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2.1. Introduction

For two tests, a link between their scores is a transformation from a score 
on one to a score on the other. The scores being linked might be raw scores 
or scaled scores (Angoff, 1971). Linking transformations can be developed 
in a variety of ways that reflect the similarities and differences between the 
tests as well as the uses to which the links are to be put. Several 
frameworks have been suggested for organizing the variety of links that 
are used in practice. For example, see Flanagan (1951), Angoff (1971), 
Mislevy (1992), Linn (1993), Feuer, Holland, Green, Bertenthal, and 

and Kolen and Brennan (2004) reviewed and synthesized several 
frameworks.

This chapter is concerned with a framework developed in Holland and 
Dorans (2006) that builds on this prior work. In addition, it gives a brief 
account of the history of score linking. Along with the next chapter by 
Kolen, it provides a setting for subsequent chapters in this volume that 
appear in the part of this volume on equating (Part 2), tests in transition 
(Part 3), concordance (Part 4), vertical linking (Part 5), and linking scales 
from group assessments to scales used to report scores on individuals  
(Part 6). 

The term linking refers to the general class of transformations between 
the scores from one test and those of another. Linking methods can then be 
divided into three basic categories called predicting, scale aligning, and 
equating. Scale aligning will be shortened to scaling when convenient. 

                                                     
1 The opinions expressed in this chapter are those of the author and not 
necessarily of Educational Testing Service. 

Hemphill (1999), and Dorans (2000, 2004d). In addition, Kolen (2004a) 
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Figure 2.1 illustrates the three basic categories of linking and their 
purposes.

Figure 2.1. The three overall categories of test linking methods and their goals. 

Each of these basic categories contains subcategories that share 
common objectives and that are distinct from the objectives of the methods 
in the other categories. It is important to distinguish among these basic 
categories because they are often seen as similar or identical when in fact 
they are not. Testing professionals need to understand these differences 
and the circumstances when one category is more relevant than another 
and, when necessary, to be able to communicate these distinctions to test 
users. Figures 2.2, 2.3, and 2.4 illustrate the several subcategories within 
the basic categories of predicting, scale aligning, and equating. 

It is sometimes useful to distinguish between score linkings that are 
direct and those that are indirect. A direct link functionally connects the 
scores on one test directly to those of another. An indirect link connects 
the scores on two tests through their common connection to a third test or 
scale. The categories of predicting and equating usually produce direct 
links, whereas the various subcategories of scale aligning typically 
produce indirect links. These distinctions are mentioned when appropriate. 

2.2. Predicting 

Predicting is the oldest form of score linking and it has been confused with 
the other methods of score linking since the earliest days of psychometrics. 
By the dawn of the 19th century, Legendre, Gauss, Laplace, and their 
scientific contemporaries understood how to use least squares methods to 
fit curves to solve problems in astronomy. By the end of that century, 
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linear regression methods had been applied to a variety of social and 
psychological phenomena as well. Notable among these pioneers was 
Galton, who first observed the effects of regression to the mean (Stigler, 
1986). Thus, the use of linear regression methods to predict the scores on 
one test or measurement from those of another is probably the oldest 
approach taken for linking scores. A version of predicting, called 
projection, is closely related to certain forms of scaling and equating. Both 
predicting and projecting are described in this section. 

Figure 2.2 illustrates the subcategories within the overall linking 
category of predicting. 

Figure 2.2. The types of linking methods within the overall linking category of 
predicting.

2.2.1. Predicting Observed Scores 

The goal of predicting is to predict an examinee’s score on one test from 
some other information about that examinee. This other information might 
be a score on another test or the scores from several other tests and it might 
include demographic or other information. For this reason, there is always 
an asymmetry between what is predicted and what is being used to make 
the prediction. The predictors and the predicted quantity might be different 
both in number and character. This asymmetry is evident even in the case 
of predicting one test score, Y, from another, X. In this simplest case, it 
has been known since the 19th century that the usual linear regression 
function for predicting Y from X is not the inverse of the linear regression 
function for predicting X from Y (Galton, 1888). This is a basic aspect of 
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the asymmetry between the predictor score and the predicted score. It is 
highlighted in requirement (c) of Section 2.4.1. 

If X and Y denote the scores on the two tests for examinees who are 
from a population, P, then denote the conditional expectation (or 
conditional mean/average) of Y given X over P, by 

E(Y | X = x, P). (2.1)

This conditional expectation is a standard method for predicting Y from X.
If X has the value x, then the equation y = E(Y | X = x, P) predicts y to be 
the value of Y. The prediction of Y from X is an example of a direct link 
between the scores on the two tests. 

Unless Y is functionally dependent on X, there is always some amount 
of error or uncertainty in any prediction. The error in this prediction is 
how far E(Y | X = x, P) is from the actual value of Y; that is, the difference 

Y – E(Y | X = x, P). (2.2)

The conditional expectation is the best predictor of Y in the sense that 
any other predictor of Y from X, say y = Pred(x), will have a larger 
expected squared error in expression (2.2); that is, 

2

2

E Pred x | ,xY X P

(2.3)

as shown in Cramér (1946), Parzen (1960), and others.
The conditional variance in Equation 2.3 is also called the conditional 

prediction error in the context of predicting Y-scores from X-scores.
Other types of predictor or prediction method minimize other measures of 
prediction error, a subject too large for us to do much more than merely 
mention. For example, see Blackwell and Girshick (1954), Parzen (1960), 

Using regression methods, both the conditional expectation, E(Y | X = x,
P), and the conditional prediction error can be estimated from data in 
which examinees are sampled from P and tested with both X and Y.
Discussions of regression methods are so widely available that no more 
details are given here about the variety of possibilities; for example, see 
Moore and McCabe (1999) or Birkes and Dodge (1993). 

An appropriate use of predicting to make a link between two tests arises 
when an examinee’s score on one test is used to predict how he or she will 

E EY Y |X Px x, |X P, Var Y |X Px, ,

or the discussion of best linear predictors in Holland and Hoskens (2003). 
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perform on another test. An example is the use of PSAT/NMSQT®  scores 
to forecast how an examinee will perform on the SAT® a year or so later. 
For example, periodically a year’s worth of SAT data from students who 
have taken both tests is used to estimate the conditional distribution of 
SAT scores given the corresponding (verbal or mathematical) 
PSAT/NMSQT score (see Educational Testing Service, 1999). This 
conditional distribution predicts the range of likely performance on the 
SAT given an examinee’s PSAT/NMSQT score. If these predictions are 
applied to examinees who are similar to those in the population from 
which the prediction equations are derived, then they are likely to be 
useful. For examinees who are very different from those whose data were 
used to estimate the conditional distributions, these predictions are less 
likely to be accurate. 

