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3.1. Introduction

Scores on tests are linked using statistical procedures on data that have
been collected in a systematic way. The outcome of a linking study is one
or more statistically based linking functions that relate scores on one test
or form to scores on another test or form. The purposes of the present
chapter are to describe commonly used designs for collecting data and
statistical procedures for linking scores.

The score linking situations considered are those in which scores from
the tests or forms to be linked are expressed on a common metric and used
for common purposes. These situations are restricted in this chapter to the
linking of tests that are intended to measure the same or similar constructs.
With reference to the Holland and Dorans (2006) and Holland (Chapter 2)
description of types of linking method, only test form equating and
concordance are considered. Predicting and scale aligning for tests
measuring dissimilar constructs and vertical scaling in the Holland and
Dorans (2006) and Holland (Chapter 2) framework were not considered.
Vertical scaling was considered further in Patz and Yao (Chapter 14),
Harris (Chapter 13), and Yen (Chapter 15). Linkages involving aggregate-
level data are not addressed in this chapter. The interested reader should
consult chapters by Thissen (Chapter 16), Braun and Qian (Chapter 17),
and Koretz (Chapter 18).

' The opinions expressed in this chapter are those of the author and not necessarily
of the University of lowa.
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In this chapter, the features of testing situations that influence linking
are described. Equating and linking tests that are intended to measure
similar constructs are distinguished. Common data collection designs and
their variants for equating and for linking tests that are intended to measure
similar constructs are considered. Statistical linking methods are described.

3.2. Features of Testing Situations

There have been various frameworks developed in recent years for
distinguishing among and developing terminology for different types of
linking (e.g., Feuer et al., 1999; Holland, Chapter 2; Holland & Dorans,
2006; Kolen & Brennan, 2004, Chapter 10; Linn, 1993; Mislevy, 1992;
and the special issue of Applied Psychological Measurement edited by
Pommerich & Dorans, 2004). The Holland and Holland and Dorans
frameworks are the most up-to-date. Even these frameworks, and the
associated terminology, do not emphasize important features of linking
situations that are important for discussing linking designs and methods.
For this reason, notation and terminology used in this chapter are in some
cases different from those in typical usage.

In distinguishing among linking designs, it is important to acknowledge
that the entire context of test administration affects scores on tests and can
influence linking functions. For the purposes of this chapter, these features
are considered in three categories: test content, conditions of measurement,
and examinee population.

3.2.1. Test Content

An examinee’s score on a test depends on the content of the test. Test
content is considered broadly here as tasks that are presented to examinees.
Standardized tests are developed with clearly defined content and
statistical specifications that delineate the content areas, intended cognitive
complexity, and item types to be included on a test. Features such as length
of reading passages, complexity of diagrams, specifications for writing
prompts, and so forth are carefully delineated in such specifications. Test
specifications are an essential blueprint for test construction that provides
an operational definition of test content.



3 Data Collection Designs and Linking Procedures 33

3.2.2. Conditions of Measurement

Scores also depend on the conditions under which the test is administered,
referred to here as conditions of measurement. Some of these conditions
are under the control of the test developer, such as the instructions, booklet
layout, answer sheet design, timing, scoring procedures, aids such as
calculators, mode of administration (e.g., computer or paper-and-pencil),
how items are displayed on a computer screen, and so forth. Conditions of
measurement not under the direct control of the test developer include the
stakes associated with test performance, the reasons an examinee is taking
a test, and the type of test preparation activities.

3.2.3. Examinee Population

In aggregate, scores on tests differ for different examinee populations,
such as those defined by gender, race, geographic region, or month of
administration. Linking functions can differ from one examinee population
to the next. Recent work has been done on examining the dependence of
linking functions on examinee population. Much of this work was
summarized in the special issue of the Journal of Educational
Measurement edited by Dorans (2004a).

3.2.4. Construct Measured

The construct measured by a test clearly depends on the content of the test.
The construct also depends on the conditions of measurement. For
example, a test given under highly speeded administration conditions
likely measures a different construct than a test given with ample time for
all examinees to finish. The construct also can depend on the examinee
population. For example, an English language reading comprehension test
would likely measure a different construct for English language learners
than for native English speakers.

3.3. Types of Linking Considered

Alternate forms of a test are built to the same test specifications. Alternate
forms have nearly identical content features and differ only in the
particular items that appear on the alternate forms. In operational
administrations, alternate forms typically are administered under common
conditions of measurement. As the term is used in the present chapter, fest
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form equating can be conducted when the test content and conditions of
administration for the alternate forms to be equated are held constant.
Using this restrictive definition of equating, scores on alternate forms of
carefully constructed multiple-choice tests, such as the ACT® assessment
multiple-choice tests, can be equated. Equating designs and methods were
also considered in Cook (Chapter 5, Section 5.2), von Davier (Chapter 6,
Section 6.2), Holland (Chapter 2, Section 2.4.3), and Petersen (Chapter 4).

By this definition of equating, the term equating is not appropriate for
linking tests that are intended to measure similar constructs. Situations that
are not equating include linking scores on tests that differ in content and/or
conditions of measurement.

Table 3.1 provides some examples of linking situations. The upper left-
hand cell of this 2 x 2 table illustrates equating, where the content and
conditions of measurement are the same for the tests to be linked.

