
v v

The two bivariate functions of this chapter arise in several physical contexts, most notably in describing
phenomena within, or on the surface of, a sphere. Applications of these functions concentrate on real arguments of
magnitudes less than unity and accordingly the domain 1 < x < 1 receives emphasis in this chapter. Associated
Legendre functions, which are trivariate extensions of Pv(x) and Qv(x), are discussed briefly in Section 59:12. The
final section of this chapter illustrates how these functions arise in physical applications.

59:1 NOTATION

Pv(x) and Qv(x) are known respectively as the Legendre function of the first kind and the Legendre function of
the second kind, of degree v. Not infrequently the argument x is replaced by a hyperbolic or circular cosine; the Atlas
uses notations such as Pv(cosh( )) and Qv(cos( )) when these replacements are made.

The term spherical harmonic is used collectively to embrace both the Legendre functions and the associated
Legendre functions [Section 59:12].

Regrettably, the definitions of Pv(x) and Qv(x) are by no means uniform from one author to the next, and varying
symbolism are in use. Abramowitz and Stegun [Page 332] list several of these alternatives. Sometimes different
symbols are adopted according as the argument is real or complex. As elsewhere in this Atlas, our emphasis here
is on real variables. Accordingly, an equation in this chapter will sometimes imply only that the real parts of each
side are equal.

59:2 BEHAVIOR

Apart from the isolated instances addressed in Sections 59:4 and 59:5, both Legendre functions adopt complex
values when x 1. This domain receives no further attention here. The Q Legendre function is mostly complex
also when its argument exceeds 1, but the definition discussed in Section 59:11 accords it the real values discussed
in most of this chapter. Qv(x) is unequivocally real only for 1 < x < 1.
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Each Legendre function exhibits such different properties on either side of x 1 that effectively it behaves as
a distinct function in each region. Accordingly, we display their landscapes as the four graphs shown opposite.

The values acquired by the two Legendre functions at arguments of 1, 0, and +1 are reported in detail in
Section 59:7 and their general behavior within 1 < x < 1 is evident from Figures 59-1 and 59-2. Because of the
degree-reflection formulas 59:5:3 and 59:5:4, it suffices to consider only degrees of v ½, and the two figures are
so restricted. The landscape is rippled for both functions, with multiple zeros and local extrema.

Figures 59-3 and 59-4 are three-dimensional graphs of the Legendre functions in the x > 1 domain. Pv(x)
exhibits a rather bland landscape; notice the reflection symmetry that exists across the plane v ½, in consequence
of formula 59:5:3. The repetitive |+ discontinuities that occur in Figure 59-4 whenever the degree of Qv(x)
encounters a negative integer value may be attributed to the cotangent term in formula 59:5:4.

59:3 DEFINITIONS

Several definite integrals, including the following, represent the Legendre functions:

2

0

1P 1 cos( ) d 1 all
v

v x x x x v59:3:1

1
2

0

Q 1cosh( ) d 1 1
v

v x x x t t x v59:3:2

There are also several definitions of the Legendre functions as indefinite integrals:
1

2

0

cos ( )2P cos( ) d 0
cos( ) cos( )v

v
59:3:3

1
21

2
sinh ( )2P cosh( ) cot ( ) d 0 1 0
cosh( ) cosh( )v

v t
v t v

t
59:3:4

1
2exp ( )1Q cosh( ) d 0 1

2 cosh( ) cosh( )v

v t
t v

t
59:3:5

Despite appearances to the contrary, the integrands in the definitions
1 1

2 2

2
1

1 dP ( ) 1 1 1 1 1
1

v v

v
tx i x it x x it x x v

t
59:3:6

and
1 1

2 2

2
1

1 dQ ( ) 1 1 1 1 1
2 1

v v

v
tx x it x x it x x v

t
59:3:7

are wholly real because all imaginary terms cancel after binomial expansions.
On account of formula 59:5:3, the degree v in any definition of Pv(x) may be replaced by v 1. A similar

replacement for Qv(x) is valid only if v is an odd multiple of ½.
The traditional definition of the Legendre functions is as solutions of Legendre’s differential equation

2
2

1 22

d f d f(1 ) 2 ( 1)f 0 f P ( ) Q ( )
d d v vx x v v w x w x

x x
59:3:8

the w’s being arbitrary constants.
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The hypergeometric formulation, equation 59:6:1, of the Legendre function of the first kind opens the way to
its synthesis [Section 43:14] from a power function:

1(1 ) P (1 2 )
1

v
v

vx x59:3:9

Synthesis of the second Legendre function is more elaborate:
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2

2

1
2

-11
2

2 1( 1) / 21 Q
( )

v

v

v

v

vvx
v v x x

59:3:10

The Legendre function of the first kind can be expressed in many ways as special cases of the Gauss hypergeometric
function [Section 59:13] and occasionally Pv(x) is defined by this route.