2.2.2. Projecting Distributions of Observed Scores 

Related to predicting individual scores on a test is the problem of 
projecting distributions of scores on one test from those on another test. In 
this case, as described earlier for predicting a score on Y from a score on 
X, data obtained from a sample of examinees who take both X and Y is 
used to estimate the conditional distribution of Y given X on a particular 
population, say P. Denote the conditional cumulative distribution function 
(cdf)  of Y given X = x in P by 

Pr{Y y | X = x, P}. (2.4)

The data can be used to estimate the cdf in Equation 2.4. Now suppose 
that in another population, say Q, there are data for the distribution of X,
but not for Y. If the distribution of X in Q is somewhat different from that 
of X in P, it might be desired to project the distribution of X in Q to obtain 
an estimate of the cdf of Y in Q, FYQ(y), using methods that are based on 
the formula 

FYQ(y) = Pr{Y y | Q} = E[Pr{Y y | X, P}| Q]. (2.5)

In Equation 2.5, the outer expectation (or averaging) is over the distri-
bution of X in Q. Strictly speaking, Equation 2.5 is valid only if the condi-
tional distribution of Y given X is the same in both P and Q; that is, if 

Pr{Y y | X = x, P} = Pr{Y y | X = x, Q}. (2.6)

Equation (2.6) is a type of population invariance assumption because it 
requires the conditional distribution that holds for one population to also 
hold for another population. Assumptions that are identical to Equation 2.6 
also arise in various cases of scaling and equating. Population invariance 
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assumptions, like Equation 2.6, pervade all aspects of scaling and equating 
where there are missing data in the sense that in the above example the 
data for Y in Q are missing. 

An important example of projecting a score distribution arises when X
and Y are both given to a sample of examinees in Year 1, and then in Year 
2, only one of them, say X, is given. To predict what the distribution of Y
would have been had it also been given in Year 2, projection methods 
provide a way of doing this. They are based on Equation 2.5, with P
representing the data from Year 1 and Q representing the data in Year 2. 
The need for the population invariance assumption in Equation 2.6 is quite 
evident in this example. 

Pashley and Phillips (1993) provided an example of projecting scores 
from the International Assessment of Educational Progress (IAEP) to the 
scale of the National Assessment of Educational Progress (NAEP). 
Williams, Rosa, McLeod, Thissen, and Sanford (1998) gave a detailed 
discussion of an example of projecting scores from a state assessment to 
the NAEP scale, which is the focus of the chapters by Braun and Qian 
(Chapter 17), Koretz (Chapter 18), and Thissen (Chapter 16). 

So far, the discussion has concerned only prediction methods that 
directly link observed scores on the tests to each other. There are other 
forms of prediction worthy of mention for completeness (e.g., methods that 
use observed scores to predict true scores).

2.2.3. Predicting True Scores 

The oldest version of predicting true scores from observed scores is 
Kelley’s formula that predicts the true score on Y from the observed score 
on Y (Kelley, 1927). This idea was generalized in Wainer et al. (2001) to 
the prediction of true scores on one test from the observed scores on it and 
some other tests. They referred to the predicted true scores as augmented
scores. Holland and Hoskens (2003) considered the problem of predicting 
true-scores from observed scores where the true-scores come from one 
test, Y, and the observed scores come from another test, X. They showed 
that the usual linear regression function, which predicts the observed 
scores of Y from the observed scores of X, is an appropriate predictor of 
the true score of Y, but that the usual measure of prediction error from 
linear regression is too large and needs to be adjusted by the reliabilities of 
the two tests. 



2    A Framework and History for Score Linking     11

2.2.4. Summary 

It was recognized very early that prediction methods were not satisfactory 
ways of creating comparable scores, as the early forms of scale aligning 
were called. Thorndike (1922) and Otis (1922) gave the first arguments for 
why linear regression was not a satisfactory method of finding comparable 
scores. Later, Flanagan (1951) emphasized the lack of symmetry of 
regression functions, thereby connecting regression methods to the failure 
to satisfy requirement (c) of Section 2.4.1. The distinction between 
prediction and equating has been repeatedly reaffirmed over the years; see 
Hull (1922), Flanagan (1939, 1951), Lord (1950, 1955, 1982), Angoff 
(1971), Mislevy (1992), Linn (1993), and Holland and Dorans (2006). 

2.3. Scale Aligning 

The methods of aligning scales are the second oldest group of linking 
methods. The need to make scores on different tests comparable (i.e., 
scaling) and the invention of methods to do it has a history almost as old as 
the field of psychometrics itself. Procedures for scaling were initially 
called methods for creating comparable scores. Kelley (1914) discussed 
problems with the methods proposed in Starch (1913) and modified in 
Weiss (1914) and Pinter (1914) for putting into comparable units the Ayers 
and the Thorndike methods of scoring of handwriting. Pinter had a sample 
of handwriting from examinees who had been judged using both methods. 
Weiss advocated setting the means of the scores on both tests equal to 50 
by a multiplicative factor. Kelley showed that this method could give 
absurd results in various circumstances and proposed, instead, to use 
standard scores as comparable measures (i.e., to subtract the mean and 
divide by the standard deviation of each measure). Using standard scores 
to scale tests has been used widely since that time. Treating standard 
scores as equivalent leads to the method of linear equating. Kelley 
explicitly titled his article “Comparable Measures” and used the terms 
equate and equating to refer to the results of setting comparable scores 
equal.

The influential textbook by Kelley (1923) had a chapter titled 
“Comparable Measures” in which he (a) again showed that the method 
proposed by Weiss (1914) can lead to absurd results, (b) asserted that 
Galton had, decades earlier, used a version of standard scores to compare 
quantities that are measured on different scales, (c) advocated standard 
scores and showed that they equal the ratio method only when special 
conditions hold, and (d) discussed the equal successive percentiles method 
to define comparable scores; this is an early form of equipercentile 
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equating (Equation 11 in Kelley). Kelley referred to even earlier uses of 
the equal successive percentile method in Otis (1916, 1918). 

These references suggest that by the time of the US entry into World War 
I, those who worked with test data had some familiarity with both the linear 
and the equipercentile methods of scaling the scores from different tests. von 
Davier, Holland, and Thayer (2004b) quoted Kelley (1923) to indicate that 
he was aware of the dual influence of examinee ability and test difficulty  on 
test scores and this needed to be accounted for in scaling tests.

