
The bivariate functions of this chapter have several interesting properties. One is their ability to bridge the gap
between circular functions and hyperbolic functions. Another, discussed in Section 63:11, is their double periodicity.
Three of these twelve functions – cn(k,x), sn(k,x), and dn(k,x) – were described by the prolific Prussian
mathematician Karl Gustav Jacob Jacobi (1804 1851), and these receive emphasis here. The other nine, introduced
by the Englishman James Whitbread Lee Glaisher (1848 1928), are often regarded as subordinate, because they
can be constructed so easily from Jacobi’s trio.

Unlike most other functions, the symbols of the Jacobian elliptic function have, in themselves, mathematical
significance. These symbols consist of two letters. The first is drawn from the set (c,s,d,n); the second is a different
letter from the same set, for a total of 4×3 12. It is useful to think of an elliptic function as a quotient of two
functions, for example

ccs( , )
s

a functionk x
an function
A @

A @
63:0:1

As described in Section 63:8, these single-letter “c”, “s”, “n” and “d” functions are, in fact, Neville theta functions,
but this is unimportant here. The value of representation 63:0:1 is that the important rules for multiplying or dividing
two or more Jacobian elliptic functions, exemplified by the following:

sc( , )cs( , ) 1k x k x63:0:2
cn( , )nd( , ) cd( , )k x k x k x63:0:3

dn( , ) ds( , )
sn( , )

k x k x
k x

63:0:4

ns( , )dc( , ) ds( , )nc( , )k x k x k x k x63:0:5
become self-evident on the basis of such partitioning. Other interrelations among elliptic functions, not evident from
the symbolism, are:

2 2 2 2 21 cn ( , ) sn ( , ) dn ( , ) sn ( , )k x k x k x k k x63:0:6
2 2 2 2 2nd ( , ) cd ( , ) sd ( , ) 1 sd ( , )k x k x k x k k x63:0:7

2 2 2 2ns ( , ) cs ( , ) 1 ds ( , )k x k x k x k63:0:8
2 2 2 2 2nc ( , ) 1 sc ( , ) dc ( , ) sc ( , )k x k x k x k k x63:0:9
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672 THE JACOBIAN ELLIPTIC FUNCTIONS 63:2

Having a pythagorean flavor, these latter formulas, and others, follow easily from their geometric interpretation, as
explored in Section 63:3.

63:1 NOTATION

The “Jacobian” (sometimes “Jacobi”) adjective is not always attached to these elliptic functions. Alternatively,
only the sn, cn, and dn functions may be associated with Jacobi, the others being called Glaisher functions. The
name cosine-amplitude is given to cn, sine-amplitude to sn, and delta-amplitude to dn; the others have not been
individually named.

The Jacobian elliptic functions are bivariate, with modulus k and argument x as the standard variables. You may
encounter notations such as cn(x), suggesting a single variable only; the second variable is then implied, being treated
as a constant unworthy of mention. The symbol p has been used for the modulus and u commonly replaces x. As
well, the order of citation of the variables may be reversed, as in sn(u,k). Rarely, tn is used for sc, because of its
tangent-like properties. In common with the functions of Chapters 61 and 62, Jacobian elliptic functions are often
symbolized with “modulus substitutes”; their use may be signaled by replacement of the comma by some other
separator, as in dn(x|m) or cs(x\ ) where m k2 and arcsin(k).

The twelve Jacobian elliptic functions form four groups, according to the second letter of the function’s name.
Thus sc, dc, and nc are said to be copolar: they all possess poles of type c.

Several supplementary univariate and bivariate functions arise in discussions of Jacobian elliptic functions.
These are the complementary modulus , the complete elliptic integrals [Chapter 61] K(k) or K, and E(k)21k k
or E, the incomplete elliptic integrals [Chapter 62] F(k, ) and E(k, ), and the amplitude. The symbol is
appropriate for the last, but am(k,x) often replaces it, to emphasize that it shares variables with the elliptic functions,
to which it is related through the identities

2am( , ) arcsin{sn( , )} arccos{cn( , )} arcsin 1 dn ( , ) /k x k x k x k x k x K63:1:1

The function that is denoted dn(k,x) in the Atlas may be symbolized (k, ) elsewhere.
Capitalizing the initial letter of the symbol for a Jacobian elliptic function has been used to indicate the indefinite

integral of the square of the function [Section 63:10]

2

0

Ef ( , ) ef ( , )d ef cn, sn, dn, cd, sd, nd, cs, ds, ns, sc, dc, nc
x

k x k t t63:1:2

but this convention is not adopted here. Note our usage, in 63:1:2 and elsewhere, of “ef” as a stand-in for certain
– or, as here, all – elliptic functions.

