6.3. Lyapunov exponent λ vs. the energy per particle ε, numerically computed
for the two-dimensional O(1) ϕ4 model, with N = 100 (solid circles), N = 400
(open circles), N = 900 (solid triangles), and N = 2500 (open triangles). The
critical energy is marked by a vertical dotted line, and the dashed line is the power
law ε2. From [89].
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Fig. 6.4. Lyapunov exponent λ1 vs. the temperature T for the three-dimensional
ϕ4 model. Full circles correspond to the O(1) (scalar) case, open circles to the O(2)
case, and open triangles to the O(4) case. From [90].

Posch (DP) considered, in two dimensions, a system of hard disks [111], a
Lorentz-gas-like model, and a Lennard-Jones fluid [112], and, in three dimen-
sions, a system of hard spheres [114]. DP found that in all these systems the
Lyapunov exponent is sensitive to the phase transition, and again the shape
of λ is different for different models, the common feature being that λ attains
a maximum close, if not at, the transition. Similar results have been obtained
by Mehra and Ramaswamy [186]. Bonasera et al. [184] considered a classical
model of an atomic cluster, whose particles interact via phenomenological pair
potentials of the form

v(r) = a e−( br
σ ) − c

(σ
r

)6

, (6.7)

and of a nuclear cluster, with nucleons interacting via Yukawa pair potentials.
Such systems undergo a so-called multifragmentation transition at a critical
(model-dependent) temperature Tc. Bonasera et al. computed the Lyapunov
exponents of these systems by means of numerical simulations at different
temperatures. The resulting λ(T ) of both systems develops a sharp maximum
close to Tc.

An interesting example of a phase transition that is not characterized by an
order parameter is provided by the so-called Θ-transition in homopolymers.
This is a transition between a globular configuration and a filamentary (or
swollen) one of an atomic chain free to move in space. Traditionally signaled
by a change of the scaling with N of the so-called gyration radius of the
polymer, this transition is, however, well signaled by a peculiar energy pattern
of the largest Lyapunov exponent [88,189].
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The model Hamiltonian for a so-called Lennard–Jones homopolymer com-
posed of N + 1 beads connected by springs is [190–192]

H =
N∑

i=0

p2
i

2
+

N∑
i=1

∑
j<i

[
δi,j+1fspr(rij) +

(
σ

rij

)12

− ηij

(
σ

rij

)6
]
, (6.8)

where the pi are the canonical momenta, and a configuration of the chain is
defined by the positions {q0, . . . , qN} of the beads in D-dimensional continu-
ous space. The rij = |rij | = |qi − qj | are the interparticle distances.

The expression fspr(rij), representing spring-like anharmonic interactions
between neighboring beads in the homopolymer chain, is given by

fspr(rij) =
a

2
(rij − r0)2 +

b

4
(rij − r0)4 , (6.9)

where r0 is the equilibrium distance between nearest neighbors along the
chain. From the numerical simulation of the dynamics of this model one
obtains λ1(ε). This is reported in Figure 6.5. A sharp change in the slope of
λ1(ε) takes place at the same value of the energy density which has been esti-
mated to be the transition energy εθ through the standard analysis based on
the scaling withN of the gyration radius. Even though the Θ-transition is only
properly defined in the thermodynamic limit N →∞, numerical calculations
of the Lyapunov exponent for N = 25 and N = 50 already appear to indicate
the existence of the transition between a globular configuration and a filamen-
tary one.

The numerical evidence that we have reviewed above, clearly shows that
the Lyapunov exponent of a Hamiltonian dynamical system is sensitive to the
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Fig. 6.5. Two-dimensional Lennard-Jones homopolymer. Cross-over between two
different behaviors of the Lyapunov exponent λ1 vs. the energy density ε at the
Θ-transition point. From [88].
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presence of a phase transition. However, the interpretation of the observed
behavior as it now stands is difficult, because each model behaves differently
and the behavior of λ close to the transition does not apparently exhibit any
universal feature: on the other hand, there is no reason for this to happen,
and the shape of λ(T ) can depend on the values of the parameters of the
model. However, the qualitative behavior of λ(T ) appears to detect whether
the transition is accompanied by a symmetry breaking, as in the case of the
XY model: the shape of λ(T ) in two dimensions, where there is not any break-
ing of the O(2) symmetry of the potential energy below the BKT transition
temperature, is more “rounded” with respect to the corresponding shape of
λ(T ) in the three-dimensional case, where the phase transition is accompa-
nied by a symmetry breaking. In the latter case the “knee” of the λ(T ) curve
is sharper. The difference between the two models is better appreciated by
looking at the insets of Figures 6.1 and 6.2. As it will become clearer in the
following, and, in particular, at the beginning of Chapter 8, we can anticipate
that the largest Lyapunov exponent seems a “good” probing observable for
the distribution of the critical points of the potential function in configura-
tions space. Thus, the energy-pattern of λ should detect sudden changes of
the topology of configuration-space submanifolds. And these sudden changes
have no reason to occur in a model-independent way.

6.2 Curvature and Phase Transitions

In Chapter 5 we have seen that the origin of chaos in Hamiltonian mechanics
can be understood from a geometrical point of view, and that the Lyapunov
exponents are closely related to a geometric quantity, i.e., to the fluctuations of
the Ricci curvature of the configuration space. Thus, it is natural to investigate
whether such a geometric observable also has some peculiar behavior close to
the phase transition. As we shall see in the following, the fluctuations of the
curvature do indeed have such a peculiar behavior, which, in turn, suggests a
topological intepretation of the phase transition itself.

The Ricci curvature along a geodesic of the enlarged configuration space-
time equipped with the Eisenhart metric, which we denoted by KR in the
previous chapters, is given by the Laplacian of the potential energy; see (5.30).
In the case of the XY model we obtain, as already shown in Section 5.4.3,

KR = 2N − 2V = 2
∑
〈i,j〉

cos(qi − qj) . (6.10)

The root mean square fluctuation of KR divided by the number of degrees of
freedom N , i.e.,

σk =
(

1
N
〈K2

R〉 − 〈KR〉2
)1/2

, (6.11)

is plotted in Figures 6.6 and 6.7 for the 2D and 3D cases, respectively.
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Fig. 6.6. Fluctuations of the Ricci curvature (Eisenhart metric), σk(T ), vs. the
temperature T for the two-dimensional XY model. The solid circles are numerical
values obtained for a 40× 40 lattice; the dashed line is only a guide to the eye. The
critical temperature of the BKT transition is Tc ≈ 0.95 and is marked by a dotted
line. From [92].

s

Fig. 6.7. Like Figure 6.6, for the three-dimensional XY model. Here N = 10×10×
10, and the critical temperature of the phase transition is Tc ≈ 2.15. From [92].
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In the case of the ϕ4 model with O(n) symmetry, the Ricci curvature KR

is given by [89,90]

KR =
n∑

α=1

N∑
i=1

∂2V

∂(ϕα
i )2

= Nn(2Jd− r2) + λ(n+ 2)
n∑

α=1

N∑
i=1

(ϕα
i )2 . (6.12)

The root mean squared fluctuation of KR, σk, is plotted against the energy
per degree of freedom, ε, in the case of the two-dimensional O(1) ϕ4 model in
Figure 6.8, and against the temperature T in the case of the two-dimensional
O(2) ϕ4 model in Figure 6.9, and for the three-dimensional O(n) ϕ4 models
in Figure 6.10.

Looking at Figures 6.6 and 6.10, one can clearly see that when a symmetry-
breaking phase transition occurs, a cusplike (“singular”) behavior of the cur-
vature fluctuations is found at the phase transition point (Figures 6.7, 6.8
and 6.10), while when only a BKT transition is present, no cusplike pattern is
observed1 (Figures 6.6 and 6.9). We can summarize these results by saying that
in general, curvature fluctuations always show a cusplike behavior when a con-
tinuous symmetry-breaking phase transition is present, and, within numerical
accuracy, the cusp occurs at the critical temperature. No counterexamples
have yet been found to this general rule.

Fig. 6.8. Root mean square fluctuation of the Ricci curvature (Eisenhart metric) σk,
divided by the average curvature k0, numerically computed for the two-dimensional
O(1) ϕ4 model. The inset shows a magnification of the region close to the transition.
Symbols as in Figure 6.3. From [89].

1 Although the cusplike behavior is lost, indeed some change of behavior is still
visible in Figures 6.6 and 6.9 close to the critical temperature, so that a BKT
transition appears as “intermediate” between the absence of a phase transition
and the presence of a symmetry-breaking phase transition.
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Fig. 6.9. Curvature fluctuations σΩ (notation of [90]) vs. the temperature T for
the two-dimensional O(2) ϕ4 model, numerically computed on a square lattice of
30×30 sites. The critical temperature Tc of the BKT transition is located at Tc ≈ 1.5.
From [90].

Fig. 6.10. Curvature fluctuations σΩ (notation of [90]) vs. the temperature T for
the three-dimensional ϕ4 model. Full circles correspond to the O(1) (scalar) case,
open circles to the O(2) case, and open triangles to the O(4) case. From numerical
simulations performed on an 8 × 8 × 8 cubic lattice, reported in [90].

The fact that the Lyapunov exponent is sensitive to the phase transition
can now be understood, in the light of the fact that, as shown in the preceding
chapters, chaos can be described geometrically, and under suitable assump-
tions, the Lyapunov exponent is closely related to the fluctuations of the
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Ricci curvature2 (see (5.47)). Thus, it is not surprising that also the energy
(or temperature) pattern of the fluctuations of the Ricci curvature, σk(ε) (or
σk(T ) ), is a good observable to detect a phase transition. Both σk(ε) and
σk(T ) exhibit a clearly peculiar (“cuspy”) pattern when a symmetry-breaking
phase transition is present. In order to compare how λ(T ) and σk(T ) detect
a phase transition, one has to look at Figures 6.4 and 6.10, where λ(T ) and
σk(T ) are reported, respectively, for the O(n) ϕ4 models in 3D for n = 1, 2, 4.
Likewise, Figures 6.3 and 6.8 allow one to make the comparison in the case of
the 2D O(1) ϕ4 model, and Figures 6.2 and 6.7 for the 3D XY -model.

6.2.1 Geometric Estimate of the Lyapunov Exponent

At this point, it is worthwhile to point out that we can apply the geometric
formula (5.46) for the Lyapunov exponent to estimate λ for all these models,
since both k0 and σk have been numerically computed. As shown in [89,90,92],
one finds that in general, although the qualitative behavior of the Lyapunov
exponent is well reproduced, the quantitative agreement between the values
of λ extracted from the numerical simulations and those obtained applying
(5.46) is not good, in a neighborhood of the phase transition.

However, this is to be expected, because among the assumptions under
which the formula (5.46) was derived there was the hypothesis that the fluc-
tuations of the curvature should be not too large, and this does not seem to
be the case close to a phase transition, as we have just shown.3

6.3 The Mean-Field XY Model

The mean-field XY model [110] describes a system of N equally coupled
planar classical rotators. It is defined by a Hamiltonian of the class (1.1),
where the potential energy is

V (ϕ) =
J

2N

N∑
i,j=1

[1− cos(ϕi − ϕj)]− h
N∑

i=1

cosϕi . (6.13)

Here ϕi ∈ [0, 2π] is the rotation angle of the ith rotator and h is an external
field. Defining at each site i a classical spin vector si = (cosϕi, sinϕi), the
model describes a planar (XY ) Heisenberg system with interactions of equal

2 The assumption of quasi-isotropy is somewhat restrictive because it seems to be
adequate mainly when the mechanical manifolds are topologically trivial, how-
ever, as we shall see in the next chapter, also nontrivial topology brings about
curvature fluctuations of its own.

3 The results of the formula (5.46) can be improved using procedures that are
specific to the model under consideration and that we are not going to describe
here (see [92] for the XY case and [90] for the ϕ4 case).
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strength among all the spins. We consider only the ferromagnetic case J > 0;
for the sake of simplicity, we set J = 1. The equilibrium statistical mechanics
of this system is exactly described, in the thermodynamic limit, by mean-field
theory [110]. In the limit h→ 0, the system has a continuous phase transition,
with classical critical exponents, at Tc = 1/2, or εc = 3/4, where ε = E/N is
the energy per particle.

The Lyapunov exponent λ of this system is extremely sensitive to the
phase transition. In fact, according to numerical simulations reported in
[175, 176, 187, 193], λ(ε) is positive for 0 < ε < εc, shows a sharp maxi-
mum immediately below the critical energy, and drops to zero at εc in the
thermodynamic limit, where it remains zero in the whole region ε > εc, which
corresponds to the thermodynamic disordered phase. In fact, in this phase the
system is integrable, reducing to an assembly of uncoupled rotators. These
results are valid in the thermodynamic limit N → ∞ in the sense that they
have been obtained by estimating the infinite-N limit of finite-N numerical
simulations [175, 187]: in the whole region ε > εc the Lyapunov exponent,
numerically computed for systems with different numbers of particles N ,
behaves as λ ∝ N−1/3, so that it extrapolates to zero at N →∞.

These results have received a theoretical confirmation in a work based on
the application of the geometric techniques described in the preceding chap-
ter [87]. The analytic computation of 〈kR〉 and 〈δ2kR〉 in the thermodynamic
limit for the mean-field XY model, show that these quantities indeed have a
singular behavior at εc (see Figure 6.11). Using these quantities and (5.46),
the analytical estimate for λ(ε) is obtained. This is reported in Figure 5.13;
it is remarkable that also the behavior λ ∝ N−1/3 at ε > εc has been
extracted from this theoretical calculation (see Section 5.4.4). This result gives
a theoretical confirmation to the qualitative behavior of the Lyapunov expo-
nent extrapolated from the numerical simulations. Moreover, these analytical

Fig. 6.11. Mean-field XY model: analytic expression for the microcanonical averages
of the Ricci curvature (solid curve) and of its fluctuations (dotted curve). From [87].
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results are in good quantitative agreement with numerical results reported
in [176,187], also close to the phase transition and at variance with the cases
of the nearest-neighbor XY and ϕ4 models considered earlier. A tentative
explanation of why the application of the geometric formula (5.46) gives such
good quantitative results in the present case can be that the mean-field char-
acter of the model prevents the curvature fluctuations from being too wild.



Chapter 7

Topological Hypothesis on the Origin of
Phase Transitions

In the previous chapter we have reported results of numerical simulations
for the fluctuations of observables of a geometric nature (e.g., configuration-
space curvature fluctuations) related to the Riemannian geometrization of the
dynamics in configuration space.1 These quantities have been computed, using
time averages, for many different models undergoing continuous phase transi-
tions, namely ϕ4 lattice models with discrete and continuous symmetries and
XY models. In particular, when plotted as a function of either the temperature
or the energy, the fluctuations of the curvature have an apparently singular
behavior at the transition point. Moreover, we have seen that the presence of
a singularity in the statistical-mechanical fluctuations of the curvature at the
transition point has been proved analytically for the mean-field XY model.

The aim of the present chapter is to try to understand on a deeper level the
origin of this peculiar behaviour. In Section 7.1, we will show, using abstract
geometric toy models, that a singular behavior in the fluctuations of the curva-
ture of a Riemannian manifold can be associated with a change in the topology
of the manifold itself. By “change of topology” we mean the following. Let us
consider a surface Sε that depends on a parameter ε in such a way that upon
varying the parameter, the surface is continuously deformed: as long as the
different deformed surfaces can be mapped smoothly one onto another,2 the
topology does not change; however, the topology changes if there is a critical
value of the parameter, say εc, such that the surface Sε>εc can no longer be
mapped smoothly onto Sε<εc .

The observation that a singularity in the curvature fluctuations of a
Riemannian manifold, of the same type as those observed numerically at phase
transitions, can be associated with a change in the topology of the manifold
leads us to conjecture that it is just this mechanism that could be the basis

1 More precisely, we considered the enlarged configuration space-time, endowed
with the Eisenhart metric.

2 The different surfaces are then said to be diffeomorphic to each other (see
Appendix A).

203
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of thermodynamic phase transitions. Such a conjecture was originally put
forward in [92] as follows: a thermodynamic transition might be related to a
change in the topology of the configuration space, and the observed singular-
ities in the statistical-mechanical equilibrium measure and in the thermody-
namic observables at the phase transition might be interpreted as a “shadow”
of this major topological change that happens at a more basic level. We will
refer to this conjecture as the topological hypothesis (TH).

In a first part of this chapter, we report about the logical path that,
through heuristic and indirect evidence, led us to formulate the TH. In the
second part of this chapter, a first direct numerical support to the validity of
the TH is given for a specific model.

7.1 From Geometry to Topology: Abstract
Geometric Models

Let us now describe how a singular behavior of the curvature fluctuations of
a manifold can be put in correspondence with a change in the topology of the
manifold itself. For the sake of clarity, we shall first discuss a simple example
concerning two-dimensional surfaces [90,92], and then we will generalize it to
the case of N -dimensional hypersurfaces [194,195].

The simple geometric model we are going to describe concerns surfaces
of revolution. A surface of revolution S ∈ R

3 is obtained by revolving the
graph of a function f around one of the axes of a Cartesian plane, and can be
defined, in parametric form, as follows [196]:

S(u, v) ≡ (x(u, v), y(u, v), z(u, v)) = (a(u) cos v, a(u) sin v, b(u)) , (7.1)

where either a(u) = f(u) and b(u) = u, if the graph of f is revolved around
the vertical axis, or a(u) = u and b(u) = f(u), if the graph is revolved
around the horizontal axis; in both cases, u and v are local coordinates on the
surface S: v ∈ [0, 2π] and u belongs to the domain of definition of the function
f .

Let us consider now in particular the two families of surfaces of revolution
defined as

Fε = (fε(u) cos v, fε(u) sin v, u) (7.2)

and
Gε = (u cos v, u sin v, fε(u)) , (7.3)

where
fε(u) = ±

√
ε+ u2 − u4 , ε ∈ [εmin,+∞) , (7.4)

and εmin = − 1
4 . Some cases are shown in Figure 7.1.

There exists for both families of surfaces a critical value of ε, εc = 0,
corresponding to a change in the topology of the surfaces: the manifolds Fε

are diffeomorphic to a torus T
2 for ε < 0 and to a sphere S

2 for ε > 0; the
manifolds Gε are diffeomorphic to two spheres for ε < 0 and to one sphere
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Fig. 7.1. Some representatives of the two families of surfaces Fε and Gε defined in
(7.2) and (7.3) respectively. Each family is divided into two subfamilies by the critical
surface corresponding to εc = 0 (middle members in the picture). Members of the
same subfamily are diffeomorphic, whereas the two subfamilies are not diffeomorphic
to each other. From [90].

for ε > 0. The Euler–Poincaré characteristic (see Appendix A) is χ(Fε) = 0
if ε < 0, and χ(Fε) = 2 otherwise, while χ(Gε) is 4 or 2 for ε negative or
positive, respectively.

We now turn to the definition and the calculation of the curvature fluctu-
ations on these surfaces. Let M belong to one of the two families; its Gaussian
curvature K is [196]

K =
a′(a′′b′ − b′a′′)
a(b′2 + a′2)2

, (7.5)

where a(u) and b(u) are the coefficients of (7.1), and primes denote differen-
tiation with respect to u. The fluctuations of K can be then defined as

σ2
K = 〈K2〉 − 〈K〉2 = A−1

∫
M

K2 dS −
(
A−1

∫
M

K dS

)2

, (7.6)

where A is the area ofM and dS is the invariant surface element. Both families
of surfaces exhibit a singular behavior in σK as ε → εc, as shown in Figure
7.2, in spite of their different curvature properties on average.3

We are now going to show that the result we have just obtained for
two-dimensional surfaces has a much more general validity: a generic topo-
logy change in an n-dimensional manifold is accompanied by a singularity in
its curvature fluctuations [194]. In order to do that, we have to make use of
some concepts belonging to Morse theory, which will also be used in Section
7.4 below; the basic elementary concepts of Morse theory are sketched in

3 For instance, 〈K〉(ε) = 0 for Fε as ε < 0, while for Gε the same average curvature
is positive and diverges as ε → 0.
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Fig. 7.2. The fluctuation σ of the Gaussian curvature of the surfaces Fε and Gε

is plotted vs. ε; σ is defined in (7.6), and ε is shifted by εmin = 0.25 for reasons of
clarity of presentation. (a) refers to Gε and (b) refers to Fε. The cusps appear at
ε = 0, where the topological transition takes place for both Fε and Gε. From [90].

Appendix C, where also references to the literature are given. We consider
then a hypersurface of R

N which is the u-level set of a function f defined in
R

N , i.e., a submanifold of R
N of dimension n = N−1 defined by the equation

f(x1, . . . , xN ) = u ; (7.7)

such a hypersurface can then be referred to as f−1(u). Let us now assume4

that f is a Morse function, i.e., such that its critical points (i.e., the points of
R

N where the differential df vanishes) are isolated. One of the most important
results of Morse theory is that the topology of the hypersurfaces f−1(u) can
change only by crossing a critical level f−1(uc), i.e., a level set containing at
least one critical point of f . This means that a generic change in the topology
of the hypersurfaces can be associated with critical points of f . Now, the
hypersurfaces f−1(u) can be given a Riemannian metric in a standard way
[197], and it is possible to analyze the behavior of the curvature fluctuations
in a neighborhood of a critical point. Let us assume, for the sake of simplicity,
4 This is not a strong assumption: in fact, it can be shown that Morse functions

are generic (see Appendix C).
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Fig. 7.3. Fluctuations of the Gauss curvature of a hypersurface f−1(u) of R
N vs.

u close to a critical point. Here σ
2/N
k is reported because it has the same dimen-

sions of the scalar curvature. Also dim(f−1(u)) = 100, and the Morse indexes are
1, 15, 33, 48, represented by solid, dotted, dashed, and long-dashed lines respectively.
From [194].

that this critical point is located at x0 = 0 and belongs to the level uc = 0. Any
Morse function can be parametrized, in the neighborhood of a x0, by means
of the so-called Morse chart, i.e., a system of local coordinates {yi} such that
f(y) = f(x0) −

∑k
i=1 y

2
i +

∑N
i=k+1 y

2
i (k is the Morse index of the critical

point). Then standard formulas for the Gauss curvature K of hypersurfaces
of R

N [197] can be used to compute explicitly the fluctuations of the curvature,
σK , of the level set f−1(u). Numerical results for the curvature fluctuations
are reported in Figure 7.3 and show that also at high dimension σ2

K develops
a sharp, singular peak as the critical surface is approached (for computational
details are reported in [195]).

7.2 Topology Changes in Configuration Space
and Phase Transitions

As we have discussed in Chapter 6, the curvature fluctuations of the configu-
ration space exhibit cusplike patterns in the presence of a second-order phase
transition. A truly cuspy pattern, i.e., an analytic discontinuity, is mathemati-
cally proven in the case of mean-fieldXY model. In Section 7.1, we have shown
that singular patterns in the fluctuations of the curvature of a Riemannian
manifold can be seen as consequences of the presence of a topology change.
Hence, we are led to the topological hypothesis (TH), i.e., to conjecture that
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at least continuous, symmetry-breaking phase transitions are associated with
topology changes in the configuration space of the system.5

However, an important question arises, in that the fluctuations of the
curvature considered in Chapter 6 have been obtained as time averages,
computed along the dynamical trajectories of the Hamiltonian systems under
investigation (or as statistical averages computed analytically, as in the case
of the mean-field XY model). Now, time averages of geometric observ-
ables are usually found to be in excellent agreement with ensemble aver-
ages [86, 89, 90, 92, 131], so that one could argue that the above-mentioned
singular-like patterns of the fluctuations of geometric observables are simply
the precursors of truly singular patterns due to the fact that the measures
of all the statistical ensembles tend to become singular in the limit N → ∞
when a phase transition is present. In other words, geometric observables,
like any other “honest” observable, already at finite N would feel the even-
tually singular character of the statistical measures, i.e., of the probability
distribution functions of the statistical-mechanical ensembles. If this were the
correct explanation, we could not attribute the cusplike patterns of the cur-
vature fluctuations to any special geometric features of configuration space,
and the cusp-like patterns observed in the numerical simulations could not be
considered as (indirect) confirmations of the TH.

In order to elucidate this important point, three different paths have been
followed: (i) purely geometric information about certain submanifolds of con-
figuration space has been worked out independently of the statistical measures
in the case of the two-dimensional ϕ4 model, and the results lend indirect sup-
port to the TH [194]; (ii) a direct numerical confirmation of the TH has been
given in [198] by means of the computation of a topologic invariant, the Euler
characteristic, in the case of a 2D lattice ϕ4 model; (iii) a direct analytic con-
firmation of the TH has been found in the particular case of the mean-field
XY model [199] and of a trigonometric model with k-body interactions. We
report on items (i) and (ii) in this chapter and (iii) in Chapter 10.

7.3 Indirect Numerical Investigations of the Topology
of Configuration Space

In order to separate the singular effects due to the singular character of sta-
tistical measures at a phase transition from the singular effects due to some
topological transition in configuration space, the first natural step is to con-
sider again σ2

K as an observable, and to integrate it on suitable submanifolds
of configuration space by means of a geometric measure, i.e., by means of a
measure that has nothing to do with statistical ensemble measures.

Consider as ambient space the N -dimensional configuration space M of
a Hamiltonian system with N degrees of freedom, which, when N → ∞,
5 As we shall see in the following chapters, also first-order phase transitions are

necessarily driven by topological changes.
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undergoes a phase transition at a certain finite temperature Tc (or critical
energy per degree of freedom εc), and let V (ϕ) be its potential energy.

Then the relevant geometrical objects are the submanifolds of M
defined by

Mu = V −1(−∞, u] = {ϕ ∈M : V (ϕ) ≤ u} , (7.8)

i.e., each Mu is the set {ϕi}N
i=1 such that the potential energy does not exceed

a given value u. As u is increased from −∞ to +∞, this family covers suc-
cessively the whole manifold M . All the submanifolds Mu can be given a
Riemannian metric g whose choice is largely arbitrary. On all these manifolds
(Mu, g) there is a standard invariant volume measure:

dη =
√

det(g) dϕ1 · · · dϕN , (7.9)

which has nothing to do with statistical measures. Let us finally define the
hypersurfaces Σu as the u-level sets of V , i.e.,

Σu = V −1(u) , (7.10)

which are nothing but the boundaries of the submanifolds Mu.
According to the discussion reported in Section 7.1, an indirect way to

study the presence of topology changes in the family {(Mu, g)} is to look at
the behavior of the fluctuations of the Gaussian curvature, σ2

K , defined as

σ2
K = 〈K2

G〉Σu
− 〈KG〉2Σu

, (7.11)

where 〈·〉 stands for integration over the surface Σu, as a function of u. The
presence of cusplike singularities of σ2

K for some critical value of u, uc, would
eventually signal the presence of a topology change of the family {(Mu, g)}
at uc [194]. Such an indirect geometric probing of the presence of critical
points seems an expedient way to probe the possible topology changes of the
manifolds (Mu, g). In fact, the properties of the manifolds Mu are closely
related to those of the hypersurfaces {Σu}u≤uc , as can be inferred from the
equation ∫

Mu

fdη =
∫ u

0

dv

∫
Σv

f |Σv
dω/‖∇V ‖ , (7.12)

where dω is the induced measure6 on Σu and f a generic function [200]. From
Morse theory (see Appendix C) we know that the surface Σuc

defined by
V = uc is a degenerate quadric, so that in its vicinity some of the principal
curvatures [197] of the surfaces Σu≈uc tend to diverge.7 Such a divergence

6 If a surface is parametrically defined through the equations xi = xi(z1, . . . , zk),
i = 1, . . . , N , then the metric gij induced on the surface is given by

gij(z
1, . . . , zk) =

∑N

n=1
∂xn

∂zi
∂xn

∂zj . See Appendix B.
7 The principal curvatures are the inverse of the curvature radii measured, at any

given point of a surface, in suitable directions. At a Morse critical point some of
these curvature radii vanish.
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is generically detected by any function of the principal curvatures, and thus
for practical computational reasons, instead of the Gauss curvature (which is
the product of all the principal curvatures) we shall consider the total second
variation of the scalar curvature R (i.e., the sum of all the possible products of
two principal curvatures) of the manifolds (Mu, g), according to the definition

σ2
R(u) = [Vol(Mu)]−1

∫
Mu

dη

[
R− [Vol(Mu)]−1

∫
Mu

dηR
]2

(7.13)

with R = gkjRl
klj , where Rl

kij are the components of the Riemann curvature
tensor [see Appendix B] and Vol(Mu) =

∫
Mu
dη. The subsets Mu of config-

uration space are given the structure of Riemannian manifolds (Mu, g) by
endowing all of them with the same metric tensor g. However, the choice of
the metric g is arbitrary in view of probing possible effects of the topology on
the geometry of these manifolds.

What has been hitherto discussed now requires the choice of a model to
perform a numerical investigation. A good candidate is represented by the
so-called ϕ4 model on a d-dimensional lattice Z

d with d = 1, 2, described by
the potential function

V =
∑
i∈Zd

(
−μ

2

2
ϕ2

i +
λ

4
ϕ4

i

)
+

∑
〈ik〉∈Zd

1
2
J(ϕi − ϕk)2 , (7.14)

where 〈ik〉 stands for nearest-neighbor sites. This system has a discrete
Z2-symmetry and short-range interactions; therefore, in d = 1 there is no
phase transition whereas in d = 2 there is a symmetry-breaking transi-
tion, at a finite temperature, of the same universality class of the 2D Ising
model. In [194], three different types of metrics have been considered for this
model, i.e.,

(i) g(1)μν = [A− V (ϕ)]δμν , i.e., a conformal deformation (Section B.3.2) of the
Euclidean flat metric δμν , where A > 0 is an arbitrary constant chosen
large enough to be sure that in the relevant interval of values of u the
determinant of the metric is always positive;

(ii)g(2)μν and g(3)μν are generic metrics (no longer conformal deformations of the
flat metric) defined by

(g(k)
μν ) =

⎛⎝ f (k) 0 1
0 I 0
1 0 1

⎞⎠ , k = 2, 3 , (7.15)

where I is the (N −2)-dimensional identity matrix, g(2) is obtained by set-
ting f (2) = 1

N

∑
α∈Zd ϕ4

α +A, and g(3) by setting f (3) = 1
N

∑
α∈Zd ϕ6

α +A,
with A > 0, and α labels the N lattice sites of a linear chain (d = 1) or of
a square lattice (d = 2, N = n× n).
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These choices are completely arbitrary, however, and only if metrics of very
simple form are chosen are both analytical and numerical computations fea-
sible also for rather large values of N . Thus the first metric has been chosen
diagonal, and the other two metrics concentrate in only one matrix element all
the nontrivial geometric information. Moreover, the first metric still contains a
reference to the physical potential, whereas the other two define metric struc-
tures that are completely independent of the physical potential and contain
only monomials of powers sufficiently high that they do not vanish after two
successive derivatives have been taken (needed to compute curvatures). The
topology of the subsets of points Mu and Σu of R

N is already determined
(though well concealed) by the definitions of (7.8) and (7.10); the task is to
“capture” some information about their topology through a mathematical
object or structure, defined on these sets of points, that is capable of mirror-
ing the variations of topology through the u-pattern of an analytic function.
This idea follows the philosophy of standard mathematical theories of dif-
ferential topology. For example, within Morse theory, the information about
topology is extracted through the critical points of any function—defined on
a given manifold—satisfying some conditions (necessary to be a good Morse
function, see Appendix C), or, within cohomology theory, topology is probed
through vector spaces of differential forms (the de Rham cohomology vector
spaces, see Appendix A) “attached” to a given manifold. Provided that good
mathematical quantities are chosen as topology-variation detectors, arbitrary
Riemannian metric structures could work as well.

For the above-defined metrics g(k), k = 1, 2, 3, simple algebra leads from
the definition of the scalar curvature (see Appendix B) to the following explicit
expressions:

R(1) = (N − 1)
[ �V
(A− V )2

− ‖∇V ‖2
(A− V )3

(
N

4
− 3

2

)]
, (7.16)

R(k) =
1

(f (k) − 1)

[
‖∇̃f (k)‖2

2(f (k) − 1)
− �̃f (k)

]
, k = 2, 3 , (7.17)

where ∇ and � are the Euclidean gradient and Laplacian respectively, and ∇̃
and �̃ lack the derivative ∂/∂ϕα with α = 1 in the d = 1 case, and lack the
derivative ∂/∂ϕα with α = (1, 1) in the d = 2 case.

The numerical computation of the geometric integrals in (7.13) is worked
out by means of a Monte Carlo algorithm [169, 195] to sample the geomet-
ric measure dη by means of an “importance sampling” algorithm suitably
modified (see Section 7.6.1).

In Figures 7.4 and 7.5, σ2
R(u), where u = u/N , are given for the one-

and two-dimensional cases obtained for two different lattice sizes with g(1)

(Figure 7.4), and at given lattice size with g(2,3) (Figure 7.5). Peaks of σ2
R(u)

appear at a certain value uc = uc/N , of u in the two-dimensional case, whereas
only smooth patterns are found in the one-dimensional case, where no phase
transition is present.
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Fig. 7.4. Variance of the scalar curvature of Mu vs. u/N computed with the metric
g(1). Full circles correspond to the 1D ϕ4 model with N = 400. Open circles refer to
the 2D ϕ4 model with N = 20 × 20 lattice sites, and full triangles refer to 40 × 40
lattice sites (whose values are rescaled for graphical reasons). From [194].

Fig. 7.5. σ2
R(u) of Mu vs. u/N computed for the ϕ4 model with metric g(2) in 1D,

N = 400 (open triangles); metric g(2) in 2D, N = 20 × 20 (full triangles); metric
g(3) in 1D, N = 400 (open circles); metric g(3) in 2D, N = 20 × 20 (full circles).
From [194].

According to the discussion above, these peaks can be considered as
indirect evidence of the presence of a topology transition in the manifolds
Mu at u = uc in the case of the two-dimensional ϕ4 model. It is in particu-
lar the persistence of cusplike patterns of σ2

R(u) independently of the metric
chosen that lends credence to the idea that this actually reflects a topological
transition. Now we want to argue that the topological transition occurring at
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uc/N is related to a thermodynamic phase transition that occurs in the ϕ4

model. In order to do that, in [194] the average potential energy per particle

u(T )
N

=
〈V 〉
N

(7.18)

has been numerically computed, as a function of T , by means of both Monte
Carlo averaging with the canonical configurational measure and Hamiltonian
dynamics. In the latter case the temperature T is given by the average kinetic
energy per degree of freedom, and u is obtained as the time average. Figure 7.6
shows a perfect agreement between time and ensemble averages. The phase
transition point is well visible at uc = uc/N ≈ 3.75. Looking at Figures 7.4
and 7.5, we realize that within the numerical accuracy, the critical value of
the potential energy per particle uc/N where the topological change occurs
equals the statistical-mechanical average value of the potential energy at the
phase transition. At this point the doubt, formulated at the beginning of this
chapter, about the possible nongeometrical origin of the “singular” cusplike
patterns of σ2

R(u) has been dissipated. These results have been found inde-
pendently of statistical-mechanical measures and of their singular character
in the presence of a phase transition. These results are also independent—at
least to the limited extent of the three metric tensors reported above—of the
geometric structure given to the family {Mu}. Thus they seem most likely to
have their origin at a deeper level than the geometric one, i.e. at the topo-
logic level. Hence the observed phenomenology strongly hints that some major
change in the topology of the configuration-space submanifolds {Mu} occurs
when a second-order phase transition takes place.

Fig. 7.6. Average potential energy vs. temperature for the 2D lattice ϕ4 model with
O(1) symmetry. Lattice size N = 20 × 20. The solid line is made out of 200 points
obtained as time averages. Full circles represent Monte Carlo estimates of canonical
ensemble averages. The dotted lines locate the phase transition. From [194].



214 Chapter 7 Topological Hypothesis on the Origin of Phase Transitions

7.4 Topological Origin of the Phase Transition
in the Mean-Field XY Model

Until now we have not yet given any direct analytic evidence of the valid-
ity of the TH. Let us now consider again the mean-field XY model (6.13).
As we shall see in detail in Chapter 10, for this model we can analytically
compute both its thermodynamics and a topological invariant (the Euler–
Poincaré characteristic) of the submanifolds Mv of its configuration space.
Hence, it is possible to show analytically that a particular topological change
in the configuration space is related to the thermodynamic phase transition.
However, in this chapter we begin by discussing a first simplified approach
to the model [199] giving evidence of the topological transition in a space of
collective variables.

Let us consider again, as was already done in Section 7.3, the family Mv

of submanifolds of the configuration space defined in (7.8); now the potential
energy per degree of freedom is that of the mean-field XY model, i.e.,

V(ϕ) =
V (ϕ)
N

=
J

2N2

N∑
i,j=1

[1− cos(ϕi − ϕj)]−
h

N

N∑
i=1

cosϕi , (7.19)

where ϕi ∈ [0, 2π]. Such a function can be considered a Morse function on M ,
so that, according to Morse theory (see Appendix C), all these manifolds have
the same topology until a critical level V−1(vc) is crossed, where the topology
of Mv changes.

A change in the topology of Mv can occur only when v passes through a
critical value of V. Thus in order to detect topological changes in Mv we have
to find the critical values of V, which means solving the equations

∂V(ϕ)
∂ϕi

= 0 , i = 1, . . . , N . (7.20)

For a general potential energy function V, the solution of the (7.20) would be
a formidable task [202], but in the case of the mean-field XY model, the mean-
field character of the interaction greatly simplifies the analysis, allowing an
analytical treatment of the (7.20); moreover, a projection of the configuration
space onto a two-dimensional plane is possible.

We recall that in the limit h → 0, the system has a continuous phase
transition, with classical critical exponents, at Tc = 1/2, or εc = 3/4, where
ε = E/N is the energy per particle. Let us now show that this phase transition
has its foundation in a basic topological change that occurs in the configura-
tion space M of the system. To begin with, note that since V(ϕ) is bounded,
−h ≤ V(ϕ) ≤ 1/2+h2/2, the manifold is empty as long as v < −h, and when
v increases beyond 1/2 + h2/2 no changes in its topology can occur, so that
the manifold Mv remains the same for any v > 1/2 + h2/2, and is then an
N -torus. To detect topological changes we have to solve (7.20). To this end
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it is useful to define the magnetization vector, i.e., the collective spin vector
m = 1

N

∑N
i=1 si, which as a function of the angles is given by

m = (mx,my) =

(
1
N

N∑
i=1

cosϕi,
1
N

N∑
i=1

sinϕi

)
. (7.21)

Due to the mean-field character of the model, the potential energy (6.13) can
be expressed as a function of m alone (remember that J = 1), so that the
potential energy per particle reads

V(ϕ) = V(mx,my) =
1
2
(1−m2

x −m2
y)− hmx . (7.22)

This allows us to write (7.20) in the form (i = 1, . . . , N)

(mx + h) sinϕi −my cosϕi = 0 . (7.23)

Now we can solve these equations and find all the critical values of V. The
solutions of (7.23) can be grouped into three classes:

(i) The minimal energy configuration ϕi = 0 ∀i, with a critical value
v = v0 = −h, which tends to 0 as h→ 0. In this case, m2

x +m2
y = 1.

(ii) Configurations such that my = 0, sinϕi = 0 ∀i. These are the config-
urations in which ϕi equals either 0 or π; i.e., we have again ϕi = 0 ∀i, but
also the N configurations with ϕk = π and ϕi = 0 ∀i �= k, as well as the
N(N − 1) configurations with 2 angles equal to π and all the others equal
to 0, and so on, up to the configuration with ϕi = π ∀i. The critical values
corresponding to these critical points depend only on the number of π’s, nπ,
so that v(nπ) = 1

2 [1− 1
N2 (N − 2nπ)2]− h

N (N − 2nπ). We see that the largest
critical value is, for N even, v(nπ = N/2) = 1/2 and that the number of
critical points corresponding to it is O(2N ).

(iii) Configurations such that mx = −h and my = 0, which correspond to
the critical value vc = 1/2 + h2/2, which tends to 1/2 as h→ 0. The number
of these configurations grows with N not slower than N ! [199].

Configurations (i) are the absolute minima of V, (iii) are the absolute
maxima, and (ii) are all the other stationary configurations of V.

Since for v < v0 the manifold is empty, the topological change that
occurs at v0 is the one corresponding to the “birth” of the manifold from
the empty set; subsequently there are many topological changes at values
v(nπ) ∈ (v0, 1/2] till at vc there is a final topological change that corresponds
to the “completion” of the manifold. We remark that the number of critical
values in the interval [v0, 1/2] grows withN and that eventually the set of these
critical values becomes dense in the limit N →∞. However, the critical value
vc remains isolated from other critical values also in that limit. We observe
that it is necessary to consider a nonzero external field h in order that V be
a Morse function, because if h = 0 all the critical points of classes (i) and (ii)
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are degenerate, in which case topological changes do not necessarily occur.8

This degeneracy is due to the O(2)-invariance of the potential energy in the
absence of an external field. To be sure, for h �= 0, V may not be a Morse
function on the whole of M either, but only on Mv with v < vc, because
the critical points of class (iii) may also be degenerate, so that vc does not
necessarily correspond to a topological change. However, this difficulty could
be dealt with by using that the potential energy can be written in terms of
the collective variables mx and my, as in (7.22). This implies that we consider
the system of N spins projected onto the two-dimensional configuration space
of the collective spin variables. According to the definition (7.21) of m, the
accessible configuration space is now not the whole plane, but only the disk

D = {(mx,my) : m2
x +m2

y ≤ 1} . (7.24)

Thus we want to study the topology of the submanifolds

Dv = {(mx,my) ∈ D : V(mx,my) ≤ v} . (7.25)

The sequence of topological transformations undergone by Dv can now be
very simply determined in the limit h → 0 (see Figure 7.7), as follows. As
long as v < 0, Dv is the empty set. The first topological change occurs at
v = v0 = 0, where the manifold appears as the circle m2

x +m2
y = 1, i.e., the

boundary ∂D of D. Then as v grows Dv is given by the conditions

1− 2v ≤ m2
x +m2

y ≤ 1 , (7.26)

i.e., it is the ring with a hole centered at (0, 0) (punctured disk) contained
between two circles of radii 1 and

√
2v. As v continues to grow, the hole

shrinks and is eventually completely filled when v = vc = 1/2, where the
second topological change occurs (see Section A.5 on the fundamental group).
In this coarse-grained two-dimensional description in D, all the topological

v = 0 0 < v < 1/2 v = 1/2

Fig. 7.7. The sequence of topological changes undergone by the manifolds Dv with
increasing v in the limit h → 0.

8 It would also be possible to avoid this problem by considering an improved version
of Morse theory, referred to as equivariant Morse theory [203].
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changes that occur in M between v = 0 and v = 1/2 disappear, and only
the two topological changes corresponding to the extrema of V, occurring at
v = v0 and v = vc, survive. This means that the topological change at vc
should be present also in the full N -dimensional configuration space, so that
the degeneracies mentioned above for the critical points of class (iii) should
not prevent a topological change.

Now we want to argue that the topological change occurring at vc is related
to the thermodynamic phase transition of the mean-field XY model. Since the
Hamiltonian is of the standard form (1.1), the temperature T , the energy per
particle ε, and the average potential energy per particle u = 〈V〉 obey, in the
thermodynamic limit, the following equation:

ε =
T

2
+ u(T ) , (7.27)

where we have set Boltzmann’s constant equal to 1. Substituting the values
of the critical energy per particle εc = 3/4 and of the critical tempera-
ture Tc = 1/2 we get uc = u(Tc) = 1/2, so that the critical value of the
potential energy per particle vc where the last topological change occurs equals
the statistical-mechanical average value of the potential energy at the phase
transition,

vc = uc . (7.28)

Thus although a topological change in M occurs at any N , and vc is
independent of N , there is a connection of such a topological change and
a thermodynamic phase transition only in the limit N → ∞, h → 0+, when
indeed a thermodynamic phase transition can be defined.

Since not all topological changes correspond to phase transitions, those
that do correspond remain to be determined to make the conjecture of [92]
more precise. In this context, we consider one example where there are topo-
logical changes very similar to the ones of our model but no phase transitions,
i.e., the one-dimensional XY model with nearest-neighbor interactions, whose
Hamiltonian is of the class (1.1) with interaction potential

V (ϕ) =
1
4

N∑
i=1

[1− cos(ϕi+1 − ϕi)]− h
N∑

i=1

cosϕi . (7.29)

In this case the configuration space M is still an N -torus, and using again the
potential energy per degree of freedom V = V/N as a Morse function, we can
see that also here there are many topological changes in the submanifolds Mv

as v is varied in the interval [0, 1/2] (after taking h→ 0+). However there are
critical points of the type ϕj = ϕk = ϕl = · · · = π, ϕi = 0 ∀i �= j, k, l, . . .; in
contrast to the mean-field XY model, it is now no longer the number of π’s
that determines the value of V at the critical point, but rather the number of
domain walls, nd, i.e., the number of boundaries between “islands” of π’s and
“islands” of 0’s: v(nd) = nd/2N . Since nd ∈ [0, N ], the critical values lie in the
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same interval as in the case of the mean-field XY model; but now the maximum
critical value v = 1/2, instead of corresponding to a huge number of critical
points, which rapidly grows with N , corresponds to only two configurations
with N domain walls, which are ϕ2k = 0, ϕ2k+1 = π, with k = 1, . . . , N/2,
and the reversed one. There are also “spin-wave-like” critical points, i.e., such
that eiθk = const e2πikn/N with n = 1, . . . , N [204]; their critical energies are
contained in the interval above but again there is not a critical value associated
with a huge number of critical points.

Thus this example suggests the conjecture that a topological change in
the configuration-space submanifolds Mv occurring at a critical value vc is
associated with a phase transition in the thermodynamic limit only if the
number of critical points corresponding to the critical value vc is sufficiently
rapidly growing with N and makes a big jump at vc. On the basis of the
behavior of the mean-field XY model we expect then that such a growth
should be at least exponential. Furthermore, a relevant feature appears to
be that vc remains an isolated critical value also in the limit N → ∞: in
the mean-field XY model this holds only if the thermodynamic limit is taken
before the h → 0+ limit: this appears as a topological counterpart of the
noncommutativity of the limits h → 0+ and N → ∞ in order to get a phase
transition in statistical mechanics.

The sequence of topological changes occurring with growing V makes the
configuration space larger and larger, till at vc the whole configuration space
becomes fully accessible to the system through the last topological change.
From a physical point of view, this corresponds to the appearance of more and
more disordered configurations as T grows, which ultimately lead to the phase
transition at Tc.

7.5 The Topological Hypothesis

Let us consider the canonical partition function ZN for an N -degrees-of-
freedom system described by a standard Hamiltonian H(p, q) =

∑
p2/2 +

V (q), where p and q are vectors. For these systems, after a trivial integration
of the kinetic energy term, it reads

Z(β,N) =
∫
dNp dNq e−βH(p,q) =

(
π

β

)N
2
∫
dNq e−βV (q) , (7.30)

showing that its nontrivial part is the configurational partition function

Zc(β,N) =
∫

RN

dNq e−βV (q) =
∫ +∞

0

dv e−βv

∫
Σv

dσ

‖∇V ‖ , (7.31)
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where a coarea formula [200] has been used to unfold the structure integrals

ΩN (v) ≡
∫

Σv

dσ

‖∇V ‖ , (7.32)

an infinite collection of integrals on the equipotential hypersurfaces Σv of the
configuration space defined by Σv ≡ {q ∈ R

N |V (q) = v} ⊂ R
N , and dσ is

the volume form induced by the immersion of Σv in R
N .

Equation (7.31) shows that, formally, Zc is the Laplace transform of the
structure integral.

Then, if we consider the microcanonical ensemble, the basic mathematical
object is the phase space volume

Ω(E) =
∫ E

0

dη Ω(−)(E − η)
∫
dNp δ

(∑
i

1
2
p2i − η

)

where

Ω(−)(E − η) =
∫
dNq Θ[V (q)− (E − η)] =

∫ E−η

0

dv

∫
Σv

dσ

‖∇V ‖ , (7.33)

whence

Ω(E) =
∫ E

0

dη
(2πη)N/2

ηΓ (N
2 )

∫ E−η

0

dv

∫
Σv

dσ

‖∇V ‖ . (7.34)

Here too, as in the above decomposition of Zc(β,N), the only nontrivial
objects are the structure integrals (7.32).

Once the microscopic interaction potential V (q) is given, the configura-
tion space of the system is automatically foliated into the family {Σv}v∈IR of
equipotential hypersurfaces independently of any statistical measure we may
wish to use. Now, from standard statistical-mechanical arguments we know
that the larger the number N of particles, the closer to some Σv are the
microstates that significantly contribute to the statistical averages of thermo-
dynamic observables. At large N , and at any given value of the inverse
temperature β, the effective support of the canonical measure is narrowed
very close to a single Σv = Σv(βc); similarly, in the microcanonical ensemble,
the fluctuations of potential and kinetic energies tend to vanish at increasing
N so that the effective contributions to Ω(E) come from a close neighborhood
of a Σv = Σv(Ec).

Now, the topological hypothesis consists in assuming that some suit-
able change of the topology of the {Σv}, occurring at some vc = vc(βc)
(or vc = vc(Ec)), is the deep origin of the singular behavior of thermody-
namic observables at a phase transition (by change of topology we mean that
{Σv}v<vc

are not diffeomorphic to the {Σv}v>vc
). In other words, the claim

is that the canonical and microcanonical measures must “feel” a big and
sudden change, if any, of the topology of the equipotential hypersurfaces of
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their underlying supports, the consequence being the appearance of the typi-
cal signals of a phase transition, i.e., almost singular energy or temperature
dependencies of the averages of appropriate observables. The larger N the
narrower is the effective support of the measure and hence the sharper can
be the mentioned signals. Eventually, in the N → ∞ limit this sharpening
will lead to nonanalyticity.

On the basis of this and what was found in [92,194,199], we formulate the
TH as follows:
Topological Hypothesis: The basic origin of a phase transition lies in a
topological change of the support of the measure describing a system. This
change of topology induces a change of the measure itself at the transition
point.

In other words, this hypothesis stipulates that some change of the topo-
logy of the {Σv}, occurring at some vc = vc(βc), could be the origin of the
singular behavior of thermodynamic observables at a phase transition rather
than measure singularities, which in this view are induced from a deeper level
where the topological changes take place.

Remark 7.1. As we shall see in the following chapters, topological changes of
the manifolds Σv and Mv are associated to the existence of critical points of
the potential function, i.e., points where ∇V = 0. By looking at the defin-
ition of the structure integral (7.32), one could naively infer that since the
denominator ‖∇V ‖ vanishes at the critical points, entailing a divergence of
the structure integral, the critical points, and thus topology, must be relevant
to the divergence of thermodynamic observables. However, such a kind of rea-
soning would be completely wrong and misleading. On large–N hypersurfaces
the integration measure regularizes the structure integral also at the critical
points so that the vanishing of the denominator does not entail any diver-
gence of the structure integral (Consider, for example, that Σv is a large–N
hypersphere, and write ∇V near a critical point as a quadratic form using the
Morse chart). The way topology induces the appearance of thermodynamic
singularities is by far more subtle, as will be clarified in the next chapters.

7.6 Direct Numerical Investigations of the Topology
of Configuration Space

The first successful attempt at obtaining a direct evidence that topologi-
cal changes are associated with phase transitions, and thus the first direct
evidence supporting the topological hypothesis, is numerical.

Since the counterpart of a phase transition is expected to be a suitable
breaking of diffeomorphicity among the surfacesΣv, it is appropriate to choose
a diffeomorphism invariant to probe whether and how the topology of the Σv

changes as a function of v. This is a very challenging task because one has
to deal with high-dimensional manifolds. Fortunately, a topological invariant
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exists whose computation is feasible, yet demands a big effort. This is the Euler
characteristic, a diffeomorphism invariant, expressing fundamental topological
information (see Appendix A).

Let us recall how it is defined. First, let us consider that a basic way to
analyze a geometrical object is to fragment it into other more familiar objects
and then to examine how these pieces fit together. Take, for example, a surface
Σ in Euclidean three-dimensional space. Slice Σ into pieces that are curved
triangles (this is called a triangulation of the surface). Then count the number
F of faces of the triangles, the number E of edges, and the number V of ver-
tices on the tesselated surface. Now, no matter how we triangulate a compact
surface Σ, χ(Σ) = F−E+V will always equal a constant that is characteristic
of the surface and that is invariant under diffeomorphisms φ : Σ → Σ′. This is
the Euler characteristic of Σ. At higher dimensions this can be again defined
by using higher-dimensional generalizations of triangles (simplices) and by
defining the Euler characteristic of the n-dimensional manifold Σ to be

χ(Σ) =
n∑

k=0

(−1)k(# of “faces of dimension k”). (7.35)

In differential topology an equivalent definition of χ(Σ) is

χ(Σ) =
n∑

k=0

(−1)kbk(Σ) , (7.36)

where the numbers bk, the Betti numbers of Σ, are diffeomorphism invariants
(see Appendix A). While it would be hopeless to try to compute χ(Σ) from
(7.36) in the case of nontrivial physical models at large dimension, there is
a possibility given by a powerful theorem, the Gauss–Bonnet–Hopf theorem,
that relates χ(Σ) to the total Gauss–Kronecker curvature of the manifold,
that is,

χ(Σ) = γ

∫
Σ

KG dσ , (7.37)

which is valid for even dimensional hypersurfaces of Euclidean spaces R
N [here

dim(Σ) = n ≡ N − 1], and where: γ = 2/Vol(Sn
1 ) is twice the inverse of the

volume of an n-dimensional sphere of unit radius; KG is the Gauss–Kronecker
curvature of the manifold; dσ =

√
det(g)dx1dx2 · · · dxn is the invariant volume

measure ofΣ, and g is the Riemannian metric induced from R
N . The definition

and significance of the Gauss–Kronecker curvature are given in Chapter 8. The
practical computation ofKG at any point x ∈ Σv proceeds from the knowledge
of a basis {v1, . . . ,vn} for the tangent space of Σv at x, so that, using the
directional derivatives ∇vi

V , it is

KG(x) =
(−1)n

‖∇V ‖n

∣∣∣∣∣∣∣∣
⎛⎜⎜⎝
∇v1∇V

...
∇vn

∇V
∇V

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
⎛⎜⎜⎝

v1
...

vn

∇V

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
−1

. (7.38)
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7.6.1 Monte Carlo Estimates of Geometric Integrals

In order to perform a numerical computation of the topological invariant given
by the Gauss–Bonnet–Hopf formula (7.37), the numerical evaluation of mul-
tiple integrals in high-dimensional spaces is needed. To this end, the Monte
Carlo–Metropolis method was devised a long time ago and apart from a large
number of improvements and modifications of the basic scheme to fit it to
different kinds of problems, the main feature remains unaltered: we can com-
pute only densities and not the actual numerical value of the multiple integral
under examination. The basic scheme consists in any algorithm capable of
generating a Markov chain, in the high-dimensional space of interest, whose
asymptotic probability density coincides with the measure of the integral to
compute.

In particular, since we have to compute surface integrals
∫
Σv
g dσ, it is

necessary to devise an efficient algorithm to generate a Markov chain on a
hypersurface. In order to constrain a Markov chain generated with the stan-
dard “importance sampling” [205] on a givenΣv, one has to adopt a projection
algorithm.

Suppose that xk ∈ Σv is the point generated at the kth step of the Monte
Carlo Markov chain, and that the updated point at the following step x̃k+1 =
xk + Δxk is not too far from the preceding one (‖Δxk‖  1 in convenient
units). In general, it is x̃k+1 ∈ Σv+Δv; thus x̃k+1 is projected on the tangent
plane at xk to Σv. The coordinates of the updated and projected configuration
are thus the following:

xk+1 = xk −
Δv

‖∇V ‖2 · ∇V , (7.39)

where Δv = (x̃k+1 − xk) ·∇V is the difference in potential energy between the
two configurations. The projection algorithm allows one to efficiently perform
a random walk on a hypersurface Σv, provided that the new configurations
proposed at each step are generated and/or preselected so as not to be too
far from Σv.

Another important point concerns the measure dσ entering the integral
7.37. This is the canonical volume form associated with the metric tensor
gαγ(v) of the hypersurface that is obtained by restricting the Euclidean metric
of R

N to Σv. Thus we have

gαγ(v) = δαγ +
∂αV ∂γV

∂NV ∂NV
,

where it is understood that gαγ(v)is a function of the point where it is
computed. The volume form is

dσ =
N−1∏
i=1

dxi

√
|g(v)| =

N−1∏
i=1

dxi
‖∇V ‖
|∂NV |

. (7.40)
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The Monte Carlo algorithm has to be defined to sample the geometric measure
(7.40) through the standard “importance sampling” method. Let O(x) be the
observable that we want to average with the measure

√
|g(v)|, and let x ∈ Σv

be an arbitrary initial condition. Then one proceeds with a random update of
the coordinates of x so as to obtain a new configuration x̃ = (x +Δx) ∈ Σṽ

not too far from x; then the coordinates of x̃ are modified by projecting them
according to (7.39) on Σv. Then the following ratio of weights is computed:

ζ =

√
|g(v′)|√
|g(v)|

. (7.41)

If ζ > 1, then the new proposed configuration is accepted; if ζ < 1, then a
random number w ∈ [0, 1] is generated; and if w < ζ, again the new configura-
tion is accepted. Otherwise, it is rejected and the old configuration is counted
once again. The observable O(x) is averaged on the set of all the accepted
configurations

By means of a Monte Carlo algorithm one can estimate only averages of
observables, that is,

〈O〉MC(v) =

∫
Σv
dσO(x)∫
Σv
dσ

, (7.42)

while we are interested in evaluating the actual values of the integral (7.37).
In order to do this, we should be able to estimate the volume that appears in
the denominator of (7.42). Denote by

ω(v) =
∫

Σv

dσ (7.43)

the volume of interest, and notice that the following identity holds:

d

dv
logω(v) =

ω′(v)
ω(v)

, (7.44)

where ω′(v) stands for the first derivative of the volume (7.43) with respect
to v. In the absence of critical points, Federer’s derivation formula (see
Chapter 8) gives

ω′(v) =
∫

Σv

dσ

‖∇V ‖∇
( ∇V
‖∇V ‖

)
. (7.45)

However, since we tackle potentials that are good Morse functions, the number
of critical values of these potentials is finite in any finite interval of potential
energy values, so that, even in the presence of critical values, (7.45) can be
safely used in Monte Carlo computations. In fact, the probability of numeri-
cally falling exactly on a critical level set is zero. Moreover, the volume ω(v)
and its first derivative are regular (see Theorem 9.14 of the Chapter 9). By
combining (7.44) and (7.45) we get
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d

dv
logω(v) =

∫
Σv

dσ

‖∇V ‖∇
( ∇V
‖∇V ‖

)
∫

Σv

dσ

, (7.46)

which is still in suitable form to be numerically computed through a Monte
Carlo algorithm.

Let us introduce the quantity9

M1 = ∇
( ∇V
‖∇V ‖

)
, (7.47)

which is proportional to the mean curvature, and integrate (7.46) to obtain

ω(v) = ω(v0) exp
{∫ v

v0

dw

〈
M1

‖∇V ‖

〉
MC

}
, (7.48)

so that the potential energy dependence of the volume, ω(v), is determined
apart from a constant ω(v0), which, however, is the same for any value v. This
last equation makes it possible to numerically estimate, by means of a Monte
Carlo algorithm, the integral (7.37), with the only indeterminacy due to the
unknown multiplicative constant ω(v0).

7.6.2 Euler Characteristic for the Lattice φ4 Model

Let us now consider the family of {Σv}v∈R associated again with the lattice
ϕ4 model, described by the potential function (7.14) and show how things
work in practice.

By computing χ(Σv) vs. v according to (7.37), one can probe whether
and how the topology of the hypersurfaces Σv varies with v. A variation of
the Euler characteristic signals a change of topology. However, the converse
can be false. For example, odd-dimensional manifolds have vanishing Euler
characteristic no matter what their topology is. But the Euler characteristic,
as far as a numerical investigation of topology is concerned, seems to be “the
only game in town.” So, in order to make possible the numerical estimate of the
variations of the Euler characteristic, we resort to the Monte Carlo algorithm
described above. By means of a Monte Carlo scheme we can estimate only∫
Σv
KG dσ/

∫
Σv
dσ rather than the total value (7.37) of KG on Σv, hence the

need for an estimate of ω(v) =
∫
Σv
dσ as a function of v. This is achieved by

means of formula (7.48), which requires us to compute also the Monte Carlo
average 〈M1/‖∇V ‖〉Σv

MC. Thus the final outcome of these computations is the
relative variation of the Euler characteristic as a function of v.

The computation of KG at any point x ∈ Σv proceeds by working out an
orthogonal basis for the tangent space at x, orthogonal to ξ = ∇V/‖∇V ‖,
9 In mathematical textbooks, mean curvature is defined as − 1

N
∇
(

∇V
‖∇V ‖

)
.
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by means of a Gram–Schmidt orthogonalization procedure. Equation (7.38)
is used to compute KG at x.

In [198], KG was computed at a number of points on each Σv vary-
ing between 1 · 106 and 3.5 · 106. The computations were performed for
dim(Σv) = 48 and = 80 (i.e., N = 7 × 7, and 9 × 9) and with the choice
λ = 0.6, μ2 = 2, J = 1 for the parameters of the potential.

In order to test the reliability of the numerical procedure to compute
χ(Σv), the method is checked against a simplified form of the potential V in
(7.14), i.e., with λ = J = 0, μ2 = −1. In this case the Σv are hyperspheres and
therefore χ(Sn

v ) = 2 for any even n. The integral
∫
Σv
dσ is analytically known

as a function of the radius
√
v. Therefore, the starting value ω(v0) =

∫
Σv0

dσ

is known, and in this case we can compute the actual values of χ(Σv) instead
of their relative variations only. In Figure 7.8 we report χ(Σv = S

n
v ) vs. v/N

for N = 5× 5; the results are in agreement with the theoretical value within
an error of few percent, a very good precision in view of the large variations
of χ(Σv) that are found with the full expression (7.14) of V .

In Figure 7.9 we report the results for the 1D lattice, which is known
not to undergo any phase transition. Apart from some numerical noise—here
enhanced by the more complicated topology of the Σv when λ, J �= 0—a
monotonical (on average) decreasing pattern of χ(v/N) is found. Since the
variation of χ(v/N) signals a topology change of the {Σv}, Figure 7.9 tells
that a “smoothly” varying topology is not sufficient for the appearance of a
phase transition. In fact, when the 2D lattice is considered, the pattern of
χ(v/N) is very different: it displays a rather abrupt change of the topology
variation rate with v/N at some vc/N . This result is reported in Fig. 7.10 for
a lattice of N = 7 × 7 sites. The question is now whether the value vc/N ,
at which χ(v/N) displays a cusp, has anything to do with the thermody-
namic phase transition, i.e., we wonder whether the effective support of the
canonical measure shrinks close to Σv≡vc

just at β ≡ 1/Tc, the (inverse) crit-
ical temperature of the phase transition. The answer is in the affirmative.
In fact, the numerical analysis, already discussed in this chapter, shows that

Fig. 7.8. Numerical computation of the Euler characteristic for 24-dimensional
spheres. Here v is the squared radius. From [198].
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Fig. 7.9. 1D ϕ4 model. Relative variations of the Euler characteristic of Σv vs. v/N
(potential energy density). Lattice of N = 1 × 49 sites. Full line is a guide to the
eye. From [198].