59:4 SPECIAL CASES

When v is an integer of either sign, Pv(x) reduces to one of the Legendre polynomials discussed in Chapter 21

1

P ( ) 0,1,2,
P ( ) polynomial

P ( ) 1 1, 2, 3,
v

n
v

x v n
x

x v n
59:4:1

Legendre functions of the second kind are not defined for negative integer degree, but when v is a nonnegative
integer, Qv(x) reduces to one of the functions Qn(x) described in Section 21:13, many of which are graphed in
Figure 21-3. Some examples are

v 2 v 1 v 0 v 1 v 2 v 3

Pv(x) x 1 1 x 23 1
2 2x 35 3

2 2x x

Qv(x) undef undef Q0(x) 0Q ( ) 1x x 3
2 0 2P ( )Q ( )x x x 25 2

3 0 2 3P ( )Q ( )x x x

where the zero-degree instance of the Legendre function of the second kind is an inverse hyperbolic function
[Chapter 31]

0

artanh( ) 1 1
Q ( )

arcoth( ) 1

x x
x

x x
59:4:2

When the degree v is an odd multiple of ½, each of the Legendre functions reduces to an expression involving
complete elliptic integrals [Chapter 61] with square-root moduli. The prime examples are for v ½:

1
2

2 1P ( ) K
2

xx59:4:3

1
2

1Q ( ) K
2

xx59:4:4

The modulus of the elliptic integral in these formulas is imaginary for x > 1 in the case of P, or x < 1 for Q.
Nevertheless, these formulas define real Legendre functions in these x domains because [see 61:11:4] complete
elliptic integrals are real when their moduli are imaginary. However, for x < 1 in the case of P, or x > 1 for Q, the
modulus of the elliptic integral exceeds unity whereupon its value, and hence that of the Legendre function, becomes
complex. Because the reflection formula f v 1(x) fv(x) applies to both Legendre functions in these special cases,
each expression for a Legendre function of a degree that is an odd multiple of ½ applies to two degrees that average

½. For example

3 1
22

4 1 2 1P ( ) P ( ) E K
2 2

x xx x59:4:5

and
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3 1
22

1 1Q ( ) Q ( ) K 2E
2 2

x xx x59:4:6

By employing two equations from 59:4:3-6 as the starting point, recursion formula 59:5:5 may be used to develop
formulas expressing the Legendre function of any other degree that is an odd multiple of ½.

59:5 INTRARELATIONSHIPS

The argument-reflection formulas
1 1

2 2P ( ) P 0, 1, 2,n
n nx x n59:5:1

Q ( ) Q 0,1,2,n
n nx x n59:5:2

apply only when the degree is an integer, whereas the degree-reflection formulas

1P Pv vx x59:5:3

1Q ( ) Q ( ) cot( )P ( )v v vx x v x59:5:4
are of general applicability.

The same degree-recursion formula

1 1( 1)f ( ) (2 1) f ( ) f ( ) f P or Qv v vv x v x x v x59:5:5
applies to both kinds of Legendre function.

The following equations link the two kinds of Legendre function but apply only when the degree is not an
integer and when 1< x < 1

Q ( ) cot( )P ( ) csc( )P ( )
2v v vx v x v x59:5:6

2P ( ) cot( )Q ( ) csc( )Q ( )v v vx v x v x59:5:7

59:6 EXPANSIONS

As detailed in Section 59:13, Legendre functions may be expressed as Gauss hypergeometric functions
[Chapter 60] in a multitude of ways. Because each of these latter functions may be expanded as the (usually infinite)
power series 60:6:1, the number of expansions of Pv(x) and Qv(x) is huge. The listing presented here is not
exhaustive. In all cases the strategy is to express the Legendre function as a Gauss hypergeometric function, or as
a weighted sum of two such functions, and then expand the latter function(s) as power series.

