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Preface

It all started with a trip to Red River. . .

Coauthors, families, and colleagues enjoy a working vacation in the Sangre de
Cristo Mountains of New Mexico, March 2006.

As technical conversations on modeling, characterization and applications
of shape memory alloys (SMAs) were blending with the view of the white
snowy peaks surrounding Red River, New Mexico, it became clear to our
research group that a consistent and comprehensive text on SMAs would be
very helpful to future students interested in performing research in this field.
Many communication barriers could be eliminated and access to the substan-
tial body of research discussed in the literature would be increased. In this
way, a working vacation became the motivating factor behind a challenging
research project.

This book has been written with contributions from three of my current
Ph.D. students, Luciano Machado, Parikshith Kumar and Darren Hartl, and
three former Ph.D. students, Pavlin Entchev, Peter Popov and Björn Kiefer.
These latter three coauthors were still members of the Shape Memory Alloy
Research Team (SMART), or in close proximity, when we started the project
of writing this book more than a year and a half ago. The work of a seventh
former Ph.D. student, Siddiq Qidwai, is also included in this book. The task
of putting forth a sequence of topics on shape memory alloys (SMAs) that
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forms a coherent learning path seemed natural, given the diversity of topics
covered by their Ph.D. work.

In the first chapter, Parikshith describes the basic properties and appli-
cations of SMAs, followed by the second chapter on thermomechanical char-
acterization and material parameter identification presented by Darren. The
thermomechanical constitutive modeling and closed form solutions are cov-
ered in the third chapter by Luciano, while the numerical implementation
and finite element analysis examples are presented in the fourth chapter by
Siddiq and Darren. The incorporation of transformation induced plasticity is
discussed in chapter five by Pavlin and an extended model for SMAs account-
ing both for phase transformation and reorientation is described in the sixth
chapter by Peter. Finally, Björn introduces modeling of magnetic SMAs in
the seventh chapter.

Even though the seven chapters cover a wide variety of topics and discuss
different aspects of modeling of SMAs, there are many specialized considera-
tions that have been left out due to space limitations. The reader will hopefully
gain enough background to be able to seek additional sources of information
and appreciate the complexity of the constitutive response of SMAs and the
importance of modeling in the design and analysis of engineering systems.

The work of many other graduate and undergraduate student members of
my research group has been valuable in writing this book. In particular, the
help provided by Amnaya Awasthi, Krishnendu Haldar, Jesse Mooney, Justin
Schick and Francis Phillips is greatly appreciated. The many various tasks
performed by these individuals were coordinated in a large part by Darren
Hartl, who also helped with the overall compilation of the manuscript. The
proofreading services of Gary Seidel, Olivier Bertacchini, Brent Volk, Matthew
Kuester, Jack Vincent, Pam McConal, Alex McCord and Natasha, Georgia
and Magda Lagoudas are also appreciated. Finally, the inspiration provided
by my colleagues at Texas A&M University and elsewhere, and the financial
support provided by the Department of Defense, NASA, NSF and industry
partners over the years to sustain the SMART research team is gratefully
acknowledged.

Texas A&M University
College Station, Texas Dimitris C. Lagoudas
December 2007 Editor
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Introduction to Shape Memory Alloys

P. K. Kumar and D. C. Lagoudas

Shape Memory Alloys (SMAs) have been on the forefront of research for the
last several decades. They have been used for a wide variety of applications in
various fields. This chapter introduces the unique behavior that is observed in
SMAs. Their characteristic properties and associated microstructural behavior
will be discussed in detail. The different types of SMAs and some common
applications will also be reviewed.

1.1 Introduction: Overview of Active Materials

For centuries, metals have played an important role as structural materials.
Techniques of alloying, smelting, and forging have been evolving since the
bronze and iron ages. With advancements in science and technology, and a
deeper understanding of the effects of microstructure and processing tech-
niques on the material behavior, the field of material science has radically
improved through the past decades. The capability to engineer different mate-
rial properties (mechanical, thermal, electrical, etc.) for a variety of applica-
tions has enabled the development of new alloys and composites. The demand
for lighter, stronger materials with tailored properties that address both strin-
gent structural requirements and provide additional engineering functionality
(e.g., sensing, actuation, electromagnetic shielding) has spawned a new branch
of materials called multifunctional materials. A specialized subgroup of mul-
tifunctional materials exhibiting sensing and actuation capabilities is known
as active materials.

In sensing, a mechanical signal is converted into a non-mechanical output
(e.g., voltage), while an actuator converts a non-mechanical input (e.g., elec-
trical power) into a mechanical output. Active materials in general exhibit a
mechanical response when subjected to a non-mechanical field (thermal, elec-
trical, magnetic, optical, etc.). The mechanical response of these materials is
typically one or more orders of magnitude greater than the response result-
ing from conventional material behavior such as thermal expansion. Some
examples of active materials include piezoelectrics and electrostrictives (cou-
pling of mechanical with electric fields), piezomagnetics and magnetostrictives
(coupling of mechanical with magnetic fields), and shape memory materials

D.C. Lagoudas (ed.), Shape Memory Alloys, DOI: 10.1007/978-0-387-47685-8 1,
© Springer Science+Business Media, LLC 2008



2 1 Introduction to Shape Memory Alloys

(coupling of thermal with mechanical fields). Active materials can be fur-
ther subdivided into materials that exhibit direct or indirect coupling. Piezo-
ceramics, piezoelectric polymers, magnetostrictive ceramics, shape memory
alloys and magnetic shape memory alloys are examples of active materials
that exhibit a direct coupling. This implies that either the mechanical or
the non-mechanical field can serve as an input while the other as the out-
put. In contrast, for active materials such as electro-rheological fluids (ERF)
and magneto-rheological fluids (MRF), a change in the electric field or the
magnetic field can indirectly couple with the mechanical behavior through a
change in the viscosity of the fluid. This indirect, or one-way, coupling usually
lacks the reciprocity of the two-way coupling exhibited by active materials
that directly couple two fields.

The suitability of an active material with direct coupling for actuation
applications depends on many factors. Two key design drivers are the actu-
ation energy density (available work output per unit volume) and the actu-
ation frequency of the material. An ideal active material would have both
a high actuation energy density and a high actuation frequency. Figures 1.1
and 1.2 compare the actuation energy densities and the actuation frequencies,
respectively, of some common active materials. The actuation energy density
is denoted in Fig. 1.1 by the dotted lines and is defined as the product of
the actuation strain (related to the stroke of an actuator) with the actuation
stress, assuming here that the active material is operating under constant
stress. The specific actuation energy density (work output per unit mass)
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Fig. 1.1. Actuation energy density diagram indicating typical ranges of actuation
stress, actuation strain, and the actuation energy densities of different active mate-
rials that exhibit direct coupling.
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for a specific active material can be calculated from Fig. 1.1 by dividing the
actuation energy density by the mass density.

Shape Memory Alloys (SMAs) are a unique class of shape memory materi-
als with the ability to recover their shape when the temperature is increased.
An increase in temperature can result in shape recovery even under high
applied loads therefore resulting in high actuation energy densities as shown
in Fig. 1.1. In addition, under specific conditions, SMAs can absorb and dis-
sipate mechanical energy by undergoing a reversible hysteretic shape change
when subjected to applied mechanical cyclic loading. These unique charac-
teristics of SMAs have made them popular for sensing and actuation, impact
absorption and vibration damping applications. SMAs do, however, exhibit
low frequency response, as shown in Fig. 1.2. Higher actuation frequencies are
achievable for a class of SMAs called magnetic shape memory alloys, which
have recently been investigated.

The application of SMAs spans a wide variety of industrial sectors such
as aerospace, automotive, biomedical, and oil exploration. Over the past few
decades, several key works have explored the microstructural mechanisms,
engineering effects, and applications of shape memory alloys, including the
experimental work of Jackson and coworkers [1], the application considera-
tions of Duerig and others [2], and the comprehensive summaries of Perkins,
Funakubo, and Otsuka and Wayman [3–5]. In the context of the current
textbook, this chapter will provide insights into the history of SMAs, their
properties, their microstructural behavior, and their varied industrial
applications.
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1.2 Shape Memory Alloys - A Brief History

The discovery of martensite in steels in the 1890s by Adolf Martens was
a major step toward the eventual discovery of shape memory alloys. The
martensitic transformation was perhaps the most widely studied metallur-
gical phenomenon during the early 1900s. The martensitic transformation,
as observed in the Fe-C system, was established as an irreversible process.
The concept of thermoelastic martensitic transformation, which explained the
reversible transformation of martensite, was introduced in 1949 by Kurdju-
mov and Khandros [6], based on experimental observations of the thermally
reversible martensitic structure in CuZn and CuAl alloys. By 1953, the occu-
rance of thermoelastic martensitic transformation was demonstrated in other
alloys such as InTl and CuZn.

The reversible martensitic transformation and the alloys that exhibited
them remained unutilized until 1963. The breakthrough for engineering appli-
cations occurred with the discovery of NiTi by Buehler and coworkers while
investigating materials useful for heat shielding [7]. It was noticed that in
addition to its good mechanical properties, comparable to some common engi-
neering metals, the material also possessed a shape recovery capability. Fol-
lowing this observation, the term “NiTiNOL” was coined for this NiTi mate-
rial in honor of its discovery at the Naval Ordnance Laboratory (NOL). The
term Shape Memory Effect (SME) was given to the associated shape recovery
behavior. The discovery of Nitinol spearheaded active research interest into
SMAs. The effects of heat treatment, composition and microstructure were
widely investigated and began to be understood during this period [1].

In 1965, studies [8] showed that the addition of a third alloying element
such as Co or Fe to the existing NiTi system caused a dramatic decrease in
the SMA transformation temperatures. The new alloys inspired the first com-
mercial SMA application, known as Cryofit, where SMA material was used
for pipe couplings in F-14 fighter aircraft [9, 10]. The transformation temper-
atures for Cryofit were so low that, to prevent actuation from occurring before
the assembly, the pipe couplings were transported in liquid nitrogen. Contin-
ued research to address this issue led to the development of the NiTiNb system
in 1989, which was easier to handle due to its larger temperature hysteresis,
and found widespread applications in battle damage repairs and in repairs
for nuclear reactors [11]. High Temperature SMAs (HTSMAs), such as TiPd,
TiPt and TiAu (with transformation temperatures greater than 100 ◦C), were
also developed as early as 1970 [12]. Meanwhile, Melton and Mercier [13],
while studying the fatigue properties of NiTi in 1978, showed that alloying
the material with Cu did not change the transformation temperatures con-
siderably, but narrowed the stress hysteresis. Later in 1999, Miyazaki showed
improved fatigue life for NiTiCu alloys [14]. The improved fatigue life and
the low cost associated with this material system made it suitable for a wide
variety of engineering applications.
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Since the initial discovery of Nitinol in 1963, many commercial applica-
tions have been developed. During the 1970s, several uses of NiTi in biomedi-
cal applications appeared, but it wasn’t until the 1990s that NiTi stents made
their commercial breakthrough. By this time, SMAs had found additional
applications in air conditioning vents, electronic cable connectors, valves and
a variety of other products. In addition, over the last decade the demand
for actuation under high temperature operating conditions, driven by the
aerospace and oil industries, has revived a great deal of interest in the devel-
opment of HTSMAs. Finally, alloys that exhibit shape change characteristics
similar to SMAs but under the influence of a magnetic field have recently
been under investigation [15, 16]. The high actuation frequencies and the large
strains generated in Magnetic SMAs (MSMAs) have made these materials a
strong candidate for high frequency actuation devices.

1.3 Phenomenology of Phase Transformation in Shape
Memory Alloys

A metallurgical phase diagram for a metallic alloy is a schematic represen-
tation of the equilibrium conditions between distinct phases. Phase diagrams
consist of equilibrium lines or phase boundaries that separate different phases
from each other. For an alloy consisting of at least two elements, the concen-
tration becomes an important variable and is generally represented along the
abscissa axis. The other variable commonly used is the temperature, repre-
sented along the ordinate axis. A phase diagram can have different control
variables (stress, temperature, concentration, electric field etc.) within the
bounds of which the equilibrium phases can be represented. For an alloy at a
fixed composition (i.e. any vertical line parallel to the ordinate axis), the for-
mation and disassociation of phases with the change in temperature is shown.
Similarly, within the typical operating temperature range, SMAs have two
phases, each with a different crystal structure and therefore different proper-
ties. One is the high temperature phase called austenite (A) and the other is
the low temperature phase called martensite (M). Austenite (generally cubic)
has a different crystal structure from martensite (tetragonal, orthorhombic
or monoclinic). The transformation from one structure to the other does not
occur by diffusion of atoms, but rather by shear lattice distortion. Such a
transformation is known as martensitic transformation. Each martensitic crys-
tal formed can have a different orientation direction, called a variant. The
assembly of martensitic variants can exist in two forms: twinned martensite
(M t), which is formed by a combination of “self-accommodated” martensitic
variants, and detwinned or reoriented martensite in which a specific variant is
dominant (Md). The reversible phase transformation from austenite (parent
phase) to martensite (product phase) and vice versa forms the basis for the
unique behavior of SMAs.
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Upon cooling in the absence of an applied load, the crystal structure
changes from austenite to martensite. The phase transition from austenite to
martensite is termed the forward transformation. The transformation results
in the formation of several martensitic variants, up to 24 for NiTi. The arrange-
ment of variants occurs such that the average macroscopic shape change is
negligible, resulting in twinned martensite. When the material is heated from
the martensitic phase, the crystal structure transforms back to austenite, and
this transition is called reverse transformation, during which there is no asso-
ciated shape change.

A schematic of the crystal structures of twinned martensite and austenite
for an SMA and the transformation between them is shown in Fig. 1.3. There
are four characteristic temperatures associated with the phase transforma-
tion. During the forward transformation, austenite, under zero load, begins
to transform to twinned martensite at the martensitic start temperature (Ms)
and completes transformation to martensite at the martensitic finish temper-
ature (Mf ). At this stage, the transformation is complete and the material is
fully in the twinned martensitic phase. Similarly, during heating, the reverse
transformation initiates at the austenitic start temperature (As) and the trans-
formation is completed at the austenitic finish temperature (Af ).

If a mechanical load is applied to the material in the twinned marten-
sitic phase (at low temperature), it is possible to detwin the martensite by
reorienting a certain number of variants (see Fig. 1.4). The detwinning pro-
cess results in a macroscopic shape change, where the deformed configuration
is retained when the load is released. A subsequent heating of the SMA to
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Fig. 1.3. Temperature-induced phase transformation of an SMA without mechani-
cal loading.
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Fig. 1.4. Schematic of the shape memory effect of an SMA showing the detwinning
of the material with an applied stress.

a temperature above Af will result in a reverse phase transformation (from
detwinned martensite to austenite) and will lead to complete shape recovery
(see Fig. 1.5). Cooling back to a temperature below Mf (forward transforma-
tion) leads to the formation of twinned martensite again with no associated
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Fig. 1.5. Schematic of the shape memory effect of an SMA showing the unloading
and subsequent heating to austenite under no load condition.
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shape change observed. The process described above is referred to as the Shape
Memory Effect (SME). The load applied must be sufficiently large to start the
detwinning process. The minimum stress required for detwinning initiation is
termed the detwinning start stress (σs). Sufficiently high load levels will result
in complete detwinning of martensite where the corresponding stress level is
called the detwinning finish stress (σf ).

When the material is cooled with a mechanical load greater than σs applied
in the austenitic phase, the phase transformation will result in the direct
formation of detwinned martensite, producing a shape change. Reheating
the material will result in shape recovery while the load is still applied. A
schematic of the above-described loading path is shown in Fig. 1.6. Recog-
nizing that the forward and reverse transformations occur over a range of
temperatures (Ms to Mf , As to Af ) for a given SMA composition, we can
construct transformation regions in the stress-temperature space. The trans-
formation temperatures strongly depend on the magnitude of the applied load,
with higher values of applied load leading to higher transformation tempera-
tures. As a consequence, the transformation regions representing the A→Md

and Md→A transformations have a positive slope in stress-temperature space.
Irrespective of the nature of applied load (tension or compression), the trans-
formation temperatures increase with an increase in the magnitude of the
load. Under an applied uniaxial tensile load with a corresponding stress, σ, the
new transformation temperatures are represented as Mσ

f , Mσ
s , Aσ

s and Aσ
f for

martensitic finish, martensitic start, austenitic start and the austenitic finish
temperatures, respectively. It should be noted that σ refers to the magnitude
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Fig. 1.6. Temperature-induced phase transformation in the presence of applied
load.
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of a uniaxial stress state or an appropriate scalar measure for a multiaxial
stress state, as will be explained in Chapter 3.

In addition to thermally induced phase transformation, transformation can
also be induced by applying a sufficiently high mechanical load to the material
in the austenitic phase. The result of this load is fully detwinned martensite
created from austenite. If the temperature of the material is above Af , a com-
plete shape recovery is observed upon unloading to austenite. This material
behavior is called the pseudoelastic effect. A loading path demonstrating the
pseudoelastic effect is shown schematically in Fig. 1.7, while the associated
macroscopic shape change due to the applied load is captured in the resulting
stress-strain diagram, as shown schematically in Fig. 1.8. The stress levels
at which the martensite transformation initiates and completes are denoted
by σMs and σMf , respectively. Similarly, as the SMA is unloaded, the stress
levels at which the material initiates and completes its reverse transforma-
tion to austenite are denoted by σAs and σAf , respectively. If the material in
the austenitic phase is tested above the Ms temperature, but below the Af

temperature, only partial shape recovery is observed.
Figure 1.9 shows a schematic representation of the different phases of

the SMA, which include the austenitic phase and both the twinned (self-
accommodated) and detwinned martensite, along with the transition zones,
in a stress-temperature diagram. Such a diagram, illustrating the different
phases in a stress-temperature space for a given SMA with fixed composition,
is called the phase diagram. Note that the phase diagram of Fig. 1.9 is a special
case of the metallurgical phase diagram introduced in the beginning of Sec-
tion 1.3, which involves composition as another variable. Construction of the
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Fig. 1.7. A pseudoelastic loading path.
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phase diagram involves the interpretation of the SMA material response sub-
jected to various thermomechanical loading paths resulting in shape memory
thermal actuation under load and pseudoelastic behavior. In the following sec-
tions, the two important characteristics of SMAs, namely the shape memory
effect and pseudoelasticity, will be discussed in more detail.
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1.4 Shape Memory Effect

An SMA exhibits the shape memory effect (SME) when it is deformed while
in the twinned martensitic phase and then unloaded while at a temperature
below As. When it is subsequently heated above Af , the SMA will regain
its original shape by transforming back into the parent austenitic phase. The
nature of the SME can be better understood by following the thermomechan-
ical loading path in a combined stress-strain-temperature space as shown in
Fig. 1.10. Figure 1.10 represents experimental data for a typical NiTi speci-
men tested under uniaxial loading. The stress σ is the uniaxial stress on the
specimen due to an applied load. The corresponding strain ε is the change in
the length of the specimen along the direction of applied load, normalized by
the original length.

Starting from the parent phase (point A in Fig. 1.10), the stress-free cool-
ing of austenite below the forward transformation temperatures (Ms and Mf )
results in the formation of twinned martensite (point B). When the twinned
martensite is subjected to an applied stress that exceeds the start stress level
(σs), the reorientation process is initiated, resulting in the growth of cer-
tain favorably oriented martensitic variants that grow at the expense of other
less favorable variants. The stress level for reorientation of the variants is far
lower than the permanent plastic yield stress of martensite. The detwinning
process is completed at a stress level, σf , that is characterized by the end of
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the plateau in the σ-ε diagram in Fig. 1.10. The material is then elastically
unloaded from C to D and the detwinned martensitic state is retained. Upon
heating in the absence of stress, the reverse transformation initiates as the
temperature reaches As, (at E) and is completed at temperature Af (point
F), above which only the parent austenitic phase exists. In the absence of
permanent plastic strain generated during detwinning, the original shape of
the SMA is regained (indicated by A). The strain recovered due to the phase
transformation from detwinned martensite to austenite is termed as the trans-
formation strain (εt). Subsequent cooling to martensite will again result in the
formation of self-accommodated twinned martensitic variants with no asso-
ciated shape change, and the whole cycle of the SME can be repeated. The
above described phenomenon is called one-way shape memory effect, or sim-
ply SME, because the shape recovery is achieved only during heating after
the material has been detwinned by an applied mechanical load.

Example 1.1. In order to review the SME, let us consider an SMA
wire whose behavioral characteristics are represented by the stress-strain-
temperature diagram shown in Fig. 1.10. The SME of the wire is used for
a one time actuation application. The wire, held at a temperature below the
Mf (twinned martensitic state), is stretched along the axial direction. Under
the applied loading, the material exhibits an elastic behavior and continues
to elastically deform as the stress is increased. When the stress due to the
applied loading reaches approximately 150MPa, the SMA wire begins to elon-
gate significantly with a small increment in the stress level. This point marks
the beginning of the martensitic detwinning in the wire. The detwinning con-
tinues until the total strain reaches approximately 4% and the entire wire
has detwinned. At this point, the wire begins to stiffen again as the stress is
increased. The end of the detwinning process is marked by the change in the
slope during loading. The detwinned wire elastically unloads as the stress is
released and the strain induced due to the detwinning is not recovered. This
detwinned wire is then attached on the structure for the actuation application.
During the actuation process, the wire is heated using a thermal source such
as resistive heating. As the temperature of the wire increases, the wire ini-
tially undergoes thermal expansion. However, as the temperature reaches the
austenitic start temperature of approximately 30 ◦C, the detwinned marten-
site in the material begins transformation into austenite. This results in the
contraction (i.e., actuation) of the SMA. As the temperature reaches a value
above 70 ◦C, the transformation (actuation) is complete and the wire is in the
austenitic state. The exact austenitic finish temperature will depend on the
stress of the SMA wire during the reverse transformation. Subsequent cool-
ing returns the wire to the twinned state in the absence of a recovery stress
applied by the structure on which the SMA is attached. The wire would then
have to be detwinned for the next actuation cycle unless the structure can
provide sufficient stress for detwinning upon cooling.
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1.5 Pseudoelasticity

The pseudoelastic behavior of SMAs is associated with stress-induced trans-
formation, which leads to strain generation during loading and subsequent
strain recovery upon unloading at temperatures above Af . A pseudoelastic
thermomechanical loading path generally starts at a sufficiently high temper-
ature where stable austenite exists, then develops under an applied load to
a state at which detwinned martensite is stable, and finally returns to the
austenitic phase when returned to zero stress state. An example of this path
(a → b → c → d → e → a) is shown in Fig. 1.11 as path 1. Most commonly,
a pseudoelastic test is performed at a nominally constant temperature above
Af . The loading path for such a test is shown as path 2 in Fig. 1.11.

To illustrate the pseudoelastic behavior in greater detail, let us consider
the thermomechanical loading path (A → B → C → D → E → F → A)
in Fig. 1.11, which starts at zero stress at a temperature above Af . The
corresponding σ-ε experimental data for the loading path is shown in Fig. 1.12.
When a mechanical load is applied, the parent phase (austenite) undergoes
elastic loading (A → B). At a specific load level, the loading path intersects the
surface for initiation of martensitic transformation on the phase diagram. This
marks the stress level (σMs) for the onset of transformation into martensite.
Note that the stress-induced transformation from austenite to martensite is
accompanied by the generation of large inelastic strains as shown in the stress-
strain diagram of Fig. 1.12. The transformation proceeds (B → C), to the
stress level (σMf ) where the loading path intersects the Mf transformation
surface, indicating the end of the transformation.
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Fig. 1.12. A typical SMA pseudoelastic loading cycle.

The completion of martensitic transformation is indicated by a distinct
change in slope on the σ-ε curve, which is associated with the elastic load-
ing of the martensitic phase. A subsequent increase in the stress causes no
further transformation and only the elastic deformation of detwinned marten-
site occurs (C → D). When the stress is released gradually by unloading,
the martensite elastically unloads along the path (D → E). At point E, the
unloading path intersects the austenitic start surface (at σAs), which causes
the martensite to revert to austenite. The process is accompanied by the
recovery of the strain due to phase transformation at the end of unloading.
The end of the transformation back into austenite is denoted by the point at
which the σ-ε unloading curve rejoins the elastic region of austenite (point
F corresponding to stress σAf ). The material then elastically unloads to A.
The forward and reverse phase transformation during a complete pseudoelas-
tic cycle results in a hysteresis, which, in the σ-ε space, represents the energy
dissipated in the transformation cycle. The transformation stress levels and
the size of the hysteresis vary depending on the SMA material and testing
conditions.

The detwinned martensite that forms from austenite as a result of the
applied stress during Path 1 or 2 in Fig. 1.11 is one form of stress-induced
martensite (SIM). SIM, in general, is martensite that forms from austenite in
the presence of stress. There are many thermomechanical loading paths that
can result in the formation of SIM.
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Generally, the term pseudoelasticity describes both superelastic behavior
and so-called rubber-like behavior [5]. The reversible phase transformation
(described in the previous paragraph) caused by a thermomechanical load-
ing path is strictly called the superelastic behavior. The rubber-like effect is
an exclusive behavior of the martensite phase only and occurs due to the
reversible reorientation of martensite. In some cases, aging the martensitic
phase can enable the reversal of the martensitic detwinning process upon
unloading at temperatures below Mf . The resulting σ-ε curve is similar to
the superelastic curve, and this phenomenon is called the rubber-like effect to
emphasize the similarities with the nonlinear elastic behavior of rubber. In
SMAs exhibiting the rubber-like effect, the stress required to detwin marten-
site is very small compared to σMs. We will not consider the rubber-like effect
any further, and the term pseudoelasticity will refer to the superelastic behav-
ior of SMAs only.

1.6 Cyclic Behavior of SMAs

We have studied the one-way SME behavior in SMAs. Sometimes an SMA
can exhibit repeatable shape changes under no applied mechanical load when
subjected to a cyclic thermal load. This behavior is termed two-way shape
memory effect (TWSME). The TWSME can be observed in a SMA mate-
rial which has undergone repeated thermomechanical cycling along a specific
loading path (training). Repetition along a loading path for a large number of
cycles can induce changes in the microstructure, which causes macroscopically
observable permanent changes in the material behavior.

Training an SMA refers to a process of repeatedly loading the material
following a cyclic thermomechanical loading path until the hysteretic response
of the material stabilizes and the inelastic strain saturates. Let us consider the
case of cyclic thermal loading of an SMA specimen under a constant applied
stress (Fig. 1.13). During the first thermal cycle, only a partial recovery of
the strain generated during cooling is observed upon heating with some per-
manent (irrecoverable or plastic) strain generated during the cycle. A small,
permanent strain remains after each thermal cycle is completed. The addi-
tional permanent strain associated with each consecutive cycle begins to grad-
ually decrease until it practically ceases to further accumulate (Fig. 1.13). A
similar behavior can be noticed in the case of mechanically cycling an SMA
repeatedly in its pseudoelastic regime, until saturation takes place (Fig. 1.14).
The TWSME behavior can also be achieved by adopting different training
sequences [17, 18]. A more recent technique that leads to TWSME deals with
aging the material under stress in the martensitic state [19].

TWSME is a result of defects introduced during training. These perma-
nent defects create a residual internal stress state, thereby facilitating the
formation of preferred martensitic variants when the SMA is cooled in the
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Fig. 1.13. Thermal cyclic loading (50 cycles) of a NiTi shape memory alloy wire
under constant load of 150 MPa [18].

Fig. 1.14. Pseudoelastic response of an as-received NiTi wire with Af =65 ◦C, tested
at a temperature of 70 ◦C. Also shown is the stabilized pseudoelastic hysteresis loop
after 20 cycles.
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absence of external loads. If the internal stress state is modified for any rea-
son (e.g., aging at high temperature or mechanical overload), the TWSME
will be perturbed [20].

1.7 Transformation Induced Fatigue in SMAs

Since SMAs are widely preferred for actuation and sensing applications that
require multiple cycles, it is now important to extend what we learned
about cyclic effects to the topic of transformation induced fatigue behavior.
The fatigue behavior of SMAs depends on the material processing (fabrica-
tion process, heat treatment, etc.), the type of loading conditions (applied
stress, strain, temperature variations, environment, etc.), and transformation
induced microstructural modifications (e.g., defects on grain boundaries due to
strain incompatibilities). In most SMA applications, a large number of trans-
formation cycles are induced by repeating a loading path that exhibits either
pseudoelasticity or thermally induced phase transformation under applied
load. As discussed in the previous section, repeated loading along a ther-
momechanical path causes gradual microstructural changes. These changes
cause the degradation of the SMA behavior leading to low cycle fatigue as
opposed to high cycle fatigue most commonly observed in loading paths oper-
ating in a purely elastic regime of a material. This section will provide a brief
review of mechanically and thermally induced transformation fatigue behavior
of SMAs.

Mechanically induced fatigue behavior of SMAs is typically examined by
performing rotating bending tests or by mechanically cycling the material
on the load frame between two stress or strain levels along a given loading
path [18, 21]. Such mechanical cycling can be performed to induce a complete
transformation (i.e., cycled between complete austenite and martensite phase)
or partial transformation (cycling between states where one or both end limits
are not purely martensite or austenite but a mixture). If the deformation or
stress level applied to the SMA specimen remains within the elastic regime,
this can lead to fatigue life as high as ∼ 107 cycles. However, in some cases,
the material can be taken through detwinning or stress induced martensitic
transformation by applying sufficiently high load levels. In such cases, the
material fails considerably earlier in what is termed “transformation-induced
low cycle fatigue,” with a fatigue life of the order of thousands of cycles [22, 23].

Similar to mechanically induced transformation fatigue, thermally-induced
transformation fatigue behavior of SMAs is extremely important to study for
actuation applications. Fatigue life for SMAs undergoing thermally-induced
transformation cycles under applied load is dictated by the amount of trans-
formation strain allowed to occur (partial or complete transformation) as well
as the stress level under which the material is cycled. The amount of cyclic
transformation strain allowed in the material can significantly affect the num-
ber of cycles to failure [24]. Under conditions of partial transformation, SMAs
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can exhibit much higher fatigue lives. A partial transformation limits the gen-
eration of martensite and the associated transformation strain, which causes
a significant improvement in the fatigue life of the alloy [25–27].

Typical fatigue test data for complete and partial transformation in a
NiTiCu material under a fixed stress level of 200 MPa is shown in Fig. 1.15.
In the figures, the line A represents the strain in the SMA wire specimen at
the end of each cycle after cooling to a certain level. Similarly, line B repre-
sents the strain in the SMA after heating to a certain level. In the complete
transformation case, Fig. 1.15a, these levels pertain to complete martensitic
transformation. In Fig. 1.15b, lines A and B represent strains generated during
partial martensitic transformation. Taking the difference between these strain
values at a given cycle and accounting for the effects of elastic moduli, one
can obtain the transformation strain for the complete and partial transfor-
mations as shown in Fig. 1.15a and Fig. 1.15b respectively. The fatigue life is
improved by approximately a factor of seven for a partial transformation and
the amount of stable maximum transformation strain is reduced by a factor
of three.

