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4.1 Introduction

Since Rasch’s introduction of his item response models (Rasch, 1960), there
has been a proliferation of extensions and alternatives, each of which has a
different name and different matching software package. As Adams, Wilson,
& Wang (1997) pointed out, the proliferation of models has, in some ways,
been a hindrance to practitioners. This paper presents a generalized item
response model that provides a unifying framework for a large class of Rasch-
type models. The advantages of a single framework include mathematical
elegance, generality in a single software package, and a facilitation of the
development, testing, and comparison of new models. The unified model is a
multidimensional item response model, the specification of which is achieved
through the use of design matrices chosen to represent the parametrization of
the model. In the paper we discuss the estimation of the parameters of the
model, the testing of model fit, and we illustrate how standard models (such
as the simple logistic, the rating scale, and facets models) and alternative
user-defined models are specified.

Over the past 30 years, a proliferation of item response models has
emerged. In the logistic item response model family, notably, the simple logis-
tic model (Rasch, 1980), the partial-credit model (Masters, 1982), the rating-
scale model (Andrich, 1978), the facets model (Linacre, 1989), and the linear
logistic model (Fischer, 1973) have all played an important role in the analysis
of item response data. Typically, the development of the estimation procedures
of parameters for each item response model was specific to the model, as was
the development of dedicated software programs for each model. Surveying the
family of RMs, Adams & Wilson (1996) developed a unified approach to spec-
ifying the models and then consequentially estimating the parameters. There
are at least two advantages to developing one single framework to encompass
a family of models. First, the development of the estimation procedures and
associated software for the implementation of the models can be streamlined
within a single framework of models. That is, one needs to develop only one
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set of estimation procedures and one software program to carry out the es-
timation of the parameters in the models. Second, a generalized framework
provides an opportunity for the development of new models that fit in the
framework. This allows for the flexible application of item response models to
suit users’ requirements.

This paper describes a generalized framework for specifying a family of
logistic item response models through the specification of design matrices.
The estimation procedures are also described. The idea of the use of design
matrices is extended to the construction of a family of goodness-of-fit tests.
Flexibility in the construction of fit tests allows the users to target specific
hypotheses regarding the fit of the items to the model, such as the violation
of local independence between subsets of items.

4.2 The Mixed-Coefficients Multinomial Logit Model

The mixed-coefficients multinomial logit model (MCML) is a categorical re-
sponse model, and in most applications, the response patterns to a set of
test items (the categorical outcomes) are modeled as the dependent variable.
Under the model, the response patterns are predicted by logistic regression,
where the independent variables are item difficulty and person abilities.1

The model is referred to as a mixed-coefficients model because items are
described by a fixed set of unknown parameters, ξ, while the student ability
(the latent variable), θ, is a random effect.

The model is specified as follows. Assume that there are I items and they
are indexed i = 1, . . . , I with each item admitting Ki + 1 response categories
indexed k = 0, 1, . . . ,Ki. That is, a response to item i by a student can be
allocated to one of Ki + 1 response categories. The vector-valued random
variable Xi = (Xi1, Xi2, . . . , XiKi

)T
, where for k = 1, . . . ,Ki,

Xik =
{

1 if response to item i is in category k,
0 otherwise, (4.1)

is used to indicate the Ki + 1 possible responses to item i. A vector
of zeros denotes a response in category zero, making the zero category a
reference category, which is necessary for model identification. Using this as
the reference category is arbitrary, and does not affect the generality of the
model.

Each Xi consists of a sequence of 0’s and possibly one 1, indicating the
student’s response category for that item. For example, if the response cate-
gory is 0 for an item with four categories (0, 1, 2, 3), then XT

i = (0, 0, 0). If
the response category is 2, then XT

i = (0, 1, 0).

1 Throughout this article the term “ability” is used as a generic placeholder to refer
to the latent variable being measured. The term “difficulty” refers to parameters
that characterize the items.
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The Xi can also be collected together into the single vector XT =(
XT

1 ,XT
2 , . . . ,XT

I

)
, called the response vector. Particular instances of each

of these random variables are indicated by their lowercase equivalents, x, xi,
and xik.

Items are described through a vector ξT = (ξ1, ξ2, . . . , ξp), of p pa-
rameters. Linear combinations of these are used in the response probabil-
ity model to describe the empirical characteristics of the response cate-
gories of each item. These linear combinations are defined by design vectors
aik (i = 1, . . . , I; k = 1, . . .Ki), each of length p, which can be collected to
form a design matrix AT = (a11,a12, . . . ,a1K1 ,a21, . . . ,a2K2 , . . . ,aIKI

).
The multidimensional form of the model assumes that a set of D traits un-

derlies the individuals’ responses. The D latent traits define a D-dimensional
latent space. The vector θθθ = (θ1, θ2, . . . , θD)T represents an individual’s posi-
tion in the D-dimensional latent space.