The goal of scale aligning is to transform the scores from two different 
tests onto a common scale. Scaling transformations take scores from two 
different tests, X and Y, and put them onto a common scale. Such aligned 
scales imply an indirect linking of the scores on X and Y. More 
specifically, the implied linking is found by taking a score on X,
transforming it to the common scale, and then inverting the Y-to-scale
transformation to find the corresponding value for Y. The result is an 
indirect link from scores on X to those on Y. All methods of scale aligning 
can create indirect links between tests in this way. 

It should be emphasized that although the implied indirect links always 
exists, their meaningfulness depends on many factors, and the indirect link 
is rarely the main purpose for putting X and Y onto a common scale. 

The subcategories of scaling form a continuum starting with situations 
where the tests measure different constructs all the way to those where the 
tests measure similar constructs. The next five subsections briefly describe 
the six types of scaling along this continuum. Figure 2.3 illustrates the 
subcategories within the overall linking category of scale aligning. 

2.3.1. Battery Scaling: Different Constructs and a Common 
Population of Examinees 

When two or more tests that measure different constructs are administered 
to a common population, the scale scores for each test can be transformed 
to have a common distribution for this population of examinees (i.e., the 
reference population). Kolen (2004a) denoted this case as battery scaling.
Battery scaling has been used for many years. Flanagan (1951) described it 
in an educational testing context, but its roots can be traced back at least to 
Kelley (1914), where the scores on the different tests were given the same 
mean and variance in the reference population. Kelley (1923) and Angoff 
(1971) referred to scores from tests that measure different constructs but 
that are scaled so that they have the same distributions on a common 
population as comparable measures (Kelley, 1923) or comparable scores
(Angoff, 1971). 



2    A Framework and History for Score Linking     13

Figure 2.3. The types of linking method within the overall linking category of 
scale.

The data collected for battery scaling is usually either (a) a sample of 
examinees, all of whom take all of the tests, or (b) several equivalent (i.e., 
random) samples of examinees from a common population who take one 
or just some of the tests. In this way, all of the tests are taken by equivalent 
groups of examinees from the reference population. Thus, for each test 
being scaled, Y, the data can be used to estimate the cdf of Y over the 
reference population, P; that is, 

FYP(y) = Pr{Y y | P}. (2.7)

Y is then put on the common scale by a transformation of the form 

s = S(FYP(y)), (2.8)

where S(u) is an arbitrary scaling function selected to give the scaled 
version of Y a particular distributional form. A common example of such a 
scaling function is the inverse of the Normal or Gaussian distribution so 
that the distribution of the scaled scores is approximately Gaussian (Kolen 
& Brennan, 2004). 

The value of making the scales of different tests comparable in this 
special sense is that examinees will correctly interpret differences in the 
scores across the battery of tests. A higher score on one test will indicate 
better performance on that test when compared to a lower score on another 
test (relative to the population P). Effectively, comparing scaled scores 
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becomes the same as comparing percentiles in the reference population 
when the scales have been aligned this way. Measures or scores on 
comparable scales could be useful for comparing the strengths and 
weaknesses of examinees who are similar to those in the reference 
population. For examinees who are different from those in the reference 
population, such interpretations might not be as useful. 

Although the scales on the different tests are made comparable in this 
special sense, the tests measure different constructs. The implied indirect 
link between the scores on the different tests, described earlier, can be used 
to indicate comparable performance on the different tests (relative to the 
reference population), but it has no meaning as a way of transforming a 
score on a test of one construct into a score that is an appropriate measure 
for another construct. 

The recentering of the SAT scale is an example of battery scaling 
(Dorans, 2002). The scales for the SAT-verbal (SAT-V) and SAT-
mathematical (SAT-M) scores were redefined so as to give the scaled 
scores on the SAT-V and SAT-M the same distribution in a reference 
population of students tested in 1990. The redefined score scales replaced 
the original score scales, which had been defined for a reference 
population tested in 1941. The new score scales enable a student whose 
SAT-M score is higher than his SAT-V score to conclude that he/she did in 
fact perform better on the mathematical portion than on the verbal portion, 
at least in relation to the students tested in 1990. When the scales of tests 
are not aligned in this way, such inferences are not necessarily accurate. 
As the population of students taking the SAT becomes less like the 
reference population tested in 1990, the simple interpretation of better 
performance on one test compared to another, based solely on the scaled 
scores, will become less accurate. Finally, it should be obvious that the 
indirect link between the SAT-M and SAT-V has no meaning as a way of 
turning a score on one of these tests into a score on the other.

2.3.2. Anchor Scaling: Different Constructs and Different 
Populations of Examinees 

An important approximation to battery scaling arises when two or more 
tests that measure different constructs are administered to different
populations and a common measure (the anchor measure) is available for 
all of the examinees in these different populations. Anchor scaling refers to 
this general class of scaling method. Mislevy (1992) and Linn (1993) used 
the term statistical moderation to refer to cases of anchor scaling. 

In the typical application of anchor scaling, it is possible for one or more 
of the tests being scaled to be completely inappropriate for the examinees 
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taking some of the other tests. Language examinations provide good 
examples of this: A test of French is inappropriate for examinees who are 
unfamiliar with French. In other situations, examinees might choose which 
test to take based on the courses they have taken in school. Because of 
these selective factors, the samples of examinees taking the different tests 
are usually not equivalent, and the anchor measure is the information used 
to both measure and to adjust for this. Anchor scaling necessarily involves 
incomplete test data because some tests are given to certain subgroups of 
examinees, but not to all of them. Anchor scaling  is an approximation to 
battery scaling because of the potential inequivalence of the samples of 
examinees taking each of the tests. In contrast, when different samples of 
examinees take different tests for battery scaling, these samples are 
designed to be equivalent samples of examinees. 

The inequivalence of the samples used in anchor scaling requires the 
scaling methods used to make assumptions about the anchor measure that 
are not easily evaluated. The more strongly the anchor measure is related 
to the different tests being put on a common scale, the more satisfactory 
the resulting scale alignment will be, but other than that, little more can be 
said in general. 