For reasons explained in Section 59:13, the expansion

0

( ) (1 )1 1 (1 )P ( ) F ,1 ,1, 1 (1 )
2 (1) (1) 2 2

j
j j

v
j j j

v vx x v vx v v x59:6:1

valid in the range 1 < x < 3 range of argument, and the more complicated expansion
2

31 1 1
2 2 2 21 2 1 23 3

2 2

(1 ) 1 (1 ) 3 2Q ( ) F ,1 , , 1
[2 ] [2 ] (8 12)v v v

v v v vx v v v
v x x v x v x

59:6:2
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which has validity for x > 1, are seen as fundamental. Should v equal one of the values the first3 5 7
2 2 2, , , ,

( v ½) terms in 59:6:2 are zero. If you wish to avoid this, replace each v on the right-hand side by v 1.
To illustrate the twin-Gauss approach to expanding Legendre functions, first consider the two expansions

1 1 1 2 4 3 2
2 2 22 2 2 41 1 1 1

2 2 2 2 1
0 2

2 5 6F , , , 1
(1) 2 24

j j j

j jj

v v v v v v v vv v x x x x59:6:3

and
1 1 1 2 4 3 2
2 2 22 2 2 431 1 1

2 2 2 2 3
0 2

1 1 2 12 13 12F ,1 , , 1 +
(1) 6 120

j j j

j jj

v v v v v v v vv v x x x x59:6:4

both applicable for 1 < x < 1. The Legendre functions are weighted sums of these two Gauss hypergeometric
functions of argument x2:

2 231 1 1 1 1 1 1
2 2 2 2 2 2 2 21 1 1 1 1

2 2 2 2 2 2

2P ( ) F , , , F ,1 , ,
1v v

x v v x x v v x
v v v

59:6:5

3 31 1 1
2 22 2 231 1 1 1 1 1 1

2 2 2 2 2 2 2 22 21 1 1 1 1 1
2 2 2 2 2 2

1
Q ( ) F ,1 , , F , , ,

2 1v

v v
x x v v x v v x

v v v v
59:6:6

Notice that, in each of these formulas, there is an x multiplier in one or other of the weights, ensuring that all
nonnegative integer powers of x appear in the ultimate expansions.

There are also expansions as trigonometric functions:
1
2

33
0 22

(1 )2 (1 )P cos( ) sin (1 2 ) 0
(1)

j j
v

j jj

vv v j
vv

59:6:7

and
1
2

3 3
02 2

(1 )(1 )Q cos( ) cos (1 2 ) 0
(1)

j j
v

j jj

vv v j
v v

59:6:8

though these sums are often slow to converge.

59:7 PARTICULAR VALUES

In this section we look into the values acquired by Pv(x) and Qv(x) at the arguments x 1, 0, 1 and . The first
and second tables below apply to Legendre function of the first and second kinds respectively. Observe that a
plethora of formulas is needed to cover particular values at zero argument; mostly, these are special cases of the
formulas

1 1 1 1 1 1
2 2 2 2 2 2

11
22

cos sin
P (0) and Q (0)

2 11v v

v v v v
vv

59:7:1

Gauss’s constant g [Section 1:7] occurs frequently in these tables, as do the double and quadruple factorial functions
that are addressed in Section 2:3. Note the example (15)!!!! = 15×11×7×3, and that quadruple factorials of 1, 1 and

3 all equal unity.
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v Pv( 1) Pv(0) Pv(1) Pv( )

3, 5, 7, 9, 1
( 1) / 2( ) ( 2)!!

( 1)!!

v v
v

1 +

5 9 13 17
2 2 2 2, , , , + (1 2 ) / 4 2( 2 4)!!!!

( 2 2)!!!!
v v g

v
1 +

1, 2,3, 4, 1 0 1 +

3 7 1511
2 2 2 2, , , , (3 2 ) / 4 2( 2 4)!!!!

( 2 2)!!!!
v v

v g
1 +

1,0 1 1 1 1

3 71 11
2 2 2 2, , , , + (2 1) / 4 2(2 2)!!!!

(2 )!!!!
v v g

v
1 +

5 9 131
2 2 2 2, , , , (2 1) / 4 2(2 2)!!!!

(2 )!!!!
v v

v g
1 +

2,4,6,8, 1
/ 2( ) ( 1)!!

!!

v v
v

1 +

v Qv( 1) Qv(0) Qv(1) Qv( )

5 9 13 17
2 2 2 2, , , ,

2
(1 2 ) / 4 ( 2 4)!!!!

2( 2 2)!!!!
v v g

v + |+ 0

3 7 1511
2 2 2 2, , , ,

2
(1 2 ) / 4 ( 2 4)!!!!

2( 2 2)!!!!
v v

v g + |+ 0

1, 2, 3, 4, undef undef undef undef

3 71 11
2 2 2 2, , , ,

2
(2 1) / 4 (2 2)!!!!

