
n

There is little interest in the Pochhammer polynomials in their own right; however, their simple recursion
properties enable these functions to play a valuable role in the algebra of other functions, especially the
hypergeometric functions discussed in Section 18:14.

18:1 NOTATION

These polynomial functions, in which x is the argument and n the degree, were studied in 1730 by Stirling and
later by Appell, who used the symbol (x,n). The name “Pochhammer polynomial” recognizes Leo August
Pochhammer (German mathematician, 1841 1920) who introduced the now conventional (x)n notation. Alternative
names are shifted factorial function, rising factorial, and upper factorial. The alternative overbarred symbol isnx
occasionally encountered.

18:2 BEHAVIOR

The Pochhammer polynomial is defined for all real x and all nonnegative integer n values (though see Section
18:12 for a generalization to negative n). In common with other polynomials, it has an unrestricted range when n
is odd, but a semiinfinite range for n 2, 4, 6, .

Figure 18-1 shows graphs of early members of the Pochhammer polynomial family; note that (x)n has exactly
maxima, minima and n zeros, the latter occurring at x 0, 1, 2, , (1 n).1

2Int n
2In t n

18:3 DEFINITIONS

The Pochhammer polynomial is defined by the n-fold product
1

0

( ) ( 1)( 2) ( 1) ( )
n

n
j

x x x x x n x j18:3:1

DOI 10.1007/978-0-387-48807-3_19, © Springer Science+Business Media, LLC 2009 
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160 THE POCHHAMMER POLYNOMIALS (x)n 18:3

Empty products are generally interpreted as unity and this is the case for the Pochhammer polynomial of zero degree:

0( ) 1x18:3:2
An equivalent definition

1!
n

x nx n n18:3:3

expresses (x)n in terms of a factorial function and a binomial coefficient [Chapters 2 and 6, respectively]. Equation
18:12:1 can also serve as a definition.

A generating function [Section 0:3] for the Pochhammer polynomial is



18:4 THE POCHHAMMER POLYNOMIALS (x)n 161

0

1 ( )
(1 ) !

n

nv
n

tv
t n

18:3:4

and it is also generated by repeatedly differentiating a power of which v is the exponent:

d 1( )
d

nn
v v

nnx x v
x x

18:3:5

18:4 SPECIAL CASES

0( )x 1( )x 2( )x 3( )x 4( )x 5( )x 6( )x

1 x x2+x x3+3x2+2x x4+6x3+11x2+6x x5+10x4+35x3+50x2+24x x6+15x5+85x4+225x3+274x2+120x

18:5 INTRARELATIONSHIPS

Pochhammer polynomials obey the reflection formula
( ) ( ) ( 1)n

n nx x n18:5:1

Equivalently
1 1( )

2 2
n

n n

n nx x18:5:2

which explains the even or odd symmetry about x (1 n)/2 evident in Figure 18-1.
The argument-duplication formulas

1
2/ 2 / 2

1
2( 1) / 2 ( 1) / 2

2 0,2,4,
2

2 1,3,5,

n
n n

nn
n n

x x n
x

x x n18:5:3

have analogs in expressions for (3x)n, (4x)n, and generally for (mx)n, where m is a positive integer. Equation 18:5:3
may be reformulated into a degree-duplication formula

2
1( ) 4

2 2
n

n
n n

x xx18:5:4

and similarly

2 1
2 1

1

1 14 1 2
2 2 2 2

n n
n

n n n n

x x x xx x18:5:5

Similar formulas for (x)3n, (x)3n+1, (x)3n+2, (x)4n, etc. may be derived readily.
Simple recursion formulas exist for both the argument

1 1
n n

nx x
x

18:5:6

and the degree

1
1

n n n
x n x x x x18:5:7

of Pochhammer polynomial functions. There are many useful formulas expressing the quotient of two Pochhammer
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polynomials:
( )

