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The cubic function is a polynomial function of degree 3, and accordingly the general properties of polynomials
[Chapter 17] are applicable. Cubic functions find frequent application in data interpolation, a topic addressed in
Section 16:14.

16:1 NOTATION

The most general formulation of a cubic function is , with four coefficients. However,3 2
3 2 1 0a x a x a x a

it is a simple matter to factor out the leading coefficient and accordingly this chapter mostly addresses the function
3 2f ( )x x ax bx c16:1:1

The following quantities, that we term parameters, are important in determining the properties of the cubic
function.
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a bP16:1:2

3

6 2 27
ab c aQ16:1:3

and
3 2D P Q16:1:4

The last, or sometimes its negative, is known as the discriminant of the cubic function.

16:2 BEHAVIOR

Irrespective of the values of its coefficients, the range and domain of the cubic function are unrestricted. A
cartesian graph of the cubic function has inversion symmetry [Section 14:15] through3 2f ( )f x x ax bx c
the point with rectangular coordinates
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which is also a point of inflection, as Figure 16-1 illustrates. This diagram shows graphs of the cubic function for
representative values of P and demonstrates that the sign of this parameter determines whether the cubic function
possesses extrema. If a2 exceeds 3b, so that P is positive, then there is a maximum at and a( /3)x a P
minimum at . Otherwise the cubic function is a monotonic function; that is, its slope never changes( /3)x a P
sign.

Figure 16-1 does not locate f 0, but it is clear that its location will determine the number of real zeros that the
cubic function possesses. In fact, the existence of three distinct zeros requires that both P and D be positive.

16:3 DEFINITIONS

Writing the cubic functions as the concatenation
f ( )x c x b x a x16:3:1

confirms that the arithmetic operations of addition and multiplication suffice to define the cubic function.
The product of three linear functions creates a cubic function:

3 2
0 1 1 0 1 1 0 1 0 1 1 1 0 1 1( )( )( ) ( ) ( )x r x r x r x r r r x r r r r r r x r r r16:3:2

but not all cubic functions can be defined in this way, unless two of the r’s are sometimes allowed to assume
complex values. The r quantities, the zeros of the cubic function, are addressed in Section 16:7. Every cubic
function may, however, be defined as the product of a linear function and a quadratic function:
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2 3 2( ) ( ) cx r x a r x x ax bx c
r

16:3:3

with r being the real zero, or one of the real zeros.

16:4 SPECIAL CASES

The cubic equation factors straightforwardly when the c coefficient, or both of the3 2f ( )x x ax bx c
other coefficients, or any one of the parameters [Section 16:1] equals zero; thus;

20 f ( )c x x x ax b16:4:1
1 1 2

3 3 320 f ( )a b x x c x c x c16:4:2

3
2 233 30 f ( ) 2 2 4 , 2

3 27
a aP x y Q y Q y Q y x Q c16:4:3
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16:4:4

22 30 f ( ) 2 ,
3 3
a a bD x y P y P y x P16:4:5

By we imply the real cube root of 2Q.3 2Q
If all the coefficients are zero, the cubic reduces to a power function f(x) x3. If all the parameters are zero,

reduction occurs to another power function: f(x) [x + (a/3)]3.

16:5 INTRARELATIONSHIPS

The cubic function obeys the reflection formula3 2f ( )x x ax bx c

f 4 f
3 3
a ax Q x16:5:1

where the parameter Q is defined in 16:1:2.
Setting y x + (a/3) converts one cubic function to another:

3 2 3 3 2x ax bx c y Py Q16:5:2

This transformation represents a simplification because the new argument appears only twice in the new formulation.
A further contraction to a form in which there is a single appearance of the argument is also possible. The form of
the new argument depends on the sign of the P parameter and, if P is positive, also on the magnitude of ./y P
For negative P

3 3f ( ) 2 ( ) sinh( ) where 3arsinh 0
6

x ax P t Q t P
P

16:5:3

When P is positive and larger than [(3x + a)/6]2

2
3 3 (3 )f ( ) 2 cos( ) where 3arccos

366
x a x ax P Q P

P
16:5:4
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whereas if P is positive but smaller than [(3x + a)/6]2

3 3 3f ( ) 2 sgn cosh( ) where 3arcosh
6 6
x a x ax P t Q t

P P
16:5:5

The keys to deriving these formulas lie in equations 28:5:6, 32:5:5, and 28:5:5.
The inverse function of the cubic is multivalued if P > 0, but can be shown from 16:5:3 to be

3

3

1 22 sinh arsinh 0
3 3 2
a x QP P

P
16:5:6

for a cubic with a negative P parameter.

16:6 EXPANSIONS

The expansions discussed in Section 17:6 apply, but they are of little utility for the cubic function.

16:7 PARTICULAR VALUES

The cubic function has an inflection at x a/3, irrespective of the other two coefficients.3 2x ax bx c
As Figure 16-1 shows, a maximum and a minimum are exhibited only if the parameter P is positive.