The model also introduces a scoring function that allows the specification
of the score or performance level assigned to each possible response category
to each item. To do so, the notion of a response score bikd is introduced, which
gives the performance level of an observed response in category k, item i, di-
mension d. The scores across D dimensions can be collected into a column
vector bik = (bik1, bik2, . . . , bikD)T , and again collected into the scoring sub-
matrix for item i, Bi = (bi1,bi2, . . . ,biki)

T and then into a scoring matrix
B =

(
BT

1 ,BT
2 , . . . ,BT

I

)T for the entire test. (The score for a response in the
zero category is zero, but other responses may also be scored zero.)

The regression of the response vector on the item and person parameters
is

f (x; ξ|θ) = Ψ (θ, ξ) exp
[
xT (Bθ + Aξ)

]
, (4.2)

with

Ψ (θ, ξ) =

{∑
z∈Ω

exp
[
zT (Bθ + Aξ)

]}−1

, (4.3)

where Ω is the set of all possible response vectors.

4.2.1 Simple Logistic Model (SLM) Example

Equations (4.2) and (4.3) can be illustrated with some simple cases. Consider
a simple logistic model for dichotomous data. This model would normally be
written (in the notation of Wright & Stone, 1979) as

Pr (Xi1 = 1, δi|θ) =
exp (θ + δi)

1 + exp (θ + δi)
. (4.4)

For three dichotomous items, the probability of the response vector, xT =
(x11, x21, x31), is then
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Pr (X = x, δ1, δ2, δ3|θ) =
3∏

i=1

exp {xi1 (θ + δi)}
1 + exp (θ + δi)

=
exp
{

3∑
i=1

xi1 (θ + δi)
}

3∏
i=1

{1 + exp (θ + δi)}
(4.5)

=
exp (rθ + x11δ1 + x21δ2 + x31δ3)

D
,

where

D = 1 + exp (θ + δ1) + exp (θ + δ2) + exp (θ + δ3)
+ exp (2θ + δ1 + δ2) + exp (2θ + δ2 + δ3)
+ exp (2θ + δ1 + δ3) + exp (3θ + δ1 + δ2 + δ3) ,

and

r =
3∑

i=1

xi1.

To show how (4.2) and (4.5) can be made equivalent, consider the following
choices of A, B and ξ:

A =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , B =

⎡
⎣ 1

1
1

⎤
⎦ , and ξ =

⎡
⎣ δ1

δ2
δ3

⎤
⎦ , (4.6)

where the first row of A corresponds to item one category one; the second row
corresponds to item two category one; the third row corresponds to item three
category one. The rows of B correspond to the same item and category as for
the rows of A. The elements of ξ correspond to the item difficulty parameters
of items one to three respectively. Note that with three dichotomous items
there are eight different response patterns.

4.2.2 Partial-Credit Example

As a second example, consider a partial-credit item with three categories: 0,
1, and 2. Using the notation of Wright & Masters (1982), (4.2) and (4.3) can
be written as

Pr
(
XT

i = (0, 0) ; δi1, δi2|θ
)

= Pr (category 0;A,B, ξ|θ)

=
1

1 + exp (θ + δi1) + exp (2θ + δi1 + δi2)
,



4 The MRCML: A Generalized Rasch Model 61

Pr
(
XT

i = (1, 0) ; δi1, δi2|θ
)

= Pr (category 1;A,B, ξ|θ)

=
exp (θ + δi1)

1 + exp (θ + δi1) + exp (2θ + δi1 + δi2)
, (4.7)

Pr
(
XT

i = (0, 1) ; δi1, δi2|θ
)

= Pr (category 2;A,B, ξ|θ)

=
exp (2θ + δi1 + δi2)

1 + exp (θ + δi1) + exp (2θ + δi1 + δi2)
.

For two three-category partial-credit items, the probability of the response
vector x is then

Pr (X = x; δ11, δ12, δ21, δ22|θ) =
2∏

i=1

exp
(

siθ +
si∑

k=1
δik

)
1 + exp (θ + δi1) + exp (2θ + δi1 + δi2)

, (4.8)

where si is the observed response category for item i and
0∑

i=1
u ≡ 0 for all

possible values of u.
To show how (4.2) and (4.8) can be made equivalent, consider the following

choices of A, B, and ξ:

A =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1
2
1
2

⎤
⎥⎥⎦ , and ξ =

⎡
⎢⎢⎣

δ11
δ12
δ21
δ22

⎤
⎥⎥⎦ , (4.9)

where the first row of A corresponds to item one category one; the second
row corresponds to item one category two; the third row corresponds to item
two category one; and the fourth row corresponds to item two category two.
The same row referencing applies to the matrix B.