Fig. 7.10. 2D ϕ4 model. Relative variations of the Euler characteristic of Σv vs.
v/N (potential energy density). Lattice of N = 7 × 7 sites. The vertical dotted line
corresponds to the phase transition point. Full line is a guide to the eye. From [198].

with λ = 0.6, μ2 = 2, J = 1, the function 1
N 〈V 〉(T ) and its derivative signal

the phase transition at 1
N 〈V 〉 ≈ 3.75, a value in very good agreement, within

the numerical precision, with vc/N , where the cusp of χ(v/N) shows up. We
see that a sudden “second-order variation” of the topology of these hypersur-
faces is the “suitable” topology change—mentioned at the beginning of the
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present section—that underlies the phase transition of the second kind in the
lattice ϕ4 model.

In conclusion, through the computation of the v-dependence of a topologi-
cal invariant, the hypothesis of a deep connection between topological changes
of the {Σv} and phase transitions is given direct confirmation.

We emphasize, and clarify in the following chapters, that not all topologi-
cal transitions lead to physical phase transitions, as is clearly shown by the
results given above for the 1D version of the ϕ4 model. Being certain that
not every topological transition corresponds to a phase transition, it seems
that on the basis of the above given results, a phase transition corresponds to
a supercombination of many simultaneous elementary topological transitions
taking place,10 where many might mean at least exponentially growing with
the number of degrees of freedom. It seems therefore more like a supertopo-
logically constructed transition, as will be discussed in Chapter 10.

10 With elementary topological transition we mean any change of topology associ-
ated with a single critical point, and thus with the attachment of the correspond-
ing handle. See Appendix C.



Chapter 8

Geometry, Topology and Thermodynamics

In the preceding chapter we have seen that configuration-space topology is
suspected to play a significant role in the emergence of phase transition phe-
nomena. We have summarized all the clues in the form of a working hypothesis
that we called the topological hypothesis. Then this has been given strong sup-
port by a direct numerical investigation of the topological changes of config-
uration space of 1D and 2D lattice ϕ4 models. This conjecture stems from
the peculiar energy density patterns of the largest Lyapunov exponent at
phase transition points. In fact, Lyapunov exponents are closely related to
configuration space geometry, which, in turn, can be strongly influenced by
topology. However, there is another argument, independent of the Riemannian
geometrization of Hamiltonian dynamics, that suggests how to make another
link between Lyapunov exponents and topology.

We have already seen that the largest Lyapunov exponent λ1, for a stan-
dard Hamiltonian system, is computed by solving the tangent dynamics
equation

d2Ji

dt2
+
(
∂2V

∂qi∂qj

)
q(t)

Jj = 0 , (8.1)

where q(t) = [q1(t), · · · , qN (t)], and then

λ1 = lim
t→∞

1
2t

log
{
ΣN

i=1[J̇
2
i (t) + J2

i (t)]/ΣN
i=1[J̇

2
i (0) + J2

i (0)]
}
.

If there are critical points of V in configuration space, that is, points
qc = [q1, . . . , qN ] such that ∇V (q)|q=qc

= 0, according to the Morse lemma,
see Appendix C, in the neighborhood of any critical point qc there always
exists a coordinate system q̃(t) = [q̃1(t), · · · , q̃N (t)] for which

V (q̃) = V (qc)− q̃21 − · · · − q̃2k + q̃2k+1 + · · ·+ q̃2N , (8.2)

where k is the index of the critical point, i.e. the number of negative eigenval-
ues of the Hessian of V . In the neighborhood of a critical point, (8.2) yields
∂2

ijV = ±δij , which, substituted into (8.1), gives

229
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d2J
dt2

+

⎛⎜⎜⎜⎜⎜⎝
−1 0 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎠J = 0 ,

where there are k unstable directions that contribute to the exponential
growth of the norm of the tangent vector J . This means that the strength of
dynamical chaos, measured by the largest Lyapunov exponent λ1, is affected
by the existence of critical points of V . In particular, let us consider the
possibility of a sudden variation, with the potential energy v, of the number
of critical points (or of their indexes) in configuration space at some value vc.
It is then reasonable to expect that the pattern of λ1(v)—as well as that of
λ1(E), since v = v(E)—will be consequently affected, thus displaying jumps
or cusps or other “singular” patterns at vc (this heuristic argument has been
given evidence in the case of the XY mean-field model, see [24] and [206]).

On the other hand, consider a smooth function f , bounded below, such
that f : R

N → R. Its level setsΣu = f−1(u) are diffeomorphically transformed
one into the other by the flow [23]

dx

du
= − ∇f

‖∇f‖2 ,

where x ∈ R
N , i.e., the points of a hypersurface Σu0 with u0 ∈ [a, b], are

mapped by this flow to the points of another Σu1 with u1 ∈ [a, b], provided
that ∇f never vanishes in the interval [a, b]. In other words, if in the interval
[a, b] the function f has no critical points, all the level sets Σu = f−1(u),
with u ∈ [a, b], have the same topology. Conversely, the appearance of critical
points of f at some critical value uc breaks the diffeomorphicity among the
Σu<uc and Σu>uc . This is illustrated by one of the simplest possible examples
in Figure 8.1.

Within Morse theory a systematic study is developed of the relationship
between topological properties of a manifold and the critical points of a suit-
able class of real-valued functions (Morse functions) defined on it. In particu-
lar, if f ≡ V , Morse theory tells us that the existence of critical points of V is
associated with topological changes of the hypersurfaces {Σv}v∈R, provided
that V is a good Morse function (that is, bounded below, with no vanishing
eigenvalues of its Hessian matrix).

In conclusion, the existence of critical points of the potential V makes pos-
sible a conceptual link between dynamical chaos (measured through Lyapunov
exponents) and configuration-space topology.

Taken alone, this argument would not be very strong, because we know
that chaos stems also from curvature fluctuations. Thus unless we can dis-
entangle the contribution due to curvature fluctuations from the contribu-
tion due to the “scattering” neighborhoods of critical points, we are left with
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P1

P0

M u<uc

M u>uc

Σ u<uc

Σ u>uc

Σ uc

u

Fig. 8.1. The function f is here the height of a point of the bended cylinder with re-
spect to the ground. In P1 it is df = 0. The level sets below this critical point are cir-
cles, whereas above are the union of two circles. The manifolds Mu = f−1((−∞, u])
are disks for u < uc and cylinders for u > uc.

the doubt of a real involvement of topology in shaping λ(ε). However, taken
together with the content of Chapter 7, this argument strengthens the topo-
logical hypothesis.

In the present chapter we make a further step forward by working out a
quantitative connection between geometry and topology of the energy land-
scape in phase space, or of the potential energy landscape in configuration
space, and thermodynamic entropy. In so doing, we begin to suspect that
quite a bit of topological complexity of the energy landscape in phase space
must be at the grounds of standard phase transitions, perhaps not so far (at
least qualitatively) from what could be at the origin of the various transitions
in complex systems such as glasses, spin-glasses, and proteins. In other words,
we believe that phenomenologically very different kinds of phase transitions
could perhaps fit in a unified topology-based framework.

Remarkably, the way of linking topology and thermodynamics, which is
given in what follows, indicates the existence of a common ground where both
microscopic dynamics and macroscopic thermodynamics are rooted.

Finally, the analytic links established between entropy and topological
invariants of submanifolds of phase space and of configuration space through
equations (8.31), (8.33), (8.35), (8.36) (9.133), and give precious hints for
future investigations aiming at clarifying which kind of topological changes can
entail a phase transition and of what kind. In the following chapter this prob-
lem is referred to as the sufficiency conditions for the necessity theorems
therein discussed.

We begin with a sketchy presentation of some basic definitions of extrinsic
curvatures of hypersurfaces of N -dimensional Euclidean spaces that are neces-
sary for understanding some classic results that link analytic and topological
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x

N

V

α (t)

Fig. 8.2. Illustration of the ingredients necessary to construct the shape operator
of a surface.

properties of differentiable manifolds, as is the case of the Gauss–Bonnet–
Hopf, Chern–Lashof, and Pinkall theorems.

Then we proceed by giving the derivation of the link between entropy and
Morse indexes (and Betti numbers) of the constant-energy hypersurfaces in
phase space or of the phase space volumes enveloped by them. This deriva-
tion eventually relates entropy to topological invariants of configuration-space
subsets bounded by equipotential hypersurfaces.

8.1 Extrinsic Curvatures of Hypersurfaces

Let us briefly sketch some basic concepts and definitions concerning the
extrinsic geometry of hypersurfaces of a Euclidean space. The starting point
is to study the way in which an n-surface Σ curves around in R

N by mea-
suring the way the normal direction changes as we move from point to point
on the surface. The rate of change of the normal direction N at a point
x ∈ Σ in direction v is described by the shape operator (sometimes also called
Weingarten’s map) Lx(v) = −∇vN = −(v ·∇)N, where v is a tangent vector
at x and∇v is the directional derivative; gradients and vectors are represented
in R

N . For the level sets of a regular function, as is the case of the constant-
energy hypersurfaces in the phase space of Hamiltonian systems or of the
equipotential hypersurfaces in configuration space, thus generically defined
through a regular real-valued function f as Σa := f−1(a), the normal vector
is N = ∇f/‖∇f‖. Let {eμ}μ=1,...,N = {e1, . . . , en,N}, with eα · eβ = δα,β .
We denote by Greek subscripts, α = 1, . . . , N , the components in the embed-
ding space R

N , and with Latin subscripts, i = 1, . . . , n, the components on
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a generic tangent space TxΣa at x ∈ Σa. We are interested in the case of
codimension one, that is, N = n+ 1.

From ∂μNαNα = 0 = 2Nα∂μNα we see that for any v, N · Lx(v) =
−Nαvμ∂μNα = 0, which means that Lx(v) projects on the tangent space
TxΣa.

Now the principal curvatures κ1, . . . , κn of Σa at x are the eigenvalues
of the shape operator restricted to TxΣa. Define the matrix Lx to be the
restriction of Lx to TxΣa

Lij(x) = ei · Lx(ej) = −(ei)α(ej)β∂βNα ,

whence the mean curvature is defined as

M1(x) =
1
n

Tr(n)Lij(x) =
1
n

n∑
i=1

κi (8.3)

and the Gauss–Kronecker curvature is defined as

KG(x) = det(n)Lij(x) =
n∏

i=1

κi . (8.4)

Notice that

N · Lx(ej) = −Nα(ej)β∂βNα = 0 ,
N · Lx(N) = 0 ,
ei · Lx(N) = −(ei)αNβ∂βNα �= 0 . (8.5)

The explicit computation of the mean curvature M1 proceeds from

M1(x) =
1
n

Tr(n)Lij(x) = − 1
n

n∑
i=1

(ei)α(ei)β∂βNα . (8.6)

Defining Aμν = (eμ)ν , so that AAT = I, we have

n∑
i=1

(ei)α(ei)β = δαβ −NαNβ

and thus

M1(x) = − 1
n

(δαβ −NαNβ)∂βNα = − 1
n
∂αNα = − 1

n
∇ ·

( ∇f
‖∇f‖

)
. (8.7)

In order to compute the Gauss–Kronecker curvature, we define

B(v,u) = −vαwβ∂βNα + vαNαuβNβ ,

where v,u ∈ TxΣa, so that Lij(x) = B(ei, ej), B(ei,N) �= 0, B(N, ej) = 0,
B(N,N) = 1. The matrix elements in the embedding space are Bμν =
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B(eμ, eν), and we readily see that det(n+1)B = det(n)L. Having put Cαβ =
∂βNα, we compute

Bμν = B(eμ, eν) = −(eμ)α(eν)β∂βNα + δμ,n+1δν,n+1

= AμαCαβA
T
βν + δμ,n+1δν,n+1 (8.8)

whence
B = −ACAT + δ = A(−C +AT δA)AT ,

but (AT δA)αβ = Aμαδμ,n+1δν,n+1Aνβ = An+1,αAn+1,β = NαNβ and with
B = A(−C+N ⊗N)AT we get det(n+1)B = det(n+1)(−C+N ⊗N) = detnL,
which is the Gauss–Kronecker curvature. Explicitly we obtain

KG(x) = det
[
−∂β

∂αf

‖∇f‖ +
∂αf∂βf

‖∇f‖2
]

= det
[
−∂α∂βf

‖∇f‖ +
∂αf∂β∂μf∂μf

‖∇f‖3 +
∂αf∂βf

‖∇f‖2
]
. (8.9)

This explicit expression for the Gauss–Kronecker curvature of a hyper-
surface Σa = f−1(a) is of prospective practical interest in the numerical
computation of one among its topologic invariants, the Euler characteristic.

In fact, according to the Gauss-Bonnet–Hopf theorem, the following
equation holds: ∫

Σa

dσ KG =
1
2
vol(SN−1

1 ) χ(Σa) , (8.10)

where S
N−1
1 is an (N − 1)-dimensional hypersphere of unit radius, and χ(Σa)

is the Euler characteristic of the level set Σa of the function f (hypersurface
of R

N ). A slight modification of this formula yields the following nontrivial
result due to Chern and Lashof [207]:∫

Σa

dσ |KG| =
1
2
vol(SN−1

1 )
N−1∑
i=0

μi(Σa) ≥ 1
2
vol(SN−1

1 )
N−1∑
i=0

bi(Σa) , (8.11)

and μi(Σa) are the Morse indexes of Σa, which are defined as the number
μ of critical points of index i on a given level set Σa; a critical point is a
point where ∇f = 0; the index i of a critical point is the number of negative
eigenvalues of the Hessian of f computed at the critical point. The bi(Σa) are
the Betti numbers of the hypersurfaces. The Betti numbers are fundamental
topological invariants (see Appendix A) of differentiable manifolds; they are
the diffeomorphism-invariant dimensions of suitable vector spaces (the de
Rham cohomology spaces); thus they are integers (see Appendix A).

Another interesting connection between curvature and Betti numbers is
provided by Pinkall’s inequality [208]. LetMn be a compact smooth manifold,
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φ : Mn → R
m an immersion, and N(φ) the unit normal bundle of φ. For every

ξ ∈ Np(φ) there is a shape operator Aξ : TpM
n → TpM

n whose eigenvalues
κ1(ξ), . . . , κn(ξ) are the principal curvatures at ξ. Denoting by

σ(Aξ)2 =
1
n2

∑
i<j

(κi − κj)2

the dispersion of these principal curvatures, then

1
vol(Sm)

∫
N(φ)

[σ(Aξ)]n dξ ≥
n−1∑
i=1

(
i

n− i

)n/2−i

bi(Mn) , (8.12)

where bi are the Betti numbers of the manifold Mn.

8.1.1 Two Useful Derivation Formulas

In several places, throughout the present book we use the derivation formula
that is derived below.

For a regular and measurable function f(x), defined in a bounded subset
Ms of R

N , and given a regular function ψ(x) defined in Ms, the following
derivation formula holds:

d

ds

∫
Ms

f(x) dμ(x) =
∫

ψ(x)=s

f(x)
dσ

‖∇ψ(x)‖ , (8.13)

where dμ(x) is a volume element of Ms, dσ a surface element of the level set
Σs = {x = (x1, . . . , xN ) ∈ R

N |ψ(x) = s}, and

‖∇ψ(x)‖ =

[
N∑

i=1

(∂xi
ψ)2

]1/2

.

Then we put
∫
Ms
f(x) dμ(x) =

∫
Ms
f(x) dσdn, where dn is the infinitesi-

mal element of the outward normal to dσ whose projections are dxi = dn
cos(n, xi), 1 ≤ i ≤ N , so that an infinitesmal variation of the level value s can
be expressed as

ds =
N∑

i=1

(∂xi
ψ) dxi = dn

N∑
i=1

(∂xi
ψ) cos(n, xi) ,

and from the relation cos(n, xi) = (∂xi
ψ)/‖∇ψ‖ we get

ds = dn

N∑
i=1

(∂xi
ψ)2

‖∇ψ(x)‖ = dn ‖∇ψ(x)‖ .
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Finally,∫
Ms

f(x) dμ(x) =
∫

Ms

f(x)
dσ ds

‖∇ψ(x)‖ =
∫ s

0

dη

∫
ψ(x)=η

f(x)
dσ

‖∇ψ(x)‖ ,

whence, by deriving both sides of the equation above with respect to s, the
formula (8.13) immediately follows.

Both in the present and in the next chapter, we crucially resort to a diff-
erentiation formula [209] of geometric integrals on level sets with respect to
the level, which generalizes the so-called Federer’s derivation formula. This
is given within the enunciation of a theorem in the proof of Lemma 9.20 in
Section 9.3. Here we show how it is obtained.

Given two real-valued smooth functions, g(x) and ψ(x), defined on a
bounded subset of R

N , and given

F (s) =
∫

ψ(x)=s

g(x) dμN−1 ,

where dμN−1 is the measure on the level set (which can even be a Hausdorff
measure), if there exists a constant C > 0 such that ‖ψ‖ ≥ C, i.e., ψ has no
critical points, then

dk

dsk

∫
ψ(x)=s

g(x) dμN−1 =
∫

ψ(x)=s

Ak g(x) dμN−1 , (8.14)

where Ak stands for k iterates of the operator defined by

Ag = ∇ ·
(
g
∇ψ
‖∇ψ‖

)
1

‖∇ψ‖ .

Since ‖∇ψ‖ ≥ C > 0 and ψ is smooth, the implicit function theorem implies
that the level sets {ψ(x) = s} are nested closed (N − 1)-dimensional surfaces
representable in local coordinates as the graph of a smooth function. Assume
that ∇ψ points toward the inside of these surfaces. Then form the quotient

F (s+ h)− F (s)
h

=
1
h

{∫
ψ(x)=s+h

g(x) dμN−1 −
∫

ψ(x)=s

g(x) dμN−1

}
.

Let n(x) = ∇ψ(x)/‖∇ψ(x)‖, the unit inner normal to {ψ(x) = s} at x, and
since g(x) = g(x)(∇ψ/‖∇ψ‖) · n(x), we have

F (s+ h)− F (s)
h

(8.15)

=
1
h

∫
ψ(x)=s+h

g(x)
∇ψ
‖∇ψ‖ · n dμ

N−1 − 1
h

∫
ψ(x)=s

g(x)
∇ψ
‖∇ψ‖ · n dμ

N−1

=
1
h

∫
ψ(x)=s+h

g(x)
∇ψ
‖∇ψ‖ · ne dμ

N−1 +
1
h

∫
ψ(x)=s

g(x)
∇ψ
‖∇ψ‖ · ne dμ

N−1 ,
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where ne is the unit normal that now points toward the exterior (only one is
reversed in sign) of the annular region {s < ψ < s+h}, so that since {ψ = s}
are smooth closed surfaces and g(∇ψ/‖∇ψ‖) is smooth, we can apply the
divergence theorem to get

F (s+ h)− F (s)
h

=
1
h

∫
s<ψ<s+h

∇ ·
(
g
∇ψ
‖∇ψ‖

)
dx .

Now rewrite the right hand-side of the equation above using the standard
coarea formula, that is,

F (s+ h)− F (s)
h

=
1
h

∫ s+h

s

dr

∫
ψ(x)=r

∇·
(
g
∇ψ
‖∇ψ‖

)
1

‖∇ψ‖ dμ
N−1 , (8.16)

which, in the limit h→ 0, obviously gives

dF

ds
(s) =

∫
ψ(x)=s

∇ ·
(
g
∇ψ
‖∇ψ‖

)
1

‖∇ψ‖ dμ
N−1 , (8.17)

which is the Federer derivation formula.

8.2 Geometry, Topology and Thermodynamics

Consider a generic classical system described by a standard Hamiltonian

H =
1
2

n∑
i=1

p2i + V (q) , (8.18)

where q = (q1, . . . , qn) and the symbols have standard meaning. We assume
that V (q) is such that H is a good Morse function (the reason is given in the
remark at the end of this section). Then consider the microcanonical definition
of entropy

S =
kB
N

logΩN (E) , (8.19)

where N = 2n− 1 and

ΩN (E) =
1
N !

∫
ΣE

dσ

‖∇H‖ , (8.20)

with ‖∇H‖ = {∑i p
2
i +[∇iV (q)]2}1/2. Here ΣE is the constant-energy hyper-

surface in the 2n-dimensional phase space Γ corresponding to the total energy
E, that is, ΣE = {(p1, . . . , pn, q1, . . . , qn) ∈ Γ |H(p, q) = E}.

The above given Federer’s derivation formula now reads

dk

dEk

∫
ΣE

α dσ =
∫

ΣE

Ak(α) dσ , (8.21)
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where α is an integrable function and the operator A is

A(α) =
∇

‖∇H‖ ·
(
α · ∇H

‖∇H‖

)
.

Using this formula leads to the following result:

dΩN (E)
dE

=
1
N !

∫
ΣE

dσ

‖∇H‖
M�

1

‖∇H‖ +O
(

1
N

)
, (8.22)

where M�
1 = ∇(∇H/‖∇H‖), and M�

1 is directly proportional to the mean
curvatureM1 of ΣE seen as a submanifold of R

2n [126] according to the simple
relation M1 = −M�

1 /(2n− 1). By integrating equation (8.22), we obtain

ΩN (E) =
1
N !

∫ E

0

dη

∫
Ση

dσ

‖∇H‖
M�

1

‖∇H‖ =
1
N !

∫
ME

dμ
M�

1

‖∇H‖ , (8.23)

and then, at large N , considering that the volume measure dμ concentrates
on the boundary ΣE , we write

1
N !

∫
ME

dμ
M�

1

‖∇H‖ ≈
(δE)
N !

∫
ΣE

dσ

‖∇H‖
M�

1

‖∇H‖

≈ (δE)
N !

〈‖∇H‖−1〉
∫

ΣE

dσ

‖∇H‖ M
�
1 , (8.24)

where in the last approximate replacement, we have used that ‖∇H‖ is posi-
tive and only very weakly varying at large N .

By means of Hölder’s inequality for integrals we get∫
ΣE

dσ

‖∇H‖M
�
1 ≤

(∫
ΣE

dσ

‖∇H‖ |M
�
1 |N

) 1
N
(∫

ΣE

dσ

‖∇H‖

)N−1
N

,

the sign of equality being better approached when M�
1 is everywhere positive.

Hence, using (8.20), (8.23), and (8.24),

ΩN (E) ≤ [Ων(E)]
N−1

N

(
1
N !

∫
ΣE

dσ

‖∇H‖ |M
�
1 |N

) 1
N δE

〈‖∇H‖〉 , (8.25)

and introducing a suitable deformation factor d(E) we can write

[ΩN (E)]
1
N =

d(E)δE
〈‖∇H‖〉

(
1
N !

∫
ΣE

dσ

‖∇H‖ |M
�
1 |N

) 1
N

, (8.26)

so that

ΩN (E) =
[d(E)]N (δE)N

〈‖∇H‖〉2n

1
N !

∫
ΣE

dσ

‖∇H‖ |M
�
1 |N . (8.27)
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Let us now remember the expression of a multinomial expansion (ρ ∈ N)

(x1 + · · ·+ xρ)ρ =
∑

{ni},

∑
nk=ρ

ρ!
n1! · · ·nρ!

· xn1
1 · · ·xnρ

ρ , (8.28)

and use it by identifying the xi with κ1, . . . , κN , the principal curvatures of
ΣE . Put ε0 = sign(κ1 + . . .+ κN ), so that (κ1 + κ2 + · · ·+ κN )N = [ε0 |(κ1 +
κ2 + · · ·+ κN )| ]N = (ε0)N |M�

1 |N . Then, using (8.28), we can write (M�
1 )N =

(κ1 + κ2 + · · ·+ κN )N = N ! KG +R(E), where R(E) contains all the terms
of the expansion (8.28) but that one with n1 = n2 = . . . = nρ = 1; KG is
the Gauss–Kronecker curvature of ΣE , KG =

∏N
i=1 κi. Now put ε = sign(KG)

and ε′ = sign[R(E)] so that it is∣∣(ε0)N |M�
1 |N

∣∣ = |M�
1 |N =

∣∣ N ! ε |KG|+ ε′ |R(E)|
∣∣

that can be rewritten as

|M�
1 |N =

∣∣∣ N ! |KG| +
ε′

ε
|R(E)|

∣∣∣
where ε = ε(x,E) and ε′ = ε′(x,E)—as well as |KG| and |R(E)|—are func-
tions of the point on ΣE and of the energy. By replacing ε′(x,E)/ε(x,E) by its
average on ΣE , let us denote it by w(E), and by putting R̃(E) = w(E)|R(E)|,
the following approximate relation follows1

|M�
1 |N ≈ N ! |KG| + R̃(E)

so that (8.27) now reads

ΩN (E) ≈ [d(E)]N (δE)N

〈‖∇H‖〉2n

∫
ΣE

dσ

(
|KG|+

R̃(E)
N !

)
. (8.29)

Again we have used that ‖∇H‖ is only very weakly varying at large N
and that it is always positive.
1 Here we are implicitly assuming either that w(E) is positive, or that, if negative,

w(E) is sufficiently small so that N !|KG| is larger than w(E)|R(E)| practically
everywhere. Otherwise we should consider | N !(ε/ε′)|KG|+ |R(E)| | and proceed
by taking into account both possibilities; however, for the aims of the present
computation, this would not substantially change the final result. Just to give a
rough idea of the reason why w(E) could be supposed to be “sufficiently small”,
consider that

∫
ΣE

dσ{N !ε|KG|+ε′|R(E)|} has to be positive because it is propor-

tional to the volume ΩN (E), and that
∫

ΣE
dσε|KG| = 0 because it is proportional

to the Euler characteristic of ΣE which is always vanishing since the ΣE are odd-
dimensional. Thus, a-priori, ε could assume the values +1 and −1 with almost
the same frequency on ΣE , whereas ε′ would a-priori assume most frequently the
value +1, thus the ratio ε′/ε could average on ΣE to small values.
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According to the Chern–Lashof theorem (8.11),∫
ΣE

dσ |KG| =
1
2
vol(S2n−1

1 )
2n−1∑
i=0

μi(ΣE) , (8.30)

where μi(ΣE) are the Morse indexes of ΣE .
Therefore, using the above relation in (8.29), the entropy per degree of

freedom can be written as

S(E) =
kB
N

logΩN (E)

≈ 1
N

log

[
vol(S2n−1

1 )
2n−1∑
i=0

μi(ΣE) +
∫

ΣE

dσ
R̃(E)
N !

]

+
1
N

log
[d(E)]N (δE)N

〈‖∇H‖〉2n
. (8.31)

The meaning of (8.31) is better understood if we consider that the Morse
indexes μi(M) of a differentiable manifoldM are related to the Betti numbers
bi(M) of the same manifold by the inequalities

μi(M) ≥ bi(M) . (8.32)

At large dimension we can safely replace (8.32) with μi(M) ≈ bi(M) [206].
Equation (8.31), rewritten as

S(E) ≈ kB
N

log

[
vol(S2n−1

1 )
2n−1∑
i=0

bi(ΣE) +
∫

ΣE

dσ
R̃(E)
N !

]

+
1
N

log
[d(E)]N (δE)N

〈‖∇H‖〉2n
, (8.33)

links topological properties of the microscopic phase space with the macro-
scopic thermodynamic potential S(E).

In particular, even though the function R̃(E) is unknown, sudden changes
of the topology of the hypersurfaces ΣE (reflected by the energy variation of∑
bi(ΣE)) necessarily affect the energy variation of the entropy.
Finally, we resort to the fact that at large N , the volume measure

of ΣE concentrates on Σ�
E = S

n−1
〈2K〉1/2 × Mv=〈V 〉, where S

n−1
〈2K〉1/2 =

{(p1, . . . , pn)|∑ p2i = 〈2K〉} and Mv=〈V 〉 = {(q1, . . . , qn)|V (q) ≤ 〈V 〉}, so
that ΣE can be approximated by this product manifold, and we resort to
the Kunneth formula (see Appendix A) for the Betti numbers of a product
manifold A×B, i.e.,

bi(A×B) =
∑

j+k=i

bj(A)bk(B) , (8.34)
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which, applied to S
n−1
〈2K〉1/2 ×M〈V 〉, gives bi(Σ�

E) = b0(Sn−1
〈2K〉1/2)bi(Mv) + bn−1

(Sn−1
〈2K〉1/2)bi−n+1(Mv) since all the Betti numbers of a (n − 1)-dimensional

hypersphere vanish except for b0 and bn−1, which are equal to 1 (see
Appendix A). This entails that bi(Σ�

E) = bi(Mv) for i = 1, . . . , n − 1,
and bi(Σ�

E) = bi−n+1(Mv) for i = n, . . . , 2n− 1.
Eventually we obtain

S(v) ≈ kB
N

log

[
vol(S2n−1

1 )

(
b0 +

n−1∑
i=1

2bi(Mv) + bn

)
+R(E(v))

]

+
1
N

log
[d(E(v))]N (δE)N

〈‖∇H‖〉2n
, (8.35)

where R(E(v)) stands for the integral on the product manifold of the remain-
der that appears in (8.33).

From this equation we see that a fundamental topological quantity, the sum
of the Betti numbers of the submanifolds Mv = {(q1, . . . , qn) ∈ R

n|V (q) ≤ v}
of configuration space, is related, although with some approximation, to the
thermodynamic entropy of the system.

Note that we derived the equation above under the assumption that
μi(M) ≈ bi(M), so we can also rewrite it as

S(v) ≈ kB
N

log

[
vol(S2n−1

1 )

(
μ0 +

n−1∑
i=1

2μi(Mv) + μn

)
+R(E(v))

]
+ r(E(v)),

(8.36)
with an obvious meaning for r(E(v)).

An important remark. Simple inspection of the formulas in (8.36) and
(8.35) shows an apparently serious problem: S(v), which has to be smooth at
any finite N , is a function of the sum of a real-valued function, R̃(E(v)), and
an integer-valued function, the sum of Betti numbers or the Morse indexes,
and thus it seems to have discontinuous jumps whenever the bi or the μi jump.
Moreover, we derived the above formulas using Federer’s derivation formula,
obviously—in view of the final result—with the implicit assumption of the
existence of critical points of the Hamiltonian, thus contradicting the validity
hypotheses of Federer’s derivation formula. However, if the Hamiltonian is a
Morse function (not a very restrictive condition at all) we know after Sard’s
theorem [210] that the ensemble of critical values, here of the energy, is a
point set. Therefore, any finite interval of energy values is the union of a
finite number of open sets where no critical energy value—and thus no critical
point on the ΣE—is present. On all these open sets, free of critical points,
Federer’s derivation formula can be legally applied. As a consequence, (8.36)
and (8.35) are valid on the disjoint union of all these open sets of values for
the energy. In other words, we have provided a piecewise approximation (with
possibly a huge number of small discontinuous jumps) of a smooth function.
In conclusion, from a rigorous standpoint we should define a smooth envelope
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of the expression given in (8.36), but in practice this would not change the
situation very much, so one can use these formulas keeping in mind the present
remark.

From (8.36) it appears intuitively reasonable that “mild” variations of the
v-patterns of

∑n−1
i=1 μi(Mv) can exist in the absence of a phase transition. In

other words, “mild” variations of the topology of the Mv can leave bounded
the v-derivatives of the entropy. This is in qualitative agreement with the
“monotonic” pattern of χ(Σv) numerically found for the 1D lattice ϕ4 model
and reported in Chapter 7. We can already surmise that some appropriate
jump in the v-patterns of

∑n−1
i=1 μi(Mv)—thus appropriate “strong” topolo-

gical changes of the Mv with a suitable n-dependence—have to be sufficient
to entail the appearance of a phase transition.

As we shall see in Chapter 10, there are models for which the μi(Mv)
can be computed analytically, thus making of (8.36) a crucial constructive
result to relate topology changes of configuration space with phase transitions.
More generally, (8.36) has a great theoretical relevance since it relates thermo-
dynamics with the energy landscape topology in configuration space, unifying
the treatment of “simple” and complex systems. We shall comment more on
this point in Chapter 11.

8.2.1 An Alternative Derivation

Let us anticipate here that another derivation of an analytic relationship
between entropy and topology can be worked out following a different strat-
egy that leads to an exact formula, proved under Theorem 9.2 in the following
chapter. It is obtained again for standard Hamiltonian systems, starting from
the following equivalent microcanonical definition of the entropy S(−)(E),

S(−)(E) =
kB
N

logM(E,N) , (8.37)

where
M(E,N) = vol(ME) =

1
N !

∫
H(p,q)≤E

dnp dnq, (8.38)

where N = 2n and ME is the subset of the 2n-dimensional phase space
Γ bounded by the constant-energy hypersurface ΣE , that is ME = {x ≡
(p1, . . . , pn, q1, . . . , qn) ∈ R

2n|H(p, q) ≤ E}.
By splitting the phase space volume into the union of suitably defined

neighborhoods Γ (x(i)
c ) of the critical points x(i)

c of the Hamiltonian plus its
complement, it is found that the thermodynamic entropy can be written in
the form

S
(−)
N (E) =

1
N

log

[∫
ME\

⋃N(E)

i=1
Γ (x

(i)
c )

dnp dnq +
N∑

i=0

wi μi(ME) +R(N,E)

]
,
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where the first term in square brackets is the phase space subset ME minus
the union of the mentioned neighborhoods of critical points, the second term
is a weighed sum of the Morse indexes of ME , and the third term, R(N,E), is
a smooth function. The clue point, which is exploited to derive such a formula,
is the existence of a universal parametrization (through the Morse chart) of
the level sets ΣE , which holds in small neighborhoods of the critical points.
Of course, given any function, here the phase space volume, we can always
add and subtract to it another arbitrary function, but this is useless, unless
we add some extra information. In the next chapter it is proved that the
first term in square brackets cannot be at the origin of an unbound growth
with N of any derivative of the entropy; thus in particular, singular behaviors
of thermodynamic observables can be originated only by the second term of
topological meaning.

As we shall see in the next chapter, this formula is in very good qualitative
agreement with the one given in (8.36), and suggests that the term R̃(E(v)),
which we called remainder and which enters (8.36), does not entail singular
behaviors of thermodynamic observables, an interesting mutual support of the
two results indeed.



Chapter 9

Phase Transitions and Topology:
Necessity Theorems

In the preceding chapters, we discussed the conceptual development that,
starting from the Riemannian theory of Hamiltonian chaos, led us first to
conjecture the involvement of topology in phase transition phenomena—
formulating what we called the topological hypothesis—and then provided both
indirect and direct numerical evidence of this conjecture. The present chapter
contains a major leap forward: the rigorous proof that topological changes of
equipotential hypersurfaces of configuration space—and of the regions of con-
figuration space bounded by them—are a necessary condition for the appear-
ance of thermodynamic phase transitions. This is obtained for a wide class
of potential functions of physical relevance, and for first- and second-order
phase transitions. However, long-range interactions, nonsmooth potentials,
unbound configuration spaces, “exotic” and higher-order phase transitions,
are not encompassed by the theorems given below and are still open problems
deserving further work. For this reason, and mainly because we do not yet
know precisely what kinds of topological changes entail a phase transition,
we give in what follows the details of the proofs, making the presentation
of the content of this chapter rather formal. We deem it useful to provide
these details in order, we hope, to inspire and stimulate the interested reader
to cope with these challenging tasks. On the other hand, the presentation is
organized so as to facilitate the reader, if so inclined, to grasp only the main
results and the ideas behind them, and to skip the details.

As we have recalled in Chapter 2, the central task of the mathematical
theory of phase transitions has been to prove the loss of differentiability of
the pressure function—or of other thermodynamic functions—with respect to
temperature, or volume, or an external field. The first rigorous results of this
kind are the exact solution of the 2D Ising model due to Onsager [211], and the
Yang–Lee theorem [36,38] showing that despite the smoothness of the canon-
ical and grand-canonical partition functions, in the N → ∞ limit piecewise
differentiability of pressure or other thermodynamic functions also becomes
possible. In the canonical ensemble, after the introduction of the concept
of a Gibbs measure for infinite systems by Dobrushin, Lanford, and Ruelle,

245
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the phenomenon of phase transition is seen as the consequence of nonunique-
ness of a Gibbs measure for a given type of interaction among the particles of
a system [212,213]. In these standard approaches, a phase transition is seen as
stemming from singular properties of the statistical measures, whereas in the
present chapter, we show that these singularities are not “primitive” phenom-
ena but are induced from a deeper level, that of configuration-space topology.
In other words, once the microscopic interaction potential is given, the infor-
mation about the existence of a phase transition is already contained in the
topology of its level sets, prior to and independently of the definition of any
statistical measure.

Here we prove the topological hypothesis by proving the following theorems
[195,214–217]:

Theorem 9.1 (Regularity under diffeomorphicity). Let VN (q1, . . . , qN ) :
R

N → R, be a smooth, nonsingular, finite-range potential. Denote by
Σv := V −1

N (v), v ∈ R, its level sets, or equipotential hypersurfaces, in
configuration space.

Then let v̄ = v/N be the potential energy per degree of freedom.
If for any pair of values v̄ and v̄′ belonging to a given interval Iv̄ = [v̄0, v̄1]

and for any N > N0, we have
ΣNv̄ ≈ ΣNv̄′

that is, ΣNv̄ is diffeomorphic to ΣNv̄′ , then the sequence of the Helmholtz free
energies {FN (β)}N∈N—where β = 1/T (T is the temperature) and β ∈ Iβ =
(β(v̄0), β(v̄1))—is uniformly convergent at least in C2(Iβ), so that F∞ ∈ C2(Iβ)
and neither first- nor second-order phase transitions can occur in the (inverse)
temperature interval (β(v̄0), β(v̄1)).

This is our first theorem, formulated precisely in Section 9.2. In general,
given a model described by a smooth, nonsingular, finite-range potential,
it is a hard task to locate all its critical points and thus to ascertain
whether Theorem 9.1 actually applies to it. Moreover, the requirement of
the existence—at any N—of an energy density interval [v̄0, v̄1] free of criti-
cal values seems rather strong. There are systems for which this condition is
satisfied, as is the case of the Peyrard–Bishop model defined in Section 10.6
(though this model has other problems). However, this does not seem to be
the generic case. In fact, consider, for example, the 1D XY model. As we
shall see in Chapter 10, there is a minimum energetic cost Δv to pass from
one critical value of the potential to the next one. Any configuration with
a random distribution of rotators with angles ±π (“spins” up and “spins”
down) corresponds to a critical point of the potential. Any “spin” flip from
such a configuration requires an energy Δv, and this is just the distance in
energy between two successive critical values of the potential. At increasing
N the quantity Δv remains the same and so does the length of an interval
[vj

c , v
j+1
c ] ≡ [vj

c , v
j
c +Δv], whereas [v̄j

c , v̄
j+1
c ] ≡ [vj

c/N, v
j
c/N ] obviously shrinks

with N . This seems a generic situation for lattices and, in general, for short-
range interactions.
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Therefore, if at large N the critical values of the potential densely crowd
on the axis of potential energy values, then the claim that a phase transition
point must correspond to a critical value of the potential is trivially satisfied
and cannot be given the meaning that phase transitions have a topological
origin. This notwithstanding, Theorem 9.1 is very useful and crucial to prove
Theorem 9.2 which establishes that the occurrence of a phase transition is
necessarily driven by topological changes in configuration space. To do this
we have to consider what happens to the entropy when a critical value of
the potential is crossed. Taking just one critical value vc of the potential,
and allowing an arbitrary growth with N of the number of critical points on
Σvc

, one can see that it is the energy variation of the volume only in the
vicinity of critical points that can entail an unbounded growth with N of the
third- or fourth-order derivative of the entropy. In other words, the breaking
of uniform convergence of the entropy in C3 or in C2 can be originated only
by a topological change of the Σv or, equivalently, of the Mv. To rule out any
role—in the breaking of uniform convergence—of the part of configuration
space volume which is free of critical points, one resorts to Theorem 9.1.

Theorem 9.2 applies to all those systems whose potential is a good Morse
function.1 But are there systems with only one critical value in an interval
[v̄0, v̄1]? At present we can conjecture that the result expressed by Theorem 9.2
extends at least to those potential functions for which the number of critical
values v̄j

c contained in [v̄0, v̄1] grows at most linearly with N (thus encom-
passing a wide class of short-range interaction potentials).2 The basic case
of only one critical value has a great conceptual meaning: it allows a direct
proof of the role of critical points. Once we have proved that phase transitions
can stem only from the neighborhoods of critical points in the ideal case of
one vc in [v̄0, v̄1], we can hardly imagine how the part of configuration space
volume which is free of critical points could start playing any role when the
number of critical values in the interval is let grow. This appears particu-
larly reasonable considering the relation (9.109) between entropy and Morse
indexes (see also below, Theorem 9.2). This relation is valid in general and is
in very good qualitative agreement with a previous (approximate) derivation
of a similar relation between entropy and Morse indexes reported in (8.36).3

Now, forgetting for a moment Theorem 9.1, equation (9.109) suggests that

1 Let us keep in mind that Morse functions are dense in the space of smooth
functions bounded below. See Appendix C.

2 This conjecture is based on the fundamental property of good Morse functions of
having, at arbitrary finite N , a finite number of critical values and a finite number
of isolated critical points on each critical level set, so that isolated neighborhoods
of critical points can always be defined. Proving this conjecture seems only a
technical point.

3 In both relations (9.109) and (8.36) the topological term depends on the sum
with constant coefficients of the Morse indexes of the Mv (with equal weights
in (8.36), with a-priori different weights in (9.109)), and—very important—both
topological terms have the same N -dependence.
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big jumps, possibly steepening with N , in the v-pattern of the topological
term

∑N
i=0A(N, i, ε0)giμi(Mv) should be sufficient to entail the appearance

of a phase transition. The question that remains open concerns the volume
term deprived of the neighborhoods of critical points. In principle it could also
generate thermodynamic singularities independently of the topological term.
However, this possibility is ruled out by resorting to Theorem 9.1, though in
the special case of one critical value in an interval [v̄0, v̄1]. Again, it seems
very hard to imagine how this could change by simply allowing the existence
of more critical values. As a consequence, topology changes are also necessary
for the existence of phase transitions.

Theorem 9.2, proved in Section 9.5, is enunciated as follows:

Theorem 9.2 (Entropy and Topology). Let VN (q1, . . . , qN ) : R
N → R, be

a smooth, nonsingular, finite-range potential. Denote byMv := V −1
N ((−∞, v]),

v ∈ R, the generic submanifold of configuration space bounded by Σv. Let
{q(i)c ∈ R

N}i∈[1,N (v)] be the set of critical points of the potential, that is, such
that ∇VN (q(i)c ) = 0, and let N (v) be the number of critical points up to the
potential energy value v. Let Γ (q(i)c , ε0) be pseudocylindrical neighborhoods of
the critical points, and μi(Mv) the Morse indexes of Mv. Then there exist real
numbers A(N, i, ε0), gi and real smooth functions B(N, i, v, ε0) such that the
following equation for the microcanonical configurational entropy S(−)

N (v) =
(1/N) log

∫
V (q)≤v

dNq holds:

S
(−)
N (v) =

1
N

log
[ ∫

Mv\
⋃N(v)

i=1
Γ (q

(i)
c ,ε0)

dNq +
N∑

i=0

A(N, i, ε0) gi μi(Mv−ε0)

+
Nν(v)+1

cp∑
n=1

B(N, i(n), v − vν(v)
c , ε0)

]
(details and appropriate definitions are given in Section 9.1). Moreover, an
unbounded growth with N of one of the derivatives |∂kS(−)(v)/∂vk|, for k =
3, 4, and thus the occurrence of a first- or second-order phase transition, can
be entailed only by the topological term

∑N
i=0A(N, i, ε0) gi μi(Mv−ε0).

Together, these two theorems imply that for a wide class of potentials that are
good Morse functions, a first- or second-order phase transition can only be the
consequence of a topological change of the submanifolds Mv (or equivalently
of the Σv) of configuration space.

The converse is not true: topological changes are necessary but not suffi-
cient for the occurrence of phase transitions. In the following chapter, the
study of exactly solvable models provides some hints about the sufficiency
conditions, but rigorous results of general validity are not yet available.
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9.1 Basic Definitions

For a physical system S of n particles confined in a bounded subset Λd of
R

d, d = 1, 2, 3, and interacting through a real-valued potential function VN

defined on (Λd)×n, with N = nd, the configurational microcanonical volume
Ω(v,N) is defined for any value v of the potential VN as

Ω(v,N) =
∫

(Λd)×n

dq1 · · · dqN δ[VN (q1, . . . , qN )− v] =
∫

Σv

dσ

‖∇VN‖
, (9.1)

where dσ is a surface element of Σv := V −1
N (v); in what follows, Ω(v,N) is

also called structure integral. The norm ‖∇VN‖ is defined as ‖∇VN‖ =
[
∑N

i=1(∂qi
VN )2]1/2. The configurational partition function Zc(β,N) is

defined as

Zc(β,N) =
∫

(Λd)×n

dq1 . . . dqN exp[−βVN (q1, . . . , qN )]

=
∫ ∞

0

dv e−βv

∫
Σv

dσ

‖∇VN‖
, (9.2)

where the real parameter β has the physical meaning of an inverse temper-
ature. Notice that the formal Laplace transform of the structure integral in
the right hand-side of (9.2) stems from a coarea formula [201] that is of very
general validity (it holds also for Hausdorff measurable sets).

Now we can define the configurational thermodynamic functions to be used
in this chapter.

Definition 9.3. Using the notation v̄ = v/N for the value of the potential
energy per particle, we introduce the following functions:

• Configurational microcanonical entropy, relative to Σv. For any N ∈ N

and v̄ ∈ R,

SN (v̄) ≡ SN (v̄;VN ) =
1
N

logΩ(Nv̄,N) .

• Configurational canonical free energy. For any N ∈ N and β ∈ R,

fN (β) ≡ fN (β;VN ) =
1
N

logZc(β,N) .

• Configurational microcanonical entropy, relative to the volume bounded
by Σv. For any N ∈ N and v̄ ∈ R,

S
(−)
N (v̄) ≡ S(−)

N (v̄;VN ) =
1
N

logM(Nv̄,N) ,

where

M(v,N) =
∫

(Λd)×n

dq1 · · · dqN Θ[VN (q1, . . . , qN )− v] =
∫ v

0

dη

∫
Ση

dσ

‖∇VN‖
,

(9.3)
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with Θ[·] the Heaviside step function; M(v,N) is the codimension-0 subset of
configuration space enclosed by the equipotential hypersurface Σv. The rep-
resentation of M(v,N) given in the right hand-side stems from the already
mentioned coarea formula in [201]. Moreover, S(−)

N (v̄) is related to the con-
figurational canonical free energy, fN , for any N ∈ N and v̄ ∈ R, through the
Legendre transform [98]

−fN (β) = inf
v̄
{β · v̄ − S(−)

N (v̄)} , (9.4)

yielding, for any N ∈ N and β ∈ R,

−fN (β) = β · v̄N − S(−)
N (v̄N ) (9.5)

with, for any N ∈ N and v̄ ∈ R,

βN (v̄) =
∂S

(−)
N

∂v̄
(v̄) , (9.6)

and the inverse relation, valid for any N ∈ N and β ∈ R,

v̄N (β) = −∂fN

∂β
(β) . (9.7)

Finally, for a system described by a Hamiltonian function H of the kind
H =

∑N
i=1 p

2
i /2 + VN (q1, . . . , qN ), the Helmholtz free energy is defined by

FN (β;H) = −(Nβ)−1 log
∫
dNp dNq exp[−βH(p, q)] , (9.8)

whence
FN (β;H) = −(2β)−1 log(π/β)− fN (β, VN )/β (9.9)

with its thermodynamic limit (N →∞ and vol(Λd)/N = const)

F∞(β) = lim
N→∞

FN (β;H) . (9.10)

Definition 9.4 (First- and Second-Order Phase Transitions). We say
that a physical system S undergoes a phase transition if there exists a
thermodynamic function that—in the thermodynamic limit (N → ∞ and
vol(Λd)/N = const)—is only piecewise analytic. In particular, if the first-
order derivative of the Helmholtz free energy F∞(β) is discontinuous at some
point βc, then we say that a first-order phase transition occurs. If the second-
order derivative of the Helmholtz free energy F∞(β) is discontinuous at some
point βc, then we say that a second-order phase transition occurs.
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Definition 9.5 (Standard potential, fluid case). We say that an N -
degrees-of-freedom potential VN is a standard potential for a fluid if it is of
the form

VN : BN ⊂ R
N → R ,

VN (q) =
n∑

i	=j=1

Ψ(‖qi − qj‖) +
n∑

i=1

UΛ(qi) , (9.11)

where BN is a compact subset of R
N , N = nd, Ψ is a real-valued function of

one variable such that additivity holds, and where UΛ is any smoothed potential
barrier to confine the particles in a finite volume Λ, that is,

UΛ(q) =

⎧⎨⎩ 0 if q ∈ Λ′ ,
+∞ if q ∈ Λc, complement in R

N ,
C∞ function for q ∈ Λ \ Λ′ ,

(9.12)

where Λ′ ⊂ Λ and Λ′ is arbitrarily close to Λ ⊂ R
N , closed and bounded.

UΛ is a confining potential in a limited spatial volume with the additional
property that given two limited d-dimensional regions of space, Λ1 and Λ2,
having in common a (d − 1)-dimensional boundary, UΛ1 + UΛ2 = UΛ1+Λ2 .
By additivity we mean what follows. Consider two systems S1 and S2, having
N1 = n1d and N2 = n2d degrees of freedom, occupying volumes Λd

1 and Λd
2,

having potential energies v1 and v2, for any (q1, . . . , qN1) ∈ (Λd
1)

×n1 such
that VN1(q1, . . . , qN1) = v1, for any (qN1+1, . . . , qN1+N2) ∈ (Λd

2)
×n2 such that

VN2(qN1+1, . . . , qN1+N2) = v2, for (q1, . . . , qN1+N2) ∈ (Λd
1)

×n1 × (Λd
2)

×n2 let
VN (q1, . . . , qN1+N2) = v be the potential energy v of the compound system
S = S1+S2 that occupies the volume Λd = Λd

1∪Λd
2 and contains N = N1+N2

degrees of freedom. If

v(N1 +N2, Λ
d
1 ∪Λd

2) = v1(N1, Λ
d
1) + v2(N2, Λ

d
2) + v′(N1, N2, Λ

d
1, Λ

d
2) , (9.13)

where v′ stands for the interaction energy between S1 and S2, and if v′/v1 → 0
and v′/v2 → 0 for N →∞, then VN is additive. Moreover, at short distances,
Ψ must be a repulsive potential so as to prevent the concentration of an arbi-
trary number of particles within small, finite volumes of any given size.

Definition 9.6 (Standard potential, lattice case). We say that an
Ndegrees-of-freedom potential VN is a standard potential for a lattice if it
is of the form

VN : BN ⊂ R
N → R ,

VN (q) =
∑

i,j∈I⊂Nd

CijΨ(‖qi − qj‖) +
∑

i∈I⊂Nd

Φ(qi) , (9.14)

where BN is a compact subset of R
N . Denoting by a1, . . . , ad the lattice spac-

ings, if i ∈ N
d, then (i1a1, . . . , idad) ∈ Λd. We denote by m the number of
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lattice sites in each spatial direction, by n = md the total number of lattice
sites, by D the number of degrees of freedom on each site. Thus qi ∈ R

D

for any i. The total number of degrees of freedom is N = mdD. Having two
systems made of N = mdD degrees of freedom, whose site indexes i(1) and
i(2) run over 1 ≤ i

(1)
1 , . . . , i

(1)
d ≤ m, and 1 ≤ i

(2)
1 , . . . , i

(2)
d ≤ m, after gluing

together the two systems through a common (d − 1)-dimensional boundary,
the new system has indexes i running over, for example, 1 ≤ i1 ≤ 2m and
1 ≤ i2, . . . , id ≤ m. If

v(N +N,Λd
1 ∪ Λd

2) = v1(N,Λd
1) + v2(N,Λd

2) + v′(N,N,Λd
1, Λ

d
2) (9.15)

where v′ stands for the interaction energy between the two systems and if
v′/v1 → 0 and v′/v2 → 0 for N →∞, then VN is additive.

Definition 9.7 (Short-range potential). In defining a short-range poten-
tial, a distinction has to be made between lattice systems and fluid systems.
Given a standard potential VN on a lattice, we say that it is a short-range
potential if the coefficients Cij are such that for any i, j ∈ I ⊂ N

d, Cij = 0 iff
|i− j| > c, with c is definitively constant for N →∞.

Given a standard potential VN for a fluid system, we say that it is a short-
range potential if there exist R0 > 0 and ε > 0 such that for ‖q‖ > R0 we
have |Ψ(‖q‖)| < ‖q‖−(d+1+ε), where d = 1, 2, 3 is the spatial dimension.

Definition 9.8 (Stable potential). We say that a potential VN is stable
[98] if there exists B ≥ 0 such that

VN (q1, . . . , qN ) ≥ −NB (9.16)

for any N > 0 and (q1, . . . , qN ) ∈ (Λd)×n, or for qi ∈ R
D, i ∈ I ⊂ N

d,
N = mdD, for lattices.

Definition 9.9 (Confining potential). With the above definitions of stan-
dard potentials VN , in the fluid case the potential is said to be confining in
the sense that it contains UΛ, which constrains the particles in a finite spatial
volume, and in the lattice case the potential VN contains an on-site potential
such that at finite energy, ‖qi‖ is constrained in a compact set of values.

Remark 9.10 (Compactness of equipotential hypersurfaces). From the previous
definition it follows that for a confining potential, the equipotential hypersur-
faces Σv are compact (because they are closed by definition and bounded in
view of particle confinement).

Proposition 9.11 (Pointwise convergence). Assume that VN is a stan-
dard, confining, short-range, and stable potential. Assume also that there exists
N0 ∈ N such that

⋂∞
N>N0

dom(S(−)
N ) and

⋂∞
N>N0

dom(SN ) are nonempty sets.
Then the following pointwise limits exist almost everywhere:
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lim
N−→∞

S
(−)
N (v̄) ≡ S(−)

∞ (v̄) for v̄ ∈
∞⋂

N>N0

dom(S(−)
N )

lim
N−→∞

SN (v̄) ≡ S∞(v̄) for v̄ ∈
∞⋂

N>N0

dom(SN )

and moreover,

S(−)
∞ (v̄) = S∞(v̄) for v̄ ∈

∞⋂
N>N0

dom(S(−)
N ) ∩

∞⋂
N>N0

dom(SN ) . (9.17)

Proof. The existence of the thermodynamic limit for the sequences of
functions S(−)

N and SN , associated with a standard potential function VN

with short-range interactions, stable and confining is formally proved in [98],
Sections 3.3 and 3.4. To prove that in the thermodynamic limit the two
entropies S(−)

∞ and S∞ are equal, we proceed from the definitions of S(−)
N

and of βN (v̄), that is,

S
(−)
N (v̄) =

1
N

logM(Nv̄,N)

and

βN (v̄) =
∂S

(−)
N

∂v̄
(v̄) ,

noting that from the right hand-side of (9.3) we obtain

dM(Nv̄,N)
dv̄

= NΩ(Nv̄,N) , (9.18)

so that

βN (v̄) =
1

NM(Nv̄,N)
dM(Nv̄,N)

dv̄
=
Ω(Nv̄,N)
M(Nv̄,N)

, (9.19)

whence
1
N

logΩ(v̄N,N) =
1
N

logM(v̄N,N) +
1
N

log βN (v̄) . (9.20)

Because of the existence of the thermodynamic limit β(v̄) of the sequence of
functions βN (v̄) [see Proposition 9.13], for any given v̄ ∈ R, we have

lim
N→∞

1
N

log βN (v̄) = 0 .

Thus, with SN (v̄) = 1/N logΩ(v̄N,N), in the thermodynamic limit, that is,
in the limit N →∞ with vol(Λd)/N = const, for any v̄ ∈ R, (9.20) implies

S∞(v̄) = S(−)
∞ (v̄) . (9.21)

!"
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Remark 9.12 (Equivalent definitions of entropy). In [98] it is proved that the
Legendre transform relating S(−)

N (v̄) to fN (β) still holds in the thermodynamic
limit, that is, S(−)

∞ (v̄) and f∞(β) are still related by a Legendre transform (see
theorem 3.4.4 in [98]). Thus, by equation (9.21), S(v̄) is related to f∞(β) by
the same Legendre transform.

Proposition 9.13 (Pointwise convergence). Assume that VN is a stan-
dard, confining, short-range, and stable potential. Assume also that there exists
N0 ∈ N such that

⋂∞
N>N0

dom(fN ) and
⋂∞

N>N0
dom(βN ) are nonempty. Then

the following limits exist pointwise almost everywhere:

lim
N−→∞

fN (β) ≡ f(β) , for β ∈
∞⋂

N>N0

dom(fN )

lim
N−→∞

βN (v̄) ≡ β(v̄)) , for v̄ ∈
∞⋂

N>N0

dom(βN ) . (9.22)

Proof. See [98], Section 3.4.

Henceforth, we shall use V instead of VN if no explicit reference the N -
dependence of V is necessary.

9.2 Main Theorems: Theorem 1

In this section we prove the first of our two main theorems.

Theorem 9.14 (Regularity under diffeomorphicity). Let VN be a stan-
dard, smooth, confining, short-range potential bounded from below (Definitions
9.5, 9.7, 9.8, and 9.9):

VN : BN ⊂ R
N → R ,

VN (q) =
∑

i,j∈I⊂Nd

CijΨ(‖qi − qj‖) +
∑

i∈I⊂Nd

Φ(qi) . (9.23)

Let (Ψ,Φ) be real-valued one-variable functions, let i, j label interacting pairs
of degrees of freedom within a short-range, and let {Σv}v∈R

be the family of
(N−1)-dimensional equipotential hypersurfaces Σv := V −1

N (v), v ∈ R, of R
N .

Let v̄0, v̄1 ∈ R, v̄0 < v̄1. If there exists N0 such that for any N > N0 and
for any v̄, v̄′ ∈ Iv̄ = [v̄0, v̄1],

ΣNv̄ is C
∞ − diffeomorphic to ΣNv̄′ (9.24)

(notation: ΣNv̄ ≈ ΣNv̄′), then the limit entropy S(v̄) is of differentiabil-
ity class C3(Iv̄), and, consequently, β(v̄) belongs to C2(Iv̄), whence the limit

Helmholtz free energy function F∞ is in C2(
o

Iβ), where
o

Iβ denotes the open
interior of β([v̄0, v̄1])), so that the system described by V has neither first- nor

second-order phase transitions in the inverse-temperature interval
o

Iβ.
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The idea of the proof of Theorem 9.14 is the following. In order to prove that
a topological change of the equipotential hypersurfaces Σv of configuration
space is a necessary condition for a thermodynamic phase transition to occur,
we shall prove the equivalent proposition that if any two hypersurfaces Σv(N)

and Σv′(N) with v(N), v′(N) ∈ (v0(N), v1(N)) are diffeomorphic for all N ,
possibly greater than some finite N0, then no phase transition can occur in
the (inverse) temperature interval [limN→∞ β(v̄0(N)), limN→∞ β(v̄1(N))]. To
this end we have to show that in the limit N →∞ and vol(Λd)/N = const,
the Helmholtz free energy F∞(β;H) is at least twice differentiable as a func-
tion of β = 1/T in the interval [limN→∞ β(v̄0(N)), limN→∞ β(v̄1(N))]. For
the standard Hamiltonian systems that we consider throughout this chapter,
showing that FN (β) = −(2β)−1 log(π/β)− fN (β)/β is equivalent to showing
that the sequence of configurational free energies {fN (T ;H)}N∈N+ is uni-
formly convergent at least in C2, so that also {f∞(T ;H)} ∈ C2.

We shall give the proof of Theorem 9.14 through the following lemmas,
which are separately proven in subsequent sections.

Lemma 9.15 (Absence of critical points). Let f : M → [a, b] a smooth
map on a compact manifold M with boundary such that its Hessian is non-
degenerate. Suppose f(∂M) = {a, b} and that for any c, d ∈ [a, b], we have
f−1(c) ≈ f−1(d), that is, all the level surfaces of f are diffeomorphic. Then f
has no critical points, that is, ‖∇f‖ ≥ C > 0 in [a, b], where C is a constant.

Proof. Since f is a good Morse function, let us consider the case of the
existence of at least one critical value c ∈ [a, b] such that ∇f = 0 at some
points of the level set f−1(c). The set of critical points σ(c) = {xi,ki

c ∈
f−1(c)|(∇f)(xi,ki

c ) = 0} is a point set [210]; the index i labels the differ-
ent critical points; and ki is the Morse index of the ith critical point. By the
“noncritical neck” theorem [210], we know that the level sets f−1(v) with
v ∈ [a, c− ε] and arbitrary ε > 0 are diffeomorphic because in the absence of
critical points in the interval [a, c− ε] for any v, v′ ∈ [a, c− ε], with arbitrary
ε > 0, f−1(v) is a deformation retraction of f−1(v′) through the flow associ-
ated with the vector field [23] X = −∇f/‖∇f‖2. Now, in the neighborhood
of each critical point xi,ki

c , the existence of the Morse chart [23] allows one to
represent the function f as follows:

f(x) = f(xi,ki
c )− x2

1 − · · · − x2
ki

+ x2
ki+1 + · · ·+ x2

n , (9.25)

whence the degeneracy of the quadrics for v = c entailing that the level
set f−1(c) no longer qualifies as a differentiable manifold. Thus for any v ∈
[a, c− ε] and arbitrary ε > 0, we have

f−1(v) �≈ f−1(c) . (9.26)

In conclusion, if for any pair of values v, v′ ∈ [a, b] one has f−1(v′) ≈ f−1(v),
then no critical point of f can exist in the interval [a, b]. !"
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Lemma 9.16 (Smoothness of the structure integral). Let VN be a stan-
dard, short-range, stable, and confining potential function bounded below. Let
{Σv}v∈R

be the family of (N − 1)-dimensional equipotential hypersurfaces
Σv := V −1

N (v), v ∈ R, of R
N . Then

if for any v, v′ ∈ [v0, v1], Σv ≈ Σv′ , then ΩN (v) ∈ C∞(]v0, v1[) .

Proof. The proof of this lemma is given in Section 9.3.

Lemma 9.17 (Uniform convergence). Let U and U ′ be two open intervals
of R. Let hN be a sequence of functions from U to U ′, differentiable on U ,
and let h : U −→ U ′ be such that for any x ∈ U, limN→∞ hN (x) = h(x).
If there exists M ∈ R such that for any N ∈ N and for any a ∈ U,∣∣∣∣dhN

dx
(a)

∣∣∣∣ ≤M , then h is continuous at a for any a ∈ U .

