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I work on problems in statistics that I can solve. 
—Rupert Miller (Stanford, Department of Statistics) to Paul Holland, circa 
1964

6.1. Introduction 

Test equating methods are used to produce scores that are interchangeable 
across different test forms that are built to the same specifications 
(Holland, Chapter 2; Holland & Dorans, 2006; Kolen, Chapter 3). It is the 
most stringent form of score linking because it claims score 
interchangeability, not merely comparability, as do concordances and 
predictions (see Holland & Dorans and Holland, Chapter 2, for more 
details and definitions of types of score linking). Other types of score 
linking might use the same computations as test equating but do not result 
in scores that are interchangeable. A linking typically does not qualify as 
an equating when the test forms are not constructed to the same 
specifications or when the test forms measure different constructs. Test 
equating places several stringent requirements on the content and statistical 
properties of the test forms and on the samples of test-takers involved and 
is vulnerable to deviations from these requirements. These deviations 
might result in scores that are not interchangeable. In these circumstances, 
the intended test equating becomes a weaker form of test linking and the 
lack of interchangeability of scores can lead to unintended unfairness to 
some test-takers. 

A good equating is like good cooking: It starts with good ingredients, 
the right tools, sound knowledge, and a bit of talent. Some “stumbling 
blocks to equating” (Cook, Chapter 5) appear when the assumptions 
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required by an equating method are not fulfilled—for example, when the 
population invariance assumption fails (Dorans & Holland, 2000). Other 
stumbling blocks arise when the samples available for equating are too 
small and when large differences exist in the abilities of the groups that 
take the two test forms to be equated. In these situations, the equating 
issues are further exacerbated by poor test or anchor-test construction. In 
an attempt to address these stumbling blocks, researchers have measured 
the impact on equating of failures of assumptions (population invariance 
studies, studies on the quality of the anchor) and have developed new 
strategies to cope with design and data difficulties (equating with small 
samples, new approaches to anchor-test construction, and new equating 
models).

This chapter outlines some of this new research and discusses how it 
can improve test equating practice. 

Before embarking on this investigation of the usefulness of new 
methodologies, we need to remember that, so far, no systematic theory of 
test equating has been outlined. Over the years, methods have been 
developed in response to the need to create comparable test scores in 
practical circumstances. In order to evaluate these methods, Dorans and 
Holland (2000), Holland and Dorans (2006), Kolen and Brennan (2004), 
and Lord (1980) have laid out a framework that defines a good 
equating procedure. This framework is based on the following five 
requirements on the test forms and on the equating functions: the same 
construct, equal reliability, symmetry, equity, and population invariance 
requirements. “This is not much of a theoretical underpinning for test 
equating,” said Dorans and Holland (2000, p. 283). Moreover, many of 
these requirements are vague or arguable. In addition, in most situations, a 
failure of any of these requirements is hard to detect using the available 
data. The combination of the lack of a theory and difficulties in detecting 
bad equating results in practical settings create a challenging situation for a 
practitioner.

The research overviewed in this chapter is mostly focused on observed-
score equating methods and investigates the following equating issues: 

1. The population sensitivity of equating functions 
2. Small samples equating  

by matching on an anchor test and by constructing the anchor test in 
nontraditional ways

4. Addressing the stability of the equating results by implementing new 
equating models such as kernel equating (KE) and by applying the 
KE framework 

3. Addressing the differences in ability of the two groups of test-takers 
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The rest of the chapter is structured in six sections, with the first 
introducing the notation, the next four addressing the above-described 
issues, and, finally, providing the conclusions and discussion. 

This overview of problems and solutions in equating does not directly 
address the conflicts that might arise between the demands of the testing 
industry and strong statistical and psychometric practice. To paraphrase 
the motto of the chapter: “I work on statistical problems that I can solve.” 

6.2. Observed-Score Equating Methods 

In this section I introduce notation and lay out a framework for the 
discussion of equating. See also Kolen (Chapter 3) for a related discussion. 

There are two test forms to be equated, X and Y, and a target population, 
T, on which this is to be done. The data are collected in such a way that the 
differences in the difficulty of the test forms and the differences in the 
ability of the test-takers that take the two forms are not confounded. There 
are two classes of data collection designs for equating: (a) designs that 
allow for common people (equivalent groups, single group, and 
counterbalanced designs) from a single target population of examinees T
(see Livingston, 2004, for a slightly different view and definition of a 
target population) and (b) designs that allow for common items (the 
nonequivalent groups with an anchor-test design or NEAT design, also 
referred to as the common-item or anchor-test design) where the tests, X
and Y, are given to two samples from two test administrations 
(populations), P and Q, respectively, and a set of common items, the 
“anchor test,” is given to samples from both these populations). See also 
Figures 3.5 and 3.6 in the chapter by Kolen (Chapter 3, Section 3.5). The 
target population, T for the NEAT design, is assumed to be a weighted
average of P and Q. P and Q are given weights that sum to 1. This is 
denoted by T = wP + (1 – w)Q.