The lower right-hand cell gives situations in which both the content and
conditions of measurement are not the same. This situation is typical of
many in which scores on tests that are intended to measure similar
constructs are linked. For example, linking scores on the mathematics test
of the ACT assessment to scores on the mathematics test of the SAT *
involves tests of somewhat different content that are administered under
somewhat different conditions of measurement. These sorts of linking
have traditionally been referred to as concordances and they are considered
in Dorans and Walker (Chapter 10), Pommerich (Chapter 11), and Sawyer
(Chapter 12).

Some situations exist in which the tests differ in conditions of
measurement but not in content. Examples are given in the lower left-hand
portion of Table 3.1. One example is linking scores on a linear computer-
based test and a paper-and-pencil test, where the same items are given in the
two administration modes. This sort of situation was considered further in
Eignor (Chapter 8) and Brennan (Chapter 9). There are also situations in
which tests differ in content but not in conditions of measurement.
Examples are given in the upper right-hand portion of Table 3.1. One
example is the revision of test content specifications when there are no
changes in administration conditions. This sort of situation was considered
further in Liu and Walker (Chapter 7) and Brennan (Chapter 9).

All of the situations just mentioned are referred to in this chapter as
examples of linking tests intended to measure similar constructs. In the
Holland and Dorans (2006) and Holland (Chapter 2) linking
categorization, the upper left-hand cell of Table 3.1 is referred to as test
equating. The other three cells describe variations of what is referred to as
scale aligning. In the Holland and Dorans (2006) and Holland (Chapter 2)
linking categorization, equating is said to produce equivalence tables,
whereas scale aligning is said to produce concordance tables.
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Table 3.1. Examples of situations for linking scores on tests that differ in content
and/or conditions of measurement

Content
Same Not same
Alternate forms of Old and new versions of a test
multiple-choice tests of when there has been a shift in
the ACT Assessment test content, but not in
administration conditions
Same
Alternate forms of the Scores for examinees who
multiple-choice tests choose to take different
of the SAT questions on a test that allows

examinee choice about which

.. questions to answer
Conditions of
measurement

Computer-based linear and ACT Assessment and SAT
paper-and-pencil tests, when
no changes are made to test Reading achievement tests
content from two different publishers
Not
Same
A constructed response test Computer-adaptive and
before and after a change in paper and-pencil tests.
scoring rubric, assuming
that the examinees are Tests administered in different
unaware of the change languages

3.4. Linking Functions and Features of Testing Situations

Linking functions depend on the content of the tests, the conditions of
measurement, and the population features of linking situations. The
designs for data collection for linking exert control over these features of
the testing situation.

Consider that scores on Test X and Test Y are to be linked. A score on
Test X is represented by X and a score on Test Y is represented by Y.
Linking functions depend on the content of Test X, CX, and the content of
Test Y, CY. Linking functions also can depend on the population of
examinees. In most situations, examinees for a linking study are sampled
from an actual population, P, that differs from the target population, 7, on
which the linking function is ideally defined.
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Linking functions also can depend on the conditions of measurement for
Test X, MX, and Test Y, MY. The conditions of measurement in linking
studies can differ from conditions of measurement that are considered
ideal, IX for Test X and IY for Test Y.

To emphasize that linking functions can depend on all of the features of
testing situations, the statistical notation for linking functions used in this
chapter carries all of these important features. Consider a study in which
data are collected and scores on Test X and Test Y are linked. In this
study, the random-variable test score on Form X with content CX
administered under conditions of measurement MX is symbolized as
X oy » With particular score (realization) x., ,, . For Test Y with content

CY administered under conditions of measurement MY, the random
variable is Y., ,, . Using link for a general linking function, the notation

that is used to specify a function for linking scores on Test X to scores on
Test Y in a particular population, P, is

linky(,,,ﬂm,\P (xCX,MX ).

This function can be read as a function in population P for linking a score
on Test X with content CX administered under conditions of measurement
MX to scores on Form Y with content CY administered under conditions of
measurement MY. This notation makes it clear that the linking function
depends on the examinee population, the content of each test, and the
conditions of measurement for Test X and Test Y.

Now also consider a situation in which the conditions of measurement
are ideal and the target population, 7, is used to define the linking function.
Using similar notational conventions, this ideal linking function is
specified as

lmkyc,,,,y\r (Xex ) -

Thus, this ideal linking function can differ from the actual linking function,

linkmww (Xex )

on the population of examinees and on the conditions of measurement for
Test X and Test Y.

When scores on test forms are equated, it is assumed that the content of
Form X is the same as the content for Form Y, so that

CX=Cr=cC.
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When equating, it is also assumed that the conditions of measurement for
Form X and Form Y are the same, so that

MX =MY=M.

When equating using operational administrations, it is assumed that the
actual conditions of measurement are ideal, so that

MX=MY=IX=IY=1I.

When scores on tests that are intended to measure similar constructs are
linked, it is assumed that the content of Test X and Test Y are different, so
that

CX #CY.

In these situations, it also is assumed that the conditions of measurement
for Test X and Test Y are different, so that

MX # MY .

When scores on test forms are equated or scores on tests are linked using
special administrations or data collections, it is assumed that the actual
conditions of measurement are different from the ideal conditions of
measurement so that

MX #IX, MY #1Y ,and IX #1Y .

