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1.  INTRODUCTION 

1.1.  Biophysical Background 

Our current knowledge about biological membranes shows that they belong 
to the most important cell structures. Mass transport and signal transduction obvi-
ously appear to be vital to physiological functions of biomembranes as they enable 
cellular compartmentalization and control over it at the same time. Many experi-
ments and theoretical considerations in the past decades have shown that mem-
branes consist of a laterally heterogeneous lipid bilayer with a large number of 
different protein molecules embedded in the lipid bilayer. Heterogeneity exists at 
any level — from the biochemical to the physical level, meaning that different con-
stituents and supramolecular structures in membranes interact via different interac-
tions and exhibit different motional characteristics. This complexity — as the most 
striking property of any biological system — remains a tough problem also for the 
up-to-date experimental and theoretical approaches. 

As will be shown in this chapter, recent developments in electron spin reso-

nance spectroscopy (ESR) bring new possibilities to the further exploration of 
biosystems. 

The appropriateness of the ESR nanosecond time window and its 
sensitivity make spin-label ESR one of the most informative 
techniques, able to resolve the puzzle of membrane heterogeneity 
and intermolecular interactions as well as its role in cell signaling 
and mass transport. 

Recent numerical approaches in combination with spin-label ESR experi-
ments allow characterization of coexisting membrane structures in the cases of 



50 JANEZ ŠTRANCAR 

specific labeling as well as for nonspecific labeling, resulting in extremely valuable 
information about living structures in their native environment with only the small 
perturbation of the addition of spin probes. 

Fast spectral simulation algorithms valid for physiological conditions, hybrid 
evolutionary optimization techniques responsible for efficient inverse-problem 
solving, and good solution-condensation algorithms have evolved spin-label ESR 
into an even more powerful technique for studying the dynamics and structure–
function relationship of coexisting membrane constituents, like membrane lipid 
domains, carbohydrate surface aggregates, and conformational freedom of mem-
brane peptides and proteins. 

The aim of this chapter is therefore to present the key steps involved in this 
membrane characterization procedure and that can be applied as more general prin-
ciples for any form of spectroscopy: 

  # Motional averaging in a spin-labeled biomembrane 
  # Strategies for calculating powder spectra 
  # Solving an inverse problem and condensation of the results 

In the characterization procedure all the important properties of the experiment 
should be built into the simulation model. Furthermore, all the relevant characteris-
tics of the model should enable a valuable characterization of the system within a 
reasonable time. To make a characterization procedure a useful tool in membrane 
biophysics as well as in more general cases, the following three important re-

quirements need to be considered: 

  # Simulation should take into account all important characteris-
tics of the ESR experiment and the complexity of the biologi-
cal system 

  # Simulation should be fast enough to allow application of a 
robust scheme for inverse problem solving 

  # Simulation should be accurate enough to be sensitive to 
physiological changes 

1.2.  Mathematical Background 

To clarify the notation of the various mathematical symbols and operations, 
they are introduced here briefly. 

A vector quantity will be denoted by a one-sided arrow, e.g., magnetic field 
B . In case of a unit vector with a length of 1, it will be stressed by a double-sided 
arrow, e.g., the unit vector of a coordinate system x . A tensor quantity will be 
indicated by an underline, e.g., A , a unit tensor (with diagonal elements 1 and 
off-diagonal elements 0) by 1 . Scalar products between vectors, between a vector 
and matrices, and between matrices will be shown without a dot: 
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Operators will be indicated with a circumflex accent sign, e.g., scalar opera-
tor Ĥ  and vector operator Ŝ .

Time and ensemble average are denoted as f and f , respectively. 
Angles will be denoted by Greek letters. 
Indication of the coordinate system (l), where a vector or a tensor quantity X

is well defined, it will be explicitly expressed by the left-upper index, e.g., ( )l X .
When applied, it should remind the reader of a base of this coordinate system, de-
fined through a set of unit vectors: { }( ) ( ) ( ) ( ), ,l l l li j k=B .

In membrane spectroscopy four important coordinate systems are relevant: 

  # Nitroxide molecular coordinate system (n) 
  # Membrane coordinate system (m) 
  # Laboratory coordinate system (l) 
  # Coordinate system of local magnetic field (lm) 

The introduction of these coordinate systems originates in the fact that various 
physical quantities can be well defined only in one of these coordinate systems. 
This is indicated in the following list of quantities and coordinate systems in which 
these quantities are well defined. 

According to the properties above, the bases of the coordinate systems can be 
defined as indicated in Table 2 and Figure 1. 

Coordinate systems (a) and (b) can be connected by means of unitary trans-

formation R, denoted by ( ) ( ):(a) (b) a bR R B B . The inverse transformation is 
denoted by a complex conjugate (real transposed) (a) (b)R . Generally, a unitary 
transformation (a) (b)R  can be expressed by three consequent rotations 

( ) ( ) ( )'' ' '' '
'' '

(a ) (b) (a ) (a ) (a) (a )
z y zR R Rϕ ϑ ψ  about a temporary z-, y′-, or z″-axis (see Eq. 

(2)).
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Table 1. Coordinate Systems with Well-Defined Quantities 

Quantity Q                                   Coordinate system, in which Q is well defined

 External magnetic field B Laboratory coordinate system (l)
 Local magnetic field Bl Local magnetic field coordinate system (lm)
 Electron spin S Local magnetic field coordinate system (lm)
 Nuclear spin I Local magnetic field coordinate system (lm)
 Zeeman tensor g Nitroxide (molecular) coordinate system (n)
 Hyperfine tensor A Nitroxide (molecular) coordinate system (n)
 Membrane normal n Membrane coordinate system (m)

Table 2. Definition of Coordinate Systems

Coordinate system (cs)                                          Definition of base 

 Nitroxide (molecular) cs (n) x-axis parallel to NO bond, 
  z-axis parallel to π orbital 
 Membrane cs (m) z-axis parallel to membrane normal 
 Laboratory cs (l) z-axis parallel to external magnetic field 
 Local magnetic field cs (lm) z-axis parallel to local magnetic field 
   

( )( ) ( )nlm lB g B=

( ) ( )

cos sin 0 cos 0 sin cos sin 0

sin cos 0 0 1 0 sin cos 0

0 0 1 sin 0 cos 0 0 1

a bR
ϕ ϕ ϑ ϑ ψ ψ
ϕ ϕ ψ ψ

ϑ ϑ
= . (2) 

In case of the coordinate systems mentioned previously, the unitary transfor-
mations are presented in Figure 2. Transformation matrices are derived by appli-
cation of Euler rotation matrices as indicated above: 

# For transformation from the laboratory to the membrane coordinate 
system (the first rotation around the z-axis in the laboratory coordi-
nate system is omitted, since the Hamiltonian is invariant to a rotation 
around an external magnetic field axis): 

( ) ( )

cos sin 0 cos 0 sin

sin cos 0 0 1 0

0 0 1 sin 0 cos

l mR
Φ Φ Θ Θ
Φ Φ

Θ Θ
= . (3) 

# For transformation from the membrane to the nitroxide coordinate 
system: 
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# For transformation from the laboratory to the local magnetic field co-
ordinate system and vice versa 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

l m m n m n l m
l lm

l m m n m n l m l
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R R g R R k

= , (5) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( )                .

lm l l m m n m n l m l

l m m n m n l m

R R R g R R k

R R g R R

=
 (6) 

Figure 1. Schematic presentation of the coordinate systems. 

1.3.  Quantum-Physical Background 

To follow this chapter, the reader should be familiar with basic operations of 
quantum physics, i.e., working with operators and calculating eigenvalues of the 
spin operators as well as of the Hamiltonian operator. It is not the aim of this chap-
ter to teach the basics of quantum physics; however, for the sake of clarity we 
briefly review the basic principles. 