Many observed-score equating methods are based on the equipercentile
equating function. It is defined on the target population, T, as

eY;T(x) = GT

-1(FT(x)), (6.1) 

where FT(x) and GT(y) are the cumulative distribution functions (cdfs) of X
and Y, respectively, on T. In order for this definition to make sense and to 
ensure that the inverse equating function also exists, it is also assumed that 
FT(x) and GT(y) have been made strictly increasing and continuous or 
“continuized.”

Several important observed-score equating methods might be viewed as 
only differing in the way the continuization is achieved. The traditional 
equipercentile equating method (percentile rank method) uses linear 
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interpolation of the discrete distribution to make it piecewise linear and, 
therefore, continuous. The KE method uses Gaussian kernel smoothing to 
approximate the discrete histogram by a continuous density function.

Equipercentile equating leads to linear equating if one assumes that 
FT(x) and GT(y) are continuous and have the same shape while differing in 
mean and variance. The linear equating function, LinY;T(x), is defined by 
LinY;T(x) = YT + YT((x – XT)/ XT), where XT  and YT, and XT  and YT .are
the means and standard deviations of X and Y on T, respectively. 

In von Davier et al. (2004b), it is shown that any equipercentile equating 
function can be decomposed into the corresponding linear equating 
function and a nonlinear part.

The next four sections describe several stumbling blocks to equating, 
some of the research conducted to address them, how the results of these 
research studies might improve equating practice, and identify research 
that still needs to be conducted. 

6.3. Addressing the Fairness Issue: Population Invariance 
of Equating Functions 

The practical equating concern addressed in this section is the lack of 
fairness towards subgroups of examinees that may occur when the 
assumption of population invariance of an equating function does not hold 
across subpopulations. I discuss this topic from several perspectives.

6.3.1. Definitions and Measures of Population Differences in 
Equating

One of the five requirements of score equating functions mentioned earlier 
is that equating should be population invariant; that is, the function 
computed should not be sensitive to the examinees whose data are used    
to compute it. Because strict population invariance is often impossible to 
achieve, Dorans and Holland (2000) introduced a measure of the degree to 
which an equating function is sensitive to the population on which it is 
computed. The measure, the root mean square difference (RMSD), 
compares linking functions computed on different subpopulations with the 
linking function computed for the whole population. The RMSD index was 
initially developed for the single group and equivalent groups designs. It 
was extended to other equating designs and methods in von Davier et al. 
(2004a).

Although the concept of invariance in equating and linking can be 

increase in this research. Most of the studies have focused on the detection 
traced back to 1950 (Kolen, 2004b), in recent years there was a significant 
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of population differences in equating and linking (Angoff & Cowell, 1986; 
Dorans & Holland, 2000; Harris & Kolen, 1986; Segall, 1995; von Davier 
et al., 2004a) and on the development of tools for making decisions 
(Dorans & Feigenbaum, 1994; Holland, Liu, & Thayer, 2005; Liu & 

studies of test fairness that include differential prediction and differential 
item functioning (DIF). He provided an overview of the evolution of 
fairness assessment and placed the study of the population sensitivity of 
equating functions at the core of score equity. He recommended the 
routine investigation of subgroup dependence of the equating functions. I 
also believe that measures of population sensitivity of equating results 
should be routinely employed in operational work (similarly to the way 
that DIF analyses are now routine operational procedures). This is 
especially important when new tests or changes to the tests are introduced. 
The procedure could be automated and embedded in system software and 
might provide a flag if the population invariance assumption is violated at 
particular score points. However, establishing a flag requires a criterion. In 
the following subsections more details on establishing criteria are 
presented.

How could population invariance indexes help practitioners achieve 
better equating results? Such indexes are a first step in the process of 
ensuring fair equating results. The next subsection discusses how to judge 
the information provided by population invariance indexes. 

