
7

Highest Weight Theory

By studying the L2 functions on a compact Lie group G, the Peter–Weyl Theorem
gives a simultaneous construction of all irreducible representations of G. Two im-
portant problems remain. The first is to parametrize Ĝ in a reasonable manner and
the second is to individually construct each irreducible representation in a natural
way. The solution to both of these problems is closely tied to the notion of highest
weights.

7.1 Highest Weights

In this section, let G be a compact Lie group, T a maximal torus, and �+(gC) a
system of positive roots with corresponding simple system �(gC). Write

n± =
⊕

α∈�±(gC)

gα,

so that

gC = n− ⊕ tC ⊕ n+(7.1)

by the root space decomposition. Equation 7.1 is sometimes called a triangular
decomposition of gC since n± can be chosen to be the set of strictly upper, re-
spectively lower, triangular matrices in the case where G is GL(n,F). Notice that
[tC ⊕ n+, n+] ⊆ n+ and [tC ⊕ n−, n−] ⊆ n−.

Definition 7.2. Let V be a representation of g with weight space decomposition V =⊕
λ∈�(V ) Vλ.

(a) A nonzero v ∈ Vλ0 is called a highest weight vector of weight λ0 with respect to
�+(gC) if n+v = 0, i.e., if Xv = 0 for all X ∈ n+. In this case, λ0 is called a highest
weight of V .
(b) A weight λ is said to be dominant if B(λ, α) ≥ 0 for all α ∈ �(gC), i.e., if λ lies
in the closed Weyl chamber corresponding to �+(gC).
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As an example, recall that the action of su(2)C = sl(2,C) on Vn(C2), n ∈ Z≥0,
from Equation 6.7 is given by

E · (zk
1zn−k

2 ) = −k zk−1
1 zn−k+1

2

H · (zk
1zn−k

2 ) = (n − 2k) zk
1zn−k

2

F · (zk
1zn−k

2 ) = (k − n) zk+1
1 zn−k−1

2 ,

and recall that {Vn(C2) | n ∈ Z≥0} is a complete list of irreducible representa-
tions for SU (2). Taking it = diag(θ,−θ), θ ∈ R, there are two roots, ±ε12, where
ε12(diag(θ,−θ)) = 2θ . Choosing �+(sl(2,C)) = {ε12}, it follows that zn

2 is a high-
est weight vector of Vn(C2) of weight n ε12

2 . Notice that the set of dominant analyti-
cally integral weights is {n ε12

2 | n ∈ Z≥0}. Thus there is a one-to-one correspondence
between the set of highest weights of irreducible representations of SU (2) and the set
of dominant analytically integral weights. This correspondence will be established
for all connected compact groups in Theorem 7.34.

Theorem 7.3. Let G be a connected compact Lie group and V an irreducible repre-
sentation of G.
(a) V has a unique highest weight, λ0.
(b) The highest weight λ0 is dominant and analytically integral, i.e., λ0 ∈ A(T ).
(c) Up to nonzero scalar multiplication, there is a unique highest weight vector.
(d) Any weight λ ∈ �(V ) is of the form

λ = λ0 −
∑

αi∈�(gC)

niαi

for ni ∈ Z≥0.
(e) For w ∈ W , wVλ = Vwλ, so that dim Vλ = dim Vwλ. Here W (G) is identified
with W (�(gC)), as in Theorem 6.43 via the Ad-action from Equation 6.35.
(f) Using the norm induced by the Killing form, ‖λ‖ ≤ ‖λ0‖ with equality if and only
if λ = wλ0 for w ∈ W (gC).
(g) Up to isomorphism, V is uniquely determined by λ0.

Proof. Existence of a highest weight λ0 follows from the finite dimensionality of V
and Theorem 6.11. Let v0 be a highest weight vector for λ0 and inductively define
Vn = Vn−1 + n−Vn−1 where V0 = Cv0. This defines a filtration on the (n− ⊕ tC)-
invariant subspace V∞ = ∪n Vn of V . If α ∈ �(gC), then [gα, n

−] ⊆ n− ⊕ tC. Since
gαV0 = 0, a simple inductive argument shows that gαVn ⊆ Vn . In particular, this
suffices to demonstrate that V∞ is gC-invariant. Irreducibility implies V = V∞ and
part (d) follows.

If λ1 is also a highest weight, then λ1 = λ0 −
∑

niαi and λ0 = λ1 −
∑

miαi

for ni ,mi ∈ Z≥0. Eliminating λ1 and λ0 shows that −∑
niαi =

∑
miαi . Thus

−ni = mi , so that ni = mi = 0 and λ1 = λ0. Furthermore, the weight decomposition
shows that V∞ ∩ Vλ0 = V0 = Cv0, so that parts (a) and (c) are complete.

The proof of part (e) is done in the same way as the proof of Theorem 6.36. For
part (b), notice that rαiλ0 is a weight by part (e). Thus
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λ0 − 2
B(λ0, αi )

B(αi , αi )
αi = λ0 −

∑
α j∈�(gC)

n jα j

for n j ∈ Z≥0. Hence 2 B(λ0,αi )

B(αi ,αi )
= ni , so that B(λ0, αi ) ≥ 0 and λ0 is dominant.

Theorem 6.27 shows that λ0 (in fact, any weight of V ) is analytically integral.
For part (f), Theorem 6.43 shows that it suffices to take λ dominant by using the

Weyl group action. Write λ = λ0 −
∑

niαi . Solving for λ0 and using dominance in
the second line,

‖λ0‖2 = ‖λ‖2 + 2
∑

αi∈�(gC)

ni B(λ, αi )+
∥∥∥∥∥ ∑
αi∈�(gC)

niαi

∥∥∥∥∥
2

≥ ‖λ‖2 +
∥∥∥∥∥ ∑
αi∈�(gC)

niαi

∥∥∥∥∥
2

≥ ‖λ‖2 .

In the case of equality, it follows that
∑

αi∈�(gC)
niαi = 0, so that ni = 0 and λ = λ0.

For part (g), suppose V ′ is an irreducible representation of G with highest weight
λ0 and corresponding highest weight vector v′0. Let W = V ⊕ V ′ and define
Wn = Wn−1 + n−Wn−1, where W0 = C(v0, v

′
0). As above, W∞ = ∪n Wn is a

subrepresentation of V ⊕ V ′. If U is a nonzero subrepresentation of W∞, then U
has a highest weight vector, (u0, u′0). In turn, this means that u0 and u′0 are highest
weight vectors of V and V ′, respectively. Part (a) then shows that C(u0, u′0) = W0.
Thus U = W∞ and W∞ is irreducible. Projection onto each coordinate establishes
the G-intertwining map V ∼= V ′. �


The above theorem shows that highest weights completely classify irreducible
representations. It only remains to parametrize all possible highest weights of irre-
ducible representations. This will be done in §7.3.5 where we will see there is a
bijection between the set of dominant analytically integral weights and irreducible
representations of G.

Definition 7.4. Let G be connected and let V be an irreducible representation of G
with highest weight λ. As V is uniquely determined by λ, write V (λ) for V and write
χλ for its character.

Lemma 7.5. Let G be connected. If V (λ) is an irreducible representation of G, then
V (λ)∗ ∼= V (−w0λ), where w0 ∈ W (�(gC)) is the unique element mapping the
positive Weyl chamber to the negative Weyl chamber (c.f. Exercise 6.40).

Proof. Since V (λ) is irreducible, the character theory of Theorems 3.5 and 3.7 show
that V (λ)∗ is irreducible. It therefore suffices to show that the highest weight of
V (λ)∗ is −w0λ.

Fix a G-invariant inner product, (·, ·), on V (λ), so that V (λ)∗ = {µv | v ∈ V (λ)},
where µv(v

′) = (v′, v) for v′ ∈ V (λ). By the invariance of the form, gµv = µgv

for g ∈ G, so that Xµv = µXv for X ∈ g. Since (·, ·) is Hermitian, it follows that
Zµv = µθ(Z)v for Z ∈ gC.
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Let vλ be a highest weight vector for V (λ). Identifying W (G) with W (�(gC)
∨)

and W (�(gC)) as in Theorem 6.43 via the Ad-action of Equation 6.35, it follows
from Theorem 7.3 that w0vλ is a weight vector of weight w0λ (called the lowest
weight vector). As θ(Y ) = −Y for Y ∈ it and since weights are real valued on it, it
follows that µw0vλ is a weight vector of weight −w0λ.

It remains to see that n−w0vλ = 0 since Lemma 6.14 shows θn+ = n−. By
construction, w0�

+(gC) = �−(gC) and w2
0 = I , so that Ad(w0)n

− = n+. Thus

n−w0vλ = w0
(
Ad(w−1

0 )n−
)
vλ = w0n

+vλ = 0

and the proof is complete. �


7.1.1 Exercises

Exercise 7.1 Consider the representation of SU (n) on
∧p Cn . For T equal to the

usual set of diagonal elements, show that a basis of weight vectors is given by vectors
of the form el1 ∧ · · · ∧ elp with weight

∑p
i=1 εli . Verify that only e1 ∧ · · · ∧ ep is a

highest weight to conclude that
∧p Cn is an irreducible representation of SU (n) with

highest weight
∑p

i=1 εi .

Exercise 7.2 Recall that Vp(Rn), the space of complex-valued polynomials on Rn

homogeneous of degree p, and Hp(Rn), the harmonic polynomials, are representa-
tions of SO(n). Let T be the standard maximal torus given in §5.1.2.3 and §5.1.2.4,
let h j = E2 j−1,2 j − E2 j,2 j−1 ∈ t, 1 ≤ k ≤ m ≡ ⌊

n
2

⌋
, i.e., h j is an embedding of(

0 1
−1 0

)
, and let ε j ∈ t∗ be defined by ε j (h j ′) = −iδ j, j ′ (c.f. Exercise 6.14).

(1) Show that h j acts on Vp(Rn) by the operator −x2 j∂x2 j−1 + x2 j−1∂x2 j .
(2) For n = 2m + 1, conclude that a basis of weight vectors is given by polynomials
of the form

(x1 + i x2)
j1 · · · (x2m−1 + i x2m)

jm (x1 − i x2)
k1 · · · (x2m−1 − i x2m)

km xl0
2m+1,

l0 +
∑

i ji +
∑

i ki = p, each with weight
∑

i (ki − ji )εi .
(3) For n = 2m, conclude that a basis of weight vectors is given by polynomials of
the form

(x1 + i x2)
j1 · · · (xn−1 + i xn)

jm (x1 − i x2)
k1 · · · (xn−1 − i xn)

km ,∑
i ji +

∑
i ki = p, each with weight

∑
i (ki − ji )εi .

(4) Using the root system of so(n,C) and Theorem 2.33, conclude that the weight
vector (x1 − i x2)

p of weight pε1 must be the highest weight vector of Hp(Rn) for
n ≥ 3.
(5) Using Lemma 2.27, show that a basis of highest weight vectors for Vp(Rn) is
given by the vectors (x1 − i x2)

p−2 j ‖x‖2 j of weight (p − 2 j)ε1, 1 ≤ j ≤ m.

Exercise 7.3 Consider the representation of SO(n) on
∧p Cn and continue the no-

tation from Exercise 7.2.
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(1) For n = 2m+1, examine the wedge product of elements of the form e2 j−1± ie2 j

as well as e2m+1 to find a basis of weight vectors (the weights will be of the form
±ε j1 · · · ± ε jr with 1 ≤ j1 < . . . < jr ≤ p). For p ≤ m, show that only one is
a highest weight vector and conclude that

∧p Cn is irreducible with highest weight∑p
i=1 εi .

(2) For n = 2m, examine the wedge product of elements of the form e2 j−1 ± ie2 j to
find a basis of weight vectors. For p < m, show that only one is a highest weight vec-
tor and conclude that

∧p Cn is irreducible with highest weight
∑p

i=1 εi . For p = m,
show that there are exactly two highest weights and that they are

∑m−1
i=1 εi ± εm . In

this case, conclude that
∧m Cn is the direct sum of two irreducible representations.

Exercise 7.4 Let G be a compact Lie group, T a maximal torus, and �+(gC) a
system of positive roots with respect to tC with corresponding simple system �(gC).
(1) If V (λ) and V (λ′) are irreducible representations of G, show that the weights of
V (λ)⊗V (λ′) are of the form µ+µ′, where µ is a weight of V (λ) and µ′ is a weight
of V (λ′).
(2) By looking at highest weight vectors, show V (λ + λ′) appears exactly once as a
summand in V (λ)⊗ V (λ′).
(3) Suppose V (ν) is an irreducible summand of V (λ)⊗ V (λ′) and write the highest
weight vector of V (ν) in terms of the weights of V (λ)⊗V (λ′). By considering a term
in which the contribution from V (λ) is as large as possible, show that ν = λ+µ′ for
a weight µ′ of V (λ′).