If the system state is described by a single set of quantum numbers {ξ}, or 
shortly in Dirac bracket notation ξ , then its eigenvalue (eigenenergy) Eξ can be 
calculated by application of a Hamiltonian operator function in the following way: 

1
ˆ

ˆ ˆH
H E E E Hξ ξ

ξ ξ ξ

ξ ξ
ξ ξ ξ ξ

ξ ξ
== = = . (1) 
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Figure 2.  Schematic presentation of the transformations between coordinate systems using 
Euler rotations. 

However, usually there are N states iξ  allowed in a real system. In such a case 
the eigenvalues (eigenenergies) should be calculated as the principal values of the 
Hamiltonian matrix defined as 

11 1

1

ˆ
N

ij i j

N NN

E E
E E H

E E
ξ ξ= = . (2) 

Since ESR spectroscopy involves the transition of spin states, the Hamiltonian op-
erator includes the spin operators. Consequently, one should be familiar with the 
basics of spin algebra. In case of nitroxide spin labels, the spin states of the elec-
tron spin, S = ½, and nitrogen nuclear spin of I = 1 are involved, implying the us-
age of the following set of base functions: 

{ } { }1 1 1 1 1 1
2 2 2 2 2 2, ,1 , ,1 , ,0 , ,0 , , 1 , , 1S IM M = . (3) 
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Here, the short notation of base functions ,S IM M  is used instead of 
, , ,S IS M I M . The basic rules of spin algebra and the eigenvalues of the various 

spin operators are 
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Expansion of the vector spin operator in the basis of the coordinate system of the 
local magnetic field can be written in the following form: 

( ) ( )1 1
2 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ .

x y z

zi

S S i S j S k

S S i S S j S k+ +

= + +

= + + +
 (11) 

2.  MOTIONAL AVERAGING IN A SPIN-LABELED BIOMEMBRANE 

2.1.  Spin Labeling Experiment 

To be able to detect an ESR spectrum, a stable unpaired-electron system 
should be part of the system or introduced into the system. 

A spin labeling experiment involves implementation  
of nitroxide-based spin probes.

Usually, introduction of a spin probe is a nonspecific addition of spin-labeled 

analogs of common biomolecules that can be found in biomembranes (or other 
biosystems). The nitroxide group, which contains a stable free radical, can be at-
tached at different positions of a molecule. If a nitroxide moiety can be justified as 
a small perturbation to a (larger) biomolecule or supramolecular structure, then the 
partitioning properties of a spin-labeled molecule are very similar to the partition-
ing properties of the original molecules — a property that can be used for subsys-
tem identification. 

On the other hand, a spin label can be introduced into a biosystem also in a 
specific manner, using a biochemical targeting procedure. In this case, its position 
is well defined, and the complexity that is determined from spectral simulation 
directly points to local conformations of the targeted biomolecule. Since the pre-
sented approach can be used also to detect conformations at nonspecific sites, spe-
cial care should be taken to identify all possible binding sites and to include the 
reaction rates of nitroxide binding to these sites. 
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Figure 3. Nitroxide group. 

If physiologically relevant information should be detected, the temperature of 
a spin-label experiment should be chosen in quite a narrow interval. Note that 
“physiological temperature” depends on the biological species, e.g., 0–50°C for 
various bacteria, 37°C for mammalians, etc. At such temperatures organisms react 
on a millisecond timescale, and local biosignaling processes on biomembranes 
occur on the ten microseconds timescale. The local dynamics of the membrane 
constituents should be fast enough to enable lipid or protein supramolecular struc-
tures to find their favored state within this timeframe. Global conformational 
changes that are involved in biosignaling should evolve through reconfiguration 
over several thousand of conformational states. That can only be achieved with fast 
local molecular motions with correlation times at the sub-nanosecond timescale. 
This fact is confirmed by many molecular dynamics simulations and strongly in-
fluences the modeling scheme of the ESR spectral simulations for physiological 
temperatures. 

Physiological temperatures involve rotational motion on the 
nanosecond timescale, which is fast on the ESR timescale. This 
implies partial averaging of the nitroxide magnetic properties 
over the allowed local rotational configurations. Additional 
slower time evolution of labeled subsystems will be determined 
as coexisting motional/polarity patterns. 

However, some ESR experiments cannot be performed at physiological tem-
peratures. When a much lower temperature has to be used, slow rotational motions 
come into play. To simulate such experiments one has to implement slow-motion 
schemes. However, one has to be aware of the fact that the resulting anisotropy of 
the system and rate of rotational motion in the slow-motion ESR regime create a 
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numerically ill-posed problem, i.e., in complex membrane systems and cell suspen-
sions, the anisotropy and rate of rotational motion cannot be distinguished well 
enough. 

2.2.  The Hamiltonian for Spin Labels 

The spin Hamiltonian of a nitroxide spin label can be approximated by a com-
bination of a Zeeman term (interaction between electron spin S and external mag-
netic field B) and a hyperfine term (interaction between electron spin S and nitro-
gen nuclear spin I):

ˆ ˆˆˆ
BH B g S I A Sµ= + . (12) 

The superhyperfine interaction between the electron spin and neighboring pro-
ton spins can be effectively taken into account in the linewidth calculation by an 
additional broadening. The nuclear Zeeman interaction between the nuclear spins 
and the magnetic field are neglected due to (latter) application of selection rules, 
which imply transitions to occur between electron spin states and not between nu-
clear spin states. 

Different quantities in Hamiltonian equation (12) are 
well defined only in their own coordinate system (see 
Tables 1 and 2). 

To explicitly express the coordinate systems in which the quantities are well 
defined, we can use the notation defined in the §1 and identify the coordinate sys-
tems according to their indices. Remember that the magnetic properties are well 
defined in the nitroxide molecular system (n), the external magnetic field in the 
laboratory system (l), and the spin operators in the coordinate system of the local 
magnetic field (lm). Note that the usage of simple spin algebra is limited to the 
coordinate system where the direction of quantization is known, which is the case 
only for the coordinate system of the local magnetic field (lm):

( ) ( )( ) ( ) ( ) ( )ˆ ˆˆˆ n nl lm lm lm
BH B g S I A Sµ= + . (13) 

Although the Hamiltonian expression does not depend on the choice of coordinate 
system, one has to express all the quantities in the same coordinate system to solve 
the eigensystem equation. Therefore one should introduce transformation matrices 
between the quantities defined in different coordination systems. Consequently, the 
Hamiltonian for a single spin probe molecule should be rewritten as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆˆ      l n lm n lm n lm n
BH B R g R S I R A R Sµ= + . (14) 
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Since the ESR experiment involves several spin probe molecules, actually more 
than 1013, which is the sensitivity limit for a nitroxide spin-label experiment on the 
current ESR spectrometers, Eq. (14) actually becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆˆ l n lm n lm n lm n
B i i i i

i

H B R g R S I R A R Sµ= + . (15) 

Note that summation over the nitroxide molecules includes summation over their 
different orientations; however, the electron and nuclear spin states are equivalent 
for all spin probes. The same is valid for the magnetic properties of the spin probes. 
Orientational dependencies are buried within the transformation matrices. 