2.3.2.1. Scaling on a Hypothetical Population 

There are two distinct ways that the anchor measure is used in anchor 
scaling. The first approach is very similar to projecting score distributions, 
discussed in Section 2.2. This approach has no commonly accepted name, 
so Holland and Dorans (2006) proposed identifying it as scaling on a 
hypothetical population (SHP). To outline this approach and to relate it to 
projecting score distributions, suppose that Y denotes a test to be scaled 
and A is the anchor measure. The data for the examinees taking Y and A
are used to estimate the conditional distribution of Y given A in the 
population of examinees (denoted by PY) who take test Y. As indicated 
earlier, PX and PY might be different for different tests, X and Y. As in 
Section 2.2, denote the cdf of this conditional distribution by 

Pr{Y y | A = a, PY}. (2.9)

Next, this estimated conditional distribution is averaged over a 
hypothetical distribution for A, the distribution of A in the hypothetical
population, P, to obtain an estimate of the cdf of Y in the hypothetical P;
that is, 

Pr{Y y | P} = E[Pr{Y y | A, PY}| P]. (2.10)

In Equation 2.10, the outer expectation is over the distribution of A in 
the hypothetical population. These cdfs are found for each of the tests 
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being scaled. The estimated cdf for Y on the hypothetical population, 
defined in Equation 2.10, is then treated as if it is the cdf of Y on a 
common population. Once this is done, the problem is regarded as the 
simpler case of battery scaling and the same scaling techniques are used 
from that point forward. 

As in the case of projection in Section 2.2, in order for Equation 2.10 to 
hold, a population invariance assumption, similar to Equation 2.6, must 
hold. The weaker the correlation between the anchor measure and the test, 
the less likely it is for this population invariance assumption to hold, even 
approximately.

It should also be pointed out here that there is nothing in the above 
analysis that requires the anchor measure to be a single score or number; it 
could involve more than one score, as the next example illustrates. 

The construction of the hypothetical population is critical to the success 
of this method because the linking is population dependent. Although a 
variety of hypothetical populations might be posited in a particular setting, 
they are unlikely to be equally plausible. Great care needs to be exercised 
in the construction of the population. 

An example of SHP is given by the scaling of the various subject area 
tests of the SAT. Typically, students take the SAT, and then some of them 
might take one or more subject tests. All of these scores are then presented 
as part of their college admissions materials, and the results of the subject 
tests for different examinees are treated as if they are on comparable 
scales. In this application, the SAT-V and SAT-M scores are used as the 
anchor measures. The hypothetical population is taken to be the population 
on which the SAT-V and SAT-M scales were established. SHP is closely 
related to poststratification equating, mentioned in Section 2.4. 

2.3.2.2. Scaling to the Anchor 

The second approach to anchor scaling also has no commonly accepted 
name, so Holland and Dorans (2006) identified it as scaling to the anchor
(STA). In this approach, the data for the examinees taking test Y are used 
to estimate a function linking scores on Y to those on A using the data 
from PY. This is done for each of the tests to be scaled and these linking 
functions are used to put each of the tests onto the scale of the anchor 
measure. Strictly speaking, in order for STA to be valid, the estimated 
linking functions for each test should not depend on the choice of the 
population used for each linking. This is a population invariance 
assumption similar those mentioned in Section 2.4.3 for chain equating. 

Linn (1993) indicated that the STA approach was used to bring 
comparability to scores on tests that are specific to particular schools in a 
school district. The anchor measure is a common districtwide examination 
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score, and the scores from the locally developed tests in each school are 
put on a common scale using the STA approach to anchor scaling. 

One difference between STA and SHP is that for STA, the measure 
needs to be a single score or number, whereas, indicated earlier, the SHP 
can operate on multiple sets of scores. See McGaw (1977) and Keeves 
(1988) for more discussion of STA, where it was referred to as an example 
of moderation.

2.3.3. Vertical Scaling: Similar Constructs and Similar 
Reliability, But Different Difficulty and Different Populations
of Examinees 

Tests of academic subjects targeted for different school grades might be 
viewed as tests of similar constructs that are intended to differ in 
difficulty—those for the lower grades being easier than those for the 
higher grades. It is often desired to put scores from such tests onto a 
common overall scale so that progress in a given subject can be tracked 
over time. This type of scaling is called vertical scaling (Kolen & 
Brennan, 2004). It has been called other things as well. For example, 
Angoff (1971) called it calibrating tests at different levels of ability and 
the term vertical equating is also used.

A topic, such as mathematics or reading, when considered over a range 
of school grades, has several subtopics or dimensions. At different grades, 
different aspects, or dimensions, of these subjects are relevant and tested. 
For this reason, the constructs being measured by the tests for different 
levels might differ somewhat, but the tests are often similar in reliability. 

Vertical scaling shares some features with anchor scaling (Section 
2.3.2). In particular, the tests to be scaled are, to some degree, 
inappropriate for all but one or a few grades, so the samples of examinees 
who take each test are not equivalent in the sense that they are for battery 
scaling (Section 2.3.1). However, due to the range of ages and grades that 
are usually involved, there is rarely an appropriate anchor measure that is 
available for every examinee. Instead, the tests given to neighboring 
grades might share some common material that can serve as an anchor test 
that connects a pair of tests for different grade levels but not all of the tests 
being scaled. This common material will be different for different pairs of 
tests given to neighboring grades. Methods such as SHP and STA, 
described briefly in Section 2.3.2, might be used to put the tests given to 
neighboring grades onto a common scale, and these can then be connected 
up to form an overall scale for the entire vertical system of tests. Item 
response theory (IRT) is also used to link these scales. See Kolen and 
Brennan (2004), Petersen, Kolen, and Hoover (1989), and the chapter by 
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Kolen (2006) for more discussions of these and other methods used in 
vertical scaling. 

There is usually a close connection between the material tested in a 
given test and the curriculum for that grade. For this reason, vertical 
scaling might be sensitive to population differences, such as school grade 
or age. For example, scaling a fourth-grade reading test to a fifth-grade 
reading test on a sample of fifth graders is likely to disagree somewhat 
with the link obtained from a sample of fourth graders. For more 
discussion of these issues, see the chapter by Kolen (2006), as well as 
Harris, Hendrickson, Tong, Shin, and Shyu (2004), Hoover, Dunbar, and 
Frisbie (2001), and Kolen (2003). Chapters by Harris (Chapter 13), Patz 
and Yao (Chapter 14), and Yen (Chapter 15) discussed issues in vertical 
scaling in depth. For an illustration of vertical scaling, see Williams. 
Pommerich, and Thissen (1998). 

Vertical scaling can be viewed as producing indirect links between the 
scores on the different levels of the tests, but these links are of less interest 
than the comparisons of scores on the same scale for the same student on 
the different tests in order to measure his or her learning and growth. 