Exercise 7.5 Recall that Vp,q(Cn) from Exercise 2.35 is a representations of SU (n)
on the set of complex polynomials homogeneous of degree p in z1, . . . , zn and ho-
mogeneous of degree q in z1, . . . , zn and that Hp,q(Cn) is an irreducible subrepre-
sentation.
(1) If H = diag(t1, . . . , tn) with

∑
j t j = 0, show that H acts on Vp,q(Cn) as∑

j t j (−z j∂z j + z j∂z j ).

(2) Conclude that zk1
1 · · · zkn

n z1
l1 · · · zn

ln ,
∑

j k j = p and
∑

j l j = q, is a weight vec-
tor of weight

∑
j (l j − k j )ε j .

(3) Show that −pεn is a highest weight of Vp,0(Cn).
(4) Show that qε1 is a highest weight of V0,q(Cn).
(5) Show that qε1 − pεn is the highest weight of Hp,q(Cn).

Exercise 7.6 Since Spinn(R) is the simply connected cover of SO(n), n ≥ 3, the
Lie algebra of Spinn(R) can be identified with so(n) (a maximal torus for Spinn(R)

is given in Exercise 5.5).
(1) For n = 2m+1, show that the weights of the spin representation S are all weights
of the form 1

2 (±ε1 · · · ± εm) and that the highest weight is 1
2 (ε1 + · · · + εm).

(2) For n = 2m, show that the weights of the half-spin representation S+ are all
weights of the form 1

2 (±ε1 · · · ± εm) with an even number of minus signs and that
the highest weight is 1

2 (ε1 + · · · + εm−1 + εm).
(3) For n = 2m, show that the weights of the half-spin representation S− are all
weights of the form 1

2 (±ε1 · · · ± εm) with an odd number of minus signs and that
the highest weight is 1

2 (ε1 + · · · + εm−1 − εm).
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7.2 Weyl Integration Formula

Let G be a compact connected Lie group, T a maximal torus, and f ∈ C(G). We
will prove the famous Weyl Integration Formula (Theorem 7.16) which says that∫

G
f (g) dg = 1

|W (G)|
∫

T
d(t)

∫
G/T

f (gtg−1) dgT dt,

where d(t) = ∏
α∈�+(gC)

|1− ξ−α(t)|2 for t ∈ T . Using Equation 1.42, the proof
will be based on a change of variables map ψ : G/T ×T → G given by ψ(gT, t) =
gtg−1. In order to ensure all required hypothesis are met, it is necessary to first
restrict our attention to a distinguished dense open subset of G called the set of
regular elements.

7.2.1 Regular Elements

Let G be a compact Lie group with maximal torus T and X ∈ g. Recall from Def-
inition 5.8 that X is called a regular element of g if zg(X) is a Cartan subalgebra.
Also recall from Theorem 6.27 the bijection between the set of analytically integral
weights, A(T ), and the character group, χ(T ), that maps λ ∈ A(T ) to ξλ ∈ χ(T )

and satisfies

ξλ(exp H) = eλ(H)

for H ∈ t.

Definition 7.6. Let G be a compact connected Lie group with maximal torus T .
(a) An element g ∈ G is said to be regular if ZG(g)0 is a maximal torus.
(b) Write greg for the set of regular element in g and write Greg for the set of regular
elements in G.
(c) For t ∈ T , let

d(t) =
∏

α∈�(gC)

(1− ξ−α(t)).

Theorem 7.7. Let G be a compact connected Lie group.
(a) greg is open dense in g,
(b) Greg is open dense in G,
(c) If T is a maximal torus and t ∈ T , t ∈ T reg if and only if d(t) �= 0,
(d) For H ∈ t, eH is regular if and only if H ∈ � = {H ∈ t | α(H) /∈ 2π iZ,
α ∈ �(gC)},
(e) Greg = ∪g∈G

(
gT regg−1

)
.

Proof. Let l be the dimension of a Cartan subalgebra and n = dim g. Any element
X ∈ g lies in at least one Cartan subalgebra, so that dim(ker(ad(X))) ≥ l. Thus

det(ad(X)− λI ) =
n∑

k=l

ck(X)λk,



7.2 Weyl Integration Formula 157

where ck(X) is a polynomial in X . Since ad(X) is diagonalizable, X is regular if and
only if dim(ker(ad(X))) = l. In particular, X is regular if and only if cl(X) �= 0.
Thus greg is open in g. It also follows that greg is dense since a polynomial vanishes
on a neighborhood if and only if it is zero.

For part (b), similarly observe that each g ∈ G lies in a maximal torus so that
dim(ker(Ad(g)− I )) ≥ l. Thus

det(Ad(g)− λI ) =
n∑

k=l

c̃k(g)(λ− 1)k,

where c̃k (g) is a smooth function of g. From Exercise 4.22, recall that the Lie algebra
of ZG(g) is zg(g) = {X ∈ g | Ad(g)X = X}. Since ZG(g)0 is a maximal torus if
and only if zg(g) is a Cartan subalgebra, diagonalizability implies g is regular if and
only if c̃l(g) �= 0. Thus Greg is open in G.

To establish the density of Greg, fix a maximal torus T of G. Since the eigenval-
ues of Ad(eH ) are of the form eα(H) for α ∈ �(gC)∪{0}, it follows that eH is regular
if and only if H ∈ �. Since � differs from t only by a countable number of hyper-
planes, � is dense in t by the Baire Category Theorem. Because exp is onto and con-
tinuous, T reg is therefore dense in T . Since the Maximal Torus Theorem shows that
G = ∪g∈G

(
gT g−1

)
, counting eigenvalues of Ad(g) shows Greg = ∪g∈G

(
gT regg−1

)
.

Density of Greg in G now follows easily from the density of T reg in T . �

Definition 7.8. Let G be a compact connected Lie group and T a maximal torus.
Define the smooth, surjective map ψ : G/T × T → G by

ψ(gT, t) = gtg−1.

Abusing notation, we also denote by ψ the smooth, surjective map ψ : G/T ×
T reg → Greg defined by restriction of domain.

It will soon be necessary to understand the invertibility of the differential dψ :
TgT (G/T ) × Tt (T ) → Tgtg−1(G) for g ∈ G and t ∈ T . Calculations will be sim-
plified by locally pulling G/T × T back to G with an appropriate cross section for
G/T . Write π : G → G/T for the natural projection map.

Lemma 7.9. Let G be a compact connected Lie group and T a maximal torus. Then
g = t ⊕ (

g ∩ ⊕
α∈�(gC)

gα

)
and there exists an open neighborhood Ug of 0 in(

g ∩⊕
α∈�(gC)

gα

)
so that, if UG = exp Ug and UG/T = πUG, then:

(a) the map Ug
exp→ UG

π→ UG/T is a diffeomorphism,
(b) UG/T is an open neighborhood of eT in G/T ,
(c) UG T = {gt | g ∈ UG, t ∈ T } is an open neighborhood of e in G
(d) The map ξ : UG T → G/T × T given by ξ(gt) = (gT, t) is a smooth, well-
defined diffeomorphism onto UG/T × T .

Proof. The decomposition g = t⊕ (
g ∩⊕

α∈�(gC)
gα

)
follows from Theorem 6.20.

In fact,
(
g ∩⊕

α∈�(gC)
gα

)
is spanned by the elements Jα and Kα for α ∈ �(gC).
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Since the map (H, X) → eH eX , H ∈ t and X ∈ (
g ∩⊕

α∈�(gC)
gα

)
, is therefore a

local diffeomorphism at 0, it follows that there is an open neighborhood Ug of 0 in(
g ∩⊕

α∈�(gC)
gα

)
on which exp is a diffeomorphism onto UG .

Recall that TeT (G/T ) may be identified with g/t. Thus by construction, the dif-
ferential of π restricted to Te(UG) at e is clearly invertible, so that π is a local diffeo-
morphism from UG at e. Thus, perhaps shrinking Ug and UG , we may assume that

UG/T is an open neighborhood of eT in G/T and that the maps Ug
exp→ UG

π→ UG/T

are diffeomorphisms. This finishes parts (a) and (b).
For part (c), UG T is a neighborhood of e since the map (H, X) → eH eX is a

local diffeomorphism at 0. In fact, there is a subset V of T so that UG V is open.
Taking the union of right translates by elements of T , it follows that UG T is open.

For part (d), suppose gt = g′t ′ with g, g′ ∈ UG and t, t ′ ∈ T . Then πg = πg′,
so that g = g′ and t = t ′. Thus the map is well defined and the rest of the statement
is clear. �


Using Lemma 7.9, it is now possible to study the differential dψ : TgT (G/T )×
Tt (T ) → Tgtg−1(G). This will be done with the map ξ and appropriate translations
to pull everything back to neighborhoods of e in G.

Lemma 7.10. Let G be a compact connected Lie group and T a maximal torus.
Choose UG ⊆ G as in Lemma 7.9. For g ∈ G and t ∈ T , let φ : UG T → G be given
by

φ = lgt−1g−1 ◦ ψ ◦ (lgT × lt ) ◦ ξ,
where ξ is defined as in Lemma 7.9. Then the differential dφ : g → g is given by

dφ(H + X) = Ad(g)
[(

Ad(t−1)− I
)

X + H
]

for H ∈ t and X ∈ (
g ∩⊕

α∈�(gC)
gα

)
and

det(dφ) = d(t).

Proof. Calculate

dφ(H) = d

ds
φ(es H )|s=0 = d

ds
ges H g−1|s=0 = Ad(g)H

dφ(X) = d

ds
φ(es X )|s=0 = d

ds
gt−1es X te−s X g−1|s=0 = Ad(gt−1)X − Ad(g)X,

so that the formula for dφ is established by linearity. For the calculation of the de-
terminant, first note that det Ad(g) = 1. This follows from the three facts: (1) the
determinant is not changed by complexifying, (2) each g lies in a maximal torus, and
(3) the negative of a root is always a root. The problem therefore reduces to show-
ing that the determinant of

(
Ad(t−1)− I

)
on

⊕
α∈�(gC)

gα is
∏

α∈�(gC)
(1− e−α(H)).

Since dim gα = 1 and Ad(t−1) acts on gα by e−α(ln t), where eln t = t , the proof fol-
lows easily. The extra negative signs are taken care of by the even number of roots
(since �(gC) = �+(gC)��−(gC)). �
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Theorem 7.11. Let G be a compact connected Lie group and T a maximal torus.
The map

ψ : G/T × T reg → Greg given by

ψ(gT, t) = gtg−1

is a surjective, |W (G)|-to-one local diffeomorphism.

Proof. For g ∈ G and t ∈ T reg, Lemma 7.10 and Theorem 7.7 show that ψ is a
surjective local diffeomorphism at (gT, t). Moreover if w ∈ N (T ), then

ψ(gw−1T, wtw−1) = ψ(gT, t).(7.12)

Since gw−1T = gT if and only if w ∈ T , it follows that
∣∣ψ−1(gtg−1)

∣∣ ≥ |W (G)|.
To see that ψ is exactly |W (G)|-to-one, suppose gtg−1 = hsh−1 for h ∈ G

and s ∈ T reg. By Theorem 6.36, there is w ∈ N (T ), so that s = wtw−1. Plugging
this into gtg−1 = hsh−1 quickly yields w′ = g−1hw ∈ ZG(t). Since t is regular,
ZG(t)0 = T . Being the identity component of ZG(T ), cw′ preserves T , so that w′ ∈
N (T ). Hence

(hT, s) = (gw′w−1T, wtw−1) = (gw′w−1T, ww′−1tw′w−1).

Since this element was already known to be in ψ−1(gtg−1) by Equation 7.12, we
seethat

∣∣ψ−1(gtg−1)
∣∣ ≤ |W (G)|, as desired. �


7.2.2 Main Theorem

Let G be a compact connected Lie group and T a maximal torus. From Theorem
1.48 we know that ∫

G
f (g) dg =

∫
G/T

(∫
T

f (gt) dt

)
d(tT )

for f ∈ C(G). Recall that the invariant measures above are given by integration
against unique (up to ±1) normalized left-invariant volume forms ωG ∈ ∧∗

top(G)

and ωG/T ∈ ∧∗
top(G/T ). In this section we make a change of variables based on

the map ψ to obtain Weyl’s Integration Formula. To this end write n = dim G,
l = dim T (also called the rank of G when g is semisimple), and write ι : T → G
for the inclusion map. Recall that π : G → G/T is the natural projection map.

