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12.1 Introduction

The chapter gives an overview of Rasch models for the measurement of change
across repeated observations of the same individuals and items. The models
described herein include extensions of the original Rasch model that allow one
to analyze multidimensional latent constructs and to incorporate heterogene-
ity of change across individuals. In particular, the use of mixture-distribution
Rasch models in longitudinal research allows one to model quantitative in-
terindividual differences in a latent trait at each occasion, together with quali-
tative interindividual differences in the course of development. A mover–stayer
mixed-Rasch model can be specified as a special case that reflects the assump-
tion that change over time occurs for some latent subpopulation but not for
another. An empirical example illustrates that the mover–stayer mixed-Rasch
model can provide a parsimonious and viable account of observed heterogene-
ity of change.

12.2 Rasch Models for Repeated Observations

The Rasch model (RM, Rasch, 1968, 1980) is usually applied to the responses
of individuals to items observed at one point in time. However, the RM can
also be used in situations in which a set of items is repeatedly administered to
the same sample of individuals. In those longitudinal designs, the RM specifies
the probability that item i, i = 1, . . . , I, is solved by person v, v = 1, . . . , N ,
at occasion t, t = 1, . . . , T :

P (Xvit = 1|θvt, βit) =
exp(θvt − βit)

1 + exp(θvt − βit)
. (12.1)

The parameter θvt denotes person v’s latent ability at occasion t, and βit

denotes item i’s difficulty at occasion t.
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Modeling changes in ability or item difficulty over time is the aim of ex-
tensions of the RM and other IRT models, such as those by Fischer (1983,
1995d), Wilson (1989), and Embretson (1991). This chapter gives an overview
of RMs for modeling change and presents an application of some of the pre-
sented models to a longitudinal data set. Additional applications of this class
of models can be found in the chapters by Draney and Wilson, and Glück and
Spiel in this volume.

12.2.1 Modeling Homogeneous and Person-Specific Change

Aside from specifying the probability of solving an item at a particular mea-
surement occasion t in terms of Equation 12.1, the RM and its extensions
allow one to measure change from one occasion to another and to test hy-
potheses about the latent course of development. In the simplest case, one
may assume that the person and item parameters are invariant over time,
that is, θvt = θv and βit = βi for all occasions t, which means that no change
occurs at all. Alternatively, one can specify the hypothesis that all individuals
exhibit the same amount of change on the latent continuum by introducing a
change parameter λt that is constant across individuals and items:

P (Xvit = 1|θv, βi, λt) =
exp(θv + λt − βi)

1 + exp(θv + λt − βi)
. (12.2)

The model in Equation 12.2 represents a linear logistic test model (LLTM;
Fischer, 1983, 1995d,b; Spada & McGaw, 1985) that decomposes the item
parameter βit into basic parameters that capture the item’s initial difficulty
βi and the change λt that has occurred until occasion t, βit = βi − λt with
λ1 = 0. Technically, the person parameter θv is considered constant over time
in the linear logistic model, so that the relative position of person v is preserved
across the measurement occasions. Because change in overall item difficulty is
equivalent to global change in latent-person ability, however, the model reflects
the assumptions that change may occur and that change is homogeneous
across persons. Accordingly, λt can be interpreted as the average increase (or
decrease) in ability from the first measurement occasion until occasion t for
all individuals. Due to the additive decomposition of βit into item difficulty βi

and the change effect λt, the relative positions of the items are also maintained
over time. The latter assumption can be dropped by allowing for time-specific
item parameters.

The linear logistic RM in Equation 12.2 is based on a unidimensional latent
space. That is, the position of person v on the one latent trait θ underlies her
or his responses to all items i at all occasions t, although the person’s absolute
position on the latent continuum may shift from one occasion to another.

In many applications, however, it may be plausible to assume that dif-
ferent items measure different latent constructs, such as distinct aspects of
a syndrome in clinical research or specific cognitive abilities in educational
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assessment. To measure time or treatment effects across repeated observa-
tions in such cases, the linear logistic test model with relaxed assumptions
(LLRA; Fischer, 1983, 1995c) accommodates multidimensionality of items.
This model allows for item-specific latent traits by specifying interactions be-
tween persons and items, θiv. To measure time or treatment effects, the model
contains change parameters that are considered constant across the items and
their latent dimensions. Although such generalizations of the RM to incor-
porate multidimensionality in an item set are suitable specifications in many
instances, the remainder of this chapter will largely focus on the issue of ho-
mogeneity versus heterogeneity of change across individuals, which can also be
addressed by modeling and testing for particular types of multidimensionality
in longitudinal RMs.