Proof. From the assumption that for any N ∈ N and for any a ∈ U we have
|h′N (a)| ≤M , and by the fundamental theorem of calculus, the set of functions
{hN}N∈N is equilipschitzian and thus uniformly equicontinuous [218]. Then,
by Ascoli’s theorem on equicontinuous sets of applications [218], it follows that
for any a ∈ U the closure of the set of functions {hN}N∈N is equicontinuous,
and thus the limit function h is continuous at a for any a ∈ U . !"

Lemma 9.18 (Uniform upper bounds). Let VN be a standard, short-
range, stable, and confining potential function bounded below. Let {Σv}v∈R

be
the family of (N − 1)-dimensional equipotential hypersurfaces Σv := V −1

N (v),
v ∈ R, of R

N . If

for any N and v̄, v̄′ ∈ Iv̄ = [v̄0, v̄1], we have ΣNv̄ ≈ ΣNv̄′ ,

then

sup
N,v̄∈Iv̄

|SN (v̄)| <∞ and sup
N,v̄∈Iv̄

∣∣∣∣∂kSN

∂v̄k
(v̄)

∣∣∣∣ <∞, k = 1, 2, 3, 4.

Proof. The proof of this lemma is given in Section 9.4.

Proof. (Theorem 9.14) Under the hypothesis that all the level surfaces of VN

are diffeomorphic in the interval Iv̄, we know from Lemma 9.15 that there are
no critical points of VN in Iv̄, i.e., there exists C(N) > 0 such that for any
N > N0,

for v̄ ∈ Iv̄, and for any x ∈ ΣNv̄, ‖∇VN (x)‖ ≥ C > 0 . (9.27)

Therefore, the restriction of VN ,
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ṼN = V|V −1
N

(INv̄) : V −1
N (INv̄) ⊂ B → R , (9.28)

always defines a Morse function, since VN is bounded below. Notice that

SN (• ;VN )|
o

Iv̄

≡ SN (• ; ṼN )|
o

I v̄

. (9.29)

In what follows we shall drop the tilde and VN will denote the above given
restriction.

Now, since the condition (9.27) holds for the hypersurfaces {ΣNv̄}
v̄∈

o

Iv̄

, from

Lemma 9.16 it follows that for any N > N0, Ω(Nv̄,N) is actually in C∞(
o

I v̄),

where
o

I v̄= (v̄0, v̄1); this implies that for any N > N0, SN also belongs to

C∞(
o

I v̄).
While at any finite N , under the main assumption of the theorem, the

entropy functions SN are smooth, we do not know what happens in the N →
∞ limit. To know the behavior at the limit, we have to prove the uniform
convergence of the sequence {SN}N∈N+ . Lemmas 9.17 and 9.18 prove exactly

that this sequence is uniformly convergent at least in the space C3(
o

I v̄), so that

we can conclude that also S ∈ C3(
o

I v̄).

Since S = S(−) in Iv̄ (Proposition 9.11), also S(−) lies in C3(
o

I v̄) and

β in C2(
o

I v̄). Moreover, by definition and existence of the uniform limit of

{SN}N∈N+ , for any v̄ ∈
o

I v̄ we can write

S(v̄) = f(β(v̄)) + β(v̄) · v̄ , (9.30)

which entails f ∈ C2(β(
o

I v̄)) ≡ C2(
o

Iβ).
Since the kinetic-energy term of the Hamiltonian describing the system

S gives only a smooth contribution, the Helmholtz free energy F∞ also has
differentiability class C2(

o

Iβ). Hence we conclude that the system S undergoes
neither first- nor second-order phase transitions in the inverse-temperature
interval β ∈

o

Iβ . !"

Corollary 9.19. Under the hypotheses of Theorem 9.14, let {Mv}v∈R be the
family of the N -dimensional subsets Mv := V −1

N ((−∞, v]), v ∈ R, of R
N . Let

v̄0, v̄1 ∈ R, v̄0 < v̄1. If there exists N0 such that for any N > N0 and for any
v̄, v̄′ ∈ Iv̄ = [v̄0, v̄1],

MNv̄ is C
∞ − diffeomorphic to MNv̄′ , (9.31)

then the limit entropy S(−)(v̄) is of differentiability class C3(Iv̄), and conse-
quently, β(v̄) = ∂S(−)/∂v̄ belongs to C2(Iv̄), whence the limit Helmholtz free

energy function F∞ is in ∈ C2(
o

Iβ), where
o

Iβ denotes the open interior of
β([v̄0, v̄1])), so that the system described by V has neither first- nor second-

order phase transitions in the inverse-temperature interval
o

Iβ.
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Proof. If for any v̄, v̄′ ∈ Iv̄ = [v̄0, v̄1] we have MNv̄ ≈ MNv̄′ , then by
Bott’s “critical-neck theorem” [219], there are no critical points of VN in
the interval [v̄0, v̄1]. As a consequence of the absence of critical points in
[v̄0, v̄1], by the “noncritical neck theorem” [210], for any v̄, v̄′ ∈ Iv̄ = [v̄0, v̄1],
ΣNv̄ ≈ ΣNv̄′ . Now Theorem 9.14 implies S(v̄) ∈ C3(Iv̄), so that using Propo-
sition 9.11 we have also S(−)(v̄) ∈ C3(Iv̄). Then using equation (9.5) we have

f∞(β) ∈ C2(Iv̄) and thus F∞ ∈ C2(
o

Iβ), so that neither first- nor second-

order phase transitions can occur in the inverse-temperature interval
o

Iβ=
(∂S(−)/∂v̄|v̄=v̄0 , ∂S

(−)/∂v̄|v̄=v̄1). !"

9.3 Proof of Lemma 2, Smoothness of the Structure
Integral

We make use of the following lemma:

Lemma 9.20. Let U be a bounded open subset of R
N , let ψ be a Morse func-

tion defined on U , ψ : U ⊂ R
N → R, and let F = {Σv}v be the family of

hypersurfaces defined as Σv = {x ∈ U |ψ(x) = v}. Then

if for any v, v′ ∈ [v0, v1], Σv ≈ Σ′
v ,

then for any g ∈ C∞(U),
∫

Σv

g dσ is C∞ in ]v0, v1[ .

Proof. To prove this lemma we need the following theorem [201,209]:

Theorem 9.21 (Federer, Laurence). Let O ⊂ R
p be a bounded open set.

Let ψ ∈ Cn+1(Ō) be constant on each connected component of the boundary
∂O and g ∈ Cn(O).

Define Ot,t′ = {x ∈ O | t < ψ(x) < t′} and F (v) =
∫
{ψ=v} g dσ

p−1, where
dσp−1 represents the Lebesgue measure of dimension p− 1.

If C > 0 exists such that for any x ∈ Ot,t′ , ‖∇ψ(x)‖ ≥ C, then for any k
such that 0 ≤ k ≤ n, for any v ∈]t, t′[, one has

dkF

dvk
(v) =

∫
{ψ=v}

Akg dσp−1 . (9.32)

with Ag = ∇
(

∇ψ
‖∇ψ‖g

)
1

‖∇ψ‖ .

By applying this theorem to the function ψ of Lemma 9.20 we have that
if there exists a constant C > 0 such that for any x ∈ Ov0,v1 we have
‖∇ψ(x)‖ ≥ C, then

dkF

dvk
(v) =

∫
Σv

Akg dσ, ∀v ∈]v0, v1[ . (9.33)
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Now, under the hypothesis that for any v, v′ ∈ [v0, v1], Σv ≈ Σv′ , we
know from Lemma 9.15, “absence of critical points,” that this hypothesis is
equivalent to the assumption that for any v ∈ [v0, v1], Σv has no critical
points. Hence there exists a constant C > 0 such that ∀x ∈ Ov0,v1 ‖∇ψ(x)‖ ≥
C. Furthermore, since ‖∇ψ‖ is strictly positive, A is a continuous operator
on Ov0,v1 . Thus, being Σv compact, (dkF/dvk) is continuous on the interval
]v0, v1[, ∀k, namely

∫
Σv
g dσ ∈ C∞(]v0, v1[) .

To conclude the proof of Lemma 9.16 we have to use Lemma 9.20 taking
ψ = VN and g = 1/‖∇VN‖, assuming that VN is a Morse function and that
‖∇VN‖ is strictly positive (absence of critical points of VN stemming from the
hypothesis of diffeomorphicity of Theorem 9.14). !"

9.4 Proof of Lemma 9.18, Upper Bounds

The proof of Lemma 9.18 is split into two parts. In part A some preliminary
results to be used in part B are given, and in part B the inequalities of Lemma
9.18 are proved.

The proof of Lemma 9.18 is the core of the proof of Theorem 9.14. Thus,
since the proof of Lemma 9.18 is lengthy, in order to ease its reading we offer
a summary of it.
Sketch of the Proof.

In order to prove Theorem 9.14), we have to show that the assumption of
diffeomorphicity among the ΣNv̄ for v̄ ∈ [v̄0, v̄1] entails that S∞(v̄) is three
times differentiable. By Ascoli’s theorem [218], this is proved by showing that
for v̄ ∈ Iv̄ = [v̄0, v̄1] and for any N , the function SN (v̄) and its first four
derivatives are uniformly bounded in N from above, that is, for any N ∈ N

and v̄ ∈ [v̄0, v̄1],

sup |SN (v̄)| <∞ , sup
∣∣∣∣∂kSN

∂v̄k

∣∣∣∣ <∞ , k = 1, . . . , 4. (9.34)

By Definition 9.3 for the entropy, the first four derivatives of SN (v̄) are

∂v̄SN = (1/N)(dv/dv̄)Ω′/Ω ,

∂2
v̄SN = N [Ω′′/Ω − (Ω′/Ω)2] , (9.35)
∂3

v̄SN = N2[Ω′′′/Ω − 3Ω′′Ω′/Ω2 + 2(Ω′/Ω)3] ,
∂4

v̄SN = N3[Ωiv/Ω − 4Ω′′′Ω′/Ω2 − 3(Ω′′/Ω)2

+12Ω′′(Ω′)2/Ω3 − 6(Ω′/Ω)4] ,

where the primes stand for derivations of Ω(v,N) with respect to v = v̄N .
In order to verify whether the conditions (9.34) are satisfied, we must be able
to estimate the N -dependence of all the addenda in these expressions for the
derivatives of SN .
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Since the assumption of diffeomorphicity of the ΣNv̄ is equivalent to the
absence of critical points of the potential, we can use the derivation formula
[201,209]

dk

dvk
ΩN (v) =

∫
Σv

‖∇V ‖ Ak

(
1

‖∇V ‖

)
dσ

‖∇V ‖ , (9.36)

where Ak stands for k iterations of the operator

A(•) = ∇
( ∇V
‖∇V ‖ •

)
1

‖∇V ‖ .

A technically crucial step to prove the theorem is to use the above for-
mula (9.36) to compute the derivatives of Ω(v,N). In fact, these are trans-
formed into the surface integrals of explicitly computable combinations and
powers of a few basic ingredients, such as ‖∇V ‖, ∂V/∂qi, ∂2V/∂qi∂qj , and
∂3V/∂qi∂qj∂qk.

The first uniform bound in (9.34), |SN (v̄)| < ∞, is a simple consequence
of the intensivity of SN (v̄).

To prove the boundedness of the first derivative of SN , we compute its
expression by means of the first of equations (9.35) and of Eq.(9.36), which
reads

∂SN

∂v̄
=

1
Ω

∫
Σv̄N

[
ΔV

‖∇V ‖2 − 2

∑
i,j ∂

iV ∂2
ijV ∂

jV

‖∇V ‖4

]
dσ

‖∇V ‖ , (9.37)

with ∂iV = ∂V/∂qi and i, j = 1, . . . , N , whence (with an obvious meaning of
〈·〉Σv

)

∣∣∣∣∂SN

∂v̄

∣∣∣∣ ≤ 〈 | ΔV |
‖∇V ‖2

〉
Σv

+ 2

〈∣∣∣∑i,j ∂
iV ∂2

ijV ∂
jV

∣∣∣
‖∇V ‖4

〉
Σv

. (9.38)

the right hand-side of this inequality—in the absence of critical points of the
potential—can be bounded from above by (see Lemma 9.29)

〈| ΔV |〉Σv

〈‖∇V ‖2〉Σv

+O
(

1
N

)
+2

〈∑N
i,j=1 | ∂iV ∂2

ijV ∂
jV |

〉
Σv

〈‖∇V ‖4〉Σv

+O
(

1
N2

)
. (9.39)

Since we have assumed that V is smooth and bounded below, and using the
argument put forward in Remark 9.28, we have 〈|ΔV |〉Σv

= 〈|∑N
i=1 ∂

2
iiV |〉Σv

≤
N maxi〈| ∂2

iiV |〉Σv
, and since we have also assumed that V is a short-range

potential, the number of nonvanishing matrix elements ∂2
ijV is N(np + 1),

where np is the number of neighboring particles in the interaction range of the
potential. Thus

〈
| ∂iV ∂2

ijV ∂
jV |

〉
Σv

≤ N(np + 1)maxi,j〈| ∂iV ∂2
ijV ∂

jV |〉Σv
.
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Moreover, the following lower bounds exist for the denominators in the
inequality (9.39): 〈‖∇V ‖2〉Σv

≥ N mini〈(∂iV )2〉Σv
, and 〈‖∇V ‖4〉Σv

≥
N2 mini,j〈(∂iV )2 (∂jV )2〉Σv

.
Finally, putting m = maxi,j〈| ∂iV ∂2

ijV ∂
jV |〉Σv

, c1 = mini〈(∂iV )2〉Σv
,

and c2 = mini,j〈(∂iV )2 (∂jV )2〉Σv
, by substituting in (9.39) the upper bounds

for the numerators and the lower bounds for the denominators we obtain∣∣∣∣∂SN

∂v̄

∣∣∣∣ ≤ maxi〈| ∂2
iiV |〉Σv

c1
+O

(
1
N

)
+ 2

np m

c2N
+O

(
1
N2

)
, (9.40)

which, in the limit N → ∞, shows that the first derivative of the entropy is
uniformly bounded by a finite constant. This first step proves that S∞(v̄) is
continuous.

The three further steps, concerning boundedness of the higher-order deriv-
atives, involve similar arguments to be applied to a number of terms that is
rapidly increasing with the order of the derivative. But many of these terms
can be grouped in the form of the variance or higher moments of certain
quantities, thus allowing the use of a powerful technical trick to compute
their N -dependence. For example, using (9.36) in the expression for ∂2

v̄SN ,
we get ∣∣∣∣∂2SN

∂v̄2

∣∣∣∣ ≤ N ∣∣∣〈α2〉Σv
− 〈α〉2Σv

∣∣∣+N ∣∣∣〈ψ(V ) · ψ (α)〉Σv

∣∣∣ , (9.41)

where α = ‖∇V ‖ A(1/‖∇V ‖) and ψ = ∇/‖∇V ‖. Now, it is possible to think
of the scalar function α as if it were a random variable, so that the first term
in the right hand-side of (9.41) would be its second moment. Such a possibility
is related to the general validity of the Monte Carlo method for computing
multiple integrals. In particular, since the Σv are smooth, closed (V is non-
singular), without critical points, and representable as the union of suitable
subsets of R

N−1, the standard Monte Carlo method [220] is applicable to the
computation of the averages 〈·〉Σv

, which become sums of standard integrals
in R

N−1. This means that a random walk can be constructively defined on
any Σv, which conveniently samples the desired measure on the surface (see
Lemma 9.22). Along such a random walk, usually called a Monte Carlo Markov
chain (MCMC), α and its powers behave as random variables whose “time”
averages along the MCMC converge to the surface averages 〈·〉Σv

. Notice that
the actual computation of these surface averages goes beyond our aim; in
fact, we do not need the numerical values, but only the N -dependences, of
the upper bounds of the derivatives of the entropy. Therefore, all that we
need is just knowing that in principle a suitable MCMC exists on each Σv.
Now, the function α is the integrand in square brackets in (9.37), where the
second term vanishes at large N , as is clear from (9.40). Therefore, at increas-
ingly large N , the approximate expression α =

∑N
i=1 ∂

2
iiV/‖∇V ‖2 tends to

become exact. Then α is in the form of a sum function α = N−1
∑N

i=1 ai of
terms ai = N∂2

iiV/‖∇V ‖2, of O(1) in N , which, along an MCMC, behave as
independent random variables with probability densities ui(ai), which we do
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not need to know explicitly. Then, after a classical ergodic theorem for sum
functions, due to Khinchin [221], based on the central limit theorem of prob-
ability theory, α is a Gaussian-distributed random variable; since its variance
decreases linearly with N , limN→∞N |〈α2〉Σv

− 〈α〉2Σv
| = const <∞.

Arguments similar to those above used for the first derivative of SN lead
to the result limN→∞N |〈ψ(V ) ·ψ (α)〉Σv

| = const <∞, which, together with
what has been just found for the variance of α, proves the uniform bounded-
ness also of the second derivative of SN under the hypothesis of diffeomor-
phicity of the Σv.

Similarly, but with increasingly tedious work, we can treat the third
and fourth derivatives of the entropy. In fact, despite the large number of
terms contained in their expressions, they again belong to only two dif-
ferent categories: those terms that can be grouped in the form of higher
moments of the function α, and whoseN -dependence is known from the above-
mentioned theorem due to Khinchin and Lemma 9.25, and those terms whose
N -dependence can be found by means of the same kind of estimates given
above for ∂v̄SN . Eventually, after lengthy but rather mechanical work, also
the third and fourth derivatives of SN are shown to be uniformly bounded as
prescribed by (9.34), completing the proof of Theorem 9.14.

9.4.1 Part A

We begin by showing that on any (N − 1)-dimensional hypersurface ΣNv̄ =
V −1

N (Nv̄) = {X ∈ R
N | VN (X) = Nv̄} of R

N , we can define a homogeneous
nonperiodic random Markov chain whose probability measure is the configu-
rational microcanonical measure, namely dσ/‖∇VN‖.

Notice that at any finite N and in the absence of critical points of the
potential VN (because of ‖∇VN‖ ≥ C > 0) the microcanonical measure is
smooth. The microcanonical averages 〈 〉μc

N,v are then equivalently computed
as “time” averages along the previously mentioned Markov chains.

In the following, when no ambiguity is possible, for the sake of notation
we shall drop the suffix N of VN .

Lemma 9.22. On each finite-dimensional level set ΣNv̄ = V −1(Nv̄) of a
standard, smooth, confining, short-range potential V bounded below, and in
the absence of critical points, there exists a random Markov chain of points
{Xi ∈ R

N}i∈N+ , constrained by the condition V (Xi) = Nv̄, which has

dμ =
dσ

‖∇V ‖

(∫
ΣNv̄

dσ

‖∇V ‖

)−1

(9.42)

as its probability measure, so that for a smooth function F : R
N → R we have(∫

ΣNv̄

dσ

‖∇V ‖

)−1 ∫
ΣNv̄

dσ

‖∇V ‖ F = lim
n→∞

1
n

n∑
i=1

F (Xi) . (9.43)
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Proof. Sinc the level sets {ΣNv̄}v̄∈R are compact codimension-1 hypersur-
faces of R

N , there exists on each of them a partition of unity [197]. Thus,
denoting by {Ui}, 1 ≤ i ≤ m, an arbitrary finite covering of ΣNv̄ by means of
domains of coordinates (for example by means of open balls), a set of smooth
functions {ϕi} exists, with 1 ≥ ϕi ≥ 0 and

∑
i ϕi = 1, for any point of

ΣNv̄. Since the hypersurfaces ΣNv̄ are compact and oriented, the partition of
unity {ϕi} on ΣNv̄, subordinate to a collection {Ui} of one-to-one local para-
metrizations of ΣNv̄, allows one to represent the integral of a given smooth
(N − 1)-form ω as follows A.4.6:∫

ΣNv̄

ω(N−1) =
∫

ΣNv̄

(
m∑

i=1

ϕi(x)

)
ω(N−1)(x) =

m∑
i=1

∫
Ui

ϕiω
(N−1)(x) .

Now we proceed constructively by showing how a Monte Carlo Markov chain
(MCMC), having (9.42) as its probability measure, is constructed on a given
ΣNv̄.

We consider sequences of random values {xi : i ∈ Λ}, with Λ the
finite set of indexes of the elements of the partition of unity on ΣNv̄, and
xi = (x1

i , . . . , x
N−1
i ) the local coordinates with respect to Ui of an arbitrary

representative point of the set Ui itself. Then we define the weight π(i) of the
ith element of the partition as

π(i) =

(
m∑

k=1

∫
Uk

ϕk
dσ

‖∇V ‖

)−1 ∫
Ui

ϕi
dσ

‖∇V ‖ (9.44)

and the transition matrix elements [220]

pij = min
[
1,
π(j)
π(i)

]
(9.45)

that satisfy the detailed balance equation π(i)pij = π(j)pji. Starting from an
arbitrary element of the partition, labeled by i0, and using the transition prob-
ability (9.45), we obtain a random Markov chain {i0, i1 . . . , ik, . . .} of indexes
and, consequently, a random Markov chain of points {xi0 , xi1 , . . . , xik

, . . .}
on the hypersurface ΣNv̄. Now let (x1

P , . . . , x
N−1
P ) be the local coor-

dinates of a point P on ΣNv̄ and define a local reference frame as
{∂/∂x1

P , . . . , ∂/∂x
N−1
P , n(P )}, where n(P ) is the outward unit normal vector

at P ; through the point-dependent matrix that operates the change from this
basis to the canonical basis {e1, . . . , eN} of R

N we can associate to the Markov
chain {xi0 , xi1 , . . . , xik

, . . .} an equivalent chain {Xi0 , Xi1 , . . . , Xik
, . . .} of

points identified through their coordinates in R
N but still constrained to

belong to the subset V (X) = v, that is, to ΣNv̄. By construction, this Monte
Carlo Markov chain has the probability density (9.42) as its invariant prob-
ability measure [220]. Moreover, for smooth functions F , smooth potentials
V , and in the absence of critical points, F/‖∇V ‖ has a limited variation



264 Chapter 9 Phase Transitions and Topology: Necessity Theorems

on each set Ui. Thus the partition of unity can be made as fine-grained as
needed—keeping it finite—to make Lebesgue integration convergent; hence
equation (9.43) follows. !"

In part B we shall need the N -dependence of the momenta, up to the
fourth order, of the sum of a large number N of mutually independent random
variables. These N -dependencies are worked out in what follows by using and
extending some results due to Khinchin [221].

Definition 9.23. Let us consider a sequence {ηk}k=1,...,N of mutually inde-
pendent random quantities with probability densities {uk(x)}k=1,...,N . Let us
denote by ak =

∫
x uk(x) dx the mean of the kth quantity and by

bk =
∫

(x− ak)2 uk(x) dx , ck =
∫
|x− ak|3 uk(x) dx ,

dk =
∫

(x− ak)4 uk(x) dx , ek =
∫
|x− ak|5 uk(x) dx ,

its higher moments.

Theorem 9.24 (Khinchin). Let us consider a sequence {ηk}k=1,...,N

of mutually independent random quantities with probability densities
{uk(x)}k=1,...,N . Without any significant loss of generality we assume that
the ak are zero. Under the conditions of validity of the central limit theorem
(see [221]), the probability density UN (x) of sN =

∑N
k=1 ηk is given by

UN (x) =
1

(2πBN )
1
2

exp
[
− x2

2BN

]
+
SN + TNx

B
5
2
N

+O
(

1+ | x |3
N2

)
, ∀ | x |< 2 log2N , (9.46)

UN (x) =
1

(2πBN )
1
2

exp
[
− x2

2BN

]
+O

(
1
N

)
, ∀x ∈ R , (9.47)

where BN =
∑N

i=1 bi and where SN and TN are independent of x such that
limN→∞N−1 SN and limN→∞N−1 TN are finite values (allowed to vanish)
and where log2N stands for (logN)2.

Lemma 9.25. Consider a sequence {ηk}k=1,...,N of zero-mean, mutually inde-
pendent random variables with probability densities {uk(x)}k=1,...,N . Denote
by B′

N , C ′
N and D′

N the second, third, and fourth moments respectively of
s′N = 1

N

∑N
k=1 ηk, and by K ′

N = D′
N − 3B′

N
2 the fourth cumulant of s′N .

If the random quantities satisfy the hypotheses of the central limit theorem,
then

(i) limN→∞N B′
N = const <∞ ,

(ii) limN→∞N2 C ′
N = 0 ,

(iii) limN→∞N3 K ′
N = 0 ,

(9.48)
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Proof. Assertion (i). Let B̃N be the second moment of sN =
∑N

k=1 ηk. By
the above reported Khinchin theorem, we have

B̃N =
∫
| x |2 ŨN (x)dx

=
1

(2πBN )
1
2

∫
| x |2 exp

[
− x2

2BN

]
dx+

∫
| x |2 RN (x)dx

where RN (x) is a remainder of order 1/N . The right hand-side of this equation
is the second moment of the Gaussian distribution, which is just BN . Then
B̃N can be rewritten, using again Khinchin’s theorem, as

lim
N→∞

B̃N = lim
N→∞

BN + lim
N→∞

∫
|x|<2 log2 N

| x |2 SN + TNx

B
5
2
N

= lim
N→∞

BN + lim
N→∞

∫
|x|<2 log2 N

| x |2 SN

B
5
2
N

= lim
N→∞

BN +
24

3
lim

N→∞
SN log6N

B
5
2
N

,

Now let U ′
N (x) be the probability density of s′N = 1

N

∑N
k=1 ηk. Its second

moment B′
N is equal to

B′
N =

∫
| x |2 U ′

N (x)dx =
1
N2

B̃N ,

and thus

lim
N→∞

N B′
N = lim

N→∞
BN

N
+

24

3
lim

N→∞
SN log6N

N B
5
2
N

. (9.49)

Since limN→∞N−1 BN is a finite nonvanishing value and limN→∞N−1 SN

is a finite value, we conclude that

lim
N→∞

N B′
N = const <∞ . (9.50)

Proof. Assertion (ii). Let C̃N be the third moment of sN =
∑N

k=1 ηk. By
Khinchin’s theorem we have

C̃N =
∫
| x |3 ŨN (x)dx

=
1

(2πBN )
1
2

∫
| x |3 exp

[
− x2

2BN

]
dx+

∫
| x |3 RN (x)dx
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where RN (x) is a remainder of order 1/N . The first term of the right hand-side
is identically vanishing because it is an odd moment of a Gaussian distribution.
Thus C̃N can be rewritten, using again Khinchin’s theorem, as

lim
N→∞

C̃N = lim
N→∞

∫
|x|<2 log2 N

| x |3 SN + TNx

B
5
2
N

= lim
N→∞

∫
|x|<2 log2 N

| x |3 SN

B
5
2
N

= 23 lim
N→∞

SN log8N

B
5
2
N

.

Now let U ′
N (x) be the probability density of s′N = 1

N

∑N
k=1 ηk. Its third

moment C ′
N is equal to

C ′
N =

∫
| x |3 U ′

N (x)dx =
1
N3

C̃N ,

which leads to the conclusion

lim
N→∞

N2 C ′
N = 23 lim

N→∞
SN log8N

N B
5
2
N

= 0 . (9.51)

Proof. Assertion (iii). Let K̃N be the fourth cumulant of sN =
∑N

k=1 ηk.
we have

K̃N =
1
3

∫
x4ŨN (x)dx−

(∫
x2ŨN (x)dx

)2

, (9.52)

which, using Khinchin theorem, can be written as

K̃N =
1
3

∫
x4GN (x)dx−

(∫
x2GN (x)dx

)2

+
1
3

∫
x4RN (x)dx−

(∫
x2RN (x)dx

)2

−2
∫
x2RN (x)dx

∫
x2GN (x)dx

where GN (x) = (2πBN )−
1
2 exp

[
−x2/(2BN )

]
is a Gaussian probability distri-

bution and RN (x) the remainder of order 1/N .
The sum of the first two terms of the right hand-side of the equation above

is the fourth cumulant of a Gaussian distribution, thus vanishing.
Again using Khinchin’s theorem we can write

lim
N→∞

K̃N =
1
3

lim
N→∞

∫
|x|<2 log2 N

x4SN + TNx

B
5
2
N

dx

− lim
N→∞

(∫
|x|<2 log2 N

x2SN + TNx

B
5
2
N

dx

)2
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− lim
N→∞

∫
|x|<2 log2 N

x2SN + TNx

B
5
2
N

dx

∫
x2GN (x)dx

=
26

15
lim

N→∞
log10N SN

B
5
2
N

− 28

9
lim

N→∞
log12N S2

N

B5
N

−24

3
lim

N→∞
log6N SN

B
5
2
N

. (9.53)

Knowing that limN→∞N−1 BN is a finite nonvanishing value, that
limN→∞N−1 SN is a finite value, that

∫
x2GN (x)dx ≡ BN , and that

K ′
N =

1
3

∫
| x |4 U ′

N (x)dx−
(∫

| x |2 U ′
N (x)dx

)2

=
1
N4

K̃N ,

we conclude that

lim
N→∞

N3 K ′
N =

26

15
lim

N→∞
log10N SN

N B
5
2
N

− 28

9
lim

N→∞
log12N S2

N

N
B5

N

−24

3
lim

N→∞
log6N SN

N B
3
2
N

= 0 .

This completes the proof of our Lemma 9.25. !"

Remark 9.26. If VN is a standard, confining, short-range, and stable potential,
at large N the entropy function SN (v̄) = 1

N logΩ (Nv̄,N) is an intensive
quantity, that is,

S2N (v̄) ≈ SN (v̄) . (9.54)

This is the obvious consequence of the well-known fact that

SN (Λd, v̄) = SN1(Λ
d
1, v̄) + SN2(Λ

d
2, v̄) +O

(
logN
N

,

)
(9.55)

which is proved in textbooks [98] and which has also the important conse-
quence summarized in the following remark.

Remark 9.27. A consequence of equation (9.55) is that

Ω1/N (Nv̄,N1+N2, Λ
d
1∪Λd

2) = Ω1/N1(N1v̄, N1, Λ
d
1) Ω

1/N2(N2v̄, N2, Λ
d
2) θ(N) ,

(9.56)

where θ(N) = O(N1/N ) → 1 for N → ∞. For two identical subsystems
the potential energy is equally shared among them, with vanishing relative
fluctuations in the N →∞ limit.
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Remark 9.28. In the hypotheses of Theorem 9.14, V contains only short-range
interactions and its functional form does not change with N , i.e., the functions
Ψ and Φ in Definitions 9.3 and 9.4 do not depend on N . In other words,
we are tackling physically homogeneous systems, which, at any N , can be
considered as the union of smaller and identical subsystems. At large N , if a
system is partitioned into a number k of sufficiently large subsystems, then
the generalization to k components of the factorization of configuration space
given in Remark 9.27 holds. Therefore, the averages of functions of interacting
variables belonging to a given block depend neither on the subsystems where
they are computed (the potential functions are the same on each block after
suitable relabeling of the variables) nor on the total number N of degrees of
freedom.

Lemma 9.29. Let {xi}i=1,...,N and {yi}i=1,...,N be two independent sets of
mutually independent nonnegative random quantities. Define X =

∑N
i=1 xi

and Y =
∑N

i=1 yi. Let Y > 0 for any realization of the random variables
{yi}i=1,...,N . Let 〈X〉, 〈Y 〉 denote the averages over an arbitrarily large number
of realizations of the sets of random variables {xi}i=1,...,N and {yi}i=1,...,N ,
respectively.

In the limit N →∞, we have〈
X

Y

〉
=
〈X〉
〈Y 〉 .

Proof. By Khinchin’s theorem recalled below Definition 9.23, in the large-
N limit, both X and Y are Gaussian distributed random variables. Setting
δX = X − 〈X〉 and δ(1/Y ) = 1/Y − 〈1/Y 〉, we have〈

X

Y

〉
= 〈X〉

〈
1
Y

〉
+
〈
δX δ

(
1
Y

)〉
. (9.57)

Moreover, 〈
δX δ

(
1
Y

)〉
≤
〈
δZ δ

(
1
Z

)〉
,

where Z = X if 〈(δX)2〉 ≥ 〈[δ(1/Y )]2〉 and Z = Y if 〈(δY )2〉 ≥ 〈(δX)2〉, and〈
δZ δ

(
1
Z

)〉
= 1− 2〈Z〉

〈
1
Z

〉
+ 〈Z〉2

〈
1
Z2

〉
. (9.58)

Now, for a Gaussian random variable Z such that 〈Z〉 > 0, we have〈
1
Z

〉
=

1
〈Z〉

〈
1

1 + (Z − 〈Z〉)/〈Z〉

〉
=

1
〈Z〉

[
1 +

〈(Z − 〈Z〉)2〉
3〈Z〉2 − · · ·

]
,

where all the terms with odd powers in the series expansion of 1/(1+δZ/〈Z〉)
vanish, and the even-power terms are powers of the quadratic term, which is
O(1/N), thus in the limit N →∞,



9.4 Proof of Lemma 9.18, Upper Bounds 269〈
1
Z

〉
=

1
〈Z〉 . (9.59)

Using (9.59) in (9.58) we get〈
δX δ

(
1
Y

)〉
≤ −1 +

〈Z〉2
〈Z2〉 = O(1/N) ,

which, used in (9.57) together with (9.59), leads to the final result. !"

9.4.2 Part B

This part is devoted to the proof of the existence of uniform upper bounds as
affirmed in Lemma 9.18.

We shall prove that the supremum on N and on v̄ ∈ Iv̄ exists of up to the
fourth derivative of SN (v̄). The proof of the existence of supN will be given by
showing that the functions considered have a finite value in the N →∞ limit
for any v̄ ∈ Iv̄. The existence of the supremum on v̄ is then a consequence of
compactness4 of the set Iv̄.

Remark 9.30. In what follows, a detailed proof is given for lattice potentials
VN . However, in the fluid case the only difference is that the number of par-
ticles interacting with a given one is not preassigned. For this reason, in the
fluid case, the number of particles within the interaction range of any other
particle has to be replaced by its average.

Proof of supN,v̄∈Iv̄

∣∣∂SN

∂v̄
(v̄)

∣∣ < ∞
By definition of SN we have

∂SN

∂v̄
(v̄) =

1
N

Ω′
N (v)

ΩN (v)
· dv
dv̄

=
Ω′

N (v)
ΩN (v)

,

where Ω′
N (v) stands for the derivative of ΩN (v) with respect to the potential

energy value v = Nv̄.
The assumptions of our main theorem allow the use of the Federer–

Laurence theorem enunciated in Section 9.3 and of the derivation formula
given therein. Thus

Ω′
N (v) =

∫
Σv

‖∇V ‖A
(

1
‖∇V ‖

)
dσ

‖∇V ‖ , (9.60)

4 Since at any finite N all these functions are C∞, the supremum always exists for
finite N .
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whence

∂SN

∂v̄
(v̄) =

Ω′
N (v)

ΩN (v)
= 〈‖∇V ‖A(1/‖∇V ‖)〉μc

N,v , (9.61)

where 〈 〉μc
N,v stands for the configurational microcanonical average performed

on the equipotential hypersurface of level v.
Let us proceed to show that this derivative is bounded by a term that is

independent of N .
To ease notations, we define

χ ≡ 1
‖∇V ‖ , (9.62)

so that (9.61) now reads

∂SN

∂v̄
(v̄) =

〈
1
χ
A(χ)

〉μc

N,v

. (9.63)

We then have

1
χ
A(χ) =

ΔV

‖∇V ‖2 − 2

∑N
i,j=1 ∂

iV ∂2
ijV ∂

jV

‖∇V ‖4 , (9.64)

and hence ∣∣∣∣ 1χA(χ)
∣∣∣∣ ≤ | ΔV |

‖∇V ‖2 + 2
|∑N

i,j=1 ∂
iV ∂2

ijV ∂
jV |

‖∇V ‖4 ,

where ∂iV = ∂V/∂qi, qi being the ith coordinate of configuration space R
N .

In the absence of critical points of V we have ‖∇V ‖2 ≥ C > 0. Thus we
can apply Lemma 9.29, where Y > 0 is required, to obtain∣∣∣∣∂SN

∂v̄
(v̄)

∣∣∣∣ =

∣∣∣∣∣
〈

1
χ
A(χ)

〉μc

N,v

∣∣∣∣∣ ≤
〈∣∣∣∣ 1χA(χ)

∣∣∣∣〉μc

N,v

≤
〈 | ΔV |
‖∇V ‖2

〉μc

N,v

+ 2

〈
|∑N

i,j=1 ∂
iV ∂2

ijV ∂
jV |

‖∇V ‖4

〉μc

N,v

≤
〈| ΔV |〉μc

N,v

〈‖∇V ‖2〉μc
N,v

+O
(

1
N

)

+2

〈∑N
i,j=1 | ∂iV ∂2

ijV ∂
jV |

〉μc

N,v

〈‖∇V ‖4〉μc
N,v

+O
(

1
N2

)
.

Consider now the term 〈| ΔV |〉μc
N,v. Since the potential V is assumed smooth

and bounded below, one has
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〈| ΔV |〉μc
N,v =

〈∣∣∣∣∣
N∑

i=1

∂2
iiV

∣∣∣∣∣
〉μc

N,v

≤
N∑

i=1

〈| ∂2
iiV |〉μc

N,v ≤ N max
i=1,...,N

〈(
| ∂2

iiV |
)〉μc

N,v
.

As a consequence of Remark 9.28, at largeN (when the fluctuations of the aver-
ages are vanishingly small) maxi=1,...,N 〈| ∂2

iiV |〉μc
N,v does not depend onN . The

same holds for
〈
| ∂iV ∂2

ijV ∂
jV |

〉μc

N,v
and maxi=1,...,N

〈
| ∂iV ∂2

ijV ∂
jV |

〉μc

N,v
. We

setm1 = maxi=1,...,N 〈| ∂2
iiV |〉μc

N,v andm2 = maxi,j=1,...,N

〈
| ∂iV ∂2

ijV ∂
jV |

〉μc

N,v
.

Let us now consider the terms 〈‖∇V ‖2n〉μc
N,v for n = 1, 2. One has

〈‖∇V ‖2〉μc
N,v =

〈
N∑

i=1

(∂iV )2

〉μc

N,v

=

N∑
i=1

〈
(∂iV )2

〉μc

N,v
≥ N min

i=1,...,N

〈
(∂iV )2

〉μc

N,v
,

〈‖∇V ‖4〉μc
N,v =

〈[
N∑

i=1

(∂iV )2

]2〉μc

N,v

=

N∑
i,j=1

〈
(∂iV )2(∂jV )2

〉μc

N,v

≥ N2 min
i,j=1,..,N

〈
(∂iV )2 (∂jV )2

〉μc

N,v
.

By setting
c1 = min

i=1,...,N

〈
(∂iV )2

〉μc

N,v

and
c2 = min

i,j=1,..,N

〈
(∂iV )2 (∂jV )2

〉μc

N,v

we can finally write∣∣∣∣∣
〈

1
χ
A(χ)

〉μc

N,v

∣∣∣∣∣ ≤ m1

c1
+O

(
1
N

)
+ 2

np m2

c2N
+O

(
1
N2

)
, (9.65)

where np is the number of nearest neighbors. It is evident that in the limit
N →∞ the right hand-side of the equation above tends to the finite constant
m1/c1.

The upper bound thus obtained ensures that supN,v̄∈Iv̄

∣∣∂SN

∂v̄ (v̄)
∣∣ <∞. !"

Remark 9.31. Notice that in the fluid case, the computation of quantities like
〈(∂iV )2〉μc

N,v and 〈|∂2
iiV |〉μc

N,v involves an a priori unknown number of neighbors
of the ith particle (we say that a particle is a neighbor of another one if the
distance between the two particles is smaller than the interaction range of the
potential). However, the requirement that V be repulsive at short distance,
so that clusters of an arbitrary number of particles are forbidden, guarantees
that each particle has a finite average number of neighbors. Thus, averaging
quantities like the above-mentioned ones yields N independent values.

In order to extend to the fluid case the proofs of uniform boundedness of
the derivatives of the entropy (one has to interpret np as the average number
of neighbors of a given particle.
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Remark 9.32. Notice that the above computations show that

lim
N−→∞

〈
A(χ)
χ

〉μc

N,v

= const <∞ ,

which follows from the boundedness of |〈A(χ)/χ〉|.

Proof of supN,v̄∈Iv̄

∣∣∣∂2SN

∂v̄2 (v̄)
∣∣∣ < ∞

The second derivative of SN can be rewritten in the form

∂2SN

∂v̄2
(v̄) = N ·

[
Ω′′(v,N)
ΩN (v)

−
(
Ω′

N (v)
ΩN (v)

)2
]
, (9.66)

or, by using the same notation as before,

∂2SN

∂v̄2
(v̄) = N

⎧⎨⎩
〈

1
χ
A2 (χ)

〉μc

N,v

−
[〈

1
χ
A (χ)

〉μc

N,v

]2
⎫⎬⎭ . (9.67)

Again we are going to show that an upper bound, independent of N , exists
also for this derivative. In order to make notation compact, we define

ψ ≡ ∇
‖∇V ‖

for any h1, h2, ψ(h1) . ψ(h2) =
N∑

i=1

ψi(h1)ψi(h2) ,

whence simple algebra yields

ψ(V ) · ψ(χ) = χ2M1 − χ3�V , (9.68)

ψ2(V ) ≡ ψ
(
·ψ(V )

)
=

1
χ
ψ(V ) · ψ(χ) + χ2�V , (9.69)

ψi(ψj(V )) = χ2∂2
ijV − χ2ψj(V )

N∑
k=1

ψk(V )∂2
ikV , (9.70)

ψi(χ) = −χ3
N∑

j=1

∂2
ijV ψj(V ) , (9.71)

ψi (ψj(V )) = χ2∂2
ijV − χ2ψj(V )

N∑
k=1

ψk(V )∂2
ikV , (9.72)

ψi

(
∂2

jrV
)

= χ∂3
ijrV , (9.73)

ψi

(
∂2

jjV
)

= χ∂3
ijjV , (9.74)
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where M1 = ∇(∇V/‖∇V ‖) ≡ −N · (mean curvature of Σv). With this
notation we have

A2(χ) = A (A(χ)) = A
(
ψ(V ) · ψ(χ) + χ3�V

)
=

1
χ

(A(χ))2 + χψ(V ) · ψ
(
A(χ)
χ

)
, (9.75)

and thus (9.67) now reads

∣∣∣∣∂2SN

∂v̄2
(v̄)

∣∣∣∣ ≤ N
∣∣∣∣∣∣
〈[
A (χ)
χ

]2
〉μc

N,v

−
[〈
A (χ)
χ

〉μc

N,v

]2
∣∣∣∣∣∣

+N

∣∣∣∣∣
〈
ψ(V ) · ψ

(
A(χ)
χ

)〉μc

N,v

∣∣∣∣∣ . (9.76)

Using the relations (9.68)–(9.74), the term 1
χA (χ) is rewritten as

A(χ)
χ

=
1
χ
ψ
(
·ψ(V )χ

)
=

2
χ
ψ(V ) · ψ(χ) + χ2�V

= 2χM1 − χ2�V

=
�V

‖∇V ‖2 − 2

∑N
i,j=1 ∂

iV ∂2
ijV ∂

jV

‖∇V ‖4 . (9.77)

Now we consider the following inequalities:∣∣∣∣∣∣
〈∑N

i,j=1 ∂
iV ∂2

ijV ∂
jV

‖∇V ‖4

〉μc

N,v

∣∣∣∣∣∣ ≤
〈∣∣∣∑N

〈i,j〉 ; i,j=1 ∂
iV ∂2

ijV ∂
jV

∣∣∣
‖∇V ‖4

〉μc

N,v

≤
∑N

〈i,j〉 ; i,j=1

〈
|∂iV ∂2

ijV ∂
jV |

〉μc

N,v

〈‖∇V ‖4〉μc
N,v

+O
(

1
N2

)
≤ N np m2

c2N2
+O

(
1
N2

)
, (9.78)

where np is the number of nearest neighbors, and again

m2 = max
i,j=1,...,N

〈
| ∂iV ∂2

ijV ∂
jV |

〉μc

N,v
.

Since m2 keeps a finite value for limN→∞, the left hand-side of equation
(9.78) vanishes in the N →∞ limit.

Thus, the larger N , the better the term 1
χA (χ) is approximated by

ξ =
∑N

i=1 ∂
2
iiV/‖∇V ‖2 =

∑N
i=1 ξi, where ξi = ∂2

iiV/‖∇V ‖2. Here we resort
to Lemma 9.22 and replace the microcanonical averages by “time” averages
obtained along an ergodic stochastic process. Each term ξi, for any i, can
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then be considered as a stochastic process on the manifold Σv with a proba-
bility density ui(ξi). In the presence of short-range potentials, as prescribed
in the hypotheses of our main theorem, and at large N , these processes are
independent.

By simply writing ξ =
∑N

i=1 ξi = 1/N
∑N

i=1Nξi, we are allowed to apply
Lemma 9.25, which tells us that the the second moment B′

N of the distribution
of ξ is such that limN→∞N B′

N = c <∞.
The first term of the right hand-side of (9.76) is the second moment of

1
χA (χ) multiplied by N . This term, in the light of what we have just seen,
remains finite in the N →∞ limit.

Then we consider the second term of the right hand-side of equation (9.76).
This can be computed with simple algebra through the relations (9.68)–(9.74)
to give

ψ(V ) · ψ
(
A(χ)
χ

)
= 8χ4

(
〈ψ(V );ψ(V )〉

)2 − 4χ4〈ψ(V )|ψ(V )〉

−2χ4〈ψ(V );ψ(V )〉�V + χ3
N∑

i,j=1

ψi(V )∂3
ijjV

−2χ3
N∑

i,j,k=1

ψi(V )ψj(V )ψk(V )∂3
ijkV , (9.79)

where

〈ψ(V );ψ(V )〉 ≡
∑N

i,j=1 ∂iV ∂
2
ijV ∂jV

‖∇V ‖2 , (9.80)

〈ψ(V )|ψ(V )〉 ≡
∑N

i,j,k=1 ∂iV ∂
2
ijV ∂

2
jkV ∂kV

‖∇V ‖2 , (9.81)

ψi(V )∂3
ijjV ≡

∂iV ∂
3
ijjV

‖∇V ‖ , (9.82)

ψi(V )ψj(V )ψk(V )∂3
ijkV ≡

∂iV ∂jV ∂kV ∂
3
ijkV

‖∇V ‖3 . (9.83)

The same kind of computation developed for equations (9.78) gives

N
〈
χ4

(
〈ψ(V );ψ(V )〉

)2〉μc

N,v
≤
N3n2

pm4

c4N4
+O

(
1
N2

)
, (9.84)

N
〈
χ4〈ψ(V )|ψ(V )〉

〉μc

N,v
≤
N2n2

pm5

c3N3
+O

(
1
N2

)
, (9.85)

N
〈
χ4〈ψ(V );ψ(V )〉�V

〉μc

N,v
≤ N3npm6

c3N3
+O

(
1
N

)
, (9.86)
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N

〈
χ3

N∑
i,j=1

ψi(V )∂3
ijjV

〉μc

N,v

≤ N2npm7

c2N2
+O

(
1
N

)
, (9.87)

N

〈
χ3

N∑
i,j,k=1

ψi(V )ψj(V )ψk(V )∂3
ijkV

〉μc

N,v

≤
N2n2

pm8

c3N3
+O

(
1
N2

)
,(9.88)

where, resorting again to the argument of Remark 9.28, we have defined the
following quantities independent of N :

m4 = max
i,j,k,l=1,N

〈
(∂iV ∂

2
ijV ∂jV )(∂kV ∂

2
klV ∂lV )

〉μc

N,v
,

m5 = max
i,j,k=1,N

〈
∂iV ∂

2
ijV ∂

2
jkV ∂kV

〉μc

N,v
,

m6 = max
i,j,k=1,N

〈
(∂iV ∂

2
ijV ∂jV )(∂2

kkV )
〉μc

N,v
,

m7 = max
i,j=1,N

〈
∂iV ∂

3
ijjV

〉μc

N,v
,

m8 = max
i,j,k=1,N

〈
(∂iV ∂jV ∂kV )∂3

ijkV
〉μc

N,v
,

and
c3 = min

i1,...,i6=1,N

〈
(∂i1V )2(∂i2V )2 · · · (∂i6V )2

〉μc

N,v
,

c4 = min
i1,...,i8=1,N

〈
(∂i1V )2(∂i2V )2 · · · (∂i8V )2

〉μc

N,v
,

so that the right hand-sides of (9.86) and (9.87) have finite limits for N →∞,
while the right hand-sides of (9.84), (9.85), and (9.88) vanish in the limit
N →∞.

In conclusion, since the ensemble of terms entering equation (9.76) is
bounded above, we have supN,v̄∈Iv̄

∣∣∣∂2SN

∂v̄2 (v̄)
∣∣∣ <∞. !"

Remark 9.33. Notice that the above computations show that

lim
N−→∞

N

〈
ψ(V ) · ψ

(
A(χ)
χ

)〉μc

N,v

= const <∞ .

Proof of supN,v̄∈Iv̄

∣∣∣∂3SN

∂v̄3 (v̄)
∣∣∣ < ∞

The third derivative of SN can be expressed as

∂3SN

∂v̄3
(v̄) = N2

{
Ω′′′(v,N)
Ω(v,N)

− 3
Ω′′(v,N)Ω′(v,N)

(Ω(v,N))2
+ 2

(
Ω′(v,N)
Ω(v,N)

)3
}
,

(9.89)
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or, using Federer’s operator A,

∂3SN

∂v̄3
(v̄) =N2

⎧⎨⎩
〈

A3(χ)

χ

〉μc

N,v

−3

〈
A2(χ)

χ

〉μc

N,v

〈
A(χ)

χ

〉μc

N,v

+2

(〈
A(χ)

χ

〉μc

N,v

)3
⎫⎬⎭ ,

(9.90)
where

A3(χ)
χ

=
(
A(χ)
χ

)3

+ 3
A(χ)
χ

ψ(V ) · ψ
(
A(χ)
χ

)
+ψ(V ) · ψ

(
ψ(V ) · ψ

(
A(χ)
χ

))
(9.91)

A2(χ)
χ

=
(
A(χ)
χ

)2

+ ψ(V ) · ψ
(
A(χ)
χ

)
(9.92)

A(χ)
χ

=
2
χ
ψ(V ) · ψ(χ) +

�V
‖∇V ‖2 . (9.93)

By substituting the expressions (9.91)–(9.93) into the right hand-side of equa-
tion (9.90), we get∣∣∣∣∂3SN

∂v̄3
(v̄)

∣∣∣∣
≤ N2

∣∣∣∣∣
〈
ψ(V ) · ψ

(
ψ(V ) · ψ

(
A(χ)
χ

))〉μc

N,v

∣∣∣∣∣
+ 3N2

∣∣∣∣∣
〈
A(χ)
χ
ψ(V ) · ψ

(
A(χ)
χ

)〉μc

N,v

−
〈
A(χ)
χ

〉μc

N,v

〈
ψ(V ) · ψ

(
A(χ)
χ

)〉μc

N,v

∣∣∣∣∣
+ N2

∣∣∣∣∣∣
〈((

A(χ)
χ

)
−
〈(

A(χ)
χ

)〉μc

N,v

)3〉μc

N,v

∣∣∣∣∣∣ . (9.94)

By explicitly expanding the first term of the right hand-side of (9.94), more
than 30 terms are found. Nevertheless, these terms are similar or equal to
those already encountered above, and consequently, their N -dependence can
be similarly dominated as in the inequalities (9.84)–(9.88).

Consider now the second term of the right hand-side of equation (9.94). If
we put

A =
A(χ)
χ

, P = ψ(V ) · ψ
(
A(χ)
χ

)
,

using equations (9.64) and (9.79) we can write

A =
N∑

i=1

ai , P =
N∑

j=1

pj .
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Then〈
A(χ)
χ

ψ(V ) · ψ
(
A(χ)
χ

)〉μc

N,v

−
〈
A(χ)
χ

〉μc

N,v

〈
ψ(V ) · ψ

(
A(χ)
χ

)〉μc

N,v

= 〈AP〉μc
N,v − 〈A〉μc

N,v〈P〉
μc
N,v

=
N∑

i,j=1

(
〈aipj〉μc

N,v − 〈ai〉μc
N,v〈pj〉μc

N,v

)
. (9.95)

Let us consider the terms in the last sum for which i and j label sites that are
not nearest-neighbors.5 The corresponding expressions of ai and pj have no
common coordinate variables. Thus, when computing microcanonical averages
through “time” averages along the random Markov chains of Lemma 9.22, we
take advantage of the complete decorrelation of ai and pj so that

for any i, j such that 0 ≤ i, j ≤ N, 〉i, j〈, then〈aipj〉μc
N,v − 〈ai〉μc

N,v〈pj〉μc
N,v = 0

(where 〉i, j〈 stands for i, j nonnearest neighbors), which simplifies equation
(9.95) to

〈AP〉μc
N,v − 〈A〉μc

N,v〈P〉
μc
N,v =

∑
〈i,j〉

(
〈aipj〉μc

N,v − 〈ai〉μc
N,v〈pj〉μc

N,v

)
≤ N np max

〈i,j〉

(
〈aipj〉μc

N,v − 〈ai〉μc
N,v〈pj〉μc

N,v

)
.

Now, equations (9.65) and (9.84)–(9.88) imply

for any i, j such that 0 ≤ i, j ≤ N, 〈i, j〉 , lim
N−→∞

N3 〈aipj〉μc
N,v <∞ ,

while equations (9.64) and (9.79) imply

for any i, j such that 0 ≤ i, j ≤ N, 〈i, j〉 , lim
N−→∞

N3 〈ai〉μc
N,v〈pj〉μc

N,v <∞ ,

where 〈i, j〉 stands for i, j nearest neighbors. Thus, the second term in the
right hand-side of equation (9.94) is bounded independently of N in the limit
N →∞.
The third term of the right hand-side of equation (9.94) is smaller than the
third moment of the stochastic variable A(χ)/χ (multiplied by N2). As we
have already seen, we can rewrite A(χ)/χ = (1/N)

∑N
i=1N∂

2
iiV/‖∇V ‖2, to

which Lemma 9.25 applies, thus ensuring that the third moment C ′
N of the

distribution of A(χ)/χ is such that limN→∞N2 C ′
N = 0.

Finally we are left with a finite upper bound of the left hand-side of equa-
tion (9.94) in the N →∞ limit. !"
5 For simplicity we are here assuming that the configurational coordinates belong

to a lattice, but such a restriction is not necessary. If our potential describes a
fluid, replace “nearest neighbors” with “within the interaction range.”
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Remark 9.34. Notice that the computations above show that

lim
N→∞

N2

〈
ψ(V ) · ψ

(
ψ(V ) · ψ

(
A(χ)
χ

))〉μc

N,v

= const <∞ .

Proof of supN,v̄∈Iv̄

∣∣∣∂4SN

∂v̄4 (v̄)
∣∣∣ < ∞

The fourth derivative of SN (v̄) is given by the expression

∂4SN

∂v̄4
(v̄) = N3

{
Ωiv(v,N)
Ω(v,N)

− 4
Ω′′′(v,N) Ω′(v,N)

(Ω(v,N))2
− 3

(
Ω′′(v,N)
Ω(v,N)

)2
}

+N3

{
12
Ω′′(v,N) (Ω′(v,N))2

(Ω(v,N))3
− 6

(
Ω′(v,N)
Ω(v,N)

)4
}
.

Again we make use of the Federer operator A to rewrite it as

∂4SN

∂v̄4
(v̄) = N3

{〈
A4(χ)
χ

〉μc

N,v

− 4
〈
A3(χ)
χ

〉μc

N,v

〈
A(χ)
χ

〉μc

N,v

}

−N3

⎧⎨⎩3

(〈
A2(χ)
χ

〉μc

N,v

)2

− 12
〈
A2(χ)
χ

〉μc

N,v

(〈
A(χ)
χ

〉μc

N,v

)2
⎫⎬⎭

−6N3

(〈
A(χ)
χ

〉μc

N,v

)4

,

where, after trivial algebra,

A4(χ)
χ

=
(
A(χ)
χ

)4

+ 6
(
A(χ)
χ

)2

ψ(V ) . ψ
(
A(χ)
χ

)
+3

(
ψ(V ) . ψ

(
A(χ)
χ

))2

+ 4
A(χ)
χ

ψ(V ) . ψ
(
ψ(V ) . ψ

(
A(χ)
χ

))
+ψ(V ) . ψ

[
ψ(V ) . ψ

(
ψ(V ) . ψ

(
A(χ)
χ

))]
. (9.96)

To make the notation more compact we use

A =
A(χ)
χ

, P = ψ(V ) . ψ
(
A(χ)
χ

)
,

W = ψ(V ) . ψ
(
ψ(V ) . ψ

(
A(χ)
χ

))
,
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so that, using again equations (9.91)–(9.92), we obtain∣∣∣∣∂4SN

∂v̄4
(v̄)

∣∣∣∣ ≤ N3
∣∣∣〈ψ(V ) . ψ(W)〉μc

N,v

∣∣∣
+3N3

∣∣∣∣〈P2
〉μc

N,v
−
(
〈P〉μc

N,v

)2
∣∣∣∣

+4N3
∣∣∣〈AW〉μc

N,v − 〈A〉μc
N,v 〈W〉μc

N,v

∣∣∣ (9.97)

+6N3

∣∣∣∣∣
〈(

A− 〈A〉μc
N,v

)2 (
P − 〈P〉μc

N,v

)〉μc

N,v

∣∣∣∣∣
+N3

∣∣∣∣∣∣
〈(

A− 〈A〉μc
N,v

)4
〉μc

N,v

− 3

(〈(
A− 〈A〉μc

N,v

)2
〉μc

N,v

)2
∣∣∣∣∣∣ .

Consider the first term of equation (9.97). It is an iterative term already
considered for the third derivative. This term stems from the application of
the operator ψ(V ) · ψ(·) to the term W, which in its turn stems from the
application of the same operator to the term P. The effect of this operator is
to lower the N dependence of the function to which it is applied by a factor
N (which is simply due to the factor 1/‖∇V ‖2). Deriving with respect to v̄
brings about a factor N in comparison to the derivation with respect to v.
Therefore the first term of equation (9.97) is of the same order of N2 〈W〉μc

N,v

and consequently, according to the Remark 9.34, it has a finite upper bound
independent of N in the limit N →∞.

Consider now the second term of the right hand-side of equation (9.97).
Remark 9.33 ensures that limN→∞N 〈P〉μc

N,v <∞. Moreover, by Lemma 9.25,

lim
N→∞

N3

(〈
P − 〈P〉μc

N,v

〉μc

N,v

)2

<∞ . (9.98)

Consider now the third term of the right hand-side of equation (9.97). Remarks
9.32 and 9.34 entail limN→∞〈A〉μc

N,v <∞ and limN→∞N2 〈W〉μc
N,v <∞. Thus,

after Lemma 9.25,

lim
N→∞

N
1
2

(〈
A− 〈A〉μc

N,v

〉μc

N,v

)
<∞ ,

lim
N→∞

N
5
2

(〈
W − 〈W〉μc

N,v

〉μc

N,v

)
<∞ ,

whence

lim
N→∞

N3
∣∣∣〈AW〉μc

N,v − 〈A〉μc
N,v 〈W〉μc

N,v

∣∣∣
= lim

N→∞
N3

∣∣∣∣〈A− 〈A〉μc
N,v

〉μc

N,v

∣∣∣∣ ∣∣∣∣〈W − 〈W〉μc
N,v

〉μc

N,v

∣∣∣∣ <∞ .

(9.99)
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Consider now the fourth term of the right hand-side of equation (9.97). If we
write

A =
1
N

N∑
i=1

ai , P =
1
N2

N∑
i=1

pi ,

with ai and pi terms of order 1, we have

N3

∣∣∣∣∣
〈(

A− 〈A〉μc
N,v

)2 (
P − 〈P〉μc

N,v

)〉μc

N,v

∣∣∣∣∣
=

1
N

N∑
i,j,k=1

〈(
ai − 〈ai〉μc

N,v

) (
aj − 〈aj〉μc

N,v

) (
pk − 〈pk〉μc

N,v

)〉μc

N,v

=
1
N

∑
〉i,j,k〈

〈(
ai − 〈ai〉μc

N,v

) (
aj − 〈aj〉μc

N,v

) (
pk − 〈pk〉μc

N,v

)〉μc

N,v

+
1
N

∑
〈i,j,k〉

〈(
ai − 〈ai〉μc

N,v

) (
aj − 〈aj〉μc

N,v

) (
pk − 〈pk〉μc

N,v

)〉μc

N,v
,

where 〉i, j, k〈means that at least two of the three indexes refer to non-nearest-
neighbor site, whereas 〈i, j, k〉 means that the three indexes are nearest neigh-
bors. If i, j, k are such that 〉i, j, k〈, then at least two of the three terms ai,
aj , and pk have no common configurational variables. The microcanonical
averages are again estimated according to Lemma 9.22 through a stochastic
process on the configurational coordinates. The random processes associated
with ai, aj , and pk are thus completely decorrelated, and one has

for any i, j, k, such that 〉i, j, k〈,〈(
ai − 〈ai〉μc

N,v

) (
aj − 〈aj〉μc

N,v

) (
pk − 〈pk〉μc

N,v

)〉μc

N,v
= 0 .

Now, if we consider i, j, k such that 〈i, j, k〉, the three terms ai, aj , and pk

are certainly correlated, but we notice that there are only Nn2
p terms of this

kind. Thus we have

1
N

∑
〈i,j,k〉

〈(
ai − 〈ai〉μc

N,v

) (
aj − 〈aj〉μc

N,v

) (
pk − 〈pk〉μc

N,v

)〉μc

N,v

≤ n2
c max

〈i,k〉

{(
ai − 〈ai〉μc

N,v

)
,
(
pk − 〈pk〉μc

N,v

)}
.

Since the terms ai and pk are of order 1, the largest term of the preceding
equation is independent of N , and we have thus found the upper bound of
the fourth term of the right hand-side of equation (9.97).

Finally, the last term of the right hand-side of equation (9.97) is the fourth
cumulant of the stochastic variable A(χ)/χ (multiplied by N3). As already
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seen above, we write A(χ)/χ = 1/N
∑N

i=1N∂
2
iiV/‖∇V ‖2 so that Lemma 9.25

applies and ensures that the distribution of A(χ)/χ has a fourth cumulant
K ′

N such that limN→∞N3 K ′
N = 0.

The ensemble of the upper bounds thus obtained yields the final desired
result. !"

9.5 Main Theorems: Theorem 2

In this section we prove the second of the two main theorems resumed at
beginning of the present chapter.
In view of formulating and proving Theorem 2, we have to define some neigh-
borhoods, which we call “pseudo-cylindrical,” of critical points of a potential
function VN . Before defining these pseudocylindrical neighborhoods of critical
points, let us recall the following basic result in Morse theory.

Theorem 9.35. Let f be a smooth real-valued function on a compact finite-
dimensional manifold M . Let a < b, and suppose that the set

f−1([a, b]) ≡M = {x ∈M |a ≤ f(x) ≤ b} (9.100)

is compact and contains no critical points of f , that is, ‖∇f‖ ≥ C > 0 with
C a constant. Let y ∈ (a, b). Then there exists a diffeomorphism

σ : (a, b)× f−1(y) → f−1(a, b) by (v, x) � σ(v, x). (9.101)

Corollary 9.36. The manifolds f−1(y), a < y < b, are all diffeomorphic.