Lemma 7.13. Possibly replacing ωT by −ωT (which does not change integration),
there exists a G-invariant form ω̃T ∈

∧∗
l (G), so that

ωT = ι∗ω̃T

and

ωG =
(
π∗ωG/T

) ∧ ω̃T
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Proof. Clearly the restriction map ι∗|e : g∗ → t∗ is surjective. Choose any (ω̃T )e ∈∧∗
l (G)e, so ι∗ (ω̃T )e = (ωT )eT . Using left translation, uniquely extend (ω̃T )e to a

left-invariant form ω̃T ∈ ∧∗
l (G). Since ι commutes with left multiplication by G,

it follows that ι∗ω̃T = ωT . Since π also commutes with left multiplication by G,
π∗ωG/T ∈ ∧∗

n−l(G) is left-invariant as well. Thus
(
π∗ωG/T

) ∧ ω̃T ∈ ∧∗
n(G) is

left-invariant and therefore
(
π∗ωG/T

) ∧ ω̃T = cωG for some c ∈ R by uniqueness.
Write πi for the two natural coordinate projections π1 : G/T × T → G/T and

π2 : G/T × T → T . Using the notation from Lemma 7.9, observe that π |UG T =
π1 ◦ ξ , so that

π∗ωG/T = ξ ∗π∗1 ωG/T

on UG T . Similarly, observe that I |T = π2 ◦ ξ ◦ ι, so that ι∗
(
ξ ∗π∗2 ωT

) = ωT . Thus

ξ ∗π∗2 ωT = ω̃T + ω

on UG T for some ω ∈∧∗
l (UG T ) with ι∗ω = 0.

We claim that
(
π∗ωG/T

) ∧ ω = 0 on UG T . Since ξ is a diffeomorphism, this is
equivalent to showing

(
π∗1 ωG/T

) ∧ ω′ = 0, where ω′ = (
ξ−1

)∗
ω ∈ ∧∗

l (UG/T × T )

satisfies ι∗ξ ∗ω′ = 0. Now ω′ can be written as a sum ω′ = ∑l
j=0 f j

(
π∗1 ω

′
j

)
∧(

π∗2 ω
′′
l− j

)
, where f j is a smooth function on G/T ×T , ω′j ∈

∧∗
j (UG/T ), and ω′′l− j ∈∧∗

l− j (T ). Without loss of generality, we may take π∗1 ω
′
0 = 1. As I |T = π2 ◦ ξ ◦ ι

and (π1 ◦ ξ ◦ ι) (t) = eT for t ∈ T , it follows that 0 = ι∗ξ ∗ω′ = f0ω
′′
l . Therefore

ω′ =∑l
j=1 f j

(
π∗1 ω

′
j

)
∧
(
π∗2 ω

′′
l− j

)
. Since ωG/T is a top degree form, ωG/T∧ω′j = 0,

j ≥ 1, so that
(
π∗1 ωG/T

) ∧ ω′ = 0, as desired.
It now follows that

cωG =
(
π∗ωG/T

) ∧ ω̃T =
(
π∗ωG/T

) ∧ (ω̃T + ω)

= ξ ∗[
(
π∗1 ωG/T

) ∧ (
π∗2 ωT

)
](7.14)

on UG T . Looking at local coordinates, it is clear that
(
π∗1 ωG/T

) ∧ (
π∗2 ωT

) �= 0,
so c �= 0. Replacing ωT by −ωT if necessary, we may assume c > 0. Choose any
continuous function f supported on UG T and use the change of variables formula to
calculate

c
∫

G/T

∫
T

f ◦ ξ−1(gT, t) dt dgT = c
∫

G/T

∫
T

f (gt) dt dgT = c
∫

G
f (g) dg

=
∫

UG T
f cωG =

∫
UG T

f ξ ∗[
(
π∗1 ωG/T

) ∧ (
π∗2 ωT

)
]

=
∫

UG/T×T
f ◦ ξ−1

(
π∗1 ωG/T

) ∧ (
π∗2 ωT

)
.

Since it follows immediately from the definitions (Exercise 7.7) that
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UG/T×T

f ◦ ξ−1
(
π∗1 ωG/T

) ∧ (
π∗2 ωT

) = ∫
G/T

∫
T

f ◦ ξ−1(gT, t) dt dgT ,(7.15)

c = 1, as desired. �

Theorem 7.16 (Weyl Integration Formula). Let G be a compact connected Lie
group, T a maximal torus, and f ∈ C(G). Then∫

G
f (g) dg = 1

|W (G)|
∫

T
d(t)

∫
G/T

f (gtg−1) dgT dt,

where d(t) =∏
α∈�+(gC)

|1− ξ−α(t)|2 for t ∈ T .

Proof. Since Theorem 7.7 shows that Greg is open dense in G and T reg is open dense
in T , it suffices to prove that∫

Greg
f (g) dg = 1

|W (G)|
∫

T reg
d(t)

∫
G/T

f (gtg−1) dgT dt .

To this end, recall that Theorem 7.11 shows that ψ : G/T × T reg → Greg is a
surjective, |W (G)|-to-one local diffeomorphism. We will prove that

ψ∗ωG = d(t)
(
π∗1 ωG/T

) ∧ (
π∗2 ωT

)
,(7.17)

where π1 and π2 are the projections from Lemma 7.13. Once this is done, the theorem
follows immediately from Equation 1.42.

To verify Equation 7.17, first note that there is a smooth function δ : G/T×T →
R, so that

ψ∗ωG |gtg−1 = [
δ
(
π∗1 ωG/T

) ∧ (
π∗2 ωT

)] |(gT,t)

since the dimension of top degree form is 1 at each point. Since UG/T × T is
a neighborhood of (eT, e), Equation 7.14 shows

[(
π∗1 ωG/T

) ∧ (
π∗2 ωT

)] |(eT,e) =(
ξ−1

)∗
ωG |e, so that

ψ∗l∗gt−1g−1ωG |e = ψ∗ωG |gtg−1 = (
lg−1 × lt−1

)∗ [
δ
(
π∗1 ωG/T

) ∧ (
π∗2 ωT

)] |(eT,e)

= (
lg−1 × lt−1

)∗ (
ξ−1

)∗ [
δ ◦ (lg × lt

) ◦ ξ ωG
] |e.

Thus

φ∗ωG |e =
(
lgt−1g−1 ◦ ψ ◦ (lg × lt ) ◦ ξ

)∗
ωG |e =

[
δ ◦ (lg × lt

) ◦ ξ ωG
] |e.

By looking at a basis of
∧∗

1(G)e, it follows that δ(gT, t) = δ ◦ (lg × lt
) ◦ ξ |e =

det(dφ). This determinant was calculated in Lemma 7.10 and found to be

d(t) =
∏

α∈�(gC)

(1− ξ−α(t)) =
∏

α∈�+(gC)

|1− ξ−α(t)|2 . �
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7.2.3 Exercises

Exercise 7.7 Verify Equation 7.15.

Exercise 7.8 Let G be a compact connected Lie group and T a maximal torus. For
H ∈ t, show that

d(eH ) = 2|�(gC)|
∏

α∈�+(gC)

sin2

(
α(H)

2i

)
.

Note that α(H) ∈ iR.

Exercise 7.9 Let f be a continuous class function on SU (2). Use the Weyl Integra-
tion Formula to show that∫

SU (2)
f (g) dg = 2

π

∫ π

0
f (diag(eiθ , e−iθ )) sin2 θ dθ ,

c.f. Exercise 3.22.

Exercise 7.10 Let G be a compact connected Lie group and T a maximal torus (c.f.
Exercise 6.29).
(1) If f is an L1-class function on G, show that∫

G
f (g) dg = 1

|W (G)|
∫

T
d(t) f (t) dt .

(2) Show that the map f → |W (G)|−1 d f |T defines a norm preserving isomorphism
between the L1-class functions on G and the W -invariant L1-functions on T .

(3) Show that the map f → |W (G)|−
1
2 D f |T defines a unitary isomorphism between

the L2 class functions on G to the W -invariant L2 functions on T , where D(eH ) =∏
α∈�+(gC)

(
1− e−α(H)

)
for H ∈ t (so DD = d).

Exercise 7.11 For each group G below, verify d(t) is correctly calculated.
(1) For G = SU (n), T = {diag(eiθk ) |∑k θk = 0}, and t = diag(eiθk ),

d(t) = 2n(n−1)
∏

1≤ j<k≤n

sin2

(
θ j − θk

2

)
.

(2) For either G = SO(2n + 1), T as in §5.1.2.4, and

t = blockdiag

((
cos θk sin θk

− sin θk cos θk

)
, 1

)
or G = SO(E2n+1), T as in Lemma 6.12, and t = diag(eiθk , e−iθk , 1),

d(t) = 22n2
∏

1≤ j<k≤n

sin2

(
θ j − θk

2

)
sin2

(
θ j + θk

2

) ∏
1≤ j≤n

sin2

(
θ j

2

)
.
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(3) For either G = SO(2n), T as in §5.1.2.3, and

t = blockdiag

((
cos θk sin θk

− sin θk cos θk

))
or G = SO(E2n), T as in Lemma 6.12, and t = diag(eiθk , e−iθk ),

d(t) = 22n(n−1)
∏

1≤ j<k≤n

sin2

(
θ j − θk

2

)
sin2

(
θ j + θk

2

)
.

(4) For G = Sp(n) realized as Sp(n) ∼= U (2n) ∩ Sp(n,C) and T =
{t = diag(eiθk , e−iθk )},

d(t) = 22n2
∏

1≤ j<k≤n

sin2

(
θ j − θk

2

)
sin2

(
θ j + θk

2

) ∏
1≤ j≤n

sin2
(
θ j
)

.

7.3 Weyl Character Formula

Let G be a compact Lie group with maximal torus T . Recall that Theorem 3.30
shows that the set of irreducible characters {χλ} is an orthonormal basis for the set of
L2 class functions on G.

Assume G is connected and, for the sake of motivation, momentarily assume G
is simply connected as well. In §7.3.1 we will choose a skew-W -invariant function
� defined on T , so that |�(t)|2 = d(t). It easily follows from the Weyl Integra-
tion Formula that {�χλ|T } is therefore an orthonormal basis for the set of L2 skew-
W -invariant functions on T with respect to the measure |W (G)|−1 dt (c.f. Exercise
7.10).

On the other hand, it is simple to write down another basis for the set of L2 skew-
W -invariant functions on T by looking at alternating sums over the Weyl group of
certain characters on T . By decomposing χλ|T into characters on T , it will follow
rapidly that these two bases are the same. In turn, this yields an explicit formula for
χλ called the Weyl Character Formula.

7.3.1 Machinery

Let G be a compact Lie group with maximal torus T . Recall that Theorem 6.27
shows there is a bijection between the set of analytically integral weights and the
character group given by mapping λ ∈ A(T ) to ξλ ∈ χ(T ). The next definition sets
up similar notation for more general functions on t.

Definition 7.18. Let G be a compact Lie group with maximal torus T .
(a) Let f : t → C be a function. We say f descends to T if f (H + Z) = f (H) for
H, Z ∈ t with Z ∈ ker(exp). In that case, write f : T → C for the function given by

f (eH ) = f (H).
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(b) If f : t → C satisfies f (wH) = f (H) for w ∈ W (�(gC)
∨), f is called W -

invariant.
(c) If F : T → C satisfies F(cwt) = F(t) for w ∈ N (T ), F is called W -invariant.
(d) If f : t → C satisfies f (wH) = det(w) f (H) for w ∈ W (�(gC)), f is called
skew-W -invariant.
(e) If F : T → C satisfies F(cwt) = det(Ad(w)|t) F(t) for w ∈ N (T ), F is called
skew-W -invariant.

In particular, for λ ∈ A(T ), the function H → eλ(H) on t descends to the function
ξλ on T . Also note that detw ∈ {±1} since w is a product of reflections.

Lemma 7.19. Let G be a compact connected Lie group with maximal torus T .
(a) If f : t → C descends to T and is W -invariant, then f : T → C is W -invariant.
(b) Restriction of domain establishes a bijection between the continuous class func-
tions on G and the continuous W -invariant functions on T .

