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21.1 Introduction

The total score of items fitting a Rasch model (RM) satisfies assumptions
relating to validity and a number of technical requirements. For this reason,
the RM is often used as a “gold standard” expressing ideal measurement
requirements.

Most summated rating scales in health research that we have worked with
have shown evidence of differential item functioning (DIF) and local depen-
dence (LD), thus violating the assumptions of the RM, even though items
appear to be face valid. In this situation, Rasch analysis is a destructive pro-
cess: a large number of face valid items are rejected in order to obtain fit to
the model. This can seem unacceptable when items are face valid. Data from
a large health survey in Copenhagen County in 1995 is used for illustration
focusing on responses to items measuring physical functioning in the SF-36
questionnaire (Ware Jr. et al., 1993).

This chapter views Rasch analysis as an examination of the items given
the requirements of ideal measurements, yielding a summary of problems and
an evaluation of their relevance. Graphical loglinear RMs (GLLRM) incor-
porating uniform DIF and uniform LD (Kreiner & Christensen, 2002, 2004)
are used for this. This leads to reflection on measurement requirements: We
suggest that DIF is more serious than LD, and that sufficiency and reliability
are more important than specific objectivity. Items fitting a GLLRM pro-
vide measurement that is essentially valid and objective and the total score is
sufficient.

Section 21.2 describes the PF subscale of the SF-36. Section 21.3 describes
conditional-independence and chain-graph models and their global Markov
properties. Section 21.4 introduces Criterion-related construct validity. Sec-
tion 21.5 defines graphical RMs (Kreiner & Christensen, 2002) describing
the latent-trait variable, the set of items, and the exogenous variables in the
framework of graphical models (Lauritzen, 1996). Section 21.6 extends these
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by allowing uniform DIF and uniform LD in the well-known manner of loglin-
ear RMs (Kelderman, 1984, 1992, 1995). This yields graphical loglinear RMs
(GLLRM). Section 21.7 presents the analysis of the SF-36 data and the mea-
surement implications of the departures from the RM. Section 21.8 discusses
essential objectivity and validity, and section 21.9 presents a summary and
discussion.

Items are denoted by Y=(Y1,. . . ,Yk), the total score by S =
∑

iYi, the
latent variable by Θ, and exogenous variables by X=(X1,. . . ,Xm). We assume,
without loss of generality, that all items have c+1 ordinal categories coded
0,1, . . . , c. Exogenous variables may include response variables depending
on Θ, criterion variables known to be monotonously related to Θ, covariates
with a potential effect on Θ or simply variables that may be associated with
Θ and/or items.

21.2 The Physical Functioning SubScale of the SF-36

The SF-36 (Ware Jr. et al., 1993) is a widely used questionnaire measuring
aspects of general health status. It contains 36 items summarized into eight
subscales. The physical functioning (PF) subscale summarizes responses to
ten items under the common heading “Does your health now limit you in
these activities? If so, how much?”

• Vigorous activities, e.g., running, heavy lifting, strenuous sport (PF1)
• Moderate activities (PF2)
• Lifting or carrying groceries (PF3)
• Climbing several fligths of stairs (PF4)
• Climbing one flight of stairs (PF5)
• Bending, kneeling, or stooping (PF6)
• Walking more than a mile (PF7)
• Walking several blocks (PF8)
• Walking one block (PF9)
• Bathing or dressing yourself (PF10)

Three ordinal response categories (“Not limited,” “Limited a little,” “Lim-
ited a lot”) are used. The developers claim that “Studies to date have yielded
content, concurrent, criterion, construct, and predictive evidence of valid-
ity” (Ware, J.E. (undated): SF-36 r© Health Survey Update. http://www.sf-
36.org/tools/sf36.shtml). Scrutinizing the items will show that LD between
PF4 and PF5 and between PF7, PF8, and PF9 must be expected if responses
are rational and consistent. Whether the reported analyses of construct valid-
ity may have overlooked this is not the focus of the present chapter. Problems
of this kind are not unusual in health scales, often while items are highly face
valid.
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21.3 Conditional-Independence and
Chain-Graph Models

Conditional independence is the unifying concept of importance for item re-
sponse models and chain-graph models. We write X⊥Y|Z to indicate that
two sets of variables, X = (X1,. . . ,Xa) and Y = (Y1,. . . ,Yb), are condi-
tionally independent given a third set, Z = (Z1,. . . ,Zc), in the sense that
P(X|Y,Z) = P(X|Z). Chain-graph models are multidimensional block recur-
sive statistical models defined by pairwise conditional independence of vari-
ables in the following way. Let V =