( )
1

( )
( )

n m
n

m
m n

x m n m
x

n mx
x n

18:5:8

( ) ( ) 0,1,2,
( ) ( )

n m

n m

x m x n m
x x

18:5:9

( ) ( ) (1 ) 0,1,2,
( ) ( ) (1 )

n m m

n m m

x m x m x m
x x m n n x

18:5:10

Addition formulas exist for both the argument and the degree of a Pochhammer polynomial. The expression

0
( ) ( ) ( )

n

n j n j
j

nx y x yj18:5:11

which closely resembles the binomial theorem [equation 6:14:1], is known as Vandermonde’s theorem (Alexandre-
Théophile Vandermonde, French violinist and mathematician, 1735 1795). The rule

n m n m
x x x n18:5:12

is a simple consequence of definition 18:3:1.

18:6 EXPANSIONS: Stirling numbers of the first kind

Of course, the Pochhammer polynomial is expansible as the product 18:3:1. As a sum, its expansion involves
the absolute values of the numbers , known as the Stirling numbers of the first kind.( )S m

n

( ) ( )

1 0
( ) S ( ) S

n n
n m m m m

n nn
m m

x x x18:6:1

These numbers are negative whenever n+m
is odd and 0 < m < n. Figure 18-2 shows
the absolute values of early Stirling
numbers of the first kind and more can be
calculated via the recursion formula

( ) ( 1) ( )
1S S S

0,1,2, 1,2,3,

m m m
n n nn

n m
18:6:2

This formula is the basis of Equator’s
Stirling number of the first kind (keyword
Snum) routine. The numbers satisfy the
following summations

( )

1
S 0 2,3,4,

n
m

n
m

n18:6:3

( )

0
S ! 0,1,2,

n
m

n
m

n n18:6:4

It is sometimes useful to expand a
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reciprocal Pochhammer polynomial as partial fractions [Section 17:13]. The result is
1 1

0 0

1 ( 1) 1 ( 1)1( 1)!
( ) !( 1)!

j jn n

j jn

nn jx j n j x j x j
18:6:5

18:7 PARTICULAR VALUES

n
n 1

2
n

n n
m

m 1,2, ,n 1

1
2 n

0
n

1
2 n

1
n

2
n n

n

n 0 1 1 1 1 1 1 1 1 1

n 1,3,5, n! 0 0
(2 )!

4 (2 1) !n

n
n n

0
(2 )!
4 !n

n
n

n! (n+1)!
(2 )!
2 !

n
n

n 2,4,6, n!
/ 2 2

2
2

( ) ( !)
4 ( !)

n

n n

n
0

(2 )!
4 (2 1) !n

n
n n

0
(2 )!
4 !n

n
n

n! (n+1)!
(2 )!
2 !

n
n

As the table shows, the Pochhammer polynomial of an integer can be expressed as a factorial function or as the
quotient of two factorials

( 2)! ( 1)!1 ! (2) ( 1)! 3 ( )
2 ( 1)!n nn n

n n mn n m
m

18:7:1

Similarly, the Pochhammer polynomial of half an odd integer is related to double-factorials [Section 2:13]

31
2 2 2

(2 1)!! (2 1)!! (2 2)!! 1,3,5,
2 2 2 ( 2)!!

m
n n nn n n

n n n m m
m

18:7:2

18:8 NUMERICAL VALUES

Equator can provide accurate values of (x)n by its Pochhammer polynomial routine (keyword Poch).

18:9 LIMITS AND APPROXIMATIONS

As x + , (x)n approaches + smoothly and rapidly. As x becomes increasingly negative, (x)n passes through
(n 1) extrema before heading rapidly towards + , if n is even, or if n is odd. By use of equation 18:12:1, the
limiting behavior of the Pochhammer polynomial can be deduced from those of the gamma function, as discussed
in Section 43:9. Thus, when n is large, x remaining modest, the asymptotic expansion

1

2

! ( 1) ( 1)( 2)(3 1)( ) 1
( ) 2 24

x

n
n n x x x x x xx n

x n n
~18:9:1

holds and shows, for example, that
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1
2

!
n

n n
n18:9:2

On the other hand, the Stirling approximation [equation 43:6:6], coupled with 18:12:1, leads to

1
2 2

n

n

n n
e

18:9:3

The coexistence of limits 18:9:2 and 18:9:3 provides an interesting link between what are probably the three most
important irrational numbers: , e, and .2

For large n, and x close to n/2, the Pochhammer polynomial approximates a sine function [Chapter 32].