Equator’s notation for the three zeros of the cubic functions is r3(a,b,c,n), with n 0, ±1. If any one of c, P, Q,
or D are zero, or if both a and b are zero, then the zeros may be found straightforwardly from the special-case
equations in Section 16:4. Otherwise the zeros are calculable by the procedure outlined in the following paragraph.
One of these zeros, r3(a,b,c,0) will be real invariably, but the other two, r3(a,b,c,+1) and r3(a,b,c, 1), will be complex
(or imaginary) unless both P and D are positive. When two complex zeros exist, they always occur as a conjugate
pair; that is, they have identical real parts and their imaginary parts are equal in magnitude but opposite in sign.

One real zero and two complex zeros exist when P < 0, irrespective of the value of D; they are:

3
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3

r ( , , ,0) 2 sinh( )
13 arsinh
3 ( )r ( , , , 1) sinh( ) 3 cosh( )

3

aa b c P t
Qt

a Pa b c P t i P t
16:7:1

For P > 0 and D > 0, there are three real zeros:
3

3

2 arccos /
r ( , , , ) 2 cos 0, 1

3 3

n Q Paa b c n P n16:7:2

For P > 0 and D < 0, there is one real zero and two complex zeros:
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r ( , , ,0)
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16:7:3

By we imply the real cube root. These formulas originate from equations 16:5:3 5 and are used by Equator3
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in its cubic zeros routine (keyword r3), though simpler methods are employed for the special cases enumerated in
Section 16:4. Equator treats the zeros as a complex-valued quadrivariate function

3 3 3r ( , , , ) Re r ( , , , ) Im r ( , , , ) 1,0, 1a b c n a b c n i a b c n n16:7:4

and outputs both real and imaginary parts, the latter being 0 whenever the zero is real. By default, Equator generates
a short table giving all three zeros. The algorithm is exact but, because large losses of significance can occasionally
occur, check answers carefully if precision is an issue.

16:8 NUMERICAL VALUES

These are easily calculated, for example through Equator’s cubic function routine (keyword cubic).

16:9 LIMITS AND APPROXIMATIONS

The cubic function is dominated by its x3 term when its argument is of large magnitude.
There is seldom a need to approximate a cubic function; on the contrary, cubic functions are themselves often

used to approximate more complicated functions, as explained in Section 16:14.

16:10 OPERATIONS OF THE CALCULUS

As with all polynomials, the operations of the calculus may be carried out on the cubic function term by term:

3 2 2d ( ) 3 2
d

x ax bx c x ax b
x

16:10:1

4 3 2
3 2

0

3 4 6 12( )d
12

x x ax bx cxt at bt c t16:10:2

3 2
3 2 3 2

4
0

2 6( )exp( )d cs bs ast at bt c st t t at bt c
s

16:10:3

Integrals of can often be evaluated by following the procedure described in Section3 2f ( ) /t t at bt c
17:13. Indefinite integrals of such functions as or are the subject of3 21/ t at bt c 3 2/t t at bt c
Section 62:14.

16:11 COMPLEX ARGUMENT

When the argument is z x + iy, the real and imaginary parts of the cubic function are
3 2 3 2 2 2 2 2( ) 3 3 2z az bz c x a x y bx c xy iy x y axy by16:11:1

The cubic function of complex argument encounters no poles or other discontinuities, other than at infinity.
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16:12 GENERALIZATIONS: including zeros of the quartic function

A cubic function is a polynomial of degree 3. As such, it is the third member in a hierarchy of which the linear
function and quadratic functions are lower members and the quartic, quintic, etc. are higher members. The Atlas
treats these higher members as a general family in the next chapter. However, one aspect of quartic functions is
addressed here because the properties of cubic functions are relevant.

If the coefficients of the quartic
4 3 2

3 2 1 0x a x a x a x a16:12:1

are real, the quartic’s zeros may be calculated by first finding any zero r of the so-called cubic resolvent function

2
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1 3 0
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c a a a a a
16:12:2

using the method of Section 16:7. Then the four zeros of 16:12:1 can usually be found from Ferrari’s solution
[Lodovico Ferrari, Italian mathematician, 1522 1565]
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16:12:3

If s should equal zero, the term is to be replaced by .3
2 3 3 1(8 2 16 ) /a a a a s 2

08 4r a
Ferrari’s solution is the basis of Equator’s quartic zeros routine (keyword r4). However, if the chosen cubic

zero leads to a small value of s, serious precision loss may occur. To counter this, Equator selects the cubic zero
that leads to the largest s.

16:13 COGNATE FUNCTIONS

The reciprocal cubic function is of some interest and provides an exemplary model of3 21/( )x ax bx c
reciprocal polynomial functions [Section 17:13] in general.