2.3.4. Calibration: Same Construct, Different Reliability,
and the Same Population of Examinees 

Kolen and Brennan (2004) indicated that in the test-linking literature, the 
term calibration is used in a variety of senses. In Angoff (1971), it referred 
to vertical scaling (Section 2.3.3). In Petersen et al. (1989), calibration
referred to the estimation of  item response theory (IRT) item parameters 
so that they were on a common scale. This usage is standard in the IRT 

2006). In Linn (1993), calibration referred to methods of score linking for 
tests that measure the same constructs but that have different statistical 
characteristics—in particular, different reliability or difficulty. 

Here the term calibration is used to refer to situations in which the tests 
measure the same construct, have similar levels of difficulty, but differ in 
reliability (usually test length). To add to the confusion, Angoff (1971) 
regarded this use of calibration as an example of equating tests of differing 
reliability; in this framework, equating is reserved for tests of equal or at 
least very similar reliability. The classic case of calibration in the sense 
used here is scaling the scores of a short form of a test onto the scale of its 
full or long form. 

For calibration, there might be some ambiguity as to whether the linking 
is direct or indirect. The short form is often derived from the long form so 
that it usually makes more sense to scale from the less reliable test to the 

literature (Lord, 1980; Thissen & Wainer, 2001; Yen & Fitzpatrick, 
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more reliable one than vice versa. It is intuitively obvious as well that 
simply putting the scores of the short form onto the scale of a more reliable 
long form cannot increase the actual reliability of the short form. 

2.3.5 Concordances: Similar Constructs, Difficulty,
and Reliability 

Sometimes the tests to be linked all measure similar constructs, but they 
are constructed according to different specifications. In most cases, they 
are similar in test length and reliability. In addition, they often have similar 
uses and might be taken by the same examinees for the same purpose. The 
use of the linking is to add value to the scores on both tests by expressing 
them as if they were scores on the other test. Concordances represent 
scalings of tests that are very similar but that were not created with the 
idea that their scores would be used interchangeably. See Pommerich and 
Dorans (2004a) for a thorough discussion of many aspects of 
concordances.

Many colleges and universities accept scores on either the ACT® or SAT 
for the purpose of admissions decisions, and they typically have more 
experience interpreting the results from one of these tests than the other. 
Dorans, Lyu, Pommerich, and Houston (1997) reported a concordance 
table or function that linked the scores on each of these two tests to each 
other. This concordance was based on data from more than 100,000 
examinees who had taken both tests within a restricted time frame. If their 
applicants were not widely different from those in this large sample, this 
concordance enabled admissions officers to align cut-scores on these two 
similar but somewhat different tests better than they could have using the 
limited data typically available to them. 

Because the tests being linked measure somewhat different constructs 
and are constructed in different ways, concordances are potentially 
sensitive to the population of examinees whose data are used to estimate 
the concordance function. Dorans and Holland (2000) and Holland and 
Dorans (2006) argued that when the data indicate that substantially 
different concordance functions hold for large subpopulations of 
examinees (e.g., males and females), separate concordance functions ought 
to be considered for these groups, lest one group be disadvantaged by the 
use of a pooled concordance function for all. Dorans (2004d) discussed 
this point for the ACT and SAT. In practice, separate concordances might 
not be feasible for a variety of reasons, including a perceived unfairness in 
high-stakes uses of the tests.

Concordances are examples of scalings that produce direct links 
between the scores on the two tests. 
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Chapters by Pommerich (Chapter 11), Sawyer (Chapter 12), and Dorans 
and Walker (Chapter 10) addressed concordances in more detail. The 
chapters by Brennan (Chapter 9), Eignor (Chapter 8), and Liu and Walker 
(Chapter 7) addressed linking issues for testing programs in a state of 
transition, either with regard to mode of administration or test content. 
These linkages might be concordances, calibrations, or equatings. 

2.4. Equating: Same Construct and the Same Intended 
Difficulty and Reliability 

Equating is the third category of linking methods in this framework. All 
linking frameworks define equating as the strongest form of linking 
between the scores on two tests. In this chapter, equating represents the 
end point of a continuum that begins with methods that make no 
assumptions about the relationships between the tests being linked 
(prediction and battery scaling) and proceeds to methods that are 
appropriate for linking tests that are very similar (concordances and 
equating). Equating might be viewed as a form of scaling in which very 
strong requirements are placed on the tests being linked. 

The purpose of equating is to allow the scores from each test to be used 
interchangeably, as if they had come from the same test. This purpose puts 
strong requirements on the two tests and on the method of linking. Among 
other things, the two tests must measure the same construct at similar 
levels of difficulty and reliability. 

The earliest example of equating alternative forms of the same tests is 
not known to this author, but there is an early example of alternative forms 
that were not equated: the Army Alpha Test used by the American army 
during World War I. By the end of 1918, the army had tested over 1.7 
million men using the Alpha and Beta. The Alpha was targeted for 
examinees who could read and write English and the Beta was for those 
who could not. Yoakum and Yerkes (1920) gave a detailed description of 
both instruments. They indicated that the Alpha had five different test 
forms: “To avoid . . . the risk of coaching, several duplicate forms of this 
examination have been made available” (p. 18). Thus, by this early date, 
test security issues had already led to the use of alternate forms, at least for 
the Alpha. Yoakum and Yerkes said little about how the alternate forms of 
the Alpha were constructed, but the following passage suggests that they 
used random assignment of test items to forms to help ensure the similarity 
of the alternate forms. “All five forms of the group examination were used 
in the pre official trial of the tests. The differences in forms were so slight 
as to indicate the success of the random method of selecting items” (p. 8). 
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Under appropriate conditions, assigning test items to forms at random will 
produce nearly parallel test forms that are similar but not identical in 
difficulty. In the next sentence, Yoakum and Yerkes indicated that the five 
forms were not exactly equivalent: “Form B proved more difficult than the 
other forms” (p. 8). 

Nothing more is said about the issue of Form B’s difficulty, and in all 
probability, scores on the different forms of the Alpha were treated as 
sufficiently similar so that they were not equated, even though the linear 
and equipercentile methods for doing so were known and available by that 
time.

Of greater concern to the army statisticians was the comparability of 
scores achieved on the Alpha and Beta versions of the test. A special 
sample of military personnel was tested with both, and these data were 
used to put the Alpha and Beta on a common 7-point scale (A, B, C+, C, 
C , D, D ). Because these two tests were quite different in terms of format 
and questions asked, this was a case of battery scaling rather than of test 
equating. Indeed, Thorndike (1922) referred to three distinct scalings of 
the Alpha and Beta. 