The RM in Equation 12.2 contains the rather restrictive assumption that
change is homogeneous across persons, that is, that the amount of change λt

is supposed to be the same for all persons v. This restrictive assumption can
be dropped by specifying a multidimensional latent space that contains one
latent-trait continuum for each measurement occasion (e.g., Andersen, 1985).
The resulting model reflects the concept of person-specific change that can be
written as

P (Xvit = 1|θvt, βi) =
exp(θvt − βi)

1 + exp(θvt − βi)
. (12.3)

Formally, the parameter θvt represents an interaction between person v
and measurement occasion t, which implies that change in the latent ability
θ may be person-specific rather than homogeneous, whereas item difficulty
βi is assumed to remain constant over time. In contrast to the linear logistic
RM (12.2), the relative position of person v may therefore change from one
occasion to another in Equation 12.3, so that the amount of change cannot
be measured by means of a global change parameter λt. The model of person-
specific change in Equation 12.3 is appropriate in longitudinal research designs
in which the items form a unidimensional scale at each occasion with station-
ary item parameters, and in which the speed or direction of development
may vary between persons, for example because individuals profit to different
degrees from training or intervention programs.

The models of homogeneous change in Equation 12.2 and of person-specific
change in Equation 12.3 result from particular restrictions of the person pa-
rameters θvt and the item parameters βit in the general RM for repeated obser-
vations as defined in Equation 12.1. Alternative restrictions are also possible,
including the decomposition of the item parameters βit into linear combina-
tions of specific treatment effects and general trends (e.g., Fischer, 1995c).

12.2.2 Loglinear Rasch Models for Measuring Change

The loglinear representation of RMs (Cressie & Holland, 1983; Kelderman,
1984; see also the chapter by Kelderman in this volume) forms a suitable
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framework for the specification and test of hypotheses about change in lon-
gitudinal data. In the loglinear notation of the conditional RM, the expected
probabilities of response vectors are reparameterized as linear combinations
of item parameters and of parameters representing the total scores of the
response vectors. This notation facilitates the specification of theoretical as-
sumptions concerning latent change and affords straightforward statistical
tests especially for small item sets (Meiser, 1996; Meiser et al., 1998).

To illustrate, let a set of I items be administered to a sample of individuals
at T = 2 measurement occasions. Because the total score Rv =

∑
t

∑
i xvit

forms the sufficient statistic for person parameter θv under the unidimen-
sional RM of homogeneous change in Equation 12.2, the probability of a
given response vector x = (x11, . . . , xI1, x12, . . . , xI2) with total score R can
be expressed without latent-person parameter θv. In the loglinear reparame-
terization of the RM of homogeneous change, the logarithm of the expected
probability of response vector x can therefore be written as

lnP (x = (x11, . . . , xI1, x12, . . . , xI2)) = u −
2∑

t=1

I∑
i=1

xitβi +
I∑

i=1

xi2λ2 + uR.

(12.4)
Likewise, the sufficient statistic of the two-dimensional latent-ability vector

(θv1, θv2) in the model of person-specific change (12.3), for two occasions is
given by the pair of total scores (Rv1, Rv2), with Rv1 =

∑
i xi1 being the

total score at the first occasion and Rv2 =
∑

i xi2 being the total score at the
second occasion. The conditional RM of person-specific change can therefore
be specified by the following loglinear model for the expected probability of
response vector x with the two total scores R1 and R2:

lnP (x = (x11, . . . , xI1, x12, . . . , xI2)) = u −
2∑

t=1

I∑
i=1

xitβi + u(R1,R2) (12.5)

To achieve identifiability of the loglinear RMs in (12.4) and (12.5), some
parameter restrictions need to be imposed. The usual restrictions include the
constraints that the set of item parameters and the set of total score parame-
ters sum to zero, that is,

∑
i βi = 0,

∑
R uR = 0, and

∑
R1

∑
R2

u(R1,R2) = 0.
The loglinear framework facilitates straightforward specifications and tests

of hypotheses about change, such as stationarity of the change parameters or
invariance of item parameters across measurement occasions. Stationarity of
latent change is reflected by the constraints λt = λ for all t > 1 in Equation
12.4. Invariance of the item parameters can be tested by introducing time-
specific difficulty parameters βit in Equations 12.4 and 12.5 and by comparing
the resulting more-general model variants with the models assuming constant
item parameters.