63:2 BEHAVIOR

The Jacobian elliptic functions display interesting properties when the modulus and/or the argument are
imaginary or complex. However, except in Sections 63:11, this chapter treats k and x as real. Moreover, we
generally assume 0 k 1, which covers the most important values of the modulus, though equations 63:5:1 and
63:5:16 19 show how this domain may be extended to all real values.

Figure 63-1, is a three dimensional representation of the cn(k,x), sn(k,x) and dn(k,x) functions; that is, the three
Jabobian elliptic functions that belong to the copolar group n. Likewise, Figures 63-2, 63-3 and 63-4 each depict
a trio of functions belonging to the other copolar groups. Many of the properties of the twelve functions are evident
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from these graphs. For the most part, the functions coincide with circular functions [those of Chapter 32, 33, and 34]
when k = 0 but evolve as k increases to become hyperbolic functions [from Chapters 28 30] when k 1. For
example, sc(0,x) tan(x), whereas sc(1,x) sinh(x). See Section 63:4 for a complete listing.

Except when k 1, all elliptic functions ef(k,x) are periodic in their argument x, with a period of either 4K or
2K; specifically:

ef ( , 4 ) ef ( , ) ef = sn, cn, ds, ns, dc, nc, sd, cd
1, 2,

ef ( , 2 ) ef ( , ) ef = dn, cs, sc, nd

k x nK k x
n

k x nK k x
63:2:1

In this behavior, the elliptic functions are analogous to the circular functions, which have periods of 2 or . This
reflects the fact that, in elliptic algebra, the complete elliptic integral K plays the role that the right-angle, /2, fills
in circular trigonometry. Likewise, the concept of quadrants, familiar in the context of circular functions, can
usefully be extended to elliptic functions. The table opposite reports the ranges of values adopted by the twelve
elliptic functions in each of the four “quadrants”. Information about the ranges, zeros, extrema and discontinuities
of the functions can also be gleaned from a careful inspection of this tabulation.

The lengthening period as k increases is brought
out particularly clearly in Figure 63-4. These three
diagrams illustrate that when k reaches unity, the period
becomes infinite, as appropriate for the hyperbolic
functions that most elliptic functions become in that
limit. The argument x is used as one of the variables in
Figures 63-1 through 63-4, but it is the ratio x/K, where
K denotes the complete elliptic integral K(k), that is
more significant in many respects and that was chosen
in drawing Figures 63-5, 63-6 and 63-7. These
diagrams show how the behavior of Jacobi’s three
functions – cn(k,x), sn(k,x), and dn(k,x) – is affected by
the value of the modulus. Notice that the dependence
on k is weak when k is small, but becomes dramatic as
k approaches unity.
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0 x K K x 2K 2K x 3K 3K x 4K

cn 1 cn(k,x) 0 0 cn(k,x) 1 1 cn(k,x) 0 0 cn(k,x) 1

sn 0 sn(k,x) 1 1 sn(k,x) 0 0 sn(k,x) 1 1 sn(k,x) 0

dn 1 dn(k,x) k k dn(k,x) 1 1 dn(k,x) k k dn(k,x) 1

cd 1 cd(k,x) 0 0 cd(k,x) 1 1 cd(k,x) 0 0 cd(k,x) 1

sd 0 sd(k,x) 1/k 1/k sd(k,x) 0 0 sd(k,x) 1/k 1/k sn(k,x) 0

nd 1 nd(k,x) 1/k 1/k nd(k,x) 1 1 nd(k,x) 1/k 1/k nd(k,x) 1

cs + cs(k,x) 0 0 cs(k,x) + cs(k,x) 0 0 cs(k,x)

ds + ds(k,x) k k ds(k,x) + ds(k,x) k k ds(k,x)

ns + ns(k,x) 1 1 ns(k,x) + ns(k,x) 1 1 ns(k,x)

sc 0 sc(k,x) + sc(k,x) 0 0 sc(k,x) + sc(k,x) 0

dc 1 dc(k,x) + dc(k,x) 1 1 dc(k,x) + dc(k,x) 1

nc 1 nc(k,x) + nc(k,x) 1 1 nc(k,x) + nc(k,x) 1

am 0 am(k,x) /2 /2 am(k,x) am(k,x) 3 /2 3 /2 am(k,x) 2

63:3 DEFINITIONS

Let the symbol x be assigned to the incomplete elliptic integral of the first kind, of modulus k and amplitude .
Then the expression

