
Together with the bivariate eta function and the Lerch function, both of which are also addressed in this chapter,
the Hurwitz function provides a means of summing the interesting series listed in formulas 64:3:3, 64:13:1, and
64:12:3. These functions can all be characterized as “logarithm-like”. The Hurwitz function plays an invaluable
role in the Weyl differintegration of periodic functions, a topic discussed in Section 64:14.

64:1 NOTATION

The symbol ( , ) is standard for this function, but a variety of names generalized zeta function, Riemann’s
zeta function, Riemann’s function, generalized Riemann zeta function, bivariate zeta function, Hurwitz zeta
function, and Hurwitz function are commonly applied to it. We adopt the last of these names to avoid confusion
with the function of Chapter 3 and to recognize the contributions of the German mathematician Adolf Hurwitz
(1859 1919).

The variables v and u will be respectively termed the order and parameter of the Hurwitz function (v,u). It is
to achieve unity with the notation for the Lerch function [Section 64:12] that we resist the temptation to call u the
argument of the function.

64:2 BEHAVIOR

We generally treat only real values of v and u, and exclude v 1, where a |+ discontinuity occurs. There
is no unanimity in the definition of the Hurwitz function for negative parameter and accordingly the u < 0 domain
is generally omitted from consideration in this Atlas, as it is in Figure 64-1. The status of (v,0) is also questionable;
here we regard it as infinite when v is greater then zero, but elsewhere it is considered to equal (v,1).

The discontinuity in the Hurwitz function at v 1 is the dominant feature in the landscape of the Hurwitz
function shown in the figure. The function is invariably positive for v > 1, but it may have either sign for v < 1. In
the latter domain, the Hurwitz function has a number of zeros, concentrated in the region of small u.
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64:3 DEFINITIONS

The difference between two digamma functions [Chapter 44] provides a generating function for Hurwitz
functions of integer orders of 2 and greater
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The Hurwitz function may be defined through the integral
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which may be regarded as a Laplace transform [Section 26:15]. More complicated is Hermite’s integral
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and
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The most transparent definition is as the series
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but this converges only when the order exceeds unity, and then often very slowly. To extend this definition to cover
nonpositive integer u, some authorities, but not this Atlas, exclude from the defining series any term that generates
an infinity. With a similar objective, other authors replace the summand in 64:3:3 by but this2 / 2[( ) ] ,vj u
modification is not adopted here either. A definition, valid only in the narrow domain of the parameter, is provided
by Hurwitz’s formula
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Ways to mitigate the restrictions imposed by these series definitions are discussed in Section 64:6.
The Hurwitz function may be defined also by Weyl differintegration [Section 64:14] of a simple algebraic

function with respect to the logarithm of the differintegration variable:
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Some of the definitions in this section may be extended to noninteger negative parameters, u < 0, but neither
the Atlas nor Equator caters to this domain.

64:4 SPECIAL CASES

When the order is unity, the Hurwitz function suffers a discontinuity but, for any other positive integer order
n, (v,u) is equivalent to a polygamma function [Section 44:12]
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64:4:1

When the order is a nonpositive integer n, the Hurwitz function can be expressed as a Bernoulli polynomial
[Chapter 19]
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The first few cases are

(0,u) ( 1,u) ( 2,u) ( 3,u) ( 4,u)
1
2 u 21 1 1

12 2 2u u 2 31 1 1
6 2 3u u u 2 3 41 1 1 1

120 4 2 4u u u 3 4 51 1 1 1
30 3 2 5u u u u

64:5 INTRARELATIONSHIPS

An obvious consequence of definition 64:3:5 is the recursion formula
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and this may be iterated to
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The duplication formula
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may be generalized to
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which leads to such relationships as
31
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Certain series of Hurwitz functions of positive integer order, with monotone or alternating signs, may be
summed:
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The latter sums involve the digamma function and logarithms [Chapters 44 and 25].

64:6 EXPANSIONS

The seminal expansion of the Hurwitz function is series 64:3:3. When this is incorporated into the
Euler-Maclaurin formula 4:14:1, with h set to unity and the discrete j variable treated as a continuous variable t, the
result
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emerges. After carrying out the indicated integration and differentiations, one discovers the formula
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in which a Pochhammer polynomial [Chapter 18] occurs. Though technically asymptotic, this series converges well.
For computational purposes, it may sometimes be preferable to apply the Euler-Maclaurin transformation, not

to the seminal series 64:3:3 itself, but to formula 64:5:2. This leads to
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where J is an arbitrary positive integer. The right-hand terms in this formula, other than the first, may be regarded
as an expression for the remainder when the seminal series is truncated after the J th term. Another expression for
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the same remainder is
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Hurwitz’s formula, equation 6:3:5, is valid over a narrow domain, but by invoking recursion 63:5:2 to derive
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its validity may be broadened.