Introducing the transformation to and from the coordinate system of the local 
magnetic field as given by Eqs. (5) and (6), the Zeeman term of Eq. (14) becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Zeeman

ˆˆ l m m n m n l m
BH B R R g R R k k Sµ= . (16) 

By expanding the vector spin operator in the basis of the local magnetic field coor-
dinate system as shown in Eq. (11), the Zeeman term can be simplified to 

( )eff
Zeeman

ˆˆ
B zH B g Sµ Ω= , (17) 

where effective Zeeman coupling is defined as 

( )eff ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )l m m n m n l mg k R R g g R R kΩ = . (18) 

Note that the effective Zeeman coupling, ( ) ( )eff eff , ; , ,g gΩ Θ Φ ψ ϑ ϕ= , includes 
the “powder-like” membrane-normal orientation dependence {Θ, Φ} as well as the 
orientation dependence of fast changing rotational conformations defined with 
Euler angles {ψ, ϑ, ϕ}. To take this into account while partial averaging due to fast 
rotational motion, we introduce 

( ) ( ) ( ) ( ) ( ), , m n m nG R g g Rψ ϑ ϕ = . (19) 

Similarly, we can transform the hyperfine term of Eq. (14): 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
hyperfine

ˆˆˆ lm l l m m n m n l m lm lH R I R R A R R R S= . (20) 

Using the transformation from/to the coordinate system of the local magnetic field. 
the hyperfine term can be rewritten as 

( )( )
( )

2 1 1eff ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
hyperfine

eff

ˆˆˆ

ˆˆ

l m m n m n l mH g I R R g A g R S

I A S

Ω

Ω

=

=
 , (21) 
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where the effective hyperfine coupling (tensor) is defined as 

( ) ( )( )2eff 1 1eff ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )l m m n m n l mA g R R g A g R RΩ Ω= . (22) 

Similarly to the effective Zeeman term, the effective hyperfine coupling, 
( ) ( )eff eff , ; , ,A AΩ Θ Φ ψ ϑ ϕ= , includes the “powder-like” membrane-normal ori-

entation dependence {Θ, Φ} and the orientation dependence of fast changing rota-
tional conformations defined with Euler angles {ψ, ϑ, ϕ}. Note that both depend-
encies are involved also in the geff term, making the expression for Aeff even more 
complicated. In the same way as G , we introduce 

( ) 1 1( ) ( ) ( ) ( ), , m n m nA R g A g Rψ ϑ ϕ = . (23) 

Using the effective Zeeman and hyperfine term, the Hamiltonian can be written in 
the following compact form: 

( ) ( )eff eff ˆˆˆˆ
B zH B g S I A Sµ Ω Ω= + . (24) 

Further simplification of the effective hyperfine term depends on the approxima-
tion one takes into account when solving the eigensystem equation. However, be-
fore solving the eigensystem equation, an important first step is taking into account, 
e.g., fast rotational motions in the membrane coordinate system, which implies 
partial averaging in the ( ), ,G ψ ϑ ϕ  and ( ), ,A ψ ϑ ϕ  terms. 

2.3.  Introducing Fast Motion of the Spin Probe 

When the spin probe wobbles, the effective Zeeman and 
hyperfine couplings change with orientation (they in-
volve dependencies on {Θ, Φ} as well as {ψ, ϑ, ϕ}).

Suppose a wobbling spin probe in a membrane in a situation where the spin 
probe also is able to laterally diffuse. We already define that the wobbling — 
changing of {ψ, ϑ, ϕ} in time — is fast on the ESR timescale. On the other hand, 
the mean displacement of the spin probe molecule in the membrane is at largest a 
few lipid molecules per ESR timescale. Since the curvature of the membrane is 
usually not extremely high, we can say that the time variation of {Θ, Φ} is much 
slower as compared to the time variation of {ψ, ϑ, ϕ} — actually we will assume 
{Θ, Φ} to be constant on the ESR timescale. In such a case, the orientation de-
pendence can be separated into two major contributions: 

# Orientation of the molecule (or nitroxide group) relative to molecule 
average orientation in the membrane, that is, membrane normal 
({ψ, ϑ, ϕ} dependences) 
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# Orientation of the local membrane normal relative to the external 
magnetic field ({Θ, Φ} dependences) 

However, sometimes the translational diffusion could be higher and the local 
curvature could be larger, such as in the case of membrane defects. In such cases 
one has to be careful in separating the two orientational dependencies. 

Fast rotational motion of a spin-labeled molecule on the 
ESR timescale averages the magnetic properties over all 
the possible orientations relative to the membrane nor-
mal. 

Consequently, time averaging should be taken into account over the terms with 
{ψ, ϑ, ϕ} dependences in Eqs. (18) and (22). The ( ), ,G ψ ϑ ϕ  and ( ), ,A ψ ϑ ϕ
terms are transformed as follows: 

( ) ( )
( ) ( )

avg

avg

, , ( ), ( ), ( )  ,

, , ( ), ( ), ( )  .

G G G t t t

A A A t t t

ψ ϑ ϕ ψ ϑ ϕ

ψ ϑ ϕ ψ ϑ ϕ

=

=
 (25) 

Figure 4. Averaging of the magnetic properties (Zeeman and hyperfine couplings). 

The elements of G  and A  involve complicated expressions of trigonometric 
functions that should be averaged according to the motional restriction 

( ) ( ) dPf f d
d

Ω Ω Ω
Ω

= . (26) 

The definition intervals are [–π/2, π/2] for ϕ, [0, π/2] for ϑ, and [–π/2, π/2] for ψ,
as indicated in Eq. (25). The full expressions for the averaged effective Zeeman 
coupling components and hyperfine coupling are given in Appendix 1 of this chap-
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ter (Eqs. (A.1)–(A.12)). Note that the terms involving sin(ϕ), cos(ϕ), sin(2ϕ),
sin(ψ), cos(ψ), and sin(2ψ) vanish after averaging due to symmetry. 

The averages in Eq. (25) can be determined in the following ways: 

  # Deduction from molecular dynamics simulations, 
  # Phenomenological expression with order parameters, 
  # Calculation from conformational probabilities, which can be 

derived from reorienting potentials. 

The last two approaches are discussed in the following text. 

If probability functions are not directly known, the av-
erages in Eq. (25) may be expressed in terms of order 

parameters.

( ) ( )2 2 2 1
cos cos

3
z

zz
Sϑ ϑ += = , (27) 

( ) ( ) ( ) ( )( )2 2 2
2 1 1

cos sin sin 1 1
3 3
y

zy z

S
Sϑ ϑ ϕ σ

+
= = = . (28) 

The most common order parameter, Sz, represents ordering along the long molecu-
lar axes in the case of a membrane spin label. The two extreme situations are: a 
completely isotropic case (a solution with no preferred orientation) and a com-
pletely ordered case. Note that Sz counts for an averaged projection of a tumbling 
molecule on its averaged direction. Typically, the value of Sz of a fatty acid spin 
probe in disordered phases of membranes is below 0.3, while it usually does not 
exceed 0.7 in the ordered phase. 

The other order parameter, σ counts for the asymmetry/restrictions of the rota-
tional motions around the long axes (averaged molecule position), with definition 
intervals being the same as for Sz. Partial averaging due to rotational motions 
around the long axes strongly depends on the size and conformational freedom of 
the spin-labeled molecule as well as the properties of the local environment — its 
sterical restrictions and dynamics. For example, the rotation of a spin-labeled lipid 
molecule around its long axes is more restricted than for a spin-labeled fatty acid 
molecule, resulting in higher σ. The same is true for a spin probe being close to 
rigid molecules like cholesterol. Note that σ rarely exceeds 0.7. 

To be able to calculate all averages directly, one needs to know or define the 
probability functions. 

In a wobble or cone model, the probability functions are defined as step func-
tions: 

{ }
0

0

0 const

for , ,

0
2

dP
d

dP
d

ξ ξ
ξ

ξ ψ ϑ ϕ
πξ ξ

ξ

< < =
=

< < =
. (29) 
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This leads to the following expressions: 

( ) ( ) ( )( )2 21
0 03cos cos cos 1ϑ ϑ ϑ= + + , (30) 

( ) ( ) ( )1
2 0 0 02

0 0

sin 2 sin 21
sin 1

2 2 2

ϕ ϕ ϕ
ϕ

ϕ ϕ
= = , (31) 

( ) ( ) ( )1
2 0 0 02

0 0

sin 2 sin 21
sin 1

2 2 2

ψ ψ ψ
ψ

ψ ψ
= = , (32) 

( ) ( )( ) ( )2
0 03sin 2 cos 1 sinϑ ϑ ϑ= + , (33) 

( ) ( )0
0

sin
cos

ψ
ψ

ψ
= . (34) 

Using appropriate probability functions, the averages can be expressed in terms of 
maximal wobbling angles. Note that in general one could have three maximal 
wobbling angles {ψ0, ϑ0, ϕ0}; however, two of them, ψ0 and ϕ0, are quite similar in 
this model. In fact, in the two limiting cases, close to no restrictions and close to 
complete restriction, ψ0 and ϕ0 are identical. Moreover, when ϑ0 is small, ψ0 and 
ϕ0 are identical again. Therefore, we can often assume that ψ0 is equal to ϕ0. A 
second reason for using only one restriction parameter is purely numerical, since 
application of all three angles would make their determination ill-posed in an in-
verse-problem-solving case. 