6.3.2. Criteria for Detecting Subpopulation Differences in 
Equating Functions 

There are at least three different questions one might ask about a particular 
measure of population sensitivity: (a) Does the amount of observed 
population sensitivity matter? (b) Is the amount of observed population 
sensitivity statistically significant or is it just noise? (c) What 
characteristics of the data, tests, and test-takers lead to population 
dependence?
 To address question a, we might make use of the difference that matters 
(DTM), introduced by Dorans and Feigenbaum (1994). The DTM for a 
testing program depends on its reporting scale. For example, if the unit of a 
score scale is one point, then a difference between equating functions 
larger than a half-point on this scale means a change in the reported score, 
and this fact might establish the DTM for that particular program. All 
differences in equating results can be compared to the DTM to judge if 
they matter. However, the population invariance index, RMSD, introduced 

Dorans (2004e) introduced score equity assessment (SEA) to describe 
Holland, 2006; Moses, 2006; von Davier  & Manalo, 2006).
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by Dorans and Holland (2006), needs to be compared to a standardized
DTM, which is the DTM divided by the same quantity as the denominator 
in the RMSD. Some of the recent studies that made use of the DTM 
criterion for detecting population sensitivity are: Dorans, Holland, Thayer, 
and Tateneni (2003), Liu, Cahn, and Dorans (2006), von Davier and 
Wilson (2005), and Yang (2004). 

The studies that address question b focus on computing the accuracy of 
the population invariance indexes. Moses (2006) computed the standard 
errors (SE) for the RMSD index for the KE and showed how to compute 
the analytical formulas for the SE in the KE framework, using a standard 
large-sample approach. Other approaches compute the empirical SE of the 
RMSD for various equating functions using jackknife techniques (von 
Davier & Manalo, 2006). 

Some studies (Holland et al., 2005; Liu & Holland, 2004) examined 
how population invariance indexes vary with differences between the tests 
and the subpopulations of test-takers. This allows us to define “a large 
value” of these indexes in terms of known factors that influence these 
indexes (question c).  

How do these different criteria help practitioners achieve better equating 
results? All three types mentioned are valuable and are not mutually 
exclusive. Each provides information that can aid important decisions for 
ensuring a fair assessment. For example, the difference between the DTM 
and the SE is similar to the difference between clinical significance and 
statistical significance as used in medicine: One can have a statistically 
significant population dependence that will not matter to the test-takers or 
might have a DTM that is not statistically significant given the data at 
hand. One the other hand, comparing an RMSD index value to those 
typically found for parallel tests of given reliability can indicate when a 
observed RMSD value is typical of that type of testing program. 

6.3.3. Implications of Population Sensitivity of Equating 
Functions 

What should be done when the population invariance assumption is 
violated? This case can easily arise with concordances (see Dorans & 
Holland, 2000; Holland & Dorans, 2006; Dorans & Walker, Chapter 10; 
Pommerich, Chapter 11; Sawyer, Chapter 12). However, suppose that it 
occurs in an equating situation. 

The psychometrician can consider examining potential violations of the 
equating requirements by applying the above described criteria. There are 
several areas that might be investigated: (a) Test development. Should 
population dependence be expected given the manner in which the tests are 
constructed? Do the tests measure the same construct? Are the tests 
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equally reliable? (b) The characteristics of the population dependence. Is 
this the first occurrence of a subgroup dependence of the equating function 
in this assessment? How much does the equating function depend on the 
subpopulations? At which scores does this dependence occur? Does the 
dependence matter to the test-takers? (c) The statistical significance. Is the 
observed population dependence statistically significant? Are the 
subgroups large enough that the equating functions for the subgroups are 
reliably different?

If this is a first-time occurrence and if no explanation can be found 
given the testing process, the psychometrician might decide to monitor 
past and future forms of this particular assessment. If this population 
dependence recurs or if it is too serious to be ignored, then more radical 
solutions might be considered. Linking functions between two tests can be 
computed and the scores on the tests can be linked using them, even when 
population invariance fails to hold to a sufficient degree. In this situation, 
however, it is appropriate to claim less for the linking between the two 
tests: The link might be appropriate for the target population as a whole 
but inappropriate for some identifiable subgroups. In particular, in order to 
be fair to different groups of examinees, it might be necessary to consider 
using different links between the tests for different subpopulations of 
examinees.

Holland and Dorans (2006) gave the following example. Suppose that 
there are two subgroups of test-takers, two tests to be linked, and one 
subgroup of test-takers has lower scores on X than the other subgroup but 
that the reverse holds for the other test, Y. They concluded that when a 
reversal holds, the lower scoring group is always disadvantaged by the use 
of the total-group linking function. When tests that are built to the same 
specifications are equated, the possibility of reversals is rare. For the 
forming of concordances, however, reversals are more likely and should be 
monitored for major subgroups.