2(2 )!!!!
v v g

v + |+ 0

0,2,4,6, 0 + |+ 0

5 9 131
2 2 2 2, , , ,

2
(2 3) / 4 (2 2)!!!!

2(2 )!!!!
v v

v g + |+ 0

1,3,5,7, + ( 1) / 2 ( 1)!!
!!

v v
v

+ |+ 0

59:8 NUMERICAL VALUES

Equator’s routines for the Legendre function of the first kind and Legendre function of the second kind
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(keywords P and Q) employ equations 59:6:1 or 59:6:5 and 59:6:2 or 59:6:6 to evaluate Pv(x) and Qv(x) in the
domains |v| 100 and x 1. Where functions are complex, only the real part is returned. For integer v values of
the Legendre function of the first kind are also provided for the x < 1 region.

59:9 LIMITS AND APPROXIMATIONS

Close to x 1, the Legendre function of the first kind becomes linear
2

P ( ) 1 ( 1) 1 small
2v

v vx x x59:9:1

whereas that of the second kind approaches infinity in accord with the relationship

2Q ( ) ln (1 ) 1 small
1v x v x

x
59:9:2

The corresponding limiting behaviors as are described by1 x
(1+ ) smallsin( ) 1P ( ) cos( ) 2 (1 ) ln

2 and positive
v

xv xx v v59:9:3

and
(1+ ) smallsin( ) cos( ) 1Q ( ) 2 (1 ) ln

2 2 2 and positive
v

xv v xx v59:9:4

The and ( ) terms in these formulas are Euler’s constant [Section 1:7] and the digamma function [Chapter 44].
When the argument is large and positive, the limiting expressions are

v 1
2 v 1

2 v 0

P ( )v x
1

12 (2 )
( )

vv
x

v
2 ln(8 )x

x

1
2 (2 )

( 1)
vv

x
v

v 3 5 71
2 2 2 2but , , , v 3 5 7

2 2 2, , , v 3, v 1, 2, 3,

Q ( )v x
1

12 cot( )
(2 )

( )
vv v

x
v 1

2

( 2 2)!! 2 (4 )
!

vv x
v 13

2

1
2 v

v
v x

59:10 OPERATIONS OF THE CALCULUS

Either differentiation or indefinite integration of a Legendre function yields an associated Legendre function
[Section 59:12]

(1) 2

(1) 2

f ( ) / 1 1 1d f ( ) f P or Q
d f ( ) / 1 1

v
v

v

x x x
x

x x x x
59:10:1
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1
2 ( 1)P ( )d 1 P ( ) 1 1v v

x

t t x x x59:10:2

2 ( 1)

1

P ( )d 1P ( ) 1
x

v vt t x x x59:10:3

As an alternative to 59:10:1, the derivatives of Legendre functions may be expressed, without recourse to associated
functions, as

1 12 2

d 1f ( ) f ( ) f ( ) f ( ) f ( ) 1 f P or Q
d 1 1v v v v v

v vx x x x x x x x
x x x

59:10:4

or by many other formulas discovered by incorporating the recursion 59:5:5.
Noteworthy integrals and Laplace transforms of the first kind of Legendre function include

2 2 (1)1 1 P ( ) 1 P ( )
P ( )d 1 1

(1 )(2 )
v v

v
x

x x x x x
t t t x

v v
59:10:5

1

1 31 1 1 1
0 2 2 2 2 2

(1 )P ( )d 1
2 1vt t t

v v
59:10:6

1 1 2

1

2 (1 )(1 ) P ( )d 1
2 1vt t t

v v
59:10:7

1
2

0

2P (1 )exp( )d P (1 ) exp Kv v v
s sbt st t bt

bs b b
59:10:8

and many others are given by Gradshteyn and Ryzhik [Section 7.1].
Formulas for integrals of products of Legendre functions include

1

2
1

2 sin ( ) 4sin( )sin( )[ (1 ) (1 )]
P ( )P ( )d 1

( )(1 )v

v v v
t t t v

v v
59:10:9

1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1
0 2 2 2 2 2 2

2 1 sin cos 2 1 sin cos
P ( )P ( )d

1 ( )(1 ) (1 )( )(1 )v

v v v v
t t t

v v v v v v
59:10:10

1

1

[1 cos ( ) ] 2sin( )cos( )[ (1 ) (1 )]
P ( )Q ( )d 0

( )(1 )v

v v v
t t t v

v v
59:10:11

and
1 1

2

1

( 1) ( 1) 1 cos( )cos( ) sin( )
Q ( )Q ( )d

( )(1 )