This result is based on the existence of a one-parameter group of diffeo-
morphisms

σv : M →M by x � σ(v, x) (9.102)

associated with the vector field X = −∇f(x)/‖∇f(x)‖2 with v � σ(v, x) a
solution of the differential equation on M

dσ(v, x)
dv

= − ∇f [σ(v, x)]
‖∇f [σ(v, x)]‖2 ,

σ(0, x) = x; (9.103)

σ(v, x) is defined for all v ∈ R and x ∈ M . Details can be found in standard
references such as [23,210,227].

Applied to the configuration space M , if the function f is identified with
the potential VN , then in the absence of critical points of V in the interval
(v0, v1) the hypersurfaces Σv = V −1

N (v), v ∈ (v0, v1), are all diffeomorphic.
Now we define what we call pseudocylindrical-neighborhoods of critical

points. On a given critical level we consider a disk around a critical point, then



282 Chapter 9 Phase Transitions and Topology: Necessity Theorems

we consider its backward and forward projections on non-critical equipotential
surfaces. The projections are made by the flow of a vector field that defines
the walls of the neighborhood and its caps on the mentioned equipotential
surfaces. This construction guarantees that after the excision of one or more
of these neighborhoods, the Σv and the Mv remain diffeomorphic.

As we discussed in the introduction of the present chapter, a typical sit-
uation is that of a minimum energy Δv required to pass from a critical level
vj

c to the next one vj+1
c , independently of N . While in this case the length

of [v̄j
c , v̄

j+1
c ] shrinks with N , the length of the interval [vj

c , v
j+1
c ] remains con-

stant. Thus, we set the thickness of these neighborhoods equal to the min-
imum length of these intervals. In more generic cases, this thickness can be
arbitrarily fixed to a small constant.

Definition 9.37 (Pseudocylindrical Neighborhoods). Let Σvc
be a crit-

ical level set of VN , that is, a level set containing at least one critical point of
VN . Around any critical point q(i)c , consider the set of points γ(q(i)c , ρ; vc) ⊂
Σvc

at a distance equal to ρ > 0 from q
(i)
c , that is, q ∈ γ(q(i)c , ρ; vc) ⇒

|q − q(i)c | = ρ, and ρ is such that ρ < 1
2 mini,j |q(i)c − q(j)c |, and i, j label

all the critical points on the given critical level set. Moreover, if in a given
interval of potential energy density [v̄0, v̄1] there is only one critical value v̄c,
then set the thickness of all the pseudocylinders equal to a sufficiently small,
finite, ε0; if, otherwise, in the interval [v̄0, v̄1] there is an arbitrary number of
critical values vj

c , then take the thickness ε0 of all the pseudocylinders such
that 0 < ε0 < minj∈N(vj+1

c − vj
c). By Sard’s theorem, both ρ and ε0 are fi-

nite because at finite dimension, there is a finite number of isolated critical
points and consequently a finite number of critical values. We define a pseudo-
cylindrical neighborhood Γ (q(i)c , ε0) ⊂ M of q(i)c as the subset of M bounded
by the following set of points. By mapping γ(q(i)c , ρ; vc) from Σvc

to Σ(vc+ε0)

through the flow generated by the vector field X = ∇VN (q)/‖∇VN (q)‖2, and
from Σvc

to Σ(vc−ε0) through the flow generated by the vector field X =
−∇VN (q)/‖∇VN (q)‖2, we obtain the walls of Γ (q(i)c , ε0), which are transverse
to the Σv, and then we close the neighborhood with the pieces of Σ(vc+ε0) and
Σ(vc−ε0) bounded by the images γ(q(i)c , ρ; (vc + ε0)) and γ(q(i)c , ρ; (vc − ε0)) of
γ(q(i)c , ρ; vc) through σ(v, x), respectively. Moreover, we require that the radius
ρ of Γ (q(i)c , ε0) exceeds a minimum value ρmin – which depends on ε0 – so that
Σ(υc−ε0)\Γ (q(i)c )∩Σ(υc−ε0) is diffeomorphic to Σ(υc+ε0)\Γ (q(i)c , ε0)∩Σ(υc+ε0).
If ρmin exceeds 1

2mini,j |q(i)c − q(j)c |, then ε0 is suitably reduced.

Lemma 9.38. Let VN be a standard, smooth, confining, short-range potential
bounded from below (Definitions 9.5–9.9),

VN : BN ⊂ R
N → R ,

with VN given by Definition 9.5 (fluid case), or by Definition 9.6 (lattice case).
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Let {Σv}v∈R be the family of (N − 1)-dimensional hypersurfaces Σv :=
V −1

N (v), v ∈ R, of R
N . Let {Mv}v∈R be the family of N -dimensional sub-

sets Mv := V −1
N ((−∞, v]), v ∈ R, of R

N . Let {Mv}v∈R be the family of
N -dimensional subsets Mv := Mv \

⋃N (v)
i=1 Γ (q(i)c , ε), v ∈ R, of R

N , where
Γ (q(i)c , ε) are the pseudocylindrical neighborhoods of the critical points q(i)c of
VN (q) contained in Mv and N (v) is the number of critical points in Mv.
Let {Σv}v∈R be the family of (N − 1)-dimensional subsets of R

N defined as
Σv := Σv \

⋃N (v)
i=1 [Γ (q(i)c , ε) ∩Σv].

Let v̄0 = v0/N, v̄1 = v1/N ∈ R, v̄0 < v̄1, and let v̄c = vc/N be the only critical
value of VN in the interval Iv̄ = [v̄0, v̄1], and let Γ �(q(i)c , ε�), q

(i)
c ∈ V −1

N (vc)
such that ε� > v1 − vc, vc − v0. The following two statements hold:

(a) for any v̄, v̄′ ∈ [v̄0, v̄1] it is

ΣNv̄ is C∞−diffeomorphic to ΣNv̄′ ;

(b) putting M(v,N) = vol(Mv), the quantities [dM(v,N)/dv]/M(v,N) and
(dk/dvk){[dM(v,N)/dv]/M(v,N)}, k = 1, 2, 3, are uniformly bounded in
N in the interval [v̄0, v̄1].

Proof. Concerning point (a), we note that the flow associated with the
C∞ vector field X = −∇VN (q)/‖∇VN (q)‖2 is well defined at any point
q ∈ Mv1 \ Mv0 . Thus the set Mv1 \ Mv0 is diffeomorphic to the noncriti-
cal neck ∂Mv0 × [v0, v1]. Then, by the “noncritical neck theorem” [210], for
any v̄, v̄′ ∈ Iv̄ = [v̄0, v̄1], we have ΣNv̄ ≈ ΣNv̄′ . Incidentally, this entails also
MNv̄ ≈MNv̄′ for any v̄, v̄′ ∈ [v̄0, v̄1].

Now let us consider point (b). Define SN (v̄) = 1
N log[Ω(Nv̄,N)], where

Ω(Nv̄,N) = vol(Σv̄N )]. Having proved the statement (a), we can apply
Lemma 9.4 of Section 9.2, which entails that

sup
N,v̄∈Iv̄

∣∣SN (v̄)
∣∣ <∞ and sup

N,v̄∈Iv̄

∣∣∣∣∂kSN

∂v̄k
(v̄)

∣∣∣∣ <∞, k = 1, 2, 3, 4.

Thus by Lemma 9.17 of Section 9.2, it follows that S∞(v̄) = limN→∞ SN (v̄) ∈
C3(Iv̄).

The next step is to prove that also S
(−)

∞ (v̄) ∈ C3(Iv̄), where

S
(−)

∞ (v̄) := lim
N→∞

S
(−)

N (v̄) = lim
N→∞

1
N

log[vol(M v̄N )],

because, by Lemmas 9.17 and 9.4 of Section 9.2, this entails the truth of
statement (b). Let us begin by considering the microcanonical configura-
tional inverse temperature. From its definition βN (v̄) = ∂S

(−)
N /∂v̄ one obtains

βN (v̄) = Ω(Nv̄,N)/M(Nv̄,N). The function βN (v̄) is well known to be inten-
sive and well defined also in the thermodynamic limit, at least for extensive
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potential energy functions. Then we work out a representation of βN (v̄) in
the form of a microcanonical average of a suitable function. To this end we
derive Ω(Nv̄,N) with respect to v by means of Federer’s derivation formula
and then we integrate it back. Thus we write

Ω(Nv̄,N) =
∫ v

0

dη

∫
Ση

‖∇V ‖ A
(

1
‖∇V ‖

)
dσ

‖∇V ‖

=
∫

Mv

dμ ‖∇V ‖ A
(

1
‖∇V ‖

)
, (9.104)

where dμ = dNq, so that we finally obtain

βN (v̄) =
[∫

Mv

dμ

]−1 ∫
Mv

dμ ‖∇V ‖ A
(

1
‖∇V ‖

)
=
〈
‖∇V ‖ A

(
1

‖∇V ‖

)〉
Mv

,

(9.105)

which holds for v̄ ∈ [0, v̄0). An important remark is in order. We have used
Federer’s derivation formula apparently ignoring that it applies in the absence
of critical points of the potential function. However, if the potential V is a good
Morse function (not a very restrictive condition at all), we know, by Sard’s
theorem [210], that the ensemble of critical values, here of the potential, is a
point set. Therefore, any finite interval of values of the potential is the union of
a finite number of open intervals where no critical value is present, and corre-
spondingly no critical point on the {Σv} exists. On all these open sets, free of
critical points, Federer’s derivation formula can be legally applied. Moreover,
the results found by applying Federer’s formula on each open interval free of
critical values of V can be regularly glued together because of the existence
of the thermodynamic limit of βN (v̄).

Let us now consider Ω(Nv̄,N) for v̄ ∈ [v̄0, v̄1]. Since all the hypersurfaces
Σv̄ labeled by v̄ ∈ [v̄0, v̄1] are diffeomorphic, we can use Federer’s derivation
formula to obtain an expression for Ω(Nv̄,N) similar to that given in (9.104)
for Ω(Nv̄,N), that is,

Ω(Nv̄,N) =
∫ v

v0

dη

∫
Ση

‖∇V ‖ A
(

1
‖∇V ‖

)
dσ

‖∇V ‖ +Ω(Nv̄0, N)

=
∫

Mv\Mv0

dμ ‖∇V ‖ A
(

1
‖∇V ‖

)
+
∫

Mv0

dμ ‖∇V ‖ A
(

1
‖∇V ‖

)
=
∫

Mv\Γ 	

dμ ‖∇V ‖ A
(

1
‖∇V ‖

)
, (9.106)

where Γ � stands for the union of all the pseudocylindrical neighborhoods of
the critical points of V in the interval [v̄0, v̄1]. Then we consider the restriction
βN (v̄) of the function βN (v̄) to the subset Mv \ Γ �; from
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βN (v̄) =
Ω(Nv̄,N)
M(Nv̄,N)

(9.107)

we get

βN (v̄) =

[∫
Mv\Γ 	

dμ

]−1 ∫
Mv\Γ 	

dμ ‖∇V ‖ A
(

1
‖∇V ‖

)
=
〈
‖∇V ‖ A

(
1

‖∇V ‖

)〉
Mv\Γ 	

. (9.108)

By comparing (9.105) with (9.108), we see that also βN (v̄) has to be intensive
up to the N → ∞ limit, like βN (v̄). In fact, the excision of the set Γ � out
of Mv, no matter how the measure of Γ � depends on N , cannot change the
intensive character of βN (v̄). The relationship among SN (v̄), S

(−)

N (v̄), and
βN (v̄) is given by the logarithm of both sides of (9.107),

1
N

logΩ(v̄N,N) =
1
N

logM(v̄N,N) +
1
N

log βN (v̄) ,

whence, using limN→∞ 1
N log βN (v̄) = 0, we obtain S

(−)

∞ (v̄) = S∞(v̄) and thus

S
(−)

∞ (v̄) ∈ C3(Iv̄).
Finally, S

(−)

∞ (v̄) ∈ C3(Iv̄) entails

sup
N,v̄∈Iv̄

∣∣∣S(−)

N (v̄)
∣∣∣ <∞ and sup

N,v̄∈Iv̄

∣∣∣∣∣∂kS
(−)

N

∂v̄k
(v̄)

∣∣∣∣∣ <∞, k = 1, 2, 3, 4,

so that resorting to Lemma 9.17 of Section 9.2, the truth of statement (b)
follows. !"

Theorem 9.39 (Entropy and Topology). Let VN (q1, . . . , qN ) : R
N →

R, be a smooth, nonsingular, finite-range potential. Denote by Mv :=
V −1

N ((−∞, v]), v ∈ R, the generic submanifold of configuration space bounded
by Σv. Let {q(i)c ∈ R

N}i∈[1,N (v)] be the set of critical points of the potential,
that is, such that ∇VN (q(i)c ) = 0, and let N (v) be the number of critical
points up to the potential energy value v. Denote by v̄ = v/N the potential
energy density. Let the number of isolated critical points on the critical level
sets ΣNv̄c

be arbitrary functions of N . Let Γ (q(i)c , ε0) be the pseudocylin-
drical neighborhood of the critical point q(i)c , and let μi(Mv) be the Morse
indexes of Mv. Then there exist real numbers A(N, i, ε0), gi and real almost-
everywhere-smooth functions B(N, i, v, ε0) such that the following equation
for the microcanonical configurational entropy S(−)

N (v) holds:
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S
(−)
N (v) = 1

N log

[ ∫
Mv\

⋃N(v)

i=1
Γ (q

(i)
c ,ε0)

dNq+
N∑

i=0

A(N, i, ε0) gi μi(Mv−ε0)

+
Nν(v)

cp∑
n=1

B(N, i(n), v − vν(v)
c , ε0)

]
,

(9.109)
where ν(v) = max{j|vj

c ≤ v}. Moreover, assume that in some interval [v̄0, v̄1]
there exists only one critical value v̄c, then in this interval an unbounded
growth with N of one of the derivatives |∂kS(−)(v)/∂vk|, for k = 3, 4, and
thus the occurrence of a first- or second-order phase transition can be entailed
only by the topological term

∑N
i=0A(N, i, ε0) gi μi(Mv−ε0).

The proof of formula (9.109) is worked out constructively. This formula
relates thermodynamic entropy, defined in the microcanonical configurational
ensemble, with quantities of topological meaning (the Morse indexes) of the
configuration-space submanifolds Mv = V −1

N ((−∞, v]) = {q = (q1, . . . , qN ) ∈
R

N |VN (q) ≤ v}.
By Morse theory, topological changes of the manifolds Mv can be put in

one-to-one correspondence with the existence of critical points of the potential
function VN (q1, . . . , qN ). A point qc is a critical point if ∇VN (q)|q=qc

= 0. The
potential energy value vc = VN (qc) is said to be a critical value for the poten-
tial function. Passing a critical value vc, the manifolds Mv change topology.
Within the framework of Morse theory, if the potential VN is a good Morse
function, that is, a regular function bounded below and with nondegenerate
Hessian (that is, the Hessian has no vanishing eigenvalue), then topological
changes occur through the attachment of handles in the neighborhoods of the
critical points (see Appendix C). Therefore, in order to establish the relation-
ship between entropy and configuration-space topology, we have to unfold the
contribution given to the volume of Mv by suitably defined neighborhoods of
all the critical points contained inMv because it is within these neighborhoods
that the relevant information about topology is contained.

This result is made possible by the idea of exploiting the existence of the
so-called Morse chart in the neighborhood of any nondegenerate critical point
of the potential function VN . In fact, the Morse chart allows one to represent
the local analytic form of the equipotential hypersurfaces in a universal form
independent of the potential energy value at the critical point, and depen-
dent only on the index of the critical point (equal to the number of negative
eigenvalues of the Hessian of the potential) and, obviously, on the dimension
N of configuration space, hence the possibility of a formal computation of the
contribution of the neighborhoods of all the critical points to the volume of
Mv as a function of v.
Proof. Let us consider the definition of the configurational microcanonical
entropy S(−)

N (v), already given in (9.3),

S
(−)
N (v) =

1
N

logM(v,N) , (9.110)
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with

M(v,N) =
∫

VN (q)≤v

dNq =
∫ v

0

dη

∫
(Λd)×n

dNq δ[VN (q)− η]

=
∫ v

0

dη

∫
Ση

dσ

‖∇VN‖
. (9.111)

Let {Σvj
c
} be the family of all the critical level sets (in general not diff-

erentiable manifolds) of the potential, that is, the constant-potential-energy
hypersurfaces that contain at least one critical point q(i)c , where∇VN (q(i)c ) = 0.
For a potential that is a good Morse function, by Sard’s theorem (see Corollary
2 on p. 200 of [210]), at any finite dimension N , and below any finite upper
bound of the potential energy, the number of critical points in configuration
space and thus also the set of critical values {vj

c}j∈N are finite and isolated.
In order to split the integration on Mv into two parts, the integration on

the union of the neighborhoods of all the critical points contained in Mv and
the integration on its complement in Mv, we have defined for each critical
point q(i)c its pseudocylindrical neighborhood Γ (q(i)c , ε0); ε0 is the thickness—
in potential energy—of the neighborhood.
Let us now split the integration on Mv into the integration on Mv ∩⋃

i Γ (q(i)c , ε0) and on its complement Mv \
⋃

i Γ (q(i)c , ε0). We have∫
Mv

dNq =
∫

Mv\
⋃N(v)

i=1
Γ (q

(i)
c ,ε0)

dNq +
∫

Mv∩
⋃N(v)

i=1
Γ (q

(i)
c ,ε0)

dNq , (9.112)

where N (v) is the number of critical points of VN (q) up to the level v. We
can equivalently write

vol(Mv) =
∫

Mv\
⋃N(v)

i=1
Γ (q

(i)
c ,ε0)

dNq+
Ncl(v)∑
j=1

N j
cp∑

m=1

∫
Mv∩Γj(q

(m)
c ,ε0)

dNq , (9.113)

where Ncl(v) is the number of critical levels Σvj
c

such that vj
c < v, and

N j
cp is the number of critical points on the critical hypersurface Σvj

c
and

where we have changed the notation of the pseudocylindrical neighborhoods
to Γj(q

(m)
c , ε0), labeling with j the level set to which it belongs and numbering

withm the critical points on a given level set. Notice thatN (v) =
∑Ncl(v)

j=1 N j
cp.

Then we use the coarea formula in the right hand-side of (9.111) to rewrite
(9.113); a distinction is necessary between two cases for Σv = ∂Mv, depending
on whether its label v is closer than ε0 to a critical level; thus we obtain

vol(Mv) =
∫

Mv\
⋃N(v+ε0)

i=1
Γ (q

(i)
c ,ε0)

dNq

+
Ncl(v+ε0)∑

j=1

N j
cp∑

m=1

∫ vj
c+ε0

vj
c−ε0

dη

∫
Γj(q

(m)
c ,ε0)

dNq δ[VN (q)− η] (9.114)
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when v > vν(v)
c + ε0 and v < vν(v)+1

c − ε0, where ν(v) is such that vν(v) < v <

v
ν(v)+1
c , whereas

vol(Mv) =
∫

Mv\
⋃N(v+ε0)

i=1
Γ (q

(i)
c ,ε0)

dNq

+
Ncl(v)−1∑

j=1

N j
cp∑

m=1

∫ vj
c+ε0

vj
c−ε0

dη

∫
Γj(q

(m)
c ,ε0)

dNq δ[VN (q)− η]

+
Nν(v+ε0)

cp∑
m=1

∫ v

v
ν(v)
c −ε0

dη

∫
Γν(v)(q

(m)
c ,ε0)

dNq δ[VN (q)− η] (9.115)

when vν(v)+1
c − ε0 < v or v < vν(v)

c + ε0.
Near any critical point, a second-order power series expansion of V (q)

reads
V

(2)
N (q) = VN (qc) +

1
2

∑
i,j

∂2VN

∂qi∂qj
(qi − qic) (qj − qjc) .

For sufficiently small ε0, the integrals
∫
Γj(qc,ε0)

dNq δ[VN (q) − η] can be

replaced with arbitrary precision by
∫
Γj(qc,ε0)

dNq δ[V (2)
N (q)− η]. Moreover, if

VN (q) is a good Morse function, then a coordinate transformation exists to
the so-called Morse chart [23] such that

Ṽ
(2)
N (x) = VN (qc)−

k∑
l=1

x2
l +

N∑
l=k+1

x2
l ,

where k is the Morse index of qc. Using the Morse chart we have∫
Γj(qc,ε0)

dNq δ[V (2)
N (q)− η] =

∫
Γj(qc,ε0)

dNx |det J | δ[Ṽ (2)
N (x)− η] , (9.116)

where J is the Jacobian of the coordinate transformation.
Using Morse coordinates inside the pseudocylinder Γj(q

(m)
c , ε0) around the

critical point q(m)
c , we see that each part of a hypersurface Ση ∩ Γj(q

(m)
c , ε0)

is a quadric

ξ = η − vj
c = −

km∑
l=1

x2
l +

N∑
l=km+1

x2
l = − | X |2 + | Y |2 , (9.117)

where the Morse index of q(m)
c is denoted by km, so that | X |2= ∑km

l=1 x
2
m

and | Y |2= ∑N
l=km+1 x

2
l . Thus we rewrite the right hand-side of (9.116) as

| det J |
∫

Γj(q
(m)
c ,ε0)

dNx δ(−|X|2 + |Y |2 − ξ)

= | det J |
∫

Γj(q
(m)
c ,ε0)

dΩsdΩtd|X|d|Y ||X|km−1|Y |N−km−1 δ(−|X|2 + |Y |2 − ξ)

(9.118)
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where dΩs ≡ dΩkm−1 is the solid-angle element in (km − 1) dimensions,
and dΩt ≡ dΩN−km−1 is the solid-angle in (N − km − 1) dimensions, whose
integrations yield the volumes Cs and Ct of the hyperspheres of unit radius
in s and t dimensions respectively. Putting z = |X|2 and integrating on the
angular coordinates we get

1
2
|det J | CN−km−1Ckm−1

×
∫

Γj(q
(m)
c ,ε0)

d|Y | dz 1√
z
|Y |N−km−1z(km−2)/2δ(−z + |Y |2 − ξ) .

(9.119)

The domains Γj(qc, ε0) are defined so that their boundaries are orthogonal to
the potential level sets defined by (9.117). These boundaries are thus given
by the equation |X||Y | = r. From (9.117), that is, |Y |2 = z + ξ, when ξ < 0
we have that z > −ξ, and from |X||Y | = r we get z = r2/|Y |2, so −r2/|Y |2 +
|Y |2 = −|ξ|, whence |Y | =

(
− 1

2ξ + 1
2

√
|ξ|2 + 4r2

)1/2. Moreover, when ξ < 0,
at |X|2 = 0 it must be |Y |2 = 0, so that |Y | ranges from 0 to β(ξ, r) =√

(
√
ξ2 + 4r2 − ξ)/2, and z ranges from 0 to α(ξ, r) = (

√
ξ2 + 4r2 − ξ)/2.

At variance, for ξ > 0, at |X|2 = 0 it is |Y |2 = ξ > 0, so that from
−r2/|Y |2 + |Y |2 = ξ we get again that z ranges from 0 to α(ξ, r), and that

|Y | ranges from
√
ξ to β(ξ, r) =

√
(
√
ξ2 + 4r2 + ξ)/2.

Thus we obtain from (9.119)

1
2
|det J | CN−km−1Ckm−1

×
∫ α(ξ,r)

0

dz

∫ β(ξ,r)

0,
√

ξ

d|Y ||Y |N−km−1z(km−2)/2δ(−z + |Y |2 − ξ) . (9.120)

Finally, by putting y = |Y |, when ξ > 0 we obtain

1
2
Jjm CN−km−1Ckm−1

∫ β(ξ,r)

√
ξ

dy yN−km−1 (y2 − ξ)(km−2)/2 , (9.121)

and when ξ < 0 we obtain

1
2
Jjm CN−km−1Ckm−1

∫ β(ξ,r)

0

dy yN−km−1 (y2 − ξ)(km−2)/2 , (9.122)

where CN−km−1 and Ckm
are volumes of hyperspheres of unit radii, that is,

Cn = 2πn/2/(n/2− 1)! (for n even) and Cn = 2(n+1)/2π(n−1)/2/(n− 2)!! (for
n odd); Jjm stands for the numerical absolute value of the determinant of J
computed at the critical level vj

c and at the critical point q(m)
c . By defining

F+(ξ, km, N) =
∫ β(ξ,r)

√
ξ

dy yN−km−1 (y2 − ξ)(km−2)/2 (9.123)
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and

F−(ξ, km, N) =
∫ β(ξ,r)

0

dy yN−km−1 (y2 − ξ)(km−2)/2 , (9.124)

we can now write6

vol(Mv) =
∫

Mv\
⋃N(v+ε0)

i=1
Γ (q

(i)
c ,ε0)

dNq

+
Ncl(v+ε0)∑

j=1

N j
cp∑

m=1

1
2
CN−km−1Ckm

Jjm

∫ ε0

−ε0

dξ F (ξ, km, N)

(9.125)

when v > vν(v)
c + ε0 and v < vν(v)+1

c , where ν(v) = max{j|vj
c ≤ v}, or

vol(Mv) =
∫

Mv\
⋃N(v+ε0)

i=1
Γ (q

(i)
c ,ε0)

dNq

+
Ncl(v)−1∑

j=1

N j
cp∑

m=1

1
2
CN−km−1Ckm

Jjm

∫ ε0

−ε0

dξ F (ξ, km, N)

+
Nν(v+ε0)

cp∑
m=1

1
2
CN−km−1Ckm

Jj̃m

∫ v−vν(v)
c

−ε0

dξ F (ξ, km, N)

(9.126)

with j̃ = Ncl(v) when v
ν(v)+1
c − ε0 < v or v < v

ν(v)
c + ε0. In (9.125)

and (9.126) we have put
∫ ε0

−ε0
dξ F (ξ, km, N) =

∫ 0

−ε0
dξ F−(ξ, km, N) +∫ ε0

0
dξ F+(ξ, km, N).

Notice that N (v) =
∑N

i=0 μi(Mv), where μi(Mv) are the multiplicities of
the critical points of index i (there are at most N + 1 values for the indexes
of critical points at dimension N) below the energy value v.

Therefore, we can rearrange the double summation in (9.125), (9.126) by
expressing it as a double summation on all the possible values of the Morse
indexes and on the number of critical points for each value of the Morse index,
that is,

N∑
i=0

μi(Mv)∑
k=1

A(N, i, ε0)Jj(i,k)m(i,k) , (9.127)

where, since the integrals in (9.125), (9.126) are independent of the index j,
we have defined a set of coefficients A(N, i, ε0) as

A(N, i, ε0) =
1
2
CN−i−1Ci

∫ ε0

−ε0

dξ F (ξ, i,N) . (9.128)

6 Note that in (9.123) and (9.124) km < N , in fact, if km = N then in (9.120)
|Y | = 0.
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From the set of positive numbers Jj(i,k)m(i,k) we define

gi =
1

μi(Mv)

μi(Mv)∑
k=1

Jj(i,k)m(i,k) (9.129)

and rewrite the second term of the right hand-side of (9.125) as

N∑
i=0

A(N, i, ε0) gi μi(Mv). (9.130)

Moreover, we introduce the coefficients

B(N, i, v− vν(v)
c , ε0) =

1
2
CN−i−1CiJj̃m(i,k(i))

∫ v−vν(v)
c

−ε0

dξ F (ξ, i,N) , (9.131)

where k(i) stems from j(i, k) = j̃, such that for v = v
ν(v)
c we have

B(N, i,−ε0, ε0) = 0, and for v − v
ν(v)
c = ε0 we have B(N, i, ε0, ε0) =

A(N, i, ε0)gi.
For the purposes of the present proof, we are not concerned about the

complication of the coefficients A(N, i, ε0) and B(N, i, v−vν(v)
c , ε0) because all

that we need in order to make the link between configuration-space topology
and thermodynamics is that the second term in the volume splitting in (9.112)
can be written in the form (9.130). In fact, now we can write the entropy per
degree of freedom as

S
(−)
N (v) =

1
N

logM(v,N) =
1
N

log
∫

Mv

dNq (9.132)

=
1
N

log

[∫
Mv\

⋃N(v+ε0)

i=1
Γ (q

(i)
c ,ε0)

dNq +
∫

Mv∩
⋃N(v+ε0)

i=1
Γ (q

(i)
c ,ε0)

dNq

]

=
1
N

log

[∫
Mv\

⋃N(v+ε0)

i=1
Γ (q

(i)
c ,ε0)

dNq +
N∑

i=0

A(N, i, ε0)gi μi(Mv)

]

when v < vν(v)+1
c − ε0 or v > vν(v)

c + ε0, or

S
(−)
N (v) =

1
N

log
[∫

Mv\
⋃N(v+ε0)

i=1
Γ (q

(i)
c ,ε0)

dNq +
N∑

i=0

A(N, i, ε0) giμi(Mv−ε0)

+
Nν(v+ε0)+1

cp∑
n=1

B(N, i(n), v − vν(v)
c , ε0)

]
(9.133)

when v > vν(v)+1
c − ε0 or v < vν(v)

c + ε0.
The equation above links thermodynamic entropy with the Morse indexes

of the configuration-space submanifolds Mv, that is, with their topology. In
fact, according to Bott’s “critical-neck theorem” [219], any change with v of
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any index μi(Mv), i = 0, . . . , N , which can only be due to the crossing of a
critical level, is associated with a topological change of the Mv. Conversely,
any topological change, in the sense of a loss of diffeomorphicity, occurring
to the Mv when v is varied, is signaled by one or more changes of the Morse
indexes μi(Mv), because by the “noncritical neck theorem” [210], this has to
be the consequence of the crossing of a critical level.

In order to show that the coefficients B(N, i, v − vν(v)
c , ε0) are smooth

functions of v, one has to note that

dkB(N, i, v, ε0)
dvk

=
d(k−1)F (ξ, km, N)

dξ(k−1)

∣∣∣∣
ξ=v−vc

,

and then focus on the smoothness of F±(ξ, km, N) defined in (9.123) and
(9.124).

The smoothness of F+(ξ, km, N), for ξ �= 0, is easily verified by inspection
of the following outcome of direct integration∫ β(ξ,r)

√
ξ

dy ym (y2 − ξ)n

=
{
ξ(1+m+2n)/2n(1 +m+ 2n) Γ (−(1 +m+ 2n)/2) Γ (1 + n)

−ξ(1+m+2n)/2(1 +m) Γ ((1−m− 2n)/2)Γ (1 + n)
+β(1+m+2n)(1 +m+ 2n) Γ ((1−m)/2)
× 2F1(−(1 +m+ 2n)/2,−n; (1−m− 2n)/2; ξ/β2)

}
/
[
(1 +m+ 2n)2Γ ((1−m)/2)

]
(9.134)

where the function 2F1(a, b; c;x) is an hypergeometric function, whose argu-
ment x, for ξ > 0, is smaller than 1.

Also the smoothness of F−(ξ, km, N), for ξ �= 0, is easily verified by
inspection of the following result of direct integration∫ β(ξ,r)

0

dy ym (y2 − ξ)n =
1

1 +m

{
2−(1+m)/2(−ξ)n

[
1

ξ +
√
ξ2 + 4r2

]−(1+m)/2

× 2F1((1 +m)/2,−n; (3 +m)/2; (ξ +
√
ξ2 + 4r2)/(2ξ))

}
(9.135)

where, being ξ < 0 and as we can always take r <
√

2ξ, the argument is∣∣∣(ξ +
√
ξ2 + 4r2)/(2ξ))

∣∣∣ < 1.
At ξ = 0 it can be verified that smoothness of F±(ξ, km, N) is replaced by

a high but finite differentiability class, that is, CO(N/2).7

In conclusion, the smoothness of the coefficients B(N, i, v − vν(v)
c , ε0) is

proved.8

7 The function 2F1(a, b; c; x) has a regular singular point at x = 0, allowing a
polynomial representation in its neighborhood.

8 Of course, also the differentiability class of the coefficients B(N, i, v − v
ν(v)
c , ε0)

drops to CO(N/2) at v − v
ν(v)
c = 0.
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Let us now come to the proof of the statement of Theorem 9.39, which says
that the source of a phase transition can only be the second term in square
brackets in (9.109), which is of topological meaning. To this end we have to
resort to Theorem 9.14 and Corollary 9.19.

We work under the assumption that only one critical value v̄c exists in
a given interval [v̄0, v̄1]. By Sard’s theorem [210], at any finite N there is a
finite number of isolated critical points on ΣNv̄c

. For any arbitrarily small
δ > 0, Theorem 9.14 and Corollary 9.19 still apply to the two subintervals
[v̄0, v̄c−δ] and [v̄c +δ, v̄1]. In order to understand why a breakdown of uniform
boundedness in N of |∂kS

(−)
N /∂vk| for k = 3 or k = 4 can be originated

only by the topological term in right hand-side of (9.109), we consider each
critical point q(i)c on ΣNv̄c

enclosed in a small pseudocylindrical neighborhood
Γ (q(i)c , ε0) of thickness ε0 and we take ε < ε0 arbitrarily close to ε0. From
Morse theory, we know that passing a critical value vc entails that for each
critical point of index ki a ki-handle HN,ki is attached to Mv<vc

, so that the
following diffeomorphism holds:

M(vc+ε) ≈M(vc−ε)

⋃
φ1

HN,k1
⋃
φ2

HN,k2 · · ·
⋃
φn

HN,kn , (9.136)

where
⋃

φi
stands for the attachment of HN,ki to M(vc−ε) through the embed-

ding φi : S
ki−1 × DN−ki → ∂M(vc−ε). Details can be found in [23, 210, 227],

see also Appendix C.
The excision of the pseudocylindrical neighborhoods Γ (qic, ε0) of all the

critical points q(i)c ∈ ΣNv̄c
implies that all the manifolds Mv := Mv \⋃# crit.pts.

i=1 Γ (q(i)c , ε0) with Nv̄c − ε0 < v < Nv̄c + ε0 are free of critical
points and consequently are diffeomorphic. In fact, for any v, v′ ∈ R such that
Nv̄c−ε0 < v < v′ < Nv̄c +ε0, Mv is a deformation retraction of Mv′ through
the flow associated with the vector field X = −∇VN/‖∇VN‖2 [23, 210].

Now, definingM(v,N)=vol(Mv) andΓ (v,N)=vol[
⋃# crit.pts.

i=1 Γ (q(i)c , ε0)],
equation (9.109) becomes

S
(−)
N (v) =

1
N

log
[
M(v,N) + Γ (v,N)

]
=

1
N

log
[
M(v,N)

]
+

1
N

log
[
1 +

Γ (v,N)
M(v,N)

]
. (9.137)

By applying Theorem 9.14 and its Corollary 9.19 to the first term in the right
hand-side of the equation above, we know that 1

N |∂k log
[
M(v,N)

]
/∂vk| for

k = 1, . . . , 4, are uniformly bounded in N , and thus no phase transition can
arise from this term.

Then, let us consider the second term of the right hand-side of the equation
above. By computing its first derivative we obtain

d

dv

1
N

log
[
1 +

Γ (v,N)
M(v,N)

]
=

1
N

Γ ′

M + Γ
− 1
N

Γ

M + Γ

(
M

′

M

)
, (9.138)
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where (M
′
/M) stands for [dM(v,N)/dv]/M(v,N). By Lemma 9.38, (M

′
/M)

is uniformly bounded in N and therefore so is the second term in the right
hand-side of (9.138). Therefore, if |∂S(−)

N /∂v| were to grow with N , this could
not be due to the term M(v,N).

Then we compute the second derivative

d2

dv2

1

N
log

[
1 +

Γ (v, N)

M(v, N)

]
=

1

N

Γ ′′

M + Γ
+

1

N

ΓM(M
′
/M) + ΓΓ ′

(M + Γ )2

(
M

′

M
− Γ ′

Γ

)
− 1

N

Γ

M + Γ

(
M

′

M

)
+

1

N

d

dv

(
M

′

M

)
. (9.139)

Again, we can observe that the uniform boundedness with N of both (M
′
/M)

and (d/dv)(M
′
/M) = (M

′′
/M) − (M

′
/M)2, by Lemma 9.38, entails that if

|∂2S
(−)
N /∂v2| were to grow with N , this could not be due to the termM(v,N).

Similarly, after a lengthy but trivial computation of the third and fourth
derivatives of the second term in the right hand-side of (9.137), one finds
that M(v,N) enters the various terms obtained through the ratio M

′
/M and

through its derivatives dk

dvk [M
′
/M ] with k = 1, 2, 3. Thus, as a consequence of

Lemma 9.38, the uniform boundedness in N of [dM(v,N)/dv]/M(v,N) and
dk

dvk {[dM(v,N)/dv]/M(v,N)} with k = 1, 2, 3 implies that if |∂3S
(−)
N /∂v3| or

|∂4S
(−)
N /∂v4| were to grow with N , this could not be due to the termM(v,N).

In conclusion, the first term within square brackets in (9.109) can-
not be at the origin of a phase transition, nor can it be the third one,
which is the sum of smooth functions. Only the second term of the right
hand-side of (9.109), which is in one-to-one correspondence with topo-
logical changes of the Mv, can originate an unbound growth with N of
a derivative |∂kS

(−)
N /∂vk| for some k, thus entailing a phase transition.

!"

Remark 9.40. A comment about the analytic expression of the volume split-
ting is in order. At any finite N , the volume M(v,N) is a highly regular
function of v (of differentiability class CO(N/2)), as is the entropy S(−)

N (v). The
term

∑N
i=0A(N, i, ε0)giμi(Mv) entering (9.109) and (9.133) is a discontinuous

function of v because it depends on the integer valued functions μi(v), thus, at
first sight, this term could seem conflicting with the high differentiability class
of volume and entropy. Of course, at finite N , the high regularity of volume
and entropy is not lost. In fact, the term

∑N
i=0A(N, i, ε0)giμi(Mv) is constant

in any open interval (vν(v)
c +ε0, v

ν(v)+1
c −ε0) and the functions v � B(N, i, v)

smoothly connect in the interval (vν(v)
c −ε0, vν(v)

c +ε0) the values that the func-
tion

∑N
i=0A(N, i, ε0)giμi(Mv) takes in the intervals (vν(v)−1

c + ε0, v
ν(v)
c − ε0)

and (vν(v)
c + ε0, v

ν(v)+1
c − ε0).

Loosely speaking,
∑

iA(N, i, ε0)giμi(Mv) +
∑

nB(N, i(n), v) is shaped as
a “staircase” with “rounded corners”.
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Remark 9.41 (Domain of physical applications). About the applicability
domain of what has been proved in this chapter, note that V is required to be
a finite range interaction potential and a good Morse function. The former is
a physical assumption, the latter a mathematical property of V . Finite range
potentials are typical in condensed matter systems, where the interatomic and
intermolecular interaction potentials are of the type of Lennard-Jones, Morse,
van der Waals potentials, and where also classical spin potentials satisfy these
requirements. Also regularized Coulomb interactions in condensed matter
can be included, in fact, these are effective only at a finite distance because
of the Debye shielding. The mathematical property of being a good Morse
function is absolutely generic, in fact it requires that a potential function is
bounded from below and that the Hessian of the potential is nondegenerate
(i.e. its eigenvalues never vanish). Moreover, given a real-valued function
f of class C2 defined on an arbitrary open subset X of R

N , the mapping
x � f(x) − (a1x1 + · · · + aNxN ) : X � R is nondegenerate for almost all
(a1, . . . , aN ) ∈ R

N (see Chapter 6 of [234]). This means that nondegeneracy
is generic whereas degeneracy is exceptional. Continuous symmetries are the
only physically relevant source of degeneracy, however this kind of degeneracy
can be removed by adding a generic term (a1x1 + · · ·+aNxN ) to the potential
with an arbitrarily small vector (a1, . . . , aN ). This removal of degeneracy is
a rephrasing, within the framework of Morse theory, of a standard procedure
undertaken in statistical mechanics to explicitly break a continuous symme-
try, that is the addition of an external field whose limit to zero is taken after
the limit N →∞.

Remark 9.42 (Sufficiency conditions). Summarizing, let us emphasize that
the converse of Theorem 9.14 is not true. In other words, there is not a one-
to-one correspondence between any topological change of the energy level
sets and phase transitions. That this could not be the case is made clear
by the existence of many systems undergoing a large number of topological
transitions in the absence of thermodynamic phase transitions.

On the other hand, an analytic relation between configurational entropy
and Morse indexes of the submanifolds Mv of configuration space can be
established. By proceeding in two independent ways, one ends up with two
different such relations—an approximate one in (8.36), and an exact one in
(9.109)—that, however, are in very good qualitative agreement. Moreover,
both these analytic relations suggest that “mild” variations with v of the
topology of theMv are compatible with a regular v-dependence of the entropy,
thus with the absence of phase transitions. But the same equations (9.109) and
(8.36) allow one to think that sufficiently “strong” variations with v and with
N of the topological contribution to the entropy could be sufficient to entail a
phase transition. By resorting to Theorem 9.14 we can prove in Theorem 9.39
that—passing a critical level of the potential—a phase transition can stem
only from the topological term, that is, topological changes of the Mv are
necessary, though not sufficient.
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In order to go beyond qualitative arguments, one has to figure out which
classes of topological changes are actually sufficient to make unboundedly
grow with N some of the entropy derivatives with respect to v, thus entailing
a phase transition.

Qualitative hints in this perspective are given in the following chapter.

We conclude this chapter with the following:
Conjecture 1. Let VN (q1, . . . , qN ) : R

N → R, be a smooth, nonsingular,
finite-range potential. If in a given interval [v̄0, v̄1] of potential energy density
the number of critical values of the potential grows at most linearly with N ,
then the statement of Theorem 9.39 establishing that an unbounded growth
with N of one of the derivatives |∂kS(−)(v)/∂vk|, for k = 3, 4, and thus the
occurrence of a first- or second-order phase transition can be entailed only by
the topological term

∑N
i=0A(N, i, ε0) gi μi(Mv−ε0) in (9.109), is still true.

The assumption of a linear growth with N of the number of critical values
of V – in a potential energy density interval of finite length – is suggested
by what happens in lattice systems where critical levels are separated by a
finite minimum energy amount, as is the case of ”spin flips” in the 1d-XY
model [206], mean-field XY model [206], p-trig model [223], or of elementary
configurational changes that, in lattices and fluids, correspond to the appear-
ance of a new critical value of V at an energetic cost which is independent of
N . Note that the assumption that the number of critical values v̄j

c is at most
linearly growing with N entails, together with Sard theorem, that ε0 is finite
and can be chosen independent of N .

This conjecture is intuitively very reasonable. In fact, once we have proved
that in the presence of a single critical level in [v̄0, v̄1] the topological term
in (9.109) is the only possible source of the breaking of uniform convergence
with N of the entropy, it is hardly conceivable that this situation could be
reversed just by adding critical levels in [v̄0, v̄1].



Chapter 10

Phase Transitions and Topology: Exact Results

The preceding chapter contains a major theoretical achievement: the
unbounded growth with N of certain thermodynamic observables, eventually
leading to singularities in the N → ∞ limit, which are used to define the
occurrence of an equilibrium phase transition, is necessarily due to appropri-
ate topological transitions in configuration space. The relevance of topology
is made especially clear by the explicit dependence of thermodynamic config-
urational entropy on a weighed sum of Morse indexes of configuration-space
submanifolds, a relation that, loosely speaking, has some analogy with the
Yang–Lee “circle theorem,” which relates thermodynamic observables to a
fundamental mathematical object in the Yang–Lee theory of phase transi-
tions: the angular distribution of the zeros of the grand-partition function on
a circle in the complex fugacity plane.

The big challenge is now that of understanding what “appropriate topolog-
ical changes” really means for the different kinds of phase transitions: first- and
second-order transitions, Kosterlitz–Thouless transitions, glassy transitions,
Θ-transitions of polymers, and so on. From a mathematical point of view,
the problem is to find at least some sufficient conditions for Theorem 9.39
of Chapter 9. Again we have to start by collecting hints from the study of
particular models.

We have already seen in Chapter 7 that the numerical investigation of
both thermodynamics and topology in the special case of the lattice ϕ4 model
revealed a clear and unambiguous signature in the way topology changes
when the system is found to undergo a phase transition. However, as is
always the case with numerical results, the information obtained, though of
utmost conceptual importance, is mainly of a qualitative nature. On the other
hand, the above-mentioned relationship between thermodynamics and topol-
ogy, expressed through the functional dependence of entropy on Morse indexes
and reported in Chapters 8 and 9, allows us to understand also analytically
the fact that “mild variations of topology” with potential energy—which are
to be considered generic—are not sufficient to entail phase transitions. More

297
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drastic changes are required to produce an unbounded growth with N of some
derivative of the entropy with respect to the potential energy.

In order to make these statements more precise, in the present chapter we
report on a few exactly solvable models, i.e. for which both thermodynam-
ics and topology can be computed explicitly [206, 222, 223]. By “computing
topology” we mean “computing the Euler characteristic,” which is quite far
from exhausting the study of topology! But at present it is “the only game in
town.” As we shall see throughout this chapter, prior to and independently of
the definition of any statistical measure in configuration space, the relevant
information about the macroscopic transitional behavior is already contained
in the microscopic interaction potential and concealed in its way of shaping
configuration-space submanifolds.

All the models share an important property: they are “mean-field” models.
In other words, they describe idealized systems with infinite-range interac-
tions, which makes life easier in performing all the computations, but puts
these systems out of the domain of applicability of the results given in
Chapter 9. In fact, both Theorems 9.14 and 9.39 have been proved therein
for short-range interactions, but we believe that additivity is the truly nec-
essary property, and a generalization in this sense should be feasible, thus
encompassing also the systems considered below.

10.1 The Mean-Field XY Model

The mean-field XY model is defined by the Hamiltonian [110]

H(p, ϕ) =
N∑

i=1

p2i
2

+
J

2N

N∑
i,j=1

[1− cos(ϕi − ϕj)]− h
N∑

i=1

cosϕi . (10.1)

Here ϕi ∈ [0, 2π] is the rotation angle of the ith rotator and h is an external
field. Defining at each site i a classical spin vector mi = (cosϕi, sinϕi), the
model describes a planar (XY ) Heisenberg system with interactions of equal
strength among all the spins. We consider only the ferromagnetic case J > 0;
for the sake of simplicity, we set J = 1. The equilibrium statistical mechanics
of this system is exactly described, in the thermodynamic limit, by mean-field
theory. In the limit h→ 0, the system has a continuous phase transition, with
classical critical exponents, at Tc = 1/2, or Ec/N = 3/4, the critical energy
per particle [110].

10.1.1 Canonical Ensemble Thermodynamics

The exact equilibrium solution of the model (10.1) for vanishing external field
(h = 0) stems from the computation of the canonical partition function
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Z(β,N) =
∫ N∏

i=1

dpi dϕi exp(−βH) ,

where, as usual, β = 1/T (in units kB = 1). This partition function factorizes
into a kinetic term and a configurational part as follows:

Z(β,N) =
(

2π
β

)N/2

exp
(
−βJN

2

)
Zc ,

where

Zc =
∫ π

−π

N∏
i=1

dϕi exp

⎡⎣ βJ
2N

N∑
i,j=1

cos(ϕi − ϕj)

⎤⎦ ,

which can be also written as

Zc =
∫ π

−π

N∏
i=1

dϕi exp

⎡⎣ βJ
2N

(
N∑

i=1

mi

)2
⎤⎦ , (10.2)

where the above-defined classical spin vectors mi are used. In the ferromag-
netic case J > 0, making use of the Hubbard–Stratonovich transformation

exp
(
Ax2

2

)
=

1
π

∫ ∞

−∞

∫ ∞

−∞
dy exp(−y2 +

√
2Ax · y)

for the A > 0 case, (10.2) gives

Zc =
1
π

∫ π

−π

N∏
i=1

dϕi

∫ ∞

−∞

∫ ∞

−∞
dy exp

(
−y2 +

√
2A M · y

)
,

with A = βJ/N and M =
∑N

i=1 mi. By exchanging the integrals, we observe
that the integration on the ϕi can be factorized; thus performing it and putting
z = y

√
N/2βJ , one has

Zc =
1
π

N

2βJ

∫ ∞

−∞

∫ ∞

−∞
dz exp

[
−N

(
z2

2βJ
− ln(2πI0(z))

)]
where I0 is the modified Bessel function and z is the modulus of z. The free
energy F = limN→∞−(βN)−1 lnZ(β,N) is then obtained by computing the
above integral by means of the saddle point method

−βF =
1
2

ln
(

2π
β

)
− βJ

2
+ max

z

(
z2

2βJ
− ln(2πI0(z))

)
. (10.3)

There are infinitely many minima of the free energy for each solution of

z

βJ
− I1(z)
I0(z)

= 0 .
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For βJ < 2, z = 0 is the solution corresponding to the minimal free energy
and to a vanishing magnetization. For βJ > 2, the solution z is a value of z
that is a function of β, correspondingly the magnetization

|M| = I1(z)
I0(z)

,

obtained by repeating the computation given above with h �= 0 and then
taking the limit h → 0, is nonvanishing and can be seen to bifurcate with a
classical critical exponent (1/2) for β ≥ βc = 2/J . The internal energy per
particle U = E/N is

U =
∂(βF )
∂β

=
1
2β

+
J

2
(
1− |M|2

)
.

In Figure 10.1 both temperature and magnetization (modulus) are given as
functions of the internal energy per degree of freedom and display patterns
typical of a second order phase transition.

10.1.2 Microcanonical Ensemble Thermodynamics

As we have already seen in the preceding chapter in the case of configuration
space, the microcanonical volume in phase space

Ω(E,N) =
∫
dNpi d

Nϕi δ[H(p, ϕ)− E]

is related to the canonical partition function through

Z(β,N) =
∫ ∞

0

dE e−βEΩ(E,N) ,

which can be rewritten as

Z(β,N) = N

∫ ∞

0

dU exp
[
N

(
−βU +

1
N

lnΩ(E,N)
)]

. (10.4)

In the thermodynamic limit the entropy density is

S(U) = lim
N→∞

1
N

lnΩ(E,N) ,

so that by evaluating the integral in (10.4) through the saddle-point method,
we get

−βF (β) = max
U

[−βU + S(U)] , β =
∂S

∂U
. (10.5)

In general, one first computes the free energy and then derives from it the
entropy. This is possible provided that the entropy is a concave function of
the energy, so that
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S(U) = min
β>0

{β[U − F (β)]} , U =
∂(βF )
∂β

.

The entropy is not concave for long-range interaction systems near a first-
order phase transition where negative specific heat appears. But in the case
of the XY mean-field model, canonical and microcanonical ensembles are
equivalent [226]; there is only a technical difficulty to analytically work out
the microcanonical entropy. However, in this case the numerical simulation of
the dynamics provides a reliable estimate of the microcanonical observables.
These are reported in Figures 10.1 and 10.2 and found in excellent agreement
with the (equivalent) canonical ensemble predictions.
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Fig. 10.1. Temperature T and magnetization M as a function of the energy per par-
ticle U . Circles and squares refer to MD computations, equivalent to microcanonical
averages. Solid lines refer to the canonical predictions. See [224].
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Fig. 10.2. Specific heat as a function of U . Numerical simulations (circles), obtained
for N = 500, are compared to the theoretical result. From [224].

10.1.3 Analytic Computation of the Euler Characteristic

In what follows the analysis proceeds in configuration space only. Introducing
the magnetization vector M as M = (mx,my), where

mx =
1
N

N∑
i=1

cosϕi , (10.6)

my =
1
N

N∑
i=1

sinϕi , (10.7)

the potential energy V can be written as a function of M as follows:

V (ϕ) = V (mx,my) =
N

2
(1−m2

x −m2
y)− hN mx . (10.8)

The range of values of the potential energy per particle, V = V/N , is then

−h ≤ V ≤ 1
2

+
h2

2
. (10.9)

The configuration space M of the model is an N -dimensional torus, being
parametrized byN angles. We want to investigate the topology of the following
family of submanifolds of M :

Mv = V−1(−∞, v] = {ϕ ∈M : V(ϕ) ≤ v} , (10.10)

i.e., each Mv is the set {ϕi}N
i=1 such that the potential energy per particle

does not exceed a given value v. This is the same as the Mv = ME−K defined
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above (v has been rescaled by 1
N because we choose V = V/N as a Morse

function in order to make the comparison of systems with different N easier).
As v is increased from −∞ to +∞, this family covers successively the whole
manifold M (Mv ≡ ∅ when v < −h) .

As we have already seen in the preceding chapters, Morse theory [227]
states that topology changes of Mv can occur only in correspondence with
critical points of V, i.e., those points where the differential of V vanishes.
This immediately implies that no topological changes can occur when v >
1/2 + h2/2, i.e., all the Mv with v > 1/2 + h2/2 must be diffeomorphic to the
whole M , that is, they must be N -tori. Moreover, if V is a Morse function
(i.e., it has only nondegenerate critical points), then topological changes ofMv

are actually in one-to-one correspondence with critical points of V, and they
can be characterized completely. At any critical level of V the topology of Mv

changes in a way completely determined by the local properties of the Morse
function: a k-handle HN,k is attached (see Appendix C), where k is the index
of the critical point, i.e., the number of negative eigenvalues of the Hessian
matrix of V at this point. Notice that if there are m > 1 critical points on the
same critical level, with indices k1, . . . , km, then the topological change is made
by attaching m disjoint handles HN,k1 , . . . , HN,km . This way, by increasing v,
the topology of the full configuration spaceM can be constructed sequentially
from theMv. Knowing the index of all the critical points below a given level v,
we can obtain exactly the Euler characteristic of the manifolds Mv, defined by

χ(Mv) =
N∑

k=0

(−1)kμk(Mv) , (10.11)

where the Morse number μk is the number of critical points of V that have
index k [227]. The Euler characteristic χ is a topological invariant (i.e. it is
not affected by a diffeomorphic deformation of Mv): any change in χ(Mv)
implies a topological change in the Mv. It will turn out that as long as h > 0,
V is indeed a Morse function at least in the interval −h ≤ v < 1/2 + h2/2,
while the maximum value v = 1/2 + h2/2 may be pathological in that it may
correspond to a critical level with degenerate critical points.

Thus, in order to detect and characterize topological changes in Mv we
have to find the critical points and the critical values of V, which means
solving the equations

∂V(ϕ)
∂ϕi

= 0 , i = 1, . . . , N , (10.12)

and to compute the indices of all the critical points of V, i.e., the number of
negative eigenvalues of its Hessian

Hij =
∂2V
∂ϕi∂ϕj

, i, j = 1, . . . , N . (10.13)
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Taking advantage of (10.8), we can rewrite equations (10.12) as

(mx + h) sinϕi −my cosϕi = 0 , i = 1, . . . , N . (10.14)

As long as (mx +h) and my are not simultaneously zero (the violation of this
condition is possible only on the level v = 1/2+h2/2), the solutions of (10.14)
are all configurations in which the angles are either 0 or π. In particular, the
configuration

ϕi = 0 ∀ i (10.15)

is the absolute minimum of V, while all the other configurations correspond
to a value of v that depends only on the number of angles that are equal to π.
If we denote by nπ this number, we have that the N critical values are

v(nπ) =
1
2

[
1− 1

N2
(N − 2nπ)2

]
− h

N
(N − 2nπ) . (10.16)

Inverting this relation yields nπ as a function of the level value v:

nπ(v) = int

[
1 + h

2
N ± N

2

√
h2 − 2

(
v − 1

2

)]
, (10.17)

where int [a] stands for the integer part of a. We can also compute the number
C(nπ) of critical points having a given nπ, which is the number of distinct
binary strings of length N having nπ occurrences of one of the symbols, which
is given by the binomial coefficient

C(nπ) =
(
N

nπ

)
=

N !
nπ! (N − nπ)!

. (10.18)

We have thus shown that as v changes from its minimum −h (correspond-
ing to nπ = 0) to 1

2 (corresponding to nπ = N
2 ), the manifolds Mv undergo

a sequence of topological changes at the N critical values v(nπ) given by
(10.16). We expect that there is another topological change located at the
last (maximum) critical value,

vc =
1
2

+
h2

2
. (10.19)

However, the above argument does not prove this, since the critical points
of V corresponding to this critical level may be degenerate. This is because
the solutions of the two equations in N variables mx = my = 0 need not be
isolated, so that then on this level, V would not be a proper Morse function.
Then a critical value vc is still a necessary condition for the existence of a
topological change, but it is no longer sufficient [210]. However, as already
argued in [24, 206], it is just this topological change occurring at vc given in
(10.19), that is related to the thermodynamic phase transition of the mean-
field XY model, since the temperature T , the energy per particle ε, and the



10.1 The Mean-Field XY Model 305

average potential energy per particle u = 〈V〉 obey, in the thermodynamic
limit, the equation

2ε = T + 2u(T ) ; (10.20)

substituting in this equation the values of the critical energy per particle and
the critical temperature, we get

uc = u(Tc) = 1/2 (10.21)

as h→ 0, vc → 1
2 , so that vc = uc. Thus a topological change in the family of

manifolds Mv occurring at this vc, where vc is independent of N , is connected
with the thermodynamic phase transition occurring in the limit N →∞, and
h→ 0.

Let us now see that a topological change at vc actually exists. One first
characterizes completely all the topological changes occurring at v < vc: this,
together with the knowledge that at v > vc the manifold Mv must be an
N -torus, will prove that a topological change at vc must actually occur, also
making clear in what sense it is different from the other topological changes
occurring at 0 ≤ v < vc. Morse theory allows a complete characterization of
the topological changes occurring in theMv if the indices of the critical points
of V are known. In order to determine the indices of the critical points (that
is, the number of negative eigenvalues of the Hessian of V at the critical point)
we proceed as follows. Since the diagonal elements of the Hessian are

Hii = di =
1
N

[(mx + h) cosϕi +my sinϕi]−
1
N2

, (10.22)

and the off-diagonal elements are

Hij = − 1
N2

(sinϕi sinϕj + cosϕi cosϕj) , (10.23)

one can write the Hessian as the sum of a diagonal matrix D whose nonzero
elements are

δi =
1
N

[(mx + h) cosϕi +my sinϕi] , i = 1, . . . , N , (10.24)

and of a matrix B whose elements are just the Hij given in (10.23), also
for i = j (the diagonal elements being −1/N2). Since the ratio between the
elements of B and those of D is O(1/N), one would expect at first sight
that only the diagonal elements survive when N � 1, so that the Hessian
approaches a diagonal matrix equal to D. However, this is not, in principle,
necessarily true: one cannot immediately say that at largeN the eigenvalues of
the Hessian are the δ’s given in (10.24) plus a correction vanishing as N →∞,
because the number of elements of B is N2, so that the contribution of the
matrix B to the eigenvalues of the Hessian does not, in general, vanish at
large N . That nevertheless the argument for this crucial point is correct in
this special case is shown in Section 10.4, and is due to the particular structure
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of the matrix B. The latter is of rank one, and then it can be proved that
at the critical points of V the number of negative eigenvalues of H equals
the number of negative diagonal elements δ ±1, so that as N � 1 we can
conveniently approximate the index of the critical points with the number of
negative δ’s at x,

index (x) ≈ #(δi < 0) . (10.25)

At a given critical point, with given nπ, where the x-component of the
magnetization vector is

mx = 1− 2nπ

N
, (10.26)

so that mx > 0 (respectively < 0) if nπ ≤ N
2 (respectively > N

2 ), the eigen-
values of D are

δi = mx + h , i = 1, . . . , N − nπ ; (10.27)
δi = −(mx + h) , i = N − nπ + 1, . . . , N . (10.28)

Then, if the external field h is sufficiently small,

(mx + h) > 0 if nπ ≤
N

2
,

(mx + h) < 0 if nπ >
N

2
, (10.29)

so that, denoting by index(nπ) the index of a critical point with nπ angles
equal to π, we can write

index(nπ) = nπ if nπ ≤ N
2 , (10.30)

index(nπ) = N − nπ if nπ >
N
2 . (10.31)

From these equations combined with (10.18) one can obtain for the Morse
numbers μk, i.e., for the number of critical points of index k, as a function of
the level v, as long as −h ≤ v < 1/2 + h2/2 (i.e., excluding the limiting value
v = 1/2 + h2/2) the following expression:

μk(v) =
(
N

k

)[
1−Θ(k − n(−)(v)) +Θ(N − k − n(+)(v))

]
, (10.32)

where Θ(x) is the Heaviside theta function and n(±)(v) are the limits of the
allowed nπ’s for a given value of v, i.e., from (10.17),

n(±)(v) =
N

2

[
1 + h±

√
h2 − 2

(
v − 1

2

)]
. (10.33)

We note that 0 ≤ n(−)
π ≤ N

2 and N
2 + 1 ≤ n(+)

π ≤ N , so that (10.32) implies

μk(v) = 0 ∀ k > N

2
, (10.34)
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i.e., no critical points with index larger than N/2 exist as long as v < vc =
1/2 + h2/2.

This is the crucial observation to prove that a topological change must
occur at vc. Since the Betti numbers of a manifold are positive (or zero)
numbers, using the Morse inequalities, which state that the Morse numbers
are upper bounds of the Betti numbers [210], i.e.,

bk ≤ μk for k = 0, . . . , N, (10.35)

we can immediately conclude that as long as v < vc = 1/2 + h2/2, we have

bk(Mv) = 0 ∀ k > N

2
. (10.36)

Thus, since 1
2 ≤ v < 1

2 + h2

2 the manifold is only “half” an N -torus, and since
we know that for v > 1

2 + h2

2 , Mv is a (full) N -torus, whose Betti numbers are

bk(TN ) =
(
N

k

)
, k = 0, 1, . . . , N , (10.37)

we conclude that at v = vc = 1
2 + h2

2 a topological change must occur, which
involves the attaching of

(
N
k

)
different k-handles for each k ranging from N

2 +1
to N , i.e., a change of O(N) of the number of Betti numbers.

Let us remark that such a topological change not only exists: it is surely
a “big” topological change, for all of a sudden, “half” an N -torus becomes
a full N -torus, via the attaching for each different k (ranging from N/2 + 1
to N) of

(
N
k

)
k-handles. More precisely, a number of Betti numbers, which is

O(N), changes, and changes by amounts that are of the same order as their
maximum possible values. On the other hand, all the other topological changes
correspond to the attaching of handles of the same type (index). In fact, as
long as v < vc, each critical level contains only critical points of the same
index, and the index grows with v, i.e., if xc and x′c are critical points and
V(x′c) > V(xc), then index(x′c) > index(xc). The potential energy per degree
of freedom V is a regular Morse function (or a Morse–Smale function [210]) as
long as v < vc, but this is no longer true for v ≥ vc; actually, as we have already
observed, V could even no longer be a Morse function at all, because the level
vc might contain degenerate critical points. Nevertheless, as we have shown,
this does not prevent us from giving a complete analysis of the topology of
the Mv’s for all the values of v, since we can exploit our explicit knowledge
of the topology of the Mv’s for any v > vc.