Other microstructural characteristics such as precipitate size and crystal-
lographic orientation can also have a significant impact on the fatigue life
of SMAs [28]. Heat treating the material under optimal conditions can also
improve the fatigue behavior of SMAs. However, high annealing tempera-
tures or chemically active environments can result in oxidation and corro-
sion, leading to crack nucleation and growth, thus reducing the fatigue life of
SMAs [23, 27, 29, 30].
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1.8 Crystallography of Martensitic Transformation

The transformation from austenite to martensite is a diffusionless transfor-
mation that occurs by shear distortion of the lattice structure (movement of
atoms from their original position). This martensitic transformation possesses
well-defined characteristics that distinguish it from other transformations.
Within a single crystal (i.e., in a single grain in a polycrystalline material),
the shear distortion occurs along a specific plane called the habit plane, which
forms the interface between the martensitic and the austenitic phases. Since
the habit plane does not rotate or deform during the course of the transfor-
mation, the plane is also referred to as the lattice invariant plane. Figure 1.16
schematically shows an austenite/martensite interface with its associated lat-
tice invariant plane that separates austenite from a twinned martensite region.
The transformation to martensite can occur along the lattice invariant plane
by two different mechanisms, called lattice invariant shear mechanisms. The
first one is through slip (i.e., atoms moving by one or more atomic space) and
the second occurs by twinning (i.e., atoms moving through a fraction of an
atomic space). Both of these mechanisms can aid formation of martensite with
little or no volumetric change in the material. The strain obtained by such a
cooperative movement of atoms is referred to as a lattice invariant strain.

In SMAs, twinning is the common mechanism of lattice invariant shear.
The detwinning process results in a relative displacement of atoms that can
eventually cause a macroscopic shape change while retaining their original
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atomic bonds, which also allows reversibility to the original crystallographic
structure when heated to austenite.

Before proceeding with the detailed description of the transformation in
SMAs, it is essential to have a preliminary understanding of the crystal struc-
ture of the associated phases. It is clear that there are two primary phases,
austenite and martensite. The parent austenitic phase typically has a cubic
(B2)1 structure. The martensite that forms from austenite can have different
crystallographic structures depending on the composition or the alloying ele-
ment added. In equiatomic NiTi alloys for instance, the martensite that forms
has a monoclinic (B19′) structure. Addition of an alloying element such as Cu
or Pd can change the martensitic structure from a monoclinic to orthorhombic
(B19), or create an intermediate R-phase (rhombohedral). In SMAs, during
the transformation from austenite to martensite, every martensitic unit cell
that forms can have different crystallographic orientations with respect to the
cubic parent phase, and each unit cell having a different orientation is called a
variant . Several such variants can form when the parent phase transforms to
martensite. The number of variants that can form is dependent on the crys-
tal structure of the martensite and its lattice correspondence with the parent
phase unit cell.

An example of this can been seen in the NiTi system. Just as we have slip
planes and slip systems in different crystal structures, there are “twin” planes
along which twinning can occur. In the cubic lattice of the parent austenitic
phase, the twinning shear can occur along the {011} planes to obtain the crys-
tallographic equivalent martensite twins. Since there are six such {011} planes
and two directions for the twinning to occur along each plane, there exist
12 equivalent martensitic twins. Each twin is composed of two martensitic
variants, which, due to the shear distortion during transformation, assume
a mirror symmetry. As a consequence of this, there are 24 total martensitic
variants in most NiTi systems.

Recall that when austenite, under zero stress, transforms to twinned
martensite, there is no associated shape change. The martensite that forms
along the habit plane, under zero stress, occurs by twinning and the twins
that form arrange themselves in a unique patterns to minimize the overall
strain energy due to transformation. This behavior is familiarly known as the
“self-accommodation” of twinned martensite.

An example of such a microstructure, as observed in NiTi is shown in
Fig. 1.172. In this micrograph three sets of twins A, B and C (six variants
in total) together form a unique triangular morphology along the junction
of three twin planes (the twin planes are shown by highlighted white lines).

1 B2, B19′ and B19 are symbols that are partly systematic designations of the
cubic, monoclinic and the orthorhombic crystal lattice structures respectively.
This designation is known as the Strukturbericht designation.

2 Reprinted from Acta Materialia, Vol. 45, Issue 12, Madangopal, K., pp. 5347–
5365, Copyright 1997, with permission from Elsevier.
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Fig. 1.17. Micrograph of self-accommodation monoclinic (B19′) structure in
NiTi [31].

Similar to the self-accommodation as observed for the monoclinic structure,
other martensitic crystal structures (i.e. orthorhombic, tetragonal, R-phase)
can undergo self-accommodation. When the self-accommodated martensitic
structure (monoclinic, orthorhombic or tetragonal) is subjected to an applied
load, a resolved shear stress acts on the twin plane. When the resolved shear
stress reaches a critical value, the most preferred variant (based on orientation
to the applied stress) will evolve at the expense of other variants. This pro-
cess of the evolution of the favorable variant and the associated generation of
inelastic strain is known as the “detwinning” process. In the case of pseudoe-
lasticity, a resolved shear stress reaches a critical value along the habit plane
that leads to the formation of stress induced martensite.

The transformation from austenite to martensite and vice versa is asso-
ciated with the release and absorption of latent heat. The heat of transfor-
mation and the associated transformation temperatures are most commonly
determined using the Differential Scanning Calorimeter (DSC). The DSC is
a popular thermal analysis technique that can be used to measure the phase
transformation temperatures, the latent heat due to transformation, and the
specific heat capacity of different phases in a material. This technique is also
widely used to study the transformation temperatures of SMAs and has the
advantage of requiring only a small quantity of material. The principle behind
the operation of the DSC is the measurement of the rate at which heat energy
is supplied to a specimen to maintain a constant heating or cooling rate. A
DSC operating on such a principle is called a power compensated DSC. The
device is termed differential because it has the ability to monitor the response
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of two specimens and to subtract the results. This is most useful when a mate-
rial specimen placed in a holding pan is loaded opposite an empty pan. The
result of the differential scanning calorimetry is then the net response of the
material sample only. The sample material can be encapsulated in an inert
atmosphere to prevent oxidation.

Figure 1.18 shows a typical DSC curve for SMAs. The power (mW)
required to maintain a constant heating or cooling rate for the SMA spec-
imen is represented on the ordinate axis and the temperature of the cham-
ber is shown on the abscissa axis. When the specimen is heated from the
twinned martensitic state, the transformation to austenite initiates at As.
The endothermic reaction during the reverse transformation requires that
additional heat power be supplied to the specimen to maintain the prescribed
constant heating rate. This change in the power supplied as the temperature
increases is recorded as a transformation “peak” during heating. A similar
peak is also recorded during the cooling process during which the exothermic
transformation from austenite to martensite takes place. The transformation
temperatures from the acquired data are generally measured by drawing tan-
gents to the start and end regions of the transformation peak and the baseline
of the heating and cooling curves. The specific heat capacity can be computed
by normalizing the power by the heating rate and the weight of the specimen.
The associated latent heat for phase transformation can be calculated by inte-
grating the specific heat over the range of the transformation temperatures.
Most DSC software packages include the provision to directly compute the
latent heat due to transformation.

The transformation temperatures can also be significantly affected by
stored mechanical energy (i.e. precipitates, dislocations introduced due to pro-
cessing/cutting, detwinning), therefore making the initial state of the material
very important. This stored mechanical energy can cause a shift in and/or
widen the transformation temperatures, or even cause an intermediate phase
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Fig. 1.19. A DSC curve for a Ni-rich NiTi SMA showing the two-stage transfor-
mation from austenite to martensite.

transformation. A DSC curve of a Ni-rich SMA showing an intermediate phase,
called the R-phase, in the cooling curve is shown in Fig. 1.19. Further details
about the R-phase will be discussed in Section 1.9.

1.9 Effect of Alloying on the Transformation Behavior
of SMAs

Starting from the initial investigation of AuCd and AgCd alloys in the 1930s,
to the discovery of Nitinol in 1963, and to the newest compositions being
researched today, a wide variety of SMAs have been investigated over the last
seven decades. New compositions have been fabricated by adding different
alloying elements to existing alloys, providing a catalog of SMAs with a vari-
ety of properties to choose from. Such a wide selection gives designers great
flexibility in tailoring SMA properties to match the constraints of a given com-
mercial application. Shape memory alloys can be classified based on a wide
variety of categories: primary alloying elements, mode of actuation (magnetic,
thermal), operating temperature, or desired behavior. Some of the most com-
monly used SMAs, their properties, and the effect of alloying on them are
discussed in this section.

1.9.1 NiTi-Based Alloys

Of the known SMA compositions, the NiTi alloy system has been studied
most extensively and is used in the greatest number of commercial applica-
tions. This alloy exhibits strong SME, TWSME, and pseudoelastic behavior
under the right conditions, which makes this material ideal for a variety of
applications. It also exhibits resistance to corrosion and is biocompatible, mak-
ing it suitable for use in biomedical applications. Compared to the less widely
used alloys, the crystallography and thermomechanical response of NiTi are
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well understood, as are the the effects of heat treatment and the variation of
transformation temperatures with changes in composition. In this section we
briefly discuss the NiTi system, including the NiTi based ternary alloys.

NiTi - In the early 1960s, Buehler and his coworkers discovered the shape
memory effect in an equiatomic NiTi alloy [7, 32]. The equiatomic composi-
tion (i.e. 50 at% of Ni and Ti) exhibits the maximum Af temperature (120 ◦C)
of all NiTi compositions studied. Decreasing the Ni atomic percentage (at.%)
from the equiatomic composition does not change the transformation temper-
atures. If the composition of nickel is increased above 50 at.%, the transfor-
mation temperature begins to decrease, with Af becoming as low as −40 ◦C
for 51 at.% nickel. This variation in composition can change the ambient room
temperature (23 ◦C) characteristics from SME to pseudoelasticity.

In Ni-rich alloys, aging at the temperature of 400 ◦C results in the forma-
tion of lenticular Ti3Ni4 precipitates. The stress fields due to the precipitates
formed can result in the formation of an intermediate phase known as the R-
phase between the austenite and martensite phases. The name “R-phase” is
associated with the rhombohedral structure of the crystal. This phase gener-
ally vanishes with heat treatments at high temperatures and thus its existence
is associated with certain specific conditions [33]. These conditions include
substituting small amounts of Ni with Fe or Al, stress fields due to precipi-
tates in Ni-rich NiTi, and stress fields due to dislocations in cold worked/heat
treated alloys. NiTi alloys exhibit fully recoverable transformation strains of
up to 8% and can be commercially obtained in various forms (e.g., wires,
strips, rods, tubes and plates).

Recent studies have also investigated 55 at.% NiTi composition [34]. This
composition exhibits transformation temperatures in the range of −10 ◦C to
60 ◦C. The alloy is a chemically multi-phased alloy, which is one of the primary
reasons why it exhibits low transformation strains. However, 55 at.% NiTi
alloy has been proven to show superior corrosion resistance as compared to
stainless steels in harsh environments such as a salt water bath or salt fog [35].
The alloy also shows excellent thermomechanical stability, easier control of
transformation temperatures through heat treatment, and can be hot formed
into various complex shapes as these alloys do not require cold working [36, 37].

NiTiCu - The addition of Cu to NiTi preferentially replaces Ni to form
NiTiCu alloys. The unique property of these alloys is that addition of Cu
reduces the hysteresis of the SMA response. However, this also results in a
decrease in the transformation strain. In NiTi 10 at.% Cu, the transforma-
tion hysteresis is much smaller than for the binary alloy at the expense of
the total transformation strain which is reduced to approximately 4.0% [38].
The addition of Cu also reduces the pseudoelastic hysteresis. The width of
the pseudoelastic hysteresis is less than 100 MPa for NiTi 10 at.% Cu when
compared to a width greater than 200 MPa for the binary alloy. The addition
of Cu to the binary alloy also greatly reduces the sensitivity of the martensitic
start temperature to composition [39]. This change in the material behavior is
associated with the change in the phase transformation. Studies on the phase
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transformation behavior of the NiTiCu system have shown that for a compo-
sition of 7.5 at.%≤Cu≤15.0 at.%, the material undergoes a clear three stage
cubic to orthorhombic to monoclinic transformation [40]. The low stress level
required to transform the cubic phase to the orthorhombic phase results in
the lowering of detwinning stress level.

The small hysteresis associated with the transformation makes TiNiCu
an ideal choice for actuators. Among the different compositions of TiNiCu,
5.0 at.% ≤ Cu ≤ 10.0 at.% is most preferred. Addition of Cu greater than
10 at.% embrittles the material. Recent studies [41] on 25 at.% Cu fabricated
by the melt spun technique have shown to have small hysteresis and stable
pseudoelastic total strains of up to 7.0 %. DSC and Transmission Electron
Microscopy (TEM) studies of this composition have also shown the B19 →
B19′ transformation occurring in the material [42].

NiTiNb - Unlike actuation devices that require a small hysteresis, a device
used for the purpose of coupling must meet a different set of requirements in
terms of SMA properties. One such requirement would be for the material to
show minimal response to wide temperature changes. This can be achieved by
widening the hysteresis of binary NiTi. The alloying element that facilitates
this characteristic is Niobium (Nb). The effect of adding Nb was first studied
in 1986 [43, 44]. It was noted that one consequence of adding Nb to NiTi was
the widening of the thermal hysteresis. The wide hysteresis has important
practical use in the field of SMAs, facilitating the engineering of material
properties for which room temperature lies within the regions of the hysteresis.
This allows the material to be deformed at low temperatures and yet be safely
transported at ambient temperatures.

In the early work on Ni47Ti44Nb9 [45], it has been shown that the alloy
primarily consists of the NiTi phase with dispersed insoluble elliptical or glob-
ular precipitates of nearly pure Nb. These precipitates are extremely soft with
a deformation stress equivalent to the detwinning stress of martensite. The
large thermal hysteresis of the material is associated with the partitioning of
the strain into a recoverable part (due to the NiTi phase) and an irrecoverable
part (due to the Nb precipitates). This also explains why the material does
not exhibit complete recovery during the deformation, and why a deformation
corresponding to approximately 4 % strain can induce permanent strain in the
material. Techniques such as pre-deformation can further increase the hystere-
sis width in these alloys by increasing the As temperature [46, 47]. Newer com-
positions with lower Nb concentration (3 at.%) have shown promising SME
behavior [48].

NiTiX (X = Pd, Pt, Hf or Zr) alloys - Development of SMAs for com-
mercial applications over the last four decades has primarily concentrated
on applications with operating temperatures ≤ 100 ◦C. However applications
involving high operating temperatures, such as in the core region of an aircraft
engine or down hole applications in the oil industry require SMAs with high
transformation temperatures and stable material properties. This demand for
SMAs with high transformation temperatures has led to the development
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of a new class of SMAs known as High Temperature Shape Memory Alloys
(HTSMAs). HTSMAs are a unique class of SMAs that have transformation
temperatures greater than 100 ◦C and are capable of actuating under high
temperature conditions. These alloys are produced by adding ternary ele-
ments such as palladium, platinum, hafnium, gold, and zirconium to NiTi, for
which the transformation temperatures can be shifted anywhere in the range
of 100–800 ◦C [4, 49, 50].

Similar to conventional SMAs, HTSMAs have austenitic and martensitic
phases that can transform from one state to the other. The earliest stud-
ies on HTSMAs were performed in 1969 [12] on alloys such as Au-Ti, Pd-Ti
and Pt-Ti to investigate whether these materials undergo martensitic trans-
formation similar to (Au, Ag)-Cd alloy systems. In these studies, it was also
revealed that these materials exhibit very high transformation temperatures.
In 1981, detailed studies were performed on the TiNiPd alloy system, and it
was determined that the temperatures for phase transformation were com-
position dependent [51]. Since then, several studies have been performed on
TiNiPd, TiNiPt and TiNiAu alloy systems [49, 52]. Recent studies on var-
ious compositions of TiNiPd and TiNiPt alloys have investigated the work
characteristic and workability of these materials [53, 54]. However, due to
the extremely high cost associated with palladium and platinum, such alloys
have limited commercial viability. Other alloy systems, such as TiNiHf [50]
and TiNiZr [55], are also being widely investigated. Although these materials
do not possess transformation temperatures as high as NiTiPd and NiTiPt,
they are more cost effective. The primary limitations of HTSMAs are that
the transformation strains associated with the material are approximately
3%, and that these materials have a low critical stress for slip. A sampling of
NiTi-based ternary alloys and their associated transformation temperatures is
shown in Table 1.1. Note that these values are highly dependent on material
history, including heat treatment, and are given to indicate general trends.

1.9.2 Copper-Based Alloys

Although NiTi SMAs offer excellent pseudoelastic and SME properties and
are biocompatible, they are relatively expensive compared to Cu-based SMAs.
Good electrical and thermal conductivity along with their formability makes
Cu-based SMAs an attractive alternative to NiTi. Copper-based alloys gener-
ally exhibit less hysteresis than NiTi, with the transformation temperatures in
Cu-based alloys highly dependent on the composition. A precise change from
10−3 to 10−4 at.% is sometimes necessary to achieve reproducible transforma-
tion temperatures within a 5 ◦C range. The main Cu-based alloys are found
in the Cu-Zn and Cu-Al systems. In this section some of the most commonly
used Cu based SMAs will be discussed.

CuZnAl - The CuZn binary alloys are very ductile and have resistance to
intergranular fracture as compared to other Cu-based alloys [5]. These alloys
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Table 1.1. Representative transformation temperatures for SMAs with different
compositions and heat treatments.

NiTi Based SMAs Mf Ms As Af Reference

Ti50Ni50 15 55 80 89 [49]
Ti49.5Ni50.5 −78 −19 9 53 [56]
Ti49Ni51 −153 −114 −89 −40 [4]

Ti49Ni51Cu10 8 30 35 50 [56]
Ti50Ni40Cu10 21 41 53 67 [56]

Ti44Ni47Nb9 −175 −90 −85 −35 [45]

Ti42.2Ni49.8Hf8 50 69 111 142 [57]
Ti40.7Ni49.8Hf9.5 61 90 118 159 [57]
Ti40.2Ni49.8Hf10 103 128 182 198 [57]
Ti35.2Ni49.8Hf15 95 136 140 210 [57]
Ti30.2Ni49.8Hf20 127 174 200 276 [57]

Ti48Ni47Zr5 20 65 75 138 [58]
Ti43Ni47Zr10 45 100 113 165 [58]
Ti38Ni47Zr15 100 175 175 230 [58]
Ti33Ni47Zr20 205 275 265 330 [58]

Ti50Pd50 550 563 580 591 [49]
Ti50Ni20Pd30 208 241 230 241 [49]
Ti50Ni10Pd40 387 403 419 427 [49]
Ti50Ni5Pd45 467 486 503 509 [49]

Ti50Ni45Pt5 10 29 36 49 [49]
Ti50Ni40Pt10 −8 18 −27 36 [49]
Ti50Ni30Pt20 241 300 263 300 [49]
Ti50Ni20Pt30 537 619 626 702 [49]

transform to the martensitic state at a temperature below room tempera-
ture. Addition of aluminum to the binary alloy can considerably increase the
transformation temperatures. Varying the composition of aluminum between
5 wt.% and 10 wt.% can shift the Ms temperature from −180 ◦C to 100 ◦C.
However, the parent phase exhibits a strong tendency to decompose into its
equilibrium phases when overheated or aged. Due to this, the operating tem-
peratures are typically restricted to approximately 100 ◦C. The transformation
temperatures of the alloy are extremely sensitive to composition, and zinc can
be lost during the melt process. Due to these factors, the fabrication process of
the alloy needs to be precisely controlled. CuZnAl alloys are also very sensitive
to heat treatments such that the quenching rate can lead to phase dissocia-
tion or change in transformation temperatures. Their mechanical behavior
is limited to stress levels of approximately 200 MPa due to the low critical
stress for slip. Within the operational range of stress, the alloy exhibits perfect
SME and pseudoelasticity, but the transformation strain is limited to about
3-4% [5]. Since CuZnAl is very ductile as compared to other Cu-based alloys,
they are mostly chosen for use in applications.
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CuAlNi - CuAlNi is less sensitive to stabilization and aging phenomena.
Similar to CuZnAl, the transformation temperatures of CuAlNi can be varied
by changing the aluminum or nickel content. Changing the aluminum com-
position between 14 at.% and 14.5 at.% can change the Ms temperature from
−140 ◦C to 100 ◦C. The relative change in transformation temperatures is not
significant and the hysteresis remains fairly constant. Since this alloy is harder
to produce, manganese is often added to improve its ductility and titanium is
added to refine its grains. However, the primary limitation of the CuAlNi sys-
tem is the poor ductility due to intergranular cracking [4]. This phenomenon
also affects the mechanical behavior such that the material typically fractures
at a stress level of about 280 MPa. Transformation strain in these materials
is limited to 3%. The material also exhibits very poor cyclic behavior [4].

Developed later (1982), the CuAlBe alloy has been studied during the last
few years. Recently, several other Cu-based SMAs are in development, such
as CuAlMn which has good ductility and CuAlNb which is suitable for high
temperature applications.

1.9.3 Iron-Based Alloys

FeNiCoTi and FeMnSi are the main ferrous SMAs. FeNi31Co10Ti3 after spe-
cific thermomechanical treatment, exhibits SME. The alloy exhibits a thermal
hysteresis of approximately 150 ◦C.

Another ferrous alloy with good commercial prospects is FeMnSi. Si is pri-
marily added to improve the shape memory effect and raise the critical stress
for slip in austenite. When subject to training under a specific thermome-
chanical loading path, these SMAs exhibit complete SME. The transformation
strains in these alloys are in the range of 2.5-4.5% [5].

1.9.4 Additional SMAs

CoNiAl - CoNiAl alloys are created by addition of Co to NiAl or Ni to the CoAl
binary alloy systems, both of which exhibit very good corrosion and oxidation
resistance at high temperatures. The CoNiAl alloy undergoes a transforma-
tion from the parent cubic structure phase to a tetragonal martensitic phase.
Although the martensitic transformation in this alloy system was discovered as
early as 1971 [59], the alloy system was not extensively investigated due to its
brittle nature. However, recent efforts of forming and controlling the quantity
of intermetallic phases by heat treatments has helped improve the ductility of
the material [60, 61]. A typical composition of CoNi33Al29 has transformation
temperatures of Mf approximately −57 ◦C and Af approximately −26 ◦C.
The material also exhibits a transformation strain of approximately 4.0% due
to thermal cycling. In addition, the pseudoelastic behavior of the alloy has
shown stability over a temperature range of 150 ◦C above Af [62]. While the
conventional SME and pseudoelastic behavior in this ternary alloy has been
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investigated, the CoNiAl composition has also been widely studied for its mag-
netic properties and the possibility of a magnetic-field-induced re-orientation.
In such a transformation, the martensite reorients when subject to an external
magnetic field. As a result, the material generates a magnetic-field-induced re-
orientation strain. Further, these materials can operate at much higher actua-
tion frequencies (� 1 kHz) as compared to thermally activated SMAs. Studies
on CoNi33Al29 have shown the material to exhibit strains of 0.06% due to
magnetic field reorientation [63].

NiMnGa - The most widely investigated Magnetic Shape Memory Alloys
(MSMAs) are NiMnGa alloys. The first conclusive report of martensitic trans-
formations in Ni2MnGa alloys was given in 1984 [64]. However, it was only in
1996 that the first suggestion on the possibility of a magnetic field-controlled
shape memory effect in these materials was made [15]. A field induced reori-
entation strain of nearly 0.2% was observed in the stress-free experiments
on martensitic Ni2MnGa single crystals. Further work on off-stoichiometric
intermetallic compounds near the composition Ni2MnGa, in combination with
thermomechanical treatments and the utilization of a better understanding
of the crystallographic structure of these alloys, have yielded larger field-
induced strains of 6% [65], and up to 10% [66, 67], in single crystals. The
main limitation of Magnetic Shape Memory Alloys (MSMAs) is the relatively
low blocking stress (the stress at which the magnetic reorientation strain is
completely suppressed). The typical blocking stress level for MSMAs is 6-
10 MPa. Ni2MnGa also undergoes the typical pseudoelastic transformation
with compressive strains of up to 4.0%. Recent studies have shown that a
unique combination of the pseudoelastic transformation behavior combined
with a magnetic field can produce a field induced phase transformation of
approximately 0.5%. This field induced transformation has also increased the
blocking stress of the material to 20 MPa [68].

Other magnetic shape memory alloys have been studied including Fe-Pd
[69–72], Fe-Ni-Co-Ti, Fe-Pt, Co-Ni-Ga, Ni-Mn-Al [73–75], and Co-Ni-Al [63].
These alloys exhibit lower field-induced strains, but can have other advan-
tages. The largest field-induced strains that have been observed in Fe-Pd, for
example, reach 3.1% [76]. Fe-Pd, however, is more ductile than Ni-Mn-Ga [69].
A much more detailed explanation of the magnetic field induced reorientation
and transformation behavior will be discussed in Chapter 7.

1.10 SMAs as Active Materials — Applications

Active materials are quickly gaining the attention of engineers and scien-
tists worldwide as more emphasis is placed on both reliability and multi-
functionality. For the past several decades, engineers and other designers
in many fields have been developing ways to convert thermal energy into
mechanical work through the use of SMAs and apply these solutions to
real-world applications. One of the most well-known examples was the
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hydraulic tube coupling used on the F-14 in 1971 [77]. Since then engineers
in various industries have continued to use the unique properties of SMAs in
solving engineering problems. SMAs have attracted a great deal of interest in
various fields of application ranging from aerospace [78] and naval [79] to sur-
gical instruments [80], medical implants and fixtures [81]. This section reviews
some of the applications of SMAs in these different fields.

1.10.1 Aerospace Applications

SMA technology implementation in the aerospace industry has spanned the
areas of fixed-wing aircraft, rotorcraft, spacecraft and work in all these areas is
still progressing. Some of the more recent applications of SMAs and research
on their potential uses in these areas are described in the following sections.

Fixed-Wing Aircraft Applications - Perhaps two of the most well-known
fixed-wing programs are the Smart Wing program and the Smart Aircraft and
Marine Propulsion System demonstration (SAMPSON) [82]. The Smart Wing
program represented a collaboration between DARPA, AFRL, and Northrop
Grumman, and its purpose was to implement active materials, such as SMAs,
to optimize the performance of lifting bodies [83]. In this program, SMAs were
used as wire tendons to actuate hingeless ailerons and were also formed into
torque tubes that initiated spanwise wing twist of a scaled-down F-18 aircraft
wing. Although satisfactory actuation was provided by the SMAs at 1:6 scale,
it was found that the SMA torque tube was not strong enough to actuate a
full-scale wing. The as-tested torque tube installation is shown in Fig. 1.20.

There have been a number of other efforts to integrate SMA elements into
aerostructures. One such study led to the development of a variable geometry
airfoil. Through SMA actuation, this airfoil effectively changed its configura-
tion from symmetric to cambered [84]. Many other studies on the utilization
of SMAs in aerostructures have focused on actuating smaller elements. SMAs
can be used in smaller elements because their behavior is exhibited across
a large range of sizes. One includes looking into the possibility of pairing
SMAs and Micro-Electromechanical Systems (MEMS) to decrease the turbu-
lent drag of an aerodynamic surface [85]. When activated appropriately, the
MEMS skin would create a traveling wave to energize the boundary layer and
thereby decrease turbulent drag. Some research has also been performed in
the area of dynamic property optimization of aircraft structural panels using
SMA elements, which provide a changing elastic stiffness via the marten-
sitic transformation. It was found that the thermally-induced post-buckling
deflection of a structure could be decreased by pre-straining the SMA or
increasing the volume fraction of the SMA fibers [86]. The concept of a tun-
able SMA “Smart Spar” represented another attempt to alter the dynamic
properties [87].

The usefulness of active materials in tailoring propulsion systems was
demonstrated through the SAMPSON program [88]. One of the uses of SMAs
in this program was to change the geometry of an F-15 engine inlet. This
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Fig. 1.20. (a) Total view of the SMART Wing model. (b) Cut away view of the
SMA torque tubes as installed in the model during Phase 1 of the SMART Wing
project [82].

experiment was done on a full scale inlet and the experimental setup can be
seen in Fig. 1.213 [89]. A total force of approximately 26,700N was achieved
through the use of SMA bundles containing 34 wires/rods. This generated

3 Reprinted from Journal of the Minerals, Metals, and Materials Society, Vol. 55,
No. 12, Wax, S.G., Fischer, G.M., and Sands, R.R., pp. 17–23, Copyright 2003,
with kind permission from Springer Science and Business Media.
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Fig. 1.21. The SAMPSON F-15 inlet cowl as installed in the NASA Langley Tran-
sonic Wind Tunnel [82, 89].

force rotated the inlet cowl through 9◦. Another concept tested by the SAMP-
SON program was the concept of changing the shape of the inlet lip through
a more complex system of SMA actuation.

Engine noise levels during take off and landing have become more highly
regulated worldwide. To reduce this noise, some designers are installing
chevrons onto engines to mix the flow of exhaust gases and reduce engine
noise. Research is being performed into methods by which SMA beam com-
ponents can be embedded inside chevrons. The SMA beams bend the chevrons
into the flow during low-altitude flight or low speed flight, thereby increas-
ing mixing and reducing noise. During high-altitude, high speed flight, these
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Fig. 1.22. Boeing variable geometry chevron, flight testing [92].

SMA beam components will cool into martensite, thereby straightening the
chevrons and increasing engine performance [90]. The current Boeing design
for these variable geometry chevrons can be seen in Fig. 1.22.

A different solution to the active chevron problem has been proposed by
NASA. In this design, SMA strips are installed on each side of the chevron
centroid during the fabrication process [91]. Upon heating, the SMA strips
contract alternately, leading to asymmetric stresses within the chevrons and
therefore create a bending moment.

Rotorcraft - The role of SMAs in rotorcraft applications has been focused
on the main rotor [93]. One active research area is SMA blade twist actua-
tion [94]. SMAs are ideally suited for such applications because of their high
actuation energy density and forces required in the small available volume
within a rotor blade. One study proposed the use of SMA torque tubes to
vary the twist of rotor blades, as found on tiltrotor aircraft [95]. These SMA
torque tubes, when actuated, could facilitate the formation of different blade
configurations and thereby optimize performance of such aircraft in both the
hover and forward flight regimes. Recent work has also been performed on
developing SMA-actuated tabs to improve tracking [96]. A trailing edge tab
actuated by SMA wires was built into an airfoil section to accomplish this
improvement. Alternately, the Smart Material Actuated Rotor Technology
(SMART) Rotor project team [97] proposed to link an SMA torque tube to
the tracking tab. Other rotorcraft applications include using SMA wire com-
ponents for collective control [98] and to provide rotor blade tip anhedral [99],
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which minimized the blade vortex interaction noise by moving the blade tip
vortex away from the rotor plane.