For model-testing purposes, it is of particular importance to note that the
loglinear model of homogeneous change in (12.4) can be derived as a special
case from the loglinear model of person-specific change in Equation 12.5. That
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is, imposing the restrictions u(R1,R2) = u(R1+R2) + R2λ2 in Equation 12.5
yields Equation 12.4. This hierarchical relation between the loglinear models
(12.4) and (12.5) allows one to test for homogeneity of change across persons
by means of a statistical model comparison.

12.2.3 Extensions to Multiple Response Categories and
Multidimensional Latent Traits

Linear logistic RMs for the measurement of change have been extended from
the analysis of dichotomous items to the analysis of items with several re-
sponse categories (Fischer & Parzer, 1991; Fischer & Ponocny, 1994, 1995).
For that purpose, the item and category parameters in the rating-scale model
(Andrich, 1978) or the partial-credit model (Masters, 1982) for polytomous
items are specified with regard to different points in time, analogous to the
item parameter in Equation 12.1. The item and category parameters are then
decomposed into basic parameters that reflect item and category difficulty on
the one hand and change or treatment effects over time on the other hand.

Moreover, longitudinal RMs can be extended to include more than one la-
tent trait at each occasion, as in the linear logistic model with relaxed assump-
tions. Generalizing the concepts of homogeneous and person-specific change
from unidimensional RMs, change can be specified to be homogeneous across
persons or person-specific within each of the latent traits of a multidimensional
latent-trait model.

In very general terms, the probability to observe response category x in
item i with m + 1 response categories 0, . . . ,m at occasion t can be specified
by a longitudinal RM with D latent traits at each measurement occasion:

P (Xvit = x|θvt, τist) =

exp(
∑D

d=1
∑x

s=1 wisdθvtd −∑D
d=1
∑x

s=1 wisdτistd)∑m
y=0 exp(

∑D
d=1
∑y

s=1 wisdθvtd −∑D
d=1
∑y

s=1 wisdτistd)
. (12.6)

In Equation 12.6, θvtd denotes the latent-ability parameter of person v at
occasion t on the latent dimension d, and τistd represents the difficulty of the
threshold between categories s−1 and s for item i at occasion t on dimension d.
The values wisd are weights that reflect the degree to which the latent-ability
dimensions are involved in reaching the various response categories.

These weights are determined a priori by the researcher and are thus part
of the model specification. Usually, the weights are restricted to the binary
values of zero and one, indicating whether a particular trait is involved in
reaching a category or not (see Meiser, 1996; Meiser et al., 1998).

The polytomous multidimensional latent-trait model for longitudinal data
in Equation 12.6 serves as a superordinate framework, or metastructure, to
derive more specific models by sets of parameter constraints. For example, a
multidimensional model of homogeneous change within each latent trait can be
specified by setting θvtd = θvd and by decomposing the threshold parameters
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into their initial difficulty and change parameters, τistd = τisd − λtd. The
resulting model reflects global change with persisting relative positions of the
persons and items on each of the D latent traits (Meiser, 1996; Meiser &
Rudinger, 1997). Together with a theory-based and parsimonious selection
of the weights wisd, such parameter constraints are often necessary to yield
identifiable submodels of the superordinate framework in Equation 12.6 for a
given data set.

12.3 Mixture-Distribution Rasch Models for the
Analysis of Change

The aforementioned distinction between change that is completely homoge-
neous across persons versus change that is purely person-specific marks two
extremes of homogeneity and heterogeneity, respectively. In a given popu-
lation, a limited number of latent-developmental trajectories may coexist, so
that change is neither completely homogeneous nor completely person-specific.
Instead, the direction and the amount of change may be rather homogeneous
within each of several subpopulations, whereas the course of change may differ
between the subpopulations.

In some cases, relevant subpopulations can be defined by manifest extra-
neous grouping variables, such as gender, socioeconomic status, or treatment
group, so that differences in the developmental trajectories can be analyzed by
parameter comparisons between groups (e.g., Fischer, 1983, 1995d). In other
cases, either extraneous grouping variables may either not be available, or they
may not account for observed heterogeneity of change in the population (e.g.,
Wilson, 1989). Then, the subpopulations are latent and have to be identi-
fied by statistical modeling techniques in order to separate the developmental
patterns that are mixed in the total population.