To illustrate what has been described so far, the Morse numbers μk are
shown in Figure 10.3 as a function of k for two values of v: v = 1

4 , i.e., an
intermediate value between the minimum and the maximum of V, shown in
Figure 10.3 (a), and v = 1

2 , shown in Figure 10.3 (b). We see that the μk

with 0 ≤ k ≤ N
2 grow regularly as v grows until vc = 1+h2

2 , while all the
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Fig. 10.3. Mean-field XY model. (a) Histogram of log(μk(Mv))/N as a function
of k for v = 1/4; (b) Histogram of log(μk(Mv))/N as a function of k for v = 1/2. In
both cases N = 50 and h = 0.01. (c) For comparison, histogram of log(bk(TN ))/N
as a function of k for an N -torus T

N , with N = 50, which is the lower bound of
log(μk(Mv))/N for any v ≥ vc.

μk with k > N
2 remain zero, so that the corresponding Betti numbers must

also vanish. But at vc a dramatic event occurs, because for all the values of
v > vc the Betti numbres bk must be those of an N -torus, which are reported
for comparison in Figure 10.3 (c). A sudden transition from the situation
depicted in Figure 10.3 (b) to that of Figure 10.3 (c) occurs at vc, i.e., N

2
Betti numbers simultaneoulsy become nonzero.

These topological transitions can be described by the variation with v of
topological invariants. The best choice would be that of computing all the
N + 1 Betti numbers of the manifolds Mv as functions of v: unfortunately,
this is infeasible. We can only set upper bounds to them, using the Morse
inequalities (10.35).
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Fig. 10.4. Mean-field XY model. Plot of log(|χ|(Mv))/N as a function of v. N =
50,200,800 (from bottom to top) and h = 0.01; vc = 0.5 + O(h2). From [206].

Nevertheless, through the knowledge of all the μk we can compute another
(though somewhat weaker) topological invariant, the Euler characteristic of
the manifolds Mv, using (10.11), (10.17), and (10.32).

It turns out then that χ jumps from positive to negative values, so that
it is easier to look at |χ|. In Figure 10.4, log(|χ(Mv)|)/N is plotted as a
function of v for various values of N ranging from 50 to 800. The “big”
topological change occurring at the maximum value of V, which corresponds
in the thermodynamic limit to the phase transition, implies a discontinuous
jump of |χ| from a big value to zero.

10.2 The One-Dimensional XY Model

We have already seen that topological changes are necessary but not suffi-
cient to induce a phase transition. This circumstance is well illustrated by the
one-dimensional XY model with nearest-neighbor interactions, whose Hamil-
tonian is a standard one with interaction potential

V (ϕ) =
1
4

N∑
i=1

[1− cos(ϕi+1 − ϕi)]− h
N∑

i=1

cosϕi . (10.38)

The configuration space of this system undergoes topological changes very
similar to those of the mean-field XY model, but no phase transition occurs
in the 1D XY model with nearest-neighbor interactions. In this case the con-
figuration space M is still an N -torus, and using again the interaction energy
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per degree of freedom V = V/N as a Morse function, we can prove that also
here there are many topological changes in the submanifolds Mv as v is var-
ied from its minimum to its maximum value. The critical points are again
those where the ϕi’s are equal either to 0 or to π. However, in contrast to the
mean-field XY model, the critical values are now determined by the number
of domain walls, nd, i.e., the number of boundaries between connected regions
on the chain where the angles are all equal (“islands” of π’s and “islands” of
0’s). The number of π’s leads only to a correction O(h) to the critical value
of v, which is given by

v(nd;nπ) =
nd

2N
+ hnπ . (10.39)

Since nd ∈ [0, N − 1] (with free boundary conditions, nd = 0, 1, . . . , N − 1,
while with periodic boundary conditions nd is still bounded by 0 and N − 1,
but can only be even), the critical values lie in the same interval as in the case
of the mean-field XY model. But now the maximum critical value, instead of
corresponding to a huge number of critical points, which grows rapidly with
N , corresponds to only two configurations with N − 1 domain walls, which
are ϕ2k = 0, ϕ2k+1 = π, with k = 1, . . . , N/2, and the reversed one.

The number of critical points with nd domain walls is therefore (assuming
free boundary conditions)

N(nd) = 2
(
N − 1
nd

)
. (10.40)

We can compute the index of the critical points also in this case (see Section
10.4.2 for details). It turns out that

index(nd) = nd , (10.41)

so that

μk(nd) = 2
(
N − 1
k

)
Θ(nd − k) . (10.42)

It is evident then that any topological change here corresponds to the attach-
ing of handles of the same type. However, no “big” change like the one at
vc in the case of the mean-field model exists, although V is a Morse–Smale
function on the whole manifold M . To illustrate this, we plot in Figure 10.5
the values of the Morse indices μk as a function of k, as we have already done
for the mean-field XY model in Figure 10.3. Comparing Figure 10.5 with
Figure 10.3, we see that in the mean-field model there is a critical value where
N
2 Betti numbers become simultaneously nonzero, i.e., there exists a topo-
logical change that corresponds to the simultaneous attaching of handles of
N
2 different types, while here in the one-dimensional nearest-neighbor model
nothing like that happens.

Also in this case, using (10.40) and (10.41), we can compute the Euler
characteristic of the submanifolds Mv:
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Fig. 10.5. The same as Figure 10.3 for the one-dimensional XY model with nearest-
neighbor interactions. (a) Histogram of log(μk(Mv))/N as a function of k for v =
1/4; (b) Histogram of log(μk(Mv))/N as a function of k for v = 1/2. In both cases
N = 50 and h = 0.01. (c) For comparison, histogram of log(bk(TN ))/N as a function
of k for an N -torus T

N , with N = 50. From [206].

χ(Mv) = 2
nd(v)∑
k=0

(−1)k

(
N − 1
k

)
= 2 (−1)nd(v)

(
N − 2
nd(v)

)
, (10.43)

where, due to (10.39),
nd(v) = 2Nv +O(h) . (10.44)

The Euler characteristic for the one-dimensional nearest-neighbor case is
shown in Figure 10.6. Comparing this figure with Figure 10.4, we see that
there is here no jump in the Euler characteristic.

Two remarks are in order. The first is that the topology changes with v
also in the absence of phase transitions, as is the case of the one-dimensional
XY model. We already found in Chapter 7 a similar result concerning the
one-dimensional lattice ϕ4 model. In Chapters 8 and 9, we explained that
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Fig. 10.6. Plot of log(|χ|(Mv))/N for the one-dimensional XY model with nearest-
neighbor interactions as a function of v. N = 50, 200, 800 (from bottom to top).
From [206].

“mild” variations of topology, as a function of v, are not sufficient to entail
a phase transition. The second remark is that the patterns of χ(Mv) for the
one-dimensional nearest-neighbor XY model and the mean-field XY model
are very different and clearly mark the presence of a phase transition at its
proper place. In contrast to the 2D lattice φ4 model, for which χ(Σv) is
found to undergo a sudden variation in its rate of change with v at the phase
transition point (see Chapter 7), χ(Mv) is here found to make a big sudden
jump at the transition point.

Finally, after the relationship that has been worked out in Chapters 7
and 8 between entropy and topology, and in particular with the sum μ(v) =
μ0(Mv) + 2

∑N−1
i=1 μi(Mv) + μN (Mv) of Morse indexes, it is interesting to

compute the quantity

Nc(Mv) =
N∑

i=0

μi(Mv) , (10.45)

where Nc(Mv) is the total number of critical points of the function V in the
manifold Mv. Therefore, at large N , if μ0 and μN are not much larger than
the other indexes (which is true in our case; see Figure 10.3), apart from an
additive constant, we can write approximately

S̃(v) ≈ 1
N

logNc(v) (10.46)

for the entropy fraction S̃, which is explicitly linked to the above given sum
μ(v). The pattern of S̃(v) is plotted as a function of v, at different N , in
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Fig. 10.7. Mean-field XY model. Plot of log(Nc)/N as a function of v.
N = 50, 200, 800 (from top to bottom) and h = 0.01; vc = 0.5 + O(h2). From [206].

Fig. 10.8. One-dimensional XY model with nearest-neighbor interactions. Plot of
log(Nc)/N as a function of v. N = 50, 200, 800 (from top to bottom) and h = 0.01.
From [206].

Figure 10.7 for the mean-field XY model and in Figure 10.8 for the one-
dimensional XY model. First, we note that in both cases the “topological
contribution” to the entropy behaves qualitatively as expected for the config-
urational entropy, i.e., it grows monotonically up to the maximum value of v,
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after which it remains constant. Moreover, we see that in the case of the mean-
field model (Figure 10.7), the topological change at vc (the phase transition
point) corresponds to a discontinuity in the slope of S̃(v), which thus seems
to be both the precursor and the source of the nonanalyticity of the entropy
at the phase transition point as N → ∞. In the case of the one-dimensional
XY model, where no phase transition is present, unlike the mean-field case,
the curve is smooth for any v, consistent with the fact that also the entropy
of the system is smooth.

We emphasize that the discontinuity in Figure 10.4 at v = vc corresponds
to that of Figure 10.7 at the same value of v. Even more, the many small jumps
in the Euler characteristic occurring in Figure 10.4, and corresponding to the
topological changes that occur at v < vc, are smoothed out in Figure 10.7,
where the topological contribution to the entropy, S̃, is reported. This is due
to the fact that while the Euler characteristic is the alternating sum of the
Morse numbers μi, S̃ is the sum of them: this is a further indication that to
yield a phase transition, i.e., a discontinuity in a derivative of S, a “strong”
topological change is needed.

10.2.1 The Role of the External Field h

Studying the topological changes in the configuration space of XY models,
mean-field as well as one-dimensional, we have considered the presence of an
external field h �= 0 that explicitly breaks the O(2)-invariance of the potential
energy, and then, discussing the connection with phase transitions, we have
considered the limit in which h tends to zero. We did that for the sake of
simplicity, for if we set h = 0 from the outset, the potential energy per degree
of freedom V is not, rigorously speaking, a Morse function, because its O(2)-
invariance entails the presence of a zero eigenvalue in its Hessian. When h = 0,
the critical points of V are not isolated, but form one-dimensional manifolds
(topologically equivalent to circles) that are left unchanged by the action of the
O(2) continuous symmetry group so that the critical points become in this case
critical manifolds. However, in the case of the mean-field XY model, as far as
the presence and the nature of topological changes are concerned, studying the
case with h = 0 from the outset, we find exactly the same behavior as in the
case we have discussed in this book, i.e., as long as v < vc, only handles of
the same type are attached, while at v = vc handles of N/2 different types are
attached, the only difference between the two cases being that when h = 0 the
handles are not attached at isolated points, but rather to the entire critical
manifold [210, 227]. However, putting h = 0 from the beginning makes the
computation of the Euler characteristic χ(Mv) via the Morse numbers much
more difficult, because now one has to take into account the contributions
to χ coming from the Betti numbers of the critical manifolds (see [228] for
details).

In the case of the one-dimensional nearest-neighbor XY model, where no
phase transition is present, the use of h = 0 from the outset implies a further
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complication, i.e., that the critical points consist not only of the configurations
made of 0’s and π’s, but also of spin waves, that is, configurations

ϕj = ϕ0 e
ikj , (10.47)

with wave numbers k depending on boundary conditions.
For all these reasons it is convenient to force the potential energy to be

a Morse function via the explicit breaking of the O(2) symmetry using an
external field h �= 0. Incidentally, we notice that in the mean-field XY model,
as long as h �= 0, the topological changes that do not correspond to any
phase transition (i.e, those occurring at v < vc) occur at a number of values
of v that grows with N , and these values become closer and closer as N
grows, eventually filling the whole interval [0, 1

2 ] as N → ∞. In contrast,
the value vc, which corresponds to the “big” topology change connected to
the phase transition, remains separated from the others by an amount O(h2)
also in the thermodynamic limit, and tends to 1

2 only when h → 0. This
is reminiscent of a similar fact occurring in statistical mechanics, where one
observes a spontaneous symmetry breaking, signaled, e.g., by the onset of a
finite magnetization even at zero external field, if one assumes the presence of
an external field and then lets it tend to zero only after the thermodynamic
limit is taken.

10.3 Two-Dimensional Toy Model of Topological
Changes

Before discussing the relevance that these results may have for the general
problem of the relation between topology and phase transitions, it is illus-
trative to consider two abstract simplified models of topological transitions
that occurred in the two models we have considered so far. A two-dimensional
model of the topological transition occurring in configuration space of the
physical models we have discussed, which could perhaps help the intuition,
can be built as follows. Let us consider a two-dimensional torus T, and place
it in a plane. Let hmax be the maximum height of the surface above the plane
(see Figure 10.9 (a)). Then deform the torus (by means of a diffeomorphism)
until the upper end of the hole is at height hmax − ε, obtaining the surface
M shown in Figure 10.9 (b). It is apparent that ε can be made as small as
we want.

Let us now consider the height function H above the plane as a Morse
function, so that the manifolds

Th = H−1(−∞, h] = {x ∈ T : H(x) ≤ h} , (10.48)
Mh = H−1(−∞, h] = {x ∈M : H(x) ≤ h} , (10.49)

are defined. As h varies from its minimum to its maximum values (h = 0
and h = 3, respectively, in Figure 10.9), the manifolds Th and Mh cover the
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Fig. 10.9. (a) A torus T and its height function. Here hmax = 3. (b) A deformation
M of such a torus as explained in the text. From [206].

Fig. 10.10. A surface of high genus (here g = 9). From [206].

whole torus; as long as h is lower than the top of the hole (h = 2 in Figure
10.9), both Th andMh are “half-tori,” but then the Th become gradually a full
torus, with topological changes that are equally spaced in h (by construction),
while the Mh jump abruptly from a half-torus to a full torus as h is changed
by ε. Identifying the height function with the potential energy, the case of
the Th clearly recalls the behavior of the one-dimensional XY model with no
phase transition, while the case of the Mh seems close to what happens in the
mean-field XY model, and the “jump” from the half-torus to the full torus is
similar to the topological change that is connected to the phase transition.

The analogy with the mean-field models becomes even clearer if, instead of
a torus, we consider a compact surface of genus1 g � 1, i.e., with many holes,
and deform the surface with a diffeomorphism until the upper end of all the
holes is at height hmax− ε, as shown in Figures 10.10 and 10.11. Again, ε can
be made as small as we want. Let us denote by M (g) the deformed surface.

1 The genus g is the number of handles of a two-dimensional surface, or equivalently,
of holes without boundary.
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Fig. 10.11. A deformation M (g) of the surface of Figure 10.10 as explained in the
text. From [206].

The Betti numbers of the surface M (g) are (see Appendix A)

b0 = b2 = 1 , b1 = 2g , (10.50)

and the Euler characteristic is

χ(M (g)) = χ(M (g)) = 2− 2g , (10.51)

i.e., a big negative number. Let us now consider, as in the previous case
of the torus, the height function H above the plane as a Morse function. The
manifolds

M
(g)
h = H−1(−∞, h] = {x ∈M (g) : H(x) ≤ h} (10.52)

will be topologically very different from the whole M (g) as long as h < hmax−
ε but h is sufficiently large that all the critical levels corresponding to the
bottoms of all the holes have already been crossed: in fact, their Betti numbers
will be

b0(M
(g)
h ) = 1, b1(M

(g)
h ) = g, b2(M

(g)
h ) = 0 , (10.53)

and the Euler characteristic will be

χ(M (g)
h ) = 1− g . (10.54)

Then, by changing the value of the height by an amount ε as small as one
wants, one changes the Betti number b1 from g to 2g, the b2 from 0 to 1, and
χ from 1− g to 2− 2g. This is a topological change that involves a change of
O(d) Betti numbers (d is the dimension of the manifold); moreover, the size of
the change is of the order of the value of the Betti numbers. This topological
change also involves a change of the Euler characteristic χ which is again of
the same order as its value. Identifying again the height function with the
potential energy, we see that this is just what happens in the case of the Mv

of the mean-field XY model, although there the dimension of the manifolds
is N and very large, while in this low-dimensional analogy it is only d = 2.
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Fig. 10.12. Plot of the logarithm of the absolute value of the Euler characteris-
tic of the submanifolds of given height of a surface M (g) like the one depicted in
Figure 10.11, with g = 50 and hmax = 3, as a function of the height h. The small
jumps are the topological transitions corresponding to the crossing of the bottoms
of the holes: the last big jump is the one occurring at hmax, when ε → 0. From [206].

The behavior of |χ(M (g)
h )| as a function of h is plotted in Figure 10.12. We

see that the behavior of |χ| is indeed very similar to the case of the mean-field
XY model, the only big difference being that in the latter, |χ| jumps to zero,
while here it jumps to a nonzero value. However, this difference is due to the
fact that the Euler characteristic of a torus is zero while that of a surface of
genus g is 2− 2g.

10.4 Technical Remark on the Computation
of the Indexes of the Critical Points

In this section we enter some details concerning the computation of the indexes
of the critical points that have been used in Sections 10.1 and 10.2.

10.4.1 Mean–Field XY Model

Let us prove the crucial estimate (10.25) that is used in Section 10.1 to
compute the index of the critical points for the mean-field XY model.

Here the aim is to compute the number of negative eigenvalues of the
Hessian matrix of the function V, i.e., of the matrix H whose elements Hij

are
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Hij =
∂2V
∂ϕi∂ϕj

, i, j = 1, . . . , N , (10.55)

where V = V/N , and V is the potential energy of the mean-field XY model
defined in (10.1). The diagonal elements of this matrix are

Hii = di =
1
N

[(mx + h) cosϕi +my sinϕi]−
1
N2

, (10.56)

and the off-diagonal ones are

Hij = − 1
N2

(sinϕi sinϕj + cosϕi cosϕj) . (10.57)

At the critical points of V, the angles are either 0 or π, so that the sines are
all zero and the cosines are ±1. Moreover, since we are interested only in the
signs of the eigenvalues of H and not in their absolute values, we multiply H
by N in order to get rid of the 1/N factor in front of it. We can then write
the matrix H (multiplied by N) as

H = D +B , (10.58)

where D is a diagonal matrix,

D = diag(δi) , (10.59)

whose elements δ are
δi = (mx + h) cosϕi , (10.60)

where the ϕi’s (i = 1, . . . , N) are computed at the critical point, and the
elements of B can be written in terms of a vector σ whose N elements are
either 1 or −1:

bij = − 1
N
σiσj , (10.61)

where
σi = +1(−1) if ϕi = 0(π) . (10.62)

This holds because when the angles are either 0 or π, the sines in (10.23)
vanish, so that then

NHij = − 1
N

cosϕi cosϕj , (10.63)

and
cosϕi = σi . (10.64)

Having fixed the notation, our goal is to show that, at least when N is
large, the number of negative eigenvalues of the full matrix H, i.e., the index
of the critical point, can be conveniently approximated by the number of
negative eigenvalues of D, that is, by the number of negative δ’s. To do that,
we proceed in two steps: (i) we show that the matrix B is of rank one (which
implies that B has N − 1 zero eigenvalues and only one nonzero eigenvalue),



320 Chapter 10 Phase Transitions and Topology: Exact Results

and (ii) we adapt a theorem due to Wilkinson [229] to this case, thus proving
our assertion.

As to step (i), let us consider for example a case with N = 3, and the
critical point corresponding to, say, (ϕ1, ϕ2, ϕ3) = (π, 0, 0). The vector σ is
then

(σ1, σ2, σ3) = (−1, 1, 1) . (10.65)

Using (10.61), the matrix B is

−1
3

⎛⎝ 1 −1 −1
−1 1 1
−1 1 1

⎞⎠ . (10.66)

We see that the second row is equal to the first multiplied by −1, and the
same holds for the third row. This is true for any N , and is a consequence of
(10.61): any row of the matrix B is equal to another row multiplied by either
+1 or −1. This means that N − 1 rows are not linearly independent and that
the rank of the matrix is one.

We have then proved that our Hessian matrix H is the sum of a diagonal
matrix and a matrix of rank one.

Let us now pass to step (ii). First, we recall a theorem of Wilkinson found
in [229]:

Theorem 10.1 (Wilkinson). Let A and B be N×N real symmetric matrices
and let

C = A+B .

Let γi, αi, and βi (i = 1, 2, . . . , N) be the (real) eigenvalues of C, A, and B,
respectively, arranged in nonincreasing order, i.e.,

γ1 ≥ γ2 ≥ · · · ≥ γN ;
α1 ≥ α2 ≥ · · · ≥ αN ;
β1 ≥ β2 ≥ · · · ≥ βN .

Then
γr+s−1 ≤ αr + βs ∀ r + s− 1 ≤ N . (10.67)

Notice that we can also write

A = C + (−B) , (10.68)

and since the eigenvalues of −B arranged in nonincreasing order are

−βN−i+1 ,

we can write
αr+s−1 ≤ γr − βN−s+1 . (10.69)

Now we are interested in a special case, i.e., the case in which the matrix
B is of rank one (has only one nonzero eigenvalue). What does Wilkinson’s
theorem say when applied to such a special case? We consider the two possible
cases:
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(a) the nonzero eigenvalue is negative:

βi = 0 for i = 1, 2, . . . , N − 1, βN = −! ;

(b) the nonzero eigenvalue is positive:

βN = !, βi = 0 for i = 2, 3, . . . , N .

Case (a). Choosing s = 1 in (10.67), we get βs = 0, so that

γr ≤ αr , r = 1, . . . , N , (10.70)

while choosing s = 2 in (10.69), we get −βN − s+ 1 = 0 again, whence

αr+1 ≤ γr , r = 1, . . . , N − 1 . (10.71)

Combining (10.70) and (10.71), we obtain

αr+1 ≤ γr ≤ αr , r = 1, . . . , N − 1 ; (10.72)

γN ≤ αN . (10.73)

We have thus shown that all the eigenvalues of C (except for the smallest one)
are bounded between two successive eigenvalues of A. As to γN , we can say
only that it is smaller than (or equal to) the smallest eigenvalue of A.

Case (b). Choosing s = 2 in (10.67), we get βs = 0, so that

γr+1 ≤ αr , r = 1, . . . , N − 1 , (10.74)

while choosing s = 1 in (10.69), we obtain

αr ≤ γr , r = 1, . . . , N . (10.75)

Combining (10.74) and (10.75), we obtain

αr ≤ γr ≤ αr−1 , r = 2, . . . , N ; (10.76)

γ1 ≥ α1 . (10.77)

We have thus shown again that all the eigenvalues of C (except, in this case,
for the largest one) are bounded between two successive eigenvalues of A.
As to γ1, we can say only that it is larger than (or equal to) the smallest
eigenvalue of A, α1.

Let us now apply these results to our problem, i.e., to the computation of
the number of negative eigenvalues of the matrix H in (10.58). Denoting by
ηi its eigenvalues, by δi those of D, and by βi those of B, we have

βi = 0 ∀ i �= 1, N , (10.78)
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and either
β1 = 0, βN = −!

or
β1 = !, βN = 0 .

At a given critical point, with nπ angles equal to π, the eigenvalues of D are
(for the moment we do not order them)

δi = mx + h , i = 1, . . . , N − nπ ; (10.79)

δi = −(mx + h) , i = N − nπ + 1, . . . , N . (10.80)

The x-component of the magnetization vector is given by

mx = 1− 2nπ

N
, (10.81)

so that

mx > 0 if nπ ≤
N

2
, (10.82)

mx < 0 if nπ >
N

2
. (10.83)

Then, if the external field h is sufficiently small, if nπ ≤ N/2, then

δi = mx + h > 0 , i = 1, . . . , N − nπ , (10.84)

δi = −(mx + h) < 0 , i = N − nπ + 1, . . . , N , (10.85)

i.e., there are N − nπ positive and nπ negative δ’s; while if nπ ≤ N/2, then

δi = −(mx + h) > 0 , i = 1, . . . , nπ , (10.86)

δi = mx + h < 0 , i = nπ + 1, . . . , N , (10.87)

i.e., there are nπ positive and N − nπ negative δ’s.
Now we claim that, at least as N gets large, we can estimate the number

of negative η’s, i.e., the index of the critical point, by saying that it is equal
to the number of negative δ’s. More precisely, we claim that the error of our
estimate is not larger than 1, i.e.,

index(H) = #(η < 0) = #(δ < 0)± 1 , (10.88)

and as N gets large this error becomes obviously negligible. To prove this
statement, let us consider the case in which nπ < N/2. We observe that we
do not know whether we are in case (a) or in case (b), i.e., we do not know
whether the matrix B has a negative or a positive eigenvalue. But we can try
one of the two cases, say (a). Using (10.72) and (10.73) we can then say that
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δr+1 ≤ ηr ≤ δr < 0 , r = N − nπ + 1, . . . , N − 1 (10.89)

(note that these are nπ − 1 equations), and that

ηN ≤ δN < 0 . (10.90)

Thus we conclude that the number of negative η’s is just equal to that of
negative δ’s, i.e., nπ. If we guessed correctly the sign of the nonzero eigen-
value of B, then our estimate is exact. But in case we guessed wrong, i.e.,
if we were in case (b) and not (a), then using (10.72) and (10.73), we would
have overestimated the number of negative η’s by 1. Conversely, if we had
used the equations of case (b) in a situation that belonged to case (a) we
would have underestimated the index by 1. So, we conclude that the error of
our estimate is always ±1.

10.4.2 One-Dimensional XY Model

Here we want to discuss the details of the result reported in (10.41), i.e., that in
the case of the one-dimensional XY model with nearest-neighbor interactions
the index of the critical points equals the number nd of “domain walls” in the
configuration.

First of all, let us notice that in the present case the Hessian matrix H is
tridiagonal, i.e., it can be written as

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 β1 0 0 . . . 0
β1 α2 β2 0 . . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 βN−2 αN−1 βN−1

0 . . . 0 0 βN−1 αN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (10.91)

where, assuming free boundary conditions,

α1 = cos(ϕ2 − ϕ1) + h cos(ϕ1) ;

αi = cos(ϕi+1 − ϕi) + cos(ϕi − ϕi−1) + h cos(ϕi) , i = 2, . . . , N − 1 ;

αN = cos(ϕN − ϕN−1) + h cos(ϕN ) ,

and
βi = − cos(ϕi+1 − ϕi) , i = 1, . . . , N − 1 , (10.92)

since at critical points ϕi = 0 or π, we have that for any i and for any critical
point

βi = ±1 , (10.93)
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while the diagonal elements αi are

α1 = 1± h ,
αi = 2± h , i = 2, . . . , N − 1 ,
αN = 1± h ,

if there are no domain walls, i.e., if nd = 0, while they can assume also the
values ±h and −2 ± h (−1 ± h if i = 1 or i = N) if nd �= 0, i.e., if there are
domain walls.

Let us now prove that nd �= 0 is a necessary condition for the presence of
negative eigenvalues of the Hessian, i.e., for a nonvanishing index of a critical
point. To do that, we recall a theorem due to Gershgorin (see, e.g., [229]),
which, in the simple case of a real symmetric matrix, can be stated as follows:

Theorem 10.2 (Gershgorin). Let A be a real n×n symmetric matrix whose
elements are aij, and let

ri =
∑
j 	=i

|aij | , i = 1, . . . , n .

Then the eigenvalues of A lie in the intervals

Xi = {x ∈ R : |x− aii| < ri} ,

and if m of the Xi form a disjoint set, then precisely m eigenvalues (counted
with their multiplicity) lie in it.

In our case, due to (10.93), at any critical point we have

r1 = rN = 1 ;
ri = 2 , i = 2, . . . , N − 1 ,

so that if nd = 0 and h→ 0, then (10.94) and Gershgorin’s theorem imply that
all the eigenvalues lie in the interval |x− 2| < 2, so that there are no negative
eigenvalues and the index is zero. On the other hand, if nd �= 0 and h→ 0, then
the intervalsXi are either |x| < 2 or |x+2| < 2; hence the eigenvalues lie in the
interval (−4, 2), so that the index can be nonvanishing. However, Gershgorin’s
theorem is useless to compute the number of negative eigenvalues, because the
intervals Xi overlap each other, and thus the eigenvalues cannot be localized
more strictly.

Anyway, the fact that the Hessian is tridiagonal allows us to compute
directly its characteristic polynomial det(H−λI), whose roots λ1, . . . , λN are
the eigenvalues, by means of a recurrence formula. Let

p0(λ) = 1 ;
p1(λ) = α1 − λ ;
pk(λ) = (αk − λ)pk−1(λ)− β2

k−1pk−2(λ) .
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Then, since

pk(λ) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 − λ β1 0 0 . . . 0
β1 α2 − λ β2 0 . . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 βk−2 αk−1 − λ βk−1

0 . . . 0 0 βk−1 αk − λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, k = 2, . . . , N,

(10.94)

the characteristic polynomial of H is given by pN (λ). Since at the critical
points all the β’s are ±1 (see (10.93)), we have that

p0(λ) = 1 , (10.95)
p1(λ) = α1 − λ , (10.96)
pk(λ) = (αk − λ)pk−1(λ)− pk−2(λ) , (10.97)

so that the characteristic polynomial pN (λ) depends only on the α’s. More-
over, the following theorem holds (see, e.g., [230]):

Theorem 10.3. Let H be a tridiagonal symmetric matrix defined as in
(10.91). Define the sequence

{p0(λ), p1(λ), . . . , pN (λ)} (10.98)

as in (10.94); then the number of sign changes in the sequence (with the rule
that if pi(λ) = 0 then it has the opposite sign of pi−1(λ)) equals the number
of eigenvalues of H that are less than or equal to λ.

Then the number nc of sign changes in the sequence

{p0(0), p1(0), . . . , pN (0)} (10.99)

equals the number of negative eigenvalues, i.e., the index of the critical point
because no eigenvalues are zero. If one puts h = 0, then there is one eigenvalue
that becomes zero at any critical point, so that the index equals nc − 1, but
in this case one easily sees by direct computation (which can be performed
exactly on a computer at any N because in this case the α’s are integers) that
nd = nc − 1, so that one finds the result reported in (10.41).

10.5 The k-Trigonometric Model

In this section we present a study of the thermodynamic properties of the
mean-field k-trigonometric model (kTM), as well as of the topological proper-
ties of its configuration space. It is worth mentioning that this model—because
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of long-range interactions—may also undergo first-order phase transitions.
As a consequence we a priori expect canonical and microcanonical thermo-
dynamic functions to be different, at least close to first-order transitions [225].

The kTM is defined by the Hamiltonian:

Hk =
N∑

j=1

1
2
p2j + Vk(ϕ1, . . . , ϕN ) , (10.100)

where {ϕj} are angular variables: ϕj ∈ [0, 2π), {pj} are the conjugated
momenta, and the potential energy V is given by

Vk =
Δ

Nk−1

∑
j1,...,jk

[1− cos(ϕj1 + ...+ ϕjk
)] , (10.101)

where Δ is the coupling constant. Similarly to what we have done with the
other models, only the potential energy part is considered. This interaction
energy is apparently of a mean-field nature, in that each degree of freedom
interacts with all the others; moreover, the interactions are k-body ones.

The kTM is a generalization of the trigonometric model (TM) introduced
by Madan and Keyes [231] as a simple model for the potential energy surface
of simple liquids. The TM is a model for N independent degrees of freedom
with Hamiltonian (10.100) with k = 1: Hk=1. It shares with Lennard-Jones-
like systems [232] the existence of a regular organization of the critical points
of the potential energy above a given minimum (the elevation in energy of
the critical points is proportional to their index) and a regular distribution
of the minima in the configuration space (nearest-neighbor minima lie at a
well-defined Euclidean distance). The potential energy surface of the kTM
maintains the main features of the TM [233], introducing, however, a more
realistic feature, namely the interaction among the degrees of freedom (in the
form of a k-body interaction).

Using the relation

cos(ϕj1 + · · ·+ ϕjk
) = Re(eiϕj1 · · · eiϕjk ) , (10.102)

the configurational part of the Hamiltonian can be written as

Vk = NΔ
[
1− Re(c+ is)k

]
= NΔ

⎡⎣1−
[k/2]∑
n=0

(
k

2n

)
(−1)n ck−2n s2n

⎤⎦ , (10.103)

where c and s are collective variables (components of the function whose sta-
tistical average is the order parameter, i.e., the components of the “magneti-
zation vector”), that are functions of {ϕj}:
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c =
1
N

∑
j

cosϕj ,

s =
1
N

∑
j

sinϕj . (10.104)

We observe also that the model has a symmetry group obtained by the
transformations

ϕj → ϕj + �
2π
k
,

ϕj → −ϕj .

If we think of ϕj as the angle between a unitary vector in a plane and the hori-
zontal axis of this plane, we find that the first transformations are rotations
in this plane of an angle � 2π

k , and the second is the reflection with respect to
the horizontal axis. This group is also called Ckv.

Let us now derive the thermodynamic properties of the kTM.

10.5.1 Canonical Ensemble Thermodynamics

The partition function is

Zk(β,N) =
∫ 2π

0

N∏
j=1

dϕj exp(−βHk)

=
∫ 2π

0

N∏
j=1

dϕj exp{−βNΔ[1− Re(c+ is)k]} . (10.105)

Introducing δ-functions for the variables c and s,

Zk(β,N) =
∫ 2π

0

N∏
j=1

dϕj

∫ ∞

−∞
dx dy δ(x− c) δ(y − s) e−βNΔ[1−Re(x+iy)k] ,

and using the integral representation of the δ-function, we obtain for Zk

Zk(β,N)

=
∫ 2π

0

dNϕj

∫ ∞

−∞
dxdy

∫ ∞

−∞
N2 dλ

2π
dμ

2π
eiNλ(x−c)eiNμ(y−s)e−βΔN [1−Re(x+iy)k]

=
∫ ∞

−∞
dx dy e−βΔN [1−Re(x+iy)k]

×
∫ ∞

−∞

dλ

2π
dμ

2π
N2 eiN(λx+μy)

∫ 2π

0

dNϕj e−iN(λc+μs) .
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The saddle-point evaluation of this multiple integral requires us to look
for the minima of the exponent in the complex λ, μ, x, y plane. These minima
have to lie on the imaginary axes of the λ, μ planes; otherwise, the free energy
of the model would be imaginary. Thus the integration path is rotated in
the λ, μ planes by substituting iλ → λ and iμ → μ. Then iΛ → Λ and
2π J0(Λ) =

∫ 2π

0
dϕ e−iΛ cos(ϕ−ψ) → 2π I0(Λ), where I0 is the modified Bessel

function:

I0(Λ) =
1
2π

∫ 2π

0

dϕ eΛ cos ϕ . (10.106)

In conclusion, one obtains

Zk = N2(2π)N−2

∫ ∞

−∞
dx dy dλ dμ e−Ngk(x,y,λ,μ;β) , (10.107)

where gk is the real function

gk(x, y, λ, μ;β) = βΔ− λx− μy − βΔ Re(x+ iy)k − log(I0(Λ)) . (10.108)

In order to find the stationary points, we first determine the subspace defined
by the equations

∂gk
∂x

= 0 , (10.109)

∂gk
∂y

= 0 , (10.110)

obtaining the relations

λ = −β Δ k Re(x+ iy)k−1 , (10.111)

μ = β Δ k Im(x+ iy)k−1 . (10.112)

Thus we get
Λ = βΔk |(x+ iy)k−1|. (10.113)

Now, using (10.111) and (10.112), we can substitute λ and μ with x and y in
(10.108), obtaining, in terms of the complex number z = x+ iy,

gk(z;β) = β Δ+ β Δ (k − 1) Re zk − log I0(βΔp |kp−1|) , (10.114)

and using the polar representation z = ρeiψ,

gk(ρ, ψ;β) = β Δ+ β Δ (k − 1) ρk cos(kψ)− log I0(βΔkρk−1) . (10.115)

The derivative with respect to ψ leads to

−βΔ(k − 1)kρk sin(kψ) = 0 , (10.116)
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so that there are 2k solutions

ψn =
nπ

k
(n = 1, . . . , 2k) . (10.117)

Observing that cos(kψn) = (−1)n, we obtain

gk(ρ, n;β) = β Δ+ (−1)nβ Δ (k − 1) ρk − log I0(βΔkρk−1) , (10.118)

and we can restrict ourselves to n = 0, 1. Finally, the derivative with respect
to ρ leads to the stationary-points equation

(−1)n ρ =
I1(βΔkρk−1)
I0(βΔkρk−1)

, (10.119)

where the modified Bessel function I1 is defined by

I1(Λ) =
1
2π

∫ 2π

0

dϕ cosϕ eΛ cos ϕ = I ′0(Λ) . (10.120)

For n = 1 we have only the trivial solution ρ = 0, because the I functions
are always positive. Using an expansion for small ρ one can show that this
solution is a maximum for g. So we can study only the case n = 0. We note
that if there is a nontrivial solution (i.e., ρ̃(β) �= 0) of (10.119), then calling
g̃k(β) the value of gk(β, ρ̃(β)), we have

Zk ≈ N2 (2π)N−2 e−Ng̃k(β) , (10.121)

and the free energy and internal energy are, respectively,

fk(β) = β−1g̃k(β)− β−1 log(2π) , (10.122)
ek(β) = Δ(1− ρ̃k) . (10.123)

Let us now analyze the case k = 1. In this case the solutions ρ = 0 are not
present, so that we have only the solution

ρ̃ =
I1(βΔ)
I0(βΔ)

. (10.124)

There is no phase transition, and using (10.123) we have

e1(β) = Δ

(
1− I1(βΔ)

I0(βΔ)

)
. (10.125)

This is the free energy of trigonometric model that has been mentioned before.
For k = 2 the solution ρ = 0 is stable for high temperatures, but a non-

trivial solution of (10.119) appears at βΔ = 1. The transition temperature is
given by the condition
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d2g2(ρ;βc)
dρ2

∣∣∣∣
ρ=0

= 2βcΔ(1− βcΔ) = 0 , (10.126)

so that we obtain βcΔ = 1; the transition is continuous, and the order para-
meter is ρ̃. It is easy to show that x̃ = 〈c〉 and ỹ = 〈s〉 (e.g., by adding
an external field of the form −N(hc + ks) to the Hamiltonian and taking
the limit h, k → 0); then the vector (x̃, ỹ) is the mean magnetization of the
spins represented by the ϕi. Since ρ̃ is the modulus of the magnetization, for
βΔ > 1, when ρ̃ �= 0, the C2v symmetry is broken.

When k > 2, the nontrivial solution of (10.119) appears at a given β′

but becomes stable only at β′′ > β′, so that ρ̃(β) and e(β) are discontinuous
at β′′; instead of the instability region β′ < β < β′′, in the microcanonical
ensemble a region where the specific heat is negative appears, as we shall see
below. The Ckv symmetry is broken in the low-temperature phase, so that
ρ̃ can be used as an order parameter in revealing the symmetry-breaking,
even if it is not continuous at β′′. The transition is then of first order, but
keeps the symmetry structure of a second-order transition, i.e., in the low-
temperature phase there are k pure states related by the symmetry group
also in the case of the first-order transition.

In Figure 10.13 we report the caloric curve, i.e., the temperature T = β−1

as a function of the average energy (per degree of freedom) e, for three values
of k, k = 1, 2 and 3. As previously discussed, the temperature is an analytic
function of e for k = 1; for k = 2 the system undergoes a second-order phase
transition at a critical temperature Tc = Δ, which changes to first order for
k > 2.
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Fig. 10.13. Temperature T as a function of canonical average energy e for three
different values of k; for k=1 there is no phase transition, while for k=2 there is a
second order transition and for k > 2 a first order one. From [223].
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Fig. 10.14. Canonical average potential energy v as a function of canonical average
energy e for k=1, 2, and 3. The upper phase transition point is, for ∀k ≥ 2, vc = Δ.
From [223].
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Fig. 10.15. Temperature T as a function of canonical average potential energy v
for three different values of k. From [223].

In Figures 10.14 and 10.15 we report the average potential energy v as a
function of the average energy e and the temperature T as a function of v,
respectively. It is apparent that for k ≥ 2, the phase transition point always
corresponds to vc = Δ.
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Another feature that shows up in Figures 10.14 and 10.15 is that the
average potential energy v never exceeds the value Δ, i.e., although the max-
imum of V/N is equal to 2Δ, the region v > Δ is not thermodynamically
accessible to the system. The reason for this is in the mean-field nature of
the system and in the fact that we are working in the thermodynamic limit
N → ∞. According to (10.103), the potential energy can be written as a
function of the collective variables c and s defined in (10.104), which are
the components of the function whose statistical average is the order para-
meter, i.e., the “magnetization.” In the thermodynamic limit these functions
become constants, whose value coincides with their statistical average, and
since 〈c〉 = 〈s〉 = 0 for T > Tc, then from (10.103) this implies v = Δ for all
T > Tc.

As we shall see below, this fact remains true also in the microcanonical
ensemble, which, however, is not equivalent to the canonical ensemble for the
present model, due to the long-range nature of the interactions.

10.5.2 Microcanonical Thermodynamics

The microcanonical phase space volume for the kTM,

Ωk(E,N) =
1
N !

∫
dNπj d

Nϕj δ(Hk(π, ϕ)− E) , (10.127)

can be computed by introducing the standard integral representation of the
delta function, that is,

Ωk(E,N) =
1
N !

∫ ∞

−∞

dβ

2π

∫
dNπj d

Nϕj e
−iβ[Hk(π,ϕ)−E] . (10.128)

Now, after rotating the integration path on the imaginary axis in the
complex-β plane, since, as in the canonical case, the saddle-point is located
on this axis, the integral on β is evaluated by means of the saddle-point
method. Integrating over the momenta, and using Vk(ϕ) = Vk(c(ϕ), s(ϕ))
with ϕ = (ϕ1, . . . , ϕN ), see (10.103), one obtains

Ωk(E,N) = CNρ
N

∫ ∞

−∞
dβ dξ dη β−

N
2 eβ(E−Vk(ξ,η))

×
∫
dNϕj δ[N(ξ − c(ϕ))] δ[N(η − s(ϕ))] , (10.129)

where ρ = N/L and the constant CN gives only a constant contribution to
the entropy per particle, i.e., it is at most of order eN . The last integral is
evaluated using again the integral representation of the delta function, and
then rotating the integration path as before, whence
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−∞

dμ dν

(2π)2
e−N(μξ+νη)

∫ 2π

0

dNϕj e

∑
j
(μ cos ϕj+ν sin ϕj)

=
∫ ∞

−∞

dμ dν

(2π)2
e−N(μξ+νη)[2πI0(Λ)]N ,

where Λ =
√
μ2 + ν2, and I0 is the modified Bessel function.

Thus, the microcanonical volume reads as

Ωk(e,N) = CN ρN

∫
du eNfk(u,e) , (10.130)

where u ≡ (β, ξ, η, μ, ν), e = E/N , and

fk(u, e) = βe− βΔ[1− Re(ξ + iη)k]− 1
2

log β − μξ − νη + log I0(Λ) .

Then, using the saddle-point theorem, the entropy per particle, s = S/N , is
given by (kB = 1)

sk(e) = lim
N→∞

1
N

logΩk(e,N) = max
u
fk(u, e) . (10.131)

To find the maximum of fk(u, e) one can calculate analytically some deriva-
tives of f to obtain a one-dimensional problem that can be easily solved
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Fig. 10.16. Microcanonical temperature T as a function of energy e for three
different values of k; for k=1 there is no phase transition, while for k=2 there is
a second-order transition and for k > 2 a first-order one. From [223].
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numerically with standard methods. As already done in the case of the canon-
ical ensemble, in Figure 10.16 we report the microcanonical caloric curve, i.e.,
the temperature T as a function of the energy (per degree of freedom) e,
T (e) = [∂s/∂e]−1 for three values of k, k = 1, 2 and 3. As in the canonical
case, the temperature is an analytic function of e for k = 1, while for k = 2 the
system undergoes a second-order phase transition at a certain energy value
ec, that changes to first order for k > 2.

We note that for k > 2, in a region of energies smaller than the critical
energy ec of the first-order phase transition, the curve T (e) has a negative
slope, i.e., the system has a negative specific heat. This is not surprising
since we are considering the microcanonical thermodynamics of a system with
long-range interactions (see, e.g., [225] for other examples and a general dis-
cussion); such a region is not present when we consider the canonical ensemble,
as shown above; there, the region of negative specific heat corresponds to the
region of instability of the nontrivial solution of the saddle-point equations.

In Figures 10.17 and 10.18 we report the average microcanonical potential
energy v as a function of e and the microcanonical temperature T as a function
of v, respectively. It is apparent that for k ≥ 2, the phase transition point
always corresponds to vc = Δ.

As in the canonical case, the average potential energy v never exceeds the
value Δ, i.e., the region v > Δ is not thermodynamically accessible to the
system also in the microcanonical ensemble.
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Fig. 10.17. Microcanonical average potential energy v as a function of energy e for
k=1, 2 and 3. The phase transition point is, for ∀k ≥ 2, vc = Δ. From [223].
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Fig. 10.18. Microcanonical temperature T as a function of microcanonical average
potential energy energy v for three different values of k. From [223].

10.5.3 Topology of Configuration Space

Let us now consider the relation between the phase transitions occurring in the
kTM and the topological changes of the submanifolds Mv of its configuration
space.

Also for this model we probe these topological changes through the
potential-energy dependence of the Euler characteristic, which is computed,
as in the case of the mean-field XY model, through the knowledge of all the
critical points ϕ̃ of the potential and of the corresponding indices. Again it
is necessary to locate the points where dVk(ϕ̃) = 0 and to compute at these
points the number of negative eigenvalues of the Hessian matrix

H
(k)
ij (ϕ̃) =

(
∂2Vk

∂ϕi∂ϕj

)∣∣∣∣
ϕ̃

. (10.132)

To determine the critical points we have then to solve the system

∂Vk

∂ϕj
= 0 , ∀ j = 1, . . . , N , (10.133)

that is, inserting (10.103) in the equations above,

−Δ k Re[i(c+ is)k−1eiϕj ] = Δ k ζk−1 sin[(k− 1)ψ+ϕj ] = 0 ∀ j = 1, . . . , N ,
(10.134)

where we have defined c+ is = ζeiψ. From (10.103) we have

Vk(ϕ) = NΔ[1− ζk cos(kψ)] ; (10.135)
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then all the critical points with ζ(ϕ̃) = 0 have energy v = V (ϕ̃)/N = Δ. We
note that they correspond to vanishing magnetization. Let us now consider
all the critical points with ζ(ϕ̃) �= 0. Then (10.134) becomes

sin[(k − 1)ψ + ϕj ] = 0 ∀ j = 1, . . . , N , (10.136)

and its solutions are

ϕ̃m
j = [mjπ − (k − 1)ψ]mod 2π , (10.137)

where mj ∈ {0, 1}. Since in (10.134), ζ appears to the (k − 1)th power, in
the case k = 1 (10.134) and (10.136) coincide. This means that the solutions
given in (10.137) are all the critical points, regardless of their energy, in the
case k = 1 and all the critical points but those with energy v = Δ in the
case k > 1. The critical point ϕ̃m is then characterized by the set m ≡ {mj}.
To determine the unknown constant ψ we have to substitute (10.137) in the
self-consistency equation

ζeiψ = c+ is = N−1
∑

j

eiϕj = N−1e−iψ(k−1)
∑

j

(−1)nj . (10.138)

If we introduce the quantity n(ϕ̃) defined by

n = N−1
∑

j

mj , (10.139)

which means
1− 2n = N−1

∑
j

(−1)nj , (10.140)

we have from (10.138)

ζ = |1− 2n| , (10.141)

ψl = 2lπ/k for n < 1/2 , (10.142)

ψl = (2l + 1)π/k for n > 1/2 , (10.143)

where l ∈ Z. Then the choice of the set {mj} is not sufficient to specify the
set {ϕ̃j}, because the constant ψ can assume some different values. This fact
is connected with the symmetry structure of the potential-energy surface: the
different values of ψl correspond to the symmetry-related critical points under
the group Ckv.

We can then state that all the critical points with ζ �= 0, whose energy v
is not equal to Δ, have the form

ϕ̃m,l
j = [mjπ − (k − 1)ψl]mod 2π . (10.144)
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The Hessian matrix is given by

H
(k)
ij = Δ k Re[N−1(k−1)(c+is)k−2ei(ϕi+ϕj)+ δij(c+is)k−1eiϕi)] . (10.145)

In the thermodynamic limit it becomes diagonal:

H
(k)
ij = δij Δ k ζk−1 cos (ψ(k − 1) + ϕi) . (10.146)

One cannot a priori neglect the contribution of the off-diagonal terms to the
eigenvalues of H(k), but accurate numerical checks show that they change at
most the sign of only one eigenvalue out of N . In the case of the mean-field
XY model we have explicitly proved this fact. Neglecting the off-diagonal
contributions, the eigenvalues of the Hessian are calculated at any critical
point ϕ̃ by substituting (10.144) in (10.146),

λj = (−1)mjΔ k ζk−1 , (10.147)

so the index of the critical point is simply the number of mj = 1 in the
set m; we can identify the quantity n(ϕ̃) given by (10.139) with the fractional
index n/N of the critical point ϕ̃. Then, from (10.103), (10.141), (10.142) and
(10.143) we get a relation between the fractional index n(ϕ̃) and the potential
energy v(ϕ̃) = V (ϕ̃)/N at each critical point ϕ̃:

n(v) =
1
2

[
1− sgn

(
1− v

Δ

) ∣∣∣1− v

Δ

∣∣∣1/k
]
. (10.148)

Moreover, the number of critical points of given index ν is simply the number
of ways in which one can choose ν times 1 among the {mj}, see (10.144),
multiplied by a constant Ak that accounts for the degeneracy introduced by
(10.143).

Hitherto, the critical points with ζ �= 0 have been completely characterized.
The knowledge of the critical points considered so far is sufficient to compute
the Euler characteristic of the manifolds Mv, because the critical points with
ζ = 0 can be neglected. Let us discuss why. The critical points with ζ = 0
are degenerate: the Hessian determinant vanishes at these points. This means
that the potential energy is no longer a proper Morse function when v ≥ Δ,
and therefore we can use its critical points to compute the Euler characteristic
of the manifolds Mv only when v < Δ. To overcome this difficulty we proceed
as in the case of the mean-field XY model, thus we consider as our Morse
function the function Ṽk obtained by adding to the potential energy a linear
term that can be made arbitrarily small:

Ṽk = Vk +
N∑

i=1

hiϕi , (10.149)

where h ∈ R
N . The perturbation changes only slightly the critical points with

ζ �= 0, but completely removes the points with ζ = 0 for any h �= 0, no
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matter how small. All the critical points of this function are given by the
solutions of the equations

sin[(k − 1)ψ + ϕj ] = hj ∀ j = 1, . . . , N , (10.150)

which are only a slight deformation of (10.136), so that provided all the h’s
are very small, the numerical values of critical points and critical levels will
essentially coincide with those computed so far, in the case h = 0 but assuming
ζ �= 0.

The fractional index n = ν/N of the critical points is a well-defined
monotonic function of their potential energy v, given by (10.148), and the
number of critical points of a given index n is Ak

(
N
n

)
. Then the Morse indexes

μn(Mv) of the manifoldMv are given byAk

(
N
n

)
if n/N ≤ x(v) and 0 otherwise,

and the Euler characteristic is

χ(Mv) = Ak

Nx(v)∑
n=0

(−1)n

(
N

n

)
= Ak(−1)Nx(v)

(
N − 1
Nx(v)

)
, (10.151)

where the relation
m∑

n=0

(−1)n

(
N

n

)
= (−1)m

(
N − 1
m

)
has been used. In Figure 10.19 we plot σ(v) = limN→∞ 1

N log |χ(v)|, which,
from (10.151), is given by
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Fig. 10.19. Logarithmic Euler characteristic of the Mv manifolds σ(v) (see text) as
a function of the potential energy v. The phase transition is signaled as a singularity
of the first derivative at vc = Δ; the sign of the second derivative around the
singular point allows to predict the order of the transition. The region v > Δ, in
which σ′(v) < 0, in not reached by the system (see text). From [222].
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σ(v) = −x(v) log x(v)− (1− x(v)) log(1− x(v)) . (10.152)

Of course σ(v) is a purely topological quantity, being related only to the proper-
ties of the configuration-space submanifolds Mv, defined through Vk(ϕ), and,
in particular, through the energy distribution of the critical points of Vk(ϕ).
From Figure 10.19 we can see that there is an evident signature of the phase
transition in the v-shape of σ(v). First, we observe that the region v > Δ is
never reached by the system, as discussed before and shown in Figures 10.17
and 10.18 as to the microcanonical case, and in Figures 10.14 and 10.15 as
to the canonical case; this region is characterized by σ′(v) < 0. The main
observations are that: (i) for k=1, where there is no phase transition, the
function σ(v) is analytic; (ii) for k=2, when we observe a second-order phase
transition, the first derivative of σ(v) is discontinuous at vc = v(ec) = Δ, and
its second derivative is negative around the singular point, (iii) for k ≥ 3 the
first derivative of σ(v) is also discontinuous at the transition point vc = Δ,
but its second derivative is positive around vc. In this case a first-order tran-
sition takes place. The interesting consequence is that through the pattern
of σ(v) we can establish both the critical value vc where the phase transi-
tion occurs, and the order of the transition. Again we see that everything
is “read” just in the configuration-space topology induced by the potential
function, without resorting to any effect due to the properties of statistical
measures.

The above-listed items concerning the pattern of σ(v) confirm, at least
qualitatively, the already discussed relation between topology and thermo-
dynamic entropy. For example, a first-order transition with a discontinuity in
the energy is generally accompanied [37] by a region of negative specific heat,
i.e., of positive second-order derivative of the entropy (compare with the third
item given above), and it seems that the jump in the second derivative of the
entropy stems from the jump in the second derivative of σ(v(e)).

In Chapters 8 and 9 we have seen that an explicit analytic link between
thermodynamics and topology actually exists. However, thermodynamic en-
tropy is found to be related either to the sum of Morse indexes or to a suitably
weighted sum of them. In Figure 10.20 the sum of the logarithms of the Morse
indexes, μ(v), is displayed for the three cases of k = 1, 2, 3. Also in this case,
a sharp difference of the shape of μ(v) = 1

N log
[
μ0 +

∑N−1
i=1 2μi(Mv) + μN

]
is found for each version of the model, that is, when no phase transition takes
place, when a second-order transition is present, or when a first-order tran-
sition is present, respectively. The close resemblance of σ(v) and μ(v) below
the transition point can be explained as a consequence of the growth with i
of the μi(Mv), as shown by (10.151), and of the sum formula in (10.152). In
fact, μN−1(Mv) is the dominant term in the sum defining μ(v), whence the
close similarity with χ(Mv) and σ(v). Note that this is a model-dependent
circumstance.
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Fig. 10.20. Sum of the logarithms of the Morse indexes μ =
1
N

log
[
μ0 +

∑N−1

i=1
2μi(Mv) + μN

]
of the manifolds Mv versus the energy density v,

scaled with Δ, for k = 1, 2, 3. From [223].

10.5.4 Topology of the Order Parameter Space

A feature of many mean-field models (although not of all of them) is that the
potential energy can be written as a function of a collective variable, whose
statistical average is the order parameter. In the case of the k-trigonometric
model this variable is the two-dimensional “magnetization” vector defined as
m = (c, s), where (see 10.104)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c =
1
N

N∑
i=1

cos (ϕi) ,

s =
1
N

N∑
i=1

sin (ϕi) .

(10.153)

Written in terms of (c, s), the potential energy is a function defined on the
unit disk in the real plane, which is given by (see (10.103))

Vk(c, s) = NΔ

⎡⎣1−
[k/2]∑
n=0

(
k

2n

)
(−1)n ck−2n s2n

⎤⎦ . (10.154)

In the particular cases k = 1, 2, 3 the potential energy Vk reads as

V1(c, s) = NΔ(1− c) , (10.155)
V2(c, s) = NΔ(1− c2 + s2) , (10.156)
V3(c, s) = NΔ(1− c3 + 3cs2) , (10.157)
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and it is then natural to investigate the topology of theMv’s seen as submani-
folds of the unit disk in the plane, i.e., we now consider the submanifolds

Mv ≡ {(c, s) ∈ D2 | Vk(c, s) ≤ Nv} , (10.158)

where D2 ≡ {(c, s) ∈ R
2 | c2 + s2 ≤ 1}. The Mv’s are nothing but the Mv’s

projected onto the “magnetization” plane.
The topology of these manifolds can be studied directly, by simply drawing

them. In the case k = 1, where no phase transition is present, no topological
changes occur in the Mv’s, i.e., all of them are topologically equivalent to a
single diskD2 (Figure 10.21). When k = 2, 3, and a phase transition is present,
there is a topological change precisely at vc = Δ, where k disks merge into
a single disk (see Figures 10.22 and 10.23). The detail of the transition, i.e.,
the number of disks that merge into one, clearly reflects the nature of the

Fig. 10.21. The submanifolds Mv in the case k = 1 for v = 0.5Δ, Δ, 1.5Δ, 2Δ
(from left to right). All the submanifolds are topologically equivalent to a single
disk. From [223].

Fig. 10.22. The submanifolds Mv in the case k = 2 for v = 0.5Δ, Δ, 1.5Δ, 2Δ
(from left to right). For v < vc = Δ the submanifolds are topologically equivalent
to two disconnected disks, while for v > vc they are equivalent to a single disk.
From [223].

Fig. 10.23. The submanifolds Mv in the case k = 3 for v = 0.5Δ, Δ, 1.5Δ, 2Δ
(from left to right). As v < vc = Δ the submanifolds are topologically equivalent
to three disconnected disks, while as v > vc they are equivalent to a single disk.
From [223].
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symmetry-breaking for the particular value of k considered (similar pictures
are obtained for k > 3). Thus, when projected onto the order-parameter
space, the correspondence between topological changes and phase transitions
becomes one-to-one (this was already found in Section 7.4 for the mean-field
XY model); however, in contrast to the study of the topology of the “full”
Mv’s, no direct way to discriminate between first- and second-order transitions
seems available in this picture.

10.6 Comments on Other Exact Results

The proposal to look for a topological origin of phase transitions has been
recently given increasing attention. A-priori, the best candidates to allow
analytical computations of both thermodynamical and topological features
are one-dimensional models and mean-field models. Of course, in order to
deepen our understanding of the subject, all the computable models among
these ones are worth consideration. However, the interpretation of the out-
comes is a delicate point on which some confusion has been made.

Let us try to clarify some basic points.
As we have seen in the preceding chapter, there is a wide class of systems

for which the loss of uniform convergence with N in some low-order differ-
entiablity class of basic thermodynamic functions (thus the appearance of a
phase transition) is necessarily driven by a topological transition in configura-
tion space. Some questions immediately arise. The first concerns the weak-
ening of the conditions which the microscopic potential has to satisfy. We
considered short-range potentials only, but, as the results given in the present
chapter witness, some extension also to long-range potentials of the theorems
given in Chapter 9 should be possible. At least for potentials bounded from
above, as is the case of the XY mean-field model and of the k-trigonometric
model. And what about unbound potentials?

The second–very challenging—question concerns sufficiency conditions.
Here the problem is to find out which kind of topological transitions can
entail a thermodynamic phase transition. Precious hints can be obtained by
studying particular models, provided that the models considered satisfy the
hypotheses of the theorems given in Chapter 9.

The third question concerns the way of investigating topological transi-
tions. Apart from resorting to the Gauss–Bonnet–Hopf theorem, as we did in
Chapter 7, the main constructive, computational way of studying topology
is based on the analysis of the critical points of the potential. However, the
study of topology cannot be considered exhausted at all by considering this
kind of critical points. Moreover, in some cases, a good Morse function on the
relevant configuration space submanifolds could be very different from the
physical potential.

A fourth more general question. Do we have to think that any phase
transition has a topological origin? A cautious answer is negative. However,
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we simply do not know whether and how much the domain of validity of the
theorems given in Chapter 9 can be broadened.

Now, as far as one dimensional models are concerned, in [178] a simple
model for DNA denaturation, known as the Peyrard–Bishop model, was con-
sidered. The Hamiltonian describing this model is

H =
∑

n

[
m

2
ẏ2

n +
K

2
(yn − yn+1)2 +D(e−ayn − 1)2

]
. (10.159)

This model is considered in [235] too, where the authors consider also the
modified model

H =
∑

n

[
m

2
ẏ2

n +
K

2
(yn − yn+1)2 +D(e−a|yn| − 1)2

]
. (10.160)

The claim in [235] is that—for both models—the topological transition occurs
at a critical value of the potential energy which is lower than the thermo-
dynamic transition energy. The first obvious problem with these models is
that the associated configuration space submanifolds are noncompact, and the
critical manifolds are infinitely large. There is only one critical point (apart
from the trivial one) whose coordinates are all infinite! Somewhat pathological
indeed. Even though we can claim that—since the above models live on non-
compact manifolds—no contradiction exists with the theorems of the preced-
ing chapter, in [177] it has been shown that the energy-pattern of the largest
Lyapunov exponent clearly marks the unbinding phase transition of model
(10.159), whence it is evident that a microcanonical computation of the total
energy per degree of freedom—on any arbitrarily large but finite (!) region
of phase space—will give u = E/N ≈ kBT + D, the first term, after energy
equipartition, is the average kinetic plus harmonic potential energy per de-
gree of freedom, the second constant term comes from the Morse potential for
large deformations. The vanishing of harmonic energy on the infinitely large
critical equipotential energy surface tells us that the limit is singular (using
equations (5) and (6) of [177] draw the caloric curve T = T (U/N) and con-
sider the value U/N for T = Tc). We believe that a more careful analysis2 of
the results in [178] should encompass also this model in the family of “good”
models.

In [236] another one-dimensional model, known as the Burkhardt model
for localization-delocalization transition of interfaces, has been investigated.
It is described by the Hamiltonian

H =
∑
n

[
1
2
p2n + |qn+1 − qn|+ U(qn)

]
(10.161)

2 One should compute the caloric curve, that is T = T (E) = (∂S/∂E)−1, through
the microcanonical entropy S(E), compute the average potential energy as a
function of the total energy, hence obtain the transition value of the latter from
the critical value of the former, and finally check that approaching the topological
transition from below the good transition temperature is retrieved.
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where U(qn), called pinning potential, is a square-well. This model has been
studied also in [235] with a somewhat different version of the pinning potential.
Both [236] and [235] report the non-coincidence of topological and thermo-
dynamical transitions. However, with respect to the theorems in Chapter 9,
this model has two bad features: the configuration-space submanifolds are
noncompact and the pinning potentials considered are singular (this is evident
after the definition given in [235], and implicit in [236] where infinitely steep
barriers of potential are needed in order to constrain the coordinates on a
semi-infinite positive line).

At first sight, another puzzling result concerns the mean-field ϕ4 model
described by the Hamiltonian

H =
∑

i

[
1
2
p2i −

1
2
φ2

i +
1
4
φ4

i

]
− J

2N

(∑
i

φi

)2

. (10.162)

In this case, depending on the choice of the parameters of the model, the
phase transition point can lack a counterpart in the Euler characteristic χ(v);
worse, there is not a single critical point of the potential at the transition
point [237–239].