4.2.3 Facet Example

Consider an example of a facets model (Linacre, 1989) in which there are three
raters, each rater rating the same two dichotomous items. This is modeled as
six generalized items. A generalized item is defined for each of the possible
combinations of a rater and an actual item. Generalized item one is the re-
sponse category given by rater one on item one. Generalized item two is the
response category given by rater one on item two, and so on. The following
choices of A, B, and ξ will give this facets model:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0
1 0 0 0 1
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦

, and ξ =

⎡
⎢⎢⎢⎢⎣

ρ1
ρ2
ρ3
δ1
δ2

⎤
⎥⎥⎥⎥⎦ , (4.10)
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where the first row of A corresponds to category one of generalized item one
(rater one, item one); the second row corresponds to category one of general-
ized item two (rater one, item two); the third row corresponds to category one
of generalized item three (rater two, item one); the fourth row corresponds to
category one of generalized item four (rater two, item two), and so on. The
same row referencing applies to the matrix B. The first three elements (ρ1,
ρ2, ρ3) of ξ are the severity parameters of raters one to three respectively.
The fourth and fifth element, (δ1, δ2) of ξ are the item-difficulty parameters
for the two dichotomous items.

4.2.4 Multidimensional Examples

Finally, Figure 4.1 shows two possible multidimensional models: a between-
item multidimensionality model and a within-item multidimensionality model
(Adams, Wilson, & Wang, 1997). In each case, a hypothetical nine-item test is
considered. In the between-item multidimensional case (the left-hand side of
Figure 4.1), each item is associated with a single dimension, but the collection
of items covers three dimensions: three items are associated with each of the
three latent dimensions. In the within-item case (the right-hand side of Figure
4.1), some items are associated with more than one dimension. For example,
item two is associated with both dimensions one and two.

1
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2 1

3
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 DIMENSIONS 
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4

3
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Between- item
Multidimensionality

Within -item 
Multidimensionality

Fig. 4.1. Between- and within-item multidimensionality
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If the items shown in Figure 4.1 are all dichotomous, then the matrices A,
B, and ξ, as given in (4.11) and (4.12), if substituted into (4.2), will yield the
between- and within-item multidimensional models respectively as shown in
Figure 4.1.

Note that the only difference between (4.11) and (4.12) is the B matrix.
This matrix is called the score matrix and is used to indicate the scores of the
items on each of the three dimensions. Note also that the B matrices (4.11)
and (4.12) have three columns, one for each of the three dimensions that are
modeled:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and ξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

δ9

,

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.11)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 1 0
1 0 1
1 1 0
0 1 0
0 1 0
1 1 1
0 0 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and ξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

δ9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.12)

4.2.5 The Population Model

The item response model (4.2) is a conditional model, in the sense that it
describes the process of generating item responses conditional on the latent
variable, θθθ. The complete definition of the model, therefore, requires the spec-
ification of a density, fθθθ (θθθ;ααα), for the latent variable, θθθ. Let ααα symbolize a
set of parameters that characterize the distribution of θ. The most common
practice in specifying unidimensional marginal item response models is to as-
sume that students have been sampled from a normal population with mean
µ and variance σ2. That is,

fθ (θ;α) ≡ fθ

(
θ;µ, σ2) =

(
2πσ2)− 1

2 exp

[
− (θ − µ)2

2σ2

]
, (4.13)

or equivalently θ = µ + E, where E ∼ N
(
0, σ2

)
.

Adams, Wilson, & Wu (1997) discuss how a natural extension of (4.13) is
to replace the mean, µ, with the regression model, YT

n β where Yn is a vector
of u fixed and known values for student n, and β is the corresponding vector



64 Raymond J. Adams and Margaret L. Wu

of regression coefficients. For example, Yn could be constituted of student
variables such as gender or socioeconomic status. Then the population model
for student n becomes,

θθθn = YT
n β + En, (4.14)

where the En are assumed to be independently and identically normally dis-
tributed with mean zero and variance σ2, so that (4.13) can be generalized
to

fθθθ

(
θθθn;Yn, β, σ2) =

(
2πσ2)− 1

2 exp
[
− 1

2σ2

(
θθθn − YT

n β
)T (

θθθn − YT
n β
)]

,

(4.15)

a normal distribution with mean YT
n β and variance σ2. The generalization

needs to be taken one step further to apply it to the vector-valued θθθ (of length
d) rather than the scalar-valued θθθ. The extension results in the multivariate
population model

fθθθ (θθθn;Wn, γ,Σ) = (2π)− d
2 |Σ|− 1

2 (4.16)

exp
[
−1

2
(θθθn − γWn)T

Σ−1 (θθθn − γWn)
]
,

where γ is a d×u matrix of regression coefficients, a d×d variance–covariance
matrix Σ, and Wn is a u×1 vector of fixed variables.