Spacecraft Applications - SMAs have been used in space applications to
address problems related to actuation and release in zero atmosphere envi-
ronment as well as vibration damping during spacecraft launch. Most of the
applications and systems are typically designed by careful experimentation.
One such application that uses SMAs is for the low-shock release mecha-
nism in satellites [100]. Until 1984, it was estimated that nearly 14% of space
missions experienced failure due to shock, and, in some cases, caused the mis-
sion to be aborted [101]. The shocks were caused due to pyrotechnic release
mechanisms. The slow actuation due to gradual heating in SMAs makes them
suitable for low shock release mechanisms in space applications. The scala-
bility of SMA actuator designs also facilitates fabrication of smaller release
devices for smaller satellites [102] in need of compact release mechanisms.
Some of the devices developed for this purpose include the Qwknut [103] and
the Micro Sep-Nut [102]. In both of these devices, the shape memory effect is
used. Another miniature release device for space applications utilized a rotary
actuation. The device, with a maximum dimension of 5mm, could provide a
rotary actuation through an angle of 90◦.

SMAs are also used in actuation of various components such as solar pan-
els. An early design of this used SMA torsional elements to actuate solar
collectors [93]. The Lightweight Flexible Solar Array (LFSA) [104] used thin
SMA strips as hinges, which deploy the folded solar panels upon heating in
approximately 30 seconds. The proof of concept design is shown in Fig. 1.23.

A different SMA space actuation application was utilized on the Mars
Pathfinder mission in 1997. An SMA actuator was used to rotate a dust cover
from a specific region of a solar cell so that the power output of this protected,

 

Fig. 1.23. The LFSA and the SMA hinges shown in the folded and the deployed
configurations [104].
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and therefore clean area of the panel could be compared to the power output of
non-protected regions. This determined the negative effects of dust settlement
on the solar panels. In addition to actuation, another attractive application
for SMAs is vibration isolators and dampeners [101]. The hysteresis in the
pseudoelastic behavior is representative of the mechanical energy that an SMA
can dissipate during a cycle. Further, the change in the stiffness from the initial
elastic region to that in the transformation region makes it an effective tool
to isolate vibrations.

1.10.2 Medical Applications

The shape memory and pseudoelastic characteristics coupled with the bio-
compatibility of NiTi make them an attractive candidate for medical appli-
cations. The combination of these unique characteristics has led to the
development of various applications such as stents, filters, orthodontic wires
as well as devices for minimally invasive surgery (MIS).

An important requirement for an SMA, or any other material to be used in
the human body, is that it be biocompatible. Biocompatibility is a property
of the material to remain nontoxic through its functional period inside the
human body. A biocompatible material can not produce any allergic reaction
or inflammatory response in the host. The other requirement for the material
is its biofunctionality, which is the ability to function desirably for its expected
service life in the human body environment. These two requirements are cru-
cial for the application of SMAs in the medical industry.

Several investigations have been performed to study the biocompatibility
and biofunctionality of NiTi alloys [105, 106]. Analysis has focused on each
individual element that constitutes the alloy, namely, nickel and titanium.
Nickel intake occurs in a regular lifestyle [107], and most often its impact at
trace levels is minimal. However, excessive intake of nickel can be poisonous
to the human body. Unlike nickel, titanium and its compounds are intrinsi-
cally biocompatible and are commonly used in orthopedic and orthodontic
implants [108]. The oxidation of titanium results in a coating of TiO2, which
provides a corrosion-resistant layer, making such a device stable within the
human body. Corrosion studies performed on NiTi alloys have shown better
stability than most alloys used in medicine and dentistry [109]. It has also
been shown that surface coating NiTi with TiN or TiCN is effective in further
improving the corrosion resistance of this material.

Orthodontic Applications - The properties of SMAs have been successfully
implemented in a variety of dental applications. Nitinol orthodontic archwires
have been used since the 1970s [110], and are more effective than other alter-
native materials. In a linear elastic material like stainless steel, there is a large
increment in stress, for a small increment in strain which results in a large
amount of force on the tooth for a small amount of corrective motion. The
advantage of pseudoelastic arch wires is the ability to operate in the pseudoe-
lastic plateau, during which the material has a near-zero stress change over
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a large strain increment. As a result, they provide a nearly constant, moder-
ate force to actively move the teeth over a longer period of time compared
with stainless steel. Further, the material composition and processing can be
engineered to produce different levels of optimal force. An example of Nitinol
orthodontic braces is shown in Fig. 1.24a.

Another key dental application for SMAs involves the use of Nitinol drills
used in root canal surgery, which involves careful drilling within the tooth
(Fig. 1.24b). The advantage of these Nitinol drills is that they can bend to
rather large angles, which induce large strains, yet still withstand the high
cyclic rotations [111].

Cardiovascular Applications - An early cardiovascular SMA device was the
Simon Filter. The device acts as a filter that traps clots traveling in the blood
stream. The trapped clots are then eventually dissolved. From the original
expanded state, the device is deformed and constrained within a catheter.
At the time of implantation, the filter is deployed in the blood vessel where
the ambient temperature exceeds As of the filter material. The release from
the constraint and the active properties of the SMA filter cause the filter to
expand and it assumes its original shape as shown in Fig. 1.25a [112].

Another application of SMAs in the cardiovascular field is the atrial septal
occlusion device. This device is used to seal an atrial hole that is located
on the surface dividing the upper heart chambers. The traditional surgical
technique used to address this problem is highly invasive and dangerous. The
atrial septal occlusion device provides a suitable alternative to such a surgery.
This device also exploits the shape memory characteristics exhibited by SMAs,
and consists of two umbrella shape halves that can be screwed together in the
center. Initially, these halves are folded, constrained and introduced into the
heart. The two halves are deployed on either side of the hole and are connected
using a screw. The resulting “sandwich” configuration forms a patch that seals
the hole.

(a) (b)

Fig. 1.24. Orthodontic application of SMAs: (a) Nitinol braces used for alignment
purposes in dental applications. (b) A schematic showing a NiTi drill used for root
canal surgery.



1.10 SMAs as Active Materials — Applications 37

(a) (b)

Fig. 1.25. Cardiovascular devices that utilize the engineering properties of SMAs:
(a) Top view (above) and side view (below) of the Simon filter in the deployed config-
uration [112]. (b) A self-expanding Nitinol stent shown in the deployed configuration
(above) and constrained state (below).

A more common cardiovascular application is the “self-expanding” NiTi
stent. Like other conventional stents, this device is used to support the inner
circumference of tubular passages in the body such as blood vessels. Tradition-
ally, stents are made using stainless steel. These stents are expanded from the
size of the introduced catheter to the size of the artery walls by an inflatable
balloon. As the balloon is deflated, the steel stent undergoes elastic unloading,
often resulting in a loose fit. Furthermore, to reach a particular nominal diam-
eter, it is necessary to over-expand the stent to account for this unloading.
This process of over-inflation can damage the vessels and can cause a condi-
tion where the blood vessel collapses after the procedure due to weakening of
the walls. The self-expanding NiTi stents provide an attractive alternative to
the traditional method. The device is generally laser cut from sheets or tubing
and is then shape set to the appropriate diameter. After being constrained,
the NiTi stent is introduced into the body where the temperature exceeds As

of the stent material. It is then released in the artery where it expands to
its original larger diameter and gently pushes outward on the walls. Further-
more, the device can adapt to any oblong passage as compared to the balloon
inflated steel stents that are biased towards a circular shape. Fig. 1.25b shows
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an illustration of a Nitinol stent in the constrained and deployed configuration.
Engineering analysis of such a device will be considered in Chapter 4.

Orthopedic Applications - The devices developed for orthopedic applica-
tions are used to support injured, weakened or fractured bones. One such
device is the spinal vertebra spacer (Fig. 1.26a), used to provide local rein-
forcement to the vertebrae and prevent motion during the healing process. The
device applies a constant force on the joint while providing flexibility [107].

Porous SMAs represent a different kind of material form and can be used
as artificial bone implants (Fig. 1.26b) [113]. The porous nature of the mate-
rial enables the existing bone tissue to migrate inward, increasing bonding
strength. Furthermore, the implant properties (stiffness and porosity) can be
engineered to match those of the bone. In a separate application, SMAs fasten
to broken or fractured bones to facilitate healing. These devices include ortho-
pedic staples and shape memory plates. The staple, for example, is installed
in an open configuration at the fractured joint. An external heating source
is used to heat the staple causing it to return to its original form via SME,
which consequently provides a compressive force at the interface of the sep-
arated bones [107]. The shape memory plate is a device used when a cast
cannot be applied over the fracture surface (i.e. facial areas, jaw, nose). The
plate is also “shape set”, deformed, installed and then actuated via (external)
heating, providing a force which holds the fractured joints together [107].

Surgical Instrument Applications - Advances in medicine continue to
enhance the use of minimally invasive surgery (MIS). Some of the enabling
technologies advancing MIS includes instruments that can be inserted through
these small openings followed by expansion to a desired size for the particu-
lar function. The pseudoelastic and shape memory effect properties of SMAs
allow for more creative design options compared to conventional materials.
One such device is the SMA basket used to remove stones in the bile duct.
Other instruments using the shape memory effect behavior include surgical
tools with grippers, scissors and tongs used in laparoscopy procedures. Pseu-
doelastic guide wires are widely used in surgery due to their kink resistance
and superior flexibility [112].

(a) (b)

Fig. 1.26. Orthopedic applications of SMAs. (a) Spinal vertebrae spacers showing
the device in the martensitic and the deployed austenitic state [112]. (b) A schematic
showing the prospective use of porous SMAs as artificial bone implants.
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1.10.3 Transportation Applications

Shape memory alloys have been used in automobiles for applications ranging
from impact absorption to sensing and actuation. The pseudoelastic behav-
ior hysteresis provides an effective system to dissipate vibrations and impact.
This property has been used for impact absorption on armor vehicles in mili-
tary [114] and commercial applications [115]. One design for an impact absorp-
tion application required the deployment of a protective panel within 5-7 ms.
The limited response time of commercially available actuation devices (10 ms)
is overcome by the use of an SMA element. The device can be released in 3 ms
and then reset for another actuation. The SME has also been implemented for
actuating blinds that cover the fog lamp to prevent damage. A series circuit
ensures the actuation of the SMA louvers every time the fog lamps are turned
on. SMAs can also be used for sensor and actuation purposes simultaneously.
An application that exploits this behavior is the SMA spring for the continu-
ous variable transmission in the Mercedes A class. The spring acts as a sensor
that monitors the temperature and actuates a valve at a specific temperature,
which changes the direction of oil flow.

A similar actuation system is incorporated in the Shinkansen bullet train
gearbox where the temperature in the gear box is monitored and an SMA
spring actuates a valve to adjust the oil level in the gearbox [116]. Other
applications developed for trains include the thermally actuated switch for the
radiator fan in diesel engines and steam traps for the steam heating system in
passenger trains. Both of these applications utilize the shape memory effect.

1.10.4 Other Applications

In addition to the aerospace, transportation and medical industries, there are
many other fields and applications that incorporate SMAs. The oil industry
has shown extensive interest to use the SMA actuation capabilities in release
devices and protection systems for downhole drilling equipment. The high
operating conditions have also opened the avenue for the use of HTSMAs
in these devices [117]. Everyday applications such as coffee makers and rice
cookers have also incorporated SMAs. A rice cooker equipped with an SMA
valve has the valve actuate when the cooker reaches a certain temperature
and releases the excess steam in the chamber. SMA actuated louvers have
also been incorporated in air conditioning vents that can adjust depending
on the temperature of the air exiting the vents. The SME is also utilized in
shower faucet designs where an SMA spring automatically adjusts the flow of
hot and cold water to maintain a preset water temperature [118].

The pseudoelastic behavior has also been used in a wide range of applica-
tions. Developers of vibration control devices in civil structures have shown
interest in pseudoelastic behavior of NiTi due to its capability to dissipate
energy through a large hysteresis [119]. Other applications that employ the
pseudoelastic behavior are flexible metallic eyeglasses and headphones, that
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(a) (b)

Fig. 1.27. Commercial pseudoelastic applications of SMAs. (a) Pseudoelastic eye
glass frames. (b) Golf club with embedded pseudoelastic SMA insert.

can be bent without breaking [77]. SMAs have also been used in sporting goods
like golf clubs where the SMA embedded in the club absorbs the impact of
the strike. Figure 1.27 shows a picture of a pseudoelastic eye glass frame and
a golf club with a pseudoelastic SMA embedded in it.

In a recent study, an innovative approach of knitting SMA wires into dif-
ferent patterns has shown to produce complex shape changes such as rolling,
spiraling, arching and folding [120]. The ability to generate such unique config-
urations using SMAs can open prospects for other novel design applications.

1.11 Summary

This chapter introduced the unique characteristic behaviors of shape mem-
ory alloys such as the shape memory effect and pseudoelasticity and dis-
cussed the underlying microstructural changes associated with such behaviors.
The crystallography of martensitic transformation was also discussed, and a
brief overview of the effects of alloying on the transformation behavior was
presented. Some current implementation of SMAs into industrial and med-
ical applications have also been discussed. As previously mentioned, several
other compilations of work performed on SMAs are available. For historical
work on SMAs the reader can refer to Perkins [3]. For application consider-
ations, Duerig and coworkers provide a comprehensive summary. For details
on microstructural influence on the behavior of SMAs, see Funakubo [4] and
Otsuka and Wayman [5]. A more recent compilation of work by Brailovski
and coworkers [121] gives an extensive summary on characterization efforts
focused on SMAs.
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1.12 Problems

1.1. Identify at least one biomedical application for which both the SME and
the pseudoelastic effect could provide a solution.

1.2. A space application requires the use of an SMA component for fast actu-
ation. The ambient temperature to which the SMA will be exposed is −30 ◦C.
What properties would govern the choice of a suitable SMA? Suggest an alloy
that would be most suited for such an application from the different alloys
discussed in Sect. 1.9.

1.3. An SMA wire exhibits 5% recoverable strain upon mechanical unloading.
When the wire is cooled, the material expands by 3% and recovers its shape
upon heating. What are the different behaviors observed here?

1.4. An industrial process requires a small pressure vessel for storing hot gas.
The pressure and the temperature inside the vessel cannot exceed 300 MPa
and 80 ◦C, respectively. Suggest two concepts that implement SMAs in the
design of a safety device for the pressure vessel. Suggest an SMA for this
application making suitable arguments.

1.5. A particular actuation mechanism in an industry utilizes a temperature
sensor that sends a signal to a motor which in turn operates a ratchet-pinion
mechanism. The entire setup is fit into a small compartment. The company is
searching for a suitable alternative actuation mechanism and is considering the
use of SMAs. List the advantages of using SMAs in this particular application.

1.6. A particular application requires multiple cyclic actuation where the
actuator needs to expand at high temperature and contract as the temper-
ature decreases. The device assembly or the conditions of operation do not
exert any stress on the actuator. How could one use an SMA for such an
application?

1.7. A new pair of spectacle frames in the market has the capability to be
twisted substantially without failure. Although the frame is made of an SMA,
this flexible behavior is not due to a stress induced phase transformation
phenomenon. Could this statement be true? Explain.

1.8. Shown in Fig. 1.28 is a simple heat engine. The SMA spring is actuated
by resistive heating. A mass of 0.45 kg is suspended on the spring, which
has an initial length of 3 cm. The current through and the voltage across the
spring are 2 Amps and 6 Volts, respectively. When heated from T< Mf to
T> Af , the tip of the spring moves from 12.5 cm (spring length under load)
to 5 cm in 5 seconds. With the provided data answer the following questions:

1. What is the amount of work done by the spring?
2. What is the potential energy stored in the spring in the austenitic and

martensitic states?



42 1 Introduction to Shape Memory Alloys

T=20.3°C T=20.3°C T=66.7°CT=20.3°C T=20.3°C T=66.7°CT=20.3°C T=20.3°C T=66.7°C

Fig. 1.28. The SMA heat engine.

3. What is the efficiency of the SMA spring?
4. Express the Carnot efficiency of an SMA heat engine, in terms of its trans-

formation temperatures, assuming that the SMA heat engine operates at a
nominal stress of 100 MPa, and that the transformation temperatures are
shifted by 5 MPa/ ◦C in the presence of stress. From the SMAs presented
in the chapter, select the ones with the highest Carnot efficiency.

1.9. Plot a schematic of the stress-strain response of an SMA specimen when it
is thermomechanically loaded along loading paths 1 and 2, shown in the phase
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Fig. 1.29. Stress-temperature phase diagram.
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diagram in Fig. 1.29. Note that the initial state of the material is austenitic
for loading in path 2.

1.10. Compare the shape memory effect exhibited by shape memory alloys
with the shape memory effect of shape memory polymers. In particular, com-
pare the steps required to demonstrate the shape memory effect in two coils
made of the two different shape memory materials.

1.11. The deployment of solar panels in spacecraft has been attempted by
SMA strips (see Fig. 1.23), acting as temperature actuated hinges. Assuming
that such hinges are provided in an initial flat shape, describe the process of
shape setting for the hinges, so that they can deploy the solar panels upon
heating.
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2

Thermomechanical Characterization of Shape
Memory Alloy Materials

D. J. Hartl and D. C. Lagoudas

Having introduced the fundamentals of shape memory alloy behavior, the
characterization of SMA materials is discussed here. Such a discussion fos-
ters a better understanding of the thermomechanical constitutive response of
SMAs. Furthermore, proper determination of required material properties is
necessary for the development of comprehensive and accurate SMA material
models. Finally, it is perhaps the most important step in the practical imple-
mentation of SMAs. Whatever methodology one uses to design a given SMA
application, a quantitative evaluation of key material properties is required.

2.1 Introduction

The thermomechanical characterization of an SMA provides a qualitative
demonstration of the material behavioral characteristics and allows one to
derive distinct quantitative material properties. Like other classes of struc-
tural materials, shape memory alloys are tested by subjecting specimens to
prescribed thermomechanical inputs while monitoring the exhibited material
response. However, though the characterization of SMAs is based on the same
principles used to test other material systems, unique considerations exist due
to the complex constitutive behavior of shape memory alloys. These issues will
be this chapter’s focus.

SMAs exhibit coupled thermomechanical behavior, requiring the experi-
mentalist to carefully consider the particular inputs, or loading paths, applied
to the material. To quantify the complex behavior of SMA materials, various
loading paths are imposed while phenomena associated with the phase trans-
formation are recorded. These phenomena include the shape memory effect
and pseudoelasticity, as discussed in the first chapter. This chapter will focus
on the application and measurement of three thermomechanical fields in par-
ticular: stress, strain and temperature. As will be explained in the following
chapter, either histories of stress and temperature or strain and temperature
will be prescribed while the evolution of the third quantity will be measured,
usually by appropriate interpretation of traction, displacement, and tempera-
ture measurements at the specimen boundary. To consistently characterize an

D.C. Lagoudas (ed.), Shape Memory Alloys, DOI: 10.1007/978-0-387-47685-8 2,
© Springer Science+Business Media, LLC 2008



54 2 Characterization of Shape Memory Alloy Materials

SMA material in a manner that suitably determines its properties, it is useful
to establish an experimental process during which various loading paths are
applied in a carefully considered progression. Such a process will be proposed
in this chapter and will be illustrated by considering the actual testing of
various SMA specimens.

2.1.1 Review of SMA Characterization Methods

From the time of the first comprehensive studies published on shape memory
alloy properties, particularly with respect to NiTi [1], researchers have sought
to fully understand the behavior of these materials. Many of the phenomena
observed in SMAs can now be explained in terms of underlying microstruc-
tural mechanisms and SMA behavior, under a given thermomechanical loading
path, can be phenomenologically described as this current level of knowledge
has matured over several decades. This has been made possible by carefully
planned and executed experimentation.

Years after the initial well-published discovery at the Naval Ordnance Lab-
oratory, NASA scientists completed a comprehensive report on the proper-
ties of Nitinol [2]. This report presents information regarding crystallogra-
phy, processing techniques, physical, mechanical and chemical properties, and
potential applications. Since that time, experimental investigation has been
ongoing. Researchers further focused on understanding the metallurgical and
microstructural aspects of shape memory and pseudoelastic behavior as exhib-
ited by a number of different alloy systems [3–6]. Experimental research then
began to focus on the phenomenological aspects of SMA behavior, including
increased investigation of the exhibited thermomechanical coupling and the
engineering applications of SMAs [7–13].

As shape memory alloy materials have gained acceptance for use in special-
ized engineering applications, it has become clear that some testing methods
should be standardized, especially in the medical field. ASTM International
has addressed this need by publishing standard test methods to guide SMA
experimentation efforts, especially for research and development of applica-
tions. While some standards are restricted to the definitions of terms or the
suitable composition of NiTi alloys [14, 15], others address experimental meth-
ods directly. Standard test method F-2004 [16] addresses the details of Dif-
ferential Scanning Calorimeter (DSC) testing. As shown in Chapter 1, this is
an important test for observing transformation behavior in SMAs under zero
stress (see Sect. 1.8) and is used as a guideline to derive an estimate for all
four key transformation temperatures (i.e., Ms, Mf , As, and Af ). Note that
some special equipment is required and will be shown in later sections.

As an alternative method to estimate austenite start and finish tempera-
tures (As and Af ) only, specification F-2082 [17] recommends the “Bend and
Free Recovery” test. This specification makes direct use of the shape memory
effect (Sect. 1.4) and does not require specialized equipment. According to the
specification, a specimen (wire, tube, or strip) is deformed when bending at
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a low temperature (T < As), causing regions to form detwinned martensite.
This leads to the generation of transformation strains that are not recovered
upon unloading due to the test temperature being below As. The sample is
then slowly heated, and its geometric configuration is monitored. The tem-
perature at which the sample begins to recover its initial shape is declared to
be approximately equal to As, and the temperature at which recovery is com-
pleted is declared to be approximately equal to Af . In addition to the marten-
site to austenite (M ↔ A) transformation, this specification also addresses
martensite to R-phase to austenite (M → R → A) transformation for mate-
rials that exhibit this behavior (Sect. 1.8). The bend/free recovery method is
not addressed further here, but should be considered as a qualitative method
of measuring two of the four transformation temperatures.

Finally, specification F-2516 [18] addresses the tensile testing of SMA spec-
imens, especially those exhibiting pseudoelasticity at room temperature (see
Sect. 1.5). Applying mechanical loading/unloading cycles is important in the
testing of many materials, but for the investigation of SMAs, this is a key step.
The parameters described in this specification, such as upper plateau strength
and lower plateau strength, will be shown to correspond to the characteriza-
tion methods presented in this chapter. The scope of the ASTM standards is
a basic understanding of certain aspects of SMA behavior, mostly relevant to
medical applications, and is not the full thermomechanical characterization of
these materials. Furthermore, they are not intended to calibrate phenomeno-
logical models such as those described in Chapter 3. These complex efforts
require additional considerations as discussed throughout the remainder of
this chapter. As new constitutive models are being developed for SMAs, addi-
tional tests are necessary for providing material parameter inputs.

Clearly, the methods and processes presented in this chapter derive directly
from decades of previous experimental work performed by many skilled indi-
viduals and research teams. The contribution of this text is simply to sum-
marize and organize various experimental techniques into a comprehensive
method by which one can deduce the material properties of interest. Further-
more, aspects of experimentation that have challenged others in the past will
be addressed.

2.1.2 Shape Memory Alloy Specimens

To begin the discussion of thermomechanical SMA material characterization,
it is appropriate to provide examples of the actual material specimens designed
for testing. The reader is assumed to have some familiarity with the experi-
mental systems used to provide the necessary loads (experimental inputs) and
to monitor material responses. Although there are unique experimental con-
siderations imposed by the behavior of shape memory alloys, such discussion
is reserved for Sect. 2.4. This introductory material should be familiar to those
who are experienced in experimental material thermomechanical testing.
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The most common materials testing performed on SMAs involve tensile
axial loading. While the potential configuration of SMA specimens is as var-
ied as those of other metallic material systems, the manner in which SMAs
are utilized does motivate the commonality of particular specimen forms. For
example, many SMA applications use wire components because they provide
relatively high tensile forces and displacements in a compact and simple con-
figuration. Therefore, the SMA specimen forms most frequently tested are
wire tensile specimens and this form presents the experimentalist with both
advantages and challenges. Perhaps the most beneficial aspect of testing wires
is that specimens often arrive from the manufacturer in a useable form such
as spooled wire as shown in Fig. 2.1. Due to their long and thin configuration,
wire specimens provide a simple gauge length over which stresses are homoge-
neous. However, because the cross section at the ends of a wire specimen is the
same as that in the gauge length, prevention of excessive stress concentrations
and resulting premature failure at the grips can be challenging. One possible
solution to this problem is presented in Fig. 2.1 where a wire specimen and a
suitable gripping mechanism are shown. Such a grip configuration allows the
testing of a range of wire diameters.

Testing is often performed for wires, however it is also common that SMA
components be manufactured in 2-D and 3-D forms for some chosen applica-
tions. In such cases, SMA tensile specimens may be fabricated in the com-
mon ‘dogbone’ configuration per standard metal testing methods (i.e., ASTM
E8) [19]. This is most easily accomplished when the as-received material is

Fig. 2.1. Example of spooled thick NiTi wire and prepared specimen with appro-
priate grips.
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mm

Fig. 2.2. Example of raw Ni60Ti40 (wt.%) plate and subsequent ASTM “dogbone”
specimens [19] machined from such plates using EDM.

in plate form. An example of this can be seen in Fig. 2.2 where two NiTi
(Ni60Ti40 wt.%) plates of different thickness are shown. It is important to
note that due to their thermomechanical behavior, machining SMAs is dif-
ficult using current methods. High cutting speeds are necessary for cutting
processes that remove material (e.g., drilling and lathing). Methods such as
water jet cutting and electrical discharge machining (EDM) are often used
as well. EDM is especially useful for machining tensile specimens from dif-
ferent regions throughout properly homogenized bulk material of arbitrary
shape. Examples of such a bulk form and the resulting specimens are shown
in Fig. 2.3.

Designers and analysts often require information on the compressive
behavior of SMAs, which may differ from the complimentary tensile response.
For this purpose, compressive specimens are also often required [20, 21].
Though recognized standard protocols (e.g., ASTM standards) for SMA com-
pressive testing do not exist, the general ASTM guidelines for the compressive
testing of metals (ASTM E9) provide information on standard specimen con-
figuration and testing methods [22]. Such specimens can also be accurately
machined from raw material via EDM, and an example of this is shown in
Fig. 2.4.

Finally, it is often necessary to extend the experimental study of an SMA
material beyond simple uniaxial loading. To examine the constitutive response
under shear or multiaxial loading, SMA specimens in the form of tubes can be
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Fig. 2.3. Example of bulk NiTiPd SMA and resulting small SMA “dogbone” spec-
imens machined from its center using EDM.

used. Tubes with sufficiently thin walls (relative to their diameter) provide a
region of near-uniform shear stress when subjected to torsion. Response under
combined loading can then be assessed if an applied tensile or compressive
load is added (compression being applicable for sufficiently short specimens
when tested below their buckling load) [23, 24]. Additional application of an
internal or external pressure allows consideration of an additional stress state.
Example SMA specimens in tube form with varying composition and thickness
are shown in Fig. 2.5.

In this section, general aspects of SMA characterization have been dis-
cussed. However, to develop an understanding of any material, it is necessary
to decide what properties are most useful and then determine under what
loading paths these properties are best elucidated. This will be discussed in
the following section.
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Fig. 2.4. Examples of small NiTiPd SMA compressive specimens EDM machined
from the center of bulk raw material. The two specimens on the right follow ASTM
E9 specifications [22].

Fig. 2.5. Examples of SMA tube specimens. These include a NiTiPd specimen
(left), NiTi high aspect ratio samples (center), and a porous NiTi sample (right).
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2.2 Thermomechanical Material Properties of SMAs
for Engineering Applications

As it has been discussed in Chapter 1, SMAs represent a specific class of
metallic alloys that have two stable solid phases, and by following particular
paths in the stress-temperature space, these alloys undergo a transformation
from one phase to another. Furthermore, these two phases are distinct in
their properties. This transformation can lead to generation and subsequent
recovery of strains and cause macroscopic shape changes.

SMAs exhibit nonlinear, hysteretic behavior with a strong thermomechani-
cal coupling. Furthermore, SMAs are highly path-dependent, though the phase
transformation itself is not intrinsically loading rate dependent. The thermo-
mechanical coupling, however, can lead to an experimental rate dependence
(see Sect. 2.4.3). Each of these aspects leads to experimental complexities,
and many of the investigative methods used with other inelastic materials are
not completely sufficient to describe the material behavior of an SMA. This
section will review the SMA thermomechanical response from an experimen-
tal point of view and introduce a general set of material parameters useful in
quantitatively describing their constitutive behavior. There are other physical
properties that could be experimentally investigated (e.g., electrical conduc-
tivity, density, specific heat etc.), but these are not addressed in this chapter.
For the interested reader, the comprehensive NASA report provides data on
such properties [2], while additional information can be found in more recent
compilations of work on SMAs [3, 25].

To examine the thermomechanical engineering properties of shape mem-
ory alloys, we first determine what aspects of the material behavior can be
parameterized. As an example, we examine the phenomenological response of
an SMA specimen undergoing pseudoelastic loading. Recall from Chapter 1
that these experiments are performed by applying prescribed forces (stresses)
and temperatures and monitoring exhibited deformations (strains). By con-
sidering the unique features of this nonlinear material response (e.g. changes
in stiffness, hysteresis, etc.), one can see that a properly chosen set of mate-
rial parameters is useful in quantitatively describing these most important
material behaviors. Note that here the primary interest is in the response of
polycrystalline engineering forms of SMA material (e.g. wires, rods, beams
etc.), and not the single crystal behavior.

Examination of the new set of experimental pseudoelastic results (uniax-
ial, tensile) are shown in Fig. 2.6a. The following observations can be made
(recalling the discussion in Sect. 1.5):

• During loading:
– The initial response is nearly linear.
– At some stress level (σMs) the stiffness changes, and a behavior similar

to plastic yielding is observed. A ‘plateau’ is formed.
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Fig. 2.6. Experimental example of constant temperature phenomenological trans-
formation behavior in NiTi: (a) single temperature of T = 70 ◦C, (b) multiple tem-
peratures.
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– As stress increases to a second level (σMf ), the plateau ends and the
response stiffens. A nearly linear response with a slope distinct from
the first is observed.

• During unloading:
– The initial response is nearly linear.
– A plateau with the same strain length as that observed during loading

is formed at a lower stress level (σAs).
– At the end of the plateau (σAf ), the response stiffens and becomes

nearly linear, following the same slope as observed during initial load-
ing.

As explained in Chapter 1, the stiff response at low stress (completely below
the loading plateau) corresponds to purely austenitic behavior, while the
response at higher stress (completely above the unloading plateau) corre-
sponds to purely martensitic behavior. This indicates the need to consider
the independent elastic responses of each phase, and that these responses
need not be similar. Such understanding of the elastic response is the first key
aspect of SMA characterization.

A second interesting behavior highlights the importance of the current
thermomechanical (stress-temperature) state. At the given test temperature,
particular stress levels initiate the forward and reverse transformation during
loading and unloading, respectively. Furthermore, one can envision a pseu-
doelastic experiment wherein the same level of force is applied, though at a
different temperature (i.e., a different thermomechanical state). Recall that as
test temperature increases, the stress needed to initiate each phase transfor-
mation (A→M and M→A) increases (see Sect. 1.3). As a result, the response
will vary with each change in temperature, as illustrated in Fig. 2.6b.