Alternatively, the probability function can be defined through a Boltzmann 

distribution:

( )U
kTdP e

d

Ω

Ω
= , (35) 

and reorienting potential U(Ω) in generalized form of a Maier-Saupe potential: 

( ) ( ) ( ) ( )( ) ( )22 2,  cos  sin cosU U A B CΩ ϑ ϕ ϑ ϑ ϕ= = + + . (36) 

Using probability function Eq. (35) and reorienting the potential of Eq. (36), the 
averages of the trigonometric function can be calculated numerically in terms of 
potential constants A, B, and C. Below is only an example of how an average is 
calculated in a more general way: 

( )
( ) ( )
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ϑ ϑ ϕ

ϑ ϑ ϕ
ϑ

ϑ ϕ

+ +

+ +
= . (37) 
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Figure 5. Schematic presentation of two different directional probability functions (on the 
left) and the corresponding distributions that yield the same ( )2cos ϑ  and consequently the 
same order parameter Sz; box-like distribution function and lower distribution pattern (lower 
right corner) correspond to the Cone (wobble) model, whereas the smooth distribution and 
the upper distribution pattern (upper right corner) correspond to a Boltzmann distribution 
with a simple symmetric Maier-Saupe reorienting potential (see (36)); for clarity, only one 
angle (ϑ) is presented. 

2.4.  Derivation of Resonant Fields 

After motional averaging, the total spin Hamiltonian of Eq. (15) can be rewrit-
ten as 

( ) ( )

avg( ) ( ) ( ) ( )

2avg avg( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

effeff

ˆˆ

ˆˆ

ˆˆˆ,  , .

l m l m
B i i

i

l m l m l m l m
i i i i

B i i z i i
i

H B R G R S

k R G R k I R A R S

B g S I A S

µ

µ Θ Φ Θ Φ

=

+

= +

 (38) 

Once again we want to stress that motional averaging cannot average out the orien-
tation dependence of the local membrane normal relative to the magnetic field di-
rection, unless lateral diffusion is high or membrane curvature is strong. 

To find the eigenvalues of spin Hamiltonian Eq. (38), the all-spin operators in 
the hyperfine term should be expanded as shown for the electron spin operators in 
Eq. (11): 
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 (39) 

The full expressions for effective tensor couplings geff, Azz
eff, Axzyz

eff, Axyxy
eff, and 

Axxyy
eff are given in Appendix A (Eqs. (A.13)–)A.17)). Note that the overbar in Eq. 

(39) indicates the complex conjugate of the corresponding quantities. 
The Hamiltonian matrix (see §1 for an explanation) now becomes 
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  (40) 

where Geff corresponds to µB·B·geff.
The Hamiltonian matrix is a block-tridiagonal Hermitian (self-adjoint) matrix. 

Although the Hamiltonian matrix has complex elements, please note that it is a 
Hermitian matrix and therefore has real eigenvalues. 

In general the matrix of Eq. (40) cannot be solved analytically. Although there 
are some efficient numerical methods to find the eigenvalues of Eq. (40), some 
approximations can be made without reducing the accuracy significantly. The ma-
trix below shows the order of magnitudes of the individual matrix elements in field 
units of mT for in the case of X-band ESR: 

101 1 1 1 0.1 0 0

1 101 1 1 0 0

1 1 100 0 1 1 0.1ˆ
1 0.1 1 0 100 1 1

0 0 1 1 99 1

0 0 1 0.1 1 1 99

i i i
i i
i i i

E H
i i i

i i
i i i

/ /
/ /+ +

/+
= =

/+ +
/ / + +
/ / +

. (41) 

Note that in Eq. (41) i is the imaginary unit. The exact solution of the matrix above 
would give us the following eigenvalues: 

{ } { }102.26, 102.25, 100.02, 100.01, 97.77, 97.77iE = . (42) 
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By neglecting different non-diagonal terms, the solutions can be found also ana-
lytically; however different approximations yield solutions with different relative 
accuracy: 

Sz Iz terms only (relative accuracy 1%, absolute accuracy 1 mT)

{ } { }101, 101, 100, 100, 99, 99iE =  (43) 

(Sz, S+, S–) Iz terms only (relative accuracy 1%, absolute accuracy 1 mT)

{ } { }101.01, 101.01, 100, 100, 99.01, 99.01iE =  (44) 

Sz (Iz, I+, I-) terms only (relative accuracy 0.01%, absolute accuracy 0.01 mT) 

{ } { }102.24, 102.24, 100, 100, 97.76, 97.76iE =  (45) 

Figure 6. Schematic presentation of different approximations to Hamiltonian matri-
ces: “Sz Iz terms only” (left), “(Sz, S+, S–)Iz terms only” (center), “Sz (Iz, I+, I–) terms 
only” (right). 

Among the solutions that can be found analytically, the 
highest accuracy is achieved by including the diagonals 
of the super-block-diagonal and sub-block diagonal. 

For the approximation “Sz (Iz, I+, I-) terms only” the following general expres-
sions for the eigenvalues can be derived: 

( ) ( )( ) ( )1
2

2 2eff eff eff

,

1
, , 2 ,

2I
B i i I zz i i xzyz i iME B g M A Aµ Θ Φ Θ Φ Θ Φ± =± + + ,  (46) 

yielding the energies of the ESR transitions: 

( ) ( )( ) ( )2 2eff eff eff, , 2 ,
IM B i i I zz i i xzyz i iE B g M A A∆ µ Θ Φ Θ Φ Θ Φ= + + . (47) 

Finally, the resonant fields are calculated from resonant equation 
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E h B
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∆ ν

µ Θ Φ

+
= = . (48) 
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Note that the typical absolute error of a resonant field value of about 0.01 mT for 
X-band ESR in this approximation is much less than the typical linewidths of a 
nitroxide spin probe. An accurate spectral simulation tool can therefore apply up to 
100 points-per-mT sweep without inducing spectral distortions. 

In case of higher ESR frequencies, the absolute error decreases almost linearly 
with frequency and the relative error almost quadratically. 

Note that when one replaces 14N for 15N, which has a nuclear spin of ½, the 
resonant frequencies can be calculated more directly. In this case the Hamiltonian 
matrix looks like 

( )
( )

( )
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where Geff corresponds to µB ·B ·geff. In the approximation “Sz (Iz, I+, I–) terms only”
the above expression can be transformed to 

( )
( )

( )
( )

eff eff eff1 1 1

2 2 2

eff eff eff1 1 1

2 2 2

eff eff eff1 1 1

2 2 2

eff eff eff1 1 1

2 2 2

0

0 0

0

0 0

0 0

ˆ

zz xzyz

zz xzyz

xzyz zz

xzyz zz

G A A

G A A

A g A

A g A

H

+ + +

+

+ +
= , (50) 

which can be solved analytically. After solving the eigensystem, a general expres-
sion for resonant fields becomes 

( )( ) ( )
( )
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I zz i i xzyz i i
M

B i i
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3.  STRATEGIES FOR CALCULATING POWDER SPECTRA 

3.1.  From Resonant Fields Values to Stick Spectra 

A simple ESR spectrum of a nitroxide spin probe with a 
particular orientation is represented by a Lorentzian-
shaped triplet, actually acquired in its first-derivative form 
due to field modulation. 

( )Modulation
2 22

( )1 ( )
( )

( ) ( )1 1( ) ( )

r I

r I r I

I I

B M Bd P BP B
dBB B M B B M

B M B M∆ ∆
+ +

. (52) 
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Figure 7. Typical ESR lineshape: — derivative of a Lorentzian function. 