Although likely oversimplifications, these assumptions are used to
highlight the importance of test content and conditions of measurement
and to help compare and contrast the various designs.

3.5. Linking Designs

Commonly used designs for data collection in equating (Kolen & Brennan,
2004) are considered in this section. Counterparts of these designs for
linking tests that are intended to measure similar constructs, as well as
some variations, are also considered. In this section, a design is discussed
first as it is used in equating and then as its counterparts and variations are
used to link tests intended to measure similar constructs.



38  Michael J. Kolen

3.5.1. Random Groups Design for Equating

The random groups design for equating is diagrammed in Figure 3.1. In
this design, examinees are randomly assigned Form X or Form Y. A
spiraling process is often used with this design. In one method for
spiraling, the alternate forms are alternated when the forms are packaged.
When the booklets are handed out, the first examinee receives Form X, the
second examinee receives Form Y, the third examinee receives Form X,
and so on. This process leads to comparable, randomly equivalent groups
taking Form X and Form Y. With the random groups equating design, the
tests can be administered during standard operational administration
conditions. Holland (Chapter 2, Section 2.4.3) would consider this design
to be a common population design.

Random Groups Equating

Random Subgroup 1 Random Subgroup 2

For equating study
CX=C¥=C
MX=MY =IX=1IY =1
Equating function: e¢g, . (x.,)

Equating function for ideal situation: egq, . (x.,)

Figure 3.1. Diagram for random groups equating design.

Because this is an equating, it is assumed that the content of Form X and
Form Y is the same, so CX =CY =C, as indicated in Figure 3.1. In an
equating study using this design, the conditions of measurement for Form
X and Form Y typically are identical to one another when both forms are
administered in the same testing rooms under operational testing
conditions. Although situations exist to the contrary, the conditions of
measurement are the same for Form X and Form Y and are considered
ideal when the design is implemented in an operational administration.
Thus, MX =MY =IX =1Y =1, as indicated in Figure 3.1. Using eq to
refer to an equating function, which is a special type of linking function,
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the actual equating function from the equating study is denoted
eqy, p(Xc ;) and the ideal equating function is denoted as eq, ,(x.,),as

shown in Figure 3.1. A comparison highlights that the conditions of
measurement for the two forms are the same (and ideal) when equating
with the random groups design. The only difference between the two
equating functions is due to population. There is much evidence in the
literature (see the special issue of the Journal of Educational Measurement
edited by Dorans, 2004a) that equating functions depend little on
population, so there is reason to expect that, in practice, the actual and
ideal equating functions will be very similar.

In the random groups equating design, the difference between group-
level performance on the two forms is taken as a direct indication of the
difference in difficulty for the two forms. Various statistical procedures,
which require only minimal statistical assumptions, are available to
estimate equating functions that equate scores on Form X and Form Y.

3.5.2. Random Groups Design and Variations for Linking

A random groups design can be implemented for linking tests that are
intended to measure similar constructs. This design is illustrated in Figure
3.2. One way that Figure 3.2 differs from Figure 3.1 is that fest replaces
Sform. To apply this design to linking, examinees are randomly assigned to
be administered Test X and Test Y. Holland (Chapter 2, Section 2.4.3)
would consider this design to be a common population design.

Random Groups Linking

Random Subgroup | Random Subgroup 2

For linking study
CX=CY
MX = MY MX = IX, MY = IV, IX = IY
Linking function: link, (Xey ay)

Linking function for ideal situation: link, . (x.. )

v 1P

Figure 3.2. Diagram for random groups linking design.



40  Michael J. Kolen

Compared to random groups equating, the random assignment can be
much more difficult to implement when the conditions of measurement for
Test X and Test Y differ. For example, if the time limits for Test X and
Test Y differ, it would be difficult to administer both tests in the same
room. As another example, it would be difficult to administer a computer-
based test and a paper-and-pencil test in the same room. In these linking
situations, examinees could be assigned to take Test X or Test Y ahead of
time. Students assigned to Test X would take the test in one room and
students assigned to Test Y would take the test in another room.

Given these administration complications, Test X and Test Y, in
general, cannot be administered in a standard operational administration
when using this design. In this case, a special linking administration is
needed. If the conditions of measurement in the linking study differ from
those used operationally, then the conditions of measurement in the linking
study likely differ from the ideal conditions of measurement. In addition,
the examinees included in the linking study, out of necessity, might not be
representative of the target population of examinees.

For the linking design illustrated in Figure 3.2, it is assumed that Test X
and Test Y differ in content, so CX # CY . In addition, the conditions of
measurement for Test X and Test Y differ from one another because each
test is different and each is administered under its own conditions of
measurement. Because the linking typically requires a special data
collection, the conditions of measurement likely differ from ideal
conditions of measurement. Thus, as indicated in Figure 3.2, in general,
MX = MY, MX #IX, MY # 1Y, and IX # IY . The linking function from

the linking study, link,  p(Xcy ), can differ from the ideal linking
function, link, . (xcy ), due to differences in content, differences in

conditions of measurement for the tests, and differences in population.
When Test X and Test Y differ in content, there is evidence in the
literature to suggest that the linking relationship will depend on the
population (see the special issue of the Journal of Educational
Measurement edited by Dorans, 2004a).