2 sin large positive
2 2

n

n

n nx x x n n
e

18:9:4

The development of this sinusoidal behavior is evident in Figure 18-1, even for n as small as 4.

18:10 OPERATIONS OF THE CALCULUS

Linear operators such as differentiation and indefinite integration may be applied term by term to all
polynomials, including (x)n. Differentiation and integration of the Pochhammer polynomial give

1

0

d 1 ( ) ( )
d

n

n n n
j

x x x n x x
x x j18:10:1

1
( 1)

10

d S
x jn

j
nn

j

xt t
j

18:10:2

The function is the digamma function [Chapter 44] and represents a Stirling number from Section 18:6.( 1)S j
n

18:11 COMPLEX ARGUMENT

If values of the Pochhammer polynomial with complex argument are needed, which they seldom are, they are
available by combining equation 18:6:1 and 17:11:1.

18:12 GENERALIZATIONS

Pochhammer polynomials may be expressed as a ratio of two gamma functions [Chapter 43]
( )

( )n

n xx
x

18:12:1

This representation opens the door to a generalization in which the degree n is not necessarily an integer.
A less profound generalization is to maintain n as an integer, but allow it to adopt negative values. This is

possible by basing the definition of such Pochhammer polynomials on recursion 18:5:7 and leads to the conclusion
that

1

1
1

x
x

18:12:2
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and generally
1 ( )

( 1)( 2) ( ) [ ]

n

n
n

xx
x x x n x n x18:12:3

18:13 COGNATE FUNCTIONS

Factorial functions [Chapter 2], binomial coefficients [Chapter 6], the gamma function [Chapter 43] and the
(complete) beta function [Section 43:13] are all closely related to the Pochhammer polynomial.

A factorial polynomial, as defined by Tuma [Section 1.03] is
( ) ( )( 2 ) ( )n
hx x x h x h x nh h18:13:1

but another function given the same name is
[ ] ( 1)( 2) ( 1)nx x x x x n18:13:2

This latter function also goes by the names falling factorial and lower factorial and may be symbolized xn or,
unfortunately, (x)n. Yet another confusing symbolism, due to Kramp, is

/ ( )( 2 ) ( )n cx x x c x c x nc c18:13:3

None of the notations in this paragraph is employed in the Atlas.

18:14 RELATED TOPIC: hypergeometric functions

Pochhammer polynomials occur in the coefficients of the special kind of power series known as a
hypergeometric function. The most general representation of such a function is as the sum

1 2 3

0 1 2 3

Kj j j j j

j Lj j j j

a a a a
x

c c c c
18:14:1

where x is the argument, a1, a2, , aK are prescribed numeratorial parameters, and c1, c2, , cL are prescribed
denominatorial parameters. Any real number is permissible as a parameter, except that nonpositive integers are
problematic. If such an integer is one of the a parameter, series 18:14:1 will generally terminate, thus representing
a polynomial. The only circumstance in which a nonpositive integer is legitimate as a denominatorial c parameter,
is if another nonpositive integer of smaller magnitude (that is, a less negative integer) occurs in the numerator. In
such cases the series terminates. Of course, the same Pochhammer term may not be in both the numerator and the
denominator: they would cancel.

The argument x may have either sign but its permissible range is determined by the numeratorial order K and
the denominatorial order L. These K and L orders are nonnegative integers, usually small ones. If L > K, the
hypergeometric series necessarily converges for all finite values of x. If L K, convergence is generally limited to
the argument range |x| < 1. If L < K the series diverges (unless it terminates) for all nonzero arguments, but it may
nevertheless usefully represent a function asymptotically for small values of |x| [37:6:5 provides an example].

