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As a cartesian graph, the shape of is that of a parabola and, in this respect, the quadratic function2ax bx c
resembles the square-root function of Chapter 11. The root-quadratic function, addressed in Section 15:13 and
15:14, may also adopt the shape of a parabola.

15:1 NOTATION

The constants a, b, and c, that, together with the argument x, compose the quadratic function, are called
coefficients. In the graphs of this chapter, a is taken to be positive, though the formulas are valid for either sign.
The sign of the quantity

2 4b ac15:1:1
known as the discriminant of the quadratic function, influences several of the function’s properties. Some authors
define the discriminant as the negative of the quantity specified in
15:1:1, as it was in the first edition of this Atlas.

15:2 BEHAVIOR

Irrespective of the values of its coefficients, the quadratic
function adopts real values for any real argument; however, it has
a limited range, extending (for positive a) only over /4a
ax2 + bx + c . At x b/2a, the function experiences an
extremum: a minimum or a maximum according as a is positive
or negative. It is the sign of the discriminant that determines
whether the quadratic function adopts the value zero. In drawing
Figure 15-1, both a and are treated as positive, so that the
quadratic function crosses the x-axis twice.

DOI 10.1007/978-0-387-48807-3_16, © Springer Science+Business Media, LLC 2009 
131K.B. Oldham et al., An Atlas of Functions, Second Edition,



132 THE QUADRATIC FUNCTION ax2 + bx + c AND ITS RECIPROCAL 15:3

2
b
a

2

1
ax bx c

2
b

a 2
b

a

4a

4a

The behavior of the reciprocal quadratic function is even more
affected by the sign of the discriminant. If is negative, the
1/(ax2+bx+c) function is a contiguous function, adopting values
between zero and 4a/ , as illustrated in blue in Figure 15-2.
However, when the discriminant is positive, the reciprocal quadratic
function has the three branches, shown in red in the figure, with
discontinuities at and .( ) / 2x b a ( ) / 2x b a

Both the quadratic function and its reciprocal have mirror
symmetry about the line x b/2a, irrespective of the value of the
discriminant.

15:3 DEFINITIONS

Writing the quadratic functions as c+x(b+ax) shows that the
operations of multiplication and addition suffice to provide a
definition. It may also be defined as the product of two linear
functions:

2

2 2
b bax bx c ax x

a
15:3:1

The cartesian graph of the function is a parabola with its focus at the point (x , f ) ( b/2a ,2f ax bx c
c+(b2 1)/4a) and its directrix as the horizontal line f c (b2 1)/4a. Thus the function may be defined by recourse
to the definition of a parabola given in Section 11:3. Yet another definition is as the inverse function of a translated
[Section 14:15] square-root function [Chapter 11]

2
2F( ) f ( ) F f ( ) f F( )

4 2
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15:3:2

If the discriminant is positive, the reciprocal quadratic function can be defined as the difference between two
reciprocal linear functions [Chapter 7]:

2

1 1 1 0

2 2
ax bx c b bx x

a a
15:3:3

15:4 SPECIAL CASES

A linear function [Chapter 7] is the special a 0 case of the quadratic function. When b , so that the2 ac
discriminant is zero, the quadratic function reduces to , a square function [Chapter 10].2[ ]a x c

When the discriminant is zero, the reciprocal quadratic function has the unusual property of encountering a
infinite discontinuity of the + |+ type at x ./c a

In the special case when b2 4(ac 2), equation 15:10:4 shows the total area under the 1/(ax2 + bx + c) curve
to be unity. In this circumstance, one can rewrite the normalized formula as
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This is the equation that describes a Lorenz distribution [see the table in Section 27:14], which is therefore a special
case of the reciprocal quadratic function.

15:5 INTRARELATIONSHIPS

Both the quadratic function and its reciprocal obey the reflection formula

2
2

1f f f or
2 2
b bx x ax bx c
a a ax bx c

15:5:1

The sum or difference of two quadratic functions is generally another quadratic function, while their product
is invariably a quartic function [Section 16:13]. Provided that the discriminant, , of the denominatorial function
is positive, the quotient of two quadratic functions can be expressed in terms of a constant and two reciprocal linear
functions, as follows:

2 2 2

2 / 2
( ) ( )

a x b x c a a r b r c a r b r c r b a
ax bx c a x r x r

15:5:2

where r+ and r are the zeros [Section 15:7] of the denominatorial quadratic function.