A third important quantifiable behavior is related to the deformation or
strain generated during transformation (plateau region). This represents the
amount of macroscopic deformation that can be generated via the underlying
microstructural motions and is a clear consequence of the solid-to-solid phase
transformation.

The effects discussed above are also observed during thermal transforma-
tion at nominally constant stress levels. Engineers are often more interested
in the properties of an SMA material as an actuator rather than as a pseu-
doelastic element. In these cases, constant stress tests are useful in illustrat-
ing the three key types of material properties. The strain vs. temperature
response during such loading can be seen in the example shown in Fig. 2.7a.
Consider first the response at temperatures outside the transformation region
(i.e., T < Mσ

f and T > Aσ
f ). This behavior is due to thermal expansion, as

seen in other metals; this is also a thermoelastic effect (like the linear load-
ing/unloading observed at the beginning and end of pseudoelastic loading).

Second, repetition of such a test at varying stress levels illustrates the
relationship between the non-zero stress transformation temperatures and the
current stress level, as seen in Fig. 2.7b. This is analogous to varying ambient
temperature during pseudoelastic testing.
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Fig. 2.7. Experimental example of constant stress phenomenological transformation
behavior in NiTi: (a) single stress of 200 MPa, (b) multiple stresses.
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Third, note the height of the hysteresis generated during transformation,
which represents the amount of inelastic yet recoverable strain being generated
and recovered as the transformation evolves.

To review and summarize, we can infer that SMAs require at least three
types of material properties to describe three types of behaviors. These types
of material properties are:

• Thermoelastic properties of austenite and martensite – These parameters,
which apply to most structural materials, are necessary to describe the
material response when transformation or reorientation is not occurring.

• Critical stress and temperature states associated with the phase diagram
– These parameters help determine when the process of transformation
between phases will begin or end depending on the current thermomechan-
ical state (stress and temperature) and loading history of the material.

• Transformation strain evolution properties – These parameters provide a
relation between the current state of material transformation (e.g., volume
fraction of the various martensitic variants) and the exhibited generation
of transformation strain.

2.2.1 Thermoelastic Properties

For each of these three types of properties, one can determine a set of material
parameters to sufficiently describe a given shape memory alloy, and we can
explore some methods by which they can be found.

Let us first consider the thermoelastic properties. Assuming material
isotropy, the elastic stiffness could be represented by the Young’s modulus
of austenite (EA), as shown in Fig. 2.8a. The material then transforms into
martensite. Once transformation is complete, the fully martensitic material
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Fig. 2.8. Experimental examples: (a) the pseudoelastic effect, (b) the shape memory
effect.
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responds elastically once again. Again assuming isotropy, this can be repre-
sented by an elastic modulus of martensite (EM ), which is also schematically
shown in Fig. 2.8a. These elastic properties can also be found by simple mono-
tonic loading/unloading of the material in a fully austenitic or martensitic
state at stresses sufficiently low to prevent transformation or reorientation.

Other elastic properties such as the Poisson’s ratio for each phase can be
measured concurrently with the stiffness. The coefficient of thermal expan-
sion is used to predict the thermally induced deformation response of pure
austenite and pure martensite. This property can be observed in Fig. 2.8b,
where constant stress testing is illustrated. Here, the coefficients for austenite
and martensite are shown as the slopes of the strain-temperature plots in the
fully austenitic and fully martensitic states, respectively.

So, for each phase elastic properties plus the thermal expansion coefficient
is required. For design purposes, it is sometimes also useful to characterize
the plastic yield and failure behavior of the material. A potential set of ther-
moelastic properties is as follows:

• The elastic constants of austenite and martensite, respectively. In the case
of isotropy, the Young’s Moduli, EA and EM , and the Poisson’s Ratios,
νA and νM , can be used.

• The coefficients of thermal expansion of austenite and martensite, respec-
tively. In the case of isotropy, only two scalar constants, αA and αM , are
needed.

• Information on the elastic limit of the material. If the material is isotropic,
the yield stress of the material in austenite and martensite (σA

Y and σM
Y )

will suffice.

2.2.2 Critical Stress and Temperature States for Transformation
(Phase Diagram)

Finally, we review the properties of the phase diagram, which illustrates the
stress and temperature conditions for material transformation. Practically this
involves the determination of transformation “surfaces,” or boundaries of the
transformation regions in a stress-temperature space. These indicate where
a given transformation (i.e., austenite to martensite or vice versa) begins
or ends.

A schematic example of the phase diagram, previously introduced in Chap-
ter 1, is given in Fig. 2.9. The form of these surfaces might be assumed to
be linear, quadratic, or otherwise depending on the behavior of the material.
Whatever their general form, these four surfaces are partially described by
their intersections with the zero-stress axis (i.e., the zero-stress transformation
temperatures). However, these temperatures are insufficient to fully describe
the configuration of the phase diagram, and additional parameters are needed.
A common set of parameters include the slopes of these surfaces at some stress
level (e.g., zero stress). Such slopes are known as “stress influence coefficients.”
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Fig. 2.9. Schematic representation of the phase diagram with possible material
properties defined.

Aside from specifying the martensitic phase transformation regions, it is
also useful to determine the stresses at which the detwinning of martensite
begins and ends. Though this is not technically a transformation but rather a
reorientation of martensite, this region can also be plotted on the phase dia-
gram and utilized during design and analysis (see Chapter 6). The parameters
required to construct the phase diagram are:

• The initiation and completion temperatures for transformation from
austenite to martensite at zero stress (Ms, Mf ).

• The initiation and completion temperatures for transformation from
martensite to austenite at zero stress (As, Af ).

• The stress influence coefficients or general slopes of the transformation
surfaces. There could be up to four total slopes, though it is often assumed
that each pair of surfaces for the two distinct transformations (A → M
or M → A) shares a characteristic slope. Thus the zero-stress slopes of
transformation regions into austenite (CA) and into martensite (CM ) are
useful parameters, as seen in Fig. 2.9.

• The start and finish stresses for the detwinning of martensite (σs, σf ),
which may be temperature-dependent.
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2.2.3 Transformation Strain Properties and Hardening

We now continue covering the three key classes of SMA properties by dis-
cussing a method to parameterize the generation and recovery of inelastic
strains during transformation.

As described in Chapter 1, the formation of martensitic variants from
the austenitic parent phase at the microstructural level leads to the observed
macroscopic deformation during transformation. However, tracking the
detailed configuration of the microstructure (i.e., the evolution of 24 maxi-
mum martensitic variants in NiTi) is often beyond the scope of thermome-
chanical characterization, especially for engineering design and analysis of
applications. This would require knowledge of up to 24 internal state vari-
ables, for example, which are only observable at length scales much smaller
than the engineering scale of thermomechanical testing. Therefore, a more
phenomenological approach is often taken whereby the macroscopic deforma-
tions are described by a transformation strain field, and the evolution of this
field is linked both to the total applied tractions or total applied deforma-
tions and to the amount of total martensite present in the material. Theories
have been developed wherein the transformation strain dependence on several
select variants is considered. Experimentation has supported these theories.
Such models will be discussed in Chapter 3 and are addressed in more detail
in the literature [26, 27].

When considering the phenomenological behavior of SMAs, one con-
siders the combined effect of microstructural behaviors. In the absence of
stresses, local or applied, the martensitic variants form from the parent
phase in patterns that lead to negligible macroscopic shape change (i.e.,
they will self-accommodate). Applied stress results in formation (or reori-
entation) of preferred martensitic variants, therefore generating observable
overall strain due to transformation or detwinning, as discussed in Sect. 1.3.
The variant selection is dependent on applied stress, therefore causing the
amount of recoverable strain generated to vary with applied stress. Hence,
a material parameter to be characterized for SMAs is the maximum strain
formed due to transformation at a given stress level and in addition to
thermoelastic strains. This strain is the current maximum transformation
strain and its value depends on several factors, including the crystallog-
raphy of martensitic transformation, the overall microstructural configura-
tion of grains, texture, configuration and composition of precipitates, in
addition to stress level. As a strain measure, the maximum transformation
strain could have multiple components. However, for the 1-D experimen-
tation in this chapter, the maximum transformation strain will be consid-
ered a scalar quantity given as a function of applied stress for given mate-
rial conditioning and denoted by Hcur (σ). If all the martensitic variants are
aligned to the maximum extent possible, either due to the effects of applied
stress or because of sufficient material training, then the material is said to
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be in a fully detwinned martensitic state. For a material in such a state,
Hcur (σ) |σ≥σalign

= Hmax is the maximum available transformation strain.
Here the quantity σalign denotes the minimum stress sufficient to fully align
the martensitic variants. For sufficiently trained materials, the value of σalign

may approach zero. Transformation strain evolution will be further addressed
in Sect. 3.3.3.

Other than the value of the maximum transformation strain, it is also
important to note the manner in which the strain evolves during loading.
Some materials will show a distinct transition from elastic response to trans-
formation and little stress increase during transformation. This is an indica-
tion of limited ‘hardening’ (An example of this will be shown in Sect. 2.5.1).
Other SMAs will transition smoothly from elastic to transformation and may
show a large increase in stress as the transformation progresses. These mate-
rials exhibit more significant hardening. (An example of this will be shown in
Sect. 2.5.2). Different material models exist which account for varying kinds of
material hardening, and the experimentalist should take note of this behavior.
A more detailed discussion of this will be undertaken in Chapter 3.

With each of the aforementioned properties determined, the elastic behav-
ior of each of the two phases is captured. In addition, the evolution of trans-
formation strain is described and the locations of transformation regions in
the stress-temperature space are determined. For the models that will be
described in Chapter 3, it is required that only the three classes of prop-
erties describing these three attributes of SMA behavior be determined. Of
course, more complicated models exist that require additional material param-
eters to account for more general material behavior. Such behaviors include
transformation-induced plasticity and the reorientation of martensite. Models
incorporating these behaviors will be discussed in Chapter 5 and Chapter 6,
respectively.

2.3 Experimental Characterization Process

To experimentally quantify the properties described above for a given SMA
material, one could subject a representative specimen to a wide range of
uniquely defined thermomechanical loading paths while monitoring the mate-
rial response. Years of SMA research worldwide have shown that this range
can be narrowed to include only a few key tests. The process of characteri-
zation described below follows a natural order useful for determining specific
material properties as well as for understanding qualitative material behav-
iors. Furthermore, it allows for an understanding of unstabilized and trained
material behavior, an often overlooked distinction in SMA experimentation
and application design.
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2.3.1 Overview of the General Thermomechanical
Characterization Process

In brief, the experimental process proceeds as follows:

• Experiment 1: Determination of zero-stress transformation temperatures
• Experiment 2: Monotonic loading/monotonic unloading of specimen

– a) Load at T < Mf to determine martensitic response and zero-stress
SME behavior

– b) Load at T > Af to determine austenitic response and pseudoelastic
behavior

• Experiment 3: Determination of SME at non-zero stress level
• Experiment 4: Determine effects of cyclic loading, including material

response stabilization

The logic behind these steps is straightforward and is based on forming
an evolving understanding of the material behavior. Zero-stress transforma-
tion temperatures (Experiment 1) are vital to the remainder of the testing
process as they allow for experimental system design. Without some knowl-
edge of these temperatures, the proper thermal testing environment cannot
be configured.

Monotonic material loading (Experiment 2) is important as a standard test
for most materials in determining elastic behavior. It is further important in
SMA characterization because such testing above Af and below Mf provides
important information on the key behaviors of pseudoelastic response and
stress-free shape memory effect, respectively.

Experiment 3 expands on the SME results of Experiment 2a, testing the
capability of the material to provide work output by generating and recovering
transformation strain under non-zero stresses.

Finally, the cyclic loading applied during Experiment 4 highlights the
change in material response given a particular loading history. After suffi-
cient cycles, the response will often stabilize. This training can significantly
modify the material properties and hence requires the repetition of the char-
acterization process (Experiments 1–3).

2.3.2 Illustration of the General Characterization Process

Given the overview, we now demonstrate the general SMA characterization
process in more detail. Consider a NiTi wire sample with a diameter of
0.91 mm intended for use in an actuation application. Because the specimen
is in wire form, all reported stresses and strains are uniaxial components as
obtained in tension. The uniaxial stress is taken as force over a wire cross-
sectional area where testing was performed on an MTS 810 system using a
150-pound load cell. This load frame is shown in Fig. 2.10a. An MTS exten-
someter with a gauge length of one inch was used to record specimen strain
levels.
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(a) MTS 810 servohydraulic loading
frame.

(b) SMA sample loaded into a DSC
system.

Fig. 2.10. Experimental equipment used for thermomechanical characterization of
shape memory alloys.

Experiment 1: Determination of Zero-Stress Transformation
Temperatures

This first experiment is the most fundamental step in the characterization
of shape memory alloys. Without knowledge of the stress-free transformation
temperatures, it is very difficult to know what phase is present in the alloy at
any given stress and temperature state. Recall also that this first experiment is
crucial in designing the remainder of the experimental process. To assess these
temperatures, a DSC was used (see Sect. 1.8). The small DSC sample is cut
from larger bulk material using a low force saw. This method reduces frictional
heat and overall material deformation, maximizing the representative integrity
of the cut specimen. Note that the use of EDM to cut DSC specimens also
leads to accurate DSC results. The specimen is shown being loaded into the
DSC machine in Fig. 2.10b, and the test results are shown in Fig. 2.11a. To
quantify this heat flow/temperature curve, one may construct lines tangent to
the start and finish of each peak and lines tangent to the baseline heat flows.
The distinctive intersections of these lines provide one possible measure for
the start and finish temperatures of each transformation.
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This has been illustrated in Fig. 2.11b, where the transformation temper-
atures have been noted. It is important to recall, that some materials exhibit
the R-phase transformation. For these materials, R-phase transformation indi-
cated in DSC results may be confused with austenitic/martensitic transforma-
tions. Given the DSC data alone, it is not always clear if exhibited peaks indi-
cate A→R or A→M, for example. Therefore, the DSC results obtained directly
from as-received material should be used as guidelines while zero-stress trans-
formation temperatures derived from other thermomechanical tests are often
more practical or applicable in predicting transformation behavior, especially
in engineering applications (see the example in Sect. 2.5.1).

-40 -20 0 20 40 60

Temperature (°.C)

H
ea

t 
F

lo
w

M ← A

M → A

(a) DSC results

-40 -20 0 20 40 60

Temperature (°.C)

H
ea

t 
F

lo
w

M f = -20° C

M s = -5° C

A s = 7° C

A f = 22° C
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Fig. 2.11. Determination of stress-free transformation temperatures from DSC test-
ing (NiTi, untrained material).
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Experiment 2: Monotonic Loading of Specimen

T < Mf :
Monotonic loading below Mf provides information on the elastic properties

of twinned (self-accommodated) martensite and determines if the material
exhibits crucial shape memory behavior by verifying the capability of the
material to exhibit stress-free SME (see Sect. 1.4). Alternatively, additional
loading can be applied to failure, to assess the yield and ultimate fracture
properties of the particular SMA.

In the current example, data derived from DSC testing is used to deter-
mine appropriate testing temperatures. Prior to testing, the sample is first
heated above Af (22◦C) to recover any transformation strain and then cooled
well below Mf (−20◦C) to ensure a fully martensitic material state. This
eliminates detwinned martensite which may have formed during inadvertent
(and unknown) deformations. The sample is subsequently tested at a temper-
ature below Mf such that martensite is the only stable phase. Testing consists
of stressing the material until detwinning completes and to some maximum
stress. The maximum stress is not known prior to testing. Rather, it is chosen
during the course of testing by noting that detwinning has completed. The
sample is then unloaded. The specimen temperature is finally homogeneously
increased until it is above Af , and any strain recovered is monitored.

The results from this test are shown in Fig. 2.12a. Using tangent lines we
can approximate the detwinning start and finish stresses as σs ≈ 140 MPa and
σs ≈ 170 MPa, respectively. We observe that a significant amount of strain is
recovered (6.2%), but some irrecoverable strain remains at the completion of
the SME test. This indicates that the material is not responding in a repeat-
able (stable) manner, and training may be required. Note also that the elastic
modulus for martensite is found to be 24 GPa.

T > Af :
The second monotonic test assesses material behavior at temperatures

greater than Af (i.e., possible pseudoelasticity). Here a loading/unloading
cycle is applied to the specimen at T = 30 ◦C, and nearly full pseudoelastic-
ity is observed with some residual plastic strain. These results are shown in
Fig. 2.12b. The martensitic elastic modulus found here is notably higher than
that observed in Fig. 2.12a. This is an important observation and is due to
the fact that some remnant austenite may remain at the end of loading. The
elastic modulus observed during unloading may then reflect a combination
of the moduli of both austenite and martensite. Note that, according to the
definitions in ASTM test method F-2516, the upper plateau stress or stress
at 3% strain during loading is � 300 MPa. By the same standard, the lower
plateau stress or stress at 2.5% strain during unloading is � 100 MPa.

Finally, if device design is a goal, it may be useful to determine the material
plastic yield and ultimate failure values. Such a test was not performed on the
current specimen, but can be easily accomplished. With respect to the yield
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and failure properties of martensite, one may employ a used SME specimen
to perform these tests. The critical stress for plastic yield is often notably
higher than the start and finish stresses for detwinning and should be easily
identified. Regarding determination of the austenitic yield limit, note again
that such a test must be performed at a temperature sufficiently above Af to
keep the material in the austenitic state (i.e., hot enough to prevent forward
transformation into martensite). The phase diagram (estimated or exact) can
be used to determine such an appropriate temperature. An additional material
property not yet considered, though commonly discussed, is the maximum
temperature at which austenite can be transformed to martensite via the
application of stress without first plastically yielding. This temperature is
often denoted Md.

Experiment 3: Determination of SME at Non-zero Stress Level

For actuators, it is important to observe not only that the zero-stress shape
memory effect is exhibited, but also that the material is able to perform
work by providing displacement while under some load. A simple test of this
behavior is a constant stress actuation test. In the case of uniaxial loading,
this is sometimes referred to as isobaric testing. To perform this test for the
current example, the material sample is heated well beyond Af (22 ◦C) and
then stressed to 200 MPa. This load is held constant while the temperature is
slowly and homogeneously lowered until forward transformation into marten-
site is completed. Finally, the temperature is slowly increased until reverse
transformation is completed. Throughout this test, the strain is monitored
and recorded. The results of this experiment are shown in Fig. 2.13a.
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Fig. 2.13. Results of constant stress thermal cycling (first cycle): (a) strain-
temperature loading curve, (b) determination of transformation temperatures at
stress.
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Before continuing with the next experiment in the characterization process,
it is appropriate to examine the results observed up to this point. This allows
proper planning of additional experiments.

Investigation of Transformation Strain Generation and the Phase
Diagram

After completion of the first three experiments, results can be examined and
the performance of the material can be assessed. Recalling the three proposed
classes of material properties (elastic, transformation criteria, and transfor-
mation strain properties), determination of any elastic parameters from the
experimental data is often quite straightforward. Properties from the other
two classes are addressed at this point.

The ability of the material to generate and then recover transformation
strain must be evaluated. It was observed that 6.2% transformation strain
was exhibited during stress-free SME testing (Experiment 2a). While this
value is important, it is usually more valuable to examine the amount of
strain recovered under load. To do so accurately requires not only measuring
the total strain generated during transformation, but also considering the
contributions of thermal and elastic strains. It is therefore necessary to review
the relationship between these quantities.

For the magnitude of strains conventionally experienced by SMAs, the
total strain can be additively decomposed into an elastic component, a trans-
formation component, and a thermal component (ε = εe + εt + εth). Because
the characterization of SMA samples is often 1-D in nature, simple relations
can be used to describe the elastic and thermal response at any point in the
loading path. In one dimension, the thermal strain may be simply given as
εth = α(T − T0) where α denotes the current thermal expansion coefficient.
This leads to the following common 1-D elastic relation:

σ = E[ε − εt − α(T − T0)]. (2.3.1)

Here the T0 is assumed to be the reference testing temperature. We can now
consider the stress found in the wire when it has been fully transformed into
one phase or the other. When the material is purely martensitic, it is fully
detwinned such that εt = Hcur (σ). In this pure martensitic state and at the
reference temperature ((T − T0) = 0), this yields the following for the stress
in terms of the current total strain:

σ = EM [ε − Hcur (σ)]. (2.3.2)

It is further assumed that when the material is purely austenitic, all transfor-
mation strain has been recovered (εt = 0). For materials in such an austenitic
state, this yields the following for the austenitic stress in terms of the total
strain:

σ = EA[ε − αA (T − T0)]. (2.3.3)
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Therefore, given one isobaric test at one given constant stress level (see
Fig. 2.13b), one can derive the maximum transformation strain by solving
both (2.3.2) and (2.3.3) for the current strain in each of the pure phases and
assuming a constant testing stress, σ. This yields:

εM =
σ

EM
+ Hcur (σ) , (2.3.4)

εA =
σ

EA
+ αA (T − T0), (2.3.5)

where εM and εA denote strain in a purely martensitic and purely austenitic
state, respectively. Observing Fig. 2.8b, the height of a given hysteresis is
Δε = εM − εA, which, considering (2.3.4) and (2.3.5), leads to the following
relation for the current maximum transformation strain at a given constant
stress test level:

Hcur (σi) = Δε + αA (T − T0) + σi

EM − EA

EMEA

(2.3.6)

Therefore, having determined the elastic moduli of martensite and austen-
ite, and using an appropriate common value for the austenitic coefficient of
thermal expansion (10−6 [3]), one can derive the maximum transformation
strain, Hcur (σi), exhibited under the application of each constant stress σi.
For the single test performed thus far (Fig. 2.13b) where σi = 200 MPa, this
is found to be Hcur (200) = 5.1%.

It is also important to determine at what stress and temperature states the
material can be expected to transform. The transformation criteria are best
understood via construction of the phase diagram, which describes the trans-
formation behavior in stress-temperature space. In relation to the progress
of the current example, it is now important to have an approximate under-
standing of the transformation behavior for the purpose of planning a suitable
cyclic loading experiment. To construct such an estimation requires two data
points per transformation surface, assuming the transformation boundaries
are approximately linear. The first set of points can sometimes be estimated
via DSC testing (Experiment 1) and indicate at what temperatures the trans-
formations begin and end under zero stress.

The second set of points can be determined from the constant stress actu-
ation cycle (Experiment 3), or from the constant temperature pseudoelas-
tic cycle (Experiment 2b), as applicable. Since the current example involves
material intended for actuation, here we determine the discrete transformation
temperatures at 200 MPa constant applied stress (Fig. 2.13a). For the purpose
of illustration, tangent lines are constructed and their intersections are used
to provide discrete values for these non-zero stress transformation tempera-
tures. This is illustrated in Fig. 2.13b. Here Mσ

s and Mσ
f represent the non-

zero stress forward transformation start and finish temperatures, respectively.
Likewise, Aσ

s and Aσ
f represent the non-zero stress reverse transformation
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start and finish temperatures, respectively. Plotting the stress-free transfor-
mation temperatures and the 200 MPa transformation temperatures in the
same stress-temperature space, an approximate phase diagram is constructed,
as shown in Fig. 2.14. While this approximate phase diagram is insufficient to
calibrate a model that accurately captures material behavior at all thermo-
mechanical states, it is useful to estimate at what states the material will be
fully austenitic and fully martensitic. It is also useful in planning the training
process, as previously mentioned.

Experiment 4: Determination of Cyclic Loading Effects (Training)

To determine the effects of cyclic loading on the thermomechanical response
of an SMA, the material is subjected to multiple transformation cycles. In the
case of a material intended for use as an actuator, a straightforward method
consists of applying many thermal transformation cycles under constant load
to the specimen. This is often referred to as training. If the goal of cyclic
loading is eventual stability of response, training loads (thermal and mechan-
ical) which exceed those expected in the application should be applied (see
also Sect. 1.6). For the current example, it will be seen that all further exper-
imentation is performed at stress levels of 200 MPa and below. A constant
stress of 200 MPa is therefore chosen for cyclic loading. A total of 80 thermal
cycles are applied and the results are shown in Fig. 2.15. Note that while the
initial strain response of the material evolves with each cycle, it eventually
stabilizes.
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As an alternative to constant temperature or constant stress cyclic loading,
application-based cycling may be used wherein an SMA specimen is stabilized
in the same manner in which it is used (e.g., a smart structure incorporating
active SMA elements is repeatedly actuated). The SMA components can then
be removed from the application context and tested in the standard manner.
Whatever stabilization or training method is used, it is important to remem-
ber that the particular choice of loading path used to train a specimen can
substantially influence the final material properties and should be carefully
chosen.

Evaluation of Stabilized or Trained Material

When a material has been cyclicly loaded and its response has evolved and
stabilized, it is necessary to repeat the most important tests of the character-
ization process to attain the new trained material properties. The results of
such repeated testing will be summarized below.

The first interesting and important result involves the effect of training
on the DSC test results. During training of polycrystalline SMAs, widespread
permanent dislocations are generated at the micro-scale within the mate-
rial. This results in a heterogeneous microscopic stress state, which, per the
behavior characterized by the phase diagram, results in transformation tem-
peratures that vary from locale to locale. Because this occurs throughout the
specimen, a distribution of localized transformation temperatures is expected.
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This “smoothing” diminishes the usefulness of the DSC results in ascertaining
the overall zero-stress transformation temperatures by effectively eliminating
the peaks observed during heating and cooling. Therefore, other methods of
determining these temperatures are often required after cyclic loading.

Recalling that the intended use of the material in the current example
is actuation under some non-zero load, it is clear that a repetition of the
stress-free shape recovery testing, or SME testing, is not necessary. Observa-
tion of the stabilized constant stress actuation behavior, however, is not only
important but necessary for the determination of several material parameters.
Determination of the temperatures at which the phase transformations begin
and end for different constant stresses allows construction of the final phase
diagram.

In addition, by examining the amount of strain generated during each iso-
baric cycle, one may derive a functional relationship between applied stress
and current maximum transformation strain for this stabilized material. To
this end, thermal cycles at constant stress are applied to the specimen. Stresses
ranged from ∼ 2.5 MPa to 200 MPa in ∼ 50 MPa increments. The low stress
test is important in not only determining the zero-stress transformation tem-
peratures, but also in indicating the presence of transformation strain genera-
tion at zero-stress (the so-called “two-way shape memory effect,” see Sect. 1.6).
The results of these constant stress tests are shown in Fig. 2.16.
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By examining the constant stress uniaxial test results, the amount of uni-
axial transformation strain generated by the material for a given constant
stress can be determined. This again requires that 2.3.6 be used to derive
the current maximum transformation strain Hcur (σi) exhibited under the
application of each constant stress level σi. The experimental plot of this
relationship is shown in Fig. 2.17. The dashed fitted curve represents the pro-
posed functional form of Hcur (σ) and highlights the tendency of the current
maximum transformation strain to saturate with increasing stress.

Finally, the phase diagram for the stabilized material is derived. To con-
struct the phase diagram (i.e., to determine the transformation temperatures
at various constant stress levels), tangent lines are again used as shown in
Fig. 2.18. Here the transformation temperatures are investigated for the mate-
rial under an applied stress of 150 MPa. The experimental phase diagram is
derived from a whole series of such tests and is shown in Fig. 2.19. Simple linear
regressions are used to schematically represent each of the continuous transfor-
mation surfaces. One key change from the untrained, estimated phase diagram
is the obvious broadening of the transformation regions (see Fig. 2.14). The
mechanisms behind this behavior are the same as those previously discussed
concerning the reduced usefulness of the DSC results. However, extrapolation
of the transformation surfaces supersedes the DSC in providing an accurate
indication of the zero-stress transformation temperatures.

The derived material properties for the experimental study summarized in
this example are given in Table 2.1. Most properties were determined for the
stabilized material, with the exception of elastic moduli.
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Fig. 2.17. Determination of exhibited maximum transformation strain as a function
of applied constant stress, trained material.
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Fig. 2.19. Experimentally derived phase diagram, trained material.

This concludes the general characterization process for a particular example
of SMA material. While interesting material behaviors such as fatigue, plastic
hardening, transformation-induced plasticity, or others could also be studied,
these will not be covered at this time. The intent of the above example was
an illustrated overview of the most common experiments. However, while the
characterization process for SMA specimens is conceptually straightforward,
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Table 2.1. Experimentally derived material parameters; trained material.

Material Parameter Value

EA 47 GPa
EM 24 GPa
σs 140 MPa
σf 170 MPa
Ms 3 ◦C
Mf −29 ◦C
As 12 ◦C
Af 26 ◦C
CA 8.3 MPa/ ◦C
CM 6.7 MPa/ ◦C
Hcur (σ) = Hcur (0) + (Hmax − Hcur (0))[1 − exp(−kHσ/EA)]

= 0.032 + (0.06 − 0.032)[1 − exp(−235σ/EA)]

there are many unique challenges that the SMA experimentalist must address.
Such considerations will now be discussed.

2.4 Experimental Considerations Unique to SMA
Thermomechanical Characterization

In the previous section, a description of a characterization procedure for SMAs
was given and instructions for the completion of each experimental step were
provided. However, the unique properties of SMAs are eventually manifested
as a set of important experimental details and challenges that must also be
discussed. These topics include consideration of loading rates, material sta-
tistical variation, material history, etc., and will be described with others in
more detail below.

2.4.1 Influence of Total Material History on Shape Memory
Behavior

As with other metals, the constitutive properties of shape memory alloys are
strongly dependent on several factors, including the exact alloy composition,
the particular heat treatments previously applied, prior history, and cold-
working. However, because SMAs undergo important microstructural changes
not attainable in other metallic systems, the material sensitivity to these
and other historical occurrences can be much higher in thermomechanical
response. The designer must be aware of these effects during the material
selection phase, and it is important that the experimentalist keeps these details
in mind to ensure accurate and representative testing.

The most influential characteristic of a material specimen is its alloy
composition. As previously reviewed (see Sec. 1.9), several alloy systems are
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known to exhibit shape memory behavior (NiTi, NiTiCu, NiMnGa, etc.), and
each has significantly different properties. It is reasonable that a change in
elemental constituents will cause a change in exhibited material behavior.
However, SMAs are also highly sensitive to the atomic balance when consid-
ering even just one alloy system (i.e., NiTi). A very small change in the balance
between nickel and titanium will noticeably affect properties, especially with
respect to the transformation temperatures. Furthermore, two material speci-
mens of nominally identical composition will often behave dissimilarly. In this
way, the sensitivity of shape memory alloys to composition surpasses that of
aluminum, iron and other more conventional metals. For SMAs, one cannot
often define a required set of material properties and then accurately choose a
material composition that will provide them (though it is possible to estimate
an appropriate composition).

It has also been shown that the exact thermomechanical response of an
SMA is highly sensitive to heat treatments. This is because imposed thermal
manipulations, such as high temperature soaks and rapid quenches, greatly
affect a metal at the microscopic scale. Internal stresses can be generated or
relaxed, and precipitates can be formed or dissolved. As with other metals,
alterations in the elastic, plastic and ultimate failure properties will occur. In
addition, transformation temperatures will shift, and even the ability of the
alloy to exhibit some effects will improve or degrade (i.e., pseudoelasticity).
For example, pseudoelasticity is rarely observed in some NiTi systems that
have been fully annealed and is only possible if sufficient precipitates are
formed via aging or other such treatments [25].