⋃
i

Vi be a partitioning of the vari-

ables into ordered subsets, V1 ← · · · ← Vr defining a block recursive
statistical model P (V ) =

∏
i

P (Vi|Vi+1, . . . , Vr). Assume that X and Y are

variables belonging to block numbers a and b, respectively, where a≤b. Set
Zrest(X,Y ) =

⋃r
i=a Vi\{X,Y} such that Zrest(X,Y) contains all variables that

are concurrent or prior to X according to the recursive structure of the model.
A chain-graph model is defined by a set of assumptions concerning pairwise
conditional independence, {Xi⊥Yi|Zrest(Xi,Yi) : i = 1,. . . ,m}.

Graphical models are characterized by Markov independence graphs: net-
works where variables are represented by nodes. Nodes are disconnected if
the variables are conditionally independent given all concurrent or prior vari-
ables Variables in the same recursive block are connected by undirected edges,
whereas variables in different blocks are connected by arrows representing tem-
poral and/or causal direction. The Markov graphs of graphical models are used
both as visual diagrams illustrating the structure of the statistical model and
as mathematical models—mathematical graphs—where mathematical graph
theory may reveal properties of the statistical model that may be helpful both
during the analysis of data and for interpretation of what the model conveys
about the distribution of the variables. Examples of Markov graphs are shown
in Figures 21.1 to 21.4 below. A comprehensive introduction to the theory of
graphical models and the way the properties of the Markov graphs correspond
to properties of the statistical model may be found in Lauritzen (1996).

21.3.1 Global Markov Properties of Chain-Graph Models

The global Markov properties of chain-graph models are of particular interest
here. The global Markov properties tells us that conditional independence be-
tween two variables, X and Y, in a chain-graph model sometimes applies under
conditioning with respect to subsets of Zrest(X,Y ). To find such subsets, we
have to examine the moral graph defined by replacing arrows by (undirected)
edges and linking “parents” (see Figure 21.4).

The global Markov properties are linked to the concept of separation in
undirected graphs. To subsets, A and B, of nodes in an undirected graph are
separated by a subset of nodes, S, if every path from a node in A to a node
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in B contains at least on node in S. The global Markov property of chain-
graph models (Lauritzen, 1996, p. 55) implies that two set of variables, A and
B, in a chain-graph model are conditionally independent given any subset of
variables, S, that separates A and B in the moral graph.

21.4 Criterion-Related Construct Validity

Criterion-related construct validity requires unidimensionality, monotonicity,
local independence, and the absence of DIF (Rosenbaum, 1989). The last as-
sumption requires the relation between the latent trait and the items to be
the same in any subpopulation and implies criterion validity, which thus is a
necessary, but not sufficient condition for construct validity. These assump-
tions also define nonparametric item response models (Sijtsma & Molenaar,
2002).

The requirement of no DIF in this definition is somewhat vague. We assume
that it refers to meaningful and relevant partitions of the persons defined by an
exogenous variable, but notice that in most studies a limited number of such
variables will be available. Absence of DIF can be stated as the requirement,
Y ⊥ X | Θ, of conditional independence and because local independence
implies pairwise conditional independence criterion-related construct validity
defines a chain-graph model.

21.5 Graphical Rasch Models

The RM for ordinal items (Andersen, 1977; Andrich, 1978; Masters, 1982)

P (Yi = y|Θ = θ) = exp(αi0 + θy + αiy) (21.1)

where αi0 = − ln

(
c∑

y=0
exp(θy + αiy)

)
satisfies the first three requirements of

criterion related construct validity. The joint conditional distribution

P (Y1 = y1, . . . , Yk = yk|Θ = θ) = exp

(
α0 +

k∑
i=1

(θyi + αiyi)

)
(21.2)

is a loglinear model for a multivariate contingency table with main effects
depending on the latent variable and no interaction parameters. Restrictions
are needed for parameters to be identifiable. These are imposed by setting
αi0 = 0 for all items and

∑
i αic = 0.

Different data generating processes may lead to this model. Reparameter-
ization replacing item parameters with thresholds,τij = αi(j−1) −αij , yielding
a partial credit interpretation (Masters, 1982) where P (Yi = y|Θ = θ) =
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exp(
∑y

j=1 (θ − τij) / Γi can be useful, even though it may not be a valid de-
scription of the response behavior to the type of questions included in SF-36.