While in most cases, the multivariate normal distribution (4.16) is assumed
as the population distribution, other forms of the population distribution can
also be considered. For example, Adams, Wilson, & Wang (1997) considered a
step distribution defined on a prespecified set of nodes. They argued that this
could be used as an opportunity to approximate an arbitrary continuous-trait
distribution.

4.2.6 Combined Model

The conditional item response model (4.2) and the population model (4.16)
are combined to obtain the unconditional, or marginal, item response model:

fx (x; ξ, γ,Σ) =
∫
θ

fx (x; ξ|θ) fθ (θ; γ,Σ) dθ. (4.17)

It is important to recognize that under this model, the locations of individuals
on the latent variables are not estimated. The parameters of the model are
γ, Σ, and ξ, where γ, Σ are the population parameters and ξ are the item
parameters.
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4.3 Identification

For the purposes of the identification of (4.17), certain constraints must be
placed on the design matrices A and B.2 Volodin & Adams (1995) show that
the following are necessary and sufficient conditions for the identification of
(4.17).

Proposition One: If D is the number of latent dimensions, P is the length
of the parameter vector ξ, Ki +1 is the number of response categories for item
i, and K =

∑
i∈I Ki, then model (4.17), if applied to the set of items I, can

be identified only if P + D � K.
Proposition Two: If D is the number of latent dimensions and P is the

length of the parameter vector ξ, then model (4.17) can only be identified if
rank(A) = P , rank(B) = D and rank([BA]) = P + D.

Proposition Three: If D is the number of latent dimensions, P is the length
of the parameter vector ξ, Ki +1 is the number of response categories for item
i, and K =

∑
i∈I Ki, then model (4.17), if applied to the set of items I, can

be identified only if and only if rank([BA]) = P + D � K.

4.4 Estimation

In the following section, a maximum likelihood approach to estimating the
parameters is sketched (Adams, Wilson, & Wu, 1997), and the possibility of
using a conditional maximum likelihood (Andersen, 1970) approach is dis-
cussed.

4.4.1 Maximum Likelihood

The maximum likelihood approach to estimating the parameters of (4.17)
proceeds as follows. Let xn be the response pattern of person n and assume
independent observations are made for n = 1, . . . , N persons.3 It follows that
the likelihood for the N sampled students is

Λ =
N∏

n=1

fx (xn; ξ, γ,Σ). (4.18)

Differentiating with respect to each of the parameters and defining the
marginal posterior as

hθ (θn;Wn, ξ, γ,Σ|xn) =
fx (xn; ξ|θn) fθ (θn;Wn, γ,Σ)

fx (xn;Wn, ξ, γ,Σ)
, (4.19)

2 In fact, the design matrices as used in the examples do not yield identified models.
3 For notational convenience, the symbol xn is used here to denote the full response

pattern for person n, and not just the response vector for a particular item as
defined in (4.1).
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the following system of likelihood equations is derived (see Adams, Wilson, &
Wu, 1997):

AT
N∑

n=1

⎡
⎣xn −

∫
θn

Ez (z|θn) hθ (θn;Yn, ξ, γ,Σ|xn) dθn

⎤
⎦ = 0, (4.20)

γ̂ =

(
N∑

n=1

θnWT
n

)(
N∑

n=1

WnWT
n

)−1

, (4.21)

Σ̂ =
1
N

N∑
n=1

∫
θn

(θn − γWn) (θn − γWn)T
hθ (θn;Yn, ξ, γ,Σ|xn)dθn, (4.22)

where

Ez (z|θn) = Ψ (θn, ξ)
∑
z∈Ω

z exp
[
zT (bθn + Aξ)

]
(4.23)

and

θ̄n =
∫
θn

θnhθ (θn;Yn, ξ, γ,Σ|xn) dθn. (4.24)

The system of equations is solved using an EM algorithm (Dempster et
al., 1977) following the approach of Bock & Aitkin (1981).