To avoid the problems of having to assign students within a school to
take different tests, a variation of this design is sometimes used where
random assignment is conducted at the school level. This design is referred
to as the random groups design—randomization by school. In this
variation, a list of schools to be included in the study is constructed and the
schools are randomly assigned to take either Test X or Test Y. Note that
the unit of randomization is the school. To achieve reasonable linking
precision, the number of students that must be tested is, in general, too
large to be practicable.
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3.5.3. Single Group Design with Counterbalancing for Equating

The single group design with counterbalancing for equating is illustrated in
Figure 3.3. In this design, each examinee takes Form X and Form Y, in
counterbalanced order. Counterbalancing is needed because examinee
performance can differ depending on whether a form is taken first or
second, due to such factors as practice and fatigue. One randomly chosen
subgroup of examinees is administered Form X first. A second randomly
chosen subgroup is administered Form Y first. Holland (Chapter 2, Section
2.4.3) would consider this design to be a common population design.

Single Group Equating with Counterbalancing

Random Subgroup 1 Random Subgroup 2
Form
Taken
First
Form
Taken
Second

For equating study
CX=CY¥=C
MX=MY=MIX=1IY =IM=I
Equating function: eq, . (x. )

Equating function for ideal sitvation: eq, , (x.,)

Figure 3.3. Diagram for single group with counterbalanced equating design.

A special study is required when using this design, because examinees
normally do not take two test forms in operational administrations. One
way to administer the forms in this design is to construct test booklets that
contain both forms. Half of the booklets contain Form X followed by Form
Y. The other half of the booklets contains Form Y followed by Form X.
The booklets are packaged in a spiraled manner and distributed in such a
way that the first examinee in a room is administered Form X first
followed by Form Y, the second examinee is administered Form Y
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followed by Form X, and so forth. The first and second forms are
administered under separate time limits.

Refer again to Figure 3.3. The portion of the design labeled form taken
first is identical to the random groups design shown in Figure 3.1. Thus,
equating could be conducted using only the form taken first. To take full
advantage of this design, data from the form taken second are used.
However, the form taken second is administered under atypical conditions
of measurement. In practice, examinees do not take two forms of a test.
Thus, the data on the test taken second can be used only if the equating
relationship for the form taken second can be shown to be the same as the
equating relationship for the form taken first. If these equating
relationships differ, then a differential order effect is said to occur. If this
effect is substantial, then the data on the test administered second might
need to be disregarded.

When alternate forms of a test are equated, there is little reason to
expect that differential order effects occur because the content of the two
forms is the same and the only difference in conditions of measurement is
test order. When a differential order effect does not exist, the data from the
two orders can be pooled. In this case, each examinee has scores on two
forms, and serves as his or her own control. Consequently, for a particular
sample size, this design leads to much more precise estimates of equating
relationships than does the random groups design.

The single group design with counterbalancing is administered in a
special study, which can lead to the conditions of measurement for this
design being different from those for an operational administration. These
different conditions of measurement can lead to differences between the
equating function estimated in this design and the ideal equating function.

When equating with this design, it is assumed that the content of the two
forms is the same, so CX =CY =C, as indicated in Figure 3.3. Assume
that there is no differential order effect, so that the conditions of
measurement for Form X and Form Y are considered the same. Thus, as
indicated in Figure 3.3, MX =MY =M, where M represents the
conditions of measurement in the study. In the ideal situation,
IX =1Y =1, where I represents the ideal conditions of measurement.
Because a special study is used, the conditions of measurement for the
study likely are different from the ideal conditions of measurement. Thus,
in general, with this design, M # I . In this situation, as indicated in Figure
3.3, the equating function for an equating study is denoted as
eqy, ,»(Xc,,) and the ideal equating function is denoted as eq, ,(xc,)-
This notation illustrates that the equating function for the equating study

differs from that for the ideal equating function due to differences in
conditions of measurement and differences in examinee population.
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In some situations, what Holland (Chapter 2, Section 2.4.3), Holland
and Dorans (2006), and Kolen and Brennan (2004) referred to as a single
group design might be considered. In the single group design, examinees
are administered the two tests to be equated, but the order of
administration is not counterbalanced. The portion of Figure 3.3 for
random subgroup 1 is an example of this design, where all of the
examinees take Form X followed by Form Y. When order effects exist,
there is no way to estimate their magnitude or to adjust the equating
relationship for the effect of order when using the single group design.
Thus, it is difficult to justify the use of the single group design in practical
equating contexts.

3.5.4. Single Group Design with Counterbalancing
and Variations for Linking

The single group design with counterbalancing for linking is illustrated in
Figure 3.4. One way that Figure 3.4 differs from Figure 3.3 is that rest
replaces form. In this linking design, the content of the two tests is
assumed to differ, so CX = CY , as indicated in the figure. This design can
be particularly difficult to administer when linking two tests that are
intended to measure similar constructs. Typically, in this situation the
conditions of measurement are different for the two tests (i.e., MX # MY),
so it is not possible to administer both tests in the same room. Holland
(Chapter 2) would consider this design to be a common population
design.

For example, suppose that Test X is a paper-and-pencil test and Test Y
is a computer-based test. It likely would not be feasible to administer both
modes in the same testing room at the same time. Instead, examinees are
assigned to condition ahead of time, and special procedures are used for
when and how the examinee takes each of the assigned tests in the order
required by the design.