Dorans (2004e) recommended using SEA and population dependence of 
equating functions “to distinguish between equating and weaker forms of 
linking” and said: 

Some have argued in the K-12 arena that scores from different tests are 
simply exchangeable. Despite cogent arguments to the contrary (see 
Feuer, Holland, Green, Bertenthal, & Hemphill, 1999), this belief 
lingers. […] Does it matter to a boy or a girl […] which test or version 
of a test they take? If the answer is yes […], then the presumption of 
exchangeability is not supported by the data. Inferences that depend on 
this presumption may be suspect. Some weaker form of linking is more 
appropriate, and separate concordances for males and females are more 
equitable than ignoring existing linking differences. (p. 65) 
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However, the use of different links (in situations where equating is 
actually expected) for different subpopulations of examinees is a 
controversial solution (see Petersen, Chapter 4). Is it fair to have two 
people taking the same test, performing similarly, and receiving different 
scores based on the subgroups to which they belong? This concern needs 
to be balanced with the unfairness that reversals can create. 

6.3.4. Discussion and Future Research Directions 

The suggestions for the above-described strategies are not only statistical 
but also involve program policy. A particular program will need to weigh 
the consequences of any decision for the test-takers and test users. It is 
better to avoid such situations by careful planning of test development and 
equating designs that lead to fair equating results. For more details, see 
Dorans (2004e), Petersen (Chapter 4, Section 4.2), and Kolen (2003). 

To make the study of population sensitivity more practical, I 
recommend continuing to search for indexes of population dependence that 
do not require the various subgroups equatings. When there are multiple 
subpopulations, examination of the subgroups equatings with the existing 
indexes is time- and labor-intensive. Dorans and Holland (2000) provided 
an example of such a simplifying method. See Holland et al. (2005) for an 
illustration of how this simplified method can reduce computations without 
losing sensitivity to population differences in equating. 

6.4. Addressing the Small-Samples Issue: Synthetic 
Linking Functions 

The equating of test scores is subject to sample characteristics. If the 
sample is large, the equating relationship in the sample might represent 
accurately the equating relationship in the population. The smaller the 
sample, the more likely that the equating function computed for that 
particular sample will differ from the equating function in the population. 
Both sampling error and bias can influence the quality of the equating. 
Hence, the impact of small sample size on equating is compounded when 
the samples are not representative.

The practical equating issue addressed here is what to do when the 
samples are small. 

The research in this area has focused on three topics: the use of 
presmoothing of the discrete data prior to equating (Livingston, 1993; 
Skaggs, 2004), the use of the identity function instead of equating (Harris 
& Crouse, 1993; Skaggs, 2004), and the use of a weighted average of the 
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identity and a linear equating function without presmoothing (Kim, von 
Davier, & Haberman, 2006). 

Livingston (1993) examined the effectiveness of log-linear 
presmoothing (Holland & Thayer, 1987, 2000) with small samples in an 
equivalent groups design with an anchor test. He found that the benefits of 
presmoothing were greatest when the sample was small, but that the 
number of moments in the observed distribution that should be preserved 
in the smoothed distribution might depend on the sample characteristics.

Skaggs (2004) studied equating of the passing score using samples 
ranging from 25 to 200 in an equivalent groups design with no anchor. He 
observed that the standard errors of equating became smaller as the sample 
size increased, but that the equating bias did not change much as a function 
of sample size. For samples as small as 25, no equating is likely to do less 
harm to examinees than some form of equating, but for samples in the   
50–75 range, some form of equating was preferable to no equating. 
Generally, using log-linear models that fit the first two or three moments 
of the observed distribution produced smaller standard errors than did the 
unsmoothed equating, as Livingston (1993) found. 

Kim et al. (2006) focused on the NEAT design, which is relatively 
uncommon in the literature on small-samples equating. In the NEAT 
design, the anchor test is supposed to adjust for the differences in ability in 
the two groups. However, in small samples, this adjustment might not be 
accurate. They introduced a compromise between the identity function (no 
equating) and an estimated equating function computed on the small 
sample. The synthetic linking function is defined as the weighted average 
of an estimated equating function and the identity function (ID(x) = x) or 
no-equating.

synY(x) = wey(x) + (1 – w)ID(x), (6.2) 

where w is a weight between 0 and 1. They showed that under an 
appropriate choice of the weight w, the synthetic function meets the 
symmetry requirement of an equating or linking function mentioned 
earlier.