The goal to identify latent subpopulations and to measure change within
each subpopulation can be pursued by means of finite mixture-distribution
models (McLachlan & Peel, 2000; Titterington et al., 1985). Finite mixture-
distribution models characterize the probabilities of events in terms of a
weighted sum of component distributions. Each component distribution is
specified to hold within a subpopulation c, c = 1, . . . , C, and the weights cor-
respond to the proportions of the subpopulations in the entire population,
πc.

12.3.1 Class-Specific Homogeneous Change

Applying the notion of finite mixture-distribution models to longitudinal RMs,
one may assume that a population consists of C latent subpopulations and
that change is homogeneous within each subpopulation. This assumption can
be specified by a mixed RM (Rost, 1990, 1991; von Davier & Rost, 1995; see
also the chapter by von Davier & Yamamoto in this volume) of the form
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P (Xvit = 1) =
C∑

c=1

πcP (Xvit = 1 | c)

with component probabilities

P (Xvit = 1|c, θv|c, βi|c) =
exp(θv|c + λt|c − βi|c)

1 + exp(θv|c + λt|c − βi|c)
. (12.7)

The mixed RM for longitudinal data in Equation 12.7 combines the unidi-
mensional RM, which allows for quantitative differences among persons while
implying homogeneity of change, and the latent-class approach, which allows
for qualitatively distinct patterns of change (see Meiser et al., 1995, for a
discussion of Rasch and latent-class models in longitudinal research).

More specifically, in contrast to the model of homogeneous change in Equa-
tion 12.2, the parameters of the mixed RM in Equation 12.7 are specified
conditional on latent class c that contains a proportion πc of the entire pop-
ulation. By introducing class-specific change parameters λt|c, the model ac-
counts for qualitative differences in change. In contrast to usual latent-class
models, however, the mixed RM also allows for quantitative differences be-
tween individuals of the same subpopulation in terms of the person parameter
θv|c. Together, the mixed longitudinal RM (12.7) integrates interindividual
differences and homogeneous change within each latent subpopulation with
qualitative differences in change between subpopulations.

12.3.2 A Mover–Stayer Mixed-Rasch Model

With appropriate parameter restrictions, mixed RMs can be used to disen-
tangle latent subpopulations of “movers” and “stayers” within a latent-trait
framework that incorporates quantitative interindividual differences as well
as differences in change over time.

The distinction between a latent subpopulation that exhibits change over
time, the “movers,” and a latent subpopulation that shows invariant response
behavior over time, the “stayers,” has been incorporated into mixed Markov
chain models (e.g., Langeheine & van de Pol, 1994; van de Pol & Langeheine,
1990) to express the idea that observed heterogeneity of change may reflect
the coexistence of two simple mechanisms in a given population: change and
no change. The distinction between a latent class of movers and a latent class
of stayers can easily be transferred to the mixed longitudinal RM in Equa-
tion 12.7 by setting C = 2 and imposing the restriction λt|2 = 0 for all t.
Thereby, the change parameters for the first subpopulation λt|1 are free to
differ from zero, which means that the latent class c = 1 may exhibit global
change in the latent ability across the measurement occasions. Thus, class 1
represents a subpopulation of movers. By restricting λt|2 to zero, the latent
ability is constrained to be invariant over time in class c = 2. Thereby, class
2 forms a subpopulation of stayers. Extending mover–stayer models in the
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framework of mixed Markov models, the mover–stayer mixed RM admits per-
sisting interindividual differences in latent ability within both subpopulations
of movers and stayers.

Mover–stayer mixed RMs were successfully applied to longitudinal data
concerning the development of observed activity in childhood (Meiser &
Rudinger, 1997) and concerning the development of mathematical problem-
solving skills in primary school (Meiser et al., 1998). The latter analysis is
briefly summarized in the following section in order to illustrate the various
RMs for the measurement of change that were discussed throughout this chap-
ter. For further applications of RMs to longitudinal data, see the chapters by
Draney and Wilson and by Glück and Spiel in this volume.