The total score, S =
∑

i Yi, is sufficient for θ in the conditional distribution
of items given Θ = θ This implies Bayesian sufficiency, (Kolmogoroff, 1942;
Arnold, 1988) and conditional independence of items and Θ given S.

The distribution of S is given by

P (S = s|Θ = θ) =
exp(θs + ϕs)

Φ
(21.3)

where γs = exp(ϕs) are referred to as elementary symmetric functions (An-
dersen, 1973, Fischer, 1974; 1995). We refer to the ϕ-parameters in (21.3)
as score parameters. The probabilities (21.3) can be expressed in terms of
threshold parameters in the same way as (21.1).

The RM satisfies construct validity requirements and provides objective
measurement by sufficient raw scores. DIF and criterion validity can not be
addressed in formal terms within the framework of RMs, but in a larger frame-
work including exogenous variables. One way to do this is to assume that the
joint distribution of (Y1, . . . , Yk, Θ,X1, . . . , Xm) is a graphical RM.

A graphical RM is a chain-graph model characterized by two Markov
graphs (Figure 21.1): (1) an IRT graph expressing construct validity (items
are conditionally independent of each other and of exogenous variables), and
(2) A Rasch graph adding the score S separating items from Θ. Note that
edges between items are added because items are not conditionally indepen-
dent given the score. The only requirement of construct validity that is not
an explicit part of the IRT graph is that the relationship between the la-
tent variable and items must be monotonous. The IRT graph also describes
relationships among exogenous variables.

It follows from the Markov properties of the IRT and Rasch graphs that the
distribution (21.2) reappears as the conditional distribution of item responses
given Θ and X,

P (Y1 = y1, . . . , Yk = yk|Θθ,X1 = x1, . . . , Xm = xm) = (21.4)

exp

(
α0 +

k∑
i=1

(θyi + αiyi)

)
(21.5)

Marginalizing over Θ in the Rasch graphs results in a marginal Rasch graph
(not shown) defining a chain-graph model for the manifest variables (Whit-
taker, 1990, p. 395). The marginal Rasch graph contains edges or arrows
between any pair of variables connected to Θ by an arrow originating from Θ.

The IRT and Rasch graphs (Figure 21.1) define the model and provide
a visual display of the model structure. The moralized Rasch graph (Figure
21.2) provides information on conditional independencies among the mani-
fest variables of the model. The moral Rasch graph is an undirected graph
defined by the marginal Rasch graph where separation implies conditional



334 Svend Kreiner and Karl Bang Christensen

Fig. 21.1. The IRT and Rasch graphs defining the graphical RM for the ten PF
items. The IRT describes relationships among exogenous variables: sex and age are
marginally independent, smoking and sex are conditionally independent given age,
SRH and sex are conditionally independent given Θ, BMI, smoking, and age.

independence due to the global Markov properties of chain-graph models. It
follows from this that all pairs of items and exogenous variables are condi-
tionally independent given S. This result lies behind the Mantel–Haenszel test
for DIF (Holland & Thayer, 1988) and the global Markov properties of the
Rasch graph shows that the result applies to all types of items and exogenous
variables in graphical RMs.
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Fig. 21.2. The moral Rasch graph of the graphical model for the ten PF items

DIF is absent in graphical RMs in two ways: items and exogenous variables
are conditionally independent given Θ and given S. This property appears to
be unique to the RMs. We refer to Kreiner & Christensen (2002, 2004) for
further discussions of properties of graphical RMs derived from the global
Markov properties of Rasch graphs.

21.5.1 Inference in Graphical Rasch Models

Graphical RMs address two problems: (1) the quality of measurement (re-
garded as optimal if item responses fit the graphical RM) and (2) latent re-
gression analysis

θ = X1β1 + · · · + Xmβm + ε, ε ∼ N(0, σ2)

describing the association between the latent variable and covariates X1, . . . ,
Xm. Since the pioneering work of Andersen & Madsen (1977), models of this
kind have been studied extensively (Zwinderman, 1991, 1997; Andersen, 1994;
Hoijtink, 1995; Kamata, 2001; Maier, 2001 Christensen et al, 2004; De Boeck
& Wilson, 2004; Adams & Wu, this volume).