The identity function might be a good choice when test specifications 
are well defined and the test forms are close to being parallel (see also 
Lawrence & Dorans, 1990; Skaggs, 2004), even when the equating 
samples are neither representative nor large enough. The mean of the 
equating results from the synthetic equating function is the weighted 
average of the mean of the identity and of the estimated equating function. 
This will reduce the bias in the identity equating function. At the same 
time, the new linking function will always contain less noise than the 
estimated equating function:
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One limitation of this approach is that the two tests should have the 
same length for the identity function to make sense. In addition, if the test 
forms are not nearly parallel, the bias introduced by the identity function 
might be too large. 

In Kim et al. (2006), 
differed in the reliability of the tests and the anchor. For the estimated 

was also used as the criterion based on about 10,000 cases. Smaller 
samples were randomly drawn from the two (nonequivalent) groups. When 
sample sizes were small (less than 25), the synthetic function did a better 
job than the estimated chained linear function. For samples as small as 10 
or 25, the synthetic equating function was preferable to either not equating 
or using the chain linear method alone. 

If historical data exist, w, in the synthetic function, can be viewed from 
the perspective of variance components. The weight on the identity should 
increase as sample variance increases and as year-to-year test variability 
decreases. In the absence of historical data, the weight can be a function of 
the difference in the abilities in the two groups, the correlation of the tests 
and the anchor, the reliabilities and the difference in difficulty of the two 
forms, and the sample size (see also Kolen & Brennan, 2004, p. 289). 

Equating with small samples requires the user to depend on assumptions
because there is less guidance from the data. The synthetic equating 
function illustrates how to use assumptions to achieve more stable results. 
When the test forms are constructed to be nearly parallel, the bias 
introduced by an identity equating is not expected to be large. The 
synthetic function allows more flexibility than simply not equating when 
the samples are small. In a similar way, presmoothing with log-linear 
models makes assumptions to compensate for the lack of data. 

However, assumptions can be wrong, so it is important to know their 
consequences. Would using empirical data to construct a replacement for 
the identity function be better? Would the equating results be more stable 
if a log-linear model is used that fits only the mean of the sparse observed 
distributions? Perhaps collateral information about the test items could be 
used to augment the total-test scores, as Mislevy, Sheehan, and Wingersky 
(1993) proposed? 

More research is needed before we can conclude whether the use of the 
synthetic function relying on the identity function makes matters better or 
worse. Follow-up studies of the work of Kim et al. (2006) can investigate 
the synthetic function under various circumstances, including those in 

linking function they used chained linear equating. Chained linear equating 

 two types of real test data were used that 
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which the identity function might introduce a significant bias. It is natural 
to suggest comparing versions of the synthetic function to the use of log-
linear models with few parameters in terms of bias and variability. 

6.5. Addressing Differences in Ability in the Two 
Populations of the NEAT Design 

The practical equating issue here is to equate scores for test forms that are 
taken by groups that exhibit large differences in ability (see Cook, Chapter 
5). In the NEAT design, the anchor test, taken by the two groups of test-
takers, is used to adjust for the differences in ability in the two groups. 
Previous research in this area has focused on three topics: the use of the 
anchor test to create similar or matched groups (Kolen, 1990; Lawrence & 
Dorans, 1990; Livingston, Dorans, & Wright, 1990), the use of other 
variables to create matched groups (Liou, Cheng, & Li, 2001; Wright & 
Dorans, 1993), and, recently, the creation of anchor tests that maximizes 
their correlation with the tests to be equated (Sinharay & Holland, 2006). 

When there are only small differences between the two samples of 
examinees used in the NEAT design, all linear equating methods tend to 
give similar results, as do all nonlinear equating methods (see Kolen, 1990; 
von Davier, 2003; von Davier et al., 2004a). To the extent that a NEAT 
design is almost an equivalent groups design with anchor test, the need for 
the anchor test is minimized. This is the main argument behind the 
matching-on-the-anchor procedure. When matching on the anchor is 
carried out, the distributions of the anchor in the two matched groups will 
be the same (Kolen, 1990; Lawrence & Dorans, 1990; Livingston et al.). If 
the distributions of the anchor in the two groups are the same, all 
comparable (equipercentile versus linear) observed-score equating 
methods will give the same result (von Davier, 2003). However, Cook and 
Petersen (1987) and Livingston et al. (1995) noted that although all the 
equating functions agree, their agreement might correspond to an incorrect 
equating function due to bias.

In order for the matching-on-the-anchor procedure to work, the anchor 
has to behave in the two groups similarly to the two tests, X and Y (see also 
Cook, Chapter 5). Other research focused on matching groups on variables 
other than the anchor (Wright & Dorans, 1993). Matching both on the 
anchor and on other variables seems to be promising. 