1, 1, 2, 3,

v

v v v
t t t

v v

v

59:10:12

where ( ) and ( ) are the gamma and digamma functions [Chapters 43 and 44]. Other integrals of this sort are
listed in Section 3.12 of Erdélyi et al. [Higher Transcendental Functions, Volume 1], though not all of them appear
to be correct. One cannot set v in any of these formulas without carefully investigating the behavior as v.
Some consequences are as follows; they mostly involve the trigamma function [Section 44:12],
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1
2

1

P ( )dv t t
1

1

P ( )Q ( )dv vt t t
1

2

1

Q ( )dv t t
1

P ( )Q ( )dv vt t t

2 2 (1)

2

2 4sin ( ) (1 )
(1 2 )

v v
v

(1)sin(2 ) (1 )
(1 2 )
v v

v

2 2 (1)1
2 [1 cos ( )] (1 )

1 2
v v
v

The formulas 59:10:9 12 are useful, not only in their own right, but also as the source of other definite integrals by
taking advantage of such identities as P0(t) 1, P1(t) t, and . The orthogonality properties of22 1

2 03 3P ( ) P ( )t t t
Legendre functions of the first kind are revealed by setting m 0 in equation 59:12:11.

59:11 COMPLEX ARGUMENT

To avoid the Legendre functions of complex argument being multivalued, the complex plane must be cut. For
the Pv(z) function, it is conventional to make the cut along the line x 1, y 0, whereas a longer cut

x +1, y 0 is needed for Qv(z). Resulting from the cut are ambiguities in the values of Legendre functions
when the argument is real. To resolve the ambiguity, it is conventional, but not universal, to assign the average of
the values on either side of the cut. That is

0

f ( ) f ( )f ( ) lim f P or Q
2

v v
v

x i x ix59:11:1

When their arguments or degrees are complex, the Legendre functions are generally complex, too, but the Atlas
does not pursue this topic except for some comments on conical functions. These are Legendre functions of complex
degree, of which the real part is ½. They arise in solving differential equations such as those listed in Section 46:15
for a space shaped as a cone or possessing certain other geometries [Lebedev, Sections 8.5, 8.9 and 8.12].
Notwithstanding its complex degree, the conical function of the first kind is real

1
2

1
221 1 1

22 2 2
0 0

1 [(1 ) / 2]P ( ) F , ,1,
2 ( !)

j j

i
j k

x xx i i k
j

59:11:2

Inverse Laplace transformation of Legendre functions generates a spherical instance of the Macdonald [Section
26:13] or the modified Bessel [Section 28:13] functions

2

exp( ) 2P d P sin( )k
2

i

v v v
i

ts tbs s bs v
i b b

I59:11:3

exp( ) 1Q d Q i
2

i

v v v
i

ts tbs s bs
i b b

I59:11:4

59:12 GENERALIZATIONS: the associated Legendre functions

The trivariate associated Legendre functions are generalizations of the functions that are( ) ( )P ( ) and Q ( )v vx x
the main subject of this chapter, inasmuch as

(0) (0)P ( ) P ( ) and Q ( ) Q ( )v v v vx x x x59:12:1

The third variable is the order of the function. Some authors describe as “Legendre( ) ( )P ( ) and Q ( )v vx x
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functions” and consider Pv(x) and Qv(x) as merely the zero-order instances. Associated Legendre functions having
a degree that is an odd multiple of ½ are sometimes known as toroidal functions.

Linear combinations of satisfy the associated Legendre differential equation( ) ( )P ( ) and Q ( )v vx x
2 2

2 ( ) ( )
1 22 2

d f d f(1 ) 2 (1 ) f 0 f P ( ) Q ( )
d d 1 v vx x v v w x w x

x x x
59:12:2

This commonly arises as the trigonometric equivalent
2

2 2 ( ) ( )
1 22

d f d fcot( ) (1 ) csc ( ) f 0 f P cos( ) Q cos( )
d d v vv v w w59:12:3

The latter is valid only for | | < , which is the primary domain of interest for associated Legendre functions,
corresponding to 1 < x < 1. For reasons made evident in Section 59:14, applications almost invariably require that
the order be a nonnegative integer and henceforth we mostly impose this restriction and replace by m.