Proof. For part (a), recall that the identification of W (G) with W (�(gC)
∨) from

Theorem 6.43 via the Ad-action of Equation 6.35. It follows that when f descends
to T and is W -invariant, then f (cwt) = f (t) for w ∈ N (T ) and t ∈ T .

For part (b), suppose F : T → C is W -invariant and fix g0 ∈ G. By the Maximal
Torus Theorem, there exists h0 ∈ G, so t0 = ch0 g0 ∈ T . Extend F to a class func-
tion on G by setting F(g0) = F(t0). This is well defined by Theorem 6.36. It only
remains to see that if F is continuous on T , then its extension to G is also continuous.

For this, suppose gn ∈ G with gn → g0. Choose hn ∈ G, so tn = chn gn ∈ T .
Since G is compact, passing to subsequences allows us to assume there is h′0 ∈ G
and t ′0 ∈ T , so that hn → h′0 and tn → t ′0. In particular, t ′0 = ch′0 g0 so that, by
Theorem 6.36, there exists w ∈ N (T ) with wt0 = t ′0. Thus

F(gn) = F(tn)→ F(t ′0) = F(t0) = F(g0).

Since we began with an arbitrary sequence gn → g0, the proof is complete. �

Let G be a compact Lie group, T a maximal torus, and �+(gC) a system of

positive roots with corresponding simple system �(gC) = {α1, . . . , αl}. Recall from
Equation 6.39 the unique element ρ ∈ (it)∗ satisfying ρ(hαi ) = 2 B(ρ,αi )

B(αi ,αi )
= 1,

1 ≤ j ≤ l.

Lemma 7.20. Let G be a compact Lie group with a maximal torus T .
(a) ρ = 1

2

∑
α∈�+(gC)

α.

(b) For w ∈ W (�(gC)), wρ − ρ ∈ R ⊆ A(T ), and so the function ξwρ−ρ descends
to T .

Proof. For part (a), write �(gC) = {α1, . . . αl} and let ρ ′ = 1
2

∑
α∈�+(gC)

α (c.f.
Exercise 6.34). By the definitions, it suffices to show that rα jρ

′ = ρ ′. For this, it
suffices to show that rα j preserves the set �+(gC)\{α j }. If α ∈ �+(gC)\{α j } is
written as α = !knkαk with nk0 > 0, k0 �= j , then the coefficient of αk0 in rα jα =
α − α(hα j )α j is still nk0 , so that rα jα ∈ �+(gC)\{α j }.

Part (b) is straightforward. In fact, it is immediate that

wρ − ρ =
∑

α∈[w�+(gC)]∩�−(gC)

α. �
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Definition 7.21. For G a compact Lie group with a maximal torus T , let � : t → C
be given by

�(H) =
∏

α∈�+(gC)

(
eα(H)/2 − e−α(H)/2

)
for H ∈ t.

Lemma 7.22. Let G be a compact Lie group with a maximal torus T .
(a) The function � is skew-symmetric on t.
(b) The function � descends to T if and only if the function H → e−ρ(H) descends
to T .
(c) The function |�|2 always descends to T and there |�(t)|2 = d(t), t ∈ T .

Proof. For part (a), it suffices to show that � ◦ rhα
= −� for α ∈ �+ (gC).

This follows from three observations. The first is that composition with rhα
maps(

eα/2 − e−α/2
)

to − (
eα/2 − e−α/2

)
. The second is that if β ∈ �+ (gC) satisfies

rαβ = β, then composition with rhα
fixes

(
eβ/2 − e−β/2

)
. For the third, suppose

β ∈ �+ (gC) \{α} satisfies rαβ �= β. Choose β ′ ∈ �+ (gC), so that either rαβ = β ′

or rαβ = −β ′. Then composition with rhα
fixes

(
eβ/2 − e−β/2

) (
eβ

′/2 − e−β ′/2
)
.

For part (b), write ρ = 1
2

∑
α∈�+(gC)

α to see that

e−ρ(H)�(H) =
∏

α∈�+(gC)

(
1− e−α(H)

)
(7.23)

for H ∈ t. Since the function H → ∏
α∈�+(gC)

(
1− e−α(H)

)
clearly descends to T ,

part (b) is complete. For part (c), calculate

|�(H)|2 = e−ρ(H)�(H)e−ρ(H)�(H) =
∏

α∈�+(gC)

∣∣1− e−α(H)
∣∣2

to complete the proof. �

Note that although e−ρ often descends to a function on T , it does not always

descend (Exercise 7.12). Also note that the function d(t) plays a prominent role
in Weyl Integration Formula. In particular, we can now write the Weyl Integration
Formula as ∫

G
f (g) dg = 1

|W (G)|
∫

T
|�(t)|2

∫
G/T

f (gtg−1) dgT dt(7.24)

for connected G and f ∈ C(G).
For the next definition, recall from the proof of Theorem 7.7 that

� = {H ∈ t | α(H) /∈ 2π iZ for all roots α}

is open dense in t and exp� = T reg.
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Definition 7.25. Let G be a compact Lie group with a maximal torus T . Fix an ana-
lytically integral weight λ ∈ A(T ). Let "λ : �→ C be given by

"λ(H) =
∑

w∈W (�(gC))
det(w) e[w(λ+ρ)](H)

�(H)

=
∑

w∈W (�(gC))
det(w) e[w(λ+ρ)−ρ](H)∏

α∈�+(gC)

(
1− e−α(H)

)
for H ∈ �.

Lemma 7.26. Let G be a compact connected Lie group with a maximal torus T . Fix
an analytically integral weight λ ∈ A(T ). The function "λ descends to a smooth
W -invariant function on T reg. In turn, this function, still denoted by "λ, uniquely
extends to a smooth class function on Greg.

Proof. The first expression for "λ shows that it is symmetric since the numerator and
denominator are skew-symmetric. The second expression for "λ shows it descends
to a function on T reg since the numerator and denominator both descend to T and the
denominator is nonzero on �. The final statement follows as in Lemma 7.19. �


7.3.2 Main Theorem

Let G be a compact connected Lie group with a maximal torus T . For λ, λ′ ∈ A(T ),
the function ξλ : T → C can be viewed as a 1-dimensional irreducible representation
of T . As a result, ξλ and ξλ′ are equivalent if and only if the are equal as functions.
This happens if and only if λ = λ′. By the character theory of T , it follows that∫

T
ξλ(t)ξ−λ′(t) dt =

{
1 if λ = λ′

0 if λ �= λ′.(7.27)

Theorem 7.28 (Weyl Character Formula). Let G be a compact connected Lie
group with a maximal torus T . If V (λ) is an irreducible representation of G with
highest weight λ, then the character of V (λ), χλ, satisfies

χλ(g) = "λ(g)

for g ∈ Greg.

Proof. First note it suffices to prove the theorem for g = eH , H ∈ �. Next for
γ ∈ A(T ), let Dγ : t → C be the skew-symmetric function defined by

Dγ (H) =
∑

w∈W (�(gC))

det(w) e(wγ )(H).

The proof will be completed by showing that χλ(eH )�(H) = Dλ+ρ(H) for H ∈ t.
To this end, by considering the weight decomposition of V (λ), write χλ =∑

γ j∈A(T ) n jξγ j as a finite sum on T for n j ∈ Z≥0. Thus
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χλ(e
H )�(H) = eρ(H)

∏
α∈�+(gC)

(
1− e−α(H)

) ∑
γ j∈A(T )

n j e
γ j (H)

=
∑

γ j∈A(T )

m j e(
γ j+ρ)(H)

for some m j ∈ Z. Since χλ is symmetric and � is skew-symmetric, χλ(eH )�(H)

is skew-symmetric as well. Noting that the set of functions {eγ j+ρ | γ j ∈ A(T )}
is independent, the action of rα coupled with skew-symmetry shows that m j = 0
if γ j + ρ is on a Weyl chamber wall. Recalling that the Weyl group acts simply
transitively on the open Weyl chambers (Theorem 6.43), examination of the the Weyl
group orbits of A(T )+ ρ and skew-symmetry imply that

χλ(e
H )�(H) =

∑
γ j∈A(T ), γ j+ρ strictly dominant

m j Dγ j+ρ(H),

where strictly dominant means B(γ j + ρ, αi ) > 0 for αi ∈ �(gC), i.e., γ j + ρ lies
in the open positive Weyl chamber.

Next, character theory shows that
∫

G |χλ|2 dg = 1. Thus the Weyl Integration
Formula gives

1 = 1

|W (G)|
∫

T
|�|2 |χλ|2 dt(7.29)

= 1

|W (G)|
∫

T

∣∣∣∣∣∣
∑

γ j∈A(T ), γ j+ρ str. dom.

m j Dγ j+ρ

∣∣∣∣∣∣
2

dt .

Here
∣∣∣∑γ j∈A(T ), γ j+ρ str. dom. m j Dγ j+ρ

∣∣∣2 descends to T since |�|2 |χλ|2 descends to

T . In fact, the function H → e−ρ(H)Dγ j+ρ(H) descends to T since ew(γ j+ρ)−ρ does.

Therefore Dγ j+ρ Dγ j ′+ρ =
(
e−ρ Dγ j+ρ

) (
e−ρ Dγ j ′+ρ

)
descends to T and

1

|W (G)|
∫

T
Dγ j+ρ Dγ j ′+ρ dt = 1

|W (G)|
∑

w,w′∈W (�(gC))

det(ww′)
∫

T
ξw(γ j+ρ)ξ−w′(γ j ′+ρ) dt .

Since γ j + ρ and γ j ′ + ρ are in the open Weyl chamber, w(γ j + ρ) = w′(γ j ′ + ρ) if
and only if w = w′ and j = j ′. Thus

1

|W (G)|
∫

T
Dγ j+ρ Dγ j ′+ρ dt =

{
1 if j = j ′

0 if j �= j ′.

In particular, this simplifies Equation 7.29 to

1 =
∑

γ j∈A(T ), γ j+ρ str. dom.

m2
j .

Finally, since m j ∈ Z, all but one are zero. Thus there is a γ ∈ A(T ) with γ + ρ

strictly dominant so that χλ(eH )�(H) = ±Dγ+ρ(H). To determine γ and the ±
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sign, notice that the weight decomposition shows that χλ(eH ) = eλ(H) + . . . where
the ellipses denote weights strictly lower than λ. Writing

χλ(e
H )�(H) = eρ(H)χλ(e

H )e−ρ(H)�(H) = (
e(λ+ρ)(H) + . . .

) ∏
α∈�+(gC)

(
1− e−α(H)

)
,

we see χλ(eH )�(H) = e(λ+ρ)(H) + . . . . In particular, expanding the function H →
χλ(eH )�(H) in terms of {eγ j+ρ | γ j ∈ A(T )}, it follows that eλ+ρ appears with
coefficient 1. On the other hand, similarly expanding ±Dγ+ρ , we see that the only
term of the form eγ j+ρ appearing for which γ j + ρ is dominant is ±eγ+ρ . Therefore
λ = γ , the undetermined ± sign is a +. �


7.3.3 Weyl Denominator Formula

Theorem 7.30 (Weyl Denominator Formula). Let G be a compact connected Lie
group with a maximal torus T . Then

�(H) =
∑

w∈W (�(gC))

det(w) e(wρ)(H)

for H ∈ t.

Proof. Simply take the trivial representation V (0) = C with χ0(g) = 1 and apply
the Weyl Character Formula to g = eH for H ∈ �. The formula extends to all t by
continuity. �


Note the Weyl Denominator Formula allows the Weyl Character Formula to be
rewritten in the form

χλ(e
H ) =

∑
w∈W (�(gC))

det(w) e[w(λ+ρ)](H)∑
w∈W (�(gC))

det(w) e(wρ)(H)
(7.31)

for H ∈ t with eH ∈ T reg, i.e., H ∈ �.

7.3.4 Weyl Dimension Formula

Theorem 7.32 (Weyl Dimension Formula). Let G be a compact connected Lie
group with a maximal torus T . If V (λ) is the irreducible representation of G with
highest weight λ, then

dim V (λ) =
∏

α∈�+(gC)

B(λ+ ρ, α)

B(ρ, α)
.