15:6 EXPANSIONS

Trinomial expansions [Section 6:12] for the reciprocal quadratic function exist, though they are of limited
utility:
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15:6:1

The first expansion is valid for small argument (that is, when |ax2+bx| < |c|), the second for large argument (when
|ax2| > |bx+c|).

15:7 PARTICULAR VALUES

The zeros of the ax2+bx+c function, and the discontinuities of its reciprocal, are given by the well-known
formula

2 4
2

b b acr
a

15:7:1

To preserve significance it is better (if b is positive), to calculate r first and then r+ as c/ar . There is a double zero
at b/2a if the discriminant vanishes, and the zeros are complex if the discriminant is negative. Equator treats the
zeros as the quadrivariate function
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and its quadratic zeros routine (keyword r2) outputs both the real and imaginary parts, the latter being 0 unless the
discriminant is negative. By default, Equator generates a short table giving both zeros.

The following table is applicable whether the discriminant is positive or negative, but the a coefficient is
assumed positive.
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15:8 NUMERICAL VALUES

These are easily calculated, for example with Equator’s quadratic function routine (keyword quadratic).

15:9 LIMITS AND APPROXIMATIONS

Limiting expressions for the reciprocal quadratic function could be derived from 15:6:1, but they are seldom
used.

15:10 OPERATIONS OF THE CALCULUS

The following formulas address the differentiation and integration of the quadratic function and its reciprocal

2d ( ) 2
d

ax bx c ax b
x

15:10:1

2 2 2

d 1 2
d ( )

ax b
x ax bx c ax bx c

15:10:2

3 2
2

0

2 3 6( )d
6

x ax bx cxat bt c t15:10:3

2
/ 2

2 2artanh 0
21 d

2 2arctan 0

x

b a

ax b bx
at

at bt c ax b
15:10:4



15:11 THE QUADRATIC FUNCTION ax2 + bx + c AND ITS RECIPROCAL 135

The 15:10:4 integral is infinite if 0, but if the lower limit is changed to zero, it equals 2/(2ax+b). Another
important integral is
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15:10:5

and many related integrals of the general form , where n and m are integers, will be found listed2( ) dn mt at bt c t
by Gradshteyn and Ryzhik [Section 2.17].

The Laplace transform of the quadratic function is straightforward
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but that of its reciprocal is elaborate
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and involves functions from Chapters 26, 32, 36, and 37.

15:11 COMPLEX ARGUMENT

The real and imaginary parts of the quadratic function and its reciprocal when the argument is z x+iy are
2 2 2( ) 2az bz c a x y bx c i axy by15:11:1

and
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15:11:2

Important inverse Laplace transforms include

2

(2 / )exp( / 2 )sinh( / 2 ) 0
1 exp( ) exp( ) ( / )exp( / 2 ) 0

( )
(2 / )exp( / 2 )sin( / 2 ) 0

bt a t a
r t r t t a bt a

as bs c a r r
bt a t a

I15:11:3

where, r± are given in 15:7:1 and, as before, b2 4ac.
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15:12 GENERALIZATIONS

A quadratic function is a member of all the polynomial families [Chapters 17 24].

15:13 COGNATE FUNCTION: the root-quadratic function

The root-quadratic function and its reciprocal are functions of some importance; they are clearly2ax bx c
generalizations of the functions addressed in Chapters 11, 13, and 14. Some unifying properties of the root-quadratic
function are presented in Section 15:15.

Several valuable integrals involving the reciprocal root-quadratic function are
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and

0

02

1 1 2 2d arcosh 0 0
x

x

bx c ct c x
c x bt at bt c

15:13:4

Others are given by Gradshteyn and Ryzhik [Section 2.26] and by Jeffrey [Section 4.3.4].