The differential equation 59:12:2 might suggest that associated Legendre functions of orders m and m would
be defined identically, but this is not so. Instead one has the order-reflection formulas

( )
( ) f ( )f ( ) f P or Q 0,1,2,

( ) (1 )

m
m v

v
m m

xx m
v v

59:12:4

For example The degree-reflection formulas are( 1) (1) 2f ( ) f ( ) /( ).v vx x v v
( ) ( ) ( ) ( ) ( )

1 1 1P ( ) P ( ) and Q ( ) Q ( ) cot( )P ( ) 0,1,2,m m m m m
v v v v vx x x x v x m59:12:5

Integral representations of the associated Legendre functions that are extensions of those listed in Section 59:3
exist, but are not reported here. The multiple differentiation formulas

2( ) 2 dP ( ) ( ) 1 P ( )
d

m m
m m

v vmx x x
x

59:12:6

and

2( ) 2 dQ ( ) ( ) 1 Q ( ) 1, 2, 3,
d

m m
m m

v vmx x x v
x

59:12:7

provide the simplest definitions for integer orders and lead to most of the formulas reported here. Be aware that the
( )m multiplier in these formulas is omitted by some authorities, so that odd-ordered associated Legendre functions
may be encountered with signs that differ from those here. The full story around associated Legendre functions is
quite complicated, especially when the argument is complex; see Gradshteyn and Ryzhik [Section 8.70] for
enlightenment.

The associated Legendre function may be expressed as a weighted sum of any two of its contiguous( )P ( )v x
functions, that is, of any two of . The appropriate weights are contained in( ) ( ) ( 1) ( 1)

1 1P ( ), P ( ), P ( ), and P ( )v v v vx x x x
the table overleaf, which applies equally to associated Legendre functions of either kind. To illustrate the use of this
table, note that the final row implies

2
( ) ( 1) ( 1)1

f ( ) f ( 1)( )f f P or Q
2v v v

x
x v v

x
59:12:8

a result that may be reorganized into an order-recursion relationship. Likewise the top row of the table provides a
degree-recursion formula, generalizing equation 59:5:5.

There are many formulas that connect associated Legendre functions with Gauss hypergeometric functions and
thus facilitate expansion. In particular,

2( ) 22
1 1P ( ) 1 F , 1, 1,

( 2) ! 2

m
m m

v m

v m xx x m v v m m
m

59:12:9
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( )
1f ( ) f P or Qv x ( )

1f ( ) f P or Qv x ( 1)f ( ) f P or Qv x ( 1)f ( ) f P or Qv x

(2 1)
v
v x

1
(2 1)
v

v x

1
x

2( 1) 1v x
x

( )
v

v x

21
( )

x
v x

1
x

2( ) 1v x
x

1
( 1)

v
v x

21
( 1)

x
v x

2( 1)( ) 1
2

v v x
x

21
2

x
x

and
/ 22

( ) 31 1 1 1 1 1
2 2 2 2 2 2 21 1 23

2

1( ) 1 1Q ( ) F ,1 , ,
2

m
m

m
v v v m

xv m
x v m v m m

v x x
59:12:10

are the analogues of equations 59:6:1 and 59:6:2, to which they reduce when m 0.
Some examples of associated Legendre functions in which both the degree and the order are positive integers

are

(1) (1) 2
1 2P ( ) P ( ) 1x x x

(1) 2
1 2

Q ( ) 1 artanh( )
1

xx x x
x

(1) (1) 2
2 3P ( ) P ( ) 3 1x x x x

2
(1) 2
2 2

2 3Q ( ) 3 1 artanh( )
1

xx x x x
x

(2) (2) 2
2 3P ( ) P ( ) 3 1x x x

3
(2) 2
2 2

5 3Q ( ) 3 1 artanh( )
1
x xx x x

x

Note that these are rarely polynomials, though they sometimes go by the misnomer “associated Legendre
polynomials”. whenever |m| exceeds the larger of n and n 1, a result that has consequence in Section( )P ( ) 0m

n x
59:14.