When the two samples are very different in performance, the use of the 
anchor test becomes critical; it is the only means of separating the 
differences between the abilities of the two groups of examinees from the 
differences between the two tests that are being equated (see Holland & 
Dorans, 2006). The most important properties of the anchor test are its 
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integrity and stability over time and its correlation with the scores on the 
two tests being equated (Holland & Dorans). It is important for the 
correlation to be as high as possible. Because of their part-whole 
relationship with the other tests, internal anchors have high correlations 
with the total tests. 

Petersen et al. (1989, p. 246) and von Davier et al. (2004a, p. 33) 
indicated that the higher the correlation between scores of an anchor test 
and scores on the tests to be equated, the better the anchor test is for 
equating. The importance for equating of this correlation raises the 
question: Does the usual advice of making the anchor test a “mini-version” 
of X and Y actually increase this correlation? The requirement that the 
anchor test should be representative of the content of the total test has been 
shown to be an important requirement by Klein and Jarjoura (1985). If the 
difficulties of the items in the full tests are spread over a range of values, 
does that mean that the difficulties of the anchor-test items should be 
spread over the same range? The results reported in Sinharay and Holland 
(2006) suggested that this might not be true. These authors examined 
whether the spread of item difficulties should be the same as that of X and 
Y
might perform as well (in terms of accuracy and precision in equating) as 
one consisting of items with a wider spread of difficulties. In a series of 
simulation studies, they explored the relations between scores on a total 
test and an external anchor test for different types of anchor test, based on 
generated data from one- and two-dimensional logistic item-response 
models. Their main finding is that an anchor test with a narrow spread of 
item difficulties located near the mean of the difficulties of the total tests 
has the highest correlation with the total tests for almost all of the 
situations considered. 

How can this research improve test equating? When there are large 
differences in ability in the two populations in the NEAT design, equating 
can be a challenge. 

Matching on the anchor and/or on other variables that correlate with the 
tests are procedures that require more research and the results need to be 
interpreted carefully. As mentioned earlier, all of the equating functions 
might agree to an incorrect (biased) equating function. If a demographic 
variable is used, then one might ask if the result is an equating and if the 
test scores are interchangeable. What role would the subpopulation 
dependence of the equating function play in choosing a person 
characteristic as a matching variable? More research is necessary to shed 
light on these issues. 

One interpretation of Sinharay and Holland (2006) is that although it is 
important that anchor tests match the content and overall difficulty of the 
total tests, it is less important to match the spread of the item difficulties of 

. They show that an anchor test with a narrow spread of item difficulty 
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the total tests. If further research bears out their preliminary findings, then 
their work suggests that test developers need not attempt to make the 
distribution of item difficulties look like a miniversion of the distributions 
for the total tests and can focus on matching test content and overall 
difficulty.

6.6. Addressing the Stability of Equating Results: Kernel 
Equating and Applications 

In the practice of equipercentile equating, psychometricians have typically 
used the percentile rank method (that uses linear interpolation to make the 
cdfs in Equation 6.1 continuous) for equating test forms with score 
distributions that differ in shape. One of the consequences of this method 
is that the linearly interpolated cdfs and the equating function have kinks; 
that is, the functions are not smooth (see Kolen & Brennan, 2004, Figures 
2.4, 2.5, and 2.10). Moreover, if there are no examinees at a particular 
score, the percentile rank method is not well defined. In order to address 
these issues, past research focused on procedures for smoothing the data 
prior to equating (presmoothing), procedures for smoothing the equating 
function (postsmoothing), alternative procedures for continuizing the cdfs, 
and new equating functions.

In my opinion, the issue of stability and quality of equating results is 
best addressed by providing the following: (a) a coherent and formal 
equating process; (b) better methods of continuizing the discrete 
distributions, F and G, in order to be able to compute the equating function 
from Equation 1; (c) useful measures of statistical accuracy; and (d) 
equating models that are appropriate for particular test designs. In the next 
subsection I will briefly describe the kernel equating method and indicate 
how it accomplishes the four above mentioned  aspects. 

6.6.1. The Gaussian Kernel Method 

observed-score test equating as having five steps or parts, each of which 
involves distinct ideas: (1) presmoothing of the score distributions; (2) 
estimation of the score probabilities on the target population; (3) 
continuization of the presmoothed discrete score distributions; (4) 
computing the equating function; and (5) computing the standard error of 
equating and related accuracy measures. They applied this framework to 
describe kernel equating (KE); see von Davier et al. (2004b) for details and 
for a detailed description of KE. 