Quadrature and Monte Carlo Approximations

The integrals in (4.20) to (4.24) are approximated numerically using either
quadrature or Monte Carlo methods. Each case proceeds by defining (Θq),
q = 1, . . . , Q , a set of Q D-dimensional vectors (referred to as nodes), and for
each node defining a corresponding weight (Wq(γ,Σ)). The vector response
probability (4.17) is then approximated using

fx (x; ξ, γ,Σ) =
Q∑

p=1

fx (x; ξ|Θp) Wp (γ,Σ) , (4.25)

and the marginal posterior (4.18) is approximated using

hΘ (Θq;Wn, ξ, γ,Σ|xn) =
fx (xn; ξ|Θq) Wq (γ,Σ)

Q∑
p=1

fx (xn; ξ|Θp)Wp (γ,Σ)
(4.26)
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for q=1,. . . ,Q.
The EM algorithm then proceeds as follows:
Step 1. Prepare a set of nodes and weights depending upon γ(t) and Σ(t),

which are the estimates of γ and Σ at iteration t.
Step 2. Calculate the discrete approximation of the marginal posterior

density of θn, given xn at iteration t, using

hΘ

(
Θq;Wn, ξ

(t), γ(t), Σ(t)|xn

)
=

fx
(
xn; ξ(t)|Θq

)
Wq

(
γ(t), Σ(t)

)
Q∑

p=1
fx
(
xn; ξ(t)|Θp

)
Wp

(
γ(t), Σ(t)

) ,
(4.27)

where ξ(t), γ(t), and Σ(t) are estimates of ξ(t), γ(t), and Σ(t) at iteration t.
Step 3. Use the Newton–Raphson method to solve the following to produce

estimates of ξ̂(t+1):

A′
N∑

n=1

[
xn −

Q∑
r=1

Ez (z|Θr) hΘ

(
Θr;Wn, ξ

(t), γ(t), Σ(t)|xn

)]
= 0 . (4.28)

Step 4. Estimate γ(t+1) and Σ(t+1), using

γ̂(t+1) =

(
N∑

n=1

ΘnWT
n

)(
N∑

n=1

WnWT
n

)−1

(4.29)

and

Σ̂(t+1) =
1
N

N∑
n=1

Q∑
r=1

(
Θr − γ(t+1)Wn

)
(
Θr − γ(t+1)Wn

)T

hΘ

(
Θr;Yn, ξ

(t), γ(t), Σ(t)|xn

)
,

(4.30)

where

Θ̄n =
Q∑

r=1

Θr hΘ

(
Θr;Wn, ξ

(t), γ(t), Σ(t)|xn

)
. (4.31)

Step 5. Return to step 1.
The difference between the quadrature and Monte Carlo methods lies in

the way the nodes and weights are prepared. For the quadrature case, begin by
choosing a fixed set of Q points, (Qd1, Qd2, . . . , QdQ), for each latent dimension
d and then define a set of QD nodes that are indexed r = 1, . . . , QD and are
given by the Cartesian coordinates

Qr = (Q1j1 , Q2j2 , . . . , Qdjd
) with j1 = 1, . . . , Q; j2 = 1, . . . , Q; . . . ; jd = 1, . . . , Q.
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The weights are then chosen to approximate the continuous multivariate latent
population density (4.16). That is,

Wr = K (2π)−d/2 |Σ|−1/2 exp
[
−1

2
(Θr − γWn)′

Σ−1 (Θr − γWn)
]

, (4.32)

where K is a scaling factor to ensure that the sum of the weights is 1.
In the Monte Carlo case, the nodes are drawn at random from the stan-

dard multivariate normal distribution; and at each iteration, the nodes are
rotated, using standard methods, so that they become random draws from a
multivariate normal distribution with mean γWn and covariance Σ. In the
Monte Carlo case, the weight for all nodes is 1/Q.

For further information on the quadrature approach to estimating the
model, see Adams, Wilson, & Wang (1997); and for further information on
the Monte Carlo estimation method, see Volodin & Adams (1995).

4.4.2 Conditional Maximum Likelihood

The first step in the derivation of the conditional maximum likelihood (CML)
estimators is to compute the probability of a response pattern conditional on
that pattern yielding a specific score. More formally, let R be a vector-valued
random variable that is the vector of scores of a response pattern. Then a
realization of this variable is r = x

T

B, where xT and B are as defined in
(4.2), and the probability of a response pattern conditional on R taking the
value r is given by

f (x; ξ, γ,Σ|R = r) =
f (x;ξ,γ,Σ,R = r)∑

z∈Ωr

f (z;ξ,γ,Σ,R = r)

=
∫

fx (x; ξ,R = r|θ) fθ (θ; γ,Σ) dθ∑
z∈Ωr

∫
fx (z; ξ,R = r|θ) fθ (θ; γ,Σ) dθ

(4.33)