2 2
0

1F( , ) d
1 sin ( )

x k
k

63:3:1

gives x as a function of k and . Equally well, one may regard the amplitude as a function of k and x. The six
circular functions of then serve to define six of the Jacobian elliptic functions, as follows:
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cos( ) sin( ) sec( ) csc( ) tan( ) cot( )

cn(k,x) sn(k,x) nc(k,x) ns(k,x) sc(k,x) cs(k,x)

These definitions raise the pertinent question of how is to be found from known values of k and x. There is no
straightforward way of doing this, but that does not undermine the validity of the definition. One may think of
elliptic functions as being inverse functions [Section 0:3] of incomplete elliptic integrals; for example, treating k as
a constant, cn(k,x) is the inverse function of F(k,arccos(x)), as detailed in Section 63:13.

The delta-amplitude is defined by

2 2dn( , ) 1 sin ( )k x k
x

63:3:2

and the remaining five Jacobian elliptic functions may be defined from this, either by the definitions shown in the
panel below

nd(k,x) cd(k,x) sd(k,x) dc(k,x) ds(k,x)

1/dn(k,x) cn(k,x)/dn(k,x) sn(k,x)/dn(k,x) dn(k,x)nc(k,x) dn(k,x)ns(k,x)

or in numerous other ways allowed by the partitioning rules exemplified in equations 63:0:1 4.
In Section 33:3, a set of three similar triangles is described by means of which the six circular functions may

be defined. A similar exercise is undertaken in Section 29:3 of the Atlas for the six hyperbolic functions. In much
the same way, there exists a trigonometric construct that permits the defining of the twelve elliptic functions in an
appealing way.

First construct the triangle OAC, right-angled at C, with
the hypotenuse OA of unit length and with the angle AOC
equal to the elliptic amplitude . Then cn(k,x) and sn(k,x)
are defined as the lengths OC and CA. The OAC triangle,
and the ensuing construction, are illustrated in Figure 63-8.
In this diagram, dotted lines are all of unity length. Now
extend the line OC to point I, such that OI is of unity length,
and erect a perpendicular at that point to meet an extension
of line OA at point G. Then OG and GI have lengths equal
to nc(k,x) and sc(k,x) respectively. The next construction is
to further extend lines OI and OG, to points L and J
respectively, until the perpendicular distance JL between
them becomes equal to unity. Then the lengths OL and OJ
equal cs(k,x) and ns(k,x). Six of the elliptic functions have
now been defined; the other six require further construction.
Construct a line at an angle

2arctan tan( ) 1k k k63:3:3

to line OL, as shown in the figure. This line will cut lines AC, GI and JL at points B, H and K. The length KL is
thereby equal to the complementary modulus k . The lengths of lines OB, OH and OK now define the elliptic
functions dn(k,x), dc(k,x), and ds(k,x). The final construction is to measure unity length along line OK to a point
E and erect the vertical line FED through that point. Lengths OD, OF and DF then define the remaining elliptic
functions nd(k,x), cd(k,x), and sd(k,x).

Figure 63-9 is an exploded view of the Figure 63-8, marked with the length elements assigned to the various
functions. Note that each of the four diagrams in this figure corresponds to a copolar group, and that the first
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vindicates the early equalities in equation 63:1:1. Pythagorean arguments applied to various triangles lead directly
to formulas 63:0:4 7. The four diagrams are “similar” in the geometric sense; that is, they differ in size but not in
shape. This similarity enables one to assert, for example, that the ratio of the lengths of two red lines must equal the
ratio of the lengths of two blue lines and therefore

cd( ,nd )
cn( , )

( , )
1
k k x

k
x

x
63:3:4

This relation leads directly to 63:0:3. In fact, all the “partitioning” rules discussed in Section 63:0 are validated by
similarity arguments arising from Figure 63-9.