15:14 RELATED TOPIC: the trajectory of a projectile

Heavy projectiles journey through the air following a
parabolic course that is best described by a quadratic function.
Neglecting the effect of air resistance, the object travels with a
constant speed in the horizontal direction, while experiencing a
constant acceleration (or force) vertically downwards. If the
projectile is launched from a height h0 with an initial velocity v at
an angle to the horizontal, the equation describing its trajectory
gives its height h, at a distance x downrange, as
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2

gh x x h
v

15:14:1

where g is the gravitational acceleration [see Appendix, Section A:6]. As Figure 15-3 will confirm, the greatest
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height is attained by launching at /2, but the greatest range requires that /4. The projectile remains
airborne for the time interval

20
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Multiply this expression by vcos( ) to find the total range.

15:15 RELATED TOPIC: conic sections

Figure 15-4 shows that there is a unity between the geometries of the functions discussed in Chapters 11, 13,
and 14 that is not apparent when these geometries – those of the horizontal parabola, ellipse, and hyperbola – are
described by the canonical formulations used in their respective chapters. However, if the curves are moved along
the x-axis, so that one of the foci falls at x 0, the three horizontal geometries come to be described by the single
root-quadratic equation

1/ 22 2 2
0 0f ( ) 2 ( 1)x f kf x k x15:15:1

Whereas three different equations are normally used to describe the ellipse, the parabola and the hyperbola, this
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equation accommodates all three! If the eccentricity k lies between 0 and 1, equation 15:15:1 describes an ellipse;
if k 1, the equation is that of a parabola; and if k exceeds 1, a hyperbola is represented. The quantity f0 is the value
of the function at x 0, that is, at the focus. Figure 15-4 was drawn using a range of k values, but a single f0. The
circle is the k 0 case and k corresponds to a rectangular hyperbola [Section 14:4]. The k 1 parabola2
separates the elliptical curves from those corresponding to hyperbolas (for clarity only one branch of each hyperbola
is shown, though the equation describes both). For large k, the hyperbola is virtually a pair of straight lines, which
is evident from equation 15:15:1 because, when k is so large that k2 1 k2, the equation becomes f(x) ±(kx + f0).

Collectively, all these curves are called conic sections, or simply conics, because each can be generated by
intersecting a cone with an appropriately oriented plane. More formally, they are known as curves of the second
degree. Equation 15:15:1 can be considered the defining equation of any horizontal conic. Conics possess certain
features in common. With the exception of the parabola, they each have two axes of mirror symmetry: one is the
x-axis, the other being the line x kf0/(1 k2). In general they have two foci, with an interfocal separation of
2kf0/(1 k2), but this is zero for the circle and infinite for the parabola. Both foci lie on the x-axis with one at x 0.
In the context of Figure 15-4, the second focus of the ellipses lies to the right of the origin whereas it lies to the left
for the hyperbolas.

By rewriting equation 15:15:1 as the square root of the product of two linear functions
1

2

0 0f ( ) ( 1) ( 1)x f k x f k x15:15:2

one may identify the domain of the real function as
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f fx x k
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This conforms with the property that the ellipse is a contiguous curve, whereas each hyperbola has two branches (the
left-hand branches are not shown in Figure 15-4).

Whereas equation 15:15:1 serves as a definition only of
horizontal conics, there is a geometric definition that applies to a conic
anywhere in the cartesian plane. Let F be a point in Figure 15-5 that
will serve as a focus of the conic, and DD be a straight line, called
the directrix, positioned anywhere in the plane and with any
orientation. The conic is uniquely defined once the locations of the
point and the line are selected, and a nonnegative constant k is chosen.
Then the conic is defined as the locus of all points P such that

PF =
PD

k15:15:5

where D is the nearest point on the directrix to P. The constant k is,
of course, the eccentricity, so that

< 1, the conic is an ellipse
PFIf = 1, the conic is a parabola
PD

> 1, the conic is a hyperbola
15:15:6

So this simple property serves as a definition of all three types of curve. If the conic obeys equation 15:15:1, and
the focus in question is that positioned at the origin, then the equation of the directrix is x f0/k. Since, apart from
the special cases of the circle and the parabola, each conic has two foci, so it has two directrices.