In this chapter, item analysis is separated from latent regression and we
are thus able to distinguish between lack of fit of the measurement model
and misspecified latent structure (Zwinderman & van den Wollenberg, 1990;
Christensen et al., 2004). This means conditional item analysis is used, because
marginal inference relies on assumptions about the distribution of the latent
variable.
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Conditional inference in graphical RMs may be carried out in two ways.
The first is a parametric approach fitting the conditional distribution of item
responses given the total score, comparing item parameters in different sub-
populations and calculating item-fit statistics. The presence of exogenous vari-
ables in the graphical RM defines explicit requirements of groups to be com-
pared during the analysis. The second approach is nonparametric, testing
the assumptions expressed by the moral Rasch graph. Mantel–Haenszel tests
(Holland & Thayer, 1988) can be used for testing conditional independence
for pairs of dichotomous items and dichotomous exogenous variables. Partial
gamma coefficients (Agresti, 1984, p. 171) may be used when items or exoge-
nous variables are ordinal. The tests of conditional independence will often
be tests in large sparse tables and and Monte Carlo tests (Kreiner, 1987; von
Davier, 1997) can be used to avoid the problem of inadequate approximation
of p-values by conventional asymptotic methods.

The RM applies for any subset of items and therefore LD between an item,
Yi, and the other items can be tested as conditional independence given the
rest score, Ri = S−Yi (Kreiner & Christensen, 2004). This test is one example
of a less than conventional approach suggested by the graphical structure of
these models.

A starting point for the latent structure analysis can be obtained by non-
parametric analysis of manifest variables based on the moral graphs. For the
SF-36, analysis of the effect of a covariate on physical disability may be per-
formed as a test of conditional independence in a multi-way table containing
these two variables together with the variables separating the two in the moral
graph. If conditional independence is rejected the covariate should be included
in the latent-regression model.

21.6 Graphical Loglinear Rasch Models

A graphical loglinear RM (GLLRM) adds interaction parameters to the con-
ditional distribution of item responses (21.4): DIF parameters describing in-
teraction between an item and an exogenous variable and LD parameters de-
scribe interactions between two items. It is convenient to distinguish between
second-order DIF and LD parameters and general higher order interaction
parameters. The only restriction imposed on the interaction parameters in
GLLRMs is that they must not depend on the latent-trait variable. To sim-
plify the discussion of validity and objectivity in GLLRMs, we first consider
models with DIF parameters and present three ways to look at these models.
Following this, we then consider models with LD parameters and finally the
general family of GLLRM.

21.6.1 Uniform DIF

The model (21.6) adds interaction between items Ya and Xb
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P (Y1 = y1, . . . , Yk = yk|Θ = θ,X1 = x1, . . . , Xm = xm)

= exp

(
α0 +

k∑
i=1

((θyi + αiyi) + δab(ya, xb)

)
(21.6)

For the parameters to be identifiable, we must impose additional restrictions
on the δ-parameters in addition to those already imposed on the item main
effect parameters. One convenient way to do so is to assume that δab(0,x) =
0 and δab(y,1) = 0 where we assume that categories of exogenous variables
are integer coded from 1 to the number of categories of the variables. We
regard the model defined by (21.6) as a model describing uniform DIF, where
item parameter of Ya in the subpopulation given by Xa = x is equal to
αa(y)+δab(y,x). Alternatively, Yb can be interpreted as a set of “virtual” items
given only in a subpopulation (Tennant et al., 2004). Finally, of course, (21.6)
is an example of a mixed RM. The mixture is manifest, but apart from that,
the model satisfies all assumptions underlying the mixed RM.

21.6.2 Uniform LD

Adding interaction between two items, Ya and Yb, to (21.4) leads to a model
with LD between the items:

P (Y1 = y1, . . . , Yk = yk|Θ = θ,X1 = x1, . . . , Xm = xm)

= exp

(
α0 +

k∑
i=1

((θyi + αiyi
) + λab(ya, yb)

)
(21.7)

We once again assume that the interaction parameter do not depend on θ and
set λab(0,y) = λab(y,0) = 0. If we remove Yb from the score and treat it as an
exogenous variable it follows from (21.7) that the conditional distribution of
the items remaining in the rest score follows a loglinear RMs similar to (21.6)
with uniform DIF of Ya relative to Yb. We have therefore coined the term
uniform LD to cover the kind of local dependence implied by the interaction
parameter in (21.7).