Proper administration of this design requires that examinees be
randomly assigned to condition (fest taken first) and that the tests be
administered appropriately. In addition, it is necessary to assess whether
differential order effects occur. It seems much more likely that differential
order effects will be present when linking tests that are intended to
measure similar constructs than when equating test forms, because the
conditions of measurement for the two tests differ. For example, the effect
of first taking a computer-based test on subsequent scores on a paper-and-
pencil test likely differs from the effect of first taking a paper-and-pencil
test on subsequent scores on a computer-based test. If so, then a
differential order effect occurs, and the data for the test taken second might
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need to be disregarded. However, disregarding data from the test
administered second leads to a serious loss in linking precision.

As indicated near the bottom of Figure 3.4, when linking Test X to Test
Y using the single group design with counterbalancing for linking and its
variations, test content differs, the conditions of measurement differ for
Test X and Test Y, and these conditions of measurement differ from the
ideal conditions of measurement. Also, as indicated at the bottom of

Figure 3.4, the linking function from the study, link,  ,(Xcy ). differs

from the ideal linking function, link_ . (xcy ), due to differences in

content, differences in conditions of measurement for the tests, and
differences in examinee population.

Single Group Linking with Counterbalancing

Random Subgroup 1 Random Subgroup 2
Test
Taken
First
Test
Taken
Second

For linking study

CX=CY
MX = MY MX = IX,MY = IY IX = IY
Linking function: link, = . (X )

Linking function for ideal situation: [mk,r)_ “_,,.(xt_'\,_,\.)

Figure 3.4. Diagram for single group with counterbalancing linking design.

Because of the serious practical difficulties in administering the single
group design with counterbalancing in many linking situations, variations
of this design often are used in practice. In one variation, the random
assignment to condition is done by school. This design is referred to here
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as the single group design with counterbalancing for linking—
randomization by school. For example, using a random selection
procedure, one set of schools is assigned to be administered Test X first
and a second set of schools is assigned to be administered Test Y first. In
this case, school is the unit of randomization, which leads to substantial
loss of precision when assessing whether there is a differential order effect.
If a differential order effect cannot be ruled out, then a linking function
calculated by pooling data would not necessarily control for differences in
conditions of measurement for the ideal as compared to the actual linking
functions.

Another variation of this design is one in which examinees are found
who have taken both of the tests to be linked, with examinees found who
have taken the tests in both orders. This design is referred to here as the
single group design with counterbalancing for linking—naturally
occurring groups. This sort of design is used, for example, to link scores
on the ACT assessment to scores on the SAT exam. Pommerich (Chapter
11), Dorans and Walker (Chapter 10), and Sawyer (Chapter 12) considered
situations in which this design is used. In this design, some examinees are
found who have taken one test first and other examinees are found who
have taken the other test first. The time between administrations can vary,
as can the test forms. In addition, the population of examinees who take-
the two tests can differ considerably from the general population of test-
takers. In this design variation, differences in conditions of measurement
as compared to ideal conditions can differ widely and are, for the most
part, uncontrolled.

The single group design, where all of the examinees take the tests in the
same order, also might be considered for use in linking. If this design is
used, the linking function will be affected by order effects by an unknown
amount, making it difficult to justify the use of the single group design for
linking.

3.5.5. Common-ltem Nonequivalent Groups
Design for Equating

The common-item nonequivalent groups design for equating is illustrated
in Figure 3.5. This design is used when only one form can be administered
per test date. In this design, Form X and Form Y have a set of items in
common. Examinee Group 1 takes Form X and examinee Group 2 takes
Form Y. The two groups of examinees might test on different test dates.
With this design, examinee Group 1 is considered to differ systematically
from examinee Group 2. This design was referred to as the nonequivalent
groups anchor test (NEAT) design by Holland (Chapter 2, Section 2.4.3).
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Common-Item Nonequivalent Groups Equating

Group 1

Group 2

For equating study
CX=CY¥=C
MX=MY=IX=1IV=1
MV, =MV, = MV
Equating function: eg, ,, ., ,(x. )

Equating function for ideal situation: eg, , (x.,)
Figure 3.5. Diagram for common-item nonequivalent groups equating design.

This design has two variations. When the score on the set of common
items contributes to the examinee’s score on the test, the set of common
items is referred to as internal. Typically, these items are interspersed
among other scored items. When the score on the set of common items
does not contribute to the examinee’s score, the set of items is referred to
as external. Typically, external common items are administered in a
separately timed section.

Scores on the common items provide direct information on how the
performance of examinee Group 1 differs from the performance of
examinee Group 2. The set of common items is chosen to proportionally
represent the total test forms in content and statistical characteristics. To
ensure that the common items behave the same way on the two forms,
each of the common items is identical on the two forms and is in a similar
position in the test booklet.

When conducting equating using this design, strong statistical
assumptions are required to disentangle form differences from examinee
group differences. Especially when there are large group differences, the
set of assumptions chosen can have a substantial effect on the equating
results.

Because this is an equating study, the content of Test X and Test Y are
the same (i.e., CX =CY =C) as shown in Figure 3.5. The measurement
conditions for Form X and Form Y often can be considered to be the same
and ideal when this design is conducted in operational administration so
that IX =1Y = MX = MY =1, as indicated in Figure 3.5.
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The actual equating relationship depends on the set of common items.
Let V represent score on the common items, let MV, represent the
conditions of measurement for the common items as administered with
Form X, and let MV, represent the conditions of measurement for the

common items as administered with Form Y. Assume that the context of
the common items is the same for Form X and Form Y and that the
common items accurately reflect the content of the total scores. In this
case, it seems reasonable to assume that the conditions of measurement are
the same for the common items, regardless of test form. Denoting the
common conditions of measurement as MV (MV, = MV, = MV'). The

actual equating relationship also depends on the set of assumptions that are
made, denoted as A.