=

∫
Ψ (θ, ξ) exp

(
rθ + xT Aξ

)
fθ (θ; γ,Σ) dθ∑

z∈Ωr

∫
Ψ (θ, ξ) exp (rθ + zT Aξ) fθ (θ; γ,Σ) dθ

=
exp
(
xT Aξ

) ∫
Ψ (θ, ξ) exp (rθ) fθ (θ; γ,Σ) dθ∑

z∈Ωr

exp (zT Aξ)
∫

Ψ (θ, ξ) exp (rθ) fθ (θ; γ,Σ) dθ

=
exp
(
xT Aξ

)∑
z∈Ωr

exp (zT Aξ)
,

where Ωr is the set of response patterns where the vector of scores is r.
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Equation (4.33) shows that the probability of a response pattern condi-
tional on R taking the value r is not dependent on the ability θ or its distri-
bution. The consequential advantage of the CML approach is that it provides
the same estimates for the item parameters regardless of the choice of the
population distribution. As such, the CML item parameter estimator is not
influenced by any assumption about the population distribution. The disad-
vantage is that the population parameters are not estimated. If, as is often
the case, the population parameters are of interest, they must be estimated
in a second step. The second step involves solving the system of equations
(4.21) and (4.22) while assuming that the item parameters are known. Apart
from underestimating the uncertainty in the population parameter estimates,
the consequences of using the CML item-parameter estimates, in this second
step, as if they were true values, are not clear.

In contrast, the maximum likelihood approach provides direct estimates
of both item parameters and population parameters. However, it suffers from
the risk that if the population distributional assumption is incorrect, the item
parameters may be biased.

4.4.3 Estimating Standard Errors

Asymptotic standard errors for the parameter estimates are estimated using
the observed Fisher’s information. For the unidimensional case, a derivation
of the formulae for the observed information is provided in Adams, Wilson,
& Wu (1997).

The estimation of asymptotic standard errors using the observed informa-
tion can be very time-consuming. The matrix that is computed is of dimension
p + r+2, where p is the number of item parameters and r is the number of
regression variables; and the computation of each element requires integra-
tion over the posterior distribution of each case. The time taken is therefore
quadratic in the number of parameters and linear in the number of cases and
nodes. Because the estimation of these errors can take considerable time, the
following approximations for the error variances are often used:

var
(
ξ̂i

)
=

N∑
n=1

⎧⎨
⎩diag

⎡
⎣A′

⎛
⎝∫

θn

Ez (zz′|θn)hθ

(
θn;Yn, ξ̂, β̂, σ̂2|xn

)
dθn

−
∫
θn

Ez (z|θn)Ez (z′|θn)hθ

(
θn;Yn, ξ̂, β̂, σ̂2|xn

)
dθn

⎞
⎠A

⎤
⎦
⎫⎬
⎭

−1

,

(4.34)

var
(
β̂i

)
= σ̂2

(
N∑

n=1

YnYT
n

)−1

, (4.35)
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var
(
σ̂2) =

2σ̂4

N
. (4.36)

These approximations ignore all of the covariances in the parameter estimates.
The approximations of the item parameters will generally underestimate the
sampling error, particularly for parameters associated with facets that have
few levels for the step parameters in multicategory items. The accuracy of
(4.35) and (4.36) depends on the magnitude of the measurement error, since
it is reflected in the variances of the individual’s posterior distributions.

4.4.4 Latent Ability Estimation and Prediction

The marginal item response model (4.17) does not include parameters for
the latent values θn; and hence the estimation algorithm does not result in
estimates of the latent values for persons. While this may not be of concern
when the modeling is undertaken for the purposes of estimating population
parameters, that is, the elements of γ and Σ, it does cause inconveniences
when there is an interest in estimates of the latent values for individuals.

There are a number of standard approaches that can be applied to pro-
vide estimates, or perhaps, more accurately, predictions, of the latent values.
Perhaps the most common approach is to use expectation of the posterior
distribution of θn, the so-called expected a posteriori (EAP) (Bock & Aitkin,
1981). The EAP prediction of the latent quantity for case n is

θEAP
n =

Q∑
r=1

Θr hΘ

(
Θr;Wn, ξ̂, γ̂, Σ̂|xn

)
. (4.37)

Variance estimates for these predictions can be estimated using

var
(
θEAP

n

)
=

Q∑
r=1

(
Θr − θEAP

n

) (
Θr − θEAP

n

)′
hΘ

(
Θr;Wn, ξ̂, γ̂, Σ̂|xn

)
.

(4.38)
An alternative to the EAP is the maximum a posteriori (MAP) (Bock &
Aitkin, 1981), which requires finding the modes, rather than the expectations
(means), of the posterior distributions.