21.6.3 Graphical Loglinear Rasch Models

Expanding model (21.6) and (21.7) to models with several cases of uniform
DIF and LD as well as higher order interactions terms is straightforward.
A general GLLRM is defined by three types of loglinear generators. First,
DIF generators, D = (D1,. . . ,Dr), where Di= (Ai,Zi) with Ai ∈{Y1,. . . ,Yk}
and Zi ∈{X1,. . . ,Xm}. Second, LD generators, L = (L1,. . . ,Ls) consisting
of pairs of items Li = (Ui,Vi) where {Ui,Vi}⊂ {Y1,. . . ,Yk}. Finally higher
order interactions, G = (G1,. . . ,Gs), where each Gi ⊂ {Y1,. . . ,Yk,X1,. . . ,Xm}
contains at least three variables one of which has to be an item. The GLLRM
defined by these generators is given by
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P (Y1 = y1, . . . , Yk = yk|Θ = θ,X1 = x1, . . . , Xm = xm)
=

exp
(
α0 +

k∑
i=1

(θyi + αiyi) +
∑
i

δi(ai, zi) +
∑
i

λi(ui, vi) +
∑
i

µi(gi)
)

=

exp
(
α0 + sθ +

k∑
i=1

αiyi +
∑
i

δi(ai, zi) +
∑
i

λi(ui, vi) +
∑
i

µi(gi)
)

(21.8)

where s = Σiyi and (ai,zi), (ui,vi) and gi is the observed outcomes of the
variables in the generators. It is usually assumed that the model is hierarchical.
We refer to the δ and λ parameters as DIF and LD parameters, respectively,
even though the interpretation in these terms is questionable when G is not
empty. Note that while the main effects, θy+αiy, are increasing functions
of θ, not all marginal relationships between Θ and items are monotonously
increasing when items may be negatively locally dependent. Items fitting a
general GLLRM violate all but one of the assumptions of criterion related
construct validity and conventional psychometric considerations would reject
the scale as invalid. The measurement properties of items fitting a GLLRM
models are discussed below based on the example.

21.6.4 Inference in GLLRMs

GLLRM’s have moral Rasch graphs that may be used as a starting point for
the same kind of tests as for the GRMs. The separation properties are a little
more complicated in moral Rasch graphs from GLLRMs but graph theoretical
algorithms exist that will take care of these problems.

Item, DIF, LD, and interaction parameters can be estimated by condi-
tional maximum likelihood estimates evaluated by item-fit statistics compar-
ing observed and expected item-characteristic curves and tested by conditional
likelihood ratio tests (Kelderman, 1984, 1992, 1995). The Martin-Löf test of
unidimenisonality (Martin-Löf, 1970; Glas & Verhelst, 1995; Verhelst, 2001;
Christensen et al., 2002) generalize with few problems to GLLRMs (Kreiner
& Christensen, 2004).

In a GLLRM the distribution of S given Θ is a power-series distribution
similar to (21.3) with score parameters depending on item, DIF, LD, and
interaction parameters. Estimation of person parameters and latent regression
where estimates of score parameters are inserted can be done in the same way
as in conventional models.

21.7 SF-36 Analysis

Data for this example originated in a Danish health survey including 2334
persons responding to the SF-36 items and the five exogenous variables (self-
reported health, BMI, smoking status, sex, and age) included in the analysis.
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All variables are potential sources of DIF and self-reported health is also used
as a criterion variable. The primary purpose of the study is not validation of
the measurement instrument, but rather to examine the effect of BMI on phys-
ical functioning. This is done using latent regression analysis (Christensen et
al., 2004) controlling for the confounding effect of the other variables. Rather
than a pure validity study the item analysis is meant to check that the result
of the latent regression analysis is not confounded by systematic measurement
errors.

The item “vigorous activities” (PF01) discriminates very poorly, U =
−5.94, p < 0.001 (Molenaar, 1983) and is excluded. Presumably this has
to do with problems responding when one does not participate in vigorous
activities for other reasons than poor health (Fayers & Machin, 2000, p. 19).
The complete analysis leading to the model will not be documented here, but
evidence against the conventional RM and results supporting the adequacy of
the GLLRM for the remaining nine items model is presented.

Conditional likelihood ratio tests (Andersen, 1973c), comparing item pa-
rameters in different groups, show evidence against the model (Table 21.1,
columns marked RM). The reason for the discrepancy between model and
data is not clear from overall test statistics.

Table 21.1. Conditional likelihood ratio tests of homogeneity of item parameters in
subpopulations. Results presented for the RM and for the graphical loglinear RM.