Notation for the equating function is expressed in Figure 3.5 as
gy, ipv.4(Xc ;). The ideal equating function does not depend on the

common items, because it is a relationship between scores on Form X and
Form Y. So, the ideal equating function is expressed as eg, ,(x.,) in

Figure 3.5. Comparing these two functions highlights that the conditions of
measurement for the two forms are the same (and ideal) when equating
with this design using operational administrations. The differences
between the two equating functions are due to differences in population
and the statistical assumptions used to estimate the equating function.

3.5.6. Anchor-Test Nonequivalent Groups Design for Linking

The anchor-test nonequivalent groups design illustrated in Figure 3.6, used
to link tests that are intended to measure similar constructs, has similarities
to the common-item nonequivalent groups design. In this design, Test X is
administered to one group, Test Y is administered to a second group, and
an anchor test, Test V, is administered to both groups. A major
requirement in the common-item nonequivalent groups design for equating
is that the content of the common items adequately represents the content
of Form X and Form Y. When the content of Test X and Test Y differ, it is
impossible for the common items to adequately represent the content of
both Tests X and Y. Thus, the common-item nonequivalent groups design
cannot be used when linking tests that are intended to measure similar
constructs. Instead, the anchor-test nonequivalent groups design, which
does not require that the anchor test have the same content as Test X and
Test Y, is used. Linking using this design would fall under the category
concordance using an anchor measure in the framework presented by
Holland (Chapter 2).
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Anchor-Test Nonequivalent Groups Linking

Group 1

Group 2

For linking study
CX=CY
MX = MY MX = IX. MY = IY IX = [Y
MV, =MV, = MV

Linking function: link, = . . (X )

Linking function for ideal situation: link, ., (x.c )

Figure 3.6. Diagram for anchor-test nonequivalent groups linking design.

In the anchor-test nonequivalent groups design, it is crucial that the
conditions of measurement for the anchor test are the same for the group

taking Test X(MV, ) and Test Y (MV,). Otherwise, examinee group

differences are completely confounded with differences in conditions of
measurement for the two groups. So, in Figure 3.6, MV, = MV, = MV .

In linking using this design, the conditions of measurement for Test X
and Test Y typically differ from one another. In these studies, the
conditions of measurement for Test X and Test Y also could differ from
ideal conditions of measurement. For this reason, the actual linking

function in Figure 3.6 is link,  p . 4 (xCX’ MX) The ideal linking function

in Figure 3.6 is link, . (xc, ). which makes explicit that the ideal

conditions of measurement for Test X can differ from the ideal conditions
of measurement for Test Y. By comparing these functions, it can be seen
that the actual function can differ from the ideal function due to
differences between the actual and the ideal conditions of measurement for
Test X, differences between the actual and the ideal conditions of
measurement for Test Y, and differences in population. The assumptions
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(A) can also contribute to differences between these two functions. As is
made clear in the discussion of statistical methods later in this chapter, it is
unlikely that the statistical assumptions made in this linking design hold in
situations where Test X and Test Y differ in content and the group of
examinees taking Test X differs substantially from the group of examinees
taking Test Y.

3.6. Linking Procedures

In this section, statistical procedures for equating alternate forms and
linking scores on tests intended to measure similar constructs are
considered. Equating and linking methods were described in detail
elsewhere (e.g., Holland & Dorans, 2006; Kolen & Brennan, 2004), so
only an overview is provided here.

As described earlier, the score linking situations considered were those
in which scores from the tests or forms to be linked are expressed on a
common metric and used for a common purpose. To address these
situations, only symmetric statistical linking functions were considered
(see Holland, Chapter 2).

In this section, overviews of traditional and item response theory (IRT)
methods for equating are presented. Then the application of some the
methods to linking tests that measure similar constructs is considered.

3.6.1. Traditional Statistical Methods for Equating

The intent of traditional methods of equating is for scores on alternate
forms to have the same score distributional characteristics in a population
of examinees, after the scores are transformed to a common scale. Mean
equating results in scores having the same mean on the common scale.
Using a linear transformation, linear equating results in scores having the
same mean and standard deviation on the common scale. Using a nonlinear
transformation, equipercentile equating results in scores on alternate forms
having approximately the same score distribution on the common scale.
Focus in this section is on equipercentile methods.

Equipercentile equating functions are defined for a population and
for tests given under particular conditions of measurement. Define F) as

the cumulative distribution of scores on Form X in population 7, G, as the
cumulative distribution of scores on Form X in population 7, G;'as the
inverse of G, and x., and Y., as defined earlier. Based on results
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presented by Braun and Holland (1982), when scores are continuous, Form
X and Form Y measure content C, and the forms are administered under
ideal conditions of measurement /, the equipercentile equating function for
population 7 can be expressed as

ey, ,ir (Xc,l):G;1 |:FT (xCJ )] . 3.1

By substituting different subscripts in Equation 3.1, the function can be
defined for other populations or for other conditions of measurement. For
example, the equipercentile equating function for forms administered
under other than ideal conditions of measurement, M, to examinees from
population P is expressed as

ey, ,\p (Xc,M)=G;1|:FP<xC‘M ):' (3.2)

Estimates of the cumulative distribution functions can be used with
Equations 3.1 and 3.2 to produce an estimated equating function.