In [238] the authors simply conclude that the claim that the topological and
thermodynamical transitions points coincide is not valid in general. In [237]
the authors propose a weakening of the topological hypothesis and introduce a
mapping to recover some correspondence between the topological and thermo-
dynamical transitions. In [240,241] the authors surmise that for non-confining
potentials, as in the case of Burkhardt model, as well as for long-range interac-
tions, rather than from a topological transition the thermodynamic singularity
stems from the maximization over one variable of a non-concave entropy func-
tion of two variables. All these contributions are certainly useful, provided that
we keep in mind that the general theory proposed in the preceding chapter
has no pretence to encompass all the existing phase transitions. Long-range-
interaction models with unbound potentials, as is the mean-field ϕ4 model,
might well be outside the domain of validity of the topological theory. But are
we sure that no topological transition exists in this model? The mean-field
ϕ4 model undergoes a Z2-symmetry-breaking phase transition. Therefore, a
major change of topology at the phase transition point exists: in the N →∞
limit, in the broken symmetry phase, the configuration space splits into two
disjoint submanifolds, a major topological change indeed. When the number
of connected components changes, so does the zeroth cohomology group H0

and, correspondingly, the Betti number b0. We can think that the largerN , the
“thinner” the bridging between these two components of configuration space.
However, this kind of topological transition is not detectable through the crit-
ical points of a Morse function. Of course, we can wonder whether other coho-
mology groups besides H0 are involved despite the above mentioned results.
The problem, overlooked in the above quoted papers, is that for the mean-field
ϕ4 model the good geometrical objects whose topological changes have to be
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investigated are not theΣv, or theMv, but other submanifolds of configuration
space. In fact, in this model there is not a one-to-one correspondence between
the order parameter and the potential function. The configurational entropy
now depends on two independent variables, that is, S = S(v,m) with v the
potential energy and m the magnetization, whereas in the case of the mean-
field XY and k-trigonometric models it is S = S(v,m(v)). Thus the question
is whether for any given value of the magnetization the corresponding subset
of configuration space qualifies as a good manifold, if this is the case, then
we have to find out a good Morse function on these constant-magnetization
submanifolds of configuration space. Yet a lot of work remains to be done
on this model to clarify whether the phase transition it undergoes is driven
also by higher cohomology groups, in any case, since at least H0 is involved,
the mean-field ϕ4 model does not seem outside the domain of the topological
theory.

Another interesting element enters the game with the mean-field Berlin–
Kac spherical model: statistical ensemble nonequivalence. This model is
described by the Hamiltonian

H =
N∑

i=1

[
1
2
p2i −

J

2N

N∑
j 	=i,j=1

sisj − hsi
]
. (10.163)

where si ∈ R, and h is an external field; the spin variables are subject to the
spherical constraint

N∑
i=1

s2i = N . (10.164)

In [242] it has been found that there is not so much difference between the
two cases of no phase transition (nonzero external field) and continuous phase
transition (zero external field). Moreover, in the latter case there is not a
big change in the topology of configuration space. Also this model, at first
sight, could seem to disprove the topological theory. However, the second-
order phase transition—in the limit of vanishing external field—is predicted
by the canonical ensemble, whereas in the microcanonical ensemble no phase
transition exists at all [243, 244], that is, there is nonequivalence of statisti-
cal ensembles for this model. Thus, since the microcanonical ensemble is the
natural framework of the topological theory of phase transitions, there is no
contradiction.3

In [245] the following modified version of the Berlin-Kac model has been
considered

H =
N∑

i=1

[
1
2
p2i −

1
2
λix

2
i − h

√
Nx1

]
. (10.165)

3 Moreover, the microcanonical ensemble is the fundamental statistical ensemble
because the microcanonical measure is the natural ergodic invariant measure for
the microscopic Hamiltonian dynamics, and because there is no extra parameter,
such as temperature, aside from the microscopic Hamiltonian.
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where xi ∈ R, λi are certain real coefficients, h is an external field and again
the system is constrained by

N∑
i=1

x2
i = N .

The authors claim that this is the first example of a short-range, confining
potential for which there is not a topological transition originating the thermo-
dynamic phase transition of the model. This claim is simply wrong. This is
again a long-range interaction model because of the spherical constraint that
limits the freedom of all the degrees of freedom to vary independently from one
another. Of course, one could argue that this is a weak constraint, however, it
plays a fundamental role because without this spherical constraint the model
is obviously trivial. The long-range interaction introduced by the constraint
is weaker than a mean-field long-range interaction, and in fact this model
has no phase transitions in less than three dimensions (whereas mean-field
models undergo a phase transition at any dimension), nevertheless, the spher-
ical model shares with mean-field models a discontinuous but non-diverging
pattern of the specific heat. The spherical model (10.165) is not a short-range
interaction one.



Chapter 11

Future Developments

The theoretical scenario depicted in this monograph is not a rephrasing of
already known facts in an unusual mathematical language.

In fact, the Riemannian theory of Hamiltonian chaos, though still formu-
lated at a somewhat primitive level (in that it does not yet include the role of
nontrivial topology of the mechanical manifolds), provides a natural explana-
tion of the origin of the chaotic instability of classical dynamics, substantially
in the absence of competing theories.1

As far as the topological theory of phase transitions is concerned, which
applies to a sufficiently broad class of physically relevant systems described
by continuous variables, it shows that the conventional mathematical expla-
nation of the origin of phase transitions (as due to the loss of analyticity of
macroscopic observables in the N →∞ limit) is not the primitive, fundamen-
tal source of the phenomenon. In other words, there is a deeper phenomenon
that drives the appearance of nonanalytic behaviors of statistical-mechanical
averages. This deeper phenomenon is due only to the microscopic interaction
potential and to the energy variation of the topology of its level sets in configu-
ration space. The topological properties of the leaves of the foliation of config-
uration space, which are the level sets of the potential function, are what they
are independent of the definition of statistical measures in configuration space.
This is a theoretical step forward. As such, its value is both conceptual and

1 The standard explanation of the origin of Hamiltonian chaos, based on homo-
clinic intersections and sketched in Chapter 2, has a very limited validity because
it requires the explicit analytic knowledge of the separatrices; the theorem that
tells that resonant tori break into an even number of fixed points, half of them
elliptic and the other half hyperbolic, works for two-degrees-of-freedom systems
but has no general validity at arbitrary N ; the system must be given in action-
angle coordinates and it has to be quasi-integrable; no relation between the
explanation of the origin of chaos and the standard way of measuring its strength,
through Lyapunov exponents, is given. At N > 2, using the natural coordinates
of a standard Hamiltonian system and at any energy, the theory of homoclinic
intersections cannot be considered a satisfactory theory of Hamiltonian chaos.

347
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practical. From the conceptual point of view, it sheds a completely new light
on the relationship between microscopic dynamics and macroscopic thermo-
dynamics, including emergent phenomena such as phase transitions. This is
due to the fact that microscopic dynamics and macroscopic statistical proper-
ties of a system are rooted in the same common ground: configuration-space
topology. From the practical point of view, in one of the following sections,
we give emphasis to some preliminary results concerning the protein fold-
ing problem, because these results paradigmatically illustrate the innovative
potentialities of the topological theory of phase transitions.

11.1 Theoretical Developments

The many open points requiring further investigation have been put in evi-
dence throughout the book. However, let us summarize some of them.

For what concerns the Riemannian theory of Hamiltonian chaos, we have
seen that the quasi-isotropy assumption works strikingly well in the case of the
FPU β model, whereas it requires a reasonable, but somewhat ad hoc, correc-
tion for the XY chain. We have also highlighted a major difference between
these models. The configuration space of the FPU model is topologically trivial,
whereas it is nontrivial for the XY chain. We have explained, thus, the neces-
sity of including topological information in an improved version of the theory
hitherto proposed. Parametric instability of the trajectories, due to the vari-
ability of curvature along them, plus hyperbolic scattering near critical points
of the potential, and possibly the interplay between these two mechanisms,
should account for the origin of Hamiltonian chaos in most of the systems
described by standard Hamiltonians. Pursuing such an improvement directly
in the form of a general theory would perhaps be like attempting to climb a
mountain along the steepest path: some “diagonal paths” are advisable. For
example, an interesting key study could be the XY chain for which, as we
have seen in Chapter 10, the energy distribution of critical points is exactly
known.

Let us remark that the aim of the Riemannian theory of chaos is not to pro-
vide recipes to compute Lyapunov exponents; rather, it aims at understanding
why Newtonian dynamics is essentially unpredictable, with a few well-known
exceptions. However, any version or improvement of the theory must be tested
against some experimental results. These “experimental” results are provided
by the outcomes of numerical computations of Lyapunov exponents for specific
models.

For what concerns the topological theory of phase transitions, it is worth
remarking that it does not claim that any possible phase transition must have
a topological origin. It is perhaps because of the misunderstanding of this
point that some papers recently appearing in the literature claim to give
counterexamples to the topological theory (see Section 10.6). Actually, none
of these papers goes against what we have presented in this book.
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In our opinion, relevant leaps forward could reward future efforts addressed
to the following points:

(a) Finding sufficiency conditions for the theorems given in Chapter 9. This
is perhaps the most challenging problem. The question is, which kinds of
distributions—of the number of critical points of the potential and of their
Morse indexes—as a function of v and of the dimension N , are capable of
inducing an unbounded growth with N of the upper bound of the third-
or the fourth-order derivatives of the configurational entropy? This is the
same as wondering which kinds of topological changes of the Σv, or of the
Mv, as a function of v and N , are capable of inducing a phase transition
by breaking uniform convergence with N of configurational entropy in
the appropriate differentiability class. Needless to say, one would like to
discriminate between first-, second-, and infinite-order transitions, and,
perhaps, glassy transitions.
Can localization theorems for integrals—such as the Duistermaat–Heckman
theorem2 and its generalizations—be of some technical help?

(b) Topology throughout the present monograph is intended from the point of
view of cohomology theory. We have hardly touched homotopy theory. The
connection between phase transitions and topology seen from the point of
view of homotopy theory is still an uncharted territory, worth exploring.

2 The Duistermaat–Heckman theorem establishes some conditions that allow the
exact evaluation of oscillatory integrals of the form∫

M

eitH(x)η ,

where M is a symplectic manifold, H a Hamiltonian function on M , and η is
the Liouville form. The integration measure localizes at the critical points of H,
and this can be seen as a general consequence of equivariant cohomology [246].
To give an example of this kind of localization results, consider an n-dimensional
compact manifold M , with volume form dV ol(x), and let f : M → R be a Morse
function, then for large t one has [247]∫

M

eitf(x)dV ol(x) =
∑

p∈Crit(f)

(
2π

t

)n/2 eiπ sgn(Hessf (p))/4√
| det Hessf (p)|

eitf(p) + O(t−n/2−1)

where Crit(f) is the set of critical points of f , and sgn(Hessf (p)) is the signature
of the Hessian at p. The signature of a real symmetric matrix is the number
by which positive eigenvalues outnumber negative ones, thus sgn(Hessf (p)) =
n − 2kp, with kp the index of the critical point p. If the integration on the left-
hand-side is carried over Mv, then the right-hand-side—being a sum restricted
to the set {p ∈ Mv| (df)p = 0}—is a function of v. Moreover, the right-hand-
side, being a sum over the set of critical points of f where the phase of each
contribution depends on the index of the critical point, is tightly related with the
topology of Mv.
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(c) Developing computational methods to probe topology changes. Luckily,
for some mean-field models, such as those studied in Chapter 10, one
can analytically find all the critical points of the potential. For generic
systems, a priori only numerical methods would be left to find the critical
points of the potential. However, this is practically undoable. In fact, the
number of critical points of a generic potential function can easily grow
exponentially or more with the configuration-space dimension. Thus, when
numerical computations are the only possible option, one has to resort
to typical theorems of differential topology, like the Gauss–Bonnet–Hopf
theorem relating the total Gaussian curvature of a hypersurface to its
Euler characteristic. Are there other useful tools that can be used, or
adapted, or developed, that probe topology through the computation of
analytic mathematical objects? Is it conceivable to define vector bundles
based on (microscopic) configuration space and then try to investigate
their characteristic classes?

(d) Are there smart dimensional reductions that make feasible a direct analytic
or numeric investigation of the configuration-space topology? One obvi-
ously would think of defining some renormalization scheme. But perhaps
already a “Bethe–Peierls”-like approximation [33] could provide an effi-
cient, nontrivial, and drastic dimensional reduction.

(e) Extension to quantum systems of the methods developed for classical sys-
tems. This point is briefly discussed in the last section of this chapter.

(f) The topological theory presented in this book has been developed for
potentials that depend on continuous variables, which is realistic from
a physical point of view. Nevertheless, beginning with the Ising model,
many discrete-variable models have been traditionally investigated in
the statistical-mechanical literature. Thus it would be very interesting
to make some connections between topology and phase transitions in
discrete-variable systems. But topology of which manifolds? A bridging
seems possible through the Hubbard–Stratonovich transform, which maps
a discrete-variable system such as the Ising Hamiltonian to a continuous-
variable potential.

(g) Extend the domain of applicability of the theorems proved in Chapter 9 to
encompass long-range systems, at least in the case of potentials bounded
also from above. What we have seen in Chapter 10 witnesses that such
an extension must be possible. In fact, the models therein considered are
described by long-range forces and display unequivocal topological signa-
tures of the phase transitions they undergo. Moreover, a clear discrimina-
tion seems possible between first- and second-order transitions. Relaxing
the additivity requirement seems at present very hard.

(h) Numerical computations. We cannot forget that—as we have seen in
Chapter 7—precious informations can be obtained through direct numer-
ical computations of the energy dependence of a topological invariant,
as the Euler–Poincaré characteristic, for non-pathological models. With
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respect to the computational effort required to work out the results re-
ported in [198] some improvements are possible. For example, to compute
the Gauss–Kronecker curvature of the equipotential hypersurfaces Σv, the
use of (8.9) in place of (7.38) should be more efficient. A more refined way
of generating a Monte Carlo Markov chain to compute

∫
Σv
dσKG/

∫
Σv
dσ

should be that of numerically solving the stochastic differential equa-
tion [248]

dR = P (R)dB +M1(R)n(R)dt

where Rt, t ≥ 0, is a random sequence of points on Σv ⊂ R
N , P (R) =

I − n(R) ⊗ nT (R) is the orthogonal projection of a point R on the plane
tangent to Σv at R, provided that n ≡ ∇V/‖∇V ‖ (normal at R); B
is a Brownian motion in R

N and M1(R) is the mean curvature at R,
that is, M1 = − 1

N−1div n(R). Then one should combine this algorithm of
random generation of points on Σv with a standard Metropolis importance
sampling adapted to the desired measure on Σv.
Finally, the speed of computers has considerably grown during the last
years.
As far as numerical computations are concerned, it is worth keeping in
mind that “singular” patterns of the energy dependence of the largest
Lyapunov exponent are indirect but reliable probes of non-trivial topolog-
ical transitions in configuration space.

11.2 Transitional Phenomena in Finite Systems

Needless to say, in nature, phase transitions occur also in very small systems,
with N much smaller than the Avogadro number. Phase transitions are quali-
tative changes of physical systems, such as, for example, a small crystal that
melts. The intrinsic physical phenomenon, it is worth repeating, is indepen-
dent of our mathematical description of phase transitions, and also of the
quantitative way of detecting them through thermodynamic observables. In
Chapter 7, tackling the lattice ϕ4 model, we have seen that with a lattice as
small as 7× 7 sites, the Euler characteristic of the potential level sets sharply
marks the phase transition point.

A future understanding of which kinds of topological changes in configu-
ration space can induce the growth with N of the upper bound of some of the
derivatives of the entropy (sufficiency conditions) will give, as a by-product,
a natural definition of phase transitions for finite systems. In fact, since topo-
logical changes of manifolds exist at any dimension N , one would properly
speak of “phase transitions at finite N” in the presence of those topolog-
ical changes of the submanifolds of configuration space that satisfy suffi-
ciency conditions, thus recovering, in the arbitrary large-N limit, the standard
statistical-mechanical definition. In principle, any thermodynamic observable
could do the same job at a phenomenological level. However, not only do the
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topological invariants give sharper signals already with very small numbers of
degrees of freedom, but, from a conceptual point of view, there is a big differ-
ence: in the standard framework based on analyticity of observables, at finite
N , no mathematical difference can be made between systems with and without
phase transitions, because analyticity is unavoidable at finite N . In contrast,
within the topological framework, a sharp difference can be made also at any
finite N , as we have seen in Chapters 7 and 10. This requires nontrivial math-
ematical work to be properly formalized, but the intuitive evidence is already
there.

This topic is of prospective interest for all those systems that intrinsically
do not have a thermodynamic limit, yet undergo transitional phenomena.
This is the case of the filament-globule transition in homopolymers, or of
the protein folding from the primary conformation to the native one (which
are given some emphasis in Section 11.4), or of many physical systems of
biological interest, listed in the section devoted to the classification of phase
transitions in Chapter 2, or of nano- and mesoscopic systems. For example,
phase transition phenomena at the nanoscopic level are of increasing interest
in modern atomic physics with Bose–Einstein condensation and in general
transition phenomena in radiation–matter interaction (e.g., microlasers).

11.3 Complex Systems

In this book we have dealt, on the one hand, with geometric and topologi-
cal complexity of phase space, and on the other hand, with the relation that
such a complexity has with microscopic dynamics and macroscopic thermo-
dynamics of many-degrees-of-freedom systems. We introduce here the word
complexity on purpose, to suggest that the so-called complex systems and
their transitional phenomenology provide a natural arena for the application
of topological concepts and methods. A system is generically defined as com-
plex if it can assume a large number of states or conformations. This concept
made its first appearance in statistical mechanics, where it was mainly related
to disordered and amorphous materials, like spin-glasses and glasses. In con-
trast to “standard” phase transitions, for which a unique stable equilibrium
state exists in each thermodynamic phase and is unambiguously defined by
the unique minimum of the Helmholtz free energy, the phase transitions of
glassy type are associated with the appearance of a huge number of minima
of the Helmholtz free energy and by their degeneracy. This feature led to the
so-called energy landscape paradigm to tackle complexity in the framework of
physics and to bridge with complexity as it is tackled in other contexts, mainly
biology. It is now quite clear that many of the puzzling properties of glasses
are encoded in their “energy landscape” [249], i.e., in the structure of valleys
and saddles of the potential-energy function; but this is directly connected



11.4 Polymers and Proteins 353

to the structure of the submanifolds Mv and Σv of configuration space,3 and
in fact, topological concepts have begun to emerge in some recent papers on
glasses [250].

11.4 Polymers and Proteins

Among the many interesting transitional phenomena that one encounters in
the field of soft-matter physics, we highlight the Θ-transition between filamen-
tary and globular configurations in homopolymeric chains, and the protein
folding transition from the primary sequence of amino acids to the native (or
biologically active) state in heteropolymeric chains. These phenomena, which
are commonly tackled within the framework of statistical mechanics, provide
clear examples of the prospective relevance of the methods proposed in the
present book.

In [88], the study of the off-lattice dynamics of simple models of homopoly-
meric chains has shown that the Θ-transition between the swollen and globular
phases is marked very clearly by a change in the energy density dependence of
the largest Lyapunov exponent. In real homopolymers, this transition occurs
in systems with a number of degrees of freedom that is finite and small, much
smaller than the Avogadro number. Therefore, the close resemblance of this
dynamical characterization of the Θ-transition to the other dynamical charac-
terizations of phase transitions, encountered in Chapter 6, has both conceptual
and practical consequences. In fact, the existence of a natural “dynamical
order parameter” (the largest Lyapunov exponent) to detect the transition
between the filamentary and globular phases of a chain of given length N
allows one to make a link with the geometry and topology of the mechani-
cal manifolds, thus defining the transition independently of thermodynamic
observables (which, in this case, are of little use to mark the transition), and
independently of the thermodynamic limit (which, in this case, is somewhat
unphysical).

Let us now come to the protein folding problem. This is a very challenging
subject at the forefront of modern research in statistical mechanics applied
to biophysics. This is not only a hard theoretical problem, but a fundamental
issue of a new discipline named proteomics. Proteins are the working machines
of every living organism, performing almost all biological functions at a micro-
scopic level. Proteins are sequences of covalently bonded amino acids forming
polypeptide chains of a few hundred building blocks. Among a huge number of
possible amino-acid sequences of finite length, only a very few of them—when
put in an aqueous environment—are capable of folding into precise configu-
rations that are working proteins. Starting from a “good” sequence of amino
3 In current literature on glasses Σv are called Potential Energy Surfaces (PES),

and the configurational entropy, computed as the logarithm of the number of
stationary points of the potential whose energy lies in an interval [v, v + δv], is
referred to as the complexity of the system.
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acids, in a surprisingly short time the same spatial compact conformation of
a protein is always reached. These sequences are called good folders. In con-
trast, a randomly sorted sequence yields a random heteropolymer undergoing
a glassy transition.

The crucial question is, how can we read in a given sequence of amino
acids whether it corresponds to a good folder, that is, capable of folding into
a protein (if put in a suitable environment), or a bad folder, that is, a random
heteropolymer and not a protein? This is a fundamental theoretical problem,
still wide open even though the field has considerably advanced in recent times,
which is also of a major relevance to the so-called protein design problem.

We take this problem as a paradigmatic example to illustrate why the
topological theory of phase transitions promises a real methodological
advancement in the study of transitional phenomena in strongly inhomo-
geneous systems at meso- or nanoscale.

To this end, we need to enter into some detail of a recent and very
interesting paper [251], where the Hamiltonian dynamics—and its underly-
ing configuration-space geometry—have been numerically investigated for the
so-called minimal model, originally introduced by Thirumalai and coworkers
[252]. The authors consider a three-dimensional off-lattice model of a polypep-
tide that has only three different kinds of amino acids: polar (P), hydrophobic
(H), and neutral (N). The potential energy of a chain is given by [252]

V = VB + VA + VD + VNB , (11.1)

where

VB =
N−1∑
i=1

kr

2
(|ri − ri−1| − a)2 ; (11.2)

VA =
N−2∑
i=1

kϑ

2
(|ϑi − ϑi−1| − ϑ0)2 ; (11.3)

VD =
N−3∑
i=1

{Ai[1 + cosψi] +Bi[1 + cos(3ψi)]} ; (11.4)

VNB =
N−3∑
i=1

N∑
j=i+3

Vij(|ri,j |) , (11.5)

where ri is the position vector of the ith monomer; ri,j = ri − rj ; ϑi is the
ith bond angle, i.e., the angle between ri+1 and ri; ψi the ith dihedral angle,
that is, the angle between the vectors n̂i = ri+1,i × ri+1,i+2 and n̂i+1 =
ri+2,i+1× ri+2,i+3; kr = 100; a = 1; kϑ = 20; ϑ0 = 105◦; Ai = 0; and Bi = 0.2
if at least two among the residues i, i+1, i+2, i+3 are N , and Ai = Bi = 1.2
otherwise. As to Vij , it is
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Vij =
8
3

[(a
r

)12

+
(a
r

)6
]

if i, j = P,P or i, j = P,H;

Vij = 4
[(a
r

)12

−
(a
r

)6
]

if i, j = H,H; and
Vij = 4

(a
r

)6

if either i or j is N .
Five different sequences are considered, four of 22 monomers and one of

44 monomers. The sequences are as follows:

S22
g = PH9(NP)2NHPH3PH,

S22
b = PHNPH3NHNH4(PH2)2PH,
S22

i = P4H5NHN2H6P3,

S22
h = H22

S44
h = H44.

The sequence S22
g has already been identified as a good folder [252], which

is confirmed by the dynamical simulations: below a certain temperature the
system always folds into the same β-sheet-like structure.

In contrast, homopolymers S22
h and S44

h undergo a hydrophobic collapse
but do not display any tendency to attain a particular conformation in
the collapsed phase. The sequence S22

b (which consists of a rearrangement
of the sequence S22

g ) behaves as a bad folder and does not reach a unique
native state, while S22

i stands in between good and bad folders: the middle of
the sequence always forms the same structure, while the more external parts
of the chain do not fold into a stable configuration and still fluctuate even at
low temperature.

A comparison between standard thermodynamic observables, like the spe-
cific heat, and geometric observables, namely the variance of the Ricci cur-
vature fluctuations of configuration space, both sampled by the dynamical
trajectories, is very instructive.

As far as the specific heat is concerned, all the sequences show a very
similar pattern; in particular, both the specific heat CV of the homopolymer
S22

h and of the good folder S22
g exhibit a peak at the transition point (see

Figures 11.1 and 11.2 respectively), and on the sole basis of this quantity it
would be hard to discriminate between a simple hydrophobic collapse and a
protein-like folding. The slight asymmetry of the specific heat pattern obtained
for the homopolymer cannot be given any special meaning.

On the other hand, the temperature patterns of the Ricci curvature fluc-
tuations of configuration space (computed in the Eisenhart metric gE) display
a major qualitative difference between the homopolymer and the good folder.
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Fig. 11.1. Specific heat CV vs. temperature T for the homopolymeric chain S22
h .

From [251].
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Fig. 11.2. CV vs. T for the good heteropolymeric folder S22
g . From [251].

The normalized variance of the Ricci curvature fluctuations σ measured along
the numerically computed trajectories is defined as

σ2 =
N
(
〈K2

R〉t − 〈KR〉2t
)

〈KR〉2t
, (11.6)

where 〈·〉t stands for a time average, and KR for the Ricci curvature. In Figure
11.3, σ is reported, as a function of the temperature T , for the homopolymer
S22

h and for the good folder S22
g . In the case of the good folder, a peak of
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Fig. 11.3. Relative curvature fluctuation σ vs. temperature T for the homopolymer
S22

h (left) and for the good folder S22
g (right). The solid curves are a guide to the

eye. From [251].

σ shows up at a temperature value that is practically coincident with the
folding temperature Tf (estimated as Tf = 0.6±0.05). At T < Tf , the system
is mostly in the native state, folded into a β-sheet.

No mark of the hydrophobic collapse of the homopolymer S22
h is found

in the pattern of σ(T ). As to the other sequences, σ(T ) for the longer
homopolymer S44

h is even smoother than for S22
h , in contrast to the spe-

cific heat, which develops a sharper peak consistently with the presence of
a thermodynamic Θ-transition as N →∞. For the bad folder S22

b , σ(T ) is not
as smooth as for the homopolymers, but only a very weak signal is found at a
lower temperature than that of the peak in CV , i.e., at the temperature where
the system starts to behave as a glass; for the “intermediate” sequence S22

i

a peak is present at the “quasi-folding” temperature, although considerably
broader than in the case of S22

g .
The above-reported shapes of σ(T ) bring us back to Chapters 6 and 7,

where we have discussed the early developments of the study of geometry of
dynamics in the presence of phase transitions. In particular, the pattern of
σ(T ) obtained for the good folder S22

g is remarkably similar to that exhibited
by other systems undergoing a symmetry-breaking phase transition and, in
particular, to the pattern of σ(v) found for the Z2-breaking phase transition
in a two-dimensional lattice ϕ4 model, reported in Figure 7.4 (notice that
σ(T ) and σ(v) are parametrically related through the function v = v(T ); thus
the presence of the peak of σ(T ) at the folding transition must be kept in
the shape of σ(v) at some vf = v(Tf )). This suggests that the folding of a
protein-like heteropolymer does share some features of the symmetry-breaking
phase transitions, at least when these are seen from a different viewpoint with
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respect to the standard thermodynamic one. In fact, proteins are intrinsically
finite and aperiodic objects for which thermodynamic-limit singularities can
hardly be defined. The topological framework, in contrast, naturally allows
one to tackle finite systems, as we have already discussed throughout this
monograph.

At present the results reported here strongly suggest a possible link
between the folding transition and a topological change in configuration space.
However, this still remains to be directly checked, similarly to what has been
done for the lattice ϕ4 model in Chapter 7 with the computation of the Euler
characteristic of the potential level sets. That topology must have something
to do with the protein folding problem is witnessed by a widely accepted
“metaphor” that associates with a good folder a funnel-like pattern of the
free energy as a function of a suitable parameter labeling different conforma-
tions; this funnel is assumed to have many local minima but one absolute
minimum for the native conformation of the protein. A bad folder, in this
picture, has a huge number of degenerate minima of the free energy, typical
of a glassy phase. This qualitative picture can be replaced by a direct analysis
of how the topology of configuration-space submanifolds changes as a func-
tion of the potential energy density, and by a comparison of the outcomes
for good and bad folders. In conclusion, we have very good reasons to think
that the theoretical framework discussed in the present monograph can give
a relevant contribution to the development of a new strategy to distinguish
between good and bad folders.

11.5 A Glance at Quantum Systems

To conclude, let us just mention that some possibilities seem to exist of
exporting to quantum systems the geometric and topological methods
developed throughout this book for classical systems. The most natural
way stems from the following remark. The two fundamental operators in
quantum physics and statistical physics, respectively, are the unitary evolu-
tion operator e−iĤt and the density matrix e−βĤ . These are formally related
by the analytic continuation known as the Wick rotation, that is, t �→ −itE .
This operation is at the basis of a formal link that can be established between
classical and quantum systems.

Let us first consider the path integral for a scalar field theory

Z =
∫
Dφ exp

{
i

�

∫
ddx[

1
2
∂μφ∂

μφ− V (φ)]
}
. (11.7)

By performing the Wick rotation we have

Z =
∫
Dφ exp

{
−1

�

∫
dd

E
x[

1
2
∂μφ∂

μφ+ V (φ)]
}
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=
∫
Dφ exp

{
−1

�

∫
dd

E
x LE(φ)

}
, (11.8)

where ddx = −idd
E
x and dd

E
x = d(d−1)x dt

E
.

In (11.7) we have ∂μφ∂
μφ−V (φ) = (∂φ

∂t )2− (∇φ)2−V (φ), while in (11.8)
we have ∂μφ∂

μφ− V (φ) = ( ∂φ
∂t

E
)2 + (∇φ)2 + V (φ). In the last term of (11.8)

the so-called Euclidean Lagrangian LE(φ) = 1
2 ( ∂φ

∂t
E

)2 + 1
2 (∇φ)2 + V (φ) is

actually an energy density of the field φ, so that

E(φ) =
∫
dd

E
x

[
1
2

(
∂φ

∂t
E

)2

+
1
2
(∇φ)2 + V (φ)

]
is just the total energy, and the Euclidean path integral

Z =
∫
Dφ exp

{
−1

�
E(φ)

}
(11.9)

now looks very similar to the canonical partition function of classical statistical
mechanics, and if one makes an ultraviolet regularization, by considering the
field on a lattice, then (11.9) is the classical canonical partition function.

On the other hand, starting from the classical canonical configurational
partition function with a potential V = V (q1, . . . , qN ), by replacing i with
x, qi with φ(x), and by paying attention to the way of taking the contin-
uum limit, one recovers (11.9) by identifying � with the Boltzmann factor
kBT . Notice that in this case the functional E(φ) corresponds to the classical
configurational part only.4

Therefore, we see that a Euclidean quantum field theory in a d-dimensional
space-time is equivalent to classical statistical mechanics in a d-dimensional
space.

In view of this equivalence, it seems worth investigating whether the gener-
alizations of the Duistermaat–Heckman integration formula to path-integrals
[253, 254] could be useful—in both quantum and classical frameworks—for
further developments of the topological theory of phase transitions.

A further interesting connection is obtained as follows. Consider the par-
tition function of quantum statistical mechanics

Z = Tr e−βĤ =
∑

n

〈ψn|e−βĤ |ψn〉 (11.10)

and work out an integral representation of Z by means of the standard integral
representation of 〈ψfinal|e−iĤt|ψinitial〉. After having performed the analytic

4 If we start from Z =
∫ ∏

i
dpidqie

−βH(p,q) we have to integrate over the pi and

then take the continuum limit of ZC =
∫ ∏

i
dqie

−βV (q); otherwise, we should

consider a double functional integration
∫
DπDφ(...), which would not be the

Euclidean path integral (11.9).
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continuation t → −iβ, having put |ψfinal〉 = |ψinitial〉 = |ψn〉, and then by
summing over |ψn〉, one finally obtains [255]

Z = Tr e−βĤ =
∫
Dq exp

{
−
∫ β

0

dτ LE(q)

}
, (11.11)

where
∫
Dq is constrained to periodic boundary conditions, that is,

q(0) = q(β); LE(q) is the Euclidean Lagrangian, which, in the Euclidean
time τ , is just the Hamiltonian H =

∑
i

1
2 (dqi/dτ)2 + V (q); the new time is

bounded as follows: 0 ≤ τ < β.
The extension to field theory is made as follows: Consider the Hamiltonian

Ĥ of a quantum field theory inD-dimensional space, so that the d-dimensional
space-time has d = D + 1, and (11.11) becomes

Z = Tr e−βĤ =
∫

pbc

Dφ exp

{
−
∫ β

0

dτ

∫
dDx LE(φ)

}
, (11.12)

where the subscript “pbc” reminds us that the integral is computed on all the
paths φ(x, τ) satisfying periodic boundary conditions, that is, φ(x, τ = 0) =
φ(x, τ = β).

We see that a Euclidean quantum field theory in (D + 1)-dimensional
spacetime, with 0 ≤ τ < β, is equivalent to quantum statistical mechanics in
D-dimensional space.

These connections between quantum field theory and statistical mechanics
have been widely exploited in the recent past. In view of the application to
quantum systems of the topological theory of phase transitions, these sketchily
presented connections seem to open the most natural way of approaching the
problem. Actually, within this framework, in recent years much work has
been done to develop effective potential methods that have been devised to
tackle quantum statistical systems by means of formally classical statistical-
mechanical methods [256].

Nevertheless, there can be other possibilities of exporting to quantum
systems the geometric and topological methods here developed for classical
systems. For example, let us mention only that the use of generalized coher-
ent states or of Bohm’s theory of quantum motions leads to formally classical
descriptions of quantum systems [257, 258] that can be used to tackle chaos
in quantum systems by resorting to standard definitions and methods used in
classical dynamics [259].

It is worth mentioning that also purely quantum-mechanical treatments
of phase transitions have revealed intriguing connections with topological
changes of certain state manifolds [260].



Appendix A

Elements of Geometry and Topology
of Differentiable Manifolds

The present appendix, and the following ones, are for physicists’ use and
contain a concise summary of some elementary concepts in differential geom-
etry and differential topology. Despite what it might perhaps seem by sim-
ply browsing these final pages of the book, the style of the presentation is
informal and should accommodate to the standard way that we, physicists,
have to approach mathematics. The aim of these appendices is twofold: first,
to provide those physicists who are not familiar with these subjects with the
conceptual mathematical background necessary to follow and appreciate the
meaning of the book content; second, to ease further mathematical readings
for those who, starting from scratch in this field, might find it interesting to
go more deeply into the subject.

The interested reader will benefit from the reading the books listed at the
end of this appendix.

In what follows, the Einstein summation convention over repeated indices
is always understood unless explicitly stated to the contrary.

A.1 Tensors

Let us consider an n-dimensional vector space Vn on a field K, and its dual
V ∗

n . Any element ω of V ∗
n is a linear function ω : Vn �→ K such that, given

X ∈ Vn, ω(X) = 〈ω,X〉; the field K is here assumed to be R or C. Of course
anyX ∈ Vn can be regarded as a linear function on V ∗

n , that isX(ω) = 〈ω,X〉,
so that (V ∗

n )∗ can be identified with Vn. Consider X,Y ∈ Vn and a function
f : Vn × Vn �→ K defined on the Cartesian product Vn × Vn. The function
f is called bilinear if it is linear in X, for fixed Y , and is linear in Y , for
fixed X.

Then consider ω, π ∈ V ∗
n . The tensor product ω ⊗ π is a K-valued map,

ω⊗ π : Vn × Vn �→ K, such that ω⊗ π(X,Y ) = ω(X)π(Y ), which is obviously
bilinear. In general, a function f : Vn× · · · ×Vn(q copies) �→ K is q-linear if it
is linear in each argument X1, . . . , Xq ∈ Vn. Considering, then, p elements of

361
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V ∗
n , that is, ω1, . . . , ωp ∈ V ∗

n , their tensor product ω1 ⊗ · · · ⊗ ωp : Vn × · · · ×
Vn(p copies) �→ K is

ω1 ⊗ · · · ⊗ ωp(X1, . . . , Xp) = ω1(X1) · · ·ωp(Xp) .

Let W (p,q) be the product space of p times the dual space V ∗
n of a vector

space Vn, and q times the vector space Vn itself: W (p,q) = V ∗
n × · · · × V ∗

n ×
Vn × · · · × Vn. If f : Vn × · · · × Vn(q copies) �→ K is a q-linear map, and
g : V ∗

n × · · · × V ∗
n (p copies) �→ K is p-linear, their tensor product is a (p+ q)-

linear map g ⊗ f : W (p,q) �→ K such that

g ⊗ f(ω1, . . . , ωp, X1, . . . , Xq) = g(ω1, . . . , ωp)f(X1, . . . , Xq) .

The set of all the (p + q)-linear mappings from W (p,q) to the field K, is the
space, denoted by

T (p,q) = V ∗
n ⊗ · · · ⊗ V ∗

n︸ ︷︷ ︸
p times

⊗Vn ⊗ · · · ⊗ Vn︸ ︷︷ ︸
q times

,

of (p, q)-type tensors; r = p + q is the rank of the tensor, p the index of
covariance, and q the index of contravariance.

So a real (p, q)-tensor t over a vector space Vn is

t : T (p,q) �→ R , (A.1)

i.e., acting on p dual vectors and q vectors, t yields a number, and it does
so in such a manner that if we fix all but one of the vectors or dual vectors,
it is a linear map in the remaining variable. A (0, 0) tensor is a scalar, a (0, 1)
tensor is a vector, and a (1, 0) tensor is a dual vector (covector).

The space T (p,q) of the tensors of type (p, q) is a linear space; a (p, q)-
tensor is defined once its action on p vectors of the dual basis and on q
vectors of the basis is known, and since there are npnq independent ways of
choosing these basis vectors, T (p,q) is an np+q-dimensional linear space. The
vector space structure of T (p,q) is defined in the standard way: if a ∈ K, and
t, s ∈ T (p,q), then

(at)(ω1, . . . , ωp, X1, . . . , Xq) = at(ω1, . . . , ωp, X1, . . . , Xq) ,

(t + s) = t(ω1, . . . , ωp, X1, . . . , Xq) + s(ω1, . . . , ωp, X1, . . . , Xq) .

The introduction of a product operation between tensors (defined below) leads
to the definition of a non-commutative tensor algebra associated to Vn. Two
other natural operations can be defined on tensors. The first one is called con-
traction with respect to the ith (dual vector) and the jth (vector) arguments
and is a map

C : t ∈ T (p,q) �→ Ct ∈ T (p−1,q−1) (A.2)
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defined by

Ct =
n∑

μ=1

t(. . . , vμ∗︸︷︷︸
i

, . . . ; . . . , vμ︸︷︷︸
j

, . . .) . (A.3)

The contracted tensor Ct is independent of the choice of the basis, so that
the contraction is a well-defined, invariant operation.

The second operation is the tensor product, which maps an element
T (p,q) × T (p′,q′) into an element of T (p+p′,q+q′), i.e., two tensors t and t′

into a new tensor, denoted by t ⊗ t′, defined as follows: given p + p′ dual
vectors v1∗, . . . , vp+p′∗ and q + q′ vectors w1, . . . , wq+q′ , then

t⊗ t′(v1∗, . . . , vp+p′∗;w1, . . . , wq+q′)

= t(v1∗, . . . , vp∗;w1, . . . , wq) t′(vp+1∗, . . . , vp+p′∗;wq+1, . . . , wq+q′). (A.4)

The tensor product allows one to construct a basis for T (p,q) starting from a
basis {vμ} of V and its dual basis {vν∗}: such a basis is given by the np+q

tensors {vμ1 ⊗ · · · ⊗ vμp
⊗ vν1∗ ⊗ · · · ⊗ vνq∗}. Thus, every tensor t ∈ T (p,q)

allows a decomposition

t =
n∑

μ1,...,νq=1

tμ1···μp
ν1···νqvμ1 ⊗ · · · ⊗ vνq∗ ; (A.5)

the numbers tμ1···μp
ν1···νq are called the components of t in the basis {vμ}.

The components of the contracted tensor Ct are

(Ct)μ1···μp−1
ν1···νq−1 = tμ1···ρ···μp

ν1···ρ···νq (A.6)

(let us keep in mind the summation convention), and the components of the
tensor product t⊗ t′ are

(t⊗ t′)
μ1···μp+p′

ν1···νq+q′ = tμ1···μp
ν1···νq t

′μp+1···μp+p′
νq+1···νq+q′ . (A.7)

All these results are valid for a generic vector space Vn. As we will see below,
they apply in particular to the vector spaces of the tangent bundle TM of
a manifold M , over which tensors (and, analogously to vector fields, tensor
fields) can be defined as above.

Now letGq be the index permutation group acting on 1, 2, . . . , q and denote
by σ ∈ Gq any of its elements. Denote again by σ the mapping σ : W (0,q) →
W (0,q) defined by

σ(u(1), . . . , u(q)) = (uσ(1), . . . , uσ(q)), u(k) ∈ Vn ;

if t ∈ T (0,q) is a (0, q) tensor, i.e., t : W (0,q) → K, then also tσ ∈ T (0,q);
moreover, if a, b ∈ K, t1, t2 ∈ T (0,q), it is true that (at1+bt2)σ = at1σ+bt2σ.
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A symmetric tensor t2 ∈ T (0,q) is such that t = tσ for any σ ∈ Gq, whereas
a tensor t2 ∈ T (0,q) is called antisymmetric if

for any σ ∈ Gq , t = ε(σ)tσ ,

where ε(σ) = ±1 according to the parity of σ, ε(σ) = −1 for even permuta-
tions.

Hence, for any q-tuple of vectors (u(1), . . . , u(q)) ∈W (0,q),

∀σ ∈ Gq , t(u(1), . . . , u(q)) = t(uσ(1), . . . , uσ(q))

for symmetric tensors and

∀σ ∈ Gq , t(u(1), . . . , u(q)) = ε(σ)t(uσ(1), . . . , uσ(q))

for antisymmetric tensors.
By replacing {u(k)} with {e(jk)}, k = 1, . . . , q ( {e(jk)} is any basis of Vn),

we get the following relations among the tensor components:

tj1...jq
= tjσ(1)...jσ(q) ∀σ ∈ Gq ,

tj1...jq
= ε(σ)tjσ(1)...jσ(q) ∀σ ∈ Gq .

The two sets of symmetric and antisymmetric tensors of T (0,q) form two sub-
spaces Λq

S and Λq
A of T (0,q) such that Λq

S

⋂
Λq

A = {0}.
The elements of Λq

A are also called exterior forms of degree q or q-forms.
Proposition. Any q-form α ∈ Λq

A vanishes on any q-tuple of linearly
dependent vectors. In particular, if q > n then Λq

A = {0}.

A.1.1 Symmetrizer and Antisymmetrizer

An endomorphism ϕ : T (0,q) → T (0,q) permutable with Gq, i.e., such that
∀t ∈ T (0,q), ∀σ ∈ Gq gives ϕ(tσ) = ϕ(t)σ, is called a symmetrization opera-
tor, or symmetrizer, if it transforms any tensor into a symmetric tensor and
leaves a symmetric tensor unchanged An endomorphism, permutable with
Gq, that transforms any tensor into an antisymmetric tensor and leaves an
antisymmetric tensor unchanged is called an antisymmetrization operator, or
antisymmetrizer.

Proposition. On T (0,q) there exist, and are unique, a symmetrizer S and
antisymmetrizer A defined by

S(t) =
1
q!

∑
τ∈Gq

tτ , ∀t ∈ T (0,q) ,

A(t) =
1
q!

∑
τ∈Gq

ε(τ)tτ , ∀t ∈ T (0,q) . (A.8)
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Proposition. ∀t ∈ T (0,q) it is true that SA(t) = 0 and AS(t) = 0.
Thus symmetrization of an antisymmetric tensor or antisymmetrization of
a symmetric tensor yields a null tensor. Moreover, t ∈ Λq

A ⊕ Λq
S iff t =

S(t) +A(t), and A(t) = 0 ∀t ∈ T (0,q) with q > n.
Everything can be also repeated for contravariant tensors and, more gen-

erally, for tensors of T (p,q). Symmetrization and antisymmetrization can be
defined in this case as operators acting on a given number k of indexes (all of
them either covariant or contravariant.

A.2 Grassmann Algebra

Let us now simply denote by Λq the space of q-forms associated with Vn. We
define the exterior product of two forms α ∈ Λp and β ∈ Λq, denoting it by
α ∧ β, by antisymmetrizing the tensor α⊗ β, i.e.,

α ∧ β = A(α⊗ β) .

Remember that if α ∈ T (0,p) and β ∈ T (0,q), then α ⊗ β : W (0,p+q) → K is
defined by

α⊗ β(u(1), . . . , u(p+q)) = α(u(1), . . . , u(p))β(u(p+1), . . . , u(p+q)) .

The exterior product, or wedge product, thus gives a (p+ q)-form.
From the general property of the antisymmetrizer A, i.e., ∀t1 ∈ T (0,q1),

t2 ∈ T (0,q2), t3 ∈ T (0,q3), it is true that

A(A(t1 ⊗ t2)⊗ t3) = A(t1 ⊗ t2 ⊗ t3) = A(t1 ⊗A(t2 ⊗ t3)) ,

and the associative property of the exterior product follows:

(α1 ∧ α2) ∧ α3 = A(α1 ⊗ α2 ⊗ α3) = α1 ∧ (α2 ∧ α3) .

More generally, if αi ∈ Λpi we have

(α1 ∧ α2 ∧ · · · ∧ αk) = A(α1 ⊗ α2 ⊗ · · · ⊗ αk) .

Let us give an example. Consider v(1), . . . , v(p) ∈ V ∗
n = Λ1 = T (0,1), i.e., p

covariant vectors (p ≤ n). Their exterior product

v(1) ∧ v(2) ∧ · · · ∧ v(p)

belongs to T (0,p). Now we want to compute its components with respect to a
basis of T (0,p). Denote by V (r)

i = 〈v(r), e(i)〉 the components with respect to
{e(i)}, a basis of Vn. Then

(v(1) ∧ v(2) ∧ · · · ∧ v(p))i1...ip
= A(v(1) ⊗ v(2) ⊗ · · · ⊗ v(p))(e(i1) . . . e(ip)) ,
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1
p!

∑
τ∈Gp

ε(τ)v(1) ⊗ v(2) ⊗ · · · ⊗ v(p)(eiτ(1) . . . eiτ(p))

=
1
p!

∑
τ∈Gp

ε(τ)v(1)iτ(1)
· · · v(1)iτ(p)

;

hence, using det(A) = det(A1, . . . , An) =
∑

σ ε(σ)aσ(1),1 · · · aσ(n),n, we obtain

(v(1) ∧ · · · ∧ v(p))i1...ip
=

1
p!

det

⎛⎜⎝ v(1)i1
v
(2)
i1
. . . v

(p)
i1

. . . . . . . . . . . .

v
(1)
i1
v
(2)
i1
. . . v

(p)
i1

⎞⎟⎠ ,

whence it follows that p covariant vectors are dependent iff their exterior
product vanishes. Moreover

v(1) ∧ · · · ∧ v(p) = ε(σ)vσ(1) ∧ · · · ∧ vσ(p) . (A.9)

Now consider the p-forms of the type

e(h1) ∧ e(h2) ∧ · · · ∧ e(hp) , 1 ≤ h1 < h2 < · · · < hp ≤ n .

There are
(
n
p

)
such forms obtained from all the possible combinations of

h1, . . . , hp. It can easily be shown that these p-forms are linearly indepen-
dent, thus providing a basis for Λp. In fact consider any α ∈ Λp ⊆ T (0,p),
p ≤ n. We can write

α =
1
p!
αi1i2···ip

e(i1) ⊗ e(i2) ⊗ · · · ⊗ e(ip)

(here, as usual, repeated indexes mean summation on them), 1
p!αi1i2···ip

are
the components of α with respect to the basis {e(i1)⊗· · ·⊗e(ip)} of T (0,p). Now
apply to both members the antisymmetrizer A (remember that A(α) = α).
Since A(e(i1) ⊗ · · · ⊗ e(ip)) = e(i1) ∧ · · · ∧ e(ip),

α =
1
p!
αi1i2...ip

e(i1) ⊗ e(i2) ⊗ · · · ⊗ e(ip)

=
∑

h1<···<hp

αh1h2...hp
e(h1) ∧ e(h2) ∧ · · · ∧ e(hp) , (A.10)

which now gives the development of α with respect to the basis {e(h1)∧e(h2)∧
· · · ∧ e(hp)} of Λp; such a basis is called a basis associated with the basis {e(i)}
of Vn. Clearly the dimension of Λp is

(
n
p

)
. The components αh1h2···hp

are called
restricted components of α. From (A.9) and (A.10) we have

αq ∧ βp = (−1)pqβp ∧ αq , α ∈ Λq, β ∈ Λp .

Thus αp ∧ αp = 0 if p is odd.
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Let us now define

Λ =
n⊕

p=0

Λp

with Λ0 = K and Λ1 = V ∗
n . The elements of Λ are the (n + 1)-tuples

(α0, α1, . . . , αn) with αp ∈ Λp.
The sum (α0, α1, . . . , αn)+(β0, β1, . . . , βn) = (α0+β0, α1+β1, . . . , αn+βn)

and the product by a coefficient c: c(α0, α1, . . . , αn) = (cα0, cα1, . . . , cαn)
provide Λ with the structure of a vector space. Its dimension is dimΛ =∑n

k=0

(
n
k

)
= 2n. Now the following product, à la Cauchy, can be defined

over Λ:

(α0, α1, . . . , αn) ∧ (β0, β1, . . . , βn)
= (α0 ∧ β0, α0 ∧ β1 + α1 ∧ β0, α0 ∧ β2 + α1 ∧ β1 + α2 ∧ β0, . . .)

with respect to this product operation Λ is an algebra. It is the Grassmann
algebra associated with Vn.

A.3 Differentiable Manifolds

A.3.1 Topological Spaces

A basic concept, preliminary to the definition of manifolds, is that of topolog-
ical space. A topological space is a set X of arbitrary elements, the “points”
of the space, where a concept of continuity is defined. To do this, one defines
a collection T = {U(x)|x ∈ X} of certain subsets U(x) of the space that are
associated with the points of the space as their neighborhoods. Depending
on the set of axioms that these neighborhoods are required to obey, one gets
different kinds of topological spaces (X , T ). The most important of them are
Hausdorff topological spaces, for which the neighborhoods must satisfy the
following axioms:

1. To each point x there corresponds at least one neighborhood U(x); each
neighborhood U(x) contains the point x.

2. If U(x) and V (x) are two neighborhoods of the same point x, then there
exists a neighborhood W (x) that is a subset of both.

3. If the point y lies in U(x), there exists a neighborhood U(y) that is a
subset of U(x).

4. For two distinct points x, y there exist two neighborhoods U(x), U(y)
without common points.

Using neighborhoods we can introduce the concept of continuity: a map-
ping f of a topological space X onto a subset of a topological space Y is
called continuous at the point x if for every neighborhood U(y) of the point
y = f(x) one can find a neighborhood U(x) of x such that all points of U(x)
are mapped into points of U(y) by means of f . If f is continuous at every
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point of X , it is called continuous in X . A neighborhood is said to be open
if every point y ∈ U(x) has a neighborhood V (y) entirely contained in U(x),
that is, V (y) ⊂ U(x).

The main purpose of topology is to classify spaces through some equiva-
lence relation. Two spaces X and Y are said to be topologically equivalent if
they can be continuously deformed one into the other, i.e., if there exists a
homeomorphism (a continuous invertible map with continuous inverse) ϕ that
maps X into Y = ϕ(X ). If there exists a homeomorphism between X and Y,
then X is said to be homeomorphic to (∼) Y. A homeomorphism establishes
an equivalence relation, so that classifying topological spaces means to devise
a method of finding the equivalence classes of homeomorphisms.

This can be achieved, at least in principle, by working out all the topological
invariants of given classes of spaces, that is, finding all the quantities conserved
under the action of homeomorphisms.

If the topological spaces are differentiable manifolds, one will require equiv-
alence under diffeomorphisms instead of homeomorphisms. A diffeomorphism
is a differentiable map with differentiable inverse.

A cube (or a polyhedron) in Euclidean 3-space is topologically equiva-
lent to a sphere under a homeomorphism but not under any diffeomorphism.
A cube (or a polyhedron) in Euclidean 3-space is not topologically equivalent
to a torus, neither under homeomorphisms nor under diffeomorphisms. This
can be seen by the fact that a cube (or a polyhedron) has no holes, while a
torus has one hole.

A.3.2 Manifolds

An n-dimensional topological manifold M is a topological space such that to
every point x ∈M is associated an open neighborhood U(x) homeomorphic to
R

n. In other words,M locally resembles Euclidean space. Open neighborhoods
are required in the definition to avoid restrictions on the global topology ofM .

The local homeomorphism is realized by a one-to-one map ϕ that
associates to every point P ∈ U ⊂ M of an open neighborhood an n-tuple
(x1(P ), . . . , xn(P )), the coordinates of P under ϕ; thus ϕ associates to U an
open set ϕ(U) ⊂ R

n. The pair {(U,ϕ)} is called a chart. It is easily realized
that open neighborhoods must overlap if all the points of M are to belong at
least to one neighborhood. If two neighborhoods U and V of the charts (U,ϕ)
and (V, ψ) have in common a point P such that ϕ(P ) = (x1(P ), . . . , xn(P ))
and ψ(P ) = (y1(P ), . . . , yn(P )) are the coordinates of P in the two charts,
then there will be a functional relationship among these coordinates, that is,
the composite map ψ ◦ ϕ−1 is a coordinate transformation

y1 = y1(x1, . . . , xn) ,
y2 = y2(x1, . . . , xn) ,
. . . . . .

yn = yn(x1, . . . , xn) ,



A.3 Differentiable Manifolds 369

Fig. A.1. A neighborhood U in the manifold M is mapped onto ϕ(U) ⊂ R
n by

the one-to-one mapping ϕ. This allows one to associate with any point P ∈ U a
unique set of numbers (x1, . . . , xn) ∈ R

n. Thus U is given a system of coordinates,
as is pictorially shown by the dashed curves within U that are obtained through the
action of ϕ−1 on the straight coordinate lines of ϕ(U) ⊂ R

n.

Fig. A.2. The partially overlapping neighborhoods U and V in the manifold M
are mapped onto R

n by the maps ϕ and ψ, respectively. The overlap region is thus
given two distinct coordinate systems by these two maps. The differentiability class
of M depends of the relation between these coordinates.

which is required to be continuous and invertible on U ∩ V . If the partial
derivatives of all the functions {yi} with respect to the {xi} exist and are
continuous up to the order k, then the charts (U,ϕ) and (V, ψ) are said to
be Ck-related. If one can construct a whole family of charts {(Ui, ϕi)} such
that each point of M belongs to at least one neighborhood of M , that is,⋃

i Ui = M , such that ϕi(Ui) ⊂ R
n is an open set, and every chart is Ck-related

with the charts with which it overlaps, then this family is called an atlas and
the manifold is said to be a Ck-manifold. A manifold of class C1 is called a
differentiable manifold and a manifold of class C∞ is called a smooth manifold.
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If the union of two atlases is again an atlas, then these atlases are said to be
compatible. This relation of compatibility defines an equivalence relation; the
corresponding equivalence class is the differentiable structure of the manifold.

Endowing a topological manifold with these differentiable structures pro-
duces an enormous amount of structure, allowing one to define calculus on
manifolds, as well as to define vector and tensor fields, differential forms,
flows, Lie derivatives, and so on.

A.4 Calculus on Manifolds

Since every manifold is locally the same as some R
n, we can extend to mani-

folds the usual calculus developed in R
n. As a consequence of smoothness of

the coordinate transformations, calculus on manifolds is independent of the
choice of local coordinates.

Consider a map f : M → N from an m-dimensional manifold M to an
n-dimensional manifold N , and let (U,ϕ) and (V, ψ) be two charts on M and
N respectively, such that if P ∈ U ⊂M then f(P ) ∈ V ⊂ N . If the coordinate
expression

ψ ◦ f ◦ ϕ−1 : R
m → R

n

is smooth, that is, y = ψfϕ−1(x) is a smooth vector-valued function defined
on an open set of R

m, then f is said to be differentiable at P ∈ M . This
property is independent of the chosen coordinate systems (charts) inM andN .
A diffeomorphism is a smooth mapping f : M → N having an inverse mapping
that is also smooth. In this case we write M ≈ N and dim M = dim N .

Homeomorphisms classify spaces according to the possibility of continu-
ously deforming a space into another. Diffeomorphisms classify spaces accord-
ing to the possibility of performing such a deformation smoothly. A smooth
homeomorphism need not be a diffeomorphism; a smooth inverse is also

Fig. A.3. Constructing differentiable mappings between manifolds.
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required. The set of diffeomorphisms f : M → M , denoted by Diff(M), is
a group.

A smooth mapping f : M → R is a function on M . In a chart (U,ϕ),
the coordinate presentation of f is given by f ◦ ϕ−1 : R

m → R, a real-valued
function of m variables. The set of smooth functions on M is denoted by
F(M).

A.4.1 Vectors

Vectors on a manifold M are defined through tangent vectors to a curve in
M . Recall first that the tangent line to a plane curve in the xy plane

y − y(x0) =
dy

dx

∣∣∣∣
x=x0

(x− x0) (A.11)

approximates the curve, assumed differentiable, close to x0. The tangent
vectors on a manifold generalize the tangent line (A.11). So we define tan-
gent vectors on M with the aid of a curve c : (a, b) → M , with (a, b) a real
open interval containing t = 0, and of a function f : M → R. The tangent
vector at c(0) is defined as the directional derivative of a function f along the
curve c(t) at t = 0, i.e., f(c(t)). This is given by

df(c(t))
dt

∣∣∣∣
t=0

, (A.12)

and in local coordinates by

∂f

∂xi

dxi(c(t))
dt

∣∣∣∣
t=0

, (A.13)

which is equivalent to the application of the differential operator X = Xi ∂
∂xi ,

where Xi = dxi(c(t))/dt|t=0, to the function f :

df(c(t))
dt

∣∣∣∣
t=0

= Xf ≡ Xi ∂f

∂xi
.

We define as tangent vector at p ∈M , p = c(0), along the direction c(t) by

X = Xi ∂

∂xi
.

Let now p be in the chart (U,ϕ). Applying X to the coordinate functions
ϕ(c(t)) = xi(t) we obtain

X[xi] =
dxk

dt

∂xi

∂xk
=
dxi

dt

∣∣∣∣
t=0

.
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Since any two curves c1(t) and c2(t) such that c1(0) = c2(0) = p ∈ M and
dxi(c1(t))/dt|t=0 = dxi(c2(t))/dt|t=0, yield the same tangent vector at p, we
identify a tangent vector X with the equivalence class of curves at p ∈ M
with the just-remarked equivalence relation. All the tangent vectors at p ∈M
form the tangent space TpM . It is evident that e(i) = ∂/∂xi, i = 1, . . . , n,
(n = dim M), are the basis vectors of TpM and {e(i)} the coordinate basis,
so that a vector V ∈ TpM is written as V = V ie(i). Now, TpM is a vector
space of dim TpM = dimM ; thus there exists a dual vector space T ∗

pM whose
elements are linear functions from TpM to R. An element of the cotangent
space T ∗

pM , i.e., ω : TpM → R, is called a covector, or cotangent vector, or
one-form. The differential df of a function f ∈ F(M) provides us with the
simplest example of a one-form.

We know that a vector V ∈ TpM acts on f as V [f ] = V i(∂f/∂xi) ∈ R,
whence the action of df ∈ T ∗

pM on V ∈ TpM can be defined as follows: notice
that with respect to a chart (U,ϕ), df is expressed as df = (∂f/∂xi)dxi, in
terms of x = ϕ(p), and that an element of T ∗

pM must act on an element of
TpM , yielding a real number. Thus put

〈df, V 〉 := V [f ] = V i ∂f

∂xi
∈ R ,

where V [f ] is the real number in question, and this definition is natural if
we regard {dxi} as a basis for T ∗

pM (in fact, from df = (∂f/∂xi)dxi and
〈df, V 〉 = V 1(∂f/∂x1) + · · ·+ V n(∂f/∂xn) ≡ V i(∂f/∂xi) = V [f ]). The basis
{dxi} of T ∗

pM is a dual basis; in fact,〈
dxi,

∂

∂xk

〉
=
∂xi

∂xk
= δik .

Now, any arbitrary one-form ω will be expressed as ω = aidx
i, where the

coefficients ai need not be partial derivatives of some function f .
The union of all the tangent spaces of the manifold M ,

TM =
⋃

p∈M

TpM , (A.14)

is a manifold, called the tangent bundle of M ; we have dim TM = 2 dim M .
The dual space of TM , T ∗M , is called the cotangent bundle of M .

Notice that both vectors and one-forms exist independently of any
coordinate system; thus their coordinate independence must be expressed
by suitable transformation properties of their components. Given two charts,
let p ∈ Ua ∩Ub and x = ϕa(p), y = ϕb(p). For a vector V ∈ TpM we have two
equivalent representations

V = V i (∂/∂xi) = Ṽ i (∂/∂yi) ,
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so that the components V i and Ṽ i are related by

Ṽ i = V j (∂yi/∂xj) . (A.15)

Similarly, for one-forms, from dyi = (∂yi/∂xj)dxj we get

ω̃i = ωj (∂xj/∂yi) . (A.16)

A.4.2 Flows and Lie Derivatives

Consider a vector field X on an m-dimensional manifold M . A curve c : I ⊂
R → M is an integral curve of X in M if it is tangent to X at all its points,
that is, if c′(t) = Xc(t), ∀t ∈ I. Using a chart (U,ϕ), with X = Xμ(∂/∂xμ)
and with {xμ(t)} for the components of ϕ(c(t)), this means that

dxμ

dt
= Xμ(x1, . . . , xm) , (A.17)

which is a system of ordinary differential equations. Since the right hand side of
(A.17) does not explicitly depend on the parameter t, we can intuitively think
of X as giving the velocity of a steady state flow of a fluid through M . The
existence and uniqueness theorem for ODE ensures that, at least locally, there
is a unique solution of (A.17) with initial data xμ

0 = xμ(0).
A vector field is said to be complete if each of its integral curves is defined

on the whole real line. Then we can proceed to assemble all the integral curves
of a given complete vector field X into a single mapping.

We define the flow of a complete vector field X on M as the mapping
σ : R×M →M given by

σ(p, t) = cp(t)

for one-forms, where cp(t) is an integral curve starting at the point p ∈ M .
In local coordinates we have

dσμ(t, x0)
dt

= Xμ(σ(t, x0)) (A.18)

with initial data σμ(t, x0) = xμ
0 .

If σ(t, x0) is the flow of a complete vector field, that is, for any x ∈ M
σ : R×M →M is a differentiable mapping, then:

(i) σ(t, 0) is the identity map of M .
(ii) t �→ σ(t, x) is a solution of (A.18).
(iii) σ(t, σ(s, x)) = σ(t+ s, x) for any t, s ∈ R.
(iv) the function σt : M →M , which makes any point x ∈M flow for exactly

time t, is a diffeomorphism of M with σ−1
t = σ−t.