Proof. Since dim V (λ) = χλ(e), we ought to evaluate Equation 7.31 at H = 0.
Unfortunately, Equation 7.31 is not defined at H = 0, so we take a limit. Let uρ ∈ it,
so that ρ(H) = B(H, uρ) for H ∈ t. Then it is easy to see that i tuρ ∈ � for small
positive t (Exercise 7.13), so that
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dim V (λ) = lim
t→0

"λ(i tuρ)

= lim
t→0

∑
w∈W (�(gC))

det(w) e[w(λ+ρ)](i tuρ)∑
w∈W (�(gC))

det(w) e(wρ)(i tuρ)
.(7.33)

Now observe that

(w(λ+ ρ))(i tuρ) = i t (λ+ ρ)(w−1uρ) = i t B(uλ+ρ, w
−1uρ)

= i t B(wuλ+ρ, uρ) = i tρ(wuλ+ρ) = (w−1ρ)(i tuλ+ρ).

Since detw = det(w−1), the Weyl Denominator Formula rewrites the numerator in
Equation 7.33 as∑

w∈W (�(gC))

det(w) e[w(λ+ρ)](i tuρ) =
∑

w∈W (�(gC))

det(w) e(wρ)(i tuλ+ρ) = �(i tuλ+ρ)

=
∏

α∈�+(gC)

(
eα(i tuλ+ρ)/2 − e−α(i tuλ+ρ)/2

)
=

∏
α∈�+(gC)

(
i tα(uλ+ρ)+ · · ·

)
= (i t)|�+(gC)| ∏

α∈�+(gC)

B(α, λ+ ρ)+ · · ·

where the ellipses denote higher powers of t . Similarly, the Weyl Denominator For-
mula rewrites denominator in Equation 7.33 as∑

w∈W (�(gC))

det(w) e(wρ)(i tuρ) = (i t)|�+(gC)| ∏
α∈�+(gC)

B(α, ρ)+ · · ·

which finishes the proof. �


7.3.5 Highest Weight Classification

Theorem 7.34 (Highest Weight Classification). For a connected compact Lie group
G with maximal torus T , there is a one-to-one correspondence between irreducible
representations and dominant analytically integral weights given by mapping
V (λ)→ λ for dominant λ ∈ A(T ).

Proof. We saw in Theorem 7.3 that the map V (λ) → λ is well defined and injec-
tive. It remains to see it is surjective. For any λ ∈ A(T ), Lemma 7.26 shows the
function "λ descends to a smooth class function on Greg. The Weyl Integral Formula
to calculates∫

G
|"λ|2 dg = 1

|W (G)|
∫

T reg

|�(t)"λ|2 dt

= 1

|W (G)|
∫

T

∣∣∣∣∣ ∑
w∈W (�(gC))

det(w) ξw(λ+ρ)

∣∣∣∣∣
2

dt

= 1

|W (G)|
∑

w,w′∈W (�(gC))

det(ww′)
∫

T
ξw(λ+ρ)ξ−w′(λ+ρ) dt .
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When λ is also dominant, λ + ρ is strictly dominant so that, as in the proof of the
Weyl Character Formula, Equation 7.27 shows that∫

T
ξw(λ+ρ)ξ−w′(λ+ρ) dt = δw,w′ .

As a result,
∫

G |"λ|2 dg = 1 for any dominant λ ∈ A(T ). In particular, "λ is a
nonzero L2 class function on G.

Now choose any irreducible representation V (µ) of G and note that the function
"µ extends to the character χµ. By the now typical calculation,∫

G
χµ"λ dg = 1

|W (G)|
∫

T reg

|�(t)|2 "µ"λ dt

= 1

|W (G)|
∑

w,w′∈W (�(gC))

det(ww′)
∫

T reg
ξw(µ+ρ)ξw′(λ+ρ) dt

=
{

1 if µ = λ

0 if µ �= λ.

Since Theorems 7.3 and 3.30 imply that {χµ | there exists an irreducible representa-
tion with highest weight µ} is an orthonormal basis for the set of L2 class functions
on G, the value of

∫
G χµ"λ dg cannot be zero for every such µ. In particular, this

means that there is an irreducible representation with highest weight λ. �


7.3.6 Fundamental Group

Here we finish the proof of Theorem 6.30. This is especially important in light of
the Highest Weight Classification. Of special note, it shows that when G is a simply
connected compact Lie group with semisimple Lie algebra, then the irreducible rep-
resentations are parametrized by the set of dominant algebraic weights, P . In turn,
this also classifies the irreducible representations of g (Theorem 4.16). At the oppo-
site end of the spectrum, Theorem 6.30 shows that the irreducible representations of
Ad(G) ∼= G/Z(G) (Lemma 5.11) are parametrized by the dominant elements of the
root lattice, R. The most general group lies between these two extremes.

Lemma 7.35. Let G be a compact connected Lie group with maximal torus T . Let
Gsing = G\Greg. Then Gsing is a closed subset with codim Gsing ≥ 3 in G.

Proof. It follows from Theorem 7.7 that Gsing is closed and the map ψ : G/T ×
T sing → Gsing is surjective. Moreover t ∈ T sing if and only if there exists α ∈
�+(gC), so ξα(t) = 1 so that T sing = ∪∈�+(gC) ker ξα . As a Lie subgroup of T , ker ξα
is a closed subgroup of codimension 1. Let Uα = {gtg−1 | g ∈ G and t ∈ ker ξα}, so
that Gsing = ∪∈�+(gC)Uα .

Recall that zg(t) = {X ∈ g | Ad(t)X = X} (Exercise 4.22). Since Ad(t) acts on
gα as ξα(t), it follows that g ∩ (g−α ⊕ gα) ⊆ zg(t) when t ∈ ker ξα . Now choose a
standard embedding ϕα : SU (2)→ G corresponding to α and let Vα be the compact



7.3 Weyl Character Formula 171

manifold Vα = G/(ϕα(SU (2))T ) × ker ξα . Observe that dim Vα = dim G − 3 and
that ψ maps Vα onto Uα . Therefore the precise version of this lemma is that Gsing is
a finite union of closed images of compact manifolds each of which has codimension
3 with respect to G. �


Thinking of a homotopy of loops as a two-dimensional surface, Lemma 7.35 cou-
pled with standard transversality theorems ([42]), show that loops in G with a base
point in Greg can be homotoped to loops in Greg. As a corollary, it is straightforward
to see that

π1(G) ∼= π1(G
reg).

Let G be a compact Lie group with maximal torus T . Recall from Theorem 7.7
that eH ∈ T reg if and only if H ∈ {H ∈ t | α(H) /∈ 2π iZ for all roots α}. The
connected regions of {H ∈ t | α(H) /∈ 2π iZ for all roots α} are convex and are
given a special name.

Definition 7.36. Let G be a compact Lie group with maximal torus T . The connected
components of {H ∈ t | α(H) /∈ 2π iZ for all roots α} are called alcoves.

Lemma 7.37. Let G be a compact connected Lie group with maximal torus T and
fix a base t0 = eH0 ∈ T reg with H0 ∈ t.
(a) Any continuous loop γ : [0, 1] → Greg with γ (0) = t0 can be written as

γ (s) = cgs e
H(s)

with g0 = e, H(0) = H0, and the maps s → gs T ∈ G/T and s → H(s) ∈ treg

continuous. In that case, g1 ∈ N (T ) and

H(1) = Ad(g1)
−1 H0 + Xγ

for some Xγ ∈ 2π i ker E . The element Xγ is independent of the homotopy class of
γ .
(b) Write A0 for the alcove containing H0. Keeping the same base t0, the map

π1(G
reg)→ A0 ∩ {wH0 + Z | w ∈ W (�(gC)

∨) and Z ∈ 2π i A(T )∗}
induced by γ → Xγ is well defined and bijective.

Proof. Using the Maximal Torus Theorem, write γ (s) = cgs τ(s) with τ(s) ∈ T reg,
τ(0) = t0, and g0 = e. In fact, since ψ : G/T × T reg → Greg is a covering, the lifts
s → τ(s) ∈ T reg and s → gs T ∈ G/T are uniquely determined by these conditions
and continuity. Since exp : treg → T reg is also a local diffeomorphism (Theorem
5.14), there exists a unique continuous lift s → H(s) ∈ treg of τ , so H(0) = H0 and
γ (s) = cgs e

H(s).
As γ is a loop, γ (0) = γ (1), so eH0 = cg1 eH(1). Because eH0 and eH(1) are

regular, T = ZG(eH0)0 = cg1 ZG(eH(1))0 = cg1 T , so that g1 ∈ N (T ) is a Weyl group
element. Writing w = Ad(g1), it follows that H0 ≡ wH(1) modulo 2π i ker E , the
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kernel of exp : t → T . Therefore write H(1) = w−1 H0 + Xγ for some Xγ ∈
2π i ker E .

To see that Xγ is independent of the homotopy class of γ , suppose γ ′ : [0, 1] →
Greg with γ ′(0) = t0 is another loop and that γ (s, t) is a homotopy between γ and
γ ′. Thus γ (s, 0) = γ (s), γ (s, 1) = γ ′(s), and γ (0, t) = γ (1, t) = t0. Using the
same arguments as above and similar notational conventions, write γ ′(s) = cg′s e

H ′(s)

and H ′(1) = w′−1 H0 + X ′
γ . Similarly, write γ (s, t) = cgs,t e

H(s,t) and H(1, s) =
w−1

s H0 + Xγ (s). Notice that w0 = w, w1 = w′, Xγ (0) = Xγ , and Xγ (1) = X ′
γ .

Since ws and Xγ (s) vary continuously with s and since W (T ) and 2π i ker E are
discrete, ws and Xγ (s) are constant. This finishes part (a).

For part (b), first note that continuity of H(s) implies that H(1) is still in A0,
so that the map is well defined. To see surjectivity, fix H ′ ∈ A0 ∩ {wH0 + Z |
w ∈ W (�(gC)

∨) and Z ∈ 2π i A(T )∗} and write H ′ = w′−1 H0 + Z ′ for w′ ∈
W (�(gC)

∨) and Z ′ ∈ 2π i ker E . Choose a continuous path s → g′s ∈ G, so that
g′0 = e and Ad(g′1) = w′. Let H ′(s) = H0 + s(H ′ − H0) ∈ A0 and consider the
curve γ ′(s) = cgs e

H ′(s). Since γ ′(0) = t0 and γ ′(1) = ew
′H ′ = eH0+Z ′ = t0, γ ′ is

a loop with base point t0. By construction, Xγ ′ = H ′, as desired. To see injectivity,
observe that if Xγ = Xγ ′′ with γ (s) = cgs e

H(s) and γ ′′(s) = cgs e
H ′′(s), then γ (s, t) =

cgs e
(1−t)H ′(s)+t H ′′(s) is a homotopy between the two. �


Lemma 7.38. Let G be a compact connected Lie group with maximal torus T .
(a) Each homotopy class in G with base e can be represented by a loop of the form

γ (s) = es Xγ

for some Xγ ∈ 2π i ker E , i.e., for some Xγ in the kernel of exp : t → T . The surjec-
tive map from 2π i ker E to π1(G) induced by Xγ → γ is a homomorphism.
(b) Fix an alcove A0 and H0 ∈ A0. The above map restricts to a bijection on
{Z ∈ 2π i ker E | wH0 + Z ∈ A0 for some w ∈ W (�(gC)

∨)}.
Proof. Lemma 7.37 shows that each homotopy class in G with base t0 can be repre-
sented by a curve of the form γ (s) = cgs e

H(s) with H(1) = Ad(g1)
−1 H0 + Xγ for

some Xγ ∈ 2π i ker E . Using the homotopy γ (s, t) = cgs e
(1−t)H(s)+t[H0+s(H(1)−H0)],

we may assume H(s) is of the form H(s) = H0 + s
(
Ad(g1)

−1 H0 + Xγ − H0
)
.

Translating back to the identity, it follows that each homotopy class in G with
base e can be represented by a curve of the form

γ (s) = e−H0 cgs e
H0+s(Ad(g1)

−1 H0+Xγ−H0).

Using the homotopy γ (s, t) = e−t H0 cgs e
t H0+s(t Ad(g1)

−1 H0+Xγ−t H0), we may assume
γ (s) = cgs e

s Xγ . Finally, using the homotopy γ (s, t) = cgst e
s Xγ , we may assume

γ (s) = es Xγ . Verifying that the map γ → Xγ is a homomorphism is straightforward
and left as an exercise (Exercise 7.24). Part (b) follows from Lemma 7.37. �


Note that a corollary of Lemma 7.38 shows that the inclusion map T → G
induces a surjection π1(T )→ π1(G).
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Definition 7.39. Let G be a compact connected Lie group with maximal torus T .
The affine Weyl group is the group generated by the transformations of t of the form
H → wH + Z for w ∈ W (�(gC)

∨) and Z ∈ 2π i R∨.