Because scores on tests typically are discrete, a procedure is used to
continuize scores so that the equations can be applied. Traditionally,
percentiles and percentile ranks are used to continuize scores. If scores are
integers, percentiles and percentile ranks can be thought of as continuizing
scores by uniformly spreading the score density at an integer score over
the range x—.5 to x+.5. von Davier, Holland, and Thayer (2003)
provided an alternate scheme for continuizing scores referred to as the
kernel method. Using the kernel method, the score density at an integer
score is spread using a Normal distribution. Either of these approaches
leads to continuous scores that can be equated using Equations 3.1 and 3.2.

Smoothing methods often are used with estimates of equipercentile
equating functions to reduce sampling error. In presmoothing, the score
distributions are smoothed. The log-linear smoothing method, which is
summarized by Kolen and Brennan (2004) and by von Davier et al. (2003),
is an often-used presmoothing method. In postsmoothing, the
equipercentile function is smoothed directly. The cubic spline
postsmoothing method described by Kolen and Brennan is an often-used
postsmoothing method.
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3.6.1.1. Random Groups and Single Group with Counterbalancing
Designs

After data are collected using the random groups design, equipercentile
equating, continuization, and smoothing procedures are applied. For the
single group design with counterbalancing, after deciding on whether data
from the forms taken second can be used, similar procedures are followed.

3.6.1.2. Common-Item Nonequivalent Groups Design

Traditional equating methods using the common-item nonequivalent
groups design (referred to as the NEAT design by Holland, Chapter 2) are
more complicated. In this design, statistical assumptions are required to
disentangle form and group differences.

In one class of methods, sometimes referred to as poststratification
methods, the following nontestable assumptions are made: the regression
of X on V is the same in examinee Group 1 and Group 2 and the regression
of Y on V is the same in Group 1 and Group 2. In the Tucker linear
method, assumptions are made regarding linear regressions. In the
frequency estimation equipercentile method, assumptions are made
regarding nonlinear regressions. A synthetic population is defined as a
combination of the populations from which Group 1 and Group 2 are
sampled. The equating function is based on this population. The
assumptions made in poststratification methods seem less likely to hold
when Group 1 and Group 2 differ substantially in proficiency.

Smoothing methods can be applied when conducting the frequency
estimation equipercentile method. von Davier et al. (2003) summarized a
log-linear smoothing in the context of the kernel method. Kolen and
Brennan (2004) summarized a cubic spline postsmoothing method in
which a cubic spline function is fit to the unsmoothed equipercentile
equivalents.

In another class of methods for linear equating, referred to as Levine
methods, an assumption is made that true scores on X and V in Group 1 are
perfectly linearly correlated and that true scores on Y and V in Group 1 are
perfectly linearly correlated. This assumption seems less likely to hold
when the common items measure a construct that differs from the
construct measured by the alternate forms.

A third class of traditional methods for the common-item nonequivalent
groups design are chained methods. In these methods, X is linked to V in
Group 1, Vis linked to Y in Group 2, and these two linkings are chained
together. A chained linear method and a chained equipercentile method
have been developed.
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3.6.2. IRT Statistical Methods for Equating

Unidimensional IRT models assume that examinee proficiency can be
described by a single latent variable, €, and that items can be described by
a set of parameters or curves that relate proficiency to probability of
correctly answering the item (Lord, 1980). Unidimensional IRT models
have been developed for use with test items that are dichotomously scored
or polytomously scored. IRT models are based on strong statistical
assumptions. The @ -scale has an indeterminate location and spread. For
this reason, one & -scale sometimes needs to be converted to another
linearly related @ -scale. If summed scores are to be used, there are two
steps in IRT equating (Kolen & Brennan, 2004). First, the & -scales for the
two forms are considered to be equal or are set equal. Then summed score
equivalents on the two forms are found.

In many situations, the parameter estimates for the two forms are on the
same @ -scale without further transformation. The typical situation in
which a transformation of the € -scale is required is in the common-item
nonequivalent groups design when Form X and Form Y parameters are
estimated separately.

After the parameter estimates are on the same scale, IRT true-score and
IRT observed-score methods can be used to relate summed scores on Form
X to summed scores on Form Y. In IRT true-score equating, the true-score
on one form associated with a given @ is considered to be equivalent to
the true score on another form associated with that same 6.

Item response theory observed-score equating uses the item parameters
estimated for each form along with the estimated distribution of ability for
the population of examinees to estimate the distributions of summed scores
for Form X and Form Y. Standard equipercentile equating procedures are
used to equate these two smoothed distributions. As Holland and Dorans
(2006) noted, IRT observed-score equating can be viewed as an
equipercentile equating of presmoothed score distributions that are
consistent with the assumptions of an item-level response model.

Any application of unidimensional IRT models requires that all of the
items measure the same unidimensional proficiency, that the item
responses are conditionally independent, and that the relationship between
proficiency and probability of correct response follows the particular IRT
model used.
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3.6.3. Methods for Linking Tests Intended to Measure Similar
Constructs

Tests intended to measure similar constructs often are linked using the
same statistical methods used for equating. However, certain complica-
tions need to be addressed.