64:7 PARTICULAR VALUES

Although the Hurwitz function is often known as the “generalized zeta function”, there is an important mismatch
between the definition of the Hurwitz function (v,u) and the definition of the zeta number (v)( ) vj u vj
[Chapter 3] in that the former definition starts at j 0, whereas the latter starts at j 1. Hence when u 0, the
Hurwitz function reduces to the zeta number only when the order is nonpositive. Particular values of the Hurwitz
function for instances of positive integer parameters, and in the general case, are
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For parameters that equal an odd multiple of ½, the Hurwitz function may be expressed in terms of the lambda
number of Chapter 3
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When the parameter is an odd multiple of ¼ , the Hurwitz function involves also the beta number from the same
chapter. The prototypes are

31
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Notice that these formulas concur with the general rule 64:5:4, when 64:5:3 is taken into account.

64:8 NUMERICAL VALUES

Equator provides accurate values of (v,u) for all |v| 100 and 0 u 100. With keyword Hurwitz, the
Hurwitz function routine uses formula 64:4:2 for negative integer orders and equation 64:6:5 for negative noninteger
v not greater than 3.5. For all other orders, the expansion 64:6:2 is exploited via the -transformation [Section
10:14].
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64:9 LIMITS AND APPROXIMATIONS

When the order is unity, the Hurwitz function suffers a discontinuity, but certain modifications of the Hurwitz
function remain finite as v 1 is approached. Thus
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These results apply irrespective of whether unity is approached from smaller or larger values.
When u is small, the approximation

( , ) ( ) ( 1) smallvv u u v vu v u64:9:3

involving the digamma function [Chapter 44], holds. Adding terms with progressively( )jv u v jj 2,3,j
improves the approximation.

64:10 OPERATIONS OF THE CALCULUS

Differentiation with respect to the order yields
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of which the special case
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is noteworthy. Single and multiple differentiations with respect to the parameter yield
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and these formulas may be generalized to the differintegration [Section 12:14] result
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where is not necessarily an integer. In these formulas (v)n denotes a Pochhammer polynomial [Chapter 18] and
symbolizes the gamma function [Chapter 43]. Note that both formulas in 64:10:3 accord with 64:10:4, as does

64:10:5.
Formulas for indefinite integration with respect to the parameter include:
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and lead to the following interesting definite integrals
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The parts-integration procedure [Section 0:10] that produces the result

1

( 1, ) ( 1) ( 2, ) ( 2)( , )d
1 (1 )(2 )

u u v u v v u vt v t t
v v v

64:10:10

may be iterated to generate expressions for integrals of where( , )nt v t 2,3,4, .n
The Böhmer integrals that are the subject of Section 39:12 appear in the integration formulas
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There is a close connection between these results and the discussion in Section 64:14.

64:11 COMPLEX ARGUMENT

There is interest in the function in the context of Riemann’s hypothesis [Section 3:11] but this topic1
2 ,iy u

will not be pursued here.
Inverse Laplace transformation leads to hyperbolic functions [Chapters 29 and 30]:
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64:12 GENERALIZATION: the Lerch function

Named for the Czech mathematician Mathias Lerch (1860 1922), the trivariate function (x,v,u) generalizes
the Hurwitz function because
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it may equally well be regarded as a generalization of either of the functions mentioned in Section 25:12 the
generalized logarithmic function, or the polylogarithm.



692 THE HURWITZ FUNCTION (v, u) 64:12

Note that, though the Atlas prefers that the terminal character in the symbol of a multivariate function be the
argument, we defer to the convention that the three variables of the Lerch function are cited in the order: argument
x, order v, and parameter u. Though extensions may be possible, we generally impose the restrictions |x| 1, v 1,
and u > 0 throughout this section. Analogous to equations 64:3:2 and 64:3:5, are the definitions of the Lerch
function as an integral
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or as an infinite series
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Yet another definition of the Lerch function is as a Weyl differintegral [Section 64:14] with respect to the logarithm
of the argument:
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Many of the properties of the Lerch function, such as its recursion
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echo those of the Hurwitz function. The following limit governs the approach of the argument to unity
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A surprisingly large number of familiar functions arise by specializing one or more of the variables of the Lerch
function. Specializations of the order to integer values lead to the following special cases:
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in which an incomplete beta function [Chapter 58] is found. When the parameter is specialized, polylogarithms
[Section 25:12] often appear:
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Equator’s Lerch function routine (keyword Lerch) relies on expansion 64:12: 4. Because, when x approaches
unity, this series is slow to converge, a more convergent series representing the remainder is appended following
curtailment of the original expansion. The formula used by Equator is
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This expression for the remainder has its origin in equation 25:12:5. J is chosen large enough that only a few terms
of the m-series are needed.