Like heat treatments, cold-working and hot-working performed during
material processing can significantly alter material behavior. Examples of such
working important to the SMA experimentalist include the drawing of raw
material into wires or the rolling of the material into plates. Such permanent
deformations can induce significant internal stresses while also altering the
configuration of the microstructure. The density of dislocations increases and
the configuration of precipitates formed during initial fabrication and heat
treatment can be altered (see Sect. 1.9.1).

Perhaps a more fundamental effect of such processes is the alteration of the
grain structure. Grains are often refined, but can also be notably reoriented,
inducing material anisotropy and texturing effects. Such material alterations
continue to occur during specimen preparation and testing. The thermome-
chanical conditions imposed during material specimen training are especially
influential on the final properties and should be chosen carefully. As with heat
treatments, microstructural changes incurred during working will alter both
the conventional and especially the shape memory properties of SMAs.

These and other considerations lead to an important conclusion, especially
when design of some application is the goal: to accurately characterize a mate-
rial, one must ensure that the configuration and history of the SMA test spec-
imen matches that of the SMA component used to the intended application
component.
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2.4.2 Comparison of Test Specimen to Intended Application
Component

For designers and analysts, the end goal of material characterization is often
the eventual ability to predict the response of some application, and care-
fully planned and executed characterization is required for such correct model
calibration. The material composition and loads chosen for characterization
must be highly representative of those found in the final application sys-
tem. Between the material intended for use in an application and the com-
plimentary material used for characterization, a one-to-one correspondence is
required for the following attributes, several of which have been previously
discussed:

1. The exact alloy composition.
2. The methodology of fabrication of the alloy component, including hot/cold

working and heat treatments.
3. The loading history of the material prior to use (i.e., thermomechanically

stabilized or untrained).
4. The stress state applied (e.g., axial, shear, or multicomponent).
5. The thermomechanical loading path applied, especially in relation to the

phase diagram.

The first two of these items are common to the characterization and appli-
cation of all classes of materials. It is necessary to characterize the same mate-
rial that is to be used in the application. This includes materials with the same
composition, same microstructural texture (as a result of any cold-working),
and same heat treatment history.

The third of these items also pertains to other material classes in some
degree. However, it is especially important for materials such as SMAs that
undergo large deformations and may, over some number of cycles, accumulate
significant irrecoverable plastic strain. The generation of this strain results
from significant changes in the microstructure of the material, indicating that
other material properties may have been altered. As an example, SMA speci-
mens that have been cycled many times and have generated significant plastic
strain will often exhibit less maximum transformation strain than was shown
before these cycles were applied. It is also common for the transformation
regions to broaden (i.e., the difference between Ms and Mf increases). Each
of these effects were observed in Section 2.3.1. In the case of a multi-use
actuator application, a stabilized material specimen should be characterized.
If an application is to be used very few times, or only once, as in the case
of some release mechanisms (see Sect. 1.10), then as-received, non-stabilized
specimens of identical composition should be characterized. Experimentation
itself necessarily imposes loading cycles and that material property evolution
is strongest during the first repetitions of loading. Thus, if as-received (non-
stabilized) behavior is required, used specimens should be replaced often with
new, untested specimens.
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It is also important to consider the applied stress state used to derive
the material constants. The similarity between the stress state applied dur-
ing characterization and that experienced by a component in an applica-
tion has been shown to affect the material parameter calibration accuracy.
Specifically, this concerns the distinction between extension vs. shear. Ten-
sion/compression asymmetry is also common, and this stress state should be
considered as well. If an SMA component undergoes loading consisting mainly
of axial tension and/or compression (i.e., wire or rod applications), uniaxial
testing should be used. For shear-based applications (i.e., torque tubes, etc.),
characterization in shear will often lead to more accurate modeling. In this
way GA and GM , the shear moduli for austenite and martensite, respectively,
may be directly and accurately determined. Furthermore, material for use
in tensile applications should be characterized in tension, and similarly for
compression.

Finally, let’s consider the thermomechanical (stress or temperature) load-
ing path applied to the SMA component of interest during common use.
Because the micromechanical consequences of repeated constant stress load-
ing may differ from those of repeated isothermal loading, material properties
measured in each of these two ways have been shown to differ significantly. If a
design requires an SMA component to undergo nominally isothermal loading
(i.e., vibration isolation and other pseudoelastic applications), then isother-
mal material characterization will be the most accurate. The same requirement
applies for components undergoing thermal actuation cycles.

2.4.3 Importance of Mechanical and Thermal Loading Rates

Recall that the forward transformation into martensite is exothermic while the
reverse transformation into austenite is endothermic. This introduction of the
latent heat phenomenon and resulting possible temperature changes during
the characterization process imposes additional constraints on the loading
rates applied to SMA specimens. The challenge is particularly applicable to
pseudoelastic testing. Such experiments are often performed at constant tem-
perature to simplify interpretation of the transformation behavior. During
loading, however, thermal energy can be added to the specimen if the heat
generated during the exothermic forward transformation is not dissipated. If
loading is performed slow enough, convective and conductive processes will
remove this additional heat without noticeably raising the specimen temper-
ature. If loading or unloading progresses too rapidly, the temperature of the
specimen will rise during loading and fall during unloading, violating any
isothermal assumptions.

Several studies have been performed to assess the influence of loading
rates on material response. Many of these address pseudoelastic loading
[12, 28, 29] and have found the thermal effects present during this exother-
mic/endothermic cycle to be significant, especially at higher rates. Through-
out the various research efforts in the area of shape memory alloys, many
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displacement and thermal loading rates have been suggested. For isother-
mal loading at any temperature, rates should not exceed ∼ 0.01-0.05%
strain/sec [12, 18]. This helps to ensure quasi-static testing. Others have also
explored the martensitic reorientation (detwinning) rate dependency in vari-
ous stress configurations and in various alloys [24, 30], and have shown that
the detwinning process is generally independent of the strain rate.

Finally, dynamic impact testing has also been performed in several stud-
ies [31, 32] and phenomenological model predications and experimental results
have been compared while others [33] have investigated martensitic transfor-
mation mechanisms under these dynamic loading conditions.

The use of reasonable strain rates is straightforward in strain-driven or
deformation-driven experimentation, but not all thermomechanical experi-
ments on metals are performed using prescribed strain or displacement inputs.
Most testing systems also provide the option to use force control, which may
present advantages in some situations. For example, using force control during
pseudoelastic unloading allows the experimentalist to set an exact ending force
value, such as 0 MPa or 7 MPa for ASTM standard testing [18]. However, for
SMAs exhibiting “flat” pseudoelastic loading/unloading plateaus, force con-
trol can lead to problems. A constant force rate that is suitable during the
elastic portion of loading quickly leads to an unacceptably high strain rate
during stress-induced transformation as the testing system seeks to provide
the same constant force rate. An example of this is shown in Fig. 2.20.

Here the main result involves a specimen undergoing two pseudoelastic
loading cycles at an ambient temperature of 37 ◦C (nominal). For the first
test, a strain rate of 0.05%/s was applied during both loading and unload-
ing. For the second test, a strain rate of 0.05%/s was applied during load-
ing, but a 0.08 N/s force rate was applied during unloading. In Fig. 2.20a
the forward loading (forward transformation) paths for both tests are nearly
identical while the unloading (reverse transformation) curves are not. Dur-
ing unloading, the use of force control in the second test caused high strain
rates as the material response reached the lower plateau stress. This in turn
caused a reduction in specimen temperature from 37 ◦C to 35 ◦C as seen in
Fig. 2.20b. This temperature change causes the unloading curve to follow a
different isothermal load path (i.e., the result for a test temperature of 35 ◦C)
at the end of reverse transformation.

Whatever the deformation rate imposed, the measurement of deformations
and strains requires careful attention. In some specimen configurations, the
stress-induced strains that result from martensitic transformation or reori-
entation can initiate at discrete locations and then propagate in a wave-like
manner along the length of the test section [34]. For this reason, devices such
as strain gauges with short gauge lengths are not particularly effective at
measuring the macroscopic strain. Instead, they have been shown to indi-
cate “jumps” in strain as transformation or reorientation is initiated in the
local region where the strain gauge is attached [12]. Extensometers, which
generally have larger gauge lengths, have been more effective for measuring
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phenomenological response. Furthermore, the initiation of phase transforma-
tion or martensite reorientation often occurs near the grips and this can lead to
inconsistencies when comparing strain measurement acquired over the entire
length of a specimen (i.e., via crosshead displacement) with those acquired in
a region of homogeneous stress (i.e., via extensometry).

It is also important to impose reasonable heating and cooling rates when
prescribed thermal variations are imposed. For specimens such as wires, direct
resistive Joule heating is common, while in other cases load frame-mounted
furnaces are required. To cool the specimen, conventional liquid baths such
as chilled water [12] or laboratory coolant [35] have been used, especially for
the testing of wires. For temperatures substantially below room temperature,
cooling can be provided by the use of liquid nitrogen [7]. While the mechan-
ical strain rates described above for isothermal testing are generally agreed
upon, appropriate heating and cooling rates are often more dependent on the
experimental system employed. Such rates must be carefully considered and
should be adjusted as necessary to ensure slow, homogenous heating/cooling
of the material sample test section.

2.4.4 Stochastic Variation in Material Response

One must also consider stochastic or statistical variation across different mate-
rial samples. The thermomechanical behavior from specimen to specimen and
test to test will often deviate noticeably from some nominal response. To cor-
rectly perform material characterization, several material samples for each
thermomechanical loading path are often required. Statistical variation may
be minimized by ensuring that samples are prepared from homogeneous bulk
material in a repeatable manner. However, despite such efforts, some variation
will occur and this must be accounted for during subsequent interpretation
of results, calibration of any models, design, and analysis. An example is pro-
vided in the ASTM standard for DSC testing (ASTM F-2004), where the
repeatability across multiple samples is briefly discussed [16]. This issue will
be further exemplified in Example 2 in the following section.

2.5 Examples of SMA Characterization

Having expanded on various details of SMA characterization, this section
highlights how different considerations affect both the planning and execu-
tion of material characterization. Here, three examples are presented. The
first demonstrates SMA wire specimens for use in a pseudoelastic application.
The second addresses pseudoelastic testing once more, though the focus is the
stochastic variation observed when several specimens are taken from the same
source material. Finally, the third example illustrates the derivation of mate-
rial parameters used to model an actuation application in which the material
used is not the common equiatomic NiTi.
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2.5.1 Example 1. Characterization of NiTi Wire Intended for
Pseudoelastic Application

For the first example of characterization, consider conventional, commercially
available NiTi wire, intended for use in an application requiring wire compo-
nents and stabilized material response. Because the material raw form (wire)
is the same as the form needed for the application, specimen preparation is
minimal. The application is used for vibration isolation research and thus
requires an SMA that displays pseudoelasticity at room temperature. The
as-received spooled wire fulfills this requirement.

As outlined above, the first step in the characterization process is the
estimation of the zero-stress transformation temperatures for the as-received
material. DSC testing was again used, and the results from this test are shown
in Fig. 2.21.

The next pertinent step is monotonic mechanical testing of the material.
However, in this example the response of the material below Mf was of little
interest, and the shape memory behavior of the material was not assessed. To
plan the pseudoelastic testing process, the experimentalist noted that the Af

temperature estimated from the DSC was ≈ 20 ◦C, below room temperature.
This indicates that the first loading path can be applied at room temperature.
However, to ensure that the wire temperature remains constant, a heating
and cooling system was installed to negate the effects of self-heating and self-
cooling during the exothermic and endothermic transformations (2.4.3). This
precaution was indeed a necessity as the applied strain rate of 0.13% strain/sec
used in this case exceeded the recommendations of Sect. 2.4.3.

The final decision left to the experimentalist was the maximum stress level
applied. It is common to decide on this value during testing, while monitoring
the stress in situ. The maximum stress should clearly exceed the end of forward
transformation, but should not be so high as to initiate permanent plastic
yielding.
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Fig. 2.21. Estimation of zero-stress transformation temperature using a DSC;
Example 1, as-received material.
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After an initial isothermal loading cycle was performed, the experimental-
ist noted acceptable results. Thus cyclic loading was commenced to stabilize
the material. Recall also that the intended application will be used at room
temperature. This further supports 21 ◦C as an optimal training temperature.
Training was performed by applying 15 sequential loading/unloading cycles
with a maximum stress of 700 MPa. The results for all applied cycles are shown
in Fig. 2.22, with the final cycle highlighted. No significant plastic strain is
generated at the end of this last cycle. This material exhibits relatively low
hardening with very distinct transitions from elastic to transformation.

With the material satisfactorily stabilized, the experimentalist repeats the
characterization process with the goal of deriving final material parameters.
Continuing, isothermal loading is applied to the trained wire specimens at dif-
ferent constant temperatures (25, 35, 45, and 55 ◦C). By noting where trans-
formations begin and end, a new, detailed, phase diagram can be constructed.
By measuring different shape parameters found in each pseudoelastic curve,
elastic properties and the maximum transformation strain can be derived as
shown below. Figure 2.23 shows the pseudoelastic curves for all four constant
temperatures at which the SMA wire was tested. To provide a more detailed
illustration of material parameter derivation, refer to Fig. 2.24, which shows
the material response during testing at 25 ◦C. Here EA and EM are mea-
sured in a straightforward manner. Although there appear to be two possible
martensitic elastic slopes in this figure (loading and unloading), the slope
during loading is influenced by very minor continuing transformation in some
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parts of the specimen. The slope during unloading is therefore more repre-
sentative of truly elastic response. Since the analysis and testing are for 1-D
case, νA and νM are not needed.

The next step is to determine the critical stresses for initiation and comple-
tion of phase transformation. At a known constant temperature, these stresses
are denoted as σMs and σMf for martensite and σAs and σAf for austenite.
The values for these stresses at a test temperature of 25 ◦C are shown in
Fig. 2.24. By examining the four isothermal pseudoelastic tests performed
(Fig. 2.23), one can determine the stresses for the initiation and completion
of both transformations at four distinct temperatures. Construction of the
phase diagram proceeds using this experimental data, and results for the cur-
rent case are shown in Fig. 2.25. The various material parameters found during
this experimental study are summarized in Table 2.2.

In addition to the determination of the final phase diagram, the maxi-
mum transformation strain, Hcur, was also derived. This value is found by
considering again (2.3.2) and solving it for Hcur. This yields the following
relation:

Hcur = ε − σ

EM
(2.5.7)

where the stress used in this relation to determine the current maximum trans-
formation strain is σMs. Therefore, given a set of pseudoelastic test results
such as those shown in Fig. 2.24, and considering an imagined martensitic
stress of zero, it can be inferred that the maximum transformation strain,
Hcur, is equivalent to the amount of strain indicated when the martensitic
elastic stress response is extrapolated to the zero-stress axis. This has been
shown in Fig. 2.24.

One key feature of these results is the incompatibility between the phase
diagram (Fig. 2.25) and the DSC results (Fig. 2.21). The DSC was per-
formed on the as-received specimen without any preparatory heat treatment
(see ASTM F-2004 [16]). The results indicate transformation temperatures
at zero-stress that do not agree with those derived from the phase diagram
via extrapolation. As mentioned previously, this apparent contradiction is not
uncommon in materials exhibiting R-phase transformations (e.g., nickel-rich
NiTi alloys).

Table 2.2. Experimentally derived material parameters; Example 1, trained
material.

Material Parameter Value

EA 55 GPa
EM 46 GPa
Ms −28 ◦C
Mf −43 ◦C
As −3 ◦C
Af 7 ◦C
CA = CM 7.4 MPa/ ◦C
Hcur (σ) = Hmax 0.056
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Fig. 2.25. Experimental estimation of phase diagram using pseudoelastic experi-
ments; Example 1, trained material.

2.5.2 Example 2. Characterization of NiTi Wire for Determination
of Stochastic Variation

This example is intended to illustrate only the effects of stochastic variation
across samples (see Sect. 2.3) where the effect of interest was pseudoelasticity.
Four NiTi (50.3 Ni, at.%) wire samples with a diameter of 2.16 mm were used,
each taken from the same original roll and prepared (i.e., heat treated) in a
consistent manner.

The zero-stress transformation temperatures of the material were first
determined via DSC testing. The heat flow curves for the heating portion
of the tests for each of the first three wires are shown in Fig. 2.26. Note the
slight variation in the results for wire specimens from the same source and
prepared in the same manner.
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Fig. 2.26. DSC results (heating cycle) showing slight variation across four wires;
Example 2, as-received material.
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Based on the results of the DSC, it was determined that 80◦C was an
appropriate constant temperature at which to test the pseudoelastic charac-
teristics of the wire samples. The first of the four specimens was loaded to
≈ 800MPa and then unloaded. Such a load was repeated 20 times to stabi-
lize the material. The results of this pseudoelastic testing can be seen below
in Fig. 2.27. Note the substantial reduction in the pseudoelastic hysteresis
caused by repeated application and removal of the load.

To assess the stochastic variation across multiple samples, this same
loading scheme was applied to each of the remaining three wire specimens.
Stress/strain results for the first cycle and the last cycle were then plotted
and compared. These results can be seen in Fig. 2.28. Here it is observed that
the statistical variation in the response of the specimens is not negligible, and
is more noticeable than the variation in their DSC results (Fig. 2.26). While
the qualitative behavior exhibited by the first cycle and the stabilized 20th

cycle is similar for all samples, there is a marked variation in each response.
Perhaps most notable is the inconsistency in the material hardening observed
in each wire during the final loading cycle. Such a result reiterates the need
for designers and analysts to always account for some statistical error when
deriving model parameters from experimental data. The material properties
averaged across the four samples are given in Table 2.3. Because tests were
not performed at varying temperatures, no accurate phase diagram parame-
ters were derived.
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Fig. 2.27. Results of repeated pseudoelastic testing of large diameter NiTi wires;
Example 2, training of material.
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Fig. 2.28. Results of pseudoelastic testing of multiple large diameter wire specimens
from same bulk NiTi material; Example 2, as-received and trained material.

Table 2.3. Experimentally derived material parameters; Example 2, trained
material.

Material Parameter Value

EA 38 GPa
EM 32 GPa
Hcur (σ) = Hmax 0.035

2.5.3 Example 3. Characterization of Ni60Ti40 (wt%) Plate
Intended for Actuation Application

This example pertains to the characterization of a NiTi alloy intended for use
in an actuation application. The material received for testing was in the form
of plates 267 mm long, 38 mm wide, and 1.8 mm thick. The SMA components
as utilized in the application were in a beam configuration, providing a bend-
ing moment to the aerostructure on which they were mounted. This implies
that the most prominent stresses within the SMA component would be axial
and would vary throughout the component. This experimental study provided
an opportunity to showcase how simple 1-D characterization could be used to
predict the performance of a 3-D SMA component experiencing complex inter-
nal stresses. Thus, careful and accurate model calibration was required. Also,
the application is intended to be used repeatedly. Stable material response is
then required.
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Fig. 2.29. Determination of zero-stress transformation temperatures using a DSC;
Example 3, as-received material.

Here, as before, the first step was to determine the zero-stress transforma-
tion temperatures via DSC testing. For this purpose, small portions (∼ 20mg)
were cut from the received plate with a low force saw. The results of DSC test-
ing are are shown in Fig. 2.29.

The next step was to subject the material to monotonic loading. The first
test was performed at T < Mf , and the results are given in Fig. 2.30a. As
is often the case, the maximum stress was not known beforehand but was
chosen during testing such that the majority of detwinning was completed,
yet obvious plastic yielding did not begin to occur. For some SMAs, such
as the material in this example, the detwinning start stress may be clearly
observed during testing while the detwinning finish stress may be less clear
(or completely obscured) due to significant material hardening and plastic
strain generation. In this case, an accurate determination of the detwinning
start stress is useful, and σs ≈ 140 MPa was calculated using tangent lines.
Upon unloading, the specimen was heated to above Af , and the recoverable
transformation strain was recorded. This material does not exhibit recoverable
strains of the same magnitude as those seen in equiatomic NiTi materials
(Sect. 1.9.1).

Following monotonic testing below Mf , such loading was repeated at
T > Af . A moderate load was applied and the elastic modulus of austenite
was determined. Because of the intended use of the material in an actuation
application, pseudoelasticity was not of direct interest and the specimen was
not loaded sufficiently to induce this effect. The results for T > Af are shown
in Fig. 2.30b.

The material specimen was then subjected to isobaric thermal cycles.
Based on knowledge of the stresses to be expected in the final application,
a moderate constant loading level of 150 MPa was chosen. The results of
this test are shown in Fig. 2.31. Note the significant amount of plastic strain
remaining at the end of the test, this indicates a certain need for material
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Fig. 2.30. Monotonic loading of Ni60Ti40 (wt. %) material in martensite and
austenite; Example 3, as-received material.
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Fig. 2.31. Results of first isobaric test at 150MPa; Example 3, as-received material.

training. Plotting both the zero-stress transformation temperatures and the
newfound 150 MPa isobaric transformation temperatures concurrently allows
for an initial estimation of the phase diagram. This can be seen in Fig. 2.32.

With an estimate of the phase diagram constructed, the material stabiliza-
tion procedure and apparatus were designed. Further review of the intended
application revealed that the maximum stresses in the beam actuators would
not exceed 300 MPa. Therefore, this was chosen as an appropriate stabiliza-
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Fig. 2.32. Initial estimate of the phase diagram; Example 3, as-received material.

tion constant stress level. To complete experimental design, the approximate
phase diagram was consulted, and it was determined that, for full reverse
transformation into austenite at this stress level, the entirety of the specimen
gauge length should be heated to ∼ 100 ◦C. A total of 100 thermal cycles
at a constant stress of 300 MPa were applied while the strain response was
monitored. In this case, training was performed at an accelerated rate; there-
fore, correct measurement of the specimen temperature was not guaranteed.
However, the end goal of training is the application of multiple cycles, not the
careful determination of specimen behavior. The training results are shown
in Fig. 2.33a. Note that the final cycle has been darkened. For each cycle,
the maximum strain represents the deformation in the martensitic state while
the minimum strain represents the austenitic response. The difference can be
used to derive the current maximum transformation strain per (2.3.6). Each
of these three strain measures was monitored with each cycle, and their evolu-
tion is shown in Fig. 2.33b. Note how the material begins to stabilize rapidly
in the first ∼ 20 cycles, and then more slowly after this.

After material training, the careful characterization process was repeated.
As the DSC is destructive (i.e., it requires a small portion to be cut from the
sample), it was not appropriate to perform this test at this time. Also, exhibi-
tion of the pseudoelastic effect is inconsequential considering the final applica-
tion. Therefore, the next goal was the determination of the functional form of
Hcur (σ). Multiple isobaric tests were performed at various stress levels, from
300 MPa down to 90 MPa and the results are shown in Fig. 2.34. The hys-
teresis height Δε was measured for each curve, and from these measurements
Hcur (σi) is derived via (2.3.6) (where σ1 = 300 MPa, σ2 = 250 MPa, etc). The
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Fig. 2.33. Results of 100 applied constant stress cycles at a stress of 300MPa;
Example 3.

results for the current experimental study are shown below in Fig. 2.35 along
with an analytical fit which suggests that an exponential form of Hcur (σ) is
appropriate.

Finally, an accurate phase diagram was determined. The transition tem-
peratures exhibited at each constant stress applied during isobaric testing
were plotted concurrently with an estimated transformation surface as shown
in Fig. 2.36. The material properties determined from these experiments are



100 2 Characterization of Shape Memory Alloy Materials

0.0%

0.3%

0.6%

0.9%

1.2%

1.5%

1.8%

-30 -10 10 30 50 70 90

Temperature (°.C)

S
tr

ai
n

300 MPa
250 MPa
200 MPa
150 MPa
120 MPa
90 MPa

Constant Stress 
Levels

Fig. 2.34. Isobaric thermal cycling results for six applied stress levels; Example 3,
trained material.

0.0%

0.5%

1.0%

1.5%

0 50 100 150 200 250 300

Applied Stress Test Level (MPa)

M
ax

im
u

m
 T

ra
n

sf
o

rm
at

io
n

 S
tr

ai
n

Exponential 
Fit

Fig. 2.35. Variation of maximum transformation strain with applied stress level;
Example 3, trained material.
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Fig. 2.36. Final experimental phase diagram derived from constant stress loading
paths; Example 3, trained material.

given in Table 2.4. To graphically summarize a portion of the characterization
process described in this example, Fig. 2.37 is also provided. Here is shown
how bulk material (raw SMA plate) is used to construct appropriate testing
specimens which are then subject to thermomechanical loading paths (cooling
via liquid nitrogen spray under constant load). This subsequently leads to the
generation of useful data which can be interpreted according to the methods
discussed in this chapter.

Table 2.4. Experimentally derived material parameters; Example 3, trained
material.

Material Parameter Value

EA 90 GPa
EM 63 GPa
Ms 23 ◦C
Mf −14 ◦C
As 22 ◦C
Af 49 ◦C
CA 16.0 MPa/ ◦C
CM 11.4 MPa/ ◦C
Hcur (σ) = 0.0135[1 − exp(−720σ/EA)]
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Fig. 2.37. Graphical summary of the thermomechanical characterization process
as used in Example 3.

2.6 Simple SMA Application Design and Empirical 1-D
Analysis

To begin the initial design of an SMA component for use in an engineering
application, one must be able to choose a suitable alloy composition and then
estimate the overall system response. To choose an alloy, knowledge of various
required design parameters is required, and this will be discussed below. For
the purposes of initial response estimation, a simple 1-D empirical model is
also described in this section.
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2.6.1 Application Design Considerations

The first and most fundamental step in the design of an SMA application is
the determination of the operational limits. From the discussion of these first
two chapters, it should be clear that important SMA behaviors are based on
the current stress-temperature state and loading history. Therefore, the phase
diagram represents the key design space. Using this tool, one can estimate
upper and lower bounds for the operating temperature and the required stress
range.

Furthermore, the limits on the maximum transformation strain for a given
material should also be considered. Each of these three limit determinations
are valuable in helping a designer choose a particular shape memory alloy
and subsequent thermomechanical treatment for a particular set of material
properties. Specifically, operation stress and temperature allow selection of the
transformation temperatures, and this knowledge, combined with estimates of
required actuation strain, further allow an alloy to be chosen.

Often, the most easily determined system parameter is the required oper-
ating temperature range of an active SMA component. It is estimated by con-
sidering the ambient temperature, the ability to heat the SMA element (power
availability), and the ability to cool the element (via active cooling or heat
conduction/convection). The operating stress range is defined by considering
the SMA component loading path, especially in stress-temperature space. For
example, pseudoelastic components usually undergo large variations in stress
over time while some actuators may experience large temperature variations
with little stress deviation.

With a stress-operating temperature envelope defined, one can now esti-
mate the zero-stress transformation temperatures required of an SMA mate-
rial for a given application. Knowledge of these temperatures is key to choosing
a particular shape memory alloy. An example of such an operational envelope
is given in Fig. 2.38. On a stress-temperature phase diagram, one should first
identify the points (Tmin, σmin) and (Tmax, σmax). These are the estimated
minimum and maximum stress and temperature states that the application is
expected to apply to the installed SMA component of interest. For complete
phase transformation, the maximum temperature must exceed the non-zero
stress austenitic finish temperature Aσ

f as computed at maximum stress (i.e.
Tmax ≥ Aσ

f , σ = σmax) and likewise, during cooling (Tmin ≤ Mσ
f , σ = σmin).

Assuming a simple linear relationship between stress and temperature on the
transformation lines in the phase diagram, one may then select reasonable
slopes (stress influence coefficients). Values for CA and CM from 5 MPa/K
to 10 MPa/K are generally the most reasonable. Extrapolating down to the
zero-stress axis via relations (2.6.8), Af and Mf can be found (assuming com-
plete actuation is required).

Af ≤ Tmax − σmax

CA
Mf ≥ Tmin − σmin

CM
(2.6.8)
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Fig. 2.38. Example of SMA application design space.

The shaded area in Fig. 2.38 designates the operating regime of the SMA
actuator. A possible actuation path is shown as 1-2-3-4, point 1 being the
starting point, 2 being the temperature for transformation initiation under
σmin, 3 the temperature for actuation completion under σmax, and 4 being
the temperature for the initiation of transformation back to the original con-
figuration or state, 5.

The determination of the required actuation strain is the final step in deter-
mining a suitable alloy. This can be derived from the amount of mechanical
motion required of a given actuator and is thus application-specific. For one-
time use elements, one can effectively utilize actuation strains that are near the
maximum attainable by a given alloy, i.e., up to 8% for NiTi (Sect. 1.9.1). How-
ever, for elements that are used repeatedly, lower transformation strains are
favorable as they increase fatigue life and decrease plastic strain development.
Considering the known operating temperature, stress and strain, it is now
possible to choose an appropriate shape memory alloy. For many conventional
applications, NiTi will suffice. It is both relatively affordable and widely avail-
able. However, for specialty applications, other alloys should be researched.
A summary of approximate material parameters for various common SMAs,
including NiTiPd for use at high temperatures, is given in Table 2.5. Recall
that representative transformation temperatures were provided in Table 1.1.

For many applications using simple SMA components subject to uniform
or near-uniform stress states (i.e., wires, torque tubes), one can also consider
the end states of operation. These represent the device configurations or states
at the end of forward and reverse transformation, or when the component has
fully transformed in martensite and austenite. To do so requires only the use of
(2.3.2) and (2.3.3), coupled with additional relations describing the operation
of the device (e.g., external forces, biasing spring loads, etc.). These above
equations require only the distinctive properties of pure austenite and pure
martensite. We must develop a more complete material model to predict the
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Table 2.5. Approximate material properties for various SMA material systems

Property NiTi NiTiCu NiTiPd CuAlNi

EA 70 GPa 50GPa 15 GPa 90GPa
EM 30 GPa 25GPa 25 GPa 80GPa
ν 0.3 0.3 0.3 0.3
α 10 · 10−6/ ◦C 10 · 10−6/ ◦C 10 · 10−6/ ◦C 15 · 10−6/ ◦C
CA 7 MPa/ ◦C 10MPa/ ◦C 5 MPa/ ◦C –
CM 7 MPa/ ◦C 10MPa/ ◦C 5 MPa/ ◦C –
Hmax 6% 5% 3% 4%
ρ 6500 kg/m3 6500 kg/m3 8200 kg/m3 7500 kg/m3

σy 700 MPa 600MPa 400 MPa 300MPa

system response during phase transformation. A simple empirical 1-D example
is derived next, and full 3-D modeling accounting for more complex material
behaviors will be introduced throughout the remainder of this book.

2.6.2 Experimentally-Based 1-D Material Model

Based on the experimental results presented throughout this chapter and in
Chapter 1, we can derive a simple empirical 1-D material model to capture
the overall material behavior. Furthermore, we can use the material param-
eters discussed in this chapter and derived in the examples to calibrate such
a model. Of course, for complex engineering applications of SMAs using 3-D
components, such a model is not appropriate. However, it is useful for the
design and analysis of applications based on SMA components undergoing
homogeneous stress with only one component (i.e., uniaxial or shear stress).
For simplicity, the model derived below does not account for partial trans-
formation, which is the subject of Problem 2.10 at the end of this chapter.
Additional empirical assumptions will be described as the model is derived.