In some circumstances, when using equipercentile methods, pre-
smoothing methods can be difficult to apply because the distributions
might be expected to be irregular. For example, in linking scores on the
ACT and SAT, integer-scale scores on the two tests are linked. For some
test forms, the use of integer-scale scores can cause certain scale scores to
be reported more often than adjacent scale scores because of the way the
conversion to integers happens to be applied. In these situations, the scale
score distribution is expected to be irregular. Such expected irregularities
can lead to complications with presmoothing methods. For this reason,
Kolen and Brennan (2004) used postsmoothing methods to link scale
scores from different tests.

Item response theory methods can be used only in those situations in
which the tests that are linked can be considered to measure the same
proficiency and in situations in which item-level response data are
available. For example, IRT methods would not be used to link ACT and
SAT scores, because the tests do not measure the same proficiency and
item-level data are typically unavailable when the tests are linked.

The statistical procedures for linking scores on tests intended to measure
similar constructs with the anchor-test nonequivalent groups design
(referred to as the NEAT design by Holland, Chapter 2) often are the same
statistical procedures as those for equating alternate forms with the
common-item nonequivalent groups design. In applying these procedures,
it is important that the anchor test be administered under the same
conditions of measurement for the two tests, otherwise the linking results
will be misleading. For example, consider linking a paper-and-pencil to a
computer-based test using the anchor-test nonequivalent groups design.
Suppose that the examinees taking the computer-based test take the anchor
test on the computer and that the examinees taking the paper-and-pencil
test take the anchor test under paper-and-pencil conditions. In this case,
group differences are completely confounded with mode of administration
effects, and it is impossible to use data collected to disentangle these
effects. To disentangle these effects, it would be necessary to administer
the same anchor test to both groups under the same conditions of
measurement. For example, a paper-and-pencil anchor test might be
administered to both groups.

When using the anchor-test nonequivalent groups design, it is important
to consider the effects of violations of statistical assumptions. Recall that
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poststratification methods require that regressions of X on V and Y on V be
the same for the groups taking Test X and Test Y. The chained methods
require an assumption of population invariance of the links between Test X
and anchor Test V and between anchor Test V and Test Y. These
assumptions are less likely to hold as the extent of the differences in
content or administration conditions for Test X and Test Y increase and to
the extent that the differences in the proficiencies of the group taking Test
X and Test Y increase. When using IRT methods with this design, an
assumption is made that all items on Test X, Test Y, and the anchor test
measure the same proficiency. This assumption is unlikely to hold for most
situations in which scores on tests that measure similar constructs are
linked.

When using the anchor-test nonequivalent groups design for linking
scores on tests of different content, the anchor test cannot adequately
represent the content of both Test X and Test Y. In this case, the linking
results likely depend on the particular anchor chosen. If possible, the
linking can be conducted using different anchor tests and the sensitivity of
the linking to choice of anchor test assessed. In addition, the standard
methods might be modified to accommodate the use of multiple anchors in
a single linking.

3.7. Summary and Conclusions

Notation and terminology were used in this chapter to distinguish among
designs, linking functions, and linking results. The notation incorporated
population, conditions of measurement, and content. This notation makes
explicit those factors on which linking functions depend. Terminology
used with equating designs was expanded from typical terminology to
distinguish between designs used in linking and equating. For example, the
use of the term common-item nonequivalent groups design for equating
and the term anchor-test nonequivalent groups design for linking tests that
measure similar constructs serves to highlight the substantial differences
between these designs (Holland, Chapter 2, referred to both of these
designs as the NEAT design). In particular, in equating, the content of the
set of common items represents the content of Form X and Form Y,
whereas when linking tests intended to measure similar constructs, the
content of the anchor test typically does not represent the content of both
Test X and Test Y. Further developments in notation and terminology
should serve to better distinguish among different linking situations, to
display important differences among the designs, and to highlight the
effects of factors such as content, conditions of measurement, and
population on linking results.
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When conducting equating, Form X and Form Y have the same content
and typically are administered under the same conditions of measurement,
providing significant statistical control. Equating can be expected to
provide reasonable results, and the statistical assumptions required for
conducting equating can be expected to hold reasonably well in a variety
of situations.

When linking scores on tests that are intended to measure similar
constructs, Test X and Test Y typically have somewhat different content
and are administered under different conditions of measurement to
examinees from populations that differ from the target population. Thus,
there is significantly less statistical control exerted in these situations than
in equating situations. In addition, data collection designs often are very
difficult to implement properly and statistical assumptions often are
violated. Because of these complications, linking of scores on tests that
measure similar constructs likely depends on the examinee population and
on the conditions of measurement.

Because of these dependencies, the sensitivity of linking functions to
variations in conditions of measurement and population should be
assessed. If there is substantial variation, then either reporting different
linking relationships for different conditions of measurement and
populations or not reporting the relationships should be strongly
considered. In any case, when presenting the results of linking, test
content, conditions of measurement, and population should be clearly
specified.

Acknowledgments. The author thanks Robert L. Brennan, Neil J. Dorans,
and Mary Pommerich for their detailed reviews and comments on earlier
versions of this chapter.