Holland and Thayer (1989) and von Davier et al. (2004b) viewed all 
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The main advantage of the KE framework is that it brings together these 
steps into an organized whole rather than treating them as disparate 
problems. KE exploits presmoothing by fitting log-linear models to score 
data, and it incorporates the presmoothing into Step 5 of the framework, 
where KE provides new tools for comparing two or more equating 
functions and to rationally choose between them. 

Kernel equating is an equipercentile equating procedure in which the 
discrete score distributions are made continuous using Gaussian kernel 
smoothing rather than linear interpolation. By varying the bandwidth 
values in Step 4, KE can approximate the traditional equipercentile and the 
linear equating methods. The bandwidths are positive constants that 
manipulate the weight placed on the Gaussian kernel and that can be 
chosen to achieve various purposes. When “optimal” bandwidths are 
chosen, KE will closely approximate the traditional equipercentile 
equating method. When the bandwidths are large (10 times the standard 
deviation of the scores or larger), the continuized distributions will be 
nearly Gaussian and the KE functions are effectively linear. Thus, linear 
equating can be regarded as special case of equipercentile equating in the 
KE framework. 

In the KE framework, von Davier et al. (2004b) introduced the standard 
error of the difference (the SEED) between two equating functions. The 
SEED has several practical uses such as rationalizing the linear/nonlinear 
decision, implementing a new approach to the counterbalanced design, 

design, or aiding the comparison among other observed-score equating 
methods (von Davier & Kong, 2005). The various uses of the SEED do not 
require KE, but the SEED is a natural part of the KE framework and von 

Davier, & Rupp, 2006; von Davier et al., 2006) focused on evaluations of 
KE and on comparisons of KE with other observed-score and true-score 
equating methods. Among other things, these studies indicate that KE can 
closely approximate traditional equating methods well. These studies used 
the newly developed KE-Software (Educational Testing Service, 2006). 

6.6.2. Applications of the KE Framework 

Recent studies have taken advantage of the formal and coherent 
formulation of the KE process and have focused on the application of KE 
to particular equating issues.

Moses, Yang, and Wilson (2005) explored the use of KE for integrating 
and extending two procedures (Hanson, 1996; Lawrence & Dorans, 1990) 

Several research studies (Han, Li, & Hambleton, 2005; Mao, von 

comparing chained and poststratification equating methods in the NEAT 

Davier et al. (2004b) showed how to apply it for these purposes. 
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proposed for assessing the statistical equivalence of two test forms in 
which the same items have been scrambled into different orders.

Other applications of the KE framework are Moses (2006), which 
computed the standard error of population invariance indexes, and Moses 
and Holland (in press), which extended the KE computations to situations 
in which the data are not presmoothed. 

The KE framework is also used to construct hybrid equating function 
that combine a linear equating function from one source with an 
equipercentile function from another. An example is a nonlinear 
generalization of the Levine linear observed-score equating function. The 
Levine linear method does not yet have a curvilinear analogue, and there is 
no version of KE that approximates the Levine function. Nevertheless, the 
Levine linear method is often computed in practical applications for 
comparison purposes. Under some circumstances, it is more accurate than 
other linear methods (see Petersen, Marco, & Stewart, 1982).

von Davier, Fournier-Zajac, and Holland (in press) used the KE 
framework to construct a hybrid equating based on the Levine linear 
method. The new function preserves the nonlinear characteristics from the 
KE poststratification and the linear form from the classical Levine 
observed-score equating. 

With the five steps of the KE framework identified, other research has 
focused on replacing the original proposals from von Davier et al. (2004b) 
with alternatives to create new equating processes. One of these proposes 
alternative continuization methods: Wang (2004) continuized the discrete 
probability distribution by using the polynomial log-linear function (from 
the presmoothing step), divided by the area under it, in order to ensure that 
it is a probability distribution function. The method is called the 
continuized log-linear (CLL) method. As a potential alternative to the 
Gaussian kernel, Holland (personal communication, July 26, 2005) 
discussed the possibility of using a logistic kernel. One of the advantages 
of the logistic kernel is that the analytical form of the derivatives required 
for computing the SEE and the SEED is very simple. At the same time, 
given the modular character of KE-Software (Educational Testing Service, 
2006), it would be very easy to implement it in parallel with the Gaussian 
kernel.