Relations for the stable, fully transformed material state have already been
given in (2.3.3) and (2.3.2), which follow easily from (2.3.1). Here we seek to
account for 1-D material response during transformation as well. The model
is derived based on the same “strength of materials” understanding of the
constitutive behavior as was previously employed, and uses the total marten-
sitic volume fraction, ξ, to track the progression of the phase transformation.
Specifically, ξ = 0 when the material is fully austenitic, or in the parent phase,
and ξ = 1 when the material is fully martensitic.

Recall Sect. 2.2.3 regarding Hcur (σ) and Hmax: a material transforming
into pure detwinned martensite will exhibit the maximum attainable trans-
formation strain, Hmax. However, a material transforming into martensite of
multiple variants will generate a recoverable strain that depends on stress,
Hcur (σ). In this model, and in all models presented in Chapters 3–6, ξ will
denote the total martensitic volume fraction, which may include multiple vari-
ants (fully twinned, fully detwinned, or some combination). Because Hmax is
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exhibited when only pure detwinned martensite is present, we can also define
a relation that gives the detwinned martensitic volume fraction as:

ξd =
Hcur (σ)
Hmax

ξ (2.6.9)

Of course it is straightforward to see that we could also give the twinned
martensitic volume fraction as:

ξt = ξ − ξd =
Hmax − Hcur (σ)

Hmax
ξ (2.6.10)

To continue, only ξ is considered and the following three assumptions are
made:

• Assumption 1: The elastic stiffness, unique for each phase, varies linearly
with varying martensitic volume fraction. This is consistent with a rule
of mixtures approach to accounting for austenitic and martensitic elastic
stiffness. In more complex models, other relations employing the methods
of micromechanics are sometimes used.

E = EA + ξ(EM − EA) (2.6.11)
• Assumption 2: The coefficient of thermal expansion (α) is a constant.
• Assumption 3: The 1-D transformation strain varies linearly with vary-

ing total martensitic volume fraction such that:

εt = ξHcur (σ) (2.6.12)

Note that the sign of Hcur is dependent on the particular stress applied
(i.e., Hcur ≥ 0 for tensile stress, Hcur ≤ 0 for compressive stress). Substituting
these two relations into (2.3.1) yields:

σ = [EA + ξ(EM − EA)][ε − ξHcur (σ) − α(T − T0)] (2.6.13)

To further capture transformation behavior, it is necessary to use the phase
diagram that captures the critical 1-D stress and temperature states at which
transformation is induced and completed. From observation of the numerous
phase diagram examples shown throughout the chapter, the following assump-
tion is inferred:

• Assumption 4: The transformation start and finish temperatures at a
given stress (e.g., Mσ

s and Aσ
f ) are linearly related to the applied stress.

This implies the following relations:

Mσ
s = Ms +

σ

CM
(2.6.14)

Mσ
f = Mf +

σ

CM
(2.6.15)

Aσ
s = As +

σ

CA
(2.6.16)

Aσ
f = Af +

σ

CA
(2.6.17)
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To complete the 1-D empirical model, the evolution of martensitic volume
fraction with changing stress-temperature state must be addressed. A final
assumption is then required.

• Assumption 5:
– During forward transformation, the martensitic volume fraction, ξ, lin-

early increases with decreasing temperature from Mσ
s to Mσ

f . Because
Mσ

s − Mσ
f = Ms − Mf , this can be written as:

ξ =
Mσ

s − T

Ms − Mf

(2.6.18)

– During reverse transformation, the martensitic volume fraction, ξ, lin-
early decreases with increasing temperature from Aσ

s to Aσ
f . Because

Aσ
f − Aσ

s = Af − As, this can be written as:

ξ =
Aσ

f − T

Af − As

(2.6.19)

This is schematically illustrated in Fig. 2.39 where forward transforma-
tion is shown in Fig. 2.39a and reverse transformation in Fig. 2.39b. Note
that this assumption on the evolution of ξ is applicable regardless of the arbi-
trary loading path experienced by the SMA material. Whenever the stress-
temperature state is within the transformation region, the current transfor-
mation temperatures at given (non-zero) stress can always be calculated via
(2.6.14)–(2.6.17).

Assumption 5 combined with previous assumptions allows us to define
the martensitic volume fraction for all points on the phase diagram when
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(b) Reverse transformation.

Fig. 2.39. Schematic illustrating the assumed transformation behavior for the evo-
lution of martensitic volume fraction.
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cooling/loading into martensite and when heating/loading into austenite. The
relations for ξ are given below where (2.6.14) and (2.6.17) are substituted into
(2.6.18) and (2.6.19), respectively.

For loading/cooling into martensite, the martensitic volume fraction is
given as:

ξ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, T ≥ Mσ
s ,

Ms +
σ

CM
− T

Ms − Mf

, Mσ
f < T < Mσ

s ,

1, T ≤ Mσ
f ,

(2.6.20)

while for loading/heating into austenite is given as:

ξ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, T ≤ Aσ
s ,

Af +
σ

CA
− T

Af − As

, Aσ
s < T < Aσ

f ,

0, T ≥ Aσ
f .

(2.6.21)

Using (2.6.13) combined with either (2.6.20) or (2.6.21), as appropriate,
there are sufficient relations to describe the 1-D SMA behavior during both
transformation (0 < ξ < 1) and thermoelastic loading (ξ = 0 or ξ = 1). Recall
that this model in its current form does not account for partial transformation.
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Fig. 2.40. Comparison of experimental pseudoelastic results and 1-D empirical
model predictions (cf. Example 1, Sect. 2.5.1).
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This model has been used to present the pseudoelastic results shown in
the first example in Sect. 2.5.1. The material properties used to calibrate the
model are given in Table 2.2. Here (Fig. 2.40) the isothermal responses at
35 ◦C and 55 ◦C are shown, and the model accurately captures the material
behavior.

Finally, note that the 1-D relations given above can be re-written for homo-
geneous shear. Several engineering applications of SMAs utilize shear defor-
mation, and many of these include torque tube components. For sufficiently
thin SMA torque tubes, the variation in stress and strain through the wall
thickness is small enough to be negligible. For the design of such applications,
it is advantageous to utilize an analytical model such as that given above to
approximate the actuation behavior. This requires that the relations above be
rewritten for shear, where, for example τ and γ denote shear stress and strain,
respectively, and γ = 2ε12. For such a model, material calibration should be
formed using experimental data taken from shear loading.

2.7 Summary

Understanding the experimental characterization of shape memory alloys is
important not only for those who plan to quantify material properties, but
also for those analysts and designers who must form a solid understanding of
SMA behavior. As with characterization of any material, known inputs are
applied and exhibited outputs are monitored and evaluated. As one becomes
more familiar with the uncommon properties of shape memory alloys, an intu-
ition into the material response to a given thermomechanical load is formed.
An understanding of the simple 1-D phenomenological response allows the
construction of empirical material models, as exemplified above. As this under-
standing grows, the formulation and refinement of more advanced theoreti-
cal models that explain or even predict more complicated behavior becomes
possible.

Furthermore, once a model has been proposed, numerical implementation
is necessary to convert a theory into a useable tool for the design and analysis
of engineering applications. The formulation and calibration of various models
and their numerical implementation will be the topic of the remainder of this
book.

2.8 Problems

2.1. Recall that the determination of the stress-free transformation temper-
atures As and Af can be performed using either DSC or free bend recovery.
How might the temperatures determined by these two methods differ? What
would cause such a difference?
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2.2. Describe two other methods by which all four stress-free transformation
temperatures could be experimentally determined and which does not involve
the measurement of heat flow (i.e., DSC) or deformations (i.e., bend and free
recovery).

2.3. In the experimental work performed by Shaw and Kyriakides [12], a fluid
bath was employed for most isothermal tests. Why was such an experimental
setup used? Explain the consequences of using an ambient air environment
instead.

2.4. Consider further the experimental work performed by Shaw and Kyri-
akides [12]. Explain the mechanisms that lead to the significant variation in
“strain” as measured via crosshead displacement (Δl/l0) vs. measurement by
locally-mounted extensometers (ε) (see “Figure 12d” in the referenced work).

2.5. Consider the isothermal stress-strain experimental results shown in
Fig. 2.6b. From these results, determine appropriate material parameters.
Assume material isotropy.

a) Determine the elastic stiffnesses of the material.
b) Construct the phase diagram for this material configuration.
c) Determine a suitable maximum transformation strain. Does the amount

of transformation strain generated during forward transformation vary
significantly with increasing upper plateau stress level?

2.6. Consider the constant stress experimental results shown in Fig. 2.41.
From these results, determine the material parameters assuming material
isotropy.
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Fig. 2.41. Example of isobaric strain-temperature experimental results for near-
equiatomic NiTi.
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a) Use the elastic properties from Problem 2.5.
b) Construct the phase diagram for this material configuration.
c) Determine a suitable function to describe the maximum transformation

strain at all effective stress levels.

2.7. Consider the experimental work performed and reported by Miyazaki et
al. [7].

a) Using the data in “Fig. 1” from this reference, reconstruct and complete
the phase diagram shown in “Fig. 2” (i.e., add the transformation finish
surfaces).

b) Based on this phase diagram, approximate three distinct strain-
temperature cyclic responses if this material is subjected to full thermal
cycles at three distinct constant stresses.

2.8. Determine the three thermomechanical states (i.e., stress-strain-
temperature states) of an SMA wire with a length of 0.5 m and a diameter of
0.25 mm if it is initially unstressed at T = −10 ◦C (Point 1), then subjected
to a constant load of 15 N at −10 ◦C (Point 2), then heated to 150 ◦C (Point
3). Sketch these points and the connecting paths on the phase diagram, on a
stress-strain plot, and on a strain-temperature plot.

a) Use the material properties from Problem 2.5.
b) Use the material properties from Problem 2.6.

2.9. Determine the three equilibrium states of the SMA wire from Problem 2.8
if it is initially unstressed, then placed in opposition to an elastic spring with a
spring constant of 4 N/mm with a prestress of 75 MPa at −10 ◦C, then heated
to 150 ◦C. Sketch these paths on the phase diagram and on a stress-strain
plot.

a) Use the material properties from Problem 2.5.
b) Use the material properties from Problem 2.6.

2.10. Repeat Problem 2.8 using the simple 1-D model derived in Sect. 2.6.2.
Specifically, derive and plot the continuous analytical solution of the wire
stress-strain response. (Hint: The solution must be determined incrementally
to account for the beginnings/endings of transformation.)

2.11. Consider the case in which two SMA rods are arranged as shown in
Fig. 2.42 where both rods exhibit the material properties from Problem 2.5.
The cool wire is assumed to be initially fully detwinned and the initial tensile
stress level in both rods is given.

a) If rod 1 is heated from T0 to Tf , and then cooled back to T0, determine the
thermomechanical states (stress, strain, and temperature) at the end of
heating and at the end of cooling. Plot these two points on an approximate
quantitative phase diagram.

b) Repeat the case where the temperature of rod 2 is a constant 100 ◦C.
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0.5m0.5m

SMA 
Rod 1

SMA 
Rod 2

T0=0°.C
Tf=100°.C

T=200°.C
(Constant)

σ0=75 MPa

Fig. 2.42. SMA rods in an “antagonistic” configuration.

(Hint: The solution must be determined incrementally using the model in
Sect. 2.6.2.)

2.12. For the simple 1-D model presented in Sect. 2.6.2, add the necessary
relations to account for partial transformation. Model a case of isothermal
loading at T = 40 ◦C using the material parameters given in Table 2.2. Load
the material such that ξ reaches a value of 0.5, and then unload. At what stress
does ξ reach 0.5? At what stress state should reverse transformation begin?
(Hint: Consider reformulating 2.6.21 considering that ξ must be continuous.)

2.13. An SMA wire has length 2L, diameter D, and maximum transforma-
tion strain Hcur = Hmax. It is initially in a twinned martensitic state and is
installed between two rigid supports in a stress-free, straight configuration. A
weight W sufficient to induce and complete detwinning is then hung on the
wire. This configuration is shown in Fig. 2.43. Assuming that EA = EM , deter-
mine the initial angle θi just after the weight is added. Furthermore, determine
the elevation, e, of the weight when the wire becomes fully austenitic upon
heating. For the case of EA 	= EM , find the new elevation and compare its
percent difference with respect to the previous case. For this problem you may
neglect any influence of thermal expansion and the weight of the wire itself.

W

θi
θi

e

SMA

Fig. 2.43. Weight suspended from an SMA wire.

2.14. Consider a composite cylinder as shown in Fig. 2.44, formed by first
expanding a martensitic SMA cylinder to an inner radius R through a detwin-
ning process which causes a tangential transformation strain of εt

θ = 0.03. The
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R
P

tSMA

ts

SMASteel

Fig. 2.44. SMA/steel composite cylinder of radius R and subjected to internal
pressure P .

SMA cylinder is then brought over a steel cylinder of outer radius R. Assume
that the thicknesses of both cylinders are very small compared to their radius
(i.e., tSMA 
 R and ts 
 R). The composite cylinder is pressurized by an
internal pressure, P , while it is held between two rigid surfaces that allow
only radial expansion or contraction but not any axial deformation. The com-
posite cylinder is then subjected to a uniform temperature change, sufficient
to cause 90% phase transformation of the SMA from detwinned martensite
to austenite, while small enough to neglect any thermal expansion mismatch
effects. Determine the stress in both the steel and the SMA cylinders for
the case ts = tSMA = 0.03R. Assume also that Es = 200 GPa, νs = 0.3;
ESMA = 30 GPa, νSMA = 0.3 (Both austenite and martensite elastic proper-
ties are assumed to be the same).

2.15. Describe the feasibility of the following SMA/SMA antagonistic actua-
tor composed of two concentric cylinders. Assume that the inner SMA cylinder
is prestrained axially until εt = 0.056 and then relaxed at T < As, at which
time it is equal in length to the outer SMA cylinder. The outer cylinder, also
at T < As, remains in a twinned martensite state (εt = 0). The actuator is
assembled at a temperature below As and this assembly is shown below in
Fig. 2.45 in the stress-free configuration. The actuator length L = 150 mm and
the cross-sectional area is 50 mm2 for both SMA cylinders. Use SMA prop-
erties from Table 2.2. Assume that when the inner SMA cylinder is heated
above As, the outer remains at a temperature below As.

a) By assuming a uniaxial stress state in the cylinder assembly, find the max-
imum actuation force that the actuator can generate (actuator “blocking
force”) as the temperature of the inner cylinder is raised to Af .
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b) Determine the stroke of the actuator for actuation force of 10% of the
blocking force.

SMA, T<AsSMA
prestrained, heated

F

Rigid

L

Fig. 2.45. SMA/SMA concentric cylinder antagonistic actuator.

2.16. Consider the cyclic response of an SMA-linear antagonistic actuator,
shown in Fig. 2.46, under temperature variations. Use SMA properties for
NiTi from Table 2.5. The length of both SMA bars is 150 mm and their cross-
section is 25 mm2. The initial state of the SMA actuators is martensitic with
the left SMA prestrained to εt = 0.06. The initial assembly of the antagonistic
actuation system is such that each SMA component is stress free. An SMA
thermal history will be considered whereby the temperature of a component
is heated from its initial temperature T0 < As to a maximum temperature of
Tmax = As + 50 ◦C and then cooled to Tmin = Ms − 50 ◦C.

a) Determine the actuator system blocking force Fblock by finding the maxi-
mum force when point A is constrained (zero displacement) while the left
SMA actuator is heated to Tmax.

b) Consider the following heat/cool cycle: the right actuator, which is initially
in a unstressed twinned martensite state, remains at T0 while the left SMA
actuator is heated to Tmax and then cooled to Tmin, after which the right
actuator is heated to Tmax and then cooled to Tmin. This heating/cooling
cycle is alternately applied to the right and left actuators until the system
response stabilizes. Assuming F = 0.5Fblock, determine the cyclic response
of the actuator by plotting the displacement of point A with respect to
temperature for several temperature cycles until a repeatable actuation
path is reached.

A F

L L

Fig. 2.46. SMA linear antagonistic actuator.
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c) Discuss the advantages and disadvantages of this form of antagonistic
actuator when compared to the configuration described in Prob. 2.15.

2.17. Figure 2.47 shows an SMA-powered automobile designed and con-
structed by freshmen engineering students at Texas A&M University. This
vehicle uses a ”10-cylinder” NiTi SMA engine as opposed to a conventional
internal combustion engine.

The SMA wires have material properties as given for NiTi in Table 2.5.
The 10 wires are each prestrained to εt = 0.06 prior to installation on the
automobile and the bias springs, once attached, apply a nearly constant force
resulting in a stress of 150 MPa. The diameter of the wires is 0.15 mm and
their length is 80 mm. The repeating process of “firing” all 10 SMA pistons
is assumed to take 10 seconds per cycle, with each wire heated independently
and for an equal amount of time to Tmax = 80 ◦C > Aσ

f . Cooling is convective
and Tmin = 30 ◦C < Mσ

f . The duty cycle for each wire is 10% heating, 90%
cooling. The electrical resistivity of the SMA material is 80μΩ-cm, the latent
heat of transformation is 20 J-g−1, and the heat capacity is 0.32J ◦C−1g−1.
The car is powered by a 9 V battery.

a) Find the horsepower of this SMA automobile engine. Estimate its effi-
ciency as a “green” electric car.

b) What would be the required cross-sectional area of 10 SMA wires (or
rods), each with a length of 1.0 m, to design a 100 HP engine? How much
electric power would be required to operate such an SMA engine?

Fig. 2.47. SMA-powered 10 “cylinder” automobile (SMA wires accentuated for
clarity).
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2.18. Consider the SMA-actuated grippers shown in Fig. 2.48 (where all
dimensions are given in mm). A single NiTiCu SMA wire with a diameter
of 0.6 mm and properties as given in Table 2.5 is attached to the gripper at
two locations, one on each jaw. The attachment points are shared with a bias
spring that has a spring constant of k = 0.5 N/mm. The SMA wire also passes
over three pulleys: two are symmetric and adjustable and the third is located
on the gripper axis of symmetry. Before installation in a stress free state (grips
closed), the SMA wire is prestrained to 5% transformation strain. The preload
in the spring when the grips are closed is 25 N.

Moving outward from the centerline, the first adjustable pulley position
is located 40 mm from the centerline of the grippers. Five additional possible
positions are spaced 10 mm apart along a line perpendicular to the centerline
(see Fig. 2.48).

9060
220

55

30
40

k

SMA
(Martensite)

(a)

SMA
(Austenite)

(b)

Fig. 2.48. SMA gripper as discussed in Problem 2.18 (all dimensions in mm); a)
closed configuration; b)open configuration.
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Determine the optimal symmetric pulley position such that the opening
motion of the grips is maximized when the SMA is heated into full austenite.
Do not allow the SMA stress to exceed 70% of the yield stress. Repeat for the
case where the spring constant is doubled to 1.0 N/mm. Repeat once more if
the preload on the spring is 50 N. How could this design be improved if there
were no constraints on the location of the symmetric pulleys?

References

[1] W. Buehler, R. Wiley, The properties of TiNi and associated phases,
Tech. rep., U.S. Naval Ordnance Laboratory (1961).

[2] C. M. Jackson, H. J. Wagner, R. J. Wasilewski, 55-Nitinol—The alloy
with a memory: Its physical metallurgy, properties and applications,
Tech. Rep. NASA SP-5110, NASA Technology Utilization Office, Wash-
ington, D.C. (1972).

[3] K. Otsuka, C. M. Wayman (Eds.), Shape Memory Materials, Cambridge
University Press, Cambridge, 1999.

[4] J. Perkins, Shape Memory Effects in Alloys, Plenum Press, New York,
1975.

[5] H. Funakubo (Ed.), Shape Memory Alloys, Gordon and Breach Science
Publishers, 1987.

[6] X. Ren, K. Otsuka, Universal symmetry property of point defects in
crystals, Physical Review Letters 85 (5) (2000) 1016–1019.

[7] S. Miyazaki, K. Otsuka, Y. Suzuki, Transformation pseudoelasticity and
deformation behavior in a Ti-50.6at%Ni alloy, Scripta Materialia 15
(1981) 287–292.

[8] Z. Bo, D. C. Lagoudas, Thermomechanical modeling of polycrystalline
SMAs under cyclic loading, Part I: Theoretical Derivations, International
Journal of Engineering Science 37 (1999) 1089–1140.

[9] D. C. Lagoudas, Z. Bo, Thermomechanical modeling of polycrystalline
SMAs under cyclic loading, Part II: Material characterization and exper-
imental results for a stable transformation cycle, International Journal of
Engineering Science 37 (1999) 1141–1173.

[10] Z. Bo, D. C. Lagoudas, Thermomechanical modeling of polycrystalline
SMAs under cyclic loading, Part III: Evolution of plastic strains and two-
way shape memory effect, International Journal of Engineering Science
37 (1999) 1175–1203.

[11] Z. Bo, D. C. Lagoudas, Thermomechanical modeling of polycrystalline
SMAs under cyclic loading, Part IV: Modeling of minor hysteresis loops,
International Journal of Engineering Science 37 (1999) 1205–1249.

[12] J. Shaw, S. Kyriakides, Thermomechanical aspects of NiTi, Journal of
the Mechanics and Physics of Solids 43 (8) (1995) 1243–1281.



118 2 Characterization of Shape Memory Alloy Materials

[13] T. Duerig, K. Melton, D. Stockel, C. Wayman (Eds.), Engineering
Aspects of Shape Memory Alloys, Butterworth-Heinemann, London,
1990.

[14] ASTM International, Standard Terminology for Nickel-Titanium Shape
Memory Alloys (2005).

[15] ASTM International, Standard Specification for Wrought Nickel-
Titanium Shape Memory Alloys for Medical Devices and Surgical
Implants (2005).

[16] ASTM International, Standard Test Method for Transformation Temper-
ature of Nickel-Titanium Alloys by Thermal Analysis (2005).

[17] ASTM International, Standard Test Method for Determination of Trans-
formation Temperature of Nickel-Titanium Shape Memory Alloys by
Bend and Free Recovery (2003).

[18] ASTM International, Standard Test Method for Tension Testing of
Nickel-Titanium Superelastic Materials (2006).

[19] ASTM International, Standard Test Method for Tension Testing of
Metallic Materials (2004).

[20] H. Sehitoglu, I. Karaman, R. Anderson, X. Zhang, K. Gall, H. J. Maier,
Y. Chumlyakov, Compressive response of NiTi single crystals, Acta Mate-
rialia 48 (13) (2000) 3311–3326.

[21] H. Sehitoglu, I. Karaman, X. Y. Zhang, H. Kim, Y. I. Chumlyakov, H. J.
Hans Maier, I. Kireeva, Deformation of NiTiCu single crystals in com-
pression, Metallurgical and Material Transactions A 32 (2001) 477–489.

[22] ASTM International, Standard Test Methods of Compression Testing of
Metallic Materials at Room Temperature (2000).

[23] J. T. Lim, D. L. McDowell, Mechanical behavior of a Ni-Ti shape mem-
ory alloy under axial-torsional proportional and nonproportional loading,
Journal of Engineering Materials and Technology 121 (1999) 9–18.

[24] A. Keefe, G. Carman, Thermo-mechanical characterization of shape
memory alloy torque tube actuators, Smart Materials and Structures
9 (2000) 665–672.

[25] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory
alloys, Progress in Materials Science 50 (2005) 511–678.

[26] E. Patoor, D. C. Lagoudas, P. B. Entchev, L. C. Brinson, X. Gao, Shape
memory alloys, Part I: General properties and modeling of single crystals,
Mechanics of Materials 38 (5–6) (2006) 391–429.

[27] D. C. Lagoudas, P. B. Entchev, P. Popov, E. Patoor, L. C. Brinson,
X. Gao, Shape memory alloys, Part II: Modeling of polycrystals, Mechan-
ics of Materials 38 (5–6) (2006) 430–462.

[28] B. Chang, J. Shaw, M. Iadicola, Thermodynamics of shape memory alloy
wire: Modeling, experiments, and application, Continuum Mechanics and
Thermodynamics 18 (1–2) (2006) 83–118.

[29] C. Lexcellent, J. Rejzner, Modeling of the strain rate effect, creep, and
relaxation of a Ni-Ti shape memory alloy under tension (compression)-



References 119

torsional proportional loading in the pseudoelastic range, Smart Materi-
als and Structures 9 (2000) 613–621.

[30] Y. Liu, Y. Li, K. Ramesh, Rate dependence of deformation mechanisms
in a shape memory alloy, Philosophical Magazine A 82 (12) (2002) 2461–
2473.

[31] P. Popov, K. Ravi-Chandar, D. Lagoudas, Dynamic loading of polycrys-
talline shape memory alloy rods, Mechanics of Materials 35 (7) (2003)
689–716.

[32] J. Nemat-Nasser, W. Choi, G. Guo, J. Isaacs, Very high strain-rate
response of a NiTi shape-memory alloy, Mechanics of Materials 37 (2–3)
(2005) 287–298.

[33] J. Escobar, R. Clifton, On pressure-shear plate impact for studying
the kinetics of stress-induced phase transformations, Material Science
& Engineering A 170 (1993) 125–142.

[34] P. Feng, Q. Sun, Experimental investigation on macroscopic domain for-
mation and evolution in polycrystalline NiTi microtubing under mechan-
ical force, Journal of the Mechanics and Physics of Solids 54 (8) (2006)
1568–1603.

[35] D. A. Miller, D. C. Lagoudas, Thermo-mechanical characterization of
NiTiCu and NiTi SMA actuators: Influence of plastic strains, Smart
Materials and Structures 9 (5) (2000) 640–652.



3

Thermomechanical Constitutive
Modeling of SMAs

L. G. Machado and D. C. Lagoudas

With the fundamental concepts of SMA behavior introduced and the exper-
imental results of this behavior illustrated, one can now begin to investigate
methods by which SMA behavior might be accurately predicted. This chap-
ter introduces the basic ideas and concepts behind the thermomechanical con-
stitutive modeling of polycrystalline SMAs. From a review of first principles
through the consideration of key assumptions, a procedure for obtaining con-
stitutive equations for SMAs using thermodynamic potentials is discussed.
The reader will be guided through examples which illustrate how such a model
can be simplified as needed. Specific examples involving different thermome-
chanical loading paths are also presented. Finally, this chapter provides an
overview of different constitutive modeling methodologies currently used by
SMA researchers throughout the field.

3.1 Introduction

The fundamentals of shape memory alloy behavior and methods for obtain-
ing material properties have been introduced in the first two chapters. This
chapter introduces the basic elements underlying the modeling of SMA ther-
momechanical behavior.

We have seen in Chapter 1 that SMAs are metallic alloys that have the
ability to recover from significant deformation, thereby regaining a previous
shape, when subjected to specific thermomechanical loads. In addition, we
have seen that the martensitic phase transformations occurring in SMAs are
diffusionless, solid-solid phase transformations, where the parent (austenite)
and product (martensite) phases can coexist during the phase transformation,
which is largely influenced by the state of stress and temperature.

Chapter 2 presented concepts related to experimental tests that are useful
in characterizing shape memory alloys. In the current chapter, we will dis-
cuss the thermomechanical modeling of polycrystalline shape memory alloys.
A brief review of the conservation laws and continuum mechanics is also pre-
sented in the beginning of this chapter. A methodology for obtaining the ther-
momechanical constitutive equations for SMAs by enforcing the conservation

D.C. Lagoudas (ed.), Shape Memory Alloys, DOI: 10.1007/978-0-387-47685-8 3,
© Springer Science+Business Media, LLC 2008
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laws and basic principles of continuum thermodynamics in the manner first
exemplified by Coleman, Noll, and Gurtin [1, 2] will then be discussed in
detail.

3.2 Brief Review of Continuum Mechanics

The three basic components of continuum mechanics are kinematics, con-
servation (balance) laws and constitutive equations. The kinematics com-
ponent describes the geometry of motion and deformation of a continuum
body, without considering the cause of motion or deformation. The conser-
vation laws express how external effects influence the motion of a continuum
body. Finally, constitutive equations mathematically describe the main char-
acteristics of material behavior that can only be understood and/or predicted
through an understanding of experimental observations, such as described in
Chapter 2 for shape memory alloys. In the coming sections a brief review of
continuum mechanics is given, following standard texts such as Truesdell and
Noll [3], Malvern [4] and Gurtin [5] in addition to relatively more recent texts
such as Lai et al. [6], Slaughter [7], and Batra [8].

3.2.1 Kinematics of SMAs

Let us assume that an SMA material body in its deformed configuration occu-
pies a region Ω, at time t, with boundary surface ∂Ω. The position of an SMA
material point in the deformed configuration in relation to the position of the
same material point in the reference configuration is given by the displacement
vector field, u (X, t), where X is the reference position of the material point.
One can define a measure of deformation of neighboring material points in
terms of the deformation gradient tensor, F, given by

F = ∇u + 1 (3.2.1)

where 1 is the second-order identity tensor and ∇u is the displacement gra-
dient. The symmetric second-order Green-Lagrange strain tensor, which is
invariant under rigid body rotation and translation in the deformed configu-
ration, can be defined in terms of the deformation gradient as

E =
1
2
[
FT F − 1

]
. (3.2.2)

We can rewrite the expression of the Green-Lagrange strain tensor with
respect to ∇u as follows:

E =
1
2

[
(∇u) + (∇u)T +

(
(∇u)T (∇u)

)]
. (3.2.3)
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The notion of choosing a reference configuration for SMAs, with respect
to which deformations can be described under applied loads, is more com-
plicated than for other conventional materials. This is because there are two
natural reference configurations to choose from, i.e., the stress-free configu-
rations of the austenitic and martensitic phases. In this work, we will select
the austenitic parent phase as the reference configuration and the transition
from austenite to martensite will be accounted for by an internal state vari-
able to be introduced in Sect. 3.3. When the deformation gradient tensor, F,
approaches the identity tensor, 1, or equivalently, for infinitesimal displace-
ment gradients, the quadratic term in (3.2.3) can be neglected. As a result,
the difference between the reference and the deformed configuration becomes
negligible. This assumption, which is realistic for most applications of poly-
crystalline SMAs, leads to the infinitesimal strain tensor of the following form:

ε =
1
2

[
(∇u) + (∇u)T

]
. (3.2.4)

The displacement gradient used in the infinitesimal strain above can be
thought of as defined over the deformed configuration of the body, since
the difference between the two configurations is a higher order effect. The
infinitesimal strain tensor, ε, will be used in this chapter and the remainder
of the book. Appendix A gives a construction of thermomechanical constitu-
tive equations for SMAs where the full Green-Lagrange strain tensor is used.

3.2.2 Conservation (Balance) Laws

The basic conservation laws of continuum mechanics are:

1. Conservation of mass
2. Conservation of linear momentum
3. Conservation of angular momentum
4. Conservation of energy

In continuum thermodynamics , the conservation of energy is also called the
first law of thermodynamics, while the second law corresponds to the entropy
inequality principle.