63:4 SPECIAL CASES

As reported in Section 63:2, each Jacobian elliptic function ef(k,x) reduces, when k 0, to a circular function
of x, or to unity, whereas it reduces to a hyperbolic function or unity, when k 1.

cn sn dn cd sd nd cs ds ns sc dc nc am

k 0 cos sin 1 cos sin 1 cot csc csc tan sec sec x

k 1 sech tanh sech 1 sinh cosh csch csch coth sinh 1 cosh gd

The table identifies the particular circular or hyperbolic function for each ef(0,x) and ef(1,x). The tabulation includes
the elliptic amplitude am(k,x), which is seen to equal its argument when k 0 and the gudermannian function
[Section 33:14] of x when k 1.
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63:5 INTRARELATIONSHIPS

Every elliptic function is even with respect to its modulus
ef ( , ) ef ( , ) all efk x k x63:5:1

and either even or odd with respect to its argument
ef ( , ) ef dn, cn, nc, dc, nd, cd

ef ( , )
ef ( , ) ef = sn, ns, cs, ds, sc, sd

k x
k x

k x
63:5:2

Note that the presence of an “s” in the symbol of the elliptic function ensures its oddness with respect to its
argument.

Jacobi’s trio of elliptic functions satisfies the following addition formulas:

2 2 2

cn( , )cn( , ) sn( , )sn( , )dn( , )dn( , )cn( , )
1 sn ( , )sn ( , )

k x k y k x k y k x k yk x y
k k x k y

63:5:3

2 2 2

sn( , )cn( , )dn( , ) cn( , )dn( , )sn( , )sn( , )
1 sn ( , )sn ( , )

k x k y k y k x k x k yk x y
k k x k y

63:5:4

2

2 2 2

dn( , )dn( , ) sn( , )cn( , )sn( , )cn( , )dn( , )
1 sn ( , )sn ( , )

k x k y k k x k x k y k yk x y
k k x k y

63:5:5

These equations are easily converted to argument-duplication formulas that give values of ef(k,2x). Other important
special cases are listed in the following table, which also includes expressions for the three prime elliptic functions
of half-argument.

ef cn ef sn ef dn

ef(k,x±K) sd( , )k k x ±cd(k,x) nd( , )k k x

ef(k,x±2K) cn(k,x) sn(k,x) dn(k,x)

1
2ef ,k x cn( , ) dn( , )

1 dn( , )
k x k x

k x
1 cn( , )
1 dn( , )

k x
k x

cn( , ) dn( , )
1 cn( , )
k x k x

k x

The principle of Landen transformation is explained in Section 62:5. When employed to transform the delta-
amplitude in the ascending mode, the procedure is

2 2dn ( , ) dn2 1(1 )
1

( , )
dn(

1
, )

2
k k x k k

k x k x
xk x

k k
63:5:6

and serves to increase the modulus at the expense of a decrease in the argument. The corresponding formulation for
the descending Landen transformation is

2dn ( , )
dn(

dn(1 1
1 ,1 )

, )k k x kk x
k k k

k
x

x k x63:5:7

and similar – though generally more complicated – formulas apply to other elliptic functions.
What is called the Jacobi real transformation establishes a relationship between a Jacobian elliptic functions

with modulus in the domain 1 k and one in the standard domain 0 k 1. All these transformations are of
the form
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1ef , ef , xx w k
k k

63:5:8

where the multiplier w is either 1, k, or 1/k, and ef is another – or sometimes the same – elliptic function. The panel
below lists the correspondences between ef and wef

ef cn sn dn cd sd nd cs ds ns sc dc nc

wef dn ksn cn dc ksc nc
1 ds
k

1 cs
k

1 ns
k

ksd cd nd

63:6 EXPANSIONS

The first five terms in the power series for the sine-amplitude, cosine-amplitude and delta-amplitude functions,
as well as for the elliptic amplitude itself, are

2 2 4 2 4 6
2 4 6 81 1 4 1 44 16 1 408 912 64cn( , ) 1

2! 4! 6! 8!
k k k k k kk x x x x x63:6:1

2 2 4 2 4 6 2 6 4 8
3 5 7 91 1 14 1 135( ) 1 1228( ) 5478sn( , )

3! 5! 7! 9!
k k k k k k k k k kk x x x x x x63:6:2

2 2 4 2 4 6 2 4 6 8
2 4 6 84 16 44 64 912 408dn( , ) 1

2! 4! 6! 8!
k k k k k k k k k kk x x x x x63:6:3

2 2 4 2 4 6 2 4 6 8
3 5 7 94 16 44 64 912 408am( , )

3! 5! 7! 9!
k k k k k k k k k kk x x x x x x63:6:4

General formulas for the coefficients in these series are unknown. These four expansions are computationally useful
whenever x is close to zero.