The example that Kelley criticized in 1914 was also a form of battery 
scaling rather than equating. The two methods of assessing handwriting 
were very different scoring methods and would not, in current 
terminology, be construed to be alternative forms of the same test. The 
problem that interested Pinter (1914) and Starch (1913) was to measure the 
accuracy/stability of these different handwriting measures. Kelley referred 
to an earlier work by Woodworth (1912), which used standard scores to 
combine the results of several tests. Otis (1918) was also interested in the 
problem of combining test results when the tests were on quite different 
subjects: spelling, arithmetic, synonyms, proverbs, and so forth. Thus, 
these early uses of comparable scores were not to equate scores in the 
sense used here, but, rather, as intermediate battery scalings needed to 
solve other problems. 

Terman and Merrill (1937) discussed their revised edition of the 
Stanford-Binet test. Two alternative forms of the new edition were 
produced, but they were not equated directly. Rather, both were treated 
separately and the scores of each one put on the IQ scale using battery-
scaling methods. In the next edition of the Stanford-Binet test, the second 
form was eliminated because it was rarely used. 

Thus, the need, or at least the desire, to equate scores on alternate forms 
of the same test probably arose decades after the invention of scaling 
methods and of the two standard methods for equating: the linear and 
equipercentile methods. In 1938 two forms of the College Board’s SAT 
tests were given in the same year, and the need to equate them became 
evident by 1940. Early versions of anchor-test equating were used to 
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remove the effect of differential form difficulty for the SATs in 1941. In 
1942 the SAT verbal and math scales were linked back to the verbal scale 
established in April 1941; all linkings subsequent to 1942 were equatings 
(Donlon & Angoff, 1971; Dorans, 2002). Lord (1950, 1955) credited 
Ledyard R Tucker with devising the anchor-test methods used to equate 
the SATs during the 1940s; these methods, in various versions, continue to 
be used. 

Test equating is a necessary part of any testing program that continually 
produces new test forms and for which the uses of these tests require the 
meaning of the score scale be maintained over time. Although they 
measure the same constructs and are usually built to the same test 
specifications or test blueprint, different editions or forms of a test almost 
always differ somewhat in their statistical properties. For example, one 
form might be harder than another, so without adjustments, examinees 
would be expected to receive lower scores on the harder form. A primary 
goal of test equating for testing programs is to eliminate the effects on 
scores of these unintended differences in test form difficulty. For many 
testing programs, test equating is necessary to be fair to examinees taking 
different test forms and to provide score-users with scores that mean the 
same thing, regardless of the tests taken by examinees (Angoff, 1971; 
Kolen & Brennan, 2004; Petersen et al., 1989). 

In testing programs with high-stakes outcomes, it cannot be 
overemphasized how important it is that test equating be done carefully 
and accurately. The released scores are usually the most visible part of a 
testing program, even though they represent the end point of a long test 
production, administration, and scoring enterprise. An error in the equating 
function or score conversion function might change the scores for many 
examinees. The credibility of testing organizations has been called into 
question over test equating problems, in ways that rarely occur when, for 
example, flawed test questions are discovered in operational tests. 
Chapters 5, 6, and 4 by Cook, von Davier, and Petersen, respectively, in 
this volume addressed issues related to equating. 

2.4.1. What Makes a Linking an Equating? 

All forms of test score linking involve some of the same ingredients. 
These include (a) two or more tests and rules for scoring them, (b) scores 
on these tests from one or more samples of examinees, (c) an implicit or 
explicit population of examinees on which linking takes place, and (d) one 
or more methods of estimating or calculating the linking function. What 
distinguishes test equating from other forms of linking is its demanding 
goal of allowing the scores from both tests to be used interchangeably for 
any purpose. 
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In the context of a testing program that continually produces new test 
forms that are required to produce scores on the same scale, test equating 
is often regarded as the first part of a two-step process by which scores on 
new tests are put onto the reporting scale. The first step is the computation 
of the equating function, y = e(x), that links the raw scores on a new test, 
X, to those of an old test, Y—the so-called raw-to-raw equating. The 
second step is the conversion of these equated X raw scores to the 
reporting scale. In practice, there is an old form conversion function that 
maps the raw scores of the old test, Y, to the scale, call it S = s(y). The old 
form conversion function is composed with the equating function, e(x), to 
put the raw scores of X onto the reporting scale; that is, the new form 
conversion function is s(e(x)).

An alternative approach is to use the methods of IRT to find a direct 
conversion of X-scores to the common IRT scale rather than going through 
an old test, Y. This method, in principle, does not even require an old test, 
but could involve portions of several old tests.  Discussion of this approach 
is beyond the scope of this chapter. Instead, the focus here is on equating 
functions.

Dorans and Holland (2000) outlined five requirements that are widely 
viewed as necessary for test equating to be successful. The order in which 
these requirements are listed corresponds roughly to the order of their 
appearance in the literature. 

a. The equal construct requirement: The tests should measure the same 
constructs.

b. The equal reliability requirement: The tests should have the same 
reliability.

c. The symmetry requirement: The equating function for equating the 
scores of Y to those of X should be the inverse of the equating 
function for equating the scores of X to those of Y.

d. The equity requirement: It should be a matter of indifference to an 
examinee to be tested by either one of two tests that have been 
equated.

e. The population invariance requirement: The choice of 
(sub)population used to estimate the equating function between the 
scores of tests X and Y should not matter; that is, the equating 
function used to link the scores of X and Y should be population
invariant.

Both formal and informal statements of subsets of these five 
requirements appeared in a variety of earlier sources, including Lord 

Brennan (2004). Kolen (Chapter 3, Section 3.2) pointed out the importance 
(1950), Angoff (1971), Lord (1980), Petersen et al. (1989), and Kolen and 
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of common conditions of measurement as well as common content as a 
requirement for equating. 

In practice, requirements (a) and (b) mean that the tests need to be built 
to the same specifications and administered under the same conditions of 
measurement, whereas requirement (c) precludes regression methods for 
predicting Y-scores from X-scores from being a form of test equating. 

requirements (a) and (b) are needed. Requirement (d) is, however, hard to 
evaluate empirically and its use is primarily theoretical (Lord, 1980; 
Hanson, 1991). Furthermore, requirement (e), which is easy to use in 
practice, also can be used to explain why requirements (a) and (b) are 
needed (Holland & Dorans, 2006). Dorans and Holland (2000) used 
requirement (e) to develop quantitative measures of equitability. Their 
measures indicate the degree to which equating functions depend on the 
subpopulations used to estimate them. 