The resonant-field positions Br(MI) are calculated according to resonance equation 
Eq. (48) at the corresponding orientation. Linewidths ∆B(MI) are determined by a 
linewidth model, for example, by the Redfield theory in the case of a fast motion 
approximation. 

The Lorentzian lineshape arises from the exponential decay of the magnetiza-
tion in a rotating frame of reference. 

At physiological temperatures and non-saturating ESR conditions, spin 
dephasing (decay of coherent magnetization) represents the most common relaxa-
tion mechanisms due to the motion of spin probe molecules. 

Since a common spin-labeled sample involves many spin probe molecules ori-
ented in different directions, the ESR spectrum should be calculated as a convolu-
tion of the resonant field distribution dρ/dBr, taking into account the Lorentzian 
lineshape for all triplet lines: 

( ( )) ( ; ( ))( )
( )

r

r I r I
I r

rB

d B M d P B B Md P B M dB
dB dB dB

ρ . (53) 

Calculation of the convolution in Eq. (53) represents the most time-consuming 
step in the calculation procedure for ESR spectra. Therefore, a lot of effort is re-
quired  to reduce its numerical cost in any implementation algorithm. 

Every such convolution calculation costs around 1 MFLO, or around a milli-
second on 1-GFLOPS processor. 
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Figure 8. Typical numerical convolution in an ESR lineshape calculation: the resonant field 
probability function (histogram-like “stick spectra”), which is convoluted with the Lor-
entzian lineshape from Figure 6, is represented together with the resulting spectral lineshape. 

3.2.  Summation Schemes and Resolution: Reducing the Computation Time 

Generally, the convolution integral (or sum) can be done 
with a Fast Fourier Transform algorithm (FFT) or di-

rect summation scheme.

To choose a fast algorithm consider the following points: 

# The costs of direct convolution and the FFT algorithm increase with 
spectral size N like N2 and N ⋅ Log2(N), respectively, making the FFT 
algorithm more efficient than a direct scheme in convoluting large 
spectra (several thousands points); 

# “Zero” intervals of a resonant field distribution with known resonant 
field extremes enable a significant acceleration of the direct scheme, 
making it more efficient than FFT in convoluting small spectra (up to 
thousand points); 

# To avoid FFT wiggles on the spectral wings, zero padding or equiva-
lent approaches are needed, giving rise to additional costs. 

According to the maximal hyperfine splitting of 7 mT in the case of a nitroxide and 
resolution requirements of around 0.01 mT, the spectral size can be reduced to 
1024 calculated points. For this case an accelerated direct scheme can be more ef-
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ficient and accurate than an FFT scheme. However, for higher-resolution require-
ments and related higher spectral sizes, FFT will become more efficient at the same 
accuracy. 

3.3.  Matching Resolution and Accuracy 

Before performing a convolution integral (or sum), resonant field distribution 
dρ/dBr has to be constructed for all three resonant lines. Remember that this distri-
bution results in different motional-averaged orientations of the spin probe mole-
cules, which actually represent the orientation distribution of the membrane normal 
vector dρ/dΩ:

( ( )) ( ; )( )r I I

r r

d B M d Md
dB d dB

ρ Ω Ωρ Ω
Ω

= .  (54) 

The orientation distribution is basically described by the geometry of the spin-
labeled sample taking into account the dynamic and static properties on the parti-
tioning as well. 

Note that differential dΩ = sin(Θ) dΘdΦ also contains the phase space volume. 

Figure 9. Linear (top) and realistic (bottom) resonant field dependences on the direction and 
the corresponding derivatives that are defined in Eq. (53) and used in Eq. (54). 
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Construction of the resonant field distribution involves summation over differ-
ent directions. To reduce the time cost, the size of this summation ensemble should 
be optimized according to the resolution requirements and anisotropy of the effec-
tive magnetic properties (see Table 3). 

The resolution should be equal to the magnetic-field-sweep-step-per-point 
(which indirectly depends on the linewidths), whereas the anisotropy of the mag-
netic field properties is determined as the maximal interval of the resonant fields 
among all three orthogonal directions and all three lines. 

Table 3. Resolution Requirements and Anisotropy 
of the Effective Magnetic Properties 

                                                                                                            Maximal 
                                                                                                            resonant 
  No. of points           Resolution             Sz              σ order-                 field 
    per sweep     requirement        ordering           ing                   intervals 

     ∆N/∆B δB Sz σ ∆Br,Mi → Max(∆Br)

    [points/mT] [mT] [..] [..] [mT] 

        100 0.01 0.2 0 0.4, 0.2, 0.7 → 0.7 

        100 0.01 0.5 0 1.0, 0.4, 1.8 → 1.8 

        100 0.01 0.5 1 1.8, 1.0, 2.0 → 2.0 

        100 0.01 0.8 1 2.1, 1.1, 3.2 → 3.2 

In the last example from Table 3 one needs to calculate the resonant field in-
terval of 3.2 mT with a resolution of 0.01 mT. In this case at least, 320 spin probes 
should be arranged in different directions to cover one quarter of a (phase space) 
sphere to match the resolution requirement. If the resonant field would change 
linearly with direction (see Figure 9, top), a linear grid of 400 directions would be 
sufficient to produce a smooth resonant field distribution. However, this depend-
ence is far from being linear (see Eq. (54) and Figures 9 and 10). To satisfy the 
resolution requirement everywhere on the resonant field interval and accurately 
construct a smooth (and correct) resonant field distribution;  the number of points 
should be increased by one order of magnitude. 

In order not to exceed the accuracy of the resonant field far beyond the resolu-
tion limit and simultaneous dramatically increase the time cost, a two-dimensional 
linear interpolation of resonant fields can be applied. The simplest two-dimensional 
linear interpolation grid of 400 can be extended nine times with only a twofold 
increase in time cost at the same accuracy relative to the resonant field grid used in 
the convolution summation. 
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Figure 10. Non-smooth (left) and smooth (right) distributions as a result of rough and fine 
meshes and highly nonlinear resonant field dependences on the direction (from Figure 9). 

Figure 11. Schematic presentation of a grid expansion by a 2D linear interpolation. 

3.4.  Implementing Different Geometries and Directors Distributions 

The most straightforward calculation of the resonant field distribution implies 
simple summation over the azimuthal and elevation angles (see Figure 12). In this 
general notation, any geometry can be implemented within dρ/dΩ of Eq. (54). 

In many cases, simple summation over the azimuthal and elevation angle leads 
to a highly non-smooth distribution of directions, resulting in a non-optimized 
summation scheme (see Figure 9). 

In the isotropic case (dρ/dΩ = 1), many calculation steps are used to cover a 
small part of a phase space when the elevation angle and volume of the phase space 
approach zero (see Figure 12). Therefore, other summation schemes should be used 
to minimize time cost. 

An efficient summation scheme is usually derived with the strat-
egy of equalizing the phase space volume. 
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Figure 12. General and simple summation over azimuthal and elevation angles. 

One of the most simple and also quite efficient summation schemes involves 
reduction of the azimuthal grid proportional to the elevation angle (see Figure 13). 

Splitting the spherical surface into an ordered mesh of triangles could also be 
an efficient summation scheme. A typical example is the application of a geodesate, 
icosahedron, or dodecahedron (meshed projection of a icosahedron or dodecahe-
dron onto a sphere; see Figure 14). 

A simple experimental system that can be covered by an “isotropic” model is a 
model membrane dispersion (dispersion of liposomes in a buffer). Also dispersion 
of biological cells with other-than-spherical shape can be covered by this model, if 
the cells do not stack and are equally oriented in all directions. 

Other geometries can be implemented by introducing directional probability 
dρ/dΩ into Eq. (54). 
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Figure 13. Efficient summation scheme: summation with reduction of azimuthal grid pro-
portional to the elevation angle. 