RM GLLRM
Variable Defining Subpopulations CLR df P CLR df P
Score groups (1-17, 18-19) 105.1 19 < 0.0005 70.0 67 0.379
SRH—five categories 261.2 76 < 0.0005 212.4 208 0.402
BMI—six categories 125.0 95 0.021 309.3 285 0.154
Smoking—three categories 50.5 38 0.085 168.6 134 0.023
Sex 72.5 19 < 0.0005 70.3 65 0.304
Age—six categories 179.0 95 < 0.0005 311.0 285 0.139

The risk of type I error is inherent in testing for LD of 36 item pairs and
for DIF with 45 combinations of items and exogenous variables, and the level
of significance is adjusted in order to control the false discovery rate at a 5%
level (Benjamini & Hochberg, 1995). Moreover DIF or LD can lead to spurious
evidence of DIF and/or LD for other items and/or exogenous variables and
subsequent analyses are needed.

Partial gamma coefficients (Agresti, 1984, p. 171) showed strong evidence
of LD for the item pairs (PF1, PF2), (PF2, PF3), (PF4, PF5), (PF7, PF8), and
(PF8, PF9). Two-sided Monte Carlo estimates of exact conditional p-values
were used. Table 21.2 shows evidence of DIF, only evidence from analysis
taking several potential DIF sources into account are shown.



340 Svend Kreiner and Karl Bang Christensen

Table 21.2. Evidence of DIF disclosed by partial gamma coefficients. p-values are
two-sided Monte Carlo estimates of exact conditional p-values. The false discovery
rate has been controlled at 5% and only evidence from analysis taking several po-
tential DIF sources into account support the evidence of DIF relative to variables
written with bold letters.

Exogenous
Item Variable Gamma p
Vigourous activities (PF1) Sex 0.23 0.012
Moderate activities (PF2) BMI 0.31 0.000
Lifting groceries (PF3) Sex −0.45 0.000
Stairs—2+ flights (PF4) Smoking 0.23 0.013
Stairs—1 flight (PF5) Age −0.24 0.008
Bending (PF6) BMI −0.17 0.012

Fig. 21.3. The IRT graph of the final GLLRM for items PF2-PF10

All significant interactions were added to yielding a relatively simple
GLLRM for the nine PF items. Figures 21.3 and 21.4 show the IRT graph and
moral Rasch graph of this model. Significance levels are shown in Table 21.3.
Conditional likelihood ratio tests comparing parameter estimates in subpopu-
lations shows that this model fits the data better (Table 21.1, columns marked
GLLRM). Observed and expected item-mean scores in each score group were
compared and this also showed a good model fit.
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Fig. 21.4. The moral Rasch graph of the final GLLRM for items PF2-PF10

Table 21.3. Tests of vanishing DIF and LD parameters

Type of Interaction Variables CLR df p
Local dependence PF2 & PF3 168.2 4 < 0.00005

PF4 & PF5 116.5 4 < 0.00005
PF7 & PF8 77.8 4 < 0.00005
PF8 & PF9 203.5 4 < 0.00005

DIF PF2 & BMI 34.9 10 0.00001
PF3 & SRH 22.4 8 0.00430
PF3 & Sex 20.1 2 < 0.00005
PF8 & Age 27.6 10 0.00210

PF10 & SRH 23.7 8 0.00260

21.7.1 Interpretation of Parameters

One item, “Bending and kneeling” (PF6), behaves like an ordinary RM item.
Threshold parameters, for a partial-credit interpretation, are −1.83 and 0.11,
implying a range of latent-trait values where each response is the most prob-
able.

The items PF4 and PF5 concerning stair walking are locally dependent,
but function in the same way relative to all other variables. Locally dependent
items can be grouped together as a composite item defined as the sum of item
scores. If there is no DIF composite items are distributed as items from an RM.
Item parameters for the composite item PF4+5 = PF4+PF5 can be computed
from the item and LD parameters, α4y4+α5y5+λ45(y4, y5). Reparametrization,
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for a partial interpretation, thresholds show that thresholds are nicely ordered
(−1.75,−0.61,−0.09, 1.39).

DIF can be presented as loglinear-item and DIF parameters, but the effect
is easier to interpret in terms of virtual items. The item “bathing” (PF10)
is biased relative to self-reported health, but no evidence of LD was found.
Partial credit thresholds of five “virtual” items in the subpopulations defined
by self-reported health are shown in Table 21.4. Apart from some response
categories not being used in the healthiest groups these appear to present a
consistent picture with decreasing thresholds with failing health.