12.4 An Empirical Illustration

In an analysis of mathematical problem-solving skills in primary-school chil-
dren, Meiser et al. (1998) applied a series of longitudinal RMs to investigate
the course of latent development. The empirical data were taken from a large-
scale longitudinal study on the cognitive abilities and achievements of school
children in Germany (Weinert & Helmke, 1997). The selected items encom-
passed three arithmetic word problems that were administered to a sample of
1030 children in the second and third grades. The series of models was spec-
ified as conditional RMs in their loglinear representation, and the analyses
were run with the software LEM (Vermunt, 1997a). This software facilitates
loglinear model specification in terms of design matrices (see Meiser, 2005;
Rindskopf, 1990) and allows the inclusion of latent-class variables in the log-
linear modeling framework.

In a first step, we applied the conditional RM of homogeneous change in
its loglinear representation (see Equation 12.4) to the three items at the two
occasions. This model was rejected on grounds of a poor overall goodness of fit,
as revealed by the likelihood ratio statistic of G2(54) = 72.53, p = .047. The
loglinear RM of person-specific change (see Equation 12.5), in contrast, showed
a satisfactory goodness of fit with G2(46) = 54.84, p = .175. As delineated
above, the two loglinear models are hierarchically related. A model comparison
by means of the conditional likelihood ratio statistic therefore yields a focused
test of homogeneity of change across persons. The model comparison showed a
significant difference in model fit, ∆G2(8) = 17.69, p = .024, which indicated
that the homogeneity assumption was violated for the given data set.

To analyze the structure of developmental heterogeneity further, we spec-
ified a mover–stayer mixed RM that follows from Equation 12.7 with the
specification of two latent subpopulations and with the restriction λt|2 = 0
for the stayer class c = 2. In addition, we imposed equality restrictions on the
item parameters across the latent classes c = 1 and c = 2, βi|1 = βi|2, which
reflect the assumption that the items form an invariant scale not only across
time but also across the different latent subpopulations. The resulting model
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provided an acceptable overall goodness of fit to the data, G2(49) = 64.79,
p = .065. The latent subpopulation of movers comprised an estimated pro-
portion of π̂1 = .43 of the children, and the latent subpopulation of stayers
comprised the complementary estimated proportion of π̂2 = .57.

The mover–stayer mixed RM cannot be compared with the models of
global change and person-specific change by means of a conditional likelihood
ratio test using the chi-square distribution. This is due to the fact that the
mover–stayer mixed RM is not hierarchically related to the other models,
so that the regularity conditions for a statistical model comparison are not
met. Therefore, a descriptive comparison between the model of person-specific
change and the mover–stayer mixed RM was conducted with the information
criterion CAIC (Burnham & Anderson, 2002). This model comparison demon-
strated that the mover–stayer mixed RM provided a better balance between
model fit and model parsimony, CAIC=7740.27, than did the model of person-
specific change, CAIC=7442.36.

Together, the empirical results of the Rasch analysis of the given data set
on arithmetic problem-solving highlight that the mover–stayer mixed RM may
offer a parsimonious account of observed heterogeneity in change by specifying
the two simple underlying mechanisms of change and no change in a given
population. In fact, the subpopulation of movers, c = 1, showed an estimated
change parameter of λ̂2|1 = 1.19 that was significantly larger than zero, as
indicated by a z-value of 4.01. In terms of the expected probabilities to solve
the arithmetic problems, the movers improved their chances to provide the
correct responses to the three items from an average of .47, .35, and .43 at
second grade to an average of .72, .61, and .69 at third grade. Because the
change parameter was fixed to zero for the subpopulation of stayers, c = 2
with λ2|2 = 0, the expected probabilities of successful item solution did not
differ between the two assessment occasions for stayers. Children in this latent
subpopulation had average chances of .41, .34, and .38 to solve the three items
at both second grade and third grade.

The mover–stayer mixed RM allows for differences in item difficulty and
person ability at each measurement occasion, and it separates qualitatively
different patterns of development. In the school data analyzed by Meiser et al.
(1998), a latent subpopulation of children who improved performance from one
grade to the next could be distinguished from another latent subpopulation
of children whose performance remained unchanged. The separation of latent
subpopulations with different developmental trajectories by mixed RMs can
also be used to investigate possible associations between qualitative patterns
of development and external variables such as gender and socioeconomic in-
dices (e.g., Meiser et al., 1995). The combination of RMs for measuring change
in a (sub)population and finite-mixture models for analyzing heterogeneity be-
tween latent subpopulations thus provides a flexible framework for specifying
and testing hypotheses about change in longitudinal data.
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