A maximum likelihood approach to the estimation of the ability estimates
can also be used. Following the weighted likelihood approach of Warm (1985,
1989), this is achieved by solving the equations

∑
i∈Ω

⎛
⎜⎜⎜⎝
(
bixni

+
Jni

2Ini

)
−

Ki∑
j=1

bij exp
(
bijθn + a′

ij ξ̂
)

Ki∑
k=1

exp
(
bikθn + a′

ik ξ̂
)
⎞
⎟⎟⎟⎠ = 0 (4.39)
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for each case, where ξ̂ is the vector of item parameter estimates, Ini is the
information function evaluated for item i, and Jni is the derivative of Ini with
respect to θn. These equations can be readily solved using a routine based on
the Newton–Raphson method.

Drawing Plausible Values

The model presented in (4.17) provides estimates of the γ and Σ parameters
of the population, but of course there are many other characteristics of the
population that may be of interest. In most measurement applications, these
parameters would be estimated from point estimates of the θn parameters.
It is well known, however, that the use of point estimates such as the EAP,
MLE, and WLE in a two-step approach to estimating population parameters
is fraught with challenges.

As an alternative to using point estimates, Mislevy (see Mislevy, 1991,
and Mislevy, Beaton, et al., 1992) proposed an approach based on the use of
random draws from the marginal posterior, (4.19), for each student. These
random draws have become widely known as plausible values.

The following describes a method for drawing plausible values from the
posterior distributions. Unlike previously described methods for drawing plau-
sible values (Beaton, 1987; Mislevy, Beaton, et al., 1992), the method de-
scribed here does not assume normality of the marginal posterior distribu-
tions. Recall from (4.19) that the marginal posterior is given by

hθ (θn;Wn, ξ, γ,Σ|xn) =
fx (xn; ξ|θn) fθ (θn;Wn, γ,Σ)∫
θ

fx (x; ξ|θ) fθ (θ;Wn, γ,Σ) dθ
. (4.40)

First draw M vector-valued random deviates, {jmn}M
m=1, from the multivari-

ate normal distribution, fθ (θn;Wn, γ,Σ), for each case n. These vectors are
used to compute an approximation to the integral in the denominator of (4.40),
using the Monte Carlo integration

∫
θ

fx (x; ξ|θ) fθ (θ, ;Wn, γ,Σ) dθ ≈ 1
M

M∑
m=1

fx(x; ξ|ϕmn) ≡ � . (4.41)

At the same time, the values

pmn = fx (xn; ξ|ϕmn) fθ (ϕmn;Wn, γ,Σ) (4.42)

are calculated, and the set of pairs (ϕmn, pmn/�)M
m=1 is obtained. This set of

pairs can be used as an approximation of the posterior density (4.34); and the
probability that ϕnj could be drawn from this density is given by

qnj =
pmn

M∑
m=1

pmn

. (4.43)
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At this point, L uniformly distributed random numbers, {ηi}L
i=1, are generated

and for each random draw, the vector, ϕni0 , that satisfies the condition

i0−1∑
s=1

qsn < ηi �
i0∑

s=1

qsn (4.44)

is selected as a plausible vector.

4.5 Generalized Fit Test

A convenient way to assess the fit of the model is to follow the residual-based
approach of Wright & Stone (1979) and Wright & Masters (1982). Wu (1997)
extended this approach for application with the marginal model used here,
and more recently Adams & Wu (2004) generalized the approach so that a
range of tests of specific hypotheses could be tested.

If Ap is used to indicate the pth column of the design matrix A, the Wu
fit statistic is based on the standardized residual

znp (θn) =
(
AT

p xn − Enp

)/√
Vnp , (4.45)

where AT
p xn is the contribution of person n to the sufficient statistic for

parameter p, and Enp and Vnp are, respectively, the conditional expectation
and the variance of AT

p xn.
To construct an unweighted fit statistic,4 the square of this residual is aver-

aged over the cases and then integrated over the posterior ability distributions
to obtain

Fitout,p =
∫
θ1

∫
θ2

. . .

∫
θN

[
1
N

N∑
n=1

ẑ2
np (θn)

]

N∏
n=1

hθ

(
θn;Yn, x̂, b̂, σ̂

2|xn

)
dθNdθN−1 · · · dθ1.

(4.46)

For the weighted fit,5 a weighted average of the squared residuals is used as
follows:

Fitin,p =
∫
θ1

∫
θ2

. . .

∫
θN

⎡
⎢⎢⎣

N∑
n=1

ẑ2
np (θn) Vnp (θn)

N∑
n=1

Vnp (θn)

⎤
⎥⎥⎦

N∏
n=1

hθ

(
θn;Yn, ξ̂, β̂, σ̂2|xn

)
dθNdθN−1 · · · dθ1.