6.6.3. Discussion and Future Research Directions

How do these new equating models address the issues of stability of the 
equating results? The nonlinear Levine function is a new equating method 
that might allow the known benefits of the Levine linear function (Petersen 
et al., 1982) to apply to cases where nonlinear equating is required. There 
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are situations in which the tests and the anchor are very carefully 
constructed, but the two test score distributions differ in shape (see von 
Davier, Holland, et al., 2006). In such a case, a nonlinear version of the 
Levine function is desirable.

One reason for seeking alternatives to continuization with a Gaussian 
kernel is that the use of the Gaussian kernel leads to lower values of the 
higher order cumulants of the continuous distribution than those of the 
original discrete distribution (Holland & Thayer, 1989; von Davier et al., 
2004b). So far, this reduction in the cumulants has not been shown to have 
any practical implication. The Wang (2004) proposal of CLL might 
provide a possible alternative to kernel smoothing because it directly 
computes the cdfs from the fitted loglinear model. 

The new accuracy method introduced in the KE framework, the SEED, 
has direct practical uses: It can aid the decision between linear and 
nonlinear equating functions, between equating functions that are based on 
different assumptions, such as the poststratification and chained equating 
(see Kolen & Brennan, 2004; von Davier et al., 2004b), or between the 
linear methods used in the NEAT design. The SEED is a statistical tool 
that has the potential of being extended to other applications—possibly as 
a decision aid between log-linear models. 

The KE method has been around for almost 20 years, and despite the 
obvious theoretical and practical advantages, it is still not part of the 
operational practice. Many practitioners are intimidated by the theoretical 
description of KE. Actually, many practitioners do not explicitly use linear 
interpolation, but a conversion table, with averaged values between score 
points. The KE method, although a differentiable function that differs from 
the linear interpolation, agrees closely to the equipercentile function, 
which uses linear interpolation at almost all score points when an 
appropriate bandwidth is selected. This is fortunate and unfortunate at the 
same time. It is fortunate to have the equating functions agreeing, but it is 
unfortunate because it gives practitioners no reason to change. Researchers 
and policy makers need better arguments to convince practitioners, such as 
emphasizing the availability of KE accuracy and diagnostic measures, the 
modularity of the KE framework that translates into a modular software 
package, and the easy-to-use interface of KE-Software (Educational 
Testing Service, 2006). Moreover, the KE framework has the potential of 
introducing automatic procedures with incorporated automatic decision 
steps to reduce the routine work of the psychometricians and data analysts. 

In my opinion, studies of alternative continuization methods and of 
hybrid functions are of a more theoretical than practical interest in the near 
future. From the practical point of view, I believe that research focused on 
decision aids and automatic equating procedures is necessary. Developing 
or refining indexes, such as the SEED for aiding in the process of 



6   Potential Solutions to Practical Equating Issues      105 

comparing equating function, indexes for deciding among log-linear 
models in the presmoothing procedures, or attempts to improve the fit of 
the loglinear models (and therefore to improve the stability of equating 
results) in regions of the score range that matter to a particular program are 
of importance in equating practice. In addition,  we should focus on 
expanding the research on the KE method to scale drift and to tests with 
complicated distributional shapes. Additionally, researchers should focus 
on finding more efficient ways to teach and explain the KE method and to 
engage more practitioners in evaluating procedures and approaches. 

6.7. Discussion 

This chapter summarizes my selection of the current research directions in 
equating that show some potential in addressing issues encountered in the 
practice of equating.

For the sake of coherence, I decided to focus on observed-score 
equating only. Equating that uses item information and is based on item 
response theory models has its own challenges, including those mentioned 
in Cook and Petersen (1987), von Davier and Wilson (2006), Hambleton, 
Swaminathan, and Rogers (1991), Kolen and Brennan (2004), Lord 
(1980), and Petersen et al. (1983, 1989). 

Here I discussed several equating topics: the population dependence of 
equating functions, the equating in small samples, the adjustments needed 
when the groups of test-takers differ in ability, and the stability of equating 
functions provided by the KE method. 

The main point that this chapter makes is that there is a continuous 
effort to address scientifically the practical issues of equating and that 
research does not take place in an ivory tower, but is responsive and 
related to practical problems.

Another point made here is that the equating process always involves 
policy decisions in addition to the statistical ones and that the 
responsibility for fair assessments needs to be shared between the leaders 
of the program and the psychometricians who advise them.

Currently, when more and more standardized testing is used for 
assessing competencies in different domains nationally and internationally, 
we are also discovering more challenges to ensuring that the process and 
the results are fair and accurate. In turn, these challenges and these new 
social implications open the door to more research in support of fair 
assessments, both in improving the test construction process and in 
advancing the statistical methods involved. 
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