Partial fractionation is a method of expanding reciprocal polynomials. Equation 16:3:3 may be used to suggest
the splitting of the reciprocal cubic as follows

3 2
22

1 1f ( )
( )( ) ( )

xx ccx ax bx c x r x a r xx r x a r x
rr

16:13:1

where r is a real zero, the constants , , and being initially unknown. They may be determined, however, by first
multiplying 16:13:1 by the cubic to remove the denominators, which leads to

21 ( ) cx a r r x r
r

16:13:2

This is an identity and therefore one may equate coefficients of like terms from each side of equation 16:13:2. The
three simultaneous equations + 0, (a + r) r + 0, and ( c/r) r 1 that emerge may then be solved,
leading eventually to
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x f(x)

x0 f0

x1 f1

xj 1 fj 1

xj fj

xj+1 fj+1

xj+2 fj+2

xJ 1 fJ 1

xJ fJ

2 2 2

1 2 1 2f ( )
2( ) ( )

r x a r r x a rx c c cx r br c x rr ar x a r x x a r x
r r r

16:13:3

The second equality is a consequence of . Further expansion of the final term into the sum of3 2 0r ar br c
two reciprocal linear terms is possible, but these may be complex.

Partial fractionation is often used as a prelude to an operation of the calculus. It permits, for example, the
integral of a reciprocal cubic function to be evaluated, via equation 16:13:3, with the aid of formulas 7:10:4, 15:10:4,
and 15:10:5. It is used abundantly in Laplace inversion [Section 26:15].

16:14 RELATED TOPICS: the sliding cubic and the cubic spline

Technologists and engineers commonly collect extensive lists of values f of a function f(x)
without knowing the form of the relationship between f(x) and its argument x. The table shows
fragments of such a list. A frequent need is to present these data graphically, or use them to
estimate a value of the function at an argument where no measurement was made. Two situations
arise in this setting. In the first, the tabular data are regarded as exact and the problem is one of
interpolation. In this case, the task is the selection of a relationship that is satisfied locally or
globally, that relationship then being assumed to apply equally well between measurement points.
In the second scenario, error is assumed to contaminate the f data and a (usually rather simple)
relationship is sought that does not exactly reproduce the measured fj values, but comes close.
Such a procedure is known as regression; Section 7:14 is devoted to the simplest kind of
regression, in which the function to which the data are fitted is a straight line, and the use of more
complicated fitting functions is explored in Section 17:14.

Polynomials are commonly used for both interpolation and regression. The remainder of this
section addresses two ways in which piecewise-cubic functions are employed in interpolation. The
first, which provides a satisfactory interpolation without undue complexity, is the sliding cubic or
Lagrange four-point interpolate. The idea is that a cubic function is fitted so as to pass through
a quartet of adjacent data pairs: , , ,1 1,j jx f ,j jx f 1 1,j jx f
and , but is used to represent the data only between the2 2,j jx f
middle two points of the quartet. The cubic that has this property
is, for ,1j jx x x
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16:14:1

where l, m, and n are the three integers other than k from the set
( j 1, j , j+1, j+2). In the common case, illustrated in Figure 16-2,
in which the data are evenly spaced so that xj+2 xj+1 xj+1 xj

xj xj 1 h, equation 16:14:1 becomes
1 1 1 1

3 2 1 16 2 2 6
3 2 1 1

2 1 12 2
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x a a a a
a f f f fh h h
a f

16:14:2
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This is the interpolating cubic fitted over xj 1 x xj+2 but used only for the argument range from xj to xj+1, as shown
at the right-hand side in Figure 16-2. As x reaches and passes xj+1, the cubic “slides” to a next quartet. Of course,
no quartet is available for the end regions x0 x x1 or xJ 1 x xJ; and so the interpolating cubics from the
penultimate internodal zones x1 x x0 and xJ 2 x xJ 1 are taken to apply to the end zones too. This is illustrated
at the left in Figure 16-2.

The curve produced by the sliding cubic interpolation is continuous, but there is a small (and often visually
undetectable) discontinuity in slope at each node. This defect is overcome in the cubic spline which not only has
no discontinuity in the slope (that is, in the first derivative of f ) at the nodal points, but no discontinuity in the
second derivative either! The equation describing the interpolated spline between the nodes xj and xj+1 is the cubic
function

1 1
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3 2 1
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3 2 1 0 1 1
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j j j

j jj j j
j j j j j
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x a a a a
a f f g gh h h
a f

16:14:3

when the data are separated evenly by h. The g terms are proportional to the second derivatives of the spline at its
nodes; for example
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x x

g h
x16:14:4

These terms are unknown a priori; however, the recursion formula

1 1 1 12 4j j j j j jg f f f g g16:14:5

interrelates three consecutive g values. There are J 1 recursions linking the g0, g1, g2, , gJ 1, gJ terms. These
recursion equations may be solved simultaneously if g0 and gJ are taken to be zero. Thereby a natural cubic spline
may be created. A natural spline is one that is linear at its extremities. The description of splines given by Chapra
and Canale [pages 495 505] is very readable and their book provides formulas for unequally spaced data. Hamming
[Section 20.9], another excellent source, discusses “unnatural” splines and shows how to set up a tridiagonal matrix
to solve the simultaneous equations.

There is a heavy computational burden in the creation of a cubic spline but the result is extremely smooth.
Because the fitting is “global”, there is a disconcerting dependence of the shape at one end of the fitted curve upon
data at the other end. Such an effect is, of course, entirely absent in the sliding cubic and other “local” interpolations.