Lemma 7.40. Let G be a compact connected Lie group with maximal torus T .
(a) The affine Weyl group is generated by the reflections across the hyperplanes
α−1(2π in) for α ∈ �(gC) and n ∈ Z.
(b) The affine Weyl group acts simply transitively on the set of alcoves.

Proof. Recall that hα ∈ R∨ and notice the reflection across the hyperplane
α−1(2π in) is given by rhα,n(H) = rhα

H + 2π ihα (Exercise 7.25). Since the Weyl
group is generated by the reflections rhα

, part (a) is finished. The proof of part (b) is
very similar to Theorem 6.43 and the details are left as an exercise (Exercise 7.26).

�

Theorem 7.41. Let G be a connected compact Lie group with semisimple Lie alge-
bra and maximal torus T . Then π1(G) ∼= ker E/R∨ ∼= P/A(T ).

Proof. By Lemma 7.38, it suffices to show that the loop γ (s) = es Xγ , Xγ ∈
2π i ker E , is trivial if and only if Xγ ∈ 2π i R∨. For this, first consider the stan-
dard su(2)-triple corresponding to α ∈ �(gC) and let ϕα : SU (2) → G be the
corresponding embedding. The loop γα(s) = e2π ishα is the image under ϕα of the
loop s → diag(e2π is, e−2π is) in SU (2). As SU (2) is simply connected, γα is trivial.
Thus there is a well-defined surjective map 2π i ker E/2π i R∨ → π1(G).

It remains to see that it is injective. Fix an alcove A0 and H0 ∈ A0. Since
2π i ker E ⊆ 2π i P∨, A0 − Xγ is another alcove. By Lemma 7.40, there is a
w ∈ W (�(gC)

∨) and H ∈ 2π i R∨, so that wH0 + H ∈ A0 − Xγ . Thus
wH0 + (Xγ + H) ∈ A0. Because the loop s → es H is trivial, we may use a ho-
motopy on γ and assume H = 0, so that wH0 + Xγ ∈ A0. But as H0 + 0 ∈ A0,
Lemma 7.38 shows that γ must be homotopic to the trivial loop s → es0. �


7.3.7 Exercises

Exercise 7.12 Show that the function eρ descends to the maximal torus for SU (n),
SO(2n), and Sp(2n), but not for SO(2n + 1).

Exercise 7.13 Let G be a compact Lie group with a maximal torus T . Let uρ ∈ it,
so that ρ(H) = B(H, uρ) for H ∈ t. Show that i tuρ ∈ � for small positive t .

Exercise 7.14 Show that the dominant analytically integral weights of SU (3) are
all expressions of the form λ = nπ1 + mπ2 for n,m ∈ Z≥0 where π1, π2 are the
fundamental weights π1 = 2

3ε1,2 + 1
3ε2,3 and π2 = 1

3ε1,2 + 2
3ε2,3. Conclude that

dim V (λ) = (n + 1)(m + 1)(n + m + 2)

2
.
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Exercise 7.15 Let G be a compact Lie group with semisimple g and a maximal torus
T . The set of dominant weight vectors are of the form λ = ∑

i niπi where {πi } are
the fundamental weights and ni ∈ Z≥0. Verify the following calculations.
(1) For G = SU (n),

dim V (λ) =
∏

1≤i< j≤n

(
1+ ni + · · · + n j−1

j − i

)
.

(2) For G = Sp(n),

dim V (λ) =
∏

1≤i< j≤m

(
1+ ni + · · · + n j−1

j − i

)

·
∏

1≤i< j≤m

(
1+ ni + · · · + n j−1 + 2

(
n j + · · · + nm−1

)
2n + 2− i − j

)

·
∏

1≤i≤m

(
1+ ni + · · · + nm−1 + nm

n + 1− i

)
.

(3) For G = Spin2m+1(R),

dim V (λ) =
∏

1≤i< j≤m

(
1+ ni + · · · + n j−1

j − i

)

·
∏

1≤i< j≤m

(
1+ ni + · · · + n j−1 + 2

(
n j + · · · nm−1

)+ nm

2m + 1− i − j

)

·
∏

1≤i≤m

(
1+ 2 (ni + · · · + nm−1)+ nm

2n + 1− 2i

)
.

(4) For G = Spin2m(R),

dim V (λ) =
∏

1≤i< j≤m

(
1+ ni + n j−1

j − i

)

·
∏

1≤i< j≤m

(
1+ ni + · · · + n j−1 + 2

(
n j + · · · + nm−1

)+ nm

2m − i − j

)
.

Exercise 7.16 For each group G below, show that the listed representation(s) V of
G has minimal dimension among nontrivial irreducible representations.
(1) For G = SU (n), V is the standard representation on Cn or its dual.
(2) For G = Sp(n), V is the standard representation on C2n .
(3) For G = Spin2m+1(R) with m ≥ 2, V = C2m+1 and the action comes from the
covering Spin2m+1(R)→ SO(2m + 1).
(4) For G = Spin2m(R) with m > 4, V = C2m and the action comes from the
covering Spin2m(R)→ SO(2m).
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Exercise 7.17 Let G be a compact Lie group with a maximal torus T . Suppose V
is a representation of G that possesses a highest weight of weight λ. If dim V =
dim V (λ), show that V ∼= V (λ) and, in particular, irreducible.

Exercise 7.18 Use Exercise 7.17 and the Weyl Dimension Formula to show that the
following representation V of G is irreducible:
(1) G = SU (n) with V =∧p Cn (c.f. Exercise 7.1).
(2) G = SO(n) with V = Hm(Rn) (c.f. Exercise 7.2).
(3) G = SO(2n + 1) with V =∧p C2n+1, 1 ≤ p ≤ n (c.f. Exercise 7.3).
(4) G = SO(2n) with V =∧p C2n , 1 ≤ p < n (c.f. Exercise 7.3).
(5) G = SU (n) with V = Vp,0(Cn) (c.f. Exercise 7.5).
(6) G = SU (n) with V = V0,q(Cn) (c.f. Exercise 7.5).
(7) G = SU (n) with V = Hp,q(Cn) (c.f. Exercise 7.5).
(8) G = Spin2m+1(R) with V = S (c.f. Exercise 7.6).
(9) G = Spin2m(R) with V = S± (c.f. Exercise 7.6).

Exercise 7.19 Let λ be a dominant analytically integral weight of U (n) and write
λ = λ1ε1+· · ·+λnεn , λ j ∈ Z with λ1 ≥ · · · ≥ λn . For H = diag(H1, . . . , Hn) ∈ t,
show that the Weyl Character Formula can be written as

χλ(e
H ) =

det
(

e(λ j+ j−1)Hk

)
det

(
e( j−1)Hk

) .

Exercise 7.20 Let G be a compact connected Lie group with maximal torus T .
(1) If G is not Abelian, show that the dimensions of the irreducible representations
of G are unbounded.
(2) If g is semisimple, show that there are at most a finite number of irreducible
representations of any given dimension.

Exercise 7.21 Let G be a compact connected Lie group with maximal torus T . For
λ ∈ (it)∗, the Kostant partition function evaluated at λ, P(λ), is the number of ways
of writing λ =∑

α∈�+(gC)
mαα with mα ∈ Z≥0.

(1) As a formal sum of functions on t, show that∏
α∈�+(gC)

(
1+ e−α + e−2α + · · · ) =∑

λ

P(λ)e−λ

to conclude that

1 =
(∑

λ

P(λ)e−λ

) ∏
α∈�+(gC)

(
1− e−α

)
.

For what values of H ∈ t can this expression be evaluated?
(2) The multiplicity, mµ, of µ in V (λ) is the dimension of the µ-weight space in
V (λ). Thus χλ =

∑
µ mµξµ. Use the Weyl Character Formula, part (1), and gather

terms to show that mµ is given by the expression
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mµ =
∑

w∈W (�(gC))

det(w)P (w(λ+ ρ)− (µ+ ρ)) .

This formula is called the Kostant Multiplicity Formula.
(3) For G = SU (3), calculate the weight multiplicities for V (ε1,2 + 3ε2,3).

Exercise 7.22 Let G be a compact connected Lie group with maximal torus T . The
multiplicity, mµ, of V (µ) in V (λ)⊗V (λ′) is the number of times V (µ) appears as a
summand in V (λ)⊗ V (λ′). Thus χλχλ′ =

∑
µ mµχµ. Use part (1) of Exercise 7.21

and compare dominant terms to show mµ is given by the expression

mµ =
∑

w,w′∈W (�(gC))

det(ww′)P
(
w(λ+ ρ)+ w′(λ′ + ρ)− (µ+ 2ρ)

)
.

This formula is called Steinberg’s Formula.

Exercise 7.23 Let G be a compact connected Lie group with maximal torus T and
α ∈ �(gC). Show that ker ξα in T may be disconnected.

Exercise 7.24 Show that the map γ → Xγ from Lemma 7.38 is a homomorphism.

Exercise 7.25 Let G be a compact connected Lie group with maximal torus T .
Show that the reflection across the hyperplane α−1(2π in) is given by the formula
rhα,n(H) = rhα

H + 2π inhα for H ∈ t.

Exercise 7.26 Let G be a compact connected Lie group with maximal torus T . Show
that the affine Weyl group acts simply transitively on the set of alcoves.

7.4 Borel–Weil Theorem

The Highest Weight Classification gives a parametrization of the irreducible repre-
sentations of a compact Lie group. Lacking is an explicit realization of these repre-
sentations. The Borel–Weil Theorem repairs this gap.

7.4.1 Induced Representations

Definition 7.42. (a) A complex vector bundle V of rank n on a manifold M is a man-
ifold V and a smooth surjective map π : V → M called the projection, so that: (i)
for each x ∈ M , the fiber over x , Vx = π−1(x), is a vector space of dimension n
and (ii) for each x ∈ M , there is a neighborhood U of x in M and a diffeomorphism
ϕ : π−1(U )→ U × Cn , so that ϕ(Vy) = (y,Cn) for y ∈ U .
(b) The set of smooth (continuous) sections of V are denoted by �(M,V) and con-
sists of all smooth (continuous) maps s : M → V , so that π ◦ s = I .
(c) An action of a Lie group G on V is said to preserve fibers if for each g ∈ G and
x ∈ M , there exists x ′ ∈ M , so that gVx ⊆ Vx ′ . In this case, the action of G on V
naturally descends to an action of G on M .
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(d) V is a homogeneous vector bundle over M for the Lie group G if (i) the action
of G on V preserves fibers; (ii) the resulting action of G on M is transitive; and (iii)
each g ∈ G maps Vx to Vgx linearly for x ∈ M .
(e) If V is a homogeneous vector bundle over M , the vector space �(M,V) carries
an action of G given by

(gs)(x) = g(s(g−1x))

for s ∈ �(M,V).
(f) Two homogeneous vector bundles V and V ′ over M for G are equivalent if there
is a diffeomorphism ϕ : V → V ′, so that π ′ ◦ ϕ = ϕ ◦ π .

Note it suffices to study manifolds of the form M = G/H , H a closed subgroup
of G, when studying homogenous vector bundles.

Definition 7.43. Let G be a Lie group and H a closed subgroup of G. Given a rep-
resentation V of H , define the homogeneous vector bundle G ×H V over G/H by

G ×H V = (G × V ) /∼,

where ∼ is the equivalence relation given by

(gh, v) ∼ (g, hv)

for g ∈ G, h ∈ H , and v ∈ V . The projection map π : G×H V → G/H is given by
π(g, v) = gH and the G-action is given by g′(g, v) = (g′g, v) for g′ ∈ G.

It is necessary to verify that G×H V is indeed a homogeneous vector bundle over
G/H . Since H is a regular submanifold, this is a straightforward argument and left
as an exercise (Exercise 7.27).

Theorem 7.44. Let G be a Lie group and H a closed subgroup of G. There is a
bijection between equivalence classes of homogenous vector bundles V on G/H and
representations of H.

Proof. The correspondence maps V to VeH . By definition VeH is a representation of
H . Conversely, given a representation V of H , the vector bundle G×H V inverts the
correspondence. �

Definition 7.45. Let G be a Lie group and H a closed subgroup of G. Given a repre-
sentation (π, V ) of H , define the smooth (continuous) induced representation of G
by

IndG
H (V ) = IndG

H (π) = {smooth (continuous) f : G → V | f (gh) = h−1 f (g)}
with action (g1 f )(g2) = f (g−1

1 g2) for gi ∈ G.

