
Lacking dependence on even a single variable, the constant function is the simplest, and an almost trivial,
function.

1:1 NOTATION

Constants are also known as invariants and are represented by a variety of symbols, mostly letters drawn from
early members of the Latin and Greek alphabets. In this chapter, we mostly employ c to represent an arbitrary
constant.

1:2 BEHAVIOR

Figure 1-1 is a graphical representation of the constant function f(x) c,
a horizontal line extending to x ± , reflecting the fact that f takes the same
value for all x.

1:3 DEFINITIONS

The constant function is defined for all values of its argument x and has the same value, c, irrespective of x.

1:4 SPECIAL CASES

When c is zero, the constant function is sometimes termed the zero function. Likewise, the function f(x) c 1
is sometimes known as the unit function or unity function.
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14 THE CONSTANT FUNCTION c 1:5

constraint

c 1 c 1 c < 1

1
21 c

c
0 < c2 < 1

c2 + c 1 c ½

1:5 INTRARELATIONSHIPS

Being relations between function values at different values of the argument, intrarelationships are of no
consequence for the constant function.

1:6 EXPANSIONS

A constant may be represented as a finite sum by utilizing the formulas for an arithmetic series:
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or an arithmetic-geometric series:
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In these formulas and are arbitrary and J may be any positive integer.
Any constant greater than ½ may be expanded as the infinite geometric sum
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or as the infinite product
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A constant is expansible as the infinite continued fraction

c1:6:6

in the variety of ways indicated in the table, which lists three alternative
assignments of the terms and , any one of which validates expansion 1:6:6.
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1:7 PARTICULAR VALUES

Certain constants occur frequently in the theory of functions. Four of these – Archimedes’s constant, Catalan’s
constant, the base of natural logarithms and Euler’s constant – are important irrational numbers. There are many
formulations of these four constants other than the ones we present here; see Gradshteyn and Ryzhik [Chapter 0] for
some of these.

Archimedes (Archimedes of Syracuse, Greek philosopher, 287 212 BC) himself was content merely to bracket
his constant by (223/71) < < (22/7). It was the sixteenth-century Frenchman François Viète (“Vieta”) who
discovered the first formula

1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2

2 3 1415 92653 58979.1:7:1

for Archimedes’s constant, also known simply as pi. It may also be defined by the infinite sum
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discovered by Gregory (James Gregory, Scottish mathematician, 1638 1675), as the infinite product
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and in numerous other ways. The definition of Catalan’s constant (Eugène Charles Catalan, Belgian mathematician
1814 1894) is similar to 1:7:2

2
0

1 1 1 ( 1)1 0 91596 55941 77219
9 25 49 2 1

j

j
G

j
.1:7:4

The base of natural logarithms may be defined as a sum of all reciprocal factorial functions [Chapter 2]

0

1 1 1 11 2 7182 81828 45905
1 1 2 1 2 3 !j

e
j

.1:7:5

or by the limit operation
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.1:7:6

A limit operation also defines Euler’s constant

1

1 1 1 1lim 1 ln( ) lim ln( ) 0 57721 56649 01533
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n j
.1:7:7

The latter is also known as Mascheroni’s constant (Lorenzo Mascheroni, Italian priest, 1750 1800) and is often
denoted by C. Confusingly, authors who employ C to represent Euler’s constant may use to represent eC.

Also of widespread occurrence throughout the Atlas is the Gauss’s constant
1 0 83462 68416 74073

mc 1, 2
g .1:7:8

where mc denotes the common, or arithmeticogeometric, mean [Section 61:14]. It is related to the ubiquitous
constant U through Ug . Other named constants are Apéry’s constant Z [Section 3:7] and the golden section1/ 2

[Section 23:14].
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A very important family of constants are the integers, , 3, 2, 1,0,1,2,3, and especially the natural numbers,
1,2,3, discussed in Section 1:14. Other families that occur principally in coefficients of series expansions are the
factorials n! [Chapter 2], Bernoulli numbers Bn [Chapter 4], and Euler numbers En [Chapter 5]. Fibonacci numbers
are discussed in Section 23:14.

1:8 NUMERICAL VALUES

Equator provides values of the constants , G, e, , g, Z, and , exact to 15 digits. Simply type the
corresponding keyword, which is pi, catalan, ebase, euler, gauss, apery, or golden. These keywords may be freely
used in “constructing” the variable(s) of any other Equator function, as explained in Appendix C. As well as these
seven mathematical constants, many physical constants are available through Equator: see Appendix A for these.

1:9 LIMITS AND APPROXIMATIONS

Approximations are seldom needed for constants, but approximations as fractions are available through
Equator’s rational approximation routine (keyword rational) [Section 8:13].