The associated Legendre function of the first kind satisfies the orthogonality relationship [Section 21:14]

1
( ) ( )

1

0
P ( )P ( )d 2 ( )!

2 1 ( )!

m m
n N

N n
t t t n m N n

n n m
59:12:11
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Operative for arguments between 1 and 1, for |v| 150, and for integer m not exceeding 150 in magnitude,
Equator provides an associated Legrendre function of the first kind routine and an associated Legendre function of
the second kind routine (keywords assocP and assocQ). For v not less than ½ and positive m, these algorithms
generally utilize the following double series

1
22

2
2( )

2 / 2 2
22

1
2

( ) 1 1cos F , , ,
2 2 2 22P ( )

( ) 1 2 3(1 ) 2 sin F , , ,
2 2 2 2

v m

v mm
m

v m v m

v m

v m v m v m x

x
v m v m v mx x x

59:12:12

and
1

22
21

2( )
2 / 2 2

22
1

2

( ) 1 1sin F , , ,
2 2 2 22Q ( )

(1 ) ( ) 1 2 32 cos F , , ,
2 2 2 2

v m

v mm
m

v m v m

v m

v m v m v m x

x
x v m v m v mx x

59:12:13

but, whenever equation 59:12:9 proves to provide answers with more precision, it is substituted. Formula 59:12:4
or 59:12:5 is employed, where necessary, if the order or degree is negative.

59:13 COGNATE FUNCTIONS: certain Gauss hypergeometric functions

When the variable x in Legendre’s differential equation 59:3:18 is replaced by X (1 x)/2, the result may be
written as

2

2

d f d f(1 ) [1 {( ) (1 ) 1} ] ( )(1 )f 0
d d

X X v v X v v
X X

59:13:1

Compare this with Gauss’s differential equation 60:3:7: the two are identical if a v, b 1+v, and c 1. It follows
that a solution to Legendre’s differential equation is

1f F ,1 ,1,
2

xv v59:13:2

This is the result that is identified with Pv(x) in 59:6:1. Evidently the first kind of Legendre function is a particular
Gauss hypergeometric function. This latter function is addressed in some detail in the next chapter; here the focus
is on how the Legendre functions are expressible as Gauss functions.

Now set g x1+vf, where f is the dependent variable in Legendre’s differential equation 59:3:8. Thereby that
equation becomes

2
4 2 2

2

d g dg2 1 (1 )(2 )g 0
d d

x x x v vx v v
x x

59:13:3

and if the independent variable is now replaced by x 2, the differential equation adopts a form that can be
rewritten

2
3 1 1 1 1 1 1
2 2 2 2 2 2 22

d g dg(1 ) 1 1 1 g 0
d d

v v v v v59:13:4

This equation again identifies with the Gauss hypergeometric differential equation 60:3:7, this time if the choices
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a (1+v)/2, b (2+v)/2, and c (3+2v)/2 are made. We therefore have
1 1 231 1 1

2 2 2 2f g F ,1 , ,v vx x v v v x59:13:5

as a second solution to the Legendre differential equation. This is the expression ascribed to Qv(x) in equation
59:6:2, apart from a constant factor of .1 3

2(1 ) /[2 ( )]vv v
In summary, particular Gauss hypergeometric functions solve Legendre’s differential equation:

2
2 22 31 1 1 1 1

1 2 2 2 2 2 22 1

d f d f1 2 ( 1)f 0 f F ,1+ ,1, F 1 , , ,
d d v

wx x v v w v v x v v v x
x x x

59:13:6

Legendre functions are nothing but these Gauss functions “in disguise”, with suitable weighting factors, as prescribed
in equations 59:6:1 and 59:6:2. Gauss hypergeometric functions are unusually flexible, with the great number of
intrarelationships described in Section 60:5. This flexibility passes on to Legendre functions, as the tabulation below
amply demonstrates. This lists examples of hypergeometric representations of each kind of Legendre function.

Pv(x) Qv(x)

1 1
2 2F ,1 ,1,v v x 231 1 1

1 2 2 2 23
2

(1 ) F ,1 , ,
2 v

v v v v x
v x

1 1F , ,1,
2 1

vx xv v
x

1

13
2

2 (1 ) 2F 1 ,1 ,2 2 ,
11

v

v
v v v v

xv x

21 1 1
2 2 2F , ,1,1v v x

1 2
2

2
31 1

2 2 23 2 2
2

1(1 ) 1F , , ,
2 1 2 1

v
x xv x xv

v x x

2
2 1

2 2

2 11 F , ,1,
1

v xx x v
x x

2
31

1 2 2 223
2

1(1 ) F ,1 , ,
11

v

x xv v v
x xv x x

2
1 1 1

2 2 2 2

1F , ,1,v xx v v
x

1 2
3

(1 ) / 2 2 223
2

2 (1 ) 1F 1 ,1 , ,
2 11

v

v
v x xv v v

xv x

In consequence of the reflection formula 59:5:5, additional entries may be added to the first (only!) column by
replacing each v by v 1. The domains of the tabulated Gauss hypergeometric functions are restricted, because the
argument of an F(a,b,c,x) function is limited to < x < 1 (sometimes x 1 is admissible). Note, however, that
though the Gauss hypergeometric function is defined for < x < 1, the corresponding series, equation 60:3:1,
requires 1 < x < 1 for convergence.