Gradshteyn and Ryzhik [Section 8.146] give a comprehensive listing of expansions of the Jacobian elliptic
functions, as well as some of their logarithms and squares, in terms of the nome q [Section 61:15]. The most
important are:

1/ 2 3 / 2 5 / 2

3 5

2 3 5sn , sin sin sin
1 2 1 2 1 2
q x q x q xk x

kK q K q K q K
63:6:5

1/ 2 3 / 2 5 / 2

3 5

2 3 5cn , cos cos cos
1 2 1 2 1 2
q x q x q xk x

kK q K q K q K
63:6:6

2 3

2 4 6

2 1 2 3dn , cos cos cos
4 1 1 1

q x q x q xk x
K q K q K q K

63:6:7

2 3

2 4 6

/ 2 2 /3 3am , 2 sin sin sin
2 1 1 1

x q x q x q xk x
K q K q K q K

63:6:8

In these equations we are using K to represent K(k).
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63:7 PARTICULAR VALUES

Simple expressions arise for each Jacobian elliptic function when the argument is K/2, corresponding to an
argument that bisects the first “quadrant”. Moreover, each elliptic function often coincides in value there with
another of its eleven congeners. The pairings, and the values acquired, are listed below. Note that .21k k

ds cn1
2,k K 1

2,k K
sn dn1

2,k K 1
2,k K

nc 1
2,k K

ns sc1
2,k K 1

2,k K
sd 1

2,k K
cd cs dc nd1

2,k K 1
2,k K 1

2,k K 1
2,k K

(1 )k k
1

k
k

1
1 k k

1 k
k

1 k
1
k

1
(1 )k k

The same values reoccur, possibly with a change of sign, at the midpoints of all quadrants.
The particular values when x is a multiple of K (that is, where adjacent quadrants meet) is evident from the table

in Section 63:2. All such values are drawn from the nine-member set 0, ±k , ±1, ±1/k , and ± | .

63:8 NUMERICAL VALUES

Using dn(k0,x0) as illustrative, one popular technique for evaluating Jacobian elliptic functions is to use the
Landen transformation in either its descending mode [equation 63:5:7] or ascending mode [equation 63:5:6], to
progressively decrease or increase the modulus of the delta-amplitude until it has reached (after, say, n
transformations) a value so close to unity or zero that the approximation

2 21
2dn( , ) 1 sin ( ) smallk x k x k63:8:1

or
2 21

4dn( , ) sech( ) 1 1 sinh ( ) tanh( ) (1 ) smallk x x k x x x k63:8:2

may be applied validly. These approximations arise from limits 63:9:3.
Another route to calculating Jacobian elliptic functions exploits the partitioning principle described in Section

63:0. The single-letter functions are, in fact, the Neville’s theta functions and accordingly any of the twelve elliptic
can be calculated as

e

f

( , )ef ( , ) all ef functions
( , )
k xk x
k x

63:8:3

Applying the routines described in Section 61:15, this is the procedure used by Equator’s Jacobian elliptic cn
function routine and eleven other similarly named functions (keywords cn, sn, dn, sd, cd, nd, sc, dc, nc, cs, ds, and
ns). Values of all twelve elliptic functions are available for variables in the domains 0 k 1 and 8K(k)
x 8K(k).