The other cases of score linking are likely to violate at least one of the 
five requirements for equating. Concordances are used with tests that 
measure similar but different things and do not share common test 
specifications. Although they might have a similar difficulty and 
reliability, they will satisfy requirement (a) only approximately and this 
might be detected by the failure of requirement (e) and possibly 
requirement (d). Tests that are vertically scaled might be on such different 
aspects of a school subject that requirement (a) is not satisfied, at least 
when the gap between the grades is large and the differences in difficulty 
might be so great that, regardless of attempts to scale them appropriately, 
examinees will definitely prefer one test over the other, thus violating 
requirement (d) and probably requirement (e) as well. Calibrating a short 
form to a long form violates requirement (b) and is likely to violate 
requirements (d) and (e). 

The tests that are scaled by either battery scaling or anchor scaling are 
usually measures of different constructs by design so that requirement (a) 
is not satisfied. Furthermore, scaling tests of different constructs will also 
tend to fail to satisfy requirements (d) and (e) for important subgroups of 
examinees. The direct and indirect linkings that arise in scaling are 
invertible, so requirement (c) is usually satisfied. 

Finally, prediction methods need not satisfy any of the five 
requirements. The asymmetry between predictors and outcomes violates 
requirement (c). Furthermore, requirements (a) and (b), measuring the 
same construct and being equally reliable, affect only the quality of the 
prediction; less related or less reliable tests make poorer predictors of the 
scores on another test. Requirement (d) plays no role in prediction. Finally, 
it often makes sense to include subgroup membership as predictors to 
improve prediction. This incorporates population sensitivity directly into 

Lord (1980) indicated that requirement (d) explains why both 
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the prediction, whereas equating functions should not depend on 
subpopulations, according to requirement (e). 

The difference between prediction and equating has been pointed out 
repeatedly over the last century. To give an example that shows how test 
equating and predicting can work together but do different things, suppose 
the scores from one testing program are used to predict some outcome 
variable, such as first-year college grades, using regression methods. In 
this case, the test score is being used as a predictor. It is routine to use the 
equated scores that come from different test forms as interchangeable 
values of the predictor. The predictions benefit from a prior test equating 
because test equating eliminates the need to distinguish between the scores 
on the various forms of the test that are used as predictors. This application 
occurs every time test scores from a testing program are used as predictors 
in validity studies. However, the predicted average grades from the test 
score would never be construed as an equating of test scores and first-year 
grades.

2.4.2. A Crucial Consideration for Scale Aligning and Equating 

There is one common concern for all of the methods that are grouped 
under categories of scale aligning and equating. Appropriate attention must 
be given to the control of differential examinee ability in the linking 
process. To be clearer about this, suppose that two different tests are given 
to two different groups of examinees. In the two distributions of resulting 
scores, there are two ever-present factors that can influence the results, 
regardless of how similar the score scales of the tests appear. One is the 
relative difficulty of the two tests (which is what test scaling and equating 
is concerned about) and the other is the relative ability of the two groups of 
examinees on these tests (which is a confounding factor that should be 
eliminated in the linking process). In scaling and equating, the interest is in 
adjusting for differences in test characteristics and in controlling for 
possible examinee differences in ability when making these adjustments. 

There are two distinct ways that the separation of test difficulty and 
differential examinee proficiency is addressed in practice. The first is to 
use a common population of examinees and the other is use an anchor 
measure. These approaches were mentioned in the discussion of scaling 
aligning in Section 2.3. Using the same examinees explicitly controls for 
differential examinee ability (i.e., they are the same examinees and have 
the same proficiencies). A variant of the use of a common set of examinees 
is to use two equivalent samples of examinees from a common population. 
On the other hand, when it is not possible to have samples of examinees 
from the same population, their performance on an anchor measure or set 
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of common items can quantify the differences between two distinct, but 
not necessarily equivalent, samples of examinees. The use of an anchor 
measure leads to approaches that can be more flexible than the use of 
common examinees (Holland & Dorans, 2006). 

2.4.3. A Brief Outline of Equating Methods 

Numerous methods have been developed over the years for scaling and 
equating tests. In the next two subsections they are organized according to 
whether the data collection design involves a common population or 
common items. The focus here is on observed-score procedures that 
directly transform (or link) the scores on X to those on Y, because these 
methods are the most directly related to the estimation of equating 
functions. True-score methods are mentioned in passing. Kolen (Chapter 3, 
Section 3.5) provided a more extensive consideration of methods and data 
collection designs. 

Figure 2.4 organizes the subcategories within the overall linking 
category of equating. 

2.4.3.1. Procedures for Equating Scores on a Common Population 

use of a common population of examinees: the single group (SG), the 
equivalent group (EG), and the counterbalanced (CB) designs. They all 
involve a single population, P. Most of this section applies easily to both 
the EG and SG designs. The CB design is more complicated and is 
omitted; for more on the CB design, see Kolen (Chapter 3), von Davier et 
al. (2004b), Angoff (1971), and Kolen and Brennan (2004). 

Several procedures have been developed for estimating equating 
functions using a common population. Underlying any linking method is a 
target population of examinees, following the usage in von Davier et al. 
(2004b). The target population is the population for which the equating 
function is supposed to apply. For data collection designs that use a 
common population, this is also the target population. In this chapter, T
denotes the target population of examinees. 

The cdf  of the scores of examinees in the target population, T, on test X
is denoted by FT(x); and it is defined as the proportion of examinees in T
who score at or below x on test X. More formally, FT(x) = Pr{X x | T}.

Holland and Dorans (2006) discussed three data collection designs that make 

The equipercentile definition of comparable scores is that x (an X-
score) and y (a Y-score) are comparable in T if FT(x) = GT(y). This means 
that x and y have the same percentile in the target population, T. When the 
two cdfs are continuous and strictly increasing, the equation of FT(x) and 
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Figure 2.4. The types of linking methods within the overall linking category of 
test equating.

GT(y) can always be satisfied and can be solved for y in terms of x. This 
equipercentile function is used for equating, concordances, vertical scaling, 
battery scaling, and calibration. For equating, the influence of T should be 
small or negligible, and, in that case alone, the transformed X-scores are 
interchangeable with the Y-scores.

It is sometimes appropriate to assume that the two cdfs, FT(x) and GT(y),
have the same shape and only differ in their means and standard 
deviations. In this case, it can be shown that the equipercentile function is 
the linear linking function. The linear linking function can also be derived 
as the transformation of X-scores that gives them the same mean and 
standard deviation on T as the Y-scores have.