Theorem 7.46. Let G be a Lie group, H a closed subgroup of G, and V a represen-
tation of H. There is a linear G-intertwining bijection between �(G/H, G ×H V )

and IndG
H (V ).
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Proof. Identify (G ×H V )eH with V by mapping (h, v) ∈ (G ×H V )eH to h−1v ∈
V . Given s ∈ �(G/H, G ×H V ), let fs ∈ IndG

H (V ) be defined by fs(g) =
g−1(s(gH)). Conversely, given f ∈ IndG

H (V ), let s f ∈ �(G/H, G ×H V ) be de-
fined by s f (gH) = (g, f (g)). It is easy to use the definitions to see these maps are
well defined, inverses, and G-intertwining (Exercise 7.28). �

Theorem 7.47 (Frobenius Reciprocity). Let G be a Lie group and H a closed sub-
group of G. If V is a representation of H and a W is a representation of G, then as
vector spaces

HomG(W, IndG
H (V )) ∼= HomH (W |H , V ).

Proof. Map T ∈ HomG(W, IndG
H (V )) to ST ∈ HomH (W |H , V ) by ST (w) =

(T (w))(e) for w ∈ W and map S ∈ HomH (W |H , V ) to TS ∈ HomG(W, IndG
H (V ))

by (TS(w))(g) = S(g−1w). Verifying these maps are well defined and inverses is
straightforward (Exercise 7.28). �


In the special case of H = {e} and V = C, the continuous version gives
�(G/H, G ×H V ) ∼= IndG

H (V ) = C(G). In this setting, Frobenius Reciprocity al-
ready appeared in Lemma 3.23.

7.4.2 Complex Structure on G/T

Definition 7.48. Let G be a compact connected Lie group with maximal torus T .
(a) Choosing a faithful representation, assume G ⊆ U (n) for some n. By Theorem
4.14 there exists a unique connected Lie subgroup of GL(n,C) with Lie algebra gC.
Write GC for this subgroup and call it the complexification of G.
(b) Fix �+(gC) a system of positive roots and recall n+ =⊕

α∈�+(gC)
gα . The corre-

sponding Borel subalgebra is b = tC ⊕ n+.
(c) Let N , B, and A be the unique connected Lie subgroups of GL(n,C) with Lie
algebras n+, b, and a = it, respectively.

For example, if G = U (n) with the usual positive root system, GC = GL(n,C),
N is the subgroup of upper triangular matrices with 1’s on the diagonal, B is the sub-
group of all upper triangular matrices, and A is the subgroup of diagonal matrices
with entries in R>0. Although not obvious from Definition 7.48, GC is in fact unique
up to isomorphism when G is compact. More generally for certain types of non-
compact groups, complexifications may not be unique or even exist (e.g., [61], VII
§1). In any case, what is important for the following theory is that GC is a complex
manifold.

Lemma 7.49. Let G be a compact connected Lie group with maximal torus T .
(a) The map exp : n+ → N is a bijection.
(b) The map exp : a → A is a bijection.
(c) N, B, A, and AN are closed subgroups.
(d) The map from T ×a×n+ to B sending (t, X, H)→ teX eH is a diffeomorphism.
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Proof. Since T consists of commuting unitary matrices, we may assume T is con-
tained in the set of diagonal matrices of GL(n,C). By using the Weyl group of
GL(n,C), we may further assume uρ = diag(c1, . . . , cn) with ci ≥ ci+1. Therefore
if X ∈ gα , α ∈ �+(gC), with X =∑

i, j ki, j Ei, j , then∑
i, j

(ci − c j )ki, j Ei, j = [uρ, X ] = α(uρ)X =
∑
i, j

B(α, ρ)ki, j Ei, j .

Since B(α, ρ) > 0, it follows that ki, j = 0 whenever ci − c j ≤ 0. In turn, this shows
that X is strictly upper triangular.

It is well known and easy to see that the set of nilpotent matrices are in bijection
with the set of unipotent matrices by the polynomial map M → eM with polynomial
inverse M → ln (I + (M − I )) = ∑

k
(−1)k+1

k (M − I )k . In particular if X, Y ∈ n+,
there is a unique strictly upper triangular Z ∈ gl(n,C), so that eX eY = eZ .

Dynkin’s formula is usually only applicable to small X and Y . However, �+(gC)

is finite, so [X (in)
n , . . . , X (i1)

1 ] is 0 for sufficiently large i j for X j ∈ n+. Thus all
the sums in the proof of Dynkin’s formula are finite and the formula for Z is a
polynomial in X and Y . Coupled with the already mentioned polynomial formula for
Z , Dynkin’s Formula therefore actually holds for all X, Y ∈ n+. As a consequence,
Z ∈ n+ and exp n+ is a subgroup. Since N is generated by exp n+, part (a) is finished.
The group N is closed since exp : n+ → N is a bijection and the exponential map
restricted to the strictly upper triangular matrices has a continuous inverse.

Part (b) and the fact that A is closed in GC follows from the fact that a is
Abelian and real valued. Next note that AN is a subgroup. This follows from the
two observations that (an)(a′n′) = (aa′)((ca′−1 n) n′), a, a′ ∈ A and n, n′ ∈ N ,
and that ceH eX = exp

(
ead(H)X

)
, H ∈ a and X ∈ n+. Since the map from

b = t ⊕ a ⊕ n+ → GC given by (H1, H2, X) → eH1 eH2 eX is a local diffeomor-
phism near 0, products of the form tan, t ∈ T , a ∈ A, and n ∈ N , generate B. Just
as with AN , T AN is a subgroup, so that B = T eaen+ . It is an elementary fact from
linear algebra that this decomposition is unique and the proof is complete. �


The point of the next theorem is that G/T has a G-invariant complex structure
inherited from the fact that GC/B is a complex manifold. This will allow us to study
holomorphic sections on G/T .

Theorem 7.50. Let G be a compact connected Lie group with maximal torus T . The
inclusion G ↪→ GC induces a diffeomorphism

G/T ∼= GC/B.

Proof. Recall that g = {X+θX | X ∈ gC}, so that g/t and gC/b are both spanned by
the projections of {Xα + θXα | Xα ∈ gα , α ∈ �+(gC)}. In particular, the differential
of the map G → GC/B is surjective. Thus the image of G contains a neighborhood
of eB in GC/B. As left multiplication by g and g−1, g ∈ G, is continuous, the image
of G is open in GC/B. Compactness of G shows that the image is closed so that
connectedness shows the map G → GC/B is surjective.
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It remains to see that G ∩ B = T . Let g ∈ G ∩ B. Clearly Ad(g) preserves
g∩b = t, so that g ∈ N (T ). Writing w for the corresponding element of W (�(gC)),
the fact that g ∈ B implies that w preserves �+(gC). In turn, this means w preserves
the corresponding Weyl chamber. Since Theorem 6.43 shows that W (�(gC)) acts
simply transitively on the Weyl chambers, w = I and g ∈ T . �


7.4.3 Holomorphic Functions

Definition 7.51. Let G be a compact Lie group with maximal torus T . For λ ∈ A(T ),
write Cλ for the one-dimensional representation of T given by ξλ and write Lλ for
the line bundle

Lλ = G ×T Cλ.

By Frobenius Reciprocity, �(G/T, Lλ) is a huge representation of G. However
by restricting our attention to holomorphic sections, we will obtain a representation
of manageable size.

Definition 7.52. Let G be a compact connected Lie group with maximal torus T and
λ ∈ A(T ).
(a) Extend ξλ : T → C to a homomorphism ξC

λ : B → C by

ξC

λ (te
i H eX ) = ξλ(t)e

iλ(H)

for t ∈ T , H ∈ t, and X ∈ n+.
(b) Let LC

λ = GC ×B Cλ where Cλ is the one-dimensional representation of B given
by ξC

λ .

Lemma 7.53. Let G be a compact connected Lie group with maximal torus T and
λ ∈ A(T ). Then �(G/T, Lλ) ∼= �(GC/B, LC

λ ) and IndG
T (ξλ)

∼= IndGC

B (ξC

λ ) as G-
representations.

Proof. Since the map G → GC/B induces an isomorphism G/T ∼= GC/B, any
h ∈ GC can be written as h = gb for g ∈ G and b ∈ B. Moreover, if h = g′b′,
g′ ∈ G and b′ ∈ B, then there is t ∈ T so g′ = gt and b′ = t−1b.

On the level of induced representations, map f ∈ IndG
T (ξλ) to Ff ∈ IndGC

B (ξC

λ )

by Ff (gb) = f (g)ξC

−λ(b) for g ∈ G and b ∈ B and map F ∈ IndGC

B (ξC

λ ) to fF ∈
IndG

T (ξλ) by fF (g) = F(g). It is straightforward to verify that these maps are well
defined, G-intertwining, and inverse to each other (Exercise 7.31). �

Definition 7.54. Let G be a compact connected Lie group with maximal torus T and
λ ∈ A(T ).
(a) A section s ∈ �(G/T, Lλ) is said to be holomorphic if the corresponding func-
tion F ∈ IndGC

B (ξC

λ ), c.f. Theorem 7.46 and Lemma 7.53, is a holomorphic function
on GC, i.e., if

d F(i X) = id F(X)

at each g ∈ GC and for all X ∈ Tg(GC) where d F(X) = X (Re F)+ i X (Im F).
(b) Write �hol(G/T, Lλ) for the set of all holomorphic sections.
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Since the differential d F is always R-linear, the condition of being holomorphic
is equivalent to saying that d F is C-linear. Written in local coordinates, this condition
gives rise to the standard Cauchy–Riemann equations (Exercise 7.32).

Definition 7.55. Let G be a connected (linear) Lie group with maximal torus T .
Write C∞(GC) for the set of smooth functions on GC and use similar notation for
G.
(a) For Z ∈ gC and F ∈ C∞(GC), let

[dr(Z)F] (h) = d

dt
F(het Z )|t=0

for h ∈ GC. For X ∈ g and f ∈ C∞(G), let

[dr(X) f ] (g) = d

dt
f (get X )|t=0

for g ∈ G.
(b) For Z = X + iY with X, Y ∈ g, let

drC(Z) = dr(X)+ idr(Y ).

Note that drC(Z) is a well-defined operator on C∞(G) but that dr(Z) is not
(except when Z ∈ g).

Lemma 7.56. Let G be a compact connected Lie group with maximal torus T , λ ∈
A(T ), F ∈ IndGC

B (ξC

λ ), and f = F |G the corresponding function in IndG
T (ξλ).

(a) Then F is holomorphic if and only if

drC(Z)F = 0

for Z ∈ n+.
(b) Equivalently, F is holomorphic if and only if

drC(Z) f = 0

for Z ∈ n+.

Proof. Since dlg : Te(GC) → Tg(GC) is an isomorphism, F is holomorphic if and
only if

d F(dlg (i Z)) = id F(dlg Z)(7.57)

for all g ∈ GC and X ∈ gC where, by definition,

d F(dlg Z) = d

dt
F(get Z )|t=0 = [dr(Z)F] (g).

If Z ∈ n+, then et Z ∈ N , so that F(get Z ) = F(g). Thus for Z ∈ n+, Equation
7.57 is automatic since both sides are 0. If Z ∈ tC, F(get Z ) = F(g)e−tλ(Z). Thus for
Z ∈ tC, Equation 7.57 also holds since both sides are −iλ(Z)F(g).
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Since gC = n− ⊕ tC ⊕ n+, part (a) will be finished by showing Equation 7.57
holds for Z ∈ n−. However, Equation 7.57 is equivalent to requiring dr(i Z)F =
idr(Z)F which in turn is equivalent to requiring dr(Z)F = drC(Z)F . If Z ∈ n−,
then θ Z ∈ n+ and Z + θ Z ∈ g. Thus

dr(Z)F = dr(Z + θ Z)F − dr(θ Z)F = drC(Z + θ Z)F = drC(Z)+ drC(θ Z),

so that dr(Z)F = drC(Z)F if and only if drC(θ Z) = 0, as desired.
For part (b), first, assume F is holomorphic. Since f = F |G , it follows that

drC(n
+) f = 0. Conversely, suppose drC(n

+) f = 0. Restricting the above argu-
ments from GC to G shows dr(Z)F |g = drC(Z)F |g for g ∈ G and Z ∈ gC. Hence
if X ∈ g,

(dr(X)F)(gb) = d

dt
F(gbet X )|t=0 = d

dt
F(get Ad(b)X b)|t=0

= ξ−λ(b)
d

dt
F(get Ad(b)X )|t=0

= ξ−λ(b) (dr(Ad(b)X)F)(g) = ξ−λ(b) (drC(Ad(b)X)F)(g)

for g ∈ G and b ∈ B. Thus if Z = X + iY ∈ n+ with X, Y ∈ g, note Ad(b)Z ∈ n+

and calculate

(drC(Z)F)(gb) = (dr(X)F)(gb)+ i(dr(Y )F)(gb)

= ξ−λ(b) [(drC(Ad(b)X)F)(g)+ (drC(i Ad(b)Y )F)(g)]

= ξ−λ(b) (drC(Ad(b)Z)F)(g) = 0,

as desired. �


7.4.4 Main Theorem

The next theorem gives an explicit realization for each irreducible representation.