Table 21.4. Estimated thresholds of five virtual PF10-items in groups defined by
self-reported health

Thresholds
SRH 1 2
Very good 0.93 + inf.
Good 0.92 0.80
Fair 0.82 4.26
Bad −0.21 1.92
Very bad −0.27 2.48

For items with both DIF and LD, the situation is complicated and “vir-
tual composite items” do not present an easy interpretation. As an example,
consider PF2+3 = PF2+PF3 with DIF of PF2 (relative to BMI) and of PF3
(relative to SRH and sex): thresholds would have to be calculated for 60 vir-
tual items to get a comprehensive description. The items relating to walking
are a simpler example: the composite item, PF7+8+9, is biased relative to age
because DIF was disclosed for one of the three items. Disordered thresholds
are common for “virtual composite items” and while the GLLRM appears to
provide adequate description of the relationship between the variables of the
model. An easy interpretation is not at hand.

21.7.2 The Effect of DIF on the Score

The score distribution (21.3) applies in GLLRM with the reservation that the
score parameters depend on the exogenous variable (the sources of DIF)

P (S = s|Θ = θ,X = x) =
exp(θs + ϕs(x))

Φ(x)
(21.9)

The score parameters are functions of item, DIF, and LD parameters and can
be used to calculate estimates of θ or of the parameters of the distribution of
Θ in the same way as for RMs.

Person parameters and their distribution can be compared on the latent-
trait scale and this is preferable to the raw scores because the latent-trait scale
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may be regarded as an interval scale. It can, however, be difficult to decide
whether a difference on the latent-trait scale is relevant. DIF equation of true
scores between groups can be useful: Let T0(θ) = E(S | Θ = θ, X =ref)
be the true score of a person from the reference group and let θ̂(s, x) be the
estimate of θ for a person with S=s in the group defined by X=x. The DIF
equated score of this person is equal to T0

(
θ̂(s, x)

)
.

Figure 21.5 illustrates the effect of DIF w.r.t BMI of the item “Moderate
activities” (PF2): persons with high BMI underestimate the degree of physical
disability due to health. This is probably of minor consequence for those with
BMI = 22.5−25.0, where the largest adjustment by DIF equation adds about
.2 points to low scores, but of some consequence for those with BMI > 30
where DIF equation adds 0.44–0.65 point to scores between 2 and 13.
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Fig. 21.5. DIF equated adjustment of scores for two groups of 18-to-29-year-old
males with very good health (x = BMI = 22.5–25.0, o = BMI = 30+. The reference
group consists of 18-to-29-year-old males with very good health and BMI ≤ 20.
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21.7.3 Latent Regression

We now examine the effect of BMI on physical disability. Tests of conditional
independence of the score and exogenous variables given the separators of
the moral Rasch graph (Figure 21.4) yields a list of covariates that should
be included. These show strong effects for all variables except smoking and
can be seen as a stronger requirement of criterion validity (insisting that the
association does not disappear when covariates related to both variables are
taken into account—a requirement that is obviously met here). The estimated
score parameters in (21.9) are used for latent regression (Christensen et al.,
2004) using SAS (Christensen & Bjorner, 2003): A significant effect of BMI
on physical functioning when controlling for sex, age, and self-reported health
was found (LRT = 12.5, df = 5, p = 0.03).

Table 21.5. Difference between BMI groups controlled for sex, age, and self-
reported health

BMI Group Difference 95% CI
≤ 20 0.02 (−0.25, 0.30)

20.1–22.5 0.06 (−0.17, 0.29)
22.6–25.0 0 -
25.1–27.5 0.21 (−0.02, 0.44)
27.6–30.0 0.14 (−0,15, 0.43)
30.1 + 0.45 ( 0.18, 0.72)

Table 21.5 shows the estimated differences at the latent-trait scale between
the six BMI groups. Physical disability appears to be at a minimum in the
reference groups (BMI = 22.5–25.0) with a marked increase in physical dis-
ability when BMI is larger than 30. The evidence of increased disability in
groups with BMI less than 22.5 is of course not significant.

21.8 Essential Validity and Objectivity

The previous section illustrates how LD and DIF may be dealt with if item
responses fit a GLLRM. Latent-trait parameters can be estimated and com-
pared as in the RMs. The question remains, however, whether measurement
by these items can be regarded as valid and objective: All assumptions defin-
ing criterion-related construct validity except unidimensionality has been vi-
olated. We claim that validity and objectivity essentially has been preserved
in GLLRMs. We return to the simple models given by (21.6) and (21.7) for
the arguments supporting these claims and notice that the arguments carry
over without problems to the general class of GLLRM.