(4.47)

4 Often referred to as outfit.
5 Often referred to as infit.
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It is convenient to use the Monte Carlo method to approximate the integrals in
(4.46) and (4.47). Wu (1997) has shown that the statistics produced by (4.46)
and (4.47) have approximate scaled chi-squared distributions. These statistics
are transformed to approximate normal deviates using the Wilson–Hilferty
transformations

tout,p =
(
Fit

1/3
out,p

− 1 + 2/(9rN)
)/

(2/(9rN))1/2 (4.48)

and

tin,p =
[
Fit

1/3
in,p

− 1
]

× 3√
Var (Fitin,p)

+

√
Var (Fitin,p)

3
, (4.49)

where r is the number of draws used in the Monte Carlo approximation of the
integrals in (4.40) and (4.41) and

Var(Fitin, p) =

⎛
⎝ 1∑

n
Vnp

⎞
⎠

2(∑
n

(
E
((

AT
p Xn − Enp

)4)− V 2
np

))
. (4.50)

The derivation and justification for these transformations is given in Wu
(1997).

The fit-testing approach described here works at the parameter level; that
is, it provides a fit statistic for each of the estimated item parameters. A more
general approach was introduced by Adams & Wu (2004), who suggested
that the matrix A that is used in (4.39) could be replaced with an alternative
matrix, F which they called a fit matrix.

Since the derivation of the fit statistics described in the previous section is
based on the comparison of a linear combination of item responses, AT

p xn, and
its expectation and variance, the fit statistics can be generalized to include
any linear combinations of the item responses, and not necessarily be limited
to AT

p xn, where Ap is the design vector for the parameter ξp. If Fu is any
vector of the same length as Ap, then FT

u xn is a linear combination of the
item responses of person n. One can compute the expectation and variance
of FT

u xn, and construct a fit statistic in exactly the same way as for AT
p xn.

The following is an example for constructing user-defined fit tests for a simple
dichotomous RM.

Consider a test consisting of 10 dichotomous items; the design matrix, A,
for the simple logistic model for such a test would be a 10 by 10 identity
matrix.

Using the notation defined earlier, the first column of A is AT
1 =(

1 0 0 0 0 0 0 0 0 0
)
. The product AT

1 xn gives the item response of person
n on item 1. This is the contribution of person n to the sufficient statistic for
the first item parameter.

Similarly, AT
2 =

(
0 1 0 0 0 0 0 0 0 0

)
, and AT

2 xn is the contribution of
person n to the sufficient statistic for the second item parameter, and so on.
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For a user-defined fit test, the design vector Ap can be replaced by any
arbitrary vector Fu. Consider the fit design matrix

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.51)

If F1 and F2 are the first and second columns of F, then the product FT
1 xn

gives the total score on the first five items for person n. Similarly, FT
2 xn gives

the total score on the last five items for person n.
Adams & Wu (2004) showed how the fit statistics based on F1 and F2

worked well as a test of the hypothesis that the first and second five items
were tapping into two different latent dimensions, whereas the fit tests given
in (4.46) and (4.47) failed to identify the multidimensionality of the test items.

As a second possible set of fit tests, consider the matrix in (4.52). A fit
test based on the first column of this matrix tests whether items one and six
are both answered correctly as often as would be expected under the model.
Similarly, the second column provides a test of whether items two and seven
are both answered correctly as often as would be expected under the model.
As such, these are tests of the local independence of items one and six, and
two and seven respectively.

The third column compares the score on the first five items with its expec-
tation, that is, whether the subtest consisting of the first five items fits with
the rest of the items as predicted by the model:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
0 1 1
0 0 1
0 0 1
0 0 1
1 0 0
0 1 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.52)
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4.6 Conclusion

This paper has demonstrated the flexibility of using design matrices to specify
a family of item response models. Not only can standard item response models
such as the partial-credit, the rating-scale, and the facets models be included
under one single framework of models, but many other models can be specified
through user-defined design matrices.

The estimation procedures described in this paper allow for a joint (or
one-step) calibration of both item parameters and population parameters, as
opposed to a two-step process in which individual student abilities are first
estimated and then aggregated to form population parameter estimates. The
advantages of a joint calibration of parameters include more accurate standard
errors for the estimates of the population parameters and less bias of some
population parameter estimates.

Similarly, user-defined fit-design matrices allow for more focused testing of
goodness-of-fit of the data to the model. In many cases, such focused fit tests
are statistically more powerful in detecting misfit in the data.

However, the theoretical elegance of the use of design matrices can be over-
shadowed by the tediousness of the construction of these matrices in practice.
A software package, ConQuest (Wu et al., 1997), has been developed in which
users can specify various item response models through a command language.
The design matrices are then automatically built by ConQuest. ConQuest
also allows users to import a design matrix should the need arise. Thus the
advantages of a unified framework of item response models can be easily im-
plemented in practice for the analysis of a vast range of data sets.
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