The name “hypergeometric function” arises because 18:14:1 can be regarded as an extension of the geometric
series (equation 1:6:4 or 6:14:9), to which it reduces when L K 0. Choosing suitable values of the a’s and c’s
often gives rise to well-known functions when L and K are small. As well, a number of generic functions, such as
the Kummer function [Chapter 47] the Gauss hypergeometric function [Chapter 60], and the Claisen functions
[equation 18:14:5] are instances of hypergeometric functions in which the a’s and c’s are largely unrestricted. The
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Table 18-1

0

( )
( )

j j

j j

a
x

c 0

( )
( )

jj

j j

a
x

ca c

v 1 (1 x) v (1+x) v

v 2
11 (1 )

(1 )

vx
v x

1(1 ) 1
(1 )

vx
v x

1+v v 2

(1 )
(1 )

v v x
v x 2

(1 )
(1 )

v v x
v x

1 2
ln(1 )x

x
ln(1 )x

x

1 3 2

2 (1 )ln(1 )x x x
x 2

2 (1 )ln(1 )x x x
x

1 3
2

arcsin

(1 )

x

x x

arsinh

(1 )

x

x x

1 1
2

3

arcsin1
1 (1 )

x x

x x 3

arsinh1
1 (1 )

x x

x x

1
2

1
2 1 artanhx x 1 arctanx x

1
2

3
2

artanh( )x
x

arctan( )x
x

v 1+v v (x,1,v) v ( x,1,v)

a c 1 1

( 1)B( 1, 1, )
(1 )a c c

c c a c x
x x

so-called generalized hypergeometric function, or extended hypergeometric function, often denoted
pFq(a1, ,ap;c1, ,cq;x) is a hypergeometric function in which one of the denominatorial parameters is constrained to
be unity:

1 2 3

1 2 3 1 2 3
0 1 2 3

F , , , , ; , , , , ;
1

pj j j j j
p q p q

j qj j j jj

a a a a
a a a a c c c c x x

c c c c
18:14:2

so that p K but q and L differ by unity. Other notations include

1 2 3 1 2 3

1 2 3 1 2 3

, , , , 1, 1, 1, , 1F and
, , , , 1, 1, 1, , 1

p K
p q

q L

a a a a a a a ax x
c c c c c c c c

18:14:3

Some of these notations imply a phantom
denominatorial (1)j. In this Atlas, we adopt
no special notation for hypergeometric
functions, preferring to spell out the series
explicitly as in 18:14:1. If a (1)j is present
in the denominator, it is shown there.

As the tables in this section attest, a
very large fraction of the functions
discussed in the Atlas may be expressed
hypergeometrically. Moreover, in the
terminology of Section 43:14, almost all of
these functions may be synthesized from a
basis function, such as the ones listed in
equations 43:14:1 4. Do not be misled into
imagining that the only hypergeometric
functions are those in the tables. In fact,
subject to possible limitations on the
argument x, almost any assignment of a’s
and c’s leads to a valid hypergeometric
function. It is just that most such
assignments do not correspond to functions
that have been glorified by special names
and symbols.

Hypergeometric functions in which
L K have the common feature of being
amenable to synthesis, ultimately from one
or other of the 1/(1±x) functions. Table
18-1 lists examples of L K 1
hypergeometric functions, while Table 18-2
similarly lists L K 2 hypergeometrics. There is a plethora of functions that are expressible as L K 2
hypergeometric functions; entries in Table 18-2 have been chosen as representative, rather than exhaustive. See
Section 60:4 for details of the ways in which an associated Legendre function may be represented as a Gauss
hypergeometric function; that is, formulated as an L K 2 hypergeometric. L K 3 cases, include the class of
Claisen functions, important in hydrodynamics and described by
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Table 18-2 1 2

0 1 2
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a a
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2 v 1 v 1 3
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4
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2
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1
2

1
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Table 18-3
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1 2 3

0 1 2 1
j j j j

j j j j

a a a
x
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18:14:4

of which an example is
1 1

22 2 1
2

0

2 2 2
F( , , ,

2 1 1
j j j j

j j j j

v v
x v x

v v
18:14:5

Please refer to the Symbol Index for the meaning of any unfamiliar symbol. Equation 18:14:6 provides a non-
Claisen example of a L K 3 hypergeometric function.
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3 3
2 2