The directional probability can be defined in different ways, through a geome-
try consideration or a statistical probability distribution. In case of an oriented 
membrane, for example, one can define the directional probability with a reori-
enting potential (Maier-Saupe form) and a Boltzmann distribution function: 

( )2cos
U A
kT kTd e e

d
Θρ

Θ
= .  (55) 

Since an efficient summation scheme depends on the geometry, any summa-
tion scheme should be optimized independently (of the “isotropic” case) to achieve 
reliable results, fastest computation times and accurate simulated spectra. For ex-
ample, a summation scheme with a reduction of the azimuthal grid proportional to 
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Figure 14. Another example of efficient summation schemes: summation over the geodesate 
of the icosahedron. 

the elevation angle that is optimized for the isotropic case can be quite inadequate 
in the case of oriented membranes. This is especially true if the orientation of the 
membrane director is close to Θ = 0. In this case the directional distribution van-
ishes close to the Θ = π/2, where the “volume factor” is maximal. 

In the case of oriented membranes, an efficient summation scheme could again 
be derived with the strategy of equalizing the phase space volumes. Due to the very 
low orientation probabilities at directions perpendicular to the membrane (acyl 
chains cannot be oriented in the membrane plane), we can modify the summation 
scheme from Figure 13 by reducing the grid of elevation angles near Θ = π/2 (see 
Figure 15). 
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Figure 15. More efficient summation schemes for oriented membranes. 

Using the above principles, optimization of summation schemes can be done 
automatically, making the simulation models more robust and fast at the same time. 

In case of various membrane defects like pores and necks, one can define a di-
rectional probability using a modified phase space volume. 

A pore or neck is a point-like defect type that can occur in a membrane stack. 
A pore actually represents a point where two monolayers of the same bilayer come 
close to each other. The whole structure possesses an inverse cylindrical symmetry 
with the lipid headgroup oriented to the symmetry axis of the structure (see Figure 
16, left). Necks are points where two monolayers of the neighboring bilayers are 
close to each other. The whole structure possesses a cylindrical symmetry with the 
lipid headgroup oriented outward the symmetry axis of the structure (see Figure 16, 
right). Both structures possess a cylindrical symmetry, so there is no ϕ dependence 
in the orientational distribution. Since the phase space volume (of the isotropic 
distribution) sin(Θ) can be thought of as part of a spherical area, dS, defined within 
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a constant Φ and Θ grid, one can define a similar expression for the pore/neck ge-
ometry by 1 sin( )dS γ Θ , where γ represents the ratio between bilayer thick-
ness d and pore outer diameter D. The definition interval for γ is [0,1]. Close-to-
zero values correspond to extremely large holes in pores, whereas close-to-one 
values correspond to pores without holes. The same expression is valid also for 
neck-type defects by taking γ = ½. 

Figure 16. Pore and neck geometry: cross-section of the pore (left) and neck (right). 

3.5.  Implementing the Transition Probability Correction Factor 

ESR transitions are induced by an oscillating microwave magnetic field, per-
pendicular to the static magnetic field. Using the “Fermi golden rule of quantum 
mechanics,” the transition probability between the two spin states +½ and –½ can 
be expressed by the off-diagonal element of the Hamiltonian matrix: 

2
1 1

microwave2 2
ˆ, ,I Iw M H M+ , (56) 

where the microwave-field interaction term can be written in the form of a Zeeman 
term: 

microwave microwave
ˆˆ

BH B g Sµ= . (57) 

Taking into account proper coordinate systems where the quantities in the above 
equation are well defined as well as the proper direction of the microwave mag-
netic field ((l)x-axis), the Zeeman term becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

microwave microwave

ˆˆ l l m m n m n l m lm l
BH B i R R g R R R Sµ= . (58) 
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Introducing the definitions in Eqs. (5), (6), and (11) and the motional averaged 
effective Zeeman coupling geff from Eq. (18), Eq. (63) can be written in a more 
compact form as 

( ) ( )eff 1
microwave microwave 2

ˆ ˆˆ ,BH B g S Sµ Θ Φ += + . (59) 

The transition probability equation therefore transforms into 

( )( ) ( ) ( )( )
22 2eff eff1 1 1 1

2 2 2 2
ˆ ˆ, , , ,I Iw g M S S M gΘ Φ Θ Φ++ + . (60) 

In numerical algorithms one can use the following “unit-free” correction factor 
instead: 

( ) 2eff

0

,g
w

g
Θ Φ

. (61) 

Note that the relative effect of this correction is only about 0.8%, which corre-
sponds to an error that is easily introduced by model averaging, summation 
schemes, and convolution integrals. Therefore, the transition probability correction 
is rarely needed in nitroxide spectra simulation. 

4. SOLVING AN INVERSE PROBLEM AND CONDENSATION  

 OF RESULTS 

4.1.  Phase Space of the Problem: Parameterization 

To characterize a system by means of any experimental approach, one should 
understand the value of the experimental response function and its dependence on 
various boundary (stress) conditions. In case of ESR spectroscopy, one should 
therefore be able to simulate the changes in the spectral lineshape due to interac-
tions within the system and due to interaction with external fields. 

Any simulation involves parameterization of the system, 
i.e., a set of parameters that defines the response function 
— the ESR spectra in case of ESR spectroscopy. 

Some of the parameters (let us denote them group 0 constants) involved in a 
spectral simulation model do not define the exploring system, but are connected 
directly to the measuring conditions. In the case of ESR spectroscopy these con-
stant parameters are: 

# ESR band properties such as microwave power, frequency, and center 
field 
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# Scan properties: field sweep interval and scan speed 
# RC filtering parameters including modulation conditions 
# Magnetic properties of paramagnetic molecules in a reference envi-

ronment (tensors). 

A second group of parameters that affects the response function (denoted group A 
parameters) defines the properties of the system. In the case of ESR spectroscopy 
these are: 

# Motional averaging parameters that measures the anisotropy of mo-
tion (e.g., order parameters) 

# Motional rate parameters (e.g., rotation correlation times) 
# Environmental corrections to magnetic properties (e.g., polarity cor-

rection factors) 
# Parameters that measure inter-paramagnetic interactions (e.g., spin–

spin exchange between molecules of the same or different species) 

In addition to the parameters above, any complex-system modeling should define 

# Heterogeneity of the system 
# Distribution properties (of the paramagnetic species) between differ-

ent compartments 

These parameters are easily introduced by expansion of the basic set of group A
parameters. Any compartment (domain, aggregate, phase, etc.) therefore possesses 
a unique set of group A parameters in addition to a proportion that defines the 
amount of nitroxide spin probe molecule in this particular compartment. Complex 
modeling can also involve the definition of the distribution functions as well as the 
dynamical properties of the system on the system scale (possible rearrangements, 
non-equilibrium transport, fast exchange between compartments, etc.). 

To provide a more reliable characterization of a 
complex system, more different spectroscopic 
and other experiments have to be applied. 

4.2.  Solving an Inverse Problem 

The experimental response of ESR defined by the group 0 constants is used to 
determine the group A parameters of a certain biological system. When character-
izing a complex biological system, only efficient modeling and a comparison of the 
experimental and modeled response function enable extraction of biosystem pa-
rameters. Resolving the group A parameters via system response modeling is usu-
ally called inverse problem solving (see Figure 17). However, inverse problem 
solving strongly depends on the complexity of the phase space, which (in a single 
experiment) relates to the number of group A parameters. 
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Figure 17. Inverse problem solving. 

The simplest model for the ESR spectral shape simulations involves at least NA
 4 spectral parameters (group A), whereas the response of a more complex system 

with m compartments can be defined with at least m · (NA + 1) – 1 parameters. 
Note that the complexity of the phase space can increase significantly. When 

modeling the response of a complex system also the resolution limit of ESR should 
be considered. This is the maximum number of spectral parameters that can be 
extracted from a single ESR experiment and turns out to be about 30. This number 
depends on the ESR linewidths and maximal magnetic field anisotropy. Note also 
that some pairs of parameters can be partially (anti-)correlated, making determina-
tion of the parameters even more complicated. 

Solving the inverse problem can be a 
non-trivial task, to be performed suc-
cessfully. 