Conservation of Mass

The law of conservation of mass states that the total mass of a continuum
body cannot change with time or deformation. Considering the mass of an
SMA body to be related to the density, ρ, by

M =
∫

Ω

ρdV, (3.2.5)
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the law of conservation of mass can be written as

DM

Dt
=

D

Dt

(∫

Ω

ρdV
)

= 0, (3.2.6)

where D
Dt is the material time derivative. Following standard derivations in

continuum mechanics, one can obtain the local form of the conservation of
mass as

∂ρ

∂t
+ div (ρv) = 0, (3.2.7)

where v is the velocity of a material point and “div” denotes the divergence
operator acting on a vector field in the deformed configuration.

Conservation of Linear Momentum

The law of conservation of linear momentum states that the rate of change
of linear momentum of a continuum body is equal to the total sum of surface
and body forces applied to it. The integral form of the conservation of linear
momentum is given by

D

Dt

(∫

Ω

ρvdV
)

=
∫

∂Ω

tdS +
∫

Ω

bdV, (3.2.8)

where t is the surface traction vector, and b is the body force vector. The
local form of the conservation of linear momentum is given by

div (σ) + b = ρv̇, (3.2.9)

where σ is the Cauchy stress tensor and “div” here denotes the divergence
operator acting on the stress tensor. The accelaration of the material point is
v̇ where (̇) indicates the material time derivative operation.

Conservation of Angular Momentum

The law of conservation of angular momentum states that the rate of change of
angular momentum of a continuum body is equal to the sum of the moments
applied by the surface and body forces in addition to distributed body cou-
ples. In the absence of distributed body couples, the integral form of the
conservation of angular momentum is given by

D

Dt

(∫

Ω

r × ρv
)

dV =
∫

∂Ω

r × tdS +
∫

Ω

r × bdV, (3.2.10)

where r is the position vector of a material point and x denotes the cross
product between two vectors.
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The local form of the conservation of angular momentum states that the
Cauchy stress tensor is symmetric, i.e.,

σ = σT . (3.2.11)

Conservation of Energy - First Law of Thermodynamics

The law of conservation of energy states that the time rate of change of the
total energy (kinetic plus internal energy) of a continuum body is equal to
the rate at which external mechanical work is done to that body by surface
tractions and body forces plus the rate at which thermal energy is added by
heat flux, q and heat sources, r. The integral form of the conservation of
energy is given by the following equation:

D

Dt

(∫

Ω

1
2
ρv · vdV +

∫

Ω

ρudV
)

=
∫

∂Ω

t · vdS +
∫

Ω

b · vdV+
∫

∂Ω

−q · ndS +
∫

Ω

ρrdV,

(3.2.12)

where u is the specific internal energy (per unit mass). The local form of
conservation of energy is given by

ρu̇ = σ : ε̇ − div (q) + ρr, (3.2.13)

where the sign (:) indicates double dot product operation between two tensors
and u̇ and ε̇ are the material time derivatives of the specific internal energy
and infinitesimal strain tensor, respectively.

Entropy Inequality Principle - Second Law of Thermodynamics

The entropy inequality principle expresses the second law of thermodynamics
and it states that the internal entropy production is always greater than or
equal to zero. The second law of thermodynamics can mathematically be
expressed by the Clausius-Duhem inequality as

D

Dt

(∫

Ω

ρsdV
)

+
∫

∂Ω

q
T

· ndS −
∫

Ω

ρr

T
dV ≥ 0 (3.2.14)

where s is the specific entropy (per unit mass). The local form of the Clausius-
Duhem inequality is given by

ρṡ +
1
T

div (q) − 1
T 2

q · ∇T − ρr

T
≥ 0. (3.2.15)

Based on experimental observations that heat only flows spontaneously from
a hotter material point to a colder one, we can assume that the term
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− 1
T 2 (q · ∇T ) is always greater than or equal to zero. The strong form of

the second law then reduces to

ρṡ +
1
T

div (q) − ρr

T
≥ 0, (3.2.16)

which is also known as Clausius-Planck inequality.

Need for Constitutive Equations

So far the conservation laws of mass, linear momentum, and angular momen-
tum, as well as the first and second laws of thermodynamics have been pre-
sented. At this point it is necessary to count the number of unknown field
variables and available equations to verify that we have a well-posed system
with the same number of equations and unknowns. Thus, starting at the stress
and strain tensors, we have six components from the symmetric stress tensor,
σ, and six from the symmetric infinitesimal strain tensor, ε. We also have three
unknowns from the components of the displacement vector, u, three from the
heat flux vector, q, and three additional unknowns from temperature, density
and internal energy, which are scalar functions. Therefore, we have a total
of 21 unknown field variables that need to be determined throughout Ω as
functions of x and t, where x denotes the position of material points in the
deformed configuration.

A count of the available field equations totals 11, as shown in Table 3.1.
We have one equation from the conservation of mass, (3.2.7), three equations
from the conservation of linear momentum, (3.2.9) and one equation from
the conservation of energy, (3.2.13). In addition, we have six equations from
kinematics (3.2.4). Therefore, we have a total of 21 unknowns, but only 11
equations, as summarized in Table 3.1. Note that three equations from the
conservation of angular momentum, (3.2.11), have already been accounted
for by the symmetry of the stress tensor. Consequently, we require 10 more
equations to construct a system with unique solutions. These can be found by
introducing appropriate constitutive equations. This topic will be discussed
in the next section, emphasizing materials with evolving microstructure.

3.2.3 Constitutive Equations in the Presence of Internal State
Variables

Constitutive equations are mathematical models intended to describe the prin-
cipal features of a material behavior in an idealized form. SMAs are materials
that undergo a phase transformation and therefore are characterized by a
sequence of thermodynamic states that can be described by the introduction
of additional internal state variables such as the martensitic volume fraction as
discussed in Chapter 2, Sect. 2.6.2. In this section we present a procedure for
obtaining constitutive equations in the presence of internal state variables.
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Table 3.1. Unknown field variables and available field equations in continuum
mechanics.

Field variables Field equations

Name Symbol Number of Name Number of
Unknowns Equations

Displacement (vector) u 3 Conservation of 3 (3.2.9)
Linear Momentum

Strain (second-order ε 6 Kinematics 6 (3.2.4)
symmetric tensor)

Stress (second-order σ 6
symmetric tensor
by 3.2.11)

Density (scalar) ρ 1 Conservation of Mass 1 (3.2.7)

Internal Energy (scalar) u 1

Temperature (scalar) T 1 Conservation of Energy 1 (3.2.13)

Heat Flux (vector) q 3

Number of Unknowns: 21 Number of Equations 11

Thermodynamic state variables are those that represent all quantities that
characterize a material body at a certain state (Coleman and Noll [1], Coleman
and Gurtin [2]). If these variables can be observed, they are called (external)
state variables, otherwise they are called internal state variables. The ther-
modynamic state of an SMA can be fully determined by a combination of
external and internal state variables.

A thermodynamic potential is a function that characterizes a certain ther-
modynamic state of a material and it depends on state variables, both exter-
nal and internal (Holzapfel [9]). Four thermodynamic potentials are commonly
defined, according to a certain choice of the independent state variables. These
four thermodynamic potentials are the specific internal energy, u, the specific
Helmholtz free energy, ψ, the specific enthalpy, h, and the specific Gibbs free
energy, G, as specific quantities all defined per unit mass. The internal energy,
u, can be defined as a measure of kinetic and potential energy of the material
points within the material system. The Helmholtz free energy, ψ, is defined
to be the portion of the internal energy available for doing work at constant
temperature, whereas enthalpy is the portion of internal energy that can be
released as heat at constant applied stress. The Gibbs free energy, G, is finally
the portion of enthalpy available for doing work at constant temperature.1

The first natural choice for a thermodynamic potential when deriving con-
stitutive equations can be the internal energy. However, the internal energy

1 All specific quantities defined per unit mass, such as internal energy, enthalpy and
Helmholtz free energy, are represented by lower case letters. The only exception
is the Gibbs free energy that is represented by the capital letter G, following
standard notation in the literature of SMAs.
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is not often used because it depends on the entropy which is not an eas-
ily measured quantity. For the same reason, enthalpy is not commonly used.
The two remaining choices for thermodynamic potentials are the Helmholtz
and the Gibbs free energies. The choice between Gibbs and Helmholtz free
energies is based on the state variable one can control during experimental
measurement, i.e., stress or strain. Table 3.2 presents the four thermodynamic
potentials and their relation to the specific internal energy, obtained through
a Legendre transformation. In the list of internal variables, a set of internal
state variables ζ is included.

Constitutive Assumptions for Materials with Internal
State Variables

The first step in developing constitutive equations for a specific material is
to properly select the independent and dependent state variables that will
characterize the behavior of the material. At first, we discuss how to obtain
constitutive equations by utilizing the Helmholtz free energy as the thermody-
namic potential. Later, an example of how to obtain constitutive equations for
a thermoelastic material using the Gibbs free energy as the thermodynamic
potential is discussed. The derivation of constitutive equations for a polycrys-
talline SMA using the Gibbs free energy is discussed in the next section.

A simple material is one for which the stress at each material point can be
determined from a function of the local configurational history of the point
(Coleman and Noll [10], Truesdell and Noll [3]). Later, Coleman [11] included
the history of the temperature and temperature gradient and added the heat
flux, internal energy and entropy to the dependent variables. The constitutive
behavior of a material point for a special class of simple materials is char-
acterized by four response functions, ψ, σ, s and q, which depend on ε, T ,
g = ∇T , and a set of internal state variables ζ to account for the loading path
history dependence. The response functions therefore can be written as

Table 3.2. Thermodynamic potentials and their relationships.

Specific Symbol Relation to Independent
Thermodynamic internal energy u Variables
Potentials (Legendre Transformation)

Internal energy u u s, ε, ζ

Enthalpy h h = u − 1

ρ
σ : ε s, σ, ζ

Helmholtz free energy ψ ψ = u − sT T , ε, ζ

Gibbs free energy G G = u − 1

ρ
σ : ε − sT T , σ, ζ
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σ = σ (ε, T,g, ζ) ; (3.2.17)

q = q (ε, T,g, ζ) ; (3.2.18)

s = s (ε, T,g, ζ) ; (3.2.19)

ψ = ψ (ε, T,g, ζ) . (3.2.20)

Note that in the above response functions it is assumed that there is depen-
dence on the gradient of T , namely g, only. There is no dependence on the
gradient of ε and ζ. It should also be noted that the above response functions
are the simplification of the corresponding functions when the Green-Lagrange
strain tensor, E, is reduced to the infinitesimal strain tensor, ε, and g and ζ are
assumed to have the same evaluation in both reference and deformed configu-
rations. Moreover, the assumptions in (3.2.17-3.2.20) are based on Truesdell’s
principle of equipresence, which states that a quantity presented as indepen-
dent variable in one constitutive equation should be also present in all, unless
its presence contradicts some law of physics or the assumed symmetry of the
material.

The key point in the process of obtaining constitutive equations is to con-
sider that every admissible thermodynamic process in the body must obey the
entropy inequality at each time t and for all material points in the body. Also
it is assumed that, for a fixed material point at a given time t, the variables
ε, ε̇, T , Ṫ , g, ġ, ζ and ζ̇ can all be varied independently, and Ṫ , ġ and ζ̇ are
not arguments in the response functions. Substituting the first law of ther-
modynamics (3.2.13), and the time derivative of the Legendre transformation
as expressed in terms of the Helmholtz free energy given by Table 3.2, into
the Clausius-Planck inequality, (3.2.16), we obtain the following form of the
second law:

σ : ε̇ − ρψ̇ − ρsṪ ≥ 0. (3.2.21)

Assuming that ψ is a continuous function, we can use the chain rule of
differentiation to obtain the time derivative of the Helmholtz free energy as

ψ̇ =
∂ψ

∂ε
: ε̇ +

∂ψ

∂T
Ṫ +

∂ψ

∂g
· ġ +

∂ψ

∂ζ
· ζ̇. (3.2.22)

After substituting (3.2.22) into (3.2.21) we obtain

σ : ε̇ − ρ

[
∂ψ

∂ε
: ε̇ +

∂ψ

∂T
Ṫ +

∂ψ

∂g
· ġ +

∂ψ

∂ζ
· ζ̇
]

− ρsṪ ≥ 0. (3.2.23)

We can now fix all variables, i.e., ε, ε̇, T , Ṫ , g, ζ, ζ̇, but let ġ vary
arbitrarily. Since ġ can assume either positive or negative values, (3.2.23) can
only be satisfied through the requirement that ∂ψ/∂g ≡ 0. So, the Helmholtz
free energy is not a function of g, and consequently, no other state variable
depends on g according to the principle of equipresence. Next, we fix all
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independent variables and their increments, except for Ṫ , which results in the
requirement that

s = −∂ψ

∂T
. (3.2.24)

Following the same idea, the constitutive equation for stress can be obtained
as

σ = ρ
∂ψ

∂ε
. (3.2.25)

After substituting the above constitutive equations for entropy and stress,
into (3.2.23) the Clausius-Planck inequality results in the following form:

− ρ
∂ψ

∂ζ
· ζ̇ ≥ 0. (3.2.26)

Depending on the specific form of the Helmholtz free energy, the response
functions for stress and entropy can thus be determined through (3.2.25) and
(3.2.24), respectively. To complete the list of response functions, i.e., (3.2.17-
3.2.20), q has to be determined so that it satisfies the constraint imposed by
the strong form of the second law, q · g ≥ 0, while ζ̇ should satisfy (3.2.26).
Therefore, the seven equations (3.2.24) and (3.2.25) and three equations for
q will constitute the required 10 equations necessary to complete the number
of equations as summarized in Table 3.1.

Example 3.1. Derivation of constitutive equations for a thermoelastic material

As an example, we derive constitutive equations for a thermoelastic material
for which there is no dependence on the set of internal state variables ζ. This
time, instead of using the Helmholtz free energy as one of the thermodynamic
potentials, we use the Gibbs free energy. As a result, we need to determine
the following response functions:

ε = ε (σ, T,g) ; (3.2.27)

q = q (σ, T,g) ; (3.2.28)

s = s (σ, T,g) ; (3.2.29)

G = G (σ, T,g) . (3.2.30)

Following the same procedure of combining the first law with the second
law of thermodynamics, and then substituting the time derivative of the Leg-
endre transformation from Table 3.2, we obtain

− ρĠ − σ̇ : ε − ρsṪ ≥ 0. (3.2.31)

The time derivative of the Gibbs free energy is given by

Ġ =
∂G

∂σ
: σ̇ +

∂G

∂T
Ṫ +

∂G

∂g
· ġ. (3.2.32)
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After substituting (3.2.32) into (3.2.31) we get the following expression for
the Clausius-Planck inequality:

− ρ

[
∂G

∂σ
: σ̇ +

∂G

∂T
Ṫ +

∂G

∂g
· ġ
]

− ε : σ̇ − ρsṪ ≥ 0. (3.2.33)

By applying the same procedure of fixing all but one variable, we find that
∂G/∂g ≡ 0, and we arrive at the following constitutive relations:

s = −∂G

∂T
, (3.2.34)

ε = −ρ
∂G

∂σ
. (3.2.35)

If we choose a quadratic polynomial form of the Gibbs free energy given
by

G (σ, T ) = − 1
2ρ

σ : S : σ − 1
ρ
σ : α (T − T0) +

c

[

(T − T0) − T ln
(

T

T0

)]

− s0T + u0,

(3.2.36)

we can obtain the following response functions for the entropy, s, and strain,
ε, respectively, valid for a linear thermoelastic material:

s =
1
ρ
σ : α + c ln

(
T

T0

)

+ s0, (3.2.37)

ε = S : σ + α (T − T0) . (3.2.38)

Notice that after substituting the expressions for entropy,(3.2.37) and strain,
(3.2.38), into (3.2.33), the Clausius-Planck entropy inequality is identically
satisfied.

3.3 Constitutive Modeling of SMAs

In this section we present the derivation of a constitutive model for polycrys-
talline shape memory alloys. The constitutive equations will be determined
by following the procedure of thermodynamics considering internal state vari-
ables presented in the previous sections. We will use the Gibbs free energy as
the thermodynamic potential, instead of the Helmholtz free energy, because it
is customary to define thermomechanical loading path for SMAs in the stress-
temperature space, often using the phase diagram introduced in Chapter 1.
The constitutive model presented here follows the formulation proposed by
Boyd and Lagoudas [12].
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3.3.1 Choice of Internal State Variables

The first step to obtain constitutive equations for SMAs is the selection of
the internal state variables that will best represent the SMA thermomechan-
ical response corresponding to change in the microstructure. We have seen in
Chapter 1 that the martensitic phase itself can exist in two different forms:
the twinned martensite M t, and the detwinned martensite Md. Recall that
twinned martensite is induced by cooling and it is formed by different vari-
ants of martensite configured in an energetically favorable manner such that
no macroscopic deformation is observed during transformation. Detwinned
martensite, on the other hand, is induced by stress and it is formed predom-
inantly by a single variant of martensite. We also saw in Chapter 1 that the
martensitic phase transformation into detwinned martensite in the presence of
stress leads to a macroscopic shape change. This transformation induced defor-
mation is associated with the transformation strain, εt, introduced already in
the empirical formulation of SMAs in Chapter 2. The recovery of the trans-
formation strain, either upon mechanical loading or heating results in shape
recovery as the SMA returns to its parent austenitic phase.

The constitutive model considers the martensitic volume fraction, ξ, and
the transformation strain, εt, to be the internal state variables since both play
an important role in characterizing the phase transformation and the observ-
able thermomechanical response of SMAs. The martensitic volume fraction is
assumed to be a scalar quantity, and it incorporates the contribution of all the
different martensitic variants present in the material. An extended SMA con-
stitutive model that distinguishes the twinned from the detwinned martensite
will be presented in Chapter 6.

3.3.2 Kinematic Assumptions

Experimental observations have shown that polycrystalline SMAs can achieve
recoverable transformation strains of about 6%. Therefore, one can use small
strain formulation, as mentioned earlier in Section 3.2, to describe their defor-
mations. With the assumption of infinitesimal strains, there is no longer a
distinction between reference and current configurations. As a consequence,
the total strain tensor can be given by the displacement gradient from (3.2.4)
which is appropriate for small strains. We also assume that the total strain
can be decomposed additively into two parts, a thermoelastic part εth, and
an inelastic part εin as follows:

ε = εth + εin. (3.3.39)

The inelastic strain could further be decomposed into additional components
to account for various phenomena, including the transformation strain, εt

and the formation of plastic strains, εp, either directly by yielding or by
transformation-induced plasticity. However, in this chapter we assume that
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the inelastic component of strain is associated with only the transformation
strain

εin = εt, (3.3.40)

while the transformation-induced plastic strain will be discussed in Chapter 5
and the reorientation of martensitic variants induced strain will be introduced
in Chapter 6.

3.3.3 Thermomechanical Constitutive Assumptions for SMAs

Now that we have selected the set of internal state variables, ξ and εt, the
next step is to define the thermodynamic potential that will be used. In this
model, the Gibbs energy is selected to be the thermodynamic potential as
mentioned in the beginning of Section 3.3. Note that the Gibbs free energy,
G, is a function of the independent state variables stress, σ, and temperature,
T , which can be more suitable when comparing numerical with experimental
results, and the state variables, ξ and ε. The explicit form of the Gibbs free
energy is given by (Boyd and Lagoudas [12], and Qidwai and Lagoudas [13])

G
(
σ, T, ξ, εt

)
= − 1

2ρ
σ : S : σ − 1

ρ
σ :
[
α (T − T0) + εt

]
+

c

[

(T − T0) − T ln
(

T

T0

)]

− s0T + u0 +
1
ρ
f(ξ),

(3.3.41)

where T0 is a reference temperature. The material parameters S, α, c, s0, and
u0 are the fourth-order effective compliance tensor, the second-order effec-
tive thermal expansion tensor, the effective specific heat, the effective specific
entropy at the reference state, and the effective specific internal energy at the
reference state, respectively. The function f(ξ) is a transformation hardening
function and will be defined in the following sections. The above expression for
the Gibbs free energy extends the concept of a linear thermoelastic material
by combining two such materials representing austenite and martensite into
one through ξ.

The effective material properties can be determined in terms of the proper-
ties for the pure phases and the martensitic volume fraction ξ via the following
expressions:

S (ξ) = SA + ξ
(
SM − SA

)
= SA + ξΔS (3.3.42)

α (ξ) = αA + ξ
(
αM − αA

)
= αA + ξΔα (3.3.43)

c (ξ) = cA + ξ
(
cM − cA

)
= cA + ξΔc (3.3.44)

s0 (ξ) = sA
0 + ξ

(
sM
0 − sA

0

)
= sA

0 + ξΔs0 (3.3.45)

u0 (ξ) = uA
0 + ξ

(
uM

0 − uA
0

)
= uA

0 + ξΔu0 (3.3.46)
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where the superscripts A and M denote the austenitic and martensitic phases,
respectively. Note that the above approximation of the effective compliance
tensor is different from the approximation of effective stiffnesses introduced
in Chapter 2 for the empirical model. One can use micromechanics methods
to estimate more accurate approximations for the effective compliance and
thermal expansion tensors, if knowledge of the microstructure is available.
For example, the self-consistent or Mori-Tanaka methods can be implemented
if the shape of the martensitic variants forming in the austenitic phase within
a grain is known and the orientation distribution and shape of the grains
forming the polycrystalline SMA is also available. Further details can be found
in the review articles by Patoor, Lagoudas, and others [14, 15] and some
references mentioned therein. For the purposes of this chapter and to simplify
identification of material parameters from simple experiments, we will adopt
the above approximations.

Constitutive relations are obtained following a similar procedure presented
in Sect. 3.2.3. The Gibbs free energy, G, and the internal energy, u, which are
related to each other through the strong form of the Legendre transforma-
tion as shown in Table 3.2, are substituted into the first and second law of
thermodynamics as expressed in the Clausius-Planck inequality (3.2.16). After
following the Coleman and Noll procedure described in Section 3.2.3, the total
infinitesimal strain tensor and the entropy are given by

ε = −ρ
∂G

∂σ
= S : σ + α (T − T0) + εt, (3.3.47)

s = −∂G

∂T
=

1
ρ
σ : α + c ln

(
T

T0

)

+ s0. (3.3.48)

with the identification of ζ with (εt, ξ) as the set of internal state variables,
the Clausius-Planck inequality, (3.2.16), assumes the following form:

(

−ρ
∂G

∂εt

)

: ε̇t +
(

−ρ
∂G

∂ξ

)

ξ̇ ≥ 0. (3.3.49)

If the specific form of the Gibbs free energy is substituted from (3.3.41) into
(3.3.49) the following result is obtained:

σ : ε̇t +
(

−ρ
∂G

∂ξ

)

ξ̇ ≥ 0. (3.3.50)

Next, we will propose evolution equations for the internal state variables, ξ
and εt.

Evolution of Internal State Variables and Kuhn-Tucker Conditions

Now that the expressions for the total strain, entropy and the local form of
the entropy inequality have been defined, we need to determine the evolution
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equations for the internal state variables, εt and ξ. One key assumption under-
lies this class of models wherein the martensitic phase transformation occurs
without consideration for martensitic variant reorientation: any change in the
current microstructural state of the material is strictly a result of a change in
the martensitic volume fraction (Boyd and Lagoudas [12]). Given this assump-
tion, a relation between the evolution of the transformation strain and the
evolution of the martensitic volume fraction during forward and reverse trans-
formation transformation (flow rule) can be postulated as

ε̇t = Λξ̇, (3.3.51)

where Λ is the transformation tensor, which determines the transforma-
tion strain direction, and is assumed to have the following form (Boyd and
Lagoudas [12]):

Λ =

⎧
⎪⎪⎨

⎪⎪⎩

3
2
Hmax σ′

σ̄′ ; ξ̇ > 0

Hmax εt−r

ε̄t−r
; ξ̇ < 0

(3.3.52)

where Hmax is a material parameter associated with the maximum transfor-
mation strain. Note that Hmax could also be defined as a function of the
applied stress (Hcur (σ̄′)), as presented in Chapter 2. For the remainder of
this chapter and for simplicity, Hmax will be written simply as H. The above
form of the transformation tensor is motivated by the assumption that for
the forward phase transformation from austenite to martensite (ξ̇ > 0) the
transformation strain will form in the direction of the deviatoric stress. Dur-
ing the reverse transformation from martensite to the parent austenitic phase
(ξ̇ < 0), the transformation strain will be recovered proportionally to the
existing transformation strain at the reversal point from forward to the reverse
transformation.

The deviatoric stress tensor σ′ is defined by

σ′ = σ − 1
3
tr (σ)1, (3.3.53)

while the effective (von Mises equivalent) stress is given by (3.3.54) below:

σ̄′ =

√
3
2
||σ′||2. (3.3.54)

The transformation strain at the reversal point is denoted by εt−r and the
effective transformation strain at the reversal of the phase transformation is
given by the following equation:

ε̄t−r =

√
2
3
||εt−r||2. (3.3.55)

For both of the above equations, || · ||2 = (· : ·) denotes the inner product of
the enclosed quantity.
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By substituting the flow rule, (3.3.51) into (3.3.49), the Clausius-Planck
inequality can be written as

(

σ : Λ − ρ
∂G

∂ξ

)

ξ̇ = πξ̇ ≥ 0, (3.3.56)

where π is defined by the above equation and is the general thermodynamic
force conjugated to ξ. For the Gibbs free energy proposed by (3.3.41) the
explicit evaluation of π is

π(σ, T, ξ) = σ : Λ +
1
2
σ : ΔS : σ + σ : Δα (T − T0) +

− ρΔc

[

(T − T0) − T ln
(

T

T0

)]

+ ρΔs0T − ρΔu0 −
∂f

∂ξ
.

(3.3.57)

Equation (3.3.51) connects the evolution equation of the transformation
strain to the evolution of the martensitic volume fraction. As a result, the
transformation strain is no longer an independent state variable. Therefore,
it is sufficient to define an evolution equation for only the martensitic volume
fraction, ξ, compatible with the entropy inequality (3.3.56).

The conditions for the occurrence of the martensitic phase transforma-
tions, forward and reverse, need to be defined now. The constitutive model
presented in this chapter and throughout the book assumes that the marten-
sitic phase transformation will take place whenever the thermodynamic force
π reaches a critical value. This assumption must be implemented in such a way
that the Clausius-Planck inequality is satisfied for all possible thermomechan-
ical paths. The key points related to forward and reverse phase transformation
are summarized below.

• When the forward martensitic transformation is taking place, ξ̇ assumes
positive values since austenite is being transformed into martensite. There-
fore, the only way that the Clausius-Planck inequality, (3.3.56), can be
satisfied is for π to assume a positive value. Consequently, for the forward
martensitic transformation, ξ̇ > 0, the function π assumes the threshold
value of π = Y .

• When the reverse martensitic transformation is taking place, ξ̇ assumes
negative values since martensite is transforming back into austenite. There-
fore, the only way that the Clausius-Planck inequality, (3.3.56), can be
satisfied is for π to assume a negative threshold value. Consequently, for
the reverse martensitic transformation, ξ̇ < 0, the function π assumes the
value of π = −Y .

• Finally, when the state of stress and temperature of the SMA is such that
no phase transformation is taking place the value of ξ remains constant
and ξ̇ = 0. Therefore, the Clausius-Planck inequality is satisfied regardless
of the value of π, because πξ̇ = 0.



3.3 Constitutive Modeling of SMAs 137

The above assumptions for the forward and the reverse martensitic trans-
formation can be captured by introducing a transformation function , Φ, such
that

Φ =

⎧
⎨

⎩

π − Y whenever ξ̇ > 0 (A → M)

−π − Y whenever ξ̇ < 0 (M → A)
(3.3.58)

The transformation function, Φ, satisfies the condition of

Φ = 0, (3.3.59)

during both forward and reverse phase transformations. The transformation
function represents two families of transformation surfaces for 0 ≤ ξ ≤ 1,
and the two surfaces for ξ = 0 and ξ = 1 represent the boundaries of each
transformation surface family, when the material is fully austenite and fully
martensite, respectively.

The constraints on the evolution of the martensitic volume fraction pre-
sented above can be expressed in terms of the so-called Kuhn-Tucker condi-
tions, which are given below for both the forward and reverse phase transfor-
mations:

ξ̇ ≥ 0; Φ (σ, T, ξ) = π − Y ≤ 0; Φξ̇ = 0; (3.3.60)

ξ̇ ≤ 0; Φ (σ, T, ξ) = −π − Y ≤ 0; Φξ̇ = 0. (3.3.61)

Appendix A discusses the Kuhn-Tucker conditions as part of a constraint
minimization process, following the principle of maximum dissipation for the
evolution of the internal state variables. Equation (3.3.60) states that during
the thermoelastic loading of austenite, ξ̇ = 0 and Φ < 0, until the transforma-
tion condition Φ = 0 is reached and forward transformation begins (ξ̇ > 0).
Likewise, (3.3.61) states that during the thermoelastic loading of martensite,
ξ̇ = 0 and Φ < 0, until the reverse transformation condition Φ = 0 is reached
and reverse transformation begins (ξ̇ < 0).

During phase transformation, the stress and temperature should remain
on the transformation surface (Qidwai and Lagoudas [16]). This condition is
mathematically expressed by the consistency condition (Simo and Hughes [17])
which states that Φ̇ = 0 and this is explicitly given by the following expression:

Φ̇ =
∂Φ
∂σ

: σ̇ +
∂Φ
∂T

Ṫ +
∂Φ
∂ξ

ξ̇ = 0. (3.3.62)

The above formulation is consistent with the assumption of rate-independent
behavior of SMAs. As discussed in Chapters 1 and 2, the martensitic trans-
formation is a rate-independent process due to its diffusionless nature.

The last step in the constitutive formulation is to select a hardening func-
tion, f(ξ). The hardening function is used to account for the interactions
between the austenitic phase and the martensitic phase, and also among the
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martensitic variants themselves. So far, we have not considered any partic-
ular form of the hardening function, which appears in (3.3.41) and is fun-
damental to the construction of (3.3.57). Here we consider a second-order
polynomial representation of the transformation-hardening function (Boyd
and Lagoudas [12]). The hardening function f (ξ) assumes the following form
during the forward and reverse phase transformation:

f (ξ) =

⎧
⎨

⎩

1
2ρbMξ2 + (μ1 + μ2) ξ; ξ̇ > 0

1
2ρbAξ2 + (μ1 − μ2) ξ; ξ̇ < 0

(3.3.63)

where ρbM , ρbA, μ1, μ2 represent model parameters to be determined exper-
imentally or from micromechanics evaluations.

It will be demonstrated later in the chapter that different constitutive
models can be gathered under the same thermodynamic framework presented
for the current model, by considering an appropriate form of the hardening
function. For example, the model presented here assumes a second-order poly-
nomial hardening function, as shown in (3.3.63), whereas a model proposed
by Tanaka [18] assumes an exponential hardening function. A discussion on
different hardening functions will be presented in Section 3.4.