5
0 2

arcsin1 12 21 ln 0 1
2 2 1 1

j j j j

j j j j

x
x x

x x x
18:14:6

The exponential function is the prototype L K+1 hypergeometric function

0

1exp
(1)

j

j j

x x18:14:7

All other hypergeometric functions that have one more denominatorial than numeratorial parameter may be
synthesized from it. Tables 18-3 and 18-4 respectively are listings of some examples of L K+1 1 and L
K+1 2 hypergeometric functions. An example of an L K+1 3 hypergeometric is

2
0

2 2 4( ) Ein( ) exp( ) 1
1 3 3

j j j

j j j j

x x x
x

18:14:8

The starting point for the synthesis of L K+2 hypergeometric functions is the zero-order modified Bessel
function or the corresponding (circular) Bessel function . Examples of L K+2 3 hyper-0I 2 x 0J 2 x
geometrics are assembled in Tables 18-5 and 18-6. There are rather few instances of L K+2 4 hypergeometrics,
but one is

1
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1(2 1) / 2
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( ) (1 )I I
1 1 2 ( / 4)

j j j
v vv

j j j j j

v v vx x x
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Table 18-6
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For some obscure reason, hypergeometric functions in which the denominatorial order exceeds the numeratorial
order by 3 seldom correspond to named functions, one a rare exception appearing in equation 53:11:3 and another
being
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1 1 1
3 3 3
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1 3 3

j

j jj j

x x x x18:14:10

which is an example of a Mittag-Leffler function [Section 45:14]. In contrast, named cases of L K+4 4
hypergeometric functions are quite abundant, an instance being the Kelvin function [Chapter 55]
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x x18:14:11

Table 18-7

0
( ) j

j
j

a x
0
( ) ( ) j

j
j

a x
a

n
1!( ) en

nn x
x

1! en
nn x

x

1
2

11 dawx
x

1 11 exp erfc
2

x
x x

1
2

2 1daw
x x

1 1exp erfc
x x x

1
1 1 1exp Ei
x x x

1 1 1exp Ei
x x x

3
2

2 1 1exp ierfc
x x x

v
1 1exp 1 ,vx v
x x

Table 18-8 1 2

0

( ) ( )
( )

j j j

j j

a a
x

c
1 2

0

( ) ( )
( )

( )
j j j

j j

a a
x

ca1 a2 c

1
2 v 1

2 v 1
1 1exp I

2 2vx x x
1 1 1exp K

2 2vx xx

2
n 1

2
n

1
12 H

2

n

n
x

x

1
6

5
6 1

1/ 6 2 / 33 1 3exp Bi
4 2 4x x x

1/ 6 2 / 348 1 3exp Ai
2 4x x x

v 1
2v 1 2

2 1 2exp D
2

v

vx x x

v 1
1 1U ,1 ;v v v
x x
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Examples of hypergeometric functions of the L K 1 0 and L K 1 1 families are listed in Tables 18-7 and
18-8. Of course, these correspond to asymptotic series. With even worse convergence properties are the
L K 2 0 hypergeometrics of which a few are shown in Table 18-9. The series

1 1 1
2 2 2

0

2 1 1I K
1

j j j j
v v

j j

v v
x

x x x
18:14:12

is an example of an L K 2 1 hypergeometric function. Two important L K 2 2 hypergeometric functions
occur in Section 53:6.