A typical membrane simulation model can involve, for example, 3 domains 
with 5 + 1 parameters per domain, resulting in 17 parameters that should be deter-
mined from the ESR spectra to characterize the biosystem. To define each of the 17 
parameters with an average error of only 10% (10 points per axis), this would re-
sult in a phase space volume of 1017 points. If each spectrum costs at least 1 ms of 
calculation time, it would take around 106 years to scan the whole phase space. 

The enormous size of an ordinary phase space that is involved in modeling of 
the response function of a complex system calls for robust optimization methods 
that can be applied to solve the inverse problem. Simple phase space scans will not 
be efficient at all. 
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4.3. Characterization Process and Possible Ways of Solving the 

 Inverse Problem 

In a typical characterization, the experimentally measured response function 
has to be compared with a simulated one defined with a set of group 0 constants 
and a set of group A parameters. 

The main task of the characterization procedure is to vary a set of group A pa-
rameters to find the best match of the corresponding spectral lineshape to the ex-
perimentally measured spectral lineshape. 

Figure 18. Characterization of a biosystem with ESR spectral simulation in a motional aver-
aging model. 

To efficiently navigate the optimization procedure, a fitness function is intro-
duced. It measures the goodness of fit of the simulated spectrum with the experi-
mental one. Most frequently, the measure is chosen to be the reduced χ2, i.e., the 
sum of the squared residuals between the experimental and simulated spectra di-
vided by the squared standard deviation of the experimental points σ, and by the 
number of points in the experimental spectrum N:

exp sim 2
2

2
1

( )1 N
j j

j

y y
N

χ
σ=

= .  (62) 

Standard deviation σ is assessed numerically from points in the simulated spectrum 
regions where the derivatives are close to zero, usually at both ends of the spectrum. 
Several other fitness functions can be selected as well (like island-weighted χ2,
correlation length functions, maximal difference functions, difference at constant 
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positions, etc.). The convergence of the optimization method can depend on the 
applied objective function especially due to a different sensitivity to broad lines. In 
general some numerical transformations may be needed before an objective func-
tion can be applied.

In addition, convergence of the optimization routine is affected also by a set of 
“internal” optimization constants — group B constants, which define the scalable 
properties of the optimization routine. These constants should be optimized against 
a pool of synthetic spectra (examples) from certain types of problems to guarantee 
the convergence of the optimization technique for this type of problems. In case of 
more robust optimization schemes, the tuned group B constants are more widely 
applicable; however, in general group B constants should be optimized for each 
particular class of problems, before the real characterization process is begun. 

Generally, case independence of the convergence 
quality is one of the important properties of an op-
timization method. 

4.4.  Application of Different Optimization Schemes 

Various optimization methods can be applied to solve the inverse problem. 
However, not all are generally efficient in the biosystem characterization process. 

Optimization methods can be divided according to two criteria: 

  # Means of moving through the phase space 
  # Size of the optimizing set. 

Accordingly, four groups of methods can be identified: 

  # Deterministic – single individual optimization 
  # Stochastic – single individual optimization 
  # Deterministic – population optimization 
  # Stochastic – population optimization 

The above method classes are sorted according to their speed, fine-tuning capabili-
ties, and, on the contrary, to the robustness of the method. The fastest methods are 
deterministic (single individual optimizations), whereas the most robust are sto-
chastic (population optimizations). 

The basic scheme of any optimization method includes initialization and the 
main loop where parameters are changed according to predefined rules. At each 
evaluation of the main loop the fitness function is checked to fulfill predefined stop 
criteria. Optimization methods, however, differ in the way each of these steps is 
performed. 

According to the size and partial correlation in phase spaces that can be found 
in biosystem characterization processes, robustness becomes a much more impor-
tant issue than speed, although speed can be a limiting factor. To select a robust 
method, we can search within a class of population-based optimizations that are in 
general less sensitive to local extremes as well as to model speciations. Optimiza-
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tion methods that do not calculate the spectral derivatives explicitly are especially 
useful, since the numerical calculation of spectral derivatives is in general a noise-
amplifying process. 

In our case, evolutionary optimization (i.e., the generational genetic algorithm 
created by Holland) is taken as a base for inverse problem solving due its robust-
ness and genotype-driven movements in large-phase-space search. This enables 
a global search independent of detection of local minima. However, due to its in-
ability in terms of fine-tuning, it is efficient to hybridize it with a deterministic 
method like the Simplex-Downhill “amoeba” of Nelder and Mead — which also 
does not require a derivative calculation. To get an idea of the implementation, we 
summarize some important properties below. 

Figure 19. The main loop of SD optimization. 

The Simplex Downhill (SD) algorithm is based on linear transformations of a 
population of Np +1 points (each point is a set or vector of all spectral parameters 
{pi}), where Np is the number of optimizing parameters. 

A starting population is usually created from an input vector {pi,0} by modify-
ing the ith parameter of the ith point of the population for a small step δi.

The main loop consists of four linear transformations of the worst or all 
point(s) relative to the center of mass (originally calculated without the worst 
point; see Figure 19):
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  # Reflection of the worst point across center of mass 
# Reflection of the worst point across center of mass and ex-

pansion away 
# Contraction of the worst point in the direction of the center of 

mass 
# Contraction of all except the best point toward the best point 

Figure 20. The main loop of GA (EO) and HEO optimization. 

The generational Genetic (GA) Algorithm is based on genetic-like transfor-
mations of parameters of a large population of M points, where M >>  Np (each point 
is a set or vector of spectral parameters {pi}), where Np is the number of optimizing 
parameters. GA belongs to a family of evolutionary optimization methods; there-
fore, it is sometimes denoted as EO. When GA is hybridized with a local search 
operator (like SD) and knowledge-based operators, it is called Hybrid Evolution-

ary Optimization (HEO).
A starting population is usually created randomly within the definition inter-

vals [pi,min, pi,max].
The main loop consists of the selection, real coding, and application of genetic 

operators in the following scheme (see Figure 20): 

# Fitness (χ2) function evaluation for all new individuals 
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# Sorting 
# Elitism implementation 
# Fitness-proportional or tournament selection 
# Genetic-operations application: 

 Multi-point/uniform crossover 
 Uniform mutation 
 Local mutation (Simplex Downhill in hybrid version) 
 Knowledge-based operators (in hybrid version) 

# Random replacement 

Table 4. Comparison of Advantages and Disadvantages of SD and GA 

   Simplex Downhill                                             Genetic algorithm 

  Advantages 
 Accurate, able to fine-tune Robust 
 Fast Model independent 
 Robust High probability for finding global  
      minimum (minima) 
 Model independent No need for any starting points  
      provided by the user 

Disadvantages 
 Low probability for finding Slow, computational very demanding 
     global minima 
 Need for reasonably good Disability for fine-tuning of 
     starting point provided by     the solution 
     the user in order to be 
     efficient 

Here are some notes on the implementation of HEO: 

# To improve convergence, the evolutionary optimization approach can 
be combined with a more conservative approach, called elitism,
which keeps track of the best individuals found so far and does not al-
low replacement of any member of this “elite” with worse individuals. 

# Efficient hybridization can be achieved with implementation of DS as 

a local mutation operator, performed with a very low probability to 
maintain diversity within the population. 

# To help the algorithm override the problem of partial correlations be-
tween pairs or group of parameters, knowledge-based mutation op-

erators (KBOs) can be applied. These operators swap the values 
within such a group of partially correlated parameters with a very low 
probability. In this way the algorithm induces special jumps in a 
phase space to search for better solutions. 
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4.5.  Accuracy and Reproducibility of Solutions 

At the end of the characterization procedure, the solutions have to be classified 
in terms of reproducibility and accuracy. 