The table above shows ways in which a Legendre function may be expressed as a single Gauss hypergeometric
function. There are very many other representations as sums of two or more such functions; Section 60:5 provides
routes for creating these.

59:14 RELATED TOPIC: solving Laplace’s equation in spherical coordinates

Functions that satisfy Laplace’s equation [Section 46:15] are known as harmonic functions. Legendre functions



59:14 THE LEGENDRE FUNCTIONS Pv(x) AND Qv(x) 625

satisfy this equation when spherical coordinates [Section 46:14] are employed, explaining why “spherical harmonic”
is often considered synonymous with “Legendre function”.

In Section 46:14, the Laplacian operator was presented in several coordinate systems. Of course, the spherical
coordinates are the preferred means of indexing three-dimensional space for studies involving the interior or exterior
of spheres, or portions thereof. Laplace’s equation in these coordinates is

2 2 2 2

2 2 2 2 2 2

F 2 F 1 F cot( ) F csc ( ) F 0
r r r r r r

59:14:1

where F is the pertinent scalar quantity (temperature, potential, or the like). If coordinate separability is asserted,
so that F(r, , ) R(r) ( ) ( ), then we may trisect equation 59:14:1 in a manner strictly analogous to that used
in Section 46:15, arriving at three separated equations. The first of these, addressing the dependence of F on the
radial coordinate, is

2

2 2

d R 2 d R ( 1) R 0
d d

v v
r r r r

59:14:2

where v(v+1) is a conveniently formulated separation constant. The solution of this equation is mentioned in Section
32:13 but will not concern us here. The second separated equation, expressing how F is affected by the longitude
is

2
2

2

d
d

59:14:3

with 2 being the new separation constant. The third separated equation, which incorporates both separation
constants, conveys the dependence of F on the latitudinal angle and is

2
2 2

2

d dcot( ) ( 1) csc ( ) 0
d d

v v59:14:4

Each of the three separated equations is a typical second-order ordinary differential equation, solutions of which are
available through the procedures described in Section 24:14. Our prime interest here is in the solution of 59:14:4.
Because this equation is identical, apart from notation, with 59:12:3, its solution is a weighted sum of associated
Legendre functions:

( ) ( )
1 2( ) P cos( ) Q cos( )v vw w59:14:5

When the region of interest is the surface of a sphere, equation 59:14:2 is not pertinent and the overall solution is
a composite of solutions of the latitudinal and longitudinal separated equations, 59:14:4 and 59:14:3, with arbitrary
weighting factors

( ) ( )
5 6 3 4F( , ) ( ) ( ) P cos( ) Q cos( ) sin( ) cos( )v vw w w w59:14:6

One can argue from the geometry of a sphere that must be an integer (as otherwise sin{ ( +2 )} would not equal
sin{ }, as it must). In most physical situations, w6 must be zero (as otherwise, F would be infinite at 0, the
“north pole”). Because corresponds to another point on the sphere’s surface (the “south pole”, in fact) and ( )P ( 1)m

v

is infinite for all noninteger values of v, we are forced to conclude that v must also be an integer (which we can treat
as nonnegative because P n merely duplicates Pn 1). As noted in the preceding section, the associated Legendre
functions vanish for |m| > n. These various considerations permit us to simplify 59:14:6 to( )P m

n
( )

1 2F , P cos( ) sin( ) cos( ) 0,1,2, , 1, ,m
n w m w m n m n n n59:14:7

Depending on the application, the n and m numbers may be referred to as eigenvalues or quantum numbers. The
remaining weighting factors, w1 and w2, are independent of and but will generally depend on n and m, so that
w1(n,m) and w2(n,m) is a more informative symbolism. A large, possibly an infinite, number of weights might be
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needed in a complete solution that matches the boundary conditions of a physical problem, but we shall not pursue
any particular application.

To summarize, the equation

( )
1 2

0
F , P cos( ) ( , )sin( ) ( , )cos( )

n
m

n
n m n

w n m m w n m m59:14:8

provides a general solution to Laplace’s equation on the surface of a sphere. The components of this solution, that
is the terms and possibly with normalizing multipliers, are known as( )sin( )P cos( )m

nm ( )cos( )P cos( ) ,m
nm

surface harmonics or sometimes “spherical harmonics”.