Table 18-9
1 2

0
( ) ( ) ( ) j

j j
j

a a x
a1 a2

v 1
2 (1 2 ) / 2 (1 2 ) / 2(1 2 ) / 4

(1 ) 2 2h Yv vv

v
x x x

1
4

3
4 1/ 4 1/ 4

2 2Fres
x x

1
2 1

2 2fi
x x

3
4

5
4 3 / 4 1/ 4

8 2Gres
x x

1 3
2

4 2gi
x x

v 1
2v 4 2 2 2 2cos S 1 2 , sin C 1 2 ,

v

v v
x x x x x

Let Gj denote the following abbreviation

1 2 3

1 2 3

K
j

L

a j a j a j a j
G

c j c j c j c j
18:14:13

then any hypergeometric function is given by
2 3

0 0 1 0 1 2 0 1 2 11 ( )J J
J JG x G G x G G G x G G G G x R18:14:14

where RJ is the remainder if the summation is halted after the Jth term. Ignoring RJ, a convenient method of
calculating the hypergeometric function is via the concatenation

1 2 1 01 1 1 1J JG x G x G x G x18:14:15

In discussing the general properties of hypergeometric functions, use will be made of a collapsed notation
exemplified by the replacement of (a1)j(a2)j (aK)j by . Likewise implies the K-fold product1 K j

a 1 1K ja

(a1+1)j(a2+1)j (aK+1)j.
The recursion relation
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1 11

0 01 1 1

1
( ) 1 ( )

1
K Kj jj jL

j jL K Lj j

a acx x
c a x c

18:14:16

is satisfied by any hypergeometric function. Furthermore, any hypergeometric function can be split into two others
with an inflated parameter set:

1 1 1 1 1 12 2
1 1 1 11 2 2 2 2 2 21

1 1 1 1 1 1
0 0 01 1 1 1 1 12 2 2 2 2 2

11
( )

1 4 1 4

j j
K K K KK j j j j jj K

L K L K
j j jL L L L L Lj j j j j

a a a aa x a x xx
c c c c c c

18:14:17

Of course, this result may become invalid if it creates new denominatorial parameters that are nonnegative integers.
Replacing x in this formula by ix shows that a hypergeometric function of imaginary argument has real and
imaginary parts that are themselves hypergeometric functions.

Embodying the fractional calculus [Section 12:14], a formula of very wide applicability is

1 1

0 01 1

1d ( 1)( ) ( )
d ( 1) 1

v v
K Kj j jj j

v
j jL Lj j j

a axx x x
x c v v c

18:14:18

where v and are not necessarily integers. This formula is invalid if either or v is a negative integer; if they
are both negative integers, it fails if v is negative. Examples of the 0 version include semidifferentiation

1/ 2
1 1

1/ 2 1
0 0 21 1

1d 1( ) ( )
d

K Kj j jj j

j jL Lj j j

a a
x x

x c cx
18:14:19

semiintegration
1/ 2

1 1

1/ 2 3
0 0 21 1

1d ( ) 2 ( )
d

K Kj j jj j

j jL Lj j j

a axx x
x c c

18:14:20

and integration

1 1

0 01 10

1
( ) d ( )

2

x
K Kj j jj j

j jL Lj j j

a a
t t x x

c c
18:14:21

The formula for ordinary differentiation

1 11

0 01 1 1

2d ( ) ( )
d 1

K Kj j jj jK

j jL L Lj j j

a aax x
x c c c

18:14:22

also follows from 18:14:18, but only after a preliminary step based on recursion 18:14:16. Notice that all the
formulas 18:14:16 18:14:22 maintain the L K difference. Laplace transformation, however, decreases this
difference

1 1 1

0 0 01 1 10

11( ) exp d ( ) ( )K K Kj j j jj j j

j j jL L Lj j j

a a a
t st t t s

c c s c
18:14:23

worsening the convergence properties of the hypergeometric function.
Specific to the hypergeometric 1:1 functions, are the reflection formula

1

1
0 0

( ) ( )( ) ( 1) (1 ) 1 (1 )
( ) ( ) 1 ( 2)

c a
j jj j

c
j jj j

a ac a c x cx x
c a x a c a c18:14:24
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and the following rule
1

0 0 0

( ) (1 )( ) 1
( ) ( ) 1 1 ( 1) 1

n jn
j j jj jn

j j jj n jj

a a cc a x xx x
c c x c n x a c x

18:14:25

which permits the denominatorial parameter to be incremented by an integer, at the expense of an additional
polynomial function.