Equator also has a routine (keyword am) which calculates the elliptic amplitude by the algorithm
arcsin{sn( ,2 )} 0 0.1

frac( / 2 )
am( , ) Int arccos{cn( ,2 )} 0.1 0.9

2 K( )
arcsin{sn( ,2 )} 0.9 1

k yK y
y x Kxk x k yK y

K K k
k yK y

63:8:4
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63:9 LIMITS AND APPROXIMATIONS

The following limiting approximations apply as the modulus of certain elliptic functions approaches the value
zero or unity:

21
4

21
4

sin( ) sin( )cos( ) cos( ) 0
sn( , )

tanh( ) ( ) sinh( ) sech( ) sech( ) 1

x k x x x x k
k x

x k x x x x k
63:9:1

21
4

21
4

cos( ) sin( )cos( ) sin( ) 0
cn( , )

sech( ) ( ) sinh( ) sech( ) tanh( ) 1

x k x x x x k
k x

x k x x x x k
63:9:2

2 21
2

21
4

1 sin ( ) 0
dn( , )

sech( ) ( ) sinh( ) sech( ) tanh( ) 1

k x k
k x

x k x x x x k
63:9:3

21
4

21
4

sin( )cos( ) 0
am( , )

gd( ) ( ) sinh( ) sech( ) 1

x k x x x k
k x

x k x x x k
63:9:4

Limiting expressions as x 0 are available by curtailing expansions 63:6:1 4.

63:10 OPERATIONS OF THE CALCULUS

The derivative of an arbitrary elliptic function ef(k,x) with respect to its argument is proportional to the product
of the two other elliptic functions (e f and e f) that, with ef, constitute a copolar group. The constant of
proportionality may, or may not, depend on k, as follows

2 2

2 2

=1 for ef = sc, sn, sd, nc

= 1 for ef = cn, cs, ds, ns
ef( ) = e f( ) e f( )

for ef = nd or for ef = dn

for ef = dc or for ef = cd

k,x k,x k,x
x k k

k k

63:10:1

The derivatives with respect to the modulus again involve the proportionality constant but another term ,
reflecting the individuality of the ef elliptic function, is also involved

2 2

0 for ef = cd,dc
ef( ) =

cd( , ) for ef = cn,nc,sc,sn,cs,ns

sn( , ) ( , ) dc( ) for ef = sd,dse f( ) e f( )
[dc( )]/ for ef = dn,nd

k,x
k k k x

x k x E k k k,xk,x k,x
k k k k k,x k

63:10:2

Expressions for indefinite integrals of the forms

2
1 2

0 0

ef ( , )d and ef ( , )d f s
x x

I k t t I k t t63:10:3

exist for nine of the elliptic functions as listed below. Although those of pole type s diverge, their complements
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* * 2
1 2es( , )d and es ( , )d e = n, c, d

K K

x x

I k t t I k t t63:10:4

remain finite and are tabulated instead. For brevity in this table, each elliptic function ef(k,x) is denoted simply
by the symbol ef.

*
1 1orI I *

2 2orI I

sn [ln{(dn cn)/(1 )}]/k k k 2[ E( , )]/x k k

cn [arccos(dn)]/ k 2 2[E( , ) ( ) ]/k k x k

dn E(k, )

nc [ln(dc sc)]/k k 2[sn dc E( , )]/x k k

sc [ln{(dc nc) /(1 )}]/k k k 2[sn dc E( , )]/k k

dc ln(nc sc) sn dc E( , )x k

nd [arccos(cd)]/ k 2 2[E( , ) sn cd]/k k k

sd [arcsin{ (nd cd)}]kk kk 2 2 2[E( , ) ( ) sn cd]/( )k k x k k k

cd [ln(nd sd)]/k k 2 2[ sn cd E( , )]/x k k k

ns ln{ /(ds cs)}k E( , ) cn ds E( )k k K x

cs ln{(1 ) /(ns ds)}k E( , ) cn ds E( )k k

ds ln(ns cs) 2E( , ) cn ds E( ) ( )k k k K x

Equation 63:10:1 is helpful in evaluating the integrals of many products and quotients of elliptic functions; some
of these are listed by Gradshteyn and Ryzhik [Sections 5.131 139].

63:11 COMPLEX ARGUMENT

The real and imaginary parts of Jacobi’s three functions are:

2

cs( , )ns( , ) dn( , )dc( , )cn( , )
ns( , )cs( , ) sn( , )sc( , )

k x k y i k x k yk x iy
k x k y k k x k y63:11:1

2

ds( , )nc( , ) ds( , )cn( , )sn( , )
ns( , )cs( , ) sn( , )sc( , )

k y k y i k x k xk x iy
k x k y k k x k y

63:11:2

2

2

ds( , )ds( , ) cn( , )nc( , )dn( , )
ns( , )cs( , ) sn( , )sc( , )

k x k y ik k x k yk x iy
k x k y k k x k y

63:11:3

When the argument is imaginary, these formulas, and their nine other cohorts, reduce to Jacobi imaginary
transformations, each of which establishes a relationship between a Jacobian elliptic functions of imaginary argument
and one with real argument. All these transformations are of the form
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2ef , ef , 1k iy w k y k k63:11:4

where the multiplier w is either 1, i, or i, and is another – or sometimes the same – elliptic function. The panelef
below lists the correspondences between ef and efw

ef cn sn dn cd sd nd cs ds ns sc dc nc

efw nc i sc dc nd i sd cd i ns i ds i cs i sn dn cn

Notice that whether this transformation produces an imaginary or a real result depends on whether or not an “s”
appears in the symbol for the elliptic function.

As elaborated in Section 63:2, an elliptic function of real argument
is periodic in x with a period that is either 4K(k) or 2K(k). This
periodicity is retained when the argument becomes complex but, as the
previous paragraph demonstrates, an elliptic function of complex
argument is periodic along the imaginary axis, too, with a period that
is either 4iK(k ) or 2iK(k ). The assignment of real and imaginary
periods is made in the table to the right.

This double periodicity is clearly exemplified in Figure 63-10,
which depicts the real and imaginary parts of cn(k,z) cn(k,x+iy) with
k . Note that, because there are two poles per period, the spacing4

5

of poles is 3.9906 along the real dimension and1 4
2 5[4K( )]
3.5015 along the imaginary axis.31

2 5[4K( )]

63:12 GENERALIZATIONS

We are aware of no direct generalizations of the Jacobian elliptic functions having been made.

Period

real imaginary

cn,ds,nc,sd 4K(k) 4iK(k )

dn,cs,sc,nd 2K(k) 4iK(k )

sn,ns,dc,cd 4K(k) 2iK(k )
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63:13 COGNATE FUNCTIONS: inverse elliptic functions

Among a number of functions that are related to Jacobian elliptic functions, we here mention only their inverses.
As with other inverses of periodic functions, ambiguities arise in assigning the principal values of the inverse elliptic
functions. Beware of differing conventions.

With k invariant, the inverse elliptic functions are various incomplete elliptic integrals of the first kind [Chapter
62]. From the prototype

2 2
0

1invam( , ) d F ,
1 sin ( )

y

k y k y
k

63:13:1

it follows that
1

2 2 2 2

1invcn( , ) d F ,arccos( )
1 1y

k y t k y
t k t k

63:13:2

2 2 2
0

1invsn( ) = d F ,arcsin( )
1 1

y

k, y t k y
t k t

63:13:3

1 2

2 2 2

11invdn( , ) d F ,arcsin 1
1 1y

y
k y t k k y

kt t k
63:13:4

with similar results for the other nine inverse Jacobian elliptic functions. Of course, when k equals zero or unity,
they generally reduce to the functions of Chapters 35 or 31. Jeffrey [Chapter 12] lists a few other properties of these
inverse functions.

63:14 RELATED TOPIC: Weierstrassian elliptic functions

The elliptic family of functions addressed in Chapters 61 63 are largely the creation of Legendre and Jacobi,
but there is a parallel formalism due to the German Karl Theodor Wilhelm Weierstrass (teacher and mathematical
innovator, 1815 1897). Of course, the two rival systems are related. Here we shall point out some of those
relationships, but stop well short of a comprehensive description of the Weierstrass system.

There are three interrelated parameters in the Weierstrass system that play a role equivalent to that played by
Legendre’s modulus k and complementary modulus k . The equivalences are

2 1 1 2
1 2 3

1 3 1 3

where 0e e e ek k e e e
e e e e
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Likewise, the role of determining the real and imaginary periods of the Weierstrass’s elliptic functions, played in
the Legendre system by K(k) and K(k ), is taken by two new variables

1 2
1 2 1 2

2K( ) 2 K( )andk i k
e e e e63:14:2

The principal Weierstrassian elliptic function, usually symbolized P(z) with some fancy typographic rendering of
the “P”, is expressible in terms of particular Jacobian elliptic functions as the alternatives

2 2 2
1 1 3 1 3 2 1 3 1 3 3 1 3 1 3( )cs , ( )ds , ( )sn ,e e e k z e e e e e k z e e e e e k z e e63:14:3