Reproducibility is related to the effectiveness, robustness, and 
fine-tuning ability of the optimization routine, and is defined 
through: 

  #  Means of moving through the phase space 
  #  Starting point(s) determination process 
  #  Ability for global search 
  #  Ability for local search 
  #  Convergence dependence on simulation model 

The reproducibility of the method (and model) can be determined via multi-
run optimization of spectral parameters using synthetic (simulated) spectra with 
known parameter sets and contaminated with a low Gaussian noise level. The syn-
thetic spectrum should be produced with the same model as will be used in the 
optimization. In case of a multi-run stochastic optimization, the determination of 
reproducibility is straightforward. However, in case of a multi-run deterministic 
method, special care should be taken to supply a large set of random starting points. 
The similarity of the synthetic spectra and experimental spectra assures that the 
reproducibility is approximately the same when optimization is done with a real 
experimental spectrum or with a synthetic spectrum (as experimental one). 

Accuracy defines the most probable range(s) of a real solution 
(confidence region). It depends on: 

  #  Signal-to-noise ratio of the experimental data 
  #  Partial correlations between different model parameters 

Accuracy can be determined in a straightforward manner using multi-run 
stochastic optimization methods. The area that includes 66% of the solutions 
around the averaged solution defines the standard confidence region (in the 
multidimensional space). However, this region also includes the reproducibility 
range, which has to be subtracted from this confidence region. 

In the case when deterministic methods are used, the accuracy determination is 
not so reliable. The simplest way is to expand χ2({pi}) around an optimized value 
{pi,0} and determine the confidence region through a second derivative matrix α
(Hessian matrix). Note that this method can be used only as a rough approximation 
only if the optimized value {pi,0} is in a real minimum. 

The elements of the Hessian matrix αk,l can be calculated as 
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where N is the number of points in the spectrum, σ is the standard deviation of the 
experimental points, pi are the spectral parameters and yj

sim are the values of the 
simulated spectra. 

The inverse of Hessian matrix α is defined as covariance matrix C:

1C α . (64) 

The diagonal elements can be used to derive a rough approximation to confidence 
intervals σi:

i iiCσ = . (64) 

The off-diagonal elements approximate correlation coefficients ci,j:
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4.6.  Complexity of a Biological System: GHOST Condensation 

Before the characterization procedure is applied to determine biosystem com-
plexity, one has to check that the inverse problem is not ill-posed. Frequent diver-
gence or “address violation errors” that are detected within the optimization indi-
cate that the model cannot adequately describe the experimental data or is not sen-
sitive to a certain part of the model phase space (a combination of some parameters 
in a certain interval). Any of these possibilities calls for immediate model modifi-
cations. 

However, even if the optimization converges successfully in 100% of cases, 
there is still a possibility that the model cannot fully describe the experimental sys-
tem response due to low complexity of the proposed model. This can be recognized 
by the following features 

# Successful convergence with no obvious model errors 
# Many equally good solutions provided by the multi-run stochastic op-

timization routines 
# High reproducibility and accurateness of solutions found for the syn-

thetic spectra with the same model and the same optimization rou-
tines 

In such a case, the appearance of virtual irreproducibility of solutions of real prob-
lems results from low model complexity.

Often the response of a biosystem is more complex than the simulation model 
can handle. Consequently, the simulation model cannot lead to a perfect solution, 
but only to a low-dimensional “projection.” Clearly, many good projections exist 
of the same higher-dimensional object. This fact is implemented in a so-called 
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GHOST condensation approach based on multiple HEO runs, and to roughly con-
struct a quasi-continuous description of the complex system, even when model 
complexity is proposed to be finite. 

Figure 21. The GHOST approach. 

In GHOST condensation, it as assumed that the maximal number of spectral 
parameters that can be resolved from nitroxide based spectra is between 20 and 30. 
This corresponds to 4 spectral components. Therefore, a 4-component model is 
applied in spectral simulation models. The approach is divided into the following 
four steps (see also Figure 21): 

1. Collection of solutions: To collect possible projections of the com-
plex system, multiple runs of HEO are performed (up to 200 runs). In 
an older approach only the best-fit parameter sets of each run were 
used in the further condensation procedure. However, faster acquisi-
tion of solution is obtained by acquiring the best 10 solutions from 
the population of each run, in combination with new “shaking” opera-
tors to maintain solution diversity in a single run (dHEO algorithm). 

2. Filtering of solution: To assure that only the successful optimization 
runs were taken into account, 40% of the best-fit sets were passed 
through the χ2-filter. In addition, the density of the solutions in the 
parameter space was calculated to enable density filtering. The latter 
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is applied to pass through only those solutions that possess a local 
density higher than the minimum density threshold. With this filter 
unusual solutions (that are not found in several runs) are thrown away. 

3. Condensation of solutions within a slicing procedure: Predefined 
uncertainties of spectral parameters are used to group the solutions 
according to a neighborhood condition at various density levels. The 
groups are used to calculate the center of mass of each group of solu-
tions as well as their second moment (spreading of the solution). This 
is used to discriminate between the discrete and continuous character 
of a particular group. In addition, slicing by itself can also help to de-
terminate this character: by tracking the center of mass of each group 
from the highest to the lowest density slice. Discrete groups do not 
change it center of mass significantly from slice to slice; however, 
quasi-continuous groups with or without discrete groups superim-
posed on it can significantly change the center of mass between slices. 

4. GHOST presentation: The groups of solutions can be presented by 
two-dimensional cross-section diagrams, such as S–τc, S–W, S–pA, or 
θ–φ, θ–τc, θ–W, θ–pA, depending on the model used (here S, τc, W,
and pA represent typical model parameters: order parameter, effective 
rotational correlation time, additional broadening constant, and polar-
ity correction factor on the hyperfine tensor). In addition, RGB color 
coding can be applied to enable fast tracking of groups between dif-
ferent GHOST diagrams (see Figure 22). 

Figure 22.RGB color cube (a) and two examples of GHOST diagrams: MT1 breast cancer 
cells spin labeled with MeFASL (10,3) growing 5 days at (10.4 ± 1.8) × 106 cells in the cul-
ture flask (b), and SDSL of M13 coat protein — cysteine mutant spin labeled at position 34 
(c). 

As can be seen from the examples in Figure 22, the motional/polarity patterns 
can be recognized for different biosystems under various conditions. In the case of 
a nonspecifically spin-labeled membrane (b), some sharply defined solutions are 
found together with a quasi-continuous distribution of solutions. This indicates that 
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a part of the membrane cannot be modeled well (contrary to healthy cells, which 
usually possess well-resolved discrete domain structure; data not shown). In case 
of a site-directed spin labeled cysteine mutant of a membrane protein that was 
reconstituted in a model membrane (c), coexistence of different motional/polarity 
patterns is observed. This points to coexisting local conformations of this mem-
brane protein with different restrictions and rates of rotational motion, polarity, and 
interaction with the oxygen (additional broadening), which together with the polar-
ity information indicate the position of the label relative to the membrane surface, 
i.e., relative to the water and oxygen partitioning profiles. 

Many other models and applications can also be involved in the characteriza-
tion scheme that is presented in this chapter. According to a recent decrease in the 
numerical demand of this characterization to roughly one spectrum per 1-GFLOPS 
processor per day and successful elimination of user interaction from the core of 
this procedure, this approach is affordable now for any spectroscopic laboratory 
without a huge investment in computer mainframes or computer clusters. 

5.  APPENDIX 

The explicit expressions for the G  and A  terms after averaging are given be-
low. Note that the terms involving sin(ϕ), cos(ϕ), sin(2ϕ), sin(ψ), and sin(2ψ) van-
ish after averaging due to symmetry reasons: 
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( ) ( ) ( ) ( ) ( )avg 2 2 2 2 2 2 2 2cos sin sin sin coszz xx yy zzG g g gϕ ϑ ϕ ϑ ϑ= + + , (A.3) 

avg 0xzG = , avg 0xyG = , avg 0yzG = . (A.4–6) 

Similarly averaged effective hyperfine tensor components are expressed as 
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avg 0xzA = , avg 0xyA = , avg 0yzA = . (A.10–12) 

With the above averaged expressions one can define the expressions for the effec-
tive tensors geff, Azz

eff, Axzyz
eff, Axyxy

eff, and Axxyy
eff of the final spin Hamiltonian of 

Eq. (39): 
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