The model defined by (21.7) includes one pair of uniformly locally de-
pendent items, Ya and Yb. Replacing these two items by the composite item
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Ya+b = Ya + Yb however results in a set of items satisfying all requirements
of ideal scales except, perhaps, monotonicity of the composite item. Given
the fact that the total scores are the same it is difficult to argument that Ya

and Yb violates validity in any important way. The total score is sufficient
for θ such that person and item parameters—among which we include the
LD interaction parameters—may be separated during the analysis. The fun-
damental property of RMs supporting claims of objectivity therefore survives
intact in (21.7), with one restriction compared to Rasch’s definition of specific
objectivity: we can not select items in a completely arbitrary way. One has
to either include or exclude both items because an item subset including but
one of the two dependent items does not fit an RM. This is, in our mind,
a small price to pay during construction of a summary scale. Measurement
may not be construct valid and objective according to conventional psycho-
metric thinking, but it makes no sense to claim that measurement is invalid
and biased or prone to systematic errors due to some arbitrary decision by
the person constructing the test.

The model (21.6) with uniform DIF of Yi relative to Xj , is a little more
complicated. One may of course eliminate Yi to obtain a smaller set of items
satisfying requirements of ideal measurement. The set of items therefore is
inherently valid and objective. When addressing problems relating to one of
the groups defined by Xj , one would prefer to keep Yi to increase reliabil-
ity, because measurements are valid and objective in this specific population.
From the point of view of the virtual Yi we may also claim that test equat-
ing actually satisfies the requirements of specific objectivity because missing
item responses is no hindrance to validity and objectivity. Regarding DIF
parameters as item rather than incidental person parameters implies that
conditioning with respect to the total score separates item parameters from
the latent-trait parameters; the technicalities of objective analysis thus sur-
vives. Again a restriction applies: we are no longer free to make completely
arbitrary choices during the design of the study. If we decide to include Yi,
we also have to include data on Xj , but apart from this measurements are
essentially valid and essentially objective.

All arguments relating to models (21.6) and (21.7) apply without restric-
tion to the general family of GLLRMs. The model may, of course, turn up
to be so complicated that we prefer to reject the scale either because it is
not practical to work with or because it is so far away from a conventional
RM that we may be concerned that the substantive arguments behind the
items do not hold water. If the GLLRM appears to fit the data, we should
use these arguments and not arguments that measurements are invalid and
systematically biased.
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21.9 Discussion

This chapter discussed validity assumptions arguing from the point of view
of a GLLRM fitting responses to the nine PF items. The SF-36 items vio-
late conventional requirements of validity and objectivity due to unfortunate
item-writing. Rather than rejecting the scale, we have taken a second look at
requirements of valid and objective scales, partly because the items of SF-36
have a certain degree of face validity, but also because most scales we have
worked with in health research suffer from similar problems. Our conclusion is
that most requirements can be relaxed and that GLLRMs provide a sensible
framework where all but a few properties of valid and objective measurements
survive. Of the two types of departures from construct validity permitted by
GLLRMs, the presence of uniform local dependency seems to be the least
problematic. Regarding two locally dependent items as one composite item is
a very small price to pay for the added reliability of the total score compared
to the rest score without the items. Uniform DIF is a little more problematic.
We may deal with uniform DIF, but it requires that all sources of DIF have
to be included among the observations. The results of the analysis presented
in this chapter implies that measurements of physical disability by the PF
items will to some extent be confounded if sex, age, BMI, and SRH is not
observed and taken into account. In addition, interpretation of the DIF of
items relating to SRH is difficult. Is self-reported health worse because the
person has problems bathing and/or carrying groceries home, or do these two
tasks appear particular difficult because health as such is perceived as poor.

Quality of measurement is important and may be the only purpose of
analysis. The widespread use of SF-36 is sufficient reason to examine validity,
objectivity, and reliability. Often the measurement problem is subordinate to
latent-structure analysis, as illustrated by analysis of the effect of BMI on
physical disability. In this analysis, the evidence against the Rasch model is
inescapable, even though four items fit an RM. The price to pay in terms of
reliability is unacceptable because items appear to be face valid. The nine
PF items provide essentially valid and objective measurements of physical
disability. We base latent regression analysis on these nine items, taking DIF
and LD into account and argue that this is better than using four items, even
though these provide valid and objective measurements in the strict sense.
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