The linear linking and equipercentile functions were introduced in the 
first two decades of the 20th century as methods of scale aligning. Both of 
these functions satisfy the symmetry requirement (c) of Section 2.4.1; that 
is, linking Y to X is the inverse function for linking X to Y.

The linear linking function can be viewed as the linear part of the 
equipercentile function (see von Davier et al., 2004b, for more details). 
The remainder is the nonlinear part of the equipercentile function. In the 
kernel equating method of equating (von Davier et al., 2004b), the 
equipercentile function and the linear linking function are shown to be two 
members of a two-parameter family of equipercentile functions that 
interpolate smoothly between these two special cases. 

Although there is really only one linear linking function for the SG or 
EG designs, the equipercentile function can depend on how FT(x) and 
GT(y) are made continuous or continuized. Test scores are typically 
integers, such as number-right scores or rounded formula scores. Because 
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of this, the inverse function is not well defined; that is, for many values of 
p, there is no score y for which p = GT(y). This is not due to the finiteness
of real samples, but, rather, to the discreteness of real test scores. To get 
around this, two methods of continuization of GT(y) are in current use. 

The first is very old (Otis, 1916) and uses linear interpolation to make 
GT(y) piecewise linear and continuous; see Kolen and Brennan (2004). The 
second approach uses Gaussian kernel smoothing to continuize the discrete 
distributions; see Holland and Thayer (1989) and von Davier et al. 
(2004b). This results in a continuously differentiable GT(y). Prior to 
continuizing the cdfs, several authors recommended presmoothing the 
discrete distributions of scores (Kolen & Brennan, 2004; Kolen & Jarjoura, 
1987;  Livingston, 1993; von Davier et al., 2004b). In presmoothing data, 
it is important to achieve a balance between a good representation of the 
original data and smoothness. Smoothness reduces sampling variability 
and a good representation of the data reduces the possibility of bias.

Levine (1955) used classical test theory to derive a procedure designed 
to equate the true scores of X to those of Y. For a more detailed discussion 
of true-score equating, see Kolen and Brennan (2004). Hanson’s theorem 
(Holland & Dorans, 2006) uses classical test theory to formalize the first 
four equating requirements of Section 2.4.1 and from them to derive the 
linear equating function as the only linear solution. Holland and Dorans 
also showed how Hanson’s theorem shows the relationship among the 
linear linking function, linear regression, and true-score equating in the 
case of calibration (Section 2.3.4). 

IRT (Kolen & Brennan, 2004).

2.4.3.2. Procedures for Linking Scores Using Common Items 

The use of common items to control for differential examinee ability arises 
when there are two populations of examinees, P and Q, rather than just 
one. In this situation, X and a set of common items (or anchor test) A are 
taken by examinees from P while Y and A are taken by examinees in Q.
Examinees take A and either X or Y. This is called the nonequivalent 
groups with anchor test or NEAT design in Holland and Dorans (2006). 
Kolen (Chapter 3, Section 3.5) called it the common-item nonequivalent 
groups design. The NEAT design is widely used because it can give 
greater operational flexibility than the approaches using common 
examinees. Examinees need only take one test, and the samples need not 
be from a common population. 

This flexibility comes with a price, however. For one, the target 
population is less clearcut for the NEAT design. Which is it, P or Q or 

Lord (1980) introduced nonlinear versions of true-score equating using 
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something else? For another, the use of the NEAT design always involves 
making additional assumptions to allow for the missing data in the NEAT 
design: X is never observed in Q and Y is never observed in P.

Braun and Holland (1982) proposed that for the NEAT design, the target 
population be what they called the synthetic population created by 
weighting P and Q. They denoted the synthetic population by T = wP + 
(1 – w)Q, which means that distributions (or moments) of X or Y over T
are obtained by first computing them over P and Q, separately, and then 
averaging them with w and (1 – w) to get the distribution or moments over 
T. The definition of the synthetic population forces the user to confront the 
need to create distributions (or moments) for X on Q and Y in P, where 
there are no data. This is why assumptions must be made about the missing 
data in the NEAT design. 

There are three distinct sets of assumptions about the missing data that 
have been used to estimate observed-score equating functions for the 
NEAT design. These are the (a) post-stratification equating type, (b) chain
equating type, and (c) Levine type discussed in detail in Holland and 
Dorans (2006). These three sets of assumptions all have the form that some 
aspect of the equating is the same for populations P and Q. The first two 
types of assumption can produce both the linear linking and equipercentile 
functions, whereas the Levine type, being based on classical test theory, 
only produces a linear function that need not be a linear linking function 
that describes the linear portion of the equipercentile function. 

In general, the three sets of assumptions result in different equating 
functions; however, when P = Q, all three sets of assumptions result in the 
same linear or nonlinear equating functions.

For the NEAT design, there are also linear and nonlinear true-score 
equating functions available that use either classical test theory or IRT 
(Kolen & Brennan, 2004).

In the next chapter, Kolen describes various data collection designs and 
the methods used for equating and other types of linking in greater detail. 

2.5. A Brief Note on the Theory of Equating 

The theory underlying test equating has evolved slowly over the years. The 
methods called observed-score test equating can be viewed as simple 
adaptations of scale-aligning methods to the problem of equating tests. This 
includes the linear and equipercentile methods discussed in Section 2.3.1, as 
well as the methods adapted to the anchor-test designs discussed in Section 
2.3.2. Levine (1955) was the first application of classical test theory to the 
problem of equating tests, and Lord (1980) first applied IRT to test equating. 
Other attempts to give a theoretical foundation to test equating include Morris 



30      Paul W. Holland

(Holland & Dorans, 2006) is the earliest result that derives an equating function 
from formalizations of conditions that are related to the five equating 
requirements in Section 2.3.1. 

Flanagan (1951) was careful to indicate the potential sensitivity of 
linking functions to the groups and samples used to form them. He even 
went so far as to state, “Comparability which would hold for all types of 
groups—that is general comparability between different tests, or even 
between various forms of a particular test—is strictly and logically 
impossible” (p. 758). This negative position is rather different from that 
taken later by Angoff (1971), who stated that equating relationships should 
be population invariant, or in his words, “…the resulting conversion 
should be independent of the individuals from whom the data were drawn 
to develop the conversion and should be freely applicable to all situations” 
(p. 563). Thus, both the requirement of population invariance for equating 
and its denial have roots that are at least 50 years old. See Kolen (2004b) 
for more on the history of population invariance and test equating. See also 
Chapters 6, 4, 12, and 10 by von Davier, Petersen, Sawyer, and Dorans and 
Walker, respectively, in this volume for discussions of what to do if 
population invariance fails to be met. 
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