Using the function σt above, condition (i) means that σ0 ≡ Id(M), condi-
tion (iii) means σt ◦ σs = σt+s, and these, together with (iv), make σt into a
commutative group that is a one-parameter group of diffeomorphisms.
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The infinitesimal version σε of the transformation σt reads

σμ
ε (x) = σμ(ε, x) = xμ + εXμ(x) ,

so that the vector field X is also called the infinitesimal generator of σt.
Given a complete vector field X, the corresponding flow σ is also

denoted by
σμ(t, x) = etXxμ ≡ et(d/ds)σμ(s, x)

∣∣∣
s=0

.

Consider now two complete vector fields X and Y , and the flows generated
by them, σ(t, x) and τ(t, x) respectively. In order to evaluate how the vector
field Y changes as a result of the dragging along the flow generated by the
vector field X, we define the Lie derivative LXY of Y with respect to the flow
of X as the vector field

LXY = lim
ε→0

1
ε

[
(σ−ε)�Y |σε(x) − Y |x

]
, (A.19)

where the variation of Y passing from x to x′ = σε(x) cannot be naively
computed as [Y |σε(x) − Y |x] because Y |σε(x) ∈ Tσε(x)M and Y |x ∈ TxM , so
that this difference is meaningless because the two vectors belong to different
spaces. Thus we have to map Y |σε(x) back to TxM by means of (σ−ε)� :
Tσε(x)M → TxM . In loal coordinates, withX = Xμ(∂/∂xμ), Y = Y μ(∂/∂xμ),
and {eν} = ∂/∂xν , one gets

LXY = (Xμ∂μY
ν − Y μ∂μX

ν) eν . (A.20)

By defining the Lie bracket [X,Y ] as

[X,Y ]f = X[Y [f ]]− Y [X[f ]]

for f ∈ F(M), we can see that LXY = [X,Y ].
The Lie derivative of a function f ∈ F(M) along a flow generated by a

vector field X is easily found to be LXf = X[f ] ≡ Xμ(∂f/∂xμ), the usual
directional derivative of f along X.

The Lie derivative of a one-form ω ∈ Λ1(M) along X is found to be
LXω = (Xν∂νωμ + ων∂μX

ν)dxμ ∈ Λ1(M), then, using the Leibniz rule

LX(Y ⊗ ω) = Y ⊗ (LXω) + (LXY )⊗ ω
we can extend the Lie derivative to more general cases.

A.4.3 Tensors and Forms on Manifolds

Similarly to what has been defined for vector spaces, we can now construct a
tensor of (r, q)-type at the point p of the manifold M by taking r factors of
TpM and q factors of T ∗

pM . Hence T (r,q)
p , the space of (r, q)-type tensors, is

the space whose elements t are

t :
r⊗
TpM

q⊗
T ∗

pM → R ,



A.4 Calculus on Manifolds 375

written, in the bases given above, as

t = ti1···ir
j1···jq

∂

∂xi1
· · · ∂

∂xir
dxj1 · · · dxjq .

The action of this tensor on r one-forms (covectors) and q vectors results in
the real number

t(ω1, . . . , ωr;V1, . . . , Vq) = ti1···ir
j1···jq

ω1i1 · · ·ωrir
V j1

1 · · ·V jq
q .

A smooth map that associates a tensor to each point p ∈ M defines a
tensor field on M .

The subspace Λq
p of T (0,q)

p of completely antisymmetric tensors is the space
of differential q-forms tangent at p to M . Thus if ω ∈ Λq

p, we have

ω =
1
q!
ωi1···iq

dxi1 ∧ · · · ∧ dxiq . (A.21)

Let us give some useful definitions:
Given a vector V ∈ TpM and a one-form ω ∈ T ∗

pM , their inner product
〈·, ·〉 : T ∗

pM ⊗ TpM → R is defined by

〈ω, V 〉 = ωiV
k〈dxi,

∂

∂xk
〉 = ωiV

kδik = ωiV
i .

Notice that the inner product is not defined between two vectors or two one-
forms.

A smooth map f : M → N naturally induces the differential map f∗
according to the definition

f∗ : TpM → Tf(p)N ,

whose explicit form uses the definition of a tangent vector as follows. If
gf ∈ F(M), with g ∈ F(N) (F(N) is the set of smooth real functions on
N), then V ∈ TpM acts on gf to give a real number V [gf ], so we define
f∗V ∈ Tf(p)N by

(f∗V )[g] = V [gf ]

in local charts (U,ϕ) on M and (U , ψ) on N :

(f∗V )[gψ−1(y)] ≡ V [gfϕ−1(x)]

with x = ϕ(p) and y = ψ(f(p)). Now, put V = V i ∂
∂xi and f∗V = W j ∂

∂yj .
From the equation above we obtain

W j ∂

∂yj
[gψ−1(y)] = V i ∂

∂xi
[gfϕ−1(x)] .
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Putting g = yj we get

W j = V i ∂y
j(x)
∂xi

.

Obviously the matrix (∂yj/∂xi) is the Jacobian of f : M → N . The differential
map f∗ is naturally extended to contravariant tensors

f∗ : T (r,0)
p (M) → T (r,0)

f(p) (N) . (A.22)

A map f : M → N also induces a map f∗ such that

f∗ : T ∗
f(p)N → TpM . (A.23)

Since f∗ goes “backward” with respect to f , it is called a pullback. If we
consider ω ∈ T ∗

f(p)N and V ∈ TpM , the pullback of ω by f∗ is defined by

〈f∗ω, V 〉 = 〈ω, f∗V 〉 .

Then the pullback f∗ is naturally extended to covariant tensors

f∗ : T (0,q)
f(p) (N) → T (0,q)

p (M) . (A.24)

If ω = ωidy
i ∈ T ∗

f(p)N , the induced form f∗ω = ηkdx
k ∈ TpM is

ηk = ωi
∂yi

∂xk
, (A.25)

where again, (∂yj/∂xi) is the Jacobian matrix J .
Remark 1: (gf)∗ = g∗f∗ and (gf)∗ = g∗f∗.
Remark 2: The extension of f : M → N to T (r,q) is possible only if f is a
diffeomorphism, so that J (the Jacobian) is defined also for f−1.

In this case—consider for example T (1,1)—we have

f∗

(
tik
∂

∂xi
⊗ dxk

)
= tik

(
∂yj

∂xi

)(
∂xk

∂yl

)
∂

∂yj
⊗ dyl . (A.26)

Let us now come back to (A.21) and to the vector space Λq
p(M) of differential

q-forms at p ∈ M . By strictly following what we already did in the previous
section, we can define the Grassmann algebra of M . Let us take Λ0

p(M) =
F(M), Λ1

p(M) = T ∗
pM , Λ2

p(M), . . . , Λn
p (M), Λn+1

p (M) = {0}, Λr
p(M) = {0}

for r ≥ n+ 1; n = dim M , and form the space of all differential forms at p,

Λ∗
p(M) = Λ0

p(M)⊕ Λ1
p(M)⊕ · · · ⊕ Λn

p (M) =
n⊕

i=0

Λi
p(M) , (A.27)

to yield the Grassmann algebra of M once it is equipped with the exterior
product ∧ of differential forms, that is, ∧ : Λq

p(M) × Λr
p(M) → Λq+r

p (M).
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The space Λ∗
p(M) is closed under the exterior product which acts, let us

recall, “à la Cauchy”:

ω, ξ ∈ Λ∗
p(M), ω = (ω0, ω1, ω2, . . .), ξ = (ξ0, ξ1, ξ2, . . .) ,

(ω0, ω1, ω2, . . .) ∧ (ξ0, ξ1, ξ2, . . .)
= (ω0 ∧ ξ0, ω0 ∧ ξ1 + ω1 ∧ ξ0, ω0 ∧ ξ2 + ω1 ∧ ξ1 + ω2 ∧ ξ0, . . .). (A.28)

Then we can smoothly assign to each point of a manifold M an r-form.
Hence, from each vector space Λr

p(M) we generalize to the space Λr(M) of
r-differential forms on M . We have

space basis dimension

Λ0(M) = F(M) {1} dim Λ0(M) = 1
Λ1(M) = T ∗M {dxk} dim Λ1(M) = n
Λ2(M) {dxi1 ∧ dxi2} dim Λ2(M) = 1

2n(n− 1)
Λ3(M) {dxi1 ∧ dxi2 ∧ dxi3} dim Λ3(M) = 1

6n(n− 1)(n− 2)
...

...
...

Λn(M) {dx1 ∧ dx2 ∧ . . . ∧ dxn} dim Λn(M) = 1

For example, we have

dxi ∧ dxk = dxi ⊗ dxk − dxk ⊗ dxi ,

dxi ∧ dxk ∧ dxl =
1
2
(dxi ⊗ dxk ⊗ dxl + dxl ⊗ dxi ⊗ dxk)

+
1
6
(dxk ⊗ dxl ⊗ dxi − dxi ⊗ dxl ⊗ dxk

−dxl ⊗ dxk ⊗ dxi − dxk ⊗ dxi ⊗ dxl) . (A.29)

Obviously Λ∗
p(M) generalizes to Λ∗(M) on the whole manifold. Each space

Λp(M), p = 1, . . . , n, is also called a homogeneous component of degree p of
Λ∗(M). Its elements are ωp = (0, 0, . . . , 0, ωp, 0, . . .), and any differential form
ω ∈ Λ∗(M) can be written as sum of homogeneous forms as ω =

∑n
p=0 ω

p.
If ξ =

∑n
q=0 ξ

q we have (see (A.28))

ω ∧ ξ =
n∑

p=0

n∑
q=0

ωp ∧ ξq .

The map˜ : ω ∈ Λ∗(M) → ω̃ ∈ Λ∗(M), such that ω̃ =
∑n

p=0(−1)pωp, is a

bijective and involutory (i.e., ˜̃ω = ω, ∀ω ∈ Λ∗) endomorphism of Λ∗(M).
We have already seen that to any differentiable map between two man-

ifolds, f : M → N , we can associate its pullback f∗ that acts between the



378 Appendix A: Elements of Geometry and Topology

spaces T (0,q)
p (M) and T (0,q)

f(p) (N). Thus f∗ associates to a q-form at f(P ) ∈ N ,
ωq ∈ Λq

f(P )(N), a q-form f∗ωq tangent at P to M . One can easily verify that

f∗(aωr + bξq) = af∗ωr + bf∗ξq , a, b ∈ R ,

f∗(ωr ∧ ξq) = f∗ωr ∧ f∗ξq . (A.30)

These “pointwise” properties can be extended to the whole manifold, so
that f∗ : Λq(N) ⊆ T (0,q)(N) → Λq(M) ⊆ T (0,q)(M) has the properties
(A.30). This mapping also defines a homomorphism between the two subal-
gebras Λq(N) and Λq(M) of Λ∗(N) and Λ∗(M) respectively; this homomor-
phism maps q-forms to forms of the same degree; hence f∗ associates to any
ω =

∑N
q=0 ω

q ∈ Λ∗(N) the form f∗ω =
∑N

q=0 f
∗ωq ∈ Λ∗(M). Summarizing,

to any differentiable manifold M we can associate its Grassmann algebra
Λ∗(M), and to any differentiable map f : M → N the homomorphism
f∗ : Λ∗(N) → Λ∗(M). If f is a diffeomorphism between M and N , then
their corresponding Grassmann algebras are isomorphic.

A.4.4 Exterior Derivatives

The exterior derivative dr of an r-form is a mapping dr : Λr(M) → Λr+1(M)
that is defined by

ω =
1
r!
ωμ1···μr

dxμ1∧· · ·∧dxμr → drω =
1
r!

(
∂ωμ1···μr

∂xν

)
dxν∧dxμ1∧· · ·∧dxμr .

(A.31)

The exterior derivative has the following fundamental property:

dr+1dr = 0 (A.32)

or, dropping the suffix, d2 = 0.
In fact, considering ω = 1

r!ωμ1···μr
dxμ1 ∧ · · · ∧ dxμr ,∈ Λr(M), we have

d2ω =
1
r!

(
∂2ωμ1···μr

∂xλ∂xν

)
dxλ ∧ dxν ∧ dxμ1 ∧ · · · ∧ dxμr , (A.33)

which is identically zero because (∂2ωμ1···μr
/∂xλ∂xν) is symmetric with

respect to λ and ν, whereas dxλ ∧ dxν is antisymmetric.
An example can be useful. In three dimensional-space all the r-forms are

of the following kind:

ω0 = f(x, y, z) ,
ω1 = ωx(x, y, z)dx+ ωy(x, y, z)dy + ωz(x, y, z)dz ,
ω2 = ωxy(x, y, z)dx ∧ dy + ωyz(x, y, z)dy ∧ dz + ωzx(x, y, z)dz ∧ dx ,
ω3 = ωxyz(x, y, z)dx ∧ dy ∧ dz , (A.34)
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and the action of the exterior derivative turns out to be quite familiar, in fact

dω0 = (∂xf)dx+ (∂yf)dy + (∂zf)dz ,
dω1 = (∂xωy − ∂yωx)dx ∧ dy + (∂yωz − ∂zωy)dy ∧ dz+(∂zωx − ∂xωz)dz ∧ dx
dω2 = (∂xωyz + ∂yωzx + ∂zωxy)dx ∧ dy ∧ dz
dω3 = 0 , (A.35)

where we can recognize the actions of the basic operators of vector calculus:
dω0 ≡ grad(f), dω1 ≡ rot(ω1) and dω2 ≡ div(ω2); moreover, the elementary
properties that rot[grad(f)] ≡ 0 and div[rot(v)] ≡ 0 exemplify the meaning
of d2ω = 0 in this particular case.

de Rham Cohomology Groups

An r-form ω ∈ Λr(M) is said to be closed if its exterior derivative vanishes,
drω = 0, and it is said to be exact if it is the derivative of an (r − 1)-form
ψ ∈ Λr−1(M), i.e., ω = dψ. A closed r-form ω ∈ Λr(M) belongs to Ker(dr),
while an exact r-form ω ∈ Λr(M) belongs to Im(dr−1).

Definition. The rth (real) de Rham cohomology group of a manifold M ,
Hr(M), is the set of the equivalence classes of the closed r-differential forms
on M that differ only by exact r-forms, that is, the quotient group

Hr(M) = Ker(dr)/Im(dr−1) (A.36)

and

[ω] ∈ Hr(M) ⇔ [ω] = {ω′ ∈ Ker(dr)|ω′ = ω + dψ, ψ ∈ Λr−1(M)} .

Given an n-dimensional manifold, one can thus define n such groups Hr(M)
for r = 0, . . . , n.

A.4.5 Interior Product

Another important operation with forms is the interior product of a form ω
and a vector X, denoted by iXω, or X� ω, or also i(X)ω. Let ω ∈ Λr(M)
be an r-form and X ∈ X (M) a vector field on M . The interior product is
a mapping iX : Λr(M) → Λr−1(M) such that, using X = Xμ∂/∂xμ and
ω = 1

r!ωμ1···μr
dxμ1 ∧ · · · ∧ dxμr ,

iX(ω) =
1

(r − 1)!
Xνωνμ2···μr

dxμ2 ∧ · · · ∧ dxμr

=
1
r!

r∑
s=1

Xμsωμ1···μs···μr
(−1)s−1dxμ1 ∧ · · · ∧ d̂x

μs ∧ · · · ∧ dxμr ,
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where d̂x
μs

means that this term is omitted. The interior product has, among
others, the following properties: iX(ω ∧ η) = iXω ∧ η + (−1)rω ∧ iXη (anti-
derivation); iXf = 0; i2X = 0 (nilpotency); diX +iXd = LX the Lie derivative
with respect to X (this important formula is due to Cartan).

To give again an example in R
3, with coordinates (x, y, z), one easily checks

that

iex
(dx ∧ dy) = dy, iex

(dy ∧ dz) = 0, iex
(dz ∧ dx) = −dz .

A.4.6 Integration of Forms on Manifolds

Differential forms can be integrated only on orientable manifolds. Thus, let
us define orientability. Consider a connected m-dimensional manifold M and
a point p ∈ M . Then consider two charts (Ui, ϕi) and (Uj , ϕj) such that
p ∈ Ui∩Uj . Let xμ be the local coordinates on Ui and yα the local coordinates
on Uj . Then let {eμ} = {∂/∂xμ} and {eα} = {∂/∂yα} be the corresponding
bases on TpM . We have the relation

eα =
∂xμ

∂yα
eμ .

If J = det(∂xμ/∂yαeμ) > 0 on the set Ui ∩Uj , then the two bases are said to
define the same orientation on Ui ∩ Uj ; if J < 0 then they define an opposite
orientation. Now, consider a family of sets {Ui} that coversM , i.e.,

⋃
i Ui = M .

If for any two sets Ui, Uj such that Ui ∩ Uj �= ∅ the local coordinates {xμ}
and {yα} respectively are such that J > 0, then the manifold M is said to be
orientable.

Suppose we want to compute the integral
∫
M
fω, where f : M → R is a

function, and ω is a volume form, that is, an m-form ω = h(p)dx1∧· · ·∧dxm.
By resorting to an open covering {Ui} of M such that any point p ∈ M is
covered by a finite number of Ui, we define∫

Ui

fω ≡
∫

ϕi(Ui)

f(ϕ−1
i (x))h(ϕ−1

i (x))dx1 · · · dxm (A.37)

and then we define a partition of unity, subordinate to the covering {Ui},
as a family of differentiable functions {εi(p)} such that (i) 0 ≤ εi(p) ≤ 1;
(ii) εi(p) = 0 if p /∈ Ui; (iii)

∑
k εk(p) = 1, ∀p ∈M . We readily see that

f(p) =
∑

i

f(p)εi(p) :=
∑

i

fi(p) , fi(p) �= 0 iff p ∈ Ui .

Using (A.37) to define the integral of fi on Ui, we have∫
M

fω =
∑

i

∫
Ui

fiω . (A.38)

This integral is independent of the atlas chosen on M .
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A.5 The Fundamental Group

Let us now sketchily review some basic facts about topology.
The idea of classifying all topological spaces is hopeless. This notwith-

standing, some strategy to decide whether two spaces are homeomorphic can
be developed. The next section will be devoted to the study of the conditions
that two spaces have to satisfy to be diffeomorphic.

An obvious way to prove that, for example, two given spaces are homeo-
morphic is to construct a homeomorphism between them. The converse, that
is proving that two spaces are not homeomorphic, is much worse from a con-
structive viewpoint because we cannot check all the possible functions acting
between two spaces and then prove that none of them is a homeomorphism.
A successful way out of this difficulty is to look for topological invariants, which
can be very different things, such as a geometrical property of the space, a
number such as the Euler characteristic of the space, an algebraic stucture,
such as a group or a vector space constructed from the topological space
under study. The requirement is that a given invariant has to be preserved
by homeomorphisms. Then, by computing the same topological invariant for
two given spaces, if one gets different results, this means that the two spaces
are not homeomorphic. Sometimes it may happen that the chosen topological
invariant is not able to discriminate between topologically equivalent spaces,
so that some refinement is required.

An algebraic way of investigating homeomorphicity between spaces is due
to Poincaré, who devised a method to associate with each topological space
an invariant group such that homeomorphic spaces have isomorphic groups.
This amounts to constructing the so-called fundamental or first homotopy
group associated with a topological space X . This has to do with multiple
connectedness of a topological space.1,2

To begin with an intuitive example, consider two spaces, X and Y, as
shown in Figure A.4. The space X has a hole; thus it is not simply connected.
The presence of the hole makes us think that the two spaces are not homeo-
morphic. A simple way of detecting the presence of the hole is to fix a point
in the space and then to consider all the loops starting and ending at this
point. If a loop encircles the hole it cannot be continuously shrunk to a point.

1 If, given a topological space X , there exist two nonempty, open, and disjoint
subsets and B ⊂ X such that A ∪ B = X , then X is disconnected. X is locally
connected if any neighborhood of any point x ∈ X contains a connected neigh-
borhood. The space X is simply connected if it is connected and locally connected
and if every covering space (X̃ , f) is isomorphic to (X , Id), where Id is the iden-

tity mapping. The covering space (X̃ , f) is a universal covering space for X if it
is simply connected.

2 A covering space of a topological space X is a pair (X̃ , f) with f : X̃ → X
continuous onto, and such that for any x ∈ X there is a neighborhood I(x)
such that f|Cα : Cα → I(x) is a homeomorphism onto, Cα being a connected
component of the preimage f−1(I(x)).
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Fig. A.4. In a disc (left) any loop can be continuously shrunk to a point. In presence
of a hole (right) the loops embracing it cannot be shrunk to a point.

Thus in the space X we have two different kinds of loops: those that can be
shrunk to a point and those that cannot. In contrast, in the space Y all the
possible loops can be shrunk to a point. Poincaré’s construction makes use of
loops to build the fundamental group to be used as a detector of the pres-
ence of holes in a space. More precisely, since different loops are equivalently
able to detect the presence of the same hole in the space, one is led to build
the fundamental group using equivalence classes of loops. This requires an
equivalence relation.

Two loops are equivalent if they are homotopic, that is, if they can be
continuously deformed one into the other. Homotopic loops form a homotopy
class. The space Y has only one such class. However, the space X has a
homotopy class for each integer n equal to the number of encirclements of
the hole by the loops. This makes a difference between the two spaces. Hence
we understand that working with these homotopy classes should allow to
study some fundamental topological properties of spaces. These homotopy
classes can be given a group structure, and this is the first homotopy group
π1(X ).

Let us now give a few basic definitions.
By a path in a space X going from x0 to x1 we mean a continuous map
α : [0, 1] → X such that α(0) = x0, α(1) = x1.
A topological space X is said to be arcwise connected or path connected if for
all x0, x1 ∈ X there is a path α joining them.
By a loop in the space X we mean a path α such that α(0) = α(1) = x0. Such
a loop is said to be based at the point x0.
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If α and β are two loops based at x0, one defines the product α $ β to be
the loop given by the formula

(α $ β)(s) =
{
α(2s), 0 ≤ s ≤ 1/2 ,
β(2s− 1), 1/2 ≤ s ≤ 1 ; (A.39)

α $ β is continuous and maps [0, 1
2 ] onto the image of α in X , and maps [12 , 1]

onto the image of β in X .
The inverse loop α−1 based at x0 ∈ X is defined as

α−1(s) = α(1− s), 0 ≤ s ≤ 1 .

The constant loop c based at x0 ∈ X is a map c : [0, 1] → X such that
c(s) = x0, 0 ≤ s ≤ 1.

However, this multiplication does not give a group structure on the set
of loops based at a given point. To overcome this difficulty and to obtain a
group, we identify two loops if they can be continuously deformed one into
the other, keeping the base point fixed.

If f, g : X → Y are maps, we say that f is homotopic to g if there exists a
map F : X × I → Y, I = [0, 1], such that F (x, 0) = f(x) and F (x, 1) = g(x)
for all points x ∈ X . The map F is called a homotopy from f to g.

Two loops α and β based at x0 are homotopic, α & β, if there exists a
continuous map

H : [0, 1]× [0, 1] → X
that satisfies the following conditions:

H(s, 0) = α(s), 0 ≤ s ≤ 1 ,
H(s, 1) = β(s), 0 ≤ s ≤ 1 ,
H(0, t) = H(1, t) = x0, 0 ≤ t ≤ 1 .

The map H is called a homotopy between α and β.
If α0, β0, γ0, α1, β1, γ1, . . . are loops based at x0 ∈ X then the following

relations hold:

(a) α0 & α0 ;
(b) α0 & β0 ⇒ β0 & α0 ;
(c) α0 & β0, β0 & γ0 ⇒ α0 & γ0 ;
(d) α0 & α1 ⇒ α−1

0 & α−1
1 ;

(e) α0 & β0, β0 & β1 ⇒ α0 $ β0 & α1 $ β1 .

These properties imply that homotopy is an equivalence relation. Let us
denote by [α] an equivalence class of loops (all the loops in [α] are mutually
homotopic), so that the set of loops can be partitioned into disjoint equiv-
alent classes. We denote by π1(X , x0) the set of homotopy classes of loops
based at x0.
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Given any two equivalence classes [α], [β] ∈ π1(X , x0), their product is
defined as

[α] ◦ [β] = [α $ β] .

In view of the properties (a)− (e) listed above, this product is well defined
and provides π1(X , x0) with a group structure, whose unit element is the
homotopy class [c] of the constant loop based at x0.
π1(X , x0) is the first homotopy group, or fundamental group, of the arcwise
connected topological space X .
An important property of π1(X , x0) so defined is that it does not depend on
the base point x0, in the sense that if x0, x1 ∈ X and X is path-connected,
then π1(X , x0) can be proved to be isomorphic to π1(X , x1).
Moreover, the fundamental group can be proved to be a topological invariant
of a path-connected space X . In fact, the following theorems can be proved:

Theorem. Two path-connected spaces X and Y are said to be of the same
homotopy type if there are continuous maps f and g such that f : Y → X ,
g : X → Y, and f ◦ g is not necessarily IdY but just homotopic to it. If X
and Y are of the same homotopy type and x0 ∈ X , y0 ∈ Y, then π1(X , x0) is
isomorphic to π1(Y, y0).
Theorem. Given X and Y path-connected topological spaces, if X is homeo-
morphic to Y, then π1(X , x0) is isomorphic to π1(Y, y0).

A subset R ⊂ X of a topological space is said to be a retract of X if there
exists a continuous map, which is called a retraction,

f : X → R

such that f(r) = r for any r ∈ R. A subset R of a topological space X is
said to be a deformation retract of X if a retraction exists together with a
homotopy H : X × [0, 1] → X for which

H(x, 0) = x ,

H(s, 1) = f(x) ,
H(r, t) = r, r ∈ R, 0 ≤ t ≤ 1 .

The relevance of deformation retracts is due to the fact that if R is a defor-
mation retract of X , then π1(X , r) is isomorphic to π1(R, r), r ∈ R.

We just mention an interesting result that provides a tool to calculate
fundamental groups: if X and Y are path-connected spaces, then

π1(X × Y, (x0, y0)) is isomorphic to π1(X , x0)⊕ π1(Y, y0) ,

where ⊕ denotes as the product of the two groups. For example, having
proved that π1(S1) ∼= Z, for the torus T

2 = S
1 × S

1 we immediately find that
π1(T2) ∼= Z⊕ Z.
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Finally, we just mention that in many cases π1(|K|), where |K| is a poly-
hedron, is the same as the first homology group H1(|K|) of the corresponding
simplicial complex K (see the next section). In particular, for a connected
topological space X , π1(X ) is isomorphic to H1(X ) iff π1(X ) is commutative.
Moreover, if two spaces X and Y are of the same homotopy type, then their
first homology groups are the same: H1(X ) = H1(Y).

A.6 Homology and Cohomology

In this section we deal with topology of differentiable manifolds. To this end
we provide a concise account of homology groups associated with a topological
space X that is triangulable, that is, homeomorphic to a polyhedron. Then
we define cohomology groups that are the duals of homology groups. We
anticipate that homology is constructed by means of the so-called boundary
operator, which is a global operator on a manifold and thus requires some
global information about the manifold. In contrast, cohomology is constructed
by means of the exterior derivative, a first-order local differential operator that
does not require global information about the manifold.

Through Stokes’s theorem, a duality between homology and cohomology
groups is established that allows one to relate global topological properties of
a manifold with local differentiable properties of the same manifold. This is
typical of differential topology.

A.6.1 Homology Groups

As we have already observed in Chapter 7, a basic way to analyze a manifold
(more generally a topological space) is to fragment it into other more familiar
objects and then to examine how these pieces fit together. The classical exam-
ple is that of making a triangulation of a surface in R

3, that is, to slice it into
curved triangles, and then to count the number F of faces of the triangles, the
number E of edges, and the number V of vertices on the tesselated surface.
If the surface is compact, independently of the way we choose to triangulate
it, the quantity χ = F −E+V is a characteristic number of the surface, which
is invariant under diffeomorphisms of the surface. Thus this is a topological
invariant, known as the Euler characteristic of the surface. At generic dimen-
sion, this procedure can be generalized by defining high-dimensional versions
of triangles: simplices.

An r-simplex in R
n, with n ≥ r, is defined as the following set of points

of R
n:

σr =

{
x ∈ R

n

∣∣∣∣∣x =
r∑

i=0

cipi; ci ≥ 0,
r∑

i=0

ci = 1

}
(A.40)

where p0, . . . , pr are geometrically independent points of R
n, that is, no (r−1)-

dimensional hyperplane contains all the r+ 1 points. The set σr is a compact
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subset of R
n, being bounded and closed. A 0-simplex [p0] is a vertex (point),

a 1-simplex [p0p1] is an edge (line), a 2-simplex [p0p1p2] is a face (triangle), a
3-simplex [p0p1p2p3] is a solid tetrahedron. An oriented r-simplex (p0 . . . pr)
is an r-simplex [p0 . . . pr] with an assigned ordering for its vertices so that,
for example, (p0p1) = −(p1p0), where the minus sign means that (p0p1) is
the inverse of (p1p0). Positive or negative signs are assigned according to the
parity of the permutation with respect to a reference ordering.

A simplicial complex K is defined as a finite collection of simplices of R
n

such that (i) if σr ∈ K then also all its faces belong to K; (ii) if σr ∈ K and
σs ∈ K, then either σr∩σs = ∅ or σr∩σs ≤ σr and σr∩σs ≤ σs, that is, their
intersection is a common face. The dimension of a simplicial complex K is
given by the maximum of the dimensions of the simplices in the complex K.

Let us now give the definition of a free abelian group. If every element g
of an abelian (commutative) group G can be represented as g =

∑m
i=1 nigi,

with ni ∈ Z, and {gi} a set of elements of G, called generators of G, and if
this representation is unique, that is the {gi} are linearly independent over Z,
then G is a free abelian group and the {gi} form a basis.

Then we define the r-chain group Cr(K) of an n-dimensional simplicial
complex K, assumed to contain Ir r-simplices, as the free abelian group gen-
erated by the oriented r-simplices of K. The elements cr ∈ Cr(K) are called
r-chains and are formally given by

cr =
Ir∑

i=1

ci σr,i , ci ∈ Z .

The group structure is given by the sum of two r-chains, cr + c′r =
∑

i(ci +
c′i)σr,i, by the existence of an inverse element −cr of cr, that is, −cr =∑

i(−ci)σr,i, and by the existence of the neutral element, 0 =
∑

i 0σr,i.
If r > dim K then Cr(K) = 0 by definition.

Now we define the boundary operator ∂r as the mapping

∂r : Cr(K) → Cr−1(K)

having the following properties: (i) ∂r[
∑

i ciσr,i] =
∑

i ci∂rσr,i that is, ∂r is
linear; (ii) to an oriented r-simplex σr = (p0p1 . . . pr) the operator ∂r asso-
ciates its boundary as follows:

∂rσr ≡
r∑

i=0

(−1)i(p0p1 . . . p̂i . . . pr) ,

where p̂i means that the point pi has been omitted. The operator ∂r is a
homomorphism.

An r-chain zr ∈ Cr(K) is called an r-cycle if ∂rzr = 0. The set Zr(K) of
r-cycles is the r-cycle group and Zr(K) = Ker(∂r) ⊂ Cr(K). If r = 0 then
Z0(K) = C0(K).
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An r-chain βr ∈ Cr(K) is called an r-boundary if there exists an (r + 1)-
chain cr+1 ∈ Cr+1(K) such that βr = ∂r+1cr+1. The set Br(K) of
r-boundaries is a group, the r-boundary group, and Br(K) = Im(∂r+1) ⊂
Cr(K). If r = n then one defines Bn(K) = 0.

A fundamental property of the boundary operator ∂r is that the mapping

∂r · ∂r+1 : Cr+1(K) → Cr−1(K)

is a zero mapping, that is, ∂r · ∂r+1 = 0 for any cr+1 ∈ Cr+1(K). As a
consequence, any element βr ∈ Br(K) has the property that ∂rβr = 0. Hence
Br(K) is a subgroup of Zr(K); in fact, the former is the set of those chains
that are boundaries of other chains, and the latter is the set of chains without
boundary, and the boundary of a boundary is always the empty set.

If we regard each simplex of a simplicial complex K as a subset of R
n,

the union of all the simplices is a still a subset of R
n, which is called the

polyhedron |K| of the complex K. If, given a topological space X , there exist
a simplicial complex K and a homeomorphism f : |K| → X , then (K, f) is
called a triangulation (not unique) of X . Now we can wonder whether and
how we can use the above-defined groups, Cr(K), Zr(K), and Br(K), to
catch some topological property of the space X whose triangulation is K,
that is, some property that is invariant under homeomorphisms of X . It turns
out that none of them qualifies as a topological invariant. In contrast, for
an n-dimensional complex K the rth simplicial homology group Hr(K; Z)
is defined as3

Hr(K; Z) ≡ Zr(K)/Br(K) .

This is well defined since Br(K) is a subgroup of Zr(K). The homology group
Hr(K; Z) is the set of equivalence classes of r-cycles zr ∈ Zr(K) that differ
by a boundary, that is, zr ∼ z′r if there exists an (r + 1)-chain such that
zr = z′r + ∂r+1wr+1.

There are two important theorems about homology groups:
Theorem 1. If X and Y are two homeomorphic topological spaces, then
Hr(X ) is isomorphic to Hr(Y) for all r. We write Hr(X ) ∼= Hr(Y).

The consequence of this fact is that homology groups are topological
invariants.
Theorem 2. If (K1, f) and (K2, g) are two triangulations of the same topo-
logical space then

Hr(K1) ∼= Hr(K2) ∀r .

This means that homology groups are meaningful not only for simplicial com-
plexes, but also for a topological space that is not a simplex but is triangulable.

3 The notation Hr(K; Z) puts in evidence that the group structure is defined
with integer coefficients; for most of these groups we have Hr(K; G) with
G = Z2, R, C.
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Among other properties of homology groups we have that for a connected
complex K,

H0(K) ∼= Z ,

and if K is the disjoint union of N connected components K1,K2, . . . ,KN

then
H0(K) ∼= Z⊕ · · · ⊕ Z︸ ︷︷ ︸

N

and also
Hr(K) = Hr(K1)⊕Hr(K2)⊕ · · · ⊕Hr(KN ) .

Even if Zr(K) and Br(K) are free abelian groups (because they are subgroups
of the free abelian group Cr(K)) this is not necessarily true for Hr(K) =
Zr(K)/Br(K). By a theorem on finite cyclic groups4 [261], the most general
form of Hr(K) is then

Hr(K) ∼= Z⊕ · · · ⊕ Z︸ ︷︷ ︸
m

⊕Zk1 ⊕ · · · ⊕ Zkp
(A.41)

with r = m + p, where the first m factors form a free abelian group and the
remaining p factors form a subgroup of Hr(K) called its torsion group.

The number of generators of Hr(K) counts the number of (n + 1)-
dimensional holes in the polyhedron |K|. For cr ∈ Cr(K; Z) we write
cr =

∑Ir

i=1 giσr,i with gi ∈ Z, but considering gi ∈ R, we have real-coefficients
homology groups, and (A.41) becomes

Hr(K; R) ∼= R⊕ · · · ⊕ R︸ ︷︷ ︸
m

,

that is, we lose the torsion subgroup, which detects the “twisting” of |K|. The
curious feature of homology theory is that the integer-coefficients homology
contains more information than rational-, real-, or complex-coefficients homo-
logy, because the torsion subgroup is lost with other than integer coefficients.

Given a simplicial complex K, the rth Betti number br(K) is defined as

br(K) = dim Hr(K; R) ,

that is, br(K) is the rank of the free abelian part of Hr(K).
If now Ir is the number of r-simplices in K, then

χ(K) =
n∑

r=0

(−1)r Ir =
n∑

r=0

(−1)r br(K) (A.42)

is the Euler characteristic of K, which generalizes the classic formula χ =
V − E + F . Since Betti numbers are topological invariants, that is, they do
4 A group G generated by one element a, that is G = {0,±a,±2a, . . .}, is called a

cyclic group.
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not change under the action of homeomorphisms, χ(K) too is a topological
invariant.

If f : |K| → X and g : |K ′| → X are two triangulations of a topological
space X , we have χ(K) = χ(K ′). Hence one defines χ(X ) by means of χ(K)
for any triangulation (K, f) of X .

A.6.2 Cohomology Groups

If the topological space X for which we have defined the homology group is
a compact differentiable manifold M , we can construct the dual of homology
groups by means of differential forms defined on M . The dual groups are the
so-called de Rham cohomology groups. The essential tool to construct the
cohomology of M is Stokes’s theorem, given below.

Stokes’ Theorem

Let M be an n-dimensional manifold with a nonempty boundary ∂M . For
any differentiable (r − 1)-form ωr−1 one has the Stokes’s formula∫

M

dωr−1 =
∫

∂M

ωr−1 .

This is of fundamental importance in the study of de Rham’s cohomology
groups.

In the special case M = R
3, if ω = Adx+Bdy + Cdz and ω = (A,B,C),

we have, using standard notation,∫
Σ

rot(ω) · ndσ =
∫

γ

ω · τd� ,

where γ is the boundary of the surface Σ. Moreover, with ψ = 1
2ψμνdx

μ∧dxν

we have ∫
V

div(ψ)dV =
∫

Σ

ψ · ndσ ,

where V is the volume enclosed by the surface Σ. This is commonly known
as Gauss’s theorem.

Stokes’s theorem also applies to lower-dimensional subsets of a manifold
M , and homology theory appears to naturally provide a class of them. How-
ever, we have first to extend to compact differentiable manifolds what we have
introduced above for arbitrary topological spaces. Thus we define r-chains,
r-cycles, and r-boundaries for an n-dimensional manifold.

Consider an r-simplex σr in R
n and a continuous mapping f : σr → M .

The image sr = f(σr) ∈M is called a singular r-simplex in M . This simplex
is called singular because it does not provide a triangulation of M . Denoting
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by {sr,i} the set of r-simplices of M , we can define an r-chain in M as the
formal finite sum with real coefficients

cr =
Ir∑

i=1

aisr,i , ai ∈ R ,

where sr,i are r-dimensional oriented submanifolds of M . The ensemble
of r-chains is the chain group Cr(M) of M . Moreover, the images in M
∂sr ≡ f(∂σr) of the boundaries of the simplices σr form the ensemble of
(r − 1)-simplices in M that are the geometrical boundaries of the sr. Hence
we have a mapping that associates to a manifold its oriented boundary

∂ : Cr(M) → Cr−1(M)

with ∂2 = 0.
We define the cycle group Zr(M) as the set of r-cycles, that is, of r-chains

without boundary, and we define the boundary group Br(M) as the set of
r-chains that are the boundary of an (r+1)-dimensional chain, i.e., cr = ∂cr+1.
Since the boundary of a boundary is always the empty set, Br(M) ⊂ Zr(M),
and we can define the singular homology group of the manifold M

Hr(M ; R) = Zr(M)/Br(M) .

If M is orientable, the following property, called Poincaré duality, holds:

Hp(M ; R) = Hn−p(M ; R) .

Now we can proceed to define the integration of an r-form over an r-chain
in M , with 0 ≤ r ≤ n. First put, for an r-simplex of M ,∫

sr

ω =
∫

σr

f∗ω ,

where σr is a standard r-simplex of R
r, f : σr → M is a smooth map-

ping, sr = f(σr), f∗ω is an r-form in R
r, so that the right hand side is a

standard r-dimensional integral. Then the integral for an r-chain c ∈ Cr(M)
is defined as ∫

c

ω =
Ir∑

i=1

ai

∫
sr,i

ω . (A.43)

A more general version of Stokes’s theorem is the following. Let ω ∈ Λr−1(M)
and c ∈ Cr(M). Then ∫

c

dω =
∫

∂c

ω . (A.44)

The form ω ∈ Λr(M) associates to c ∈ Cr(M) a real number through the
integral (A.43), so we can write

ω : Cr(M) → R ,

c �→ 〈ω, c〉 :=
∫

c

ω .



A.6 Homology and Cohomology 391

In other words, ω is an element of the dual of Cr(M), i.e., it is a cochain.
Stokes’s theorem in (A.44), with the notation above, reads

〈dω, c〉 = 〈ω, ∂c〉 ,

showing that the boundary operator ∂ and the exterior derivative d are
adjoints of one another, so that we can define the dual of the space
Hr(M ; R) as

Hr(M ; R) = Zr(M)/Br(M) , (A.45)

that is, the quotient space of the cocycle group and the coboundary group
which is called the rth cohomology group. These cohomology groups, as is
shown below, are just the de Rham cohomology groups defined in (A.36).

In fact, by Stokes’s theorem, for any cr ∈ Zr(M) and ωr ∈ Zr(M) the
following identities hold:∫

cr

ωr + dψr−1 =
∫

cr

ωr +
∫

∂cr

ψr−1 =
∫

cr

ωr

and ∫
cr+∂ar+1

ωr =
∫

cr

ωr +
∫

ar+1

dωr =
∫

cr

ωr .

Hence, the product is independent of the choices made in the respective equi-
valence classes, so that the following mapping is well defined:

〈ω, c〉 : Hr(M ; R)⊗Hr(M ; R) → R .

Then, for compact manifolds M without boundary, let {ci : i =
1, . . . ,dim Hr(M ; R)} be a set of independent r-cycles forming a basis
for Hr(M ; R). Given an r-form ω, and having defined the periods νi as
νi = 〈ci, ω〉, de Rham proved two important theorems:
Theorem 1. For any given set of real numbers νi, i = 1, . . . ,dim Hr(M ; R),
there exists a closed form ω for which

νi = 〈ci, ω〉 =
∫

ci

ω , i = 1, . . . ,dim Hr(M ; R) .

Theorem 2. If all the periods νi, i = 1, . . . ,dim Hr(M ; R), for an r-form ω
are vanishing,

0 = 〈ci, ω〉 =
∫

ci

ω i = 1, . . . ,dim Hr(M ; R) ,

then ω is exact.
The meaning of these theorems is that for a compact manifold M without

boundary, if {ωi} is a basis for Hr(M ; R) and {ci} is a basis for Hr(M ; R),
then the matrix of periods

νij = 〈ci, ωj〉
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is invertible; hence Hr(M ; R) is the dual space of Hr(M ; R) with respect to
the product 〈c, ω〉 and the two spaces are isomorphic:

Hr(M ; R) ∼= H�
r (M ; R) .

A standard way of summarizing the content of the construction of Hr(M ; R)
and Hr(M ; R) is through the following topological diagrams:

0 ∂0←− C0(M) ∂1←− C1(M) ∂2←− · · · ∂n−2←− Cn−1(M) ∂n←− Cn(M) ←− 0

Hr(M ; R) = Zr(M)/Br(M) = Ker ∂r/Im ∂r+1

0 ↪→−→ Λ0(M) d0−→ Λ1(M) d1−→ ...
dm−2−→ Λm−1(M)

dm−1−→ Λm(M) dm−→ 0

Hr(M ; R) = Zr(M)/Br(M) = Ker dr+1/Im dr .

The former is called the chain complex C(M) and the latter is known as the
de Rham complex Λ∗(M). These are finite sequences telling that the only
nontrivial cohomology groups are those with 0 ≤ r ≤ dim M . The inverted
directions of the arrows recall the duality between the operators d and ∂.

Let us remark that H0(M ; R) is a special case because (−1)-forms do
not exist and thus 0-forms (functions) cannot be expressed as the exterior
derivative of a form. Since closed 0-forms are functions f such that df = 0, we
have H0(M ; R) = {space of constant functions}, that is, H0(M ; R) = R; if
M has n connected components, then H0(M ; R) = ⊕n

R, and thus in general,

dim H0(M ; R) = {# of connected components of M} .

Weadd,without proof, that for a simply connectedmanifold,H1(M ; R) = 0,
and that in general,5

dim Hk(M ; R) = {# of (k + 1)− dimensional “holes” in M} .

Note that the cohomology of the Euclidean space R
n is always trivial. In fact,

since R
n is contractible, that is, R

n is contracted to the point 0 by the map
α : R

n × [0, 1] → R
n defined by (x, t) �→ (1− t)x, it can be shown that every

closed form in R
n is also exact. Thus

Hr(Rn; R) = 0 , r = 1, . . . , n ,
H0(Rn; R) = R .

We have seen that a differentiable manifold is locally homeomorphic to a
Euclidean R

n space, so that the consequence of the homological triviality of
5 A hole is well defined for two-dimensional surfaces; for example, a torus has a three-

dimensional hole in the sense that we can put a ball inside it. In higher dimensions
one has to resort to the fundamental group π1 to define “higher-dimensional holes.”
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R
n is the Poincaré lemma: If a coordinate neighborhood U of a manifold M is

contractible to a point, then any closed r-form on U is also exact.
Remark. Since any closed form on a manifold is locally exact, what prevents
global exactness is just a nontrivial topology, that is, loosely speaking, when
local charts are necessarily glued together in a nontrivial way. Nonvanishing
de Rham cohomology groups detect topological obstructions to global exactness
of closed forms.

To give a classic example, consider M = R
2−{0} (punctured plane where

the closed paths encircling the origin cannot be contracted to the point 0) and
the 1-form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy .

The point x = y = 0 is singular, whence the need to exclude the origin {0}.
Computing

dω =
∂

∂x

−y
x2 + y2

dy ∧ dx+
∂

∂y

x

x2 + y2
dx ∧ dy ,

we immediately see that dω = 0; the form is closed. Introducing the
0-form η(x, y) = arctan(y/x), so that ∂η/∂x = −y/(x2 + y2) and
∂η/∂y = x/(x2 + y2), we might think that ω = dη, i.e., that ω is also
exact, but since η is the angle in the polar representation of the plane, single-
valuedness imposes that η(x, y) is defined only on R

2−R+. No function exists
such that ω = df on the whole of M = R

2 − {0}. However, ω = dη locally
holds in neighborhoods excluding the origin.

A.6.3 Betti Numbers

The direct sum H∗(M) = ⊕n
r=1H

r(M) is the de Rham cohomology algebra,
which coincides with the quotient between the closed-forms subalgebra of the
Grassmann algebra of M and its subset (actually an ideal) of exact forms.
Just below (A.30) we have seen that to any differentiable map f : M → N
between two differentiable manifolds we can associate a homomorphism f∗

between their associated Grassmann algebras, that is, f∗ : Λ∗(N) → Λ∗(M).
This homomorphism maps each homogeneous component of H∗(N) into the
homogeneous component of H∗(M) of the same degree. If f : M → N is a
diffeomorphism, then all the cohomology spaces Hr(M) and Hr(N) are iso-
morphic for r = 0, 1, . . . , n. As a consequence, the dimension of each cohomol-
ogy space of a manifold is invariant under diffeomorphisms of this manifold,
whence the set of integers

br = dim Hr(M ; R) = dim Hr(M ; R) , 0 ≤ r ≤ dim M ,

known as the Betti numbers of M , is a set of topological invariants of M .
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Poincaré Duality
Consider a compact n-dimensional manifoldM and two forms ω ∈ Hr(M)

and η ∈ Hn−r(M). Define a product 〈·, ·〉 : Hr(M)×Hn−r(M) → R as

〈ω, η〉 =
∫

M

ω ∧ η .

Since ω∧η is a volume form, it does not vanish unless one or both forms vanish,
so we have a nonsingular bilinear product that defines a duality between
Hr(M) and Hn−r(M), that is,

Hr(M) ∼= (Hn−r(M))� ,

which is called Poincaré duality and entails the relation

br = bn−r .

Through Betti numbers we can also define the Euler characteristic for
differentiable manifolds, as

χ(M) =
n∑

r=0

(−1)rbr(M) . (A.46)

This remarkable formula relates a purely topological quantity (left hand side)
with an analytic property of a manifold (right hand side) stemming from
the condition of closeness for differential forms. Such a situation is common in
differential topology. We have already encountered it with the duality between
homology and cohomology groups and we will find it again with Morse theory.

Notice that by Poincaré duality, the Euler characteristic for odd-
dimensional manifolds is identically vanishing.
Cup Product

Let us just mention the possibility that different manifolds can have the
same cohomology groups yet be topologically different. An example is given by
the two manifoldsM = S

2×S
4 andN = CP 3, complex-projective space, which

are neither diffeomorphic nor homeomorphic yet have the same cohomology
groups. To distinguish these spaces from one another, and, in general, to
make cohomology theory somewhat finer in detecting manifolds’ topologies,
we provide the de Rham cohomology algebra with the so-called cup product

∪ : H∗(M ; R)×H∗(M ; R) → H∗(M ; R) ,

which acts as follows: given [ω] ∈ Hp(M ; R) and [ν] ∈ Hq(M ; R), where [ω]
stands for the cohomology class of the form ω, the product

[ω] ∪ [ν] = [ω ∧ ν] ,



A.6 Homology and Cohomology 395

with [ω] ∪ [ν] ∈ Hp+q(M ; R), gives H∗(M ; R) a (graded commutative) ring
structure.6 Different such ring structures are found for the above manifolds
M and N .
Kunneth Formula

A particularly important case is the case of product manifolds, for which
the following Kunneth formula holds: Let Q be a product manifold, i.e.,
Q = M ×N . Then, the kth real de Rham cohomology group of Q, Hk(Q), is
given by

Hk(Q) = Hk(M ×N) =
⊕

p+q=k

[Hp(M)⊗Hq(N)] , (A.47)

and its Betti numbers are

bk(Q) = bk(M ×N) =
∑

p+q=k

bp(M) bq(N) . (A.48)

As we have seen in Chapters 8 and 9, this is a very useful formula.
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of the book in item 8 are an excellent introduction to differential geometry
for physicists.



Appendix B

Elements of Riemannian Geometry

The present appendix provides a concise and informal treatment of some
essential concepts of Riemannian differential geometry. Here we make use
of concepts and definitions given in appendix A.

For a more elaborate discussion, we refer the reader to the books listed at
the end of the preceding appendix.

B.1 Riemannian Manifolds

Riemannian geometry is the natural extension of the theory of surfaces in
R

3. For surfaces S ⊂ R
3, Gauss proved that all their intrinsic geometry is

completely determined by the inner product applied to tangent vectors at S.
In order to generalize this result to the study of the geometry of arbitrary
n-dimensional manifolds, Riemann introduced an inner product on each tan-
gent space of a manifold. In particular, this inner product provides a way of
measuring infinitesimal distances. Roughly speaking, if P and P +dP are two
nearby points, their distance is measured by the norm of the “tangent vector”
dP .

To introduce the subject at an intuitive level, let x, y, z be the coordinates
in an ordinary Euclidean R

3 space. Consider

x = R cos θ ,

y = R sin θ ,

z = ζ ,

with constant R. By varying θ and ζ, the point P (x, y, z) describes a cylin-
drical surface. The (squared) distance between two close points P (x, y, z) and
P (x+ dx, y + dy, z + dz) is given by

ds2 = dx2 + dy2 + dz2 = R2dθ2 + dζ2 . (B.1)

397
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Then consider

x = R sin θ cosϕ ,
y = R sin θ sinϕ ,
z = R cos θ ,

again with R =const. In this case, by varying θ and ϕ the point P (x, y, z)
describes a spherical surface of radius R. We have

ds2 = dx2 + dy2 + dz2 = R2dθ2 +R2 sin2 θdϕ2 . (B.2)

The quadratic differential forms (B.1) and (B.2) represent the metrics of the
cylinder and the sphere respectively. The former has a Pythagorean form,
whereas the second does not because the coefficient of dϕ2 depends on the
coordinate θ. There is no coordinate system on the sphere that casts (B.2)
into a Pythagorean form. Thus, the cylinder metric (B.1) describes a Euclidean
two-dimensional manifold, whereas the sphere metric (B.2) describes a non-
Euclidean two-dimensional manifold.

More generally, for an m-dimensional surface S(m) ⊆ R
n, we have

ds2 = dP · dP =
n∑

α=1

(dxα)2 ≡
m∑

i,k=1

aikdy
idyk

with

aik =
∂P

∂yi
· ∂P
∂yk

=
n∑

α=1

∂xα

∂yi

∂xα

∂yk
,

where the {yi} are curvilinear coordinates on S(m) and the {xα} are coordi-
nates in R

n. (For the sake of clarity, here we have not yet adopted the Einstein
summation convention for repeated indexes.) The knowledge of the metric
tensor aik allows us to work out all the intrinsic geometry of these kinds of
spaces.

B.1.1 Riemannian Metrics on Differentiable Manifolds

Given an n-dimensional differentiable manifold M and a point p ∈ M , a
(0, 2)-type tensor gp ∈ T (0,2)

p is said to be a Riemannian metric tensor
provided it is symmetric, i.e., gp(X,Y ) = gp(Y,X), and nondegenerate, i.e.,
gp(X,Y ) = 0 ∀X ∈ TpM if and only if Y = 0.

Then a symmetric tensor field g ∈ T (0,2)(M) on M that satisfies these
conditions is said to be a Riemannian metric tensor of M . The pair (M, g) is
a Riemannian manifold. Let (M, g) be a Riemannian manifold, p ∈ M , and
X,Y ∈ TpM . The inner (or scalar) product 〈X,Y 〉 between these vectors is
the real number

〈X,Y 〉 = g(X,Y ) .



B.1 Riemannian Manifolds 399

This induces on the tangent bundle TM a nondegenerate quadratic mapping

g(·, ·) : TM ⊗ TM → R . (B.3)

If the quadratic form (B.3) is positive definite, then one speaks of a (proper)
Riemannian metric, which makes it possible to measure lengths on a differ-
entiable manifold where the squared length element ds2 is always positive. If
the quadratic form (B.3) is not positive definite, then the manifold (M, g) is
called a pseudo-Riemannian manifold, and the scalar product is referred to as
a pseudo-Riemannian structure on M .

In a chart (U,ϕ) on U ⊂M , we have

g|U = gij dx
i ⊗ dxj , (B.4)

where the components gij(x1, . . . , xn) = 〈∂i, ∂j〉, with ∂i ≡ ∂/∂xi, are differ-
entiable functions on U .

The scalar product of two vectors X = Xi∂i and Y = Y j∂j is given, in
terms of g, by

〈X,Y 〉 = 〈Xi∂i, Y
j∂j〉 = XiY j〈∂i, ∂j〉 = gijX

iY j ≡ XjY
j = XiYi . (B.5)

The last two equalities in the right hand side of the above equation follow
from the fact that g estabilishes a one-to-one correspondence between vectors
and dual vectors, that is, an isomorphism between TpM and T �

pM , which, in
local coordinates, reads

gijX
j = Xi . (B.6)

For this reason, the components of the inverse metric g−1 (which exist every-
where because of nondegeneracy of the metric tensor) are simply denoted by
gij , instead of (g−1)ij , and allow one to pass from dual vector (covariant)
components to vector (contravariant) components:

gijXj = Xi . (B.7)

This operation of raising and lowering the indices can be applied not only
to vector, but also to tensor components. This allows us to pass from (k, l)
tensor components to the corresponding (k + 1, l − 1) or (k − 1, l + 1) tensor
components and vice versa. This operation will be tacitly assumed in the
following. What does not change in the operation is the sum k + l, which is
called the rank (or the order) of the tensor.

By considering an infinitesimal displacement ds = (ds)iXi = dxi(∂/∂xi) ∈
TpM , we can compute

ds2 = g
(
dxi∂i, dx

j∂j

)
= dxidxjg(∂i, ∂j) = gijdx

idxj . (B.8)

Sometimes, mainly in the physics literature, this invariant (squared) length
element of the manifold, ds2, is called the metric.
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LetM andN be two Riemannian manifolds. A diffeomorphism f : M → N
is said to be an isometry if for all p ∈M and u, v ∈ TpM , we have

〈u, v〉p = 〈dfp(u), dfp(v)〉f(p) .

A differentiable mapping f : M → N is called a local isometry at p if there is
a neighborhood U of p such that f : U ⊂M → f(U) ⊂ N is a diffeomorphism
satisfying the above conditions for isometries.

It is a remarkable fact that any differentiable manifold can be endowed with
a Riemannian metric. This follows from the use of a differentiable partition
of unity {εα} on M subordinate to a covering {Uα} of M by coordinate
neighborhoods. {Uα} is a locally finite covering. The functions {εα} satisfy
the conditions εα ≥ 0, εα = 0 on the complement of the closed set Uα, and∑

α εα(p) = 1, for all p ∈M . One defines a Riemannian metric 〈·, ·〉α on each
Uα using the metric induced by the system of local coordinates. Then one
sets 〈X,Y 〉p =

∑
α εα(p)〈X,Y 〉αp for all p ∈ M and X,Y ∈ TpM . Thus a

Riemannian metric can be always defined on a differentiable manifold M .
We just mention another remarkable result:

Theorem (Nash). Any simply connected, compact, n-dimensional Riemannian
manifold (M, g) of class Ck, with 3 ≤ k ≤ ∞, can be Ck-isometrically
embedded in a Euclidean R

N space with N = 1
2n(3n + 11). Every non-

compact n-dimensional Riemannian manifold (M, g) of class Ck, with 3 ≤
k ≤ ∞, can be Ck-isometrically embedded in a Euclidean R

N space with
N = 1

2n(n+ 1)(3n+ 11).
A Riemannian metric can be used to compute the lengths of curves. Con-

sider a curve on M defined by the differentiable mapping c : I ⊂ R →M . The
velocity field of the curve c is dc/dt, and one defines the length of a segment
(that is, a restriction of c(t) to the interval [A,B] ⊂ I) by

�AB(c) =
∫ B

A

〈
dc

dt
,
dc

dt

〉1/2

dt , (B.9)

where 〈ċ, ċ〉 = g(ċ, ċ).

B.2 Linear Connections and Covariant Differentiation

The introduction of differential calculus on a non-Euclidean manifold is com-
plicated by the fact that ordinary derivatives do not map vectors into vectors.
A vector field along c is a differentiable mapping that associates the tangent
vector V (t) ∈ Tc(t)M at each t ∈ I. The function t �→ V (t)f is a differentiable
function on I for any differentiable function f on M .

For example, consider a surface S ⊂ R
3, a curve c : I ⊂ R → R in S,

and a vector field V : I → R along c tangent to S. In general, the ordinary
derivatives of the components of V , dV i/dt, are not the components of a vector
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in Tc(t)S, because they do not transform according to the rule in (A.15). Thus
the differentiation of a vector field is not an intrinsic geometric concept on the
surface S. To overcome this difficulty, one considers the orthogonal projection
of dV

dt (t) on Tc(t)S. This we call the covariant derivative of V (t) and we denote
it by ∇V

dt (t). The geometric origin of this fact is that the parallel transport of
a vector from a point p to a point q on a non-Euclidean manifold does depend
on the path chosen to join p and q. Since in order to define the derivative of a
vector at p, we have to move that vector from p to a neighboring point along
a curve and then parallel-transport it back to the original point in order to
measure the difference, we need a definition of parallel transport to define a
derivative; conversely, given a (consistent) derivative, i.e., a derivative that
maps vectors into vectors, one can define the parallel transport by imposing
that a vector is parallel-transported along a curve if its derivative along the
curve is zero. The two ways are conceptually equivalent: we follow the first
way, by introducing the notion of a connection, and then we use it to define
the covariant derivative.

Let us denote by X (M) the set of all smooth vector fields onM . A (linear)
connection on the manifold M is a map ∇ : X (M) × X (M) → X (M) such
that given two vector fields X and Y , it yields a third field ∇XY , and satisfies
the following properties:

(i) ∇XY is bilinear in X and Y , i.e., ∇X(αY + βZ) = α∇XY + β∇XZ and
∇αX+βY Z = α∇XZ + β∇Y Z;

(ii) ∇fXY = f(∇XY );
(iii) ∇XfY = X(f)Y + f(∇XY ) (Leibniz rule).

Note that ∇ is local, that is, if X1, X2, Y1 Y2 are vector fields such that there
exists an open set U of M where X1 = X2 and Y1 = Y2, then ∀p ∈ U
(∇X1Y1) (p) = (∇X2Y2) (p).

Thus ∇ naturally restricts to open sets of M .
If (U,ϕ) is a chart for U ⊂ M , with x = ϕ(p), and {e(i)} = {∂/∂xi} is a

coordinate basis for TpM , then

∇∂i
∂j = Γ k

ij∂k , (B.10)

where the n3 numbers Γ k
ij = 〈dxk,∇∂i

∂j〉 are called the Christoffel coefficients
of the connection ∇ relative to the chart (U,ϕ). If (Ũ , ϕ̃) is another chart on
M in the open set Ũ with U ∩ Ũ �= ∅ and y = ϕ̃(p), then we have

∂̃i ≡
∂

∂yi
=
(
∂xj

∂yi

)
∂j ≡

(
∂̃ix

j
)
∂j

and thus

Γ̃ k
ij ≡ dyk

(
∇

∂̃i
∂̃j

)
=
∂xm

∂yi

∂xl

∂yj

∂yk

∂xr
Γ r

ml +
∂yk

∂xm

(
∂2xm

∂yi∂yj

)
.
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Because of the last term, with second derivatives, in the right hand side of
the equation above, Γ k

ij are not the components of a tensor on M .
Consider X,Y ∈ X (M), expressed as X = Xi∂i and Y = Y i∂i in the chart

(U,ϕ). By making use of the above-listed properties of the linear connection
∇, one obtains

∇XY = Xj
(
∇∂j

Y i∂i

)
= Xj

(
∂j [Y i]∂i + Y i∇∂j

∂i

)
=
(
Xj ∂Y

k

∂xj
+ Γ k

jiX
jY i

)
∂k . (B.11)

It is evident that ∇XY (p) depends only, for any p ∈M , on X(p) and not on
its derivatives; hence it is sensible to define the covariant derivative of vector
and tensor fields properly generalizing the concept of directional derivative of
functions.

If ∇ is a linear connection on M , one defines the torsion tensor of ∇ as
the (1, 2)-type tensor on M as

Tor∇(X,Y ) = ∇XY −∇YX − [X,Y ]

for all X,Y ∈ X (M). Then Tor∇(X,Y ) = −Tor∇(Y,X). If Tor∇ = 0 then
the linear connection ∇ is said to be symmetric. In local coordinates on an
open set U ⊂M , we have

Tor∇ (∂i, ∂j) = T k
ij∂k,

with T k
ij = Γ k

ij−Γ k
ji. Thus∇ is symmetric if and only if in any chart, Γ k

ij = Γ k
ji.