Theorem 7.58 (Borel–Weil). Let G be a compact connected Lie group and λ ∈
A(T ).

�hol(G/T, Lλ) ∼=
{

V (w0λ) for − λ dominant
{0} else,

where w0 ∈ W (�(gC)) is the unique Weyl group element mapping the positive Weyl
chamber to the negative Weyl chamber (c.f. Exercise 6.40).

Proof. The elements of �hol(G/T, Lλ) correspond to holomorphic functions in
IndG

T (ξλ). It follows that the elements of �hol(G/T, Lλ) correspond to the set of
smooth functions f on G, satisfying

f (gt) = ξ−λ(t) f (g)(7.59)
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for g ∈ G and t ∈ T and

drC(Z) f = 0(7.60)

for Z ∈ n+.
Using the C∞-topology on C∞(G), Corollary 3.47 shows that C∞(G)G-fin =

C(G)G-fin so that, by Theorem 3.24 and the Highest Weight Theorem,

C∞(G)G-fin
∼=

⊕
dom. γ∈A(T )

V (γ )∗ ⊗ V (γ )

as a G × G-module with respect to the r × l-action. In this decomposition, trac-
ing through the identifications (Exercise 7.33) ?? shows that the action of G on
�hol(G/T, Lλ) intertwines with the trivial action on V (γ )∗ and the standard action
on V (γ ). Recalling that Lemma 7.5, write ϕ for the intertwining operator

ϕ :
⊕

dom. γ∈A(T )

V (−w0γ )⊗ V (γ )
∼→ C∞(G)G-fin.

Given f ∈ C∞(G), use Theorem 3.46 to write f =∑
dom. γ∈A(T ) fγ with respect to

convergence in the C∞-topology, where fγ = ϕ(xγ ) with xγ ∈ V (−w0γ )⊗ V (γ ).
Equation 7.60 is then satisfied by f if and only if it is satisfied by each fγ .

Tracing through the identifications, the action of drC(Z) corresponds to the standard
(complexified) action of Z on V (−w0γ ) and the trivial action on V (γ ). In particular,
Theorem 7.3 shows that xγ can be written as xγ = v−w0γ ⊗ yγ where v−w0γ is a
highest weight vector of V (−w0γ ) and yγ ∈ V (γ ).

Tracing through the identifications again, Equation 7.59 is then satisfied if and
only if tv−w0γ = ξ−λ(t)v−w0γ . But since tv−w0γ = ξ−w0γ (t)v−w0γ , it follows that
Equation 7.59 is satisfied if and only if w0γ = λ and the proof is complete. �


As an example, consider G = SU (2) with T the usual subgroup of diagonal ma-
trices. Realizing �hol(G/T, ξ−n ε12

2
) as the holomorphic functions in IndGC

B (ξC

−n ε12
2
),

�hol(G/T, ξ−n ε12
2
) ∼=

{holomorphic f : SL(2,C)→ C | f (g

(
a b
0 a−1

)
) = an f (g), g ∈ SL(2,C)}.

Since

(
z1 z3

z2 z4

)(
1 b
0 1

)
=

(
z1 bz1 + z3

z2 bz2 + z4

)
, the induced condition in the case of

a = 1 shows f ∈ IndGC

B (ξC

−n ε12
2
) is determined by its restriction to the first column of

SL(2,C). Since

(
z1 z3

z2 z4

)(
a 0
0 a−1

)
=

(
az1 a−1z3

az2 a−1z4

)
, the induced condition for

the case of b = 0 shows that f is homogeneous of degree n as a function on the first
column of SL(2,C). Finally, the holomorphic condition shows �hol(G/T, ξ−n ε12

2
)

can be identified with the set of homogeneous polynomials of degree n on the first
column of SL(2,C). In other words, �hol(G/T, ξ−n ε12

2
) ∼= Vn(C2) as expected.



184 7 Highest Weight Theory

As a final remark, there is a (dualized) generalization of the Borel–Weil Theorem
to the Dolbeault cohomology setting called the Bott–Borel–Weil Theorem. Although
we only state the result here, it is fairly straightforward to reduce the calculation to
a fact from Lie algebra cohomology ([97]). In turn this is computed by a theorem of
Kostant ([64]), an efficient proof of which can be found in [86].

Given a complex manifold M , write Ap(M) = ∧∗
pT 0,1(M) for the smooth dif-

ferential forms of type (0, p) ([93]). The ∂M operator maps Ap(M) to Ap+1(M) and
is given by

(
∂Mω

)
(X0, . . . , X p) =

p∑
k=0

(−1)k Xkω(X0, . . . , X̂k, . . . , X p)

+
∑
i< j

(−1)i+ jω([Xi , X j ], X0, . . . , X̂i , . . . , X̂ j , . . . , X p)

for antiholomorphic vector fields X j . If V is a holomorphic vector bundle over M ,
the sections of V

⊗
Ap(M) are the V-valued differential forms of type (0, p) and

the set of such is denoted Ap(M,V). The operator ∂ : Ap(M,V)→ Ap+1(M,V) is

given by ∂ = 1 ⊗ ∂M and satisfies ∂
2 = 0. The Dolbeault cohomology spaces are

defined as

H p(M,V) = ker ∂/ Im ∂ .

Theorem 7.61 (Bott–Borel–Weil Theorem). Let G be a compact connected Lie
group and λ ∈ A(T ). If λ+ρ lies on a Weyl chamber wall, then H p(G/T, Lλ) = {0}
for all p. Otherwise,

H p(G/T, Lλ) ∼=
{

V (w(λ+ ρ)− ρ) for p = ∣∣{α ∈ �+(gC) | B(λ+ ρ, α) < 0}∣∣
{0} else,

where w ∈ W (�(gC)) is the unique Weyl group element making w(λ+ρ) dominant.

7.4.5 Exercises

Exercise 7.27 Let G be a Lie group and H a closed subgroup of G. Given a repre-
sentation V of H , verify G ×H V is a homogeneous vector bundle over G/H .

Exercise 7.28 Verify the details of Theorems 7.46 and 7.47.

Exercise 7.29 Let G be a compact connected Lie group with maximal torus T and
λ ∈ A(T ).
(1) Show that ξC

λ is a homomorphism.
(2) Show that ξC

λ is the unique extension of ξλ from T to B as a homomorphism of
complex Lie groups.

Exercise 7.30 Let G be a compact connected Lie group with maximal torus T and
λ ∈ A(T ). If V is an irreducible representation, show that V ∼= V (λ) if and only if
there is a nonzero v ∈ V satisfying bv = ξC

λ (b)v for b ∈ B. In this case, show that v
is unique up to nonzero scalar multiplication and is a highest weight vector.
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Exercise 7.31 Verify the details of Lemma 7.53.

Exercise 7.32 Let GC be a complex (linear) connected Lie group with maximal torus
T . Recall that a complex-valued function F on GC is holomorphic if
d F(dlg (i X)) = id F(dlg X) for all g ∈ GC and X ∈ gC, where d F(dlg X) =
d
dt F(get X )|t=0. Note that d F is R-linear.
(1) In the special case of GC = C\{0} ∼= GL(1,C), z ∈ GC, and X = 1, show that
d F(dlz(i X)) = ∂

∂y F |z and id F(dlz X) = i ∂
∂x F |z , where z = x + iy. Conclude that

d F is not C-linear for general F and that, in this case, F is holomorphic if and only
if ux = vy and uy = −vx , where F = u + iv.
(2) Let {X j }nj=1 be a basis over C for gC. For g ∈ GC, show that the map
ϕ : R2n → GC given by

ϕ(x1, . . . , xn, y1, . . . , yn) = gex1 X1 · · · exn Xn eiy1 X1 · · · eiyn Xn

is a local diffeomorphism near 0, c.f. Exercise 4.12.
(3) Identifying gC with Te(GC), show dϕ(∂x j |0) = dlg X j and dϕ(∂y j |0) = dlg(i X j ).
(4) Given a smooth function F on GC, write F in local coordinates near g as f =
ϕ∗F . Show that F is holomorphic if and only if for each g ∈ GC, ux j = vy j and
uy j = −vx j where f = u + iv. In other words, F is holomorphic if and only if it
satisfies the Cauchy–Riemann equations in local coordinates.

Exercise 7.33 In the proof of the Borel–Weil theorem, trace through the various
identifications to verify that the claimed actions are correct.

Exercise 7.34 Let B be the subgroup of upper triangular matrices in GL(n,C). Let
λ = λ1ε1 + · · · + λnεn be a dominant integral weight of U (n), i.e., λk ∈ Z and
λ1 ≥ . . . λn .
(1) Let f : GL(n,C) → C be smooth. For i < j , show that dr(i E j,k) f |g =
idr(E j,k) f |g if and only if

0 =
n∑

l=1

zl, j
∂ f

∂zl,k
|g,

where g = (z j,k) ∈ GL(n,C) and ∂
∂z j,k

= 1
2

(
∂

∂x j,k
+ i ∂

∂y j,k

)
with z j,k = x j,k + iy j,k .

Conclude that dr(i E j,k) f = idr(E j,k) f if and only if ∂ f
∂zl,k

= 0.
(2) Show that the irreducible representation of U (n) with highest weight λ is realized
by

Vλ =
{
holomorphic F : GL(n,C)→ C | F(gb) = ξC

−λnε1 ··· −λ1εn
(b)F(g),

g ∈ GL(n,C), b ∈ B
}

with action given by left translation of functions, i.e., (g1 F)(g2) = F(g−1
1 g2).

(3) Let Fw0λ : GL(n,C)→ C be given by

Fw0λ(g) = (det1 g)λn−1−λn · · · (detn−1 g)λ1−λ2 (detn g)−λ1 ,
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where detk(gi, j ) = deti, j≤k(gi, j ). Show that Fw0λ is holomorphic, invariant under
right translation by N , and invariant under left translation by N t .
(4) Show that Fw0λ ∈ Vλ and show Fw0λ has weight λnε1+· · ·+λ1εn . Conclude that
Fw0λ is the lowest weight vector of Vλ, i.e., that Fw0λ is the highest weight vector for
the positive system corresponding to the opposite Weyl chamber.
(5) Let Fλ(g) = Fw0λ(w0g), where w0 = E1,n + E2,n−2 + . . . , En,1. Write Fλ in
terms of determinants of submatrices and show Fλ is a highest weight for Vλ.

Exercise 7.35 Let G be a compact Lie group. Show G is algebraic by proving the
following:
(1) Suppose G acts on a vector space V and O and O′ are two distinct orbits. Show
there is a continuous function f on V that is 1 on O and −1 on O′.
(2) Show there is a polynomial p on V , so that |p(x)− f (x)| < 1 for x ∈ O ∪O′.
Conclude that p(x) > 0 when x ∈ O and p(x) < 0 when x ∈ O′.
(3) Let P be the convex set of all polynomials p on V satisfying p(x) > 0 when
x ∈ O and p(x) < 0 when x ∈ O′. With respect to the usual action, (g · p) (x) =
p(g−1x) for g ∈ G, use integration to show that there exists p ∈ P that is G-
invariant.
(4) Show that G-invariant polynomials on V are constant on G-orbits.
(5) Let I be the ideal of all G-invariant polynomials on V that vanish on O. Show
that there is p ∈ I, so that p is nonzero on O′. Conclude that the set of zeros of I is
exactly O.
(6) By choosing a faithful representation, assume G ⊆ GL(n,C) and consider the
special case of V = Mn,n(C) with G-action given by left multiplication of matrices.
Show that G is itself an orbit in V and is therefore algebraic.