Material Parameters

In deriving this model, it was necessary to introduce various material parame-
ters which cannot be derived directly from experimental data using the meth-
ods of Chapter 2. To use the model for the purposes of engineering design
and analysis, it is necessary to identify these material parameters such that
the model can accurately predict the experimental behavior of the SMAs.
This model calibration can be done in a straightforward manner if some of
the model parameters (bA, bM , μ1, μ2 and Y ) are cast in terms of directly
observable material parameters, such as transformation temperatures and
stress influence coefficients. The remaining material parameters are thermoe-
lastic constants for the austenitic and martensitic phases and the maximum
transformation strain, which can be measured directly. Note that the model
parameter, Δs0, must also be identified, but it can be shown (see Problem 3.3)
that a direct relationship exists between ρΔs0 and the stress influence coeffi-
cients and maximum transformation strain. The reference entropy difference
(Δs0) can thus be written directly in terms of experimentally derived mate-
rial parameters. Writing these above model parameters in terms of the exper-
imental parameters requires the use of five independent equations containing
these quantities. The first four of these equations are taken from applying the
transformation criterion (3.3.59) at four different thermomechanical states.
The four states and their complimentary equations are:

1. Beginning of forward phase transformation at zero stress:

π(σ, T, ξ) = Y at σ = 0, T = Ms, ξ = 0. (3.3.64)
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2. Ending of forward phase transformation at zero stress:

π(σ, T, ξ) = Y at σ = 0, T = Mf , ξ = 1. (3.3.65)

3. Beginning of reverse phase transformation at zero stress:

π(σ, T, ξ) = −Y at σ = 0, T = As, ξ = 1. (3.3.66)

4. Ending of reverse phase transformation at zero stress:

π(σ, T, ξ) = −Y at σ = 0, T = Af , ξ = 0. (3.3.67)

The fifth equation derives from the requirement of continuity of the Gibbs
free energy and thus the continuity of f(ξ) at the point of martensitic reversal
(ξ = 1). Note that the continuity of f(ξ) at the austenitic reversal point
(ξ = 0) is automatically satisfied. The fifth equation then has the following
mathematical form:

5. Continuity of Gibbs free energy:

f(ξ = 1)|ξ̇>0 = f(ξ = 1)|ξ̇<0. (3.3.68)

These five relations lead to a system of five independent algebraic equations
which can be solved to express the five model parameters (bA, bM , μ1, μ2

and Y ) in terms of experimentally observable material parameters. The final
result is shown in Table 3.3. Note that Δu0 is not explicitly needed in the
implementation of the quadratic hardening function since it is eliminated from
the final evaluation of the thermodynamic force, π, in (3.3.57).

Example 3.2. Determination of transformation surfaces in 2-D stress- temper-
ature space

Here we determine the transformation surfaces assuming that the stress state
of the SMA material is given by

Table 3.3. Model parameters for the quadratic polynomial hardening function
model (Boyd and Lagoudas [12]).

Y = 1
4
ρΔs0 (Ms + Mf − Af − As)

bA = −Δs0 (Af − As)

bM = −Δs0 (Ms − Mf )

μ1 = 1
2
ρΔs0 (Ms + Af ) − ρΔu0

μ2 = 1
4
ρΔs0 (As − Af − Mf + Ms)



140 3 Thermomechanical Constitutive Modeling of SMAs

[σ] =

⎡

⎣
σ11 0 0
0 σ22 0
0 0 0

⎤

⎦ .

The same material constants used in Chapter 2, Sect. 2.6.2, are used in this
example, and are given in Table 3.4.

To determine the transformation surface boundaries related to the forward
phase transformation, we need to use the transformation function (3.3.58) for
the case of Φ = 0. Then, by noting that Δc = 0 and Δα = 0, from Table 3.4,
we can write (3.3.59) as

Φ = σ : Λ +
1
2
σ : ΔS : σ + ρΔs0T − ρΔu0 −

∂f

∂ξ
− Y = 0. (3.3.69)

The term σ : Λ in (3.3.69) is computed by using the stress state given above,
together with the form of the transformation tensor in (3.3.52). For the for-
ward transformation, the transformation tensor is a function of the deviatoric
stress tensor, given in (3.3.53). After some algebraic manipulations, we obtain

σ : Λ = H
(
σ2

11 − σ11σ22 + σ2
22

)1/2
. (3.3.70)

After carrying out the evaluation of the term σ : ΔS : σ, the forward
phase transformation condition (3.3.69) has the explicit evaluation

Φ =
1
2
(
σ2

11ΔS1111 + σ2
22ΔS2222 + σ22ΔS2211σ11 + σ11ΔS1122σ22

)
+

H
(
σ2

11 − σ11σ22 + σ2
22

)1/2
+ ρΔs0T − ρΔu0

−
(

1
2
ρbMξ + μ1 + μ2

)

− Y = 0,

(3.3.71)

where the coefficients ΔS1111 = ΔS2222 = 1/EM − 1/EA and ΔS1122 =
ΔS1122 = (−νM/EM ) − (−νA/EA), with the engineering modulus for the
elastic austenite and martensite given in Table 3.4. Note that the elastic com-
pliance tensor for both austenite and martensite is assumed to correspond to

Table 3.4. Values of the SMA material parameters used in Example 3.2.

EA = 55 GPa EM = 46 GPa

αA = 22 · 10−6 /K αM = 22 · 10−6 /K

ν = νA = νM = 0.33 ρΔc = 0.0

Mf = 230 K Ms = 245 K

As = 270 K Af = 280 K

H = 0.056 CA = CM = 7.4 MPa/K
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(a) Transformation surface for the onset of for-
ward phase transformation (ξ = 0).

(b) Transformation surface for the end of forward
phase transformation (ξ = 1).

Fig. 3.1. Transformation surfaces for the forward phase transformation in a three-
dimensional stress-temperature space.

that of an isotropic material, consistent with the elastic behavior of a poly-
crystalline SMA.

Figure 3.1 shows the three-dimensional plot of the transformation surfaces
for the forward phase transformation in the σ11 − σ22 − T space for the cases
of ξ = 0, and ξ = 1 using (3.3.71).
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We can take a slice of the transformation surface boundaries of Fig. 3.1, con-
sidering a constant temperature T = 308K, to obtain the two-dimensional
plot in stress space (σ11, σ22), as given in Fig. 3.2, both for the forward and
the reverse phase transformations. The equation for the reverse phase trans-
formation condition can be derived in a similar fashion (see Problem 3.2).
Similarly, considering σ22 = 0 we obtain the boundaries of the transforma-
tion surfaces in the uniaxial stress-temperature space, as the intersection
of the three-dimensional plot with the plane σ22 = 0. The uniaxial stress-
temperature plot, shown in Fig. 3.3 is also called the phase diagram, as intro-
duced in Chapter 1.

3.3.4 Thermomechanical Coupling in SMAs

It has been experimentally observed that thermomechanical coupling is very
strong in SMAs. Since latent heat is produced/absorbed during the for-
ward/reverse martensitic phase transformation, temperature variations can
occur in the material, influencing its mechanical behavior. Therefore, the ther-
momechanical coupling can be a key factor to be considered in the modeling of
SMAs, especially if phase transformations are assumed to occur over relatively

Fig. 3.2. Transformation surface plot in a two-dimensional stress space for forward
and reverse phase transformation at a given fixed temperature (T = 308K).
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Fig. 3.3. Phase transformation diagram in the σ11 - temperature plane.

short time spans. The amount of latent heat produced is strongly related to
the amount of martensitic phase transformation.

The first step in modeling the thermomechanical coupling is to start from
the first law of thermodynamics, (3.2.13), which expresses the conservation
of energy. We can rewrite (3.2.13), after combining it with the second law of
thermodynamics, (3.2.16), and the Legendre transformation, as follows:

ρT ṡ = πξ̇ − div (q) + ρr. (3.3.72)

The expression for the time derivative of the entropy ṡ is obtained from
(3.2.16), as

ṡ = −∂Ġ

∂T
= − ∂2G

∂T∂σ
: σ̇ − ∂2G

∂T 2
Ṫ +

1
ρ

∂π

∂T
ξ̇. (3.3.73)

The evaluation of the different terms in (3.3.73) results in

∂2G

∂σ∂T
= −α

ρ
, (3.3.74)

∂2G

∂T 2
= −T

c
, (3.3.75)

and the partial derivative of π with respect to the temperature, derived from
(3.3.57) is given by
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1
ρ

∂π

∂T
=

1
ρ
Δα : σ − Δc ln

(
T

T0

)

+ Δs0. (3.3.76)

When (3.3.74), (3.3.75) and (3.3.76) are substituted into (3.3.73), the entropy
rate is reduced to the following explicit evaluation:

ṡ =
1
ρ
α : σ̇ +

c

T
Ṫ +

(
1
ρ
Δα : σ − Δc ln

(
T

T0

)

+ Δs0

)

ξ̇. (3.3.77)

Finally, by substituting (3.3.77) into (3.3.72), one gets the following rela-
tion:

Tα : σ̇ + ρcṪ +
(

−π + TΔα : σ − ρΔcT ln
(

T

T0

)

+ ρΔs0T

)

ξ̇ =

= −div (q) + ρr,

(3.3.78)

which is the three-dimensional form of the fully thermomechanical coupled
energy balance equation for shape memory alloys. The first term of the left-
hand side of (3.3.78) expresses how the temperature changes due to a change
in the stress state of the material, while the second term of the left-hand side
is related to the heat capacity. The third term of the left-hand side expresses
how the temperature of the SMA changes due to a variation of the martensitic
volume fraction, associated with the latent heat of phase transformation. The
first and second terms of the right-hand side of (3.3.78) are related to the heat
transfer processes by the heat flux, q, and heat sources, ρr.

As a special case, let us consider adiabatic heat transfer conditions, which
can be simulated by eliminating the right-hand side of the energy balance
(heat) equation, (3.3.78), i.e., −div (q)+ρr = 0. Moreover, by assuming Δα =
0, and Δc = 0, the heat equation assumes the form

Tα : σ̇ + ρcṪ + (−π + ρΔs0T ) ξ̇ = 0. (3.3.79)

Recall that the consistency condition is given by (3.3.62), as follows:

Φ̇ =
∂Φ
∂σ

: σ̇ +
∂Φ
∂T

Ṫ +
∂Φ
∂ξ

ξ̇ = 0.

For forward transformation, ξ̇ > 0, the evaluation of the terms appearing in
(3.3.80) is given by

∂Φ
∂σ

= ΔS : σ + Λ, (3.3.80)

∂Φ
∂T

= Δα : σ + ρΔs0, (3.3.81)

∂Φ
∂ξ

= −∂2f

∂ξ2
= −ρbMξ − μ1 − μ2, (3.3.82)
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while for the case of reverse phase transformation, ξ̇ < 0, we have

∂Φ
∂σ

= −ΔS : σ − Λ, (3.3.83)

∂Φ
∂T

= −Δα : σ − ρΔs0, (3.3.84)

∂Φ
∂ξ

=
∂2f

∂ξ2
= −ρbAξ − μ1 + μ2. (3.3.85)

The evolution of martensitic volume fraction can be evaluated from the
consistency condition (3.3.80) as

ξ̇ = − (Λ + ΔS : σ) : σ̇ + (ρΔs0) Ṫ

ρΔs0

(
Ms − Mf

) , (3.3.86)

for the forward phase transformation and as

ξ̇ = − (Λ + ΔS : σ) : σ̇ + (ρΔs0) Ṫ

ρΔs0

(
As − Af

) , (3.3.87)

for the reverse phase transformation. Now, the temperature evolution equation
for forward phase transformation can be derived by substituting the equation
(3.3.86) into the energy balance equation for adiabatic conditions (3.3.79).
After solving for Ṫ , one can get the following expression:

Ṫ = −Tα − χ

(ρc − δ)
: σ̇, (3.3.88)

where χ is given by

χ =
(Λ + ΔS : σ)

ρΔs0

(
Ms − Mf

) (−Y + ρΔs0T ) , (3.3.89)

and δ is given by

δ =
ρΔs0

ρΔs0

(
Ms − Mf

) (−Y + ρΔs0T ) . (3.3.90)

A similar expression for Ṫ can be derived for the reverse phase transformation
and the details are left as an exercise for the interested reader.

3.4 Unification of Different SMA Constitutive Models

Different constitutive models are distinguished intrinsically by a different
selection of internal state variables and their respective evolution equations.
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If the internal state variables of different SMA constitutive models are the
same, then these models can possibly be unified under the same thermody-
namic framework through the selection of appropriate forms of the hardening
function f . In this section, we present an approach to the unification of the
model derived above with two well-known constitutive models for SMAs: the
exponential model proposed by Tanaka and coworkers [18, 19], and the cosine
model proposed by Liang and Rogers [20].

Exponential (Tanaka) Model

This model [18, 19] can be assimilated into the present thermodynamic frame-
work if the hardening function f is selected as

f (ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

ρΔs0

aM
e

[(1 − ξ) ln (1 − ξ) − ξ] + (μe
1 + μe

2) ξ; ξ̇ > 0

ρΔs0

aA
e

ξ [ln (ξ) − 1] + (μe
1 − μe

2) ξ; ξ̇ < 0
(3.4.91)

where aM
e , aA

e , μe
1, μe

2 are transformation strain hardening model parame-
ters. These model parameters used in the exponential model are defined in
Table 3.5, where they are given in terms of the transformation temperatures
and the reference entropy difference which is related to the stress influence
coefficients (cf. Problem 3.3). Note that Y e is the critical value for the ther-
modynamic force π to cause phase transformation. The remaining terms in
the Gibbs free energy and other key relations remain unchanged from those
discussed in previous sections. The exponential model is intended to capture
the effects of a phase transformation process that corresponds to nucleation of
the martensitic phase and growth from the parent austenitic phase. Additional
details can be found in Lagoudas et al. [21].

Table 3.5. Parameters for the exponential model.

Y e = −ρΔs0

2
(As − Ms) +

ρΔs0

2 ln(0.01)
(Ms − Mf + Af − As)

aA
e = − ln(0.01)

(As − Af )

aM
e =

ln(0.01)

(Ms − Mf )

μe
1 =

1

2
ρΔs0 (Ms + 2Af − As) − ρΔu0

μe
2 =

1

2
ρΔs0

(
1

aA
e

− 1

aM
e

)
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Cosine (Liang and Rogers) Model

This model has been proposed by Liang and Rogers [20] and it assumes the
following hardening function, within the present thermodynamic framework:

f (ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ∫

0

−ρΔs0

aM
c

[
π − cos−1 (2ξ − 1)

]
dξ + (μc

1 + μc
2) ξ; ξ̇ > 0

ξ∫

0

−ρΔs0

aA
c

[
π − cos−1 (2ξ − 1)

]
dξ + (μc

1 − μc
2) ξ; ξ̇ < 0

(3.4.92)
In the above expression aM

c , aA
c , μc

1, μc
2 are transformation strain hardening

model parameters. Again, the remaining terms in the Gibbs free energy and
other key relations remain unchanged from those discussed in previous sec-
tions. These model parameters are presented in Table 3.6 where π represents
the universal constant 3.14... and is not the thermodynamical force conjugated
to ξ. The model parameters here are given in terms of the transformation tem-
peratures and the reference entropy difference (related to the stress influence
coefficients, cf. Problem 3.3). The critical value for the thermodynamic force
to initiate transformation for the cosine model is denoted by Y c.

The cosine model was first introduced to better capture experimental
response observed in the testing of SMA actuators. Any of the three models
presented here (polynomial, exponential, cosine) under the unified thermo-
dynamic framework is an acceptable choice if it is shown to fit experimental
data well. The comparison of the three models is given in Fig 3.4 where results
were generated using standard SMA properties to be discussed in the following
chapter. It should also be noted that the polynomial (quadratic) hardening
model presented in this chapter can be extended to a higher order polynomial
hardening function if necessary, based on experimental observations.

Table 3.6. Parameters for the cosine model.

Y c = −ρΔs0

2
(As − Ms) +

ρΔs0

4
(Ms − Mf + Af − As)

aA
c = − π

(As − Af)

aM
c =

π

(Ms − Mf )

μc
1 =

1

4
ρΔs0 (Ms + Af ) − ρΔu0

μc
2 =

π

4
ρΔs0

(
1

aM
c

− 1

aA
c

)
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Fig. 3.4. Comparison of pseudoelastic stress vs. strain response as predicted by
three distinct hardening functions.

Smooth Transformation Hardening Model

Next, we introduce a hardening function that is a more general polynomial
function in terms of ξ that allows smooth transitions between the elastic and
transformation regimes. This hardening function is constructed in such a way
that it has continuous derivatives. The proposed hardening function has the
following form:

f (ξ) =

⎧
⎪⎨

⎪⎩

1
2ρbM

(
ξ + ξn1+1

(n1+1) + (1−ξ)n2+1

(n2+1)

)
; ξ̇ > 0

1
2ρbA

(
ξ + ξn3+1

(n3+1) + (1−ξ)n4+1

(n4+1)

)
; ξ̇ < 0,

(3.4.93)

while the first derivative of f with respect to ξ is given by

∂f (ξ)
∂ξ

=

⎧
⎨

⎩

1
2ρbM (1 + ξn1 − (1 − ξ)n2) ; ξ̇ > 0

1
2ρbA (1 + ξn3 − (1 − ξ)n4) ; ξ̇ < 0,

(3.4.94)

where ρbM and ρbA are given in Table 3.3. The exponents n1, n2, n3 and n4

assume real values, and are determined from experimental test data.
To compare the proposed smooth transformation hardening model with

the model presented in Sect. 3.3, the isothermal pseudoelastic SMA response
as predicted by each of these two models has been plotted and these are
compared to experimental results. It should be mentioned that the mate-
rial parameters used in these simulations had to be adjusted slightly when a
different model was used. This improved the accuracy of each model predic-
tion. Specifically, the transformation temperatures for the quadratic hardening
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Table 3.7. Material parameters for the smooth transformation hardening model.

EA = 32.5 · 109Pa EM = 23.0 · 109Pa

αA = 22.0 · 10−6K αM = 22.0 · 10−6K

cA = 400.0 J
kgK

cM = 400.0 J
kgK

H = 0.033 ρ = 6500 kg
m3

T0 = 313K ρΔs0 = −11.55 · 104 J
m3K

As = 217K Ms = 264K

Af = 290K Mf = 160K

n1 = 0.17, n2 = 0.27 n3 = 0.25, n4 = 0.35

model were selected to be Mf = 194K, Ms = 226K, As = 241K, Af = 290K.
These transformation temperatures give a better prediction for this model.
For more details the reader is referred to additional work by Machado [22].
The material parameters used by the smooth transformation hardening model
are presented in Table 3.7 and an example comparing the smooth model with
two alternatives is given in Fig. 3.5.

Fig. 3.5. Comparison of experimental results with the polynomial (quadratic) and
smooth transformation hardening model results, for T = 313K.
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3.5 Analytical Solutions and 1-D Examples

Next, we present examples that use the analytical solutions discussed to pre-
dict the behavior of an SMA wire under different thermomechanical loading
paths. We first reduce the unified model presented above to a 1-D form. Fol-
lowing this, example 3.3 shows how we can obtain the phase diagram, σ vs.
T , using the analytical solutions. Example 3.4 shows how to derive isothermal
loading paths for different temperatures, whereas Example 3.5 demonstrates
how to derive constant stress loading paths for different stress levels, according
to the same phase diagram of Example 3.3. Example 3.6 compares isothermal
and adiabatic heat conditions of a pseudoelastic loading path. Example 3.7
explores a more diverse loading paths where isothermal and constant stress
loading paths are in sequence.

3.5.1 1-D Reduction of the SMA Constitutive Model

The model for SMAs presented here can be reduced for the 1-D case by
assuming a uniaxial loading of an SMA prismatic bar along its long axis,
assumed to coincide with the x1-direction. The stress tensor has only one
non-zero component, that is

σ11 = σ 	= 0 (3.5.95)

The transformation strain components are given by

εt
11 = εt; εt

22 = εt
33 = −1

2
εt; ε12 = ε23 = ε31 = 0, (3.5.96)

where εt is the axial transformation strain assuming that it results in isochoric
deformations due to phase transformation.

Due to the fact that the stress tensor has one non-zero component and
the transformation strain tensor is of the form presented above, the double
dot product between tensor quantities of the equations presented in previous
sections will be reduced to a simple scalar multiplication. As a result, the
fourth-order compliance tensors SA and SM reduce to the scalars SA and SM ,
respectively. The second-order thermal expansion tensors αA and αM reduce
to the scalars αA and αM , whereas the transformation tensor Λ reduces to
H or Hcur (σ) in the one-dimensional case. The equation for the evolution of
transformation strain during forward transformation becomes

ε̇t = Hsgn(σ)ξ̇, (3.5.97)

where the sign function is defined as

sgn(σ) =
{

1 if σ ≥ 0
−1 if σ < 0 (3.5.98)
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It is left to the reader to derive the form for the reverse transformation (see
Problem 3.5). The above equation (3.5.97) can be integrated, resulting in the
following expression:

εt = Hsgn(σ)ξ. (3.5.99)

Therefore, the one-dimensional form of the total strain and the entropy are
given by

ε = Sσ + α (T − T0) + εt, (3.5.100)

s =
1
ρ
σα + c ln

(
T

T0

)

+ s0, (3.5.101)

where the expressions for S and α are defined in terms of (3.3.42) and (3.3.43),
as

S (ξ) = SA + ξ
(
SM − SA

)
= SA + ξΔS, (3.5.102)

α (ξ) = αA + ξ
(
αM − αA

)
= αA + ξΔα. (3.5.103)

The one-dimensional form of the thermodynamic force π is given by

π = |σ|H +
1
2
ΔSσ2 + Δα (T − T0) − ρΔc

[

(T − T0) − T ln
(

T

T0

)]

+

ρΔs0T − ρΔu0 −
∂f

∂ξ
.

(3.5.104)

For the quadratic hardening function and forward transformation (3.5.104)
reduces to

π = |σ|H +
1
2
ΔSσ2 + ρΔs0T − ρΔu0 −

[
ρbMξ + (μ1 + μ2)

]
= Y. (3.5.105)

Solving (3.5.105), we can get the explicit expression for ξ

ξ =
1

ρbM

[

|σ|H +
1
2
ΔSσ2 + ρΔs0 (T − Ms)

]

. (3.5.106)

Substituting (3.5.105) into (3.5.100) for the case of forward martensitic trans-
formation, the total strain becomes

ε = Sσ + α (T − T0) +
Hsgn (σ)

ρbM

[

|σ|H +
1
2
ΔSσ2 + ρΔs0 (T − Ms)

]

,

(3.5.107)
where

S = SA + ξ
(
SM − SA

)
; α = αA + ξ

(
αM − αA

)
.

Next, consider the case for reverse phase transformation. The thermody-
namic force π is given as
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π = |σ|H +
1
2
ΔSσ2 + ρΔs0T − ρΔu0 −

[
ρbAξ + (μ1 − μ2)

]
= −Y, (3.5.108)

which can be solved for ξ as

ξ =
1

ρbA

[

Y + |σ|H +
1
2
ΔSσ2 + ρΔs0

(
T − Af

)]

. (3.5.109)

Substituting (3.5.108) into (3.5.100) we get an expression for the total strain
for the case of reverse martensitic transformation, given by

ε = Sσ + α (T − T0) +
Hsgn (σ)

ρbA

[

|σ|H +
1
2
ΔSσ2 + ρΔs0

(
T − Af

)]

.

(3.5.110)
We summarize the above formulas in Table 3.8.

3.5.2 Example Solutions for Various Thermomechanical Loading
Paths

Example 3.3. Plotting of analytical transformation surfaces (1-D stress state)

Using the same material parameters of Example 3.2, we show how to derive the
stress vs. temperature phase diagram using analytical solutions for the stress
interval of 0 < σ < 800MPa and temperature interval of 224K < T < 336K,
assuming Δα = 0 = Δc = 0.

Table 3.8. Summary of SMA constitutive model - One-dimensional formulation.

Thermoelastic response:

ε = SAσ + αA (T − T0) or ε = SMσ + αM (T − T0)

Forward phase transformation:

π = |σ|H + 1
2
ΔSσ2 + ρΔs0T − ρΔu0 −

[
ρbMξ + (μ1 + μ2)

]
= Y

ε = Sσ + α (T − T0) +
Hsgn (σ)

ρbM

[

|σ|H +
1

2
ΔSσ2 + ρΔs0 (T − Ms)

]

Reverse phase transformation:

π = |σ|H + 1
2
ΔSσ2 + ρΔs0T − ρΔu0 −

[
ρbAξ + (μ1 − μ2)

]
= −Y

ε = Sσ + α (T − T0) +
Hsgn (σ)

ρbA

[

|σ|H +
1

2
ΔSσ2 + ρΔs0 (T − Af )

]
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The first step to find the transformation surface at the beginning of the
forward phase transformation is to substitute ξ = 0 into (3.5.105). We obtain

|σ|H +
1
2
ΔSσ2 + ρΔs0 (T − Ms) = 0. (3.5.111)

Similarly, we substitute ξ = 1 into (3.5.105) to find out the transformation
surface at the end of the forward phase transformation, with the following
result:

|σ|H +
1
2
ΔSσ2 + ρΔs0 (T − Ms) − ρΔs0

(
Mf − Ms

)
= 0. (3.5.112)

To find the transformation surface at the beginning of the reverse phase trans-
formation, we substitute ξ = 1 into (3.5.108) to get

|σ|H +
1
2
ΔSσ2 + ρΔs0

(
T − Af

)
− ρΔs0

(
As − Af

)
= 0. (3.5.113)

Finally, for the transformation surface pertaining to the end of the reverse
phase transformation, we substitute ξ = 0 into (3.5.108), which yields

|σ|H +
1
2
ΔSσ2 + ρΔs0

(
T − Af

)
= 0. (3.5.114)

Now, using the known material parameters, we can plot the phase diagram,
as shown in Fig. 3.6. Note that the transformation surfaces as derived using
this model and the given material properties exhibit only minor nonlinearity.
Examination of (3.5.111)–(3.5.114) indicates that the difference in compli-
ance between austenite and martensite is the only term contributing to the
curvature of the transformation surfaces. This compliments the discussion of
Chapter 2 in which such linearity was often assumed (see also Sect. 2.6.2).

Example 3.4. Determination of 1-D solutions for isothermal loading paths

In this example, we show how to generate the stress vs. temperature and stress
vs. strain expressions for isothermal loading paths with different initial tem-
peratures greater than Af . Because the initial temperature of the material is
T > Af and the initial stress will be zero, the reference state of the material
can be considered austenitic and the configuration of the body assuming zero
stress and zero transformation strain can be thought of as the reference con-
figuration. The selected temperatures for isothermal loading are T1 = 328K,
T2 = 308K, T3 = 276K and T4 = 260K. The same material parameters will
be used as used in Example 3.2, and these are given in Table 3.4.

Following the same procedure for computing the transformation surfaces as
described in Example 3.3, we can plot the isothermal loading path in the stress
vs. temperature plot for the four different initial temperatures in Fig. 3.7.

We need to derive the isothermal stress vs. strain curves for all the four
temperatures. First, we need to compute the values of σMs, σMf , σAs and
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Fig. 3.6. Uniaxial stress-temperature phase diagram for Example 3.3.

Fig. 3.7. Phase diagram - isothermal loading path.
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σAf for each corresponding temperature. These values of stress represent the
beginning and end of both forward and reverse transformation. A general
procedure for obtaining different stress levels at the beginning and at the end
of the phase transformation follows.

We find the value of σMs by substituting ξ = 0 and σ = σMs in (3.5.105),
which gives

1
2
ΔS(σMs)2 + σMsH + ρΔs0 (T − Ms) = 0. (3.5.115)

Similarly, the values of σMf , σAs, σAf can be obtained by substituting ξ = 1
into (3.5.105) and (3.5.108), and substituting ξ = 0 into (3.5.108), which yields
the following evaluations:

1
2
ΔS(σMf )2 + σMfH + ρΔs0

(
T − Mf

)
− ρbM = 0;

1
2
ΔS(σAf )2 + σAfH + ρΔs0

(
T − Af

)
− ρbA = 0;

1
2
ΔS(σAs)2 + σAsH + ρΔs0 (T − As) = 0. (3.5.116)

Since the value of the stress levels of the forward and reverse phase trans-
formation are computed from the equations above, we now need to define
the equations for the elastic and transformation regimes. Let us consider the
region 0 ≤ σ ≤ σMs, the interval where the elastic austenitic phase occurs. In
this interval of stress, no phase transformation takes place. Therefore, we can
calculate the response of the material using the following set of equations:

ξ = 0; S = SA; α = αA;

ε = SAσ + αA (T − T0) (3.5.117)

The forward martensitic transformation occurs when the stress level is in
the interval σMs < σ < σMf . Therefore, before calculating the strains for this
interval, we need to first find the martensitic volume fraction related to each
stress and temperature of the SMA. After the martensitic volume fraction is
obtained, we can compute the material properties and then find the strain.
For this purpose, we use the following set of equations:

ξ =
1

ρbM

[

|σ|H +
1
2
ΔSσ2 + ρΔs0 (T − Ms)

]

;

S = SA + ξ
(
SM − SA

)
;

α = αA + ξ
(
αM − αA

)
;

ε = Sσ + α (T − T0) + Hsgn(σ)ξ. (3.5.118)
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The forward martensitic transformation ends when the stress level reaches
σMf . Above σMf , a second elastic response related to the martensitic phase
will be exhibited until the maximum value of the stress σmax for the loading
is reached. Upon unloading, the martensitic phase responds elastically until
the stress level reaches σAs. For this martensitic elastic regime in the interval
σMf ≤ σ ≤ σmax (loading) and σmax ≥ σ ≥ σAs (unloading), we have the
following set of equations:

ξ = 1; S = SM ; α = αM ;

ε = SMσ + αM (T − T0) + Hsgn(σ). (3.5.119)

The reverse martensitic transformation occurs when the stress level reaches
σAs. Therefore, in the interval of σAs > σ > σAf , we have the following set
of equations with which to compute the strains:

ξ =
1

ρbA

[

|σ|H +
1
2
ΔSσ2 + ρΔs0

(
T − Af

)]

;

S = SA + ξ
(
SM − SA

)
;

α = αA + ξ
(
αM − αA

)
;

ε = Sσ + α (T − T0) + Hsgn(σ)ξ. (3.5.120)

Finally, for the stress interval σAf ≥ σ ≥ 0, we return to the elastic response
of the austenitic phase. Then, we can use the following set of equations:

ξ = 0; S = SA; α = αA;

ε = SAσ + αA (T − T0) . (3.5.121)

Substituting the value of the material parameters into the equations presented
above, one can plot the pseudoelastic stress vs. strain curves for isothermal
conditions as shown in Fig. 3.8. Note that any effects due to thermal expansion
have been neglected.

Example 3.5. Determination of 1-D solutions for constant stress loading paths

In this example, we show how to obtain the constitutive response related
to constant stress loading paths using the same material parameters as the
previous example. Note that in the case of a uniaxial stress state, constant
stress paths are often known as “isobaric” paths, and this terminology will
be used throughout the remainder of this chapter. Specifically, we derive the
necessary equations for three isobaric paths for stress levels of σ = 100 MPa,
σ = 150 MPa, and σ = 200 MPa, and also plot strain vs. temperature for
these three