1:10 OPERATIONS OF THE CALCULUS

Differentiation gives
d 0
d

c
x

1:10:1

while indefinite and definite integration produce
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respectively. The result
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describes the Laplace transformation of a constant.
The results of semidifferentiation and semiintegration [Section 12:14] with a lower limit of zero are
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Differintegration [Section 12:14] with a lower limit of zero yields
d
d (1 )

v v
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cxc
x v

1:10:7

where is the gamma function [Chapter 43]. In fact, equations 1:10:1, 1:10:2, 1:10:5, and 1:10:6 are the v 1, 1,
½ and ½ instances of 1:10:7.

1:11 COMPLEX ARGUMENT

A complex constant can be expressed in terms of two real constants in either rectangular or polar notation

2 2

where cos( ) and sin( )

exp( ) where and arctan( / ) 1 sgn( )]/ 2

i
c

i
1:11:1

with i . The names real part, imaginary part, modulus, and phase are1
accorded to , , , and . Figure 1-2 shows how , , and are related.
The expression c + i is the more useful in formulating the rules for the
addition or subtraction of two complex constants:

1 2 1 1 2 2 1 2 1 2( ) ( ) ( ) ( )c c i i i1:11:2

whereas c exp(i ) is the more convenient to formulate the multiplication

1 2 1 1 2 2 1 2 1 2[ exp( )][ exp( )] exp ( )c c i i i1:11:3

or division
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of two complex numbers, or in the raising of a complex number to a real power
[ exp( )] exp( )v v vc i iv1:11:5

If v is not an integer, this exponentiation operation gives rise to a multivalued complex number [see, for example,
Section 13:14]. The raising of a real number to a complex-valued power is handled by the expression

exp{ ln( )}iv v i v1:11:6

provided that v is positive.
The inverse Laplace transform of the constant c is a Dirac function [Chapter 9], of magnitude c, located at the

origin
exp
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I1:11:7

1:12 GENERALIZATIONS

A constant is a member of the polynomial function family, other members of which are discussed in Chapters
19 25. The constant function is the special b 0 case of the linear function discussed in Chapter 7.
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1:13 COGNATE FUNCTIONS

Whereas the constant function has the same value for all x, the related pulse
function is zero at values of the argument outside a “window” of width h, and is
a nonzero constant, c, within this window. The concept of a general “window
function” is discussed in Section 9:13. The pulse function in Figure 1-3 takes
the value c in the range a (h/2) < x < a+(h/2) but equals zero elsewhere. The
value of the a parameter establishes the location of the pulse, while c and h are
termed the pulse height and pulse width respectively. The pulse function may
be represented by

u u
2 2
h hc x a x a1:13:1

in terms of the Heaviside function [Chapter 9].
The addition of a number of pulse functions, having various locations, heights, and widths, produces a function

whose map consists of horizontal straight line segments. Such a function, known as a piecewise-constant function,
may be used to approximate a more complicated or incompletely known function. It is the approximation recorded,
for example, whenever a varying quantity is measured by a digital instrument.

1:14 RELATED TOPIC: the natural numbers

The natural numbers, 1,2,3, are ubiquitous in mathematics and science. We record here several results for
finite sums of their powers:
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Similarly, the sums of fourth and fifth powers of the first n natural numbers are n(n+1)(2n+1)(3n2+3n 1)/30 and
n2(n+1)2(2n2+2n 1)/12, respectively. The general case is
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where Bm denotes a Bernoulli number [Chapter 4] and Bm(x) denotes a Bernoulli polynomial [Chapter 19]. If m is
not an integer, summation 1:14:4 may be evaluated generally by equation 12:5:5. The sum of the reciprocals of the
first n natural numbers is
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where is Euler’s constant [Section 1:7] and (x) denotes the digamma function [Chapter 44]. When continued
indefinitely, the sum 1:14:5 defines the divergent harmonic series.

The corresponding expressions when the signs alternate are
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where Em(x) denotes an Euler polynomial [Chapter 20], and
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Note that, whereas the n version of the harmonic series 1:14:5 does not converge, series 1:14:10 approaches the
limit ln(2) as n .

The numbers 2,4,6, are called the even numbers. Sums of their powers are easily found by using the identity
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in conjunction with equations 1:14:1 1:14:5. Likewise, use of these equations, together with the identity
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permits sums of powers of the odd numbers, 1,3,5, , to be evaluated.
For the infinite sums where j runs from 1 to , see Chapter 3. The same chapter also addresses the relatedvj

infinite sums , , and . For other sums of numerical series, see Sections 44:14( ) j vj (2 1) vj ( ) (2 1)j vj
and 64:6.