A remarkable property of Riemannian geometry is the existence of a unique
connection satisfying the following properties:

(i) [X,Y ] = ∇XY −∇YX ;
(ii) X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉 ;

for all X,Y, Z ∈ X (M). Such a connection is called metric connection, or
Levi-Civita connection, and, by (i) and (ii), it can be proved to satisfy the
following formula:

2〈∇Y Z,X〉 = Y 〈Z,X〉+ Z〈X,Y 〉 −X〈Y,Z〉
−〈Y, [Z,X]〉+ 〈Z, [X,Y ]〉+ 〈X, [Y,Z]〉 . (B.12)

By applying this formula to the special case 〈∇∂i
∂j , ∂k〉, since [∂i, ∂j ] = 0 and

gij = 〈∂i, ∂j〉, and using the definition of the Christoffel coefficients ∇∂i
∂j =

Γ k
ij∂k, one easily obtains

Γ k
ij =

1
2
gkm

(
∂gjm

∂xi
+
∂gmi

∂xj
− ∂gij
∂xm

)
. (B.13)
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The notion of covariant derivative now can be given. Let c : I → M be a
curve on M and X ∈ X (M). There is a unique map which associates to the
vector field X along c another vector field ∇X/dt along c, that is called the
covariant derivative of X along c, satisfying the following conditions:

(i) ∇
dt (X + Y ) = ∇X

dt + ∇Y
dt , where Y ∈ X (M);

(ii) ∇
dt (fX) = df

dtX + f ∇X
dt , where f is a differentiable function on I;

(iii) if Y ∈ X (M) and X(t) = Y (c(t)), then ∇X
dt = ∇dc/dtY .

Using a chart, c(t) is represented in local coordinates by (x1(t), . . . , xn(t)), t ∈
I, and the vector field is locally represented as X = Xi∂i, where Xi = Xi(t)
and ∂i = ∂i(c(t)). Thus, according to the above-listed properties, we have

∇X
dt

=
dXi

dt
∂i +Xi∇∂i

dt
,

and from the general properties of linear connections listed above, we have

∇∂i

dt
= ∇dc/dt∂i = ∇ẋj∂j

∂i =
dxj

dt
∇∂j

∂i , (B.14)

whence
∇X
dt

=
dXi

dt
∂i +

dxj

dt
∇∂j

∂i ,

and using again ∇∂i
∂j = Γ k

ij∂k, we obtain

∇X
dt

=
[
dXk

dt
+ Γ k

ij

dxi

dt
Xj

]
∂k . (B.15)

Now the notion of parallel transport can be naturally given. If we consider a
curve c : I →M and v0 ∈ Tc(0)M , the equation

∇ċX ≡ ∇X
dt

= 0

defines for all t ∈ I a unique vector field X(t) ∈ Tc(t)M such that X(0) ≡ v0.
Thus if (s, t) ∈ I × I, the following isomorphism between vector spaces exists,

Pc
s,t : Tc(s)M → Tc(t)M ,

which associates with every vs ∈ Tc(s)M the unique vector vt ∈ Tc(t)M given
by X(c(t)), where X satisfies the conditions ∇ċX = 0 and X(c(s)) = vs.

The isomorphism Pc
s,t is called parallel translation along c from c(s) to

c(t), and vt is said to be obtained from vs by parallel transport along the
curve c.

Parallel translation is a linear isometry.
The covariant derivative can be extended linearly to tensors, that is, by
requiring that the directional covariant derivative satisfies
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(i) ∇Xf = X(f) ;
(ii)∇X(T1 + T2) = ∇XT1 +∇XT2, where T1 and T2 ; are tensors of any rank
(iii)∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗∇XT2 .

moreover ∇X is required to commute with tensor contraction. Putting f =
〈ω, Y 〉 ∈ F(M), with ω ∈ Λ1(M) and Y ∈ X (M), with the aid of the Leibniz
rule one obtains

(∇Xω)i = Xj∂jωi −XjΓ k
jiωk ,

and with ω = dxi we have ∇∂j
dxk = −Γ k

jidx
i. By resorting to this result

and to the above-listed requirements, the covariant derivative of a (q, p)-type
tensor T on M relative to X is defined as

(∇XT )(X1, . . . , Xq, ω1, . . . , ωp) = ∇X(T (X1, . . . , Xq, ω1, . . . , ωp))

−
q∑

i=1

T (X1, . . . ,∇XXi, . . . , Xq, ω1, . . . , ωp)

−
p∑

i=1

T (X1, . . . , Xq, ω1, . . . ,∇Xωi, . . . , ωp),

which in components reads

∇∂k
T

i1···iq

j1···jp
=
∂T

i1···iq

j1···jp

∂xk
− T i1···iq

jj2···jp
Γ j

j1k − · · · − T i1···iq

j1···jp−1jΓ
j
jpk

+ T
ii2···iq

j1···jp
Γ i1

ik + · · ·+ T i1···iq−1i
j1···jp

Γ
iq

ik . (B.16)

B.2.1 Geodesics

A curve γ : I → M is said to be a geodesic with respect to the connection ∇
on M if γ̇ is parallel along γ, that is, if

∇γ̇ γ̇ = 0 .

According to this definition, geodesics are autoparallel curves, i.e., curves such
that the tangent vector γ̇ is always parallel-transported. With a chart (U,ϕ)
such that x = ϕ(γ(t0)), in U we have γ(t) = (x1(t), . . . , xn(t)) and

γ̇(t) =
dxi

dt
(t)∂i|γ(t) ,

so that

0 = ∇γ̇ γ̇ =
∇γ̇
dt

=
[
d

dt

dxk

dt
(t) + Γ k

ij(γ(t))
dxi

dt

dxj

dt
(t)
]
∂k|γ(t) , (B.17)
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whence the geodesic lines are solutions of the equations

d2xk

dt2
+ Γ k

ij

dxi

dt

dxj

dt
= 0 , (B.18)

which is a system of second-order differential equations (all the indexes run
from 1 to dim M).

From the theorem of existence and uniqueness of the solutions of ordinary
differential equations we can infer that for every point x ∈ M and for every
v ∈ TxM , there exists exactly one geodesic with initial conditions (x, v), that
is, a unique geodesic γ(t) defined in an interval (−ε, ε), with ε > 0, such that
γ(0) = x and γ̇(0) = v.

Since the norm of the tangent vector γ̇ of a geodesic is constant,
|dγ/dt| = C, the arc length of a geodesic is proportional to the parameter:

s(t) =
∫ t2

t1

∣∣∣∣dγdt
∣∣∣∣ dt = C(t2 − t1) . (B.19)

When the parameter is actually the arc length, i.e., C = 1, we say that the
geodesic is normalized. Whenever we consider a geodesic, we assume that it
is normalized, if not explicitly stated otherwise. It can be shown that the
equations (B.18) are the Euler–Lagrange equations for the length functional
defined on the set of curves γ(s) joining two fixed endpoints A and B and
parametrized by the arc length. In other words, geodesics stem from the vari-
ational condition

δ�AB(γ) = δ

∫ B

A

ds = 0, (B.20)

and thus are curves of extremal length on a manifold, or, loosely speaking,
the straightest possible lines in a non-Euclidean space.

Given a geodesic γ(s) on M , there exists a unique vector field G on TM
such that its trajectories are s �→ (γ(s), γ̇(s)). Such a vector field is called the
geodesic field on TM ; its flow satisfies the system of equations

dxk

ds
= yk ,

dyk

ds
= −Γ k

ijy
iyj , i, j, k = 1, . . . ,dim M , (B.21)

and is called geodesic flow on TM .

B.2.2 The Exponential Map

In the literature on Riemannian geometry, a commonly used tool is the so-
called exponential map, which allows one to define the normal neighborhood
of any point of a manifold.
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Consider an n-dimensional Riemannian manifold (M, g). For each p ∈ M
and X ∈ TpM there is a unique geodesic issuing from p with velocity X at
the instant t = 0, that is, γ(0) = p and γ̇(0) = X. With a suitable c ∈ R, the
geodesic equations entail γcX(t) = γX(ct); thus the endpoint γcX(1) is defined
if γX(c) is defined. As a consequence, γX(1) is a well-defined point in M if X
is sufficiently small.

Now, for each X ∈ TpM we define q = exppX as the point q ∈ M given
by γX(1). The mapping expp is said to be the exponential map at p.

Given a Riemannian manifold M , for all points p ∈ M there exists a
number ε > 0 and a corresponding open neighborhood Bε(0) ⊂ TpM of the
origin of TpM such that if X ∈ Bε(0), then ‖X‖ < ε, and there exists an open
neighborhood U ⊂ M of p such that the mapping expp : Bε(0) ⊂ TpM →
U ⊂M is a diffeomorphism of Bε(0) onto U .

Given any p ∈M , a neighborhood Bε(0) of the null vector in TpM is said
to be normal if:

(i) it is starlike, that is, if for an arbitrary vector Y ∈ Bε(0) and an arbitrary
number 0 ≤ c ≤ 1, the vector cY still belongs to Bε(0);

(ii) expp is defined on Bε(0);
(iii) expp diffeomorphically maps Bε(0) onto an open neighborhood U(p) ∈M .

The neighborhood U(p) = exppBε(0) is called a normal neighborhood of p.
Let {e(1), . . . , e(n)} be an orthonormal basis for TpM . Considering Xq ∈

TpM such that γXq
(1) = q, we can associate to each point q ∈ M a tangent

vector Xq = Xi
qe(i), at least if p and q are sufficiently close, and the mapping

ϕ : q → Xi
q provides a local coordinate system for U(p). These are called

normal coordinates of the point q based at p. Their interesting property is that
they locally give gik(p) = δik and Γ i

jk = 0, so that the covariant derivatives
coincide with standard derivatives and the geodesics are locally represented
as linear functions of t, that is, ϕ(γ(t)) = {Xi

qt}. Details can be found, for
example, in [126].

B.3 Curvature

The concept of curvature plays a central role in Riemannian geometry.
Roughly speaking, curvature tells us how much a manifold fails to be
locally Euclidean. For example, Lie derivatives satisfy the identity L[X,Y ] =
[LX ,LY ] = LXLY −LY LX . For coordinate vector fields, since [∂i, ∂j ] = 0, we
see that LX and LY commute. However, this is not the case for the covariant
derivative ∇X . Thus, if ∇ is the Levi-Civita connection on a Riemannian
manifold (M, g), the function R : X (M) × X (M) × X (M) → X (M) defined
as

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z , (B.22)

is a (1, 3)-type tensor field on M known as the Riemann curvature tensor.
Observe that R measures the noncommutativity of the covariant derivative.
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Moreover, if M = R
n, then R(X,Y )Z = 0 for all the tangent vectors X,Y, Z,

because of the commutativity of the ordinary derivatives. In a local coordinate
system (x1, . . . , xn), we have R (∂i, ∂j) ∂k = R�

ijk∂� and since
[

∂
∂xi ,

∂
∂xj

]
= 0,

we obtain

R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
=
[
∇∂/∂xi∇∂/∂xj −∇∂/∂xj∇∂/∂xi

] ∂

∂xk
. (B.23)

The components R�
ijk of the Riemann tensor are found by computing

R�
ijk = 〈dx�, R(∂i, ∂j)∂k〉 = 〈dx�,∇∂i

∇∂j
∂k −∇∂j

∇∂i
∂k〉

= 〈dx�,∇∂i
(Γm

jk∂m)−∇∂j
(Γm

ik ∂m)〉
= 〈dx�, (∂iΓ

m
jk)∂m + Γm

jkΓ
h
im∂h − (∂jΓ

m
ik )∂m − Γm

ik Γ
h
jm∂h〉 ,

where we have used (B.10) and (B.11), and hence we finally get

R�
ijk =

(
∂Γ �

jk

∂xi
− ∂Γ �

ik

∂xj

)
+
(
Γ r

jkΓ
�
ir − Γ r

ikΓ
�
jr

)
. (B.24)

Thus, given a metric g, the curvature R is uniquely defined. A manifold (M, g)
is called flat when the curvature tensor vanishes.

Let us list some important relations that are satisfied by the Riemann
curvature tensor.

These are, for all X,Y, Z,W ∈ X (M), the following:

R(X,Y )Z +R(Y,X)Z = 0 , (B.25)
R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0 , (B.26)
〈R(X,Y )Z,W 〉+ 〈R(Y,X)W,Z〉 = 0 , (B.27)
〈R(X,Y )Z,W 〉 − 〈R(Z,W )X,Y 〉 = 0 , (B.28)

which, apart from (B.25), which trivially follows from the definition of R, in
local coordinates give

Rhijk +Rhjki +Rhkij = 0 , (B.29)

known as the first Bianchi identity and which is the same as (B.26);

Rkjhi = −Rjkhi , (B.30)

which is the same as (B.27); and

Rkjhi = Rihjk = Rhikj , (B.31)

which is the same as (B.28). Moreover, there is a second Bianchi identity, a
very useful one, which in coordinates reads as (setting ∇i = ∇∂/∂xi)

∇lRhijk +∇jRhikl +∇kRhilj = 0 . (B.32)
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B.3.1 Sectional Curvature

Given a Riemannian manifold M and p ∈ M , let π(p) ⊂ TpM be a two-
dimensional plane spanned by an orthonormal basis X,Y . The sectional cur-
vature K(p, π) at p with respect to the plane π is defined as

K(p, π) = R(X,Y,X, Y ) . (B.33)

Let us verify that this definition is sensible, that is, independent of the choice
of X,Y . In fact, a change of basis from X,Y to X ′, Y ′ has to satisfy the
conditions

X ′ = aX + bY , Y ′ = −bX + aY ,

with a2 + b2 = 1. Now

R(X ′, Y ′, X ′, Y ′) = R(aX + bY,−bX + aY, aX + bY,−bX + aY )
= R(aX, aY, aX, aY ) +R(aX, aY, bY,−bX)

+R(bY,−bX, aX, aY ) +R(bY,−bX, bY,−bX)
= (a2 + b2)2R(X,Y,X, Y ) , (B.34)

where we have used (B.25) and (B.26). We have found thatR(X ′, Y ′, X ′, Y ′) =
R(X,Y,X, Y ), that is, the definition of sectional curvature is independent of
the choice of X and Y and thus it is an intrinsic geometric property ofM at p.

The remarkable fact is that the knowledge of the sectional curvatures at p ∈
M for all 2-planes π(p) ⊂ TpM completely determines the curvature tensor R
at p. To prove this, it is enough simply to show that R(X,Y,X, Y ) = 0 implies
R(X,Y, Z,W ) = 0 for all X,Y, Z,W ∈ X (M). Thus let R(X,Y,X, Y ) = 0.
Using (B.28) we have

0 = R(X,Y +W,X, Y +W ) = R(X,Y,X,W ) +R(X,W,X, Y )
= 2R(X,Y,X,W );

hence R(X,Y,X, Y ) = 0 ⇒ R(X,Y,X,W ) = 0 for all X,Y,W . Then, replac-
ing X in R(X,Y,X,W ) = 0 by X + Z, consider

0 = R(X + Z, Y,X + Z,W ) = R(X,Y, Z,W ) +R(Z, Y,X,W )
= R(X,Y, Z,W ) +R(X,W,Z, Y )
= R(X,Y, Z,W )−R(X,W, Y, Z), (B.35)

where we have used (B.28) and (B.26).
The last equality means that R(X,Y, Z,W ) = R(X,W, Y, Z). Then

one replaces Y,Z,W by Z,W, Y respectively, so that R(X,Y, Z,W ) =
R(X,Z,W, Y ). Using this together with the last equality in (B.35) and
using the Bianchi identity (B.26), we finally obtain

3R(X,Y, Z,W ) = R(X,Y, Z,W ) +R(X,W, Y, Z) +R(X,Z,W, Y ) = 0 .



B.3 Curvature 409

Summarizing, we have seen that R(X,Y,X, Y ) = 0 implies R(X,Y, Z,W ) =
0 for all X,Y, Z,W ∈ X (M). Thus the sectional curvatures determine the
curvature tensor.

Consider then the case of two generic vectors, v1 and v2, that span π(p) ⊂
TpM . They can be orthonormalized by putting

X =
v1

〈v1, v1〉1/2
,

Y =
〈v1, v1〉v2 − 〈v1, v2〉v1

〈v1, v1〉1/2[〈v1, v1〉〈v2, v2〉 − 〈v1, v2〉2]1/2
.

Now that X,Y are orthonormal, we have

K(p, π) = R(X,Y,X, Y ) =
R(v1, v2, v1, v2)

〈v1, v1〉〈v2, v2〉 − 〈v1, v2〉2
, (B.36)

and with v1 = λi∂/∂xi, v2 = μj∂/∂xj , in components this is

K(p, π) =
Rijklλ

iμjλkμl

(gabλaλb)(gmnμmμn)− (grsλrμs)2
. (B.37)

Let n = dim M , and let (z(1), . . . , z(n)) be an orthonormal set of vectors in
TpM . Put x = z(n) and let (z(1), . . . , z(n−1)) be a basis of the hyperplane in
TpM orthogonal to x. The quantity

KR(x) =
n−1∑
i=1

R(x, z(i), x, z(i)) =
n−1∑
i=1

〈R(x, z(i))x, z(i)〉 (B.38)

is called the Ricci curvature at p in the direction x. This scalar quantity can
be also derived from the contraction of a (0, 2)-type tensor, called the Ricci
curvature tensor, obtained from the Riemann tensor as

Ric(X,Y ) = 〈dxi, R(e(i), Y )X〉 (B.39)

which in components is

Rik = Ric(e(i), e(k)) ≡ Rj
ijk . (B.40)

The Ricci curvature KR(x) is thus

KR(x) = Rik x
i xk . (B.41)

For a generic vector V = vi∂/∂xi, the Ricci curvature in the direction of the
tangent vector V is

KR(V ) =
Rik v

i vk

gik vi vk
.
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Contracting the Ricci tensor gives

R ≡ gik Ric(e(i), e(k)) = gik Rik , (B.42)

which is called the scalar curvature. From (B.38), (B.39), and (B.42) we see
that the scalar curvature is the sum of all the n(n− 1) independent sectional
curvatures, that is,

R =
n∑

j=1

KR(z(j)) =
n∑

j=1

n−1∑
i=1

R(z(i), z(j), z(i), z(j))

=
n∑

j=1

n−1∑
i=1

Rhkml z
h
(i) z

k
(j) z

m
(i) z

l
(j) .

B.3.2 Isotropic Manifolds

In view of the use which is made of Schur’s theorem in Chapter 5, we give
some emphasis to it.

If the sectional curvatures K(p, π) at a point p ∈ M happen to be
independent of the choice of the 2-plane π, then we say that M has isotropic
curvature at p. The remarkable—and somewhat surprising—fact is that if M
is isotropic at some point p, then it is a constant-curvature manifold, that is,
K(p, π) is also independent of the point p, for it is the same everywhere onM .

This can be seen by considering the tensor field R′ defined as

R′(W,Z,X, Y ) = 〈W,X〉〈Z, Y 〉 − 〈Z,X〉〈Y,W 〉 , (B.43)

where X,Y, Z,W ∈ X (M), which satisfies the properties (B.25–B.28). From
(B.43) we have

R′(X,Y,X, Y ) = 〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2 ,

so thatK ′(π) = 1. The assumption of isotropy at pmeans thatR(X,Y,X, Y ) =
K(p)R′(X,Y,X, Y ), whereK(p) is some scalar function onM . As we have seen
above, if two tensors have the same sectional curvatures, then they are the
same, that is, R(X,Y, Z,W ) = K(p)R′(X,Y, Z,W ).

For any vector field V ∈ X (M),

(∇VR)(W,Z,X, Y ) = (V K(p))R′(W,Z,X, Y ) , (B.44)

since ∇VR
′ = 0.1 By the second Bianchi identity

∇VR(W,Z,X, Y ) +∇XR(W,Z, Y, V ) +∇YR(W,Z, V,X) = 0 ,

1 This immediately follows from the fact that for all X, Y, Z ∈ X (M) we have
∇Zg(X, Y ) = 0.
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for all X,Y, V,W,Z ∈ X (M), one has

0 = (V K(p))[〈W,X〉〈Z, Y 〉 − 〈Z,X〉〈Y,W 〉]
+ (XK(p))[〈W,Y 〉〈Z, V 〉 − 〈Z, Y 〉〈W,V 〉]
+ (Y K(p))[〈W,V 〉〈Z,X〉 − 〈Z, V 〉〈W,X〉] . (B.45)

For n ≥ 3 it is always possible to fix X and choose Y,Z, V so that X,Y, Z are
mutually orthogonal, that is, 〈X,Y 〉 = 〈X,Z〉 = 〈Y,Z〉 = 0 and 〈Z,Z〉 = 1.
Then, by putting also V = Z at p, (B.45) simplifies to

(XK(p))Y − (Y K(p))X = 0 ,

whence, since X and Y are linearly independent, (XK(p)) = (Y K(p)) = 0,
so that K(p) =const.

It is instructive to give an alternative proof as follows. In components,
R = KR′ and the definition of R′ in (B.43) give

Rijhl = K(gihgjl − gilgjh) , (B.46)

and contracting it,

Ril = Rj
ijl = K(gihgjl − gilgjh)gjh

= K(gihgh
l − ngil) = −(n− 1)Kgil , (B.47)

and further contraction gives the scalar curvature

R = −n(n− 1)K .

Now form the Einstein tensor

Gi
l = Ri

l −
1
2
Rgi

l = −n(n− 1)Kgi
l +

1
2
n(n− 1)Kgi

l

=
1
2
(n− 2)(n− 1)Kgi

l , (B.48)

and since we can prove that ∇iG
i
l = 0, it immediately follows that ∇iK = 0

and thus K =const on the manifold.
To prove that ∇iG

i
l = 0 we use the second Bianchi identity, which for

mixed components reads ∇rR
ij
hl + ∇hR

ij
lr + ∇lR

ij
rh = 0. By contracting the

indexes j and h we have

∇rR
i
l +∇jR

ij
lr −∇lR

i
r = 0 .

Then a further contraction on i and l gives

∇rR−∇jR
i
r −∇iR

i
r = 0 ,
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that is,

∇iR
i
r −

1
2
∇rR = 0 ,

which can be also written

∇i

(
Ri

r −
1
2
gi

rR
)

= 0 .

Finally, putting Gi
l = Ri

r − 1
2g

i
rR, we have ∇iG

i
l = 0.

A constant-curvature manifold is also called an isotropic manifold, and the
components of its Riemann curvature tensor have the remarkably simple form
given by (B.46). Then the components of the Ricci tensor are

Rik = K gik , (B.49)

and all the above-defined curvatures are constants, and are related by

K =
1

n− 1
KR =

1
n(n− 1)

R . (B.50)

Given a positive function f2, a conformal transformation is the transfor-
mation

(M, g) �→ (M, g̃) ; g̃ = f2g . (B.51)

Two Riemannian manifolds are said to be conformally related if they are linked
by a conformal transformation. In particular, a manifold is (M, g) conformally
flat if it is possible to find a conformal transformation that sends g into a flat
metric. Conformally, flat manifolds exhibit some remarkable simplifications
for the calculation of the curvature tensor components (see, e.g., [163]).

B.4 The Jacobi–Levi-Civita Equation for Geodesic
Spread

An important geometric aspect of the Riemann tensor concerns geodesic
deviation, that is, the fact that nearby geodesics that start parallel do not
stay parallel. In order to measure the geodesic deviation, we need to consider
a congruence of geodesics and a vector field, called the Jacobi field or geodesic
separation vector field, and to describe the way of changing this vector along
a geodesic. Let us proceed to define the geodesic separation field and then
derive its evolution equation along a reference geodesic.

Let M be a complete2 Riemannian manifold. Let γ : R →M be a maximal
geodesic. A mapping
2 A connected Riemannian manifold is complete if every maximal geodesic in it is

defined on the entire real axis. As a consequence, any two points in a complete
Riemannian manifold can be joined at least by one geodesic. A geodesic is said
to be maximal if it is not the restriction of any other geodesic defined on a larger
interval of R.
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ϕ : R× I →M , (B.52)

I = (−τ0, τ0), R× I ⊂ R
2, is said to be a variation of the geodesic γ and, in

particular, is said to be a Jacobi variation if for any τ ∈ I the curve

ϕτ (s) = ϕ(s, τ) , s ∈ R ,

is a geodesic. For every fixed s0 ∈ R, the Jacobi variation defines a smooth
curve

α(τ) = ϕ(s0, τ) , τ ∈ R ,

and along α(τ), a vector field

A(τ) =
∂ϕ

∂s
(s0, τ) , τ ∈ R.

Since A(τ) = ϕ̇τ (s0), the vector A(τ) unambiguously determines the geodesic
ϕτ (s) for an arbitrary τ . Together, the curve α(τ) and the vector field A(τ)
unambiguously define the Jacobi variation ϕ. These are related to the geodesic
γ(s) by

α(0) = γ(s0) , A(0) = γ̇(s0) ≡
∂ϕ

∂s
(s0, 0) .

This Jacobi variation is defined by the formula

ϕ(s, τ) = γα(τ),A(τ)(s) , (B.53)

where γα,A(s) is the maximal geodesic passing though the point α(τ) for
s = s0 with A(τ) as tangent vector at that point. The vector field J(s) on a
geodesic γ(s),

J(s) =
∂ϕ

∂τ
(s, 0) , s ∈ R , (B.54)

is called a Jacobi field.
For any two vectors X,Y ∈ Mγ(s0), there exists on the geodesic γ(s) a

Jacobi field J(s) such that

J(s0) = X,
∇J
ds

(s0) = Y .

This field can be constructed by considering a curve α(τ) such that

α(0) = γ(s0), α̇(0) = X ,

and by constructing on α(τ) a vector field A(τ) such that

A(0) = γ̇(s0),
∇A
ds

(0) = Y .

Let us show that an arbitrary Jacobi field J(s) on a geodesic γ(s) satisfies
the Jacobi–Levi-Civita equation
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∇
ds

∇
ds
J(s) +R(J(s), γ̇(s))γ̇(s) = 0 . (B.55)

To prove this, let us begin by defining a parametrized surface in M as a
differentiable mapping φ : A ⊂ R

2 → M , where A is a connected set with
piecewise differentiable boundary. A vector field V along φ is a mapping that
associates to each x ∈ A a differentiable vector V (x) ∈ Tφ(x)M . Denote by
(s, τ) the coordinates in R

2. At fixed τ0, the mapping s �→ φ(s, τ0) is a curve
in M , and (∂φ/∂s) is a vector field along this curve. Likewise, for fixed s0
the mapping τ �→ φ(s0, τ) defines another curve in M and the corresponding
vector field (∂φ/∂τ). Given a vector field V along φ : A→ M , we can define
the covariant derivatives ∇V/∂s and ∇V/∂τ along the curves s �→ φ(s, τ0)
and τ �→ φ(s0, τ) respectively, by considering the restrictions of V to these
curves. For a Levi-Civita connection, a direct computation shows that

∇
∂τ

∂φ

∂s
=
∇
∂s

∂φ

∂τ
. (B.56)

Now, identifying φ with the variation mapping ϕ given above, this equation
implies

∇γ̇
∂τ

=
∇J
∂s

,

and since (∂φ/∂s) = (∂xi/∂s)∂i and (∂φ/∂τ) = (∂xj/∂τ)∂j , we have

∇J γ̇ = ∇γ̇J . (B.57)

Now, using this result, and the fact that ∇γ̇ γ̇ = 0 because γ is a geodesic, we
can write

∇2
γ̇J = ∇γ̇∇γ̇J = ∇γ̇∇J γ̇ = [∇γ̇ ,∇J ]γ̇ , (B.58)

from which, using the definition of the curvature tensor (B.22) and since (B.57)
entails the vanishing of ∇[γ̇,J], we get

∇2
γ̇J = R(γ̇, J)γ̇ , (B.59)

which is (B.55) written in compact notation (recall that R(γ̇, J) = −R(J, γ̇)).
In local coordinates, (B.55) reads

∇2Jk

ds2
+Rk

ijr

dqi

ds
Jj dq

r

ds
= 0 . (B.60)

It is worth noticing that the normal component J⊥ of J , i.e., the component
of J orthogonal to γ̇ along the geodesic γ, is again a Jacobi field, since we can
always write J = J⊥ + λγ̇. One immediately finds, then, that the velocity γ̇
satisfies the Jacobi equation, so that J⊥ must obey the same equation. This
tells us that the relevant information about geodesic separation is conveyed
by normal Jacobi fields.
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Conjugate points. Let γ : I → M , I ⊂ R, be a geodesic on a Riemannian
manifold M . The point γ(t0) ∈ M , with t0 ∈ I, is said to be the conjugate
point of γ(0) along γ if there exists a nonidentically vanishing Jacobi field J
along γ such that J(0) = 0 and J(t0) = 0.

An important property of Jacobi fields is the following. Given a geodesic
γ : I →M and an arbitrary piecewise differentiable vector field V along γ, for
all s ∈ I, provided that γ(0) has no conjugate points in I, that ∇γ̇V (0) = 0,
V (0) = 0, and 〈V, γ̇〉 = 0, the quantity

Is0(V, V ) =
∫ s0

0

ds {〈∇γ̇V,∇γ̇V 〉 − 〈R(γ̇, V )γ̇, V 〉} (B.61)

attains its minimum value when V = J on I, that is, if and only if V is a
Jacobi field.

Equation (B.55) can also be written using a set of orthonormal, parallel
fields (e(1), . . . , e(n)) along γ. One has

J(s) =
n∑

i=1

ξi(s)e(i) ,

Fij = 〈R(γ̇(s), e(i))γ̇(s), e(j)〉 ,

and (B.55) becomes
d2ξj(s)
ds2

+
n∑

i=1

Fijξi(s) = 0 .

An interesting result that helps one to understand intuitively the relation
between geodesics and curvature is the following. Let p ∈ M , γ : I → M be
a geodesic parametrized by the arc length, so that ‖γ̇‖ = 1, with γ(0) = p,
γ̇(0) = v. Consider also J(0) = 0 and ∇J/ds(0) = w such that 〈v, w〉 = 0,
and also ‖w‖ = 1. Let K(p, π) = 〈R(v, w)v, w〉 be the sectional curvature at p
with respect to the plane π generated by γ̇(0) and ∇γ̇J(0). The “short-time”
Taylor expansion of ‖J(s)‖2 gives

‖J(s)‖2 = s2 − 1
3
K(p, π)s4 +R(s), lim

s→0
R(s)/s4 = 0 . (B.62)

This roughly tells us that locally, geodesics spread more if K(p, π) < 0 than
if K(p, π) > 0.

Equation (B.62) also tells that the smaller the value of K(p, π), the larger
is ‖J(s)‖2. In fact, consider another Riemannian manifold M̃ with a geodesic
γ̃ : I → M̃ and a Jacobi field J̃ along γ̃ such that J̃(0) = 0, ‖∇ ˙

γ̃
J̃(0)‖ = 1,

and 〈 ˙̃γ(0),∇ ˙
γ̃
J̃(0)〉 = 0. If

K̃( ˙̃γ(0),∇ ˙
γ̃
J̃(0)) ≥ K(γ̇(0),∇γ̇J(0)) ,
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it follows from (B.62) that for short s the following inequality holds: ‖J(s)‖2 ≥
‖J̃(s)‖2.

Rauch’s comparison theorem extends this result to arbitrary s.
Theorem (Rauch). Consider two Riemannian manifolds Mn and M̃n+k, with
k ≥ 0, and two geodesics γ : I → M γ̃ : I → M̃ such that ‖γ̇(s)‖ = ‖ ˙̃γ(s)‖,
and given two Jacobi fields J and J̃ along γ and γ̃, respectively, with the
conditions

J(0) = J̃(0) = 0 ,

〈γ̇(0),∇γ̇J(0)〉 = 〈 ˙̃γ(0),∇ ˙
γ̃
J̃(0) , 〉

‖∇γ̇J(0)‖ = ‖∇ ˙
γ̃
J̃(0)‖ .

Let γ̃ have no conjugate points in I, and for all s and all x ∈ Tγ(s)M , x̃ ∈
T

γ̃(s)
M , let

K̃(x̃, ˙̃γ(s)) ≥ K(x, γ̇(s)) ,

with K(x, y) and K̃(x̃, ỹ) the sectional curvatures relative to the planes gen-
erated by (x, y) and (x̃, ỹ) respectively. Then

‖J(s)‖ ≥ ‖J̃(s)‖ .

Rauch’s comparison theorem allows one to prove the following useful
proposition:
Given a Riemannnian manifold M and a geodesic γ on it, if the sectional
curvature K of the manifold is bounded by two positive constants L and H,
that is, 0 < L ≤ K ≤ H, then the distance d between two consecutive conjugate
points of γ satisfies the condition

π√
H
≤ d ≤ π√

L
.

B.5 Topology and Curvature

In the preceding appendix, we have seen that certain properties of the dif-
ferentable structures defined on manifolds can give information about the
topology of the same manifolds. Besides analysis on manifolds, geometric
methods can be used to “probe” topology. In particular, on Riemannian man-
ifolds different kinds of relationships can be established between their curva-
ture properties and topology. This is a vast subject, and as far as the needs of
the present monograph are concerned, stating the Gauss–Bonnet–Hopf result
for hypersurfaces of R

n—as we did in Chapters 7 and 8—would be enough.
However, in view of future possible developments of the subjects treated in
the main text of this book, it is not out of place to give a few more elements
about this topic. We list some classical results without entering into details.
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B.5.1 The Gauss–Bonnet Theorem

In dimension 2, the Gauss–Bonnet formula tells everything about the rela-
tionship between curvature and topology. If (M, g) is a compact Riemannian
manifold, its Euler characteristic χ(M) is given by

χ(M) =
1
2π

∫
M

K(u, v) dσ , (B.63)

where u and v are local coordinates on M , dσ =
√

det g du dv is the invariant
volume element, and K(u, v) is the Gaussian curvature of the manifold. In the
compact two-dimensional case the relation between χ and the Betti numbers
is

χ = 2− 2g = b0 − b1 + b2 , (B.64)

where g is the genus, which equals the number of holes of the surface. In this
case, the following equality holds: b1 = 2g.

The relation in (B.63) can be generalized (including manifolds with bound-
ary) to 2n dimensions:
Theorem (Gauss–Bonnet–Chern–Avez). For a 2n-dimensional compact ori-
ented Riemannian manifold M of Euler class γ, its Euler characteristic χ(M)
is given by

χ(M) =
∫

M

γ .

The Euler class of M (even dimensional) is the Euler characteristic class
of TM ,

γ =
(−1)n

(4π)nn!
ε1···2n

i1···ip
Ωi1

i2
∧ · · · ∧Ωi2n−1

i2n
,

where Ωj
i = 1

2R
j
ikle

(k) ∧ e(l) are the so-called curvature 2-forms, Rj
ikl are the

components of the Riemann curvature tensor, and ε1···2n
i1···ip

is the Kronecker
tensor with ε1···2n

i1···ip
= 0 if the string (i1 . . . ip) is not a permutation of the

string (1 . . . 2n), ε1···2n
i1···ip

= +1 if the string (i1 . . . ip) is an even permutation
of the string (1 . . . 2n), and ε1...2n

i1...ip
= −1 if the string (i1 . . . ip) is an odd

permutation of the string (1 . . . 2n).
For dim M = 2 we have γ = (1/2π)Ω2

1 = (1/2π)Kdσ, where K is the
Gaussian curvature and dσ the volume form, thus recovering (B.63).

A much more computationally simple version of this theorem, known as
the Gauss–Bonnet–Hopf theorem, holds for 2n-dimensional hypersurfaces of
R

2n+1, for example defined as level sets Σa = f−1(a) of a function f : B ⊂
R

2n+1 → R, which gives∫
Σa

dσ KG =
1
2
vol(S2n−1

1 )χ(Σa) , (B.65)
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where S
2n−1
1 is a (2n− 1)-dimensional hypersphere of unit radius, and χ(Σa)

is the Euler characteristic of the level set Σa and KG its Gauss–Kronecker
curvature. We have encountered and used this remarkable formula in Chapters
7 and 8.

B.5.2 Hopf-Rinow Theorem

Let (M, g) be a Riemannian manifold and γ : [a, b] → M a smooth curve
on it. The length L(γ) of the curve γ is obtained by means of (B.9), a
definition that can be easily generalized to piecewise smooth curves. Con-
sider a connected Riemannian manifold M . If x, y ∈ M , define Cx,y =
{γ : [a, b] →M | γ piecewise smooth, γ(a) = x, γ(b) = y, a, b ∈ R} and

d(x, y) := inf L(γ) , γ ∈ Cx,y .

One can easily check that this definition of d(x, y) is a distance on M ; that is,
d(x, y) ≥ 0, d(x, y) = d(y, x), d(x, y) ≤ d(x, z)+d(y, z), d(x, y) = 0 if and only
if x = y. Moreover, the topology induced by d on M (which thus becomes a
metric space) is the same as the manifold topology of M .

Let us now enunciate the Hopf–Rinow theorem, which topologically char-
acterizes the connected and geodesically complete Riemannian manifolds.
Theorem. Let M be a simply connected Riemannian manifold. Then the fol-
lowing affirmations are equivalent:

(i) M is geodesically complete;
(ii) (M,d) is a complete metric space (i.e. all the Cauchy sequences are

convergent);
(iii) Every closed and bounded subset of M (bounded with respect to d) is

compact;
(iv) The exponential mapping expp is defined on the whole TpM .

Corollary. If (M, g) is a compact and connected Riemannian manifold, then
for all x, y ∈ M there exists a geodesic γ : [a, b] → M such that γ(a) = x,
γ(b) = y, and L(γ) = d(x, y).

For example, the removal of a point from a manifold makes it noncomplete.
Another example: the half-plane π+ = {(x, y) ∈ R

2|y > 0} with the Euclidean
metric of R

2 is not complete, whereas with the Poincaré hyperbolic metric
(dx2 + dy2)/y2 it is geodesically complete.

The Hopf–Rinow theorem has an interesting application in the proof of
a global fact, linking curvature and topology, established by the following
theorem:
Theorem (Hadamard). If the sectional curvature K(p, π) of a complete, simply
connected n-dimensional Riemannian manifold M is such that K(p, π) ≤ 0
for all p ∈ M and for all π ∈ TpM , then M is diffeomorphic to R

n, and
expp : TpM →M is a diffeomorphism.
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Other results about negative-curvature manifolds are of the following kind:
Any compact orientable surface of genus g > 1 carries a metric with constant
negative curvature. More generally, if (M, g0) is a compact Riemannian mani-
fold with negative Euler characteristic, that is, χ(M) < 0, and K is such that
sup K < 0, there exists a unique smooth conformal metric g = f2g0 on M
with curvature K.

Links between the curvature properties of a manifold M and its topology
are established also by other kinds of theorems providing information about
the fundamental group π1(M). We mention two results of this kind.
Theorem (Milnor). If (M, g) is a compact manifold with strictly negative cur-
vature, then π1(M) has exponential growth.

Let us explain what exponential growth means. Given a group G of finite
type, if G = {a1, . . . , ak} is a set of generators, any element of h ∈ G can be
written as

h =
∏

i

ari

ki
, ri ∈ Z ,

where repetitions of the generators aki
are allowed. This representation is a

word with respect to the generators and
∑

i |ri| is the length of the word. For
any positive integer m, denote by NG(m) the number of elements of G that
can be represented by words of length not exceeding m. A group G of finite
type is said to have exponential growth if for any system G of generators, there
is a constant a > 0 such that NG(m) ≥ exp(am). The growth is said to be
polynomial of degree ≤ n if NG(m) ≤ (amn).

The second theorem, due to Preissman, is as follows:
Theorem . If M is a compact Riemannian manifold with strictly negative cur-
vature, any abelian subgroup of π1(M) (different from the identity) is infinite
cyclic.

To understand the meaning of this theorem, consider, for example, the
torus T

3 = S
1 × S

1 × S
1. Since its fundamental group is Z⊕ Z⊕ Z, it cannot

be endowed with a metric of strictly negative curvature.
Conversely, by a theorem due to Synge, any compact, even-dimensional

orientable Riemannian manifold with K(p, π) > 0, that is, with strictly
positive curvature, is simply connected. Moreover, any noncompact complete
Riemannian manifold with K(p, π) > 0 is contractible.

A theorem due to Myers states that if for a complete Riemannian manifold
(M, g) the Ricci tensor is such that

Ric ≥ (n− 1)
r2

g , r ∈ R+ ,

then3 diam(M, g) ≤ diam[Sn(r)], where S
n is a sphere in R

n+1 of radius r,
and M is compact with finite fundamental group π1(M).
3 The diameter of a metric space M is the supremum of the distance function on
M×M.
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Another kind of link between curvature and topology is given by the
so-called “pinching” theorems. These have their most famous representative
in the sphere theorem:
Theorem . If the sectional curvature K of an n-dimensional compact and
simply connected Riemannian manifold M satisfies the condition

0 < δKmax < K ≤ Kmax ,

and if δ = 1/4, then M is homeomorphic to a sphere.
Pinching theorems have been mainly worked out for manifolds with

positive curvature, though some results exist also for δ-pinched negative cur-
vature manifolds that carry no metric of constant curvature. An interesting
fact related to these works, is that there seem to exist many more manifolds
with negative curvature than with positive curvature.



Appendix C

Summary of Elementary Morse Theory

The purpose of this appendix is to recall the main ideas and concepts of Morse
theory that are relevant for the main text of the book. For a more elaborate
discussion we refer the reader to [210,227,262].

Morse theory, also referred to as critical-point theory, links the topology
of a given manifold M with the properties of the critical points of smooth
(i.e., with infinitely many derivatives) functions defined on it. Morse theory
links local properties (what happens at a particular point of a manifold) with
global properties (the topology, i.e., the shape, of the manifold as a whole).
Two manifoldsM andM ′ are topologically equivalent if they can be smoothly
deformed one into the other: a teacup is topologically equivalent to a dough-
nut, but it is not topologically equivalent to a ball. In fact, a ball has no holes,
while both a teacup and a doughnut have one hole. To define precisely what a
“smooth deformation” is, one has to resort to the notion of a diffeomorphism,
as we have already seen in Appendixes A and B. Thus the notion of “topolo-
gical equivalence” between M and M ′ has a precise meaning: it requires that
there exists a diffeomorphism ψ that maps M into M ′ = ψ(M). For the sake
of simplicity, we consider only compact, finite-dimensional manifolds. Most of
the results can be extended not only to noncompact manifolds, but also to
infinite-dimensional manifolds modeled on Hilbert spaces (see [210]).

The key ingredient of Morse theory is to look at the manifold M as
decomposed into the level sets of a function f . Let us recall that the a-level
set of a function f : M �→ R is the set

f−1(a) = {x ∈M : f(x) = a} , (C.1)

i.e., the set of all the points x ∈ M such that f(x) = a. Now, M being
compact, any function f has a minimum, fmin, and a maximum, fmax, so that

fmin ≤ f(x) ≤ fmax ∀x ∈M . (C.2)

This means that the whole manifold M can be decomposed into the level
sets of f . In fact, one can build M starting from f−1(fmin) and then adding

421
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continuously to it all the other level surfaces up to f−1(fmax). To be more
precise, one defines the “part of M below a” as

Ma = f−1(−∞, a] = {x ∈M : f(x) ≤ a} , (C.3)

i.e., each Ma is the set of the points x ∈M such that the function f(x) does
not exceed a given value a; as a is varied between fmin and fmax,Ma describes
the whole manifold M .

For our purposes, we need to restrict the class of functions we are inter-
ested in to the class of Morse functions, which are defined as follows. Given
a manifold M of dimension n and a smooth function f : M �→ R, a point
xc ∈ M is called a critical point of f if df(xc) = 0, while the value f(xc) is
called a critical value. The function f is called a Morse function on M if its
critical points are nondegenerate, i.e., if the Hessian matrix of f at xc, whose
elements in local coordinates are

Hij =
∂2f

∂xi∂xj
, (C.4)

has rank n, i.e., has only nonzero eigenvalues. This means that there are no
directions along which one could move the critical point, so that there are no
lines (or surfaces, or hypersurfaces) made of critical points. As a consequence,
one can prove that the critical points xc of a Morse function, and also its
critical values, are isolated. It can be proved also that Morse functions are
generic: the space of the Morse functions is a dense subset of the space of the
smooth functions from M to R. A level set f−1(a) of f is called a critical
level if a is a critical value of f , i.e., if there is at least one critical point
xc ∈ f−1(a).

The main results of Morse theory are the following:

1. If the interval [a, b] contains no critical values of f , then the topology of
f−1[a, v] does not change for any v ∈ (a, b]. This result1 is sometimes
called the noncritical neck theorem. The reason for this terminology will
be made clear in the following.

2. If the interval [a, b] contains critical values, the topology of f−1[a, v]
changes in correspondence with the critical values themselves, in a way
that is completely determined by the properties of the Hessian of f at the
critical points.

3. (Sard’s theorem) If f : M → R is a Morse function, the set of all the critical
points of f is a discrete subset of M (the critical points are isolated).

4. If f : M → R is a Morse function, with compact M , then on a finite
interval [a, b] ⊂ R there is only a finite number of critical points p of f
such that f(p) ∈ [a, b]. Moreover, the set of critical values of f is a discrete
set of R.

1 We note that this result is valid even if f is not a Morse function; it is sufficient
that it be a smooth function.
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5. For any differentiable manifold M , the set of Morse functions on M is an
open dense set in Cr(M,R) (real functions on M of differentiability class
r) for 0 ≤ r ≤ ∞.2

6. Some topological invariants of M , i.e., quantities that are the same for
all the manifolds that have the same topology as M , so that they charac-
terize unambigously the topology itself, can be estimated and sometimes
computed exactly once all the critical points of f are known.

Without giving explicit proofs, which can be found in [210], we now discuss
the items given above in more detail.

C.1 The Non-Critical Neck Theorem

If there are no critical values in the interval [a, b], there exists a diffeomorphism
that sends f−1[a, b] into the Cartesian product f−1(a)×[a, b]. This means that
the shape of f−1[a, b] is that of a multidimensional cylinder, or a neck (from
which the name “noncritical neck”), if f−1(a) is simply connected, because
the Cartesian product of a circle and an interval is a cylinder. This might be
better understood with the aid of a two-dimensional example. Suppose thatM
is two-dimensional, and that the level set f−1(a) is topologically equivalent to
a circle (see Figure C.1). Then one can construct a diffeomorphism explicitly

Fig. C.1. A noncritical neck. The lines with the arrows are the flow lines of ∇f ,
and the ellipses are the level sets of f .

2 For example, if y0 is, in a Morse chart, a degenerate critical point of f : M → R,
an arbitrarily small perturbation δf =

∑n

i=0
aiy

i, with a ∈ R
n, removes the

degeneracy without altering the indices of the critical points.
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as the flow of the gradient vector field of f ,∇f , whose flow lines are orthogonal
to the level surfaces of f and are depicted as the lines with the arrows in Figure
C.1. This flow has no singularities if there are no critical values of f , so that
the level set f−1(a) is transported up to f−1(b) along the flow lines of ∇f
without changing its topology. As a consequence,

f−1[a, b] ≈ f−1(a)× [a, b] ≈ f−1(b)× [a, b] , (C.5)

where “x ≈ y” must be read as “x is diffeomorphic to y.”

C.1.1 Critical Points and Topological Changes

In the neighborhood of a regular point P , N(P ), there always exists a coor-
dinate system such that f can be written as its first-order Taylor expansion,3

setting the origin of such coordinates in P , in the form

f(x) = f(0) +
∂f

∂xi
xi + · · · ∀x ∈ N(P ) . (C.6)

Geometrically, this means that in the neighborhood of a regular point the
level sets of f look like hyperplanes in Rn, because they are the level sets of
a linear function.

But what if P is a critical point of f? A fundamental result by M. Morse,
called the Morse lemma, is that if f is a Morse function then there always
exists in N(P ) a coordinate system (called a Morse chart) such that f is given
by its second-order Taylor polynomial:

f(x) = f(0) +
∂2f

∂xi∂xj
xixj + · · · ∀x ∈ N(P ) . (C.7)

With a suitable rotation of the coordinate frame, {xi} �→ {yi}, the expansion
(C.7) can always be reduced to the canonical diagonal form

f(y) = f(0)−
k∑

i=1

(yi)2 +
n∑

i=k+1

(yi)2 + · · · ∀y ∈ N(P ) . (C.8)

Close to P , the level sets of f are the level sets of a quadratic function, so
that geometrically, they are nondegenerate quadrics, such as hyperboloids or
ellipsoids, that become degenerate at P . The number of negative eigenvalues of
the Hessian matrix, k, is called the index of the critical point. Passing through
the critical level, the shape of the level sets of f changes dramatically, in a
way that is completely determined by the index k. Some examples in two and
three dimensions are given in Figure C.2.

The change undergone by the submanifolds Ma as a critical level is passed
is described using the concept of “attaching handles.” A k-handle H(k) in n
3 This follows from the implicit function theorem.
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Fig. C.2. Some examples of ε-level sets near a critical point (the critical value of
the function is set to 0). Upper left: n = 2, critical point of index k = 2; upper right:
n = 2, critical point of index k = 1; lower left: n = 3, critical point of index k = 0;
lower right: n = 3, critical point of index k = 2.

dimensions (0 ≤ k ≤ n) is a product of two disks, one k-dimensional (Dk)
and the other (n− k)-dimensional (Dn−k):

H(k) = Dk ×Dn−k . (C.9)

In two dimensions, we can have either 0-handles, which are 2-dimensional
disks, or 1-handles, which are the product of two 1-dimensional disks, i.e.,
of two intervals, so that they are stripes, or 2-handles, which are again
2-dimensional disks (Figure C.3). In three dimensions, we have 0-handles,
which are solid spheres; 1-handles, which are the product of a disk and an
interval, so that they are solid cylinders; 2-handles, which are the same as
1-handles; and 3-handles, which are the same as 0-handles (Figure C.3). In
more than three dimensions it is difficult to visualize handles: however, there
is still the duality of the n = 2 and n = 3 cases, i.e., k and n− k handles are
topologically equivalent.

Having defined handles, we can state the main result of Morse theory.
Let M be an n-dimensional manifold with boundary ∂M , and let φ be a

smooth embedding φ : S
ki−1×Dn−ki → ∂M (where S is a hypersphere). Then

one can build the topological space M
⋃

φH
n,k, that is, M with a k-handle

attached by φ, by considering the topological sum of M and Hn,k (i.e. the
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=

H(2)

=

H(0)D(0) D(2)

D(2) D(0)

=

H(1)D(1) D(1)

Fig. C.3. Two-dimensional handles: H(0) is the product of a 0-disk (a point) and a
2-disk, so that it is a 2-disk; H(1) is the product of two 1-disks, i.e., of two intervals,
so that it is a strip; H(2) is again a 2-disk, as is H(0).

disjoint union M
⋃
Hn,k), and then identifying x ∈ Hn,k with φ(x) ∈ ∂M . It

can be shown that “rounding the corners” of this topological space is possible,
that is,M

⋃
φH

n,k can be given an n-dimensional differentiable structure that
makes it a differentiable manifold with boundary. This procedure admits a
generalization to the simultaneous attachment of m n-dimensional handles
Hn,k1

1 Hn,k2
2 . . . Hn,km

m of indexes k1 . . . km. The fundamental result of Morse
theory, relating critical points to the attachment of handles, is expressed as
follows.

Theorem C.1. Let f : M → R, with ∂M = ∅. Let Crit(f) be the set of
critical points of f , c ∈ R, and Crit(f) ∩ f−1(c) = {x1, . . . , xm}, where each
xi, i = 1, . . . ,m, is a critical point of index ki. Assume that for ε0 > 0
f−1([c−ε0, c+ε0]) is a compact set with no other critical point but x1, . . . , xm.
Then for any ε such that 0 < ε < ε0, the manifold Mc+ε = f−1((−∞, c+ε]) is
diffeomorphic to Mc−ε = f−1((−∞, c − ε]) with the handles Hn,k1

1 . . . Hn,km
m

attached, that is,

Mvc+ε ≈Mvc−ε

⋃
φ1

Hn,k1
⋃
φ2

Hn,k2 · · ·
⋃
φn

Hn,kn ,

for some embeddings φi : S
ki−1×Dn−ki → ∂Mvc−ε, with ∂Mvc−ε = f−1(c−ε).

Let us see how this works in a simple example. Consider as our manifoldM
a two-dimensional torus standing on a plane (think of a tire in a ready-to-roll
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=

H(2)

=

H(3)D(0) D(3)

D(2)

=

H(1)
D(1)

D(2)

D(1)

=

H(3)D(0)D(3)

Fig. C.4. Three-dimensional handles: H(0) is the product of a 0-disk (a point) and
a 3-disk (a ball), so that it is a ball; H(1) is the product of a 1-disk (an interval) and
a 2-disk, so that it is a tube; H(2) is as H(1), and H(3) is as H(0).

position), and define a function f on it as the height of a point ofM above the
floor level. If the z-axis is vertical, f is the orthogonal projection of M onto
the z-axis. Such a function has four critical points, and the corresponding four
critical levels of f , which will be denoted p0, p1, p2, p3, are depicted in Figure
C.5. We can build our torus in separate steps: each step will correspond to the
crossing of a critical level of f . As long as a < 0, the manifold Ma is empty.
At a = p0 = 0 we cross the first critical value, corresponding to a critical
point of index 0. This means that we have to attach a 0-handle (a disk) to
the empty set. Any Ma with 0 < a < p1 is diffeomorphic to a disk, as we can
see by cutting a torus at any height between 0 and p1 and throwing away the
upper part. At p2 we meet the second critical point, which now has index 1,
so that we have to attach a 1-handle (a stripe) to the previous disk, obtaining
a sort of a basket. Such a basket can be smoothly deformed into a U-shaped
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p
3

p
2

p
1

p
0

Ma1<a<a2

f(p)

P

Σa1<a<a2

Σa2

Σa1

Ma>a2

Ma<a1

Σa>a2

Σa<a1

Fig. C.5. The critical points and critical levels of the height function on a two-
dimensional torus.

tube: in fact, if we cut a torus at any height between p1 and p2 and we throw
away the upper part, we get a U-shaped tube. The third critical point p2 is
again a point of index 1, so we have to glue another stripe to the tube. What
we obtain can be smoothly deformed into a full torus with only the polar cap
cut away from it. The last critical point has index 2, so that the crossing of it
corresponds to the gluing of a 2-handle (a disk), which is just the polar cap
we needed to complete the torus.

C.1.2 Morse Inequalities

There is a relationship between Morse theory and de Rham cohomology. This
link is made through the Morse inequalities. We have the following theorem:

Theorem C.2. Let a < b be two regular values of the Morse function
f : M → R, with M compact.
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Let Ma,b = f−1([a, b]) = {x ∈ M |f(x) ∈ [a, b]}. Denoting by μk the
number of critical points of index k that the function f has in Ma,b, and
denoting by bk the kth Betti number of Ma,b, one has

(Morse inequalities)

b0 ≤ μ0 ,

b1 − b0 ≤ μ1 −m0 ,

...
bk − bk−1 + · · · ± b0 ≤ μk − μk−1 + · · · ± μ0

(weak Morse inequalities),

∀k, bk ≤ μk ,

(Euler characteristic),

χ(Ma,b) ≡
n∑

k=1

(−1)k bk =
n∑

k=1

(−1)k μk .

The last formula provides a way of computing exactly the Euler characteristic
of a manifold once all the critical points of a Morse function are known.

Among all the Morse functions on a manifold M , there is a special class
(called perfect Morse functions) for which the Morse inequalities (10.35) hold
as equalities. Perfect Morse functions characterize completely the topology
of a manifold. It is possible to prove that the height function on the torus
we considered above is a perfect Morse function [210]. However, there are no
simple general recipes to construct perfect Morse functions.

For a (two-dimensional) surface, the number of holes of the surface is a
topological invariant called its genus g. In this case we have χ = 2− 2g.



References

1. J. Hadamard, J. Math. Pur. Appl. 4, 27 (1898); G. A. Hedlund, Bull. Amer.
Math. Soc. 45, 241 (1939); E. Hopf, Proc. Nat. Acad. Sci. 18, 263 (1932).

2. N. S. Krylov, Works on the Foundations of Statistical Physics (Princeton
University Press, Princeton, 1979).

3. Ya. G. Sinai (ed.), Dynamical Systems II, Encyclopædia of Mathematical
Sciences 2 (Springer, Berlin, 1989).

4. V. I. Anosov, Proc. Steklov Math. Inst. 90, 1 (1967); also reprinted in [5].
5. R. S. MacKay, and J. D. Meiss (eds.), Hamiltonian Systems: a Reprint Selection

(Adam Hilger, Bristol, 1990).
6. Y. Aizawa, J. Phys. Soc. Jpn. 33, 1693 (1972).
7. C. P. Ong, Adv. Math. 15, 269 (1975).
8. J. F. C. van Velsen, J. Phys. A: Math. Gen. 13, 833 (1980).
9. V. G. Gurzadyan, and G. K. Savvidy, Astron. & Astrophys. 160, 203 (1986).

10. M. Szydlowski, J. Math. Phys. 35, 1850 (1994).
11. Y. Aizawa, J. Korean Phys. Soc. 28, S310 (1995).
12. B. Nobbe, J. Stat. Phys. 78, 1591 (1995).
13. M. Szydlowski, M. Heller, and W. Sasin, J. Math. Phys. 37, 346 (1996).
14. H. E. Kandrup, Astrophys. J. 364, 420 (1990); Physica A 169, 73 (1990); Phys.

Rev. E56, 2722 (1997).
15. M. C. Gutzwiller, J. Math. Phys. 18, 806 (1977).
16. A. Knauf, Comm. Math. Phys. 110, 89 (1987).
17. R. Thom, in Statistical Mechanics, eds. S. A. Rice, K. F. Freed, and J. C. Light

(University of Chicago Press, 1972), p. 93.
18. T. Poston, and I. Stewart, Catastrophe Theory and Its Applications (Pitman

Press, London, 1978), and references therein quoted.
19. G. Ruppeiner, Phys. Rev. A44, 3583 (1991); Riemannian Geometry in

Thermodynamic Fluctuation Theory, Rev. Mod. Phys. 67, 605–659 (1995).
20. D. H. E. Gross, Phys. Rep. 279, 119–202 (1997).
21. M. Rasetti, Topological Concepts in the Theory of Phase Transitions, in

Differential Geometric Methods in Mathematical Physics, ed. H. D. Döbner
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220. P. Brémaud, Markov Chains, (Springer, New York 2001), Chapter 7.
221. A. I. Khinchin, Mathematical Foundations of Statistical Mechanics, (Dover

Publications, Inc., New York 1949).
222. L. Angelani, L. Casetti, M. Pettini, G. Ruocco, and F. Zamponi, Europhys.

Lett. 62, 775 (2003).
223. L. Angelani, L. Casetti, M. Pettini, G. Ruocco, and F. Zamponi, Phys. Rev.

E 71, 036152 (2005).
224. T. Dauxois, V. Latora, A. Rapisarda, S. Ruffo, and A. Torcini, The

Hamiltonian Mean-Field Model: From Dynamics to Statistical Mechanics and
Back, in [225].

225. T. Dauxois et al. (eds.), Dynamics and Thermodynamics of Systems with Long-
Range Interactions, Lecture Notes in Physics 602 (Springer, Berlin, 2002).
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Poincaré–Birkhoff, 9, 62

Thermal wavelength,, 18
Thermodynamic fluctuations, 46
Thermodynamic limit, 34, 50, 54,

76–78, 90, 189, 195, 201, 217, 218,
250, 253, 254, 284, 298, 300, 309,
315, 332, 337

Thermodynamics
second law, 29
statistical, 29

Thermostat, 30
Topological change

“big” and sudden
and phase transitions, 307

“mild”, 225, 312
and absence of phase transitions,

242, 295

and singular curvature fluctuations,
204

in a family of surfaces, 203
sudden “second-order”, 226

Topological complexity, 352
Topological hypothesis, 10, 204, 208,

220, 229, 245
Topological invariants, 234, 303, 352,

368
Topological manifolds, 368

chart, 368
local coordinates, 368

Topological spaces, 367
homeomorphism between, 368

Topology and phase transitions
sufficency, 231

Topology change
through attachment of handles, 286

Torsion group, 388
Triangulation of a surface, 221, 385
Triangulation of a topological space,

387

Uniform convergence, 50
basic definitions, 256

Universality, 39, 48
Universality class, 48
Unpredictability of dynamics, 2, 61, 62
Unstable periodic orbits, 165

Van der Waals equation, 38
Van Hove potential, 50
Vector field

on a manifold, 373
flow of, 373
integral curve of, 373

Vector space, 361
of q-forms

on manifolds, 376
Vectors, 362

on manifolds, 371

Weingarten’s map, 232
Weiss molecular field, 41
Wick rotation, 358

Yukawa pair potential, 194

Zermelo
paradox of, 24

Zeroth law of thermodynamics, 23



Interdisciplinary Applied Mathematics

1. Gutzwiller: Chaos in Classical and Quantum Mechanics
2. Wiggins: Chaotic Transport in Dynamical Systems
3. Joseph/Renardy: Fundamentals of Two-Fluid Dynamics: Part I:

Mathematical Theory and Applications
4. Joseph/Renardy: Fundamentals of Two-Fluid Dynamics: Part II:

Lubricated Transport, Drops and Miscible Liquids
5. Seydel: Practical Bifurcation and Stability Analysis: From Equilibrium

6. Hornung: Homogenization and Porous Media
7. Simo/Hughes: Computational Inelasticity
8. Keener/Sneyd: Mathematical Physiology
9. Han/Reddy: Plasticity: Mathematical Theory and Numerical Analysis

10. Sastry: Nonlinear Systems: Analysis, Stability, and Control
11. McCarthy: Geometric Design of Linkages
12. Winfree: The Geometry of Biological Time (Second Edition)
13. Bleistein/Cohen/Stockwell: Mathematics of Multidimensional Seismic

Imaging, Migration, and Inversion
14. Okubo/Levin: Diffusion and Ecological Problems: Modern Perspectives

(Second Edition)
15. Logan: Transport Modeling in Hydrogeochemical Systems
16. Torquato: Random Heterogeneous Materials: Microstructure and

Macroscopic Properties
17. Murray: Mathematical Biology I: An Introduction (Third Edition)
18. Murray: Mathematical Biology II: Spatial Models and Biomedical

Applications (Third Edition)
19. Kimmel/Axelrod: Branching Processes in Biology
20. Fall/Marland/Wagner/Tyson (Editors): Computational Cell Biology
21. Schlick: Molecular Modeling and Simulation: An Interdisciplinary Guide
22. Sahimi: Heterogeneous Materials: Linear Transport and Optical Properties

(Vol. I)
23. Sahimi: Heterogeneous Materials: Nonlinear and Breakdown Properties

and Atomistic Modeling (Vol. II)
24. Bloch: Nonholonomic Mechanics and Control
25. Beuter/Glass/Mackey/Titcombe: Nonlinear Dynamics in Physiology and

Medicine
26.

27.
28. Wyatt: Quantum Dynamics with Trajectories
29.
30. Macheras/Iliadis: Modeling in Biopharmaceutics, Pharmacokinetics, and

Pharmacodynamics: Homogeneous and Heterogeneous Approaches
31. Samelson/Wiggins: Lagrangian Transport in Geophysical Jets and Waves

Wodarz: Killer Cell Dynamics32.
33. Pettini: Geometry and Topology in Hamiltonian Dynamics and 

Statistical Mechanics 

to Chaos

34.

š á

 Ewens: Mathematical Population Genetics (2nd Edition) 

Karniadakis: Microflows and Nanoflows

Ma/Soatto/Koseck /Sastry: An Invitation to 3-D Vision: From Images
 to Geometric Models 

Morel/Desolneux/Moisan: From Gestalt Theory to Image Analysis: 
A Probabilistic Approach