64:13 COGNATE FUNCTION: the bivariate eta function

The definition of this function as a series
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differs from the corresponding definition of the Hurwitz function only by the presence of alternating signs. Other
similarities to are its recurrence and duplication formulas:( , )v u

( , 1) ( , )vv u u v u64:13:2
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which likewise differ from their Hurwitz analogues only by signs. Equation 64:13:3 provides a route to calculate
the bivariate eta function from the Hurwitz function; another way is
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This latter equation is the one used by Equator's bivariate eta function routine, which uses the keyword eta.
Some special cases of the bivariate eta function are
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Here (v) and (v) are eta and beta numbers from Chapter 3; G(u) is Bateman's G function [Section 44:13].

64:14 RELATED TOPIC: Weyl differintegration

The Hurwitz and Lerch functions of this chapter have strong connections with the fractional calculus [Section
12:14], as does the bivariate eta function. For example, equations 64:3:6 and 64:12:4 show how the first two of these
functions can be generated from simple algebraic expressions by the operations of the fractional calculus.

Differintegration is the operation that unifies differentiation and integration and extends the concept to fractional
orders. Except when the order of differintegration is a nonnegative integer, a lower limit must be specified for the
differintegral of a function f(x) to be fully characterized. Any number will serve as this lower limit but the most
common are 0 and .

Differintegration with a lower limit of is called Weyl differintegration (Hermann Klaus Hugo Weyl, German
mathematician, 1885 1955). Notations vary greatly, but our symbolism for a Weyl differintegral, and a definition
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applicable when < 0, is through the Riemann-Liouville integral transform
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When is positive, the definition still relies on this transform but subsequently differentiates it a sufficient number
of times
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Consider, for example, the function f(x) exp( bx) where b is a positive constant. Then a change of the integration
variable in 64:14:1 to b(x t) easily establishes that

d exp( ) exp( ) 0
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and the same result is also given by 64:14:2. As a second example, the Randles-Sev ik function, important in
electrochemistry, may be defined, for negative x, as the Weyl semiderivative of the function 1/[1+exp( x)]
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Other representations of this functions are
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the latter not being restricted to negative x.
Of course, as with regular differentiation and integration, one may differintegrate with respect to a function,

instead of with respect to a variable. For example, replacing t in equation 64:14:3 by a logarithm leads to
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x
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This formula lies at the heart of definitions 64:3:6 and 64:12:4.
The Hurwitz and bivariate eta functions play vital roles in the Weyl differintegration of periodic functions. Let

per(x) be such a function and its period be P. With definition 64:14:1 applied to this periodic function [Chapter 36],
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where, in the final step, the integration variable was changed to x t jP. The final integrand is seen to involve
the Hurwitz summands from equation 64:3:3, whence

1

0

d per( ) per( ) 1 , d 0
d ( )

x PPt x
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For 1 < < 0, this result requires that the integrals in 64:14:7 converge which, in turn, requires that the mean value
of the periodic function be zero over its period. This requirement can be discarded when is positive, in which case
the formula for Weyl differintegration of a periodic function, derived from 64:14:2, is
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1

0

d per( ) [per( ) per( )] 1 , d 0
d ( )

x PPt x x
t P

64:14:9

Because increasing x by P leaves the right-hand members of 64:14:8 and 64:14:9 unchanged, it is evident that the
Weyl differintegral of a periodic function is itself periodic and of unchanged period.

Though the rather complicated formulas of the previous paragraph apply to all periodic functions, Weyl
differintegration of the cosine function merely scales the function and shifts its phase
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and a similar result holds for the sine. As a final example, consider the square-wave function ( 1)Int(2x/P) [Section
36:14]. The result of differintegrating this periodic function to order can be expressed succinctly in terms of the
bivariate eta function:

Int(2 /d (2 / ) 2( 1) ,
d (1 )

x
x P P x

t P
64:14:11

The waveforms produced for the cases of orders are illustrated1
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66 3 1, , , , , , , , , , , and0 ,1

in Figure 64-2. They demonstrate a transition from square-wave to triangular-wave behavior as the order moves
from 0 to 1, corresponding to increasingly robust integration. Increasing the order of differentiation, as
transitions from 0 to 1, leads ultimately to a set of Dirac functions [Chapter 9], spiking alternately in the positive and
negative directions. In the figure, the curves have been normalized to accentuate the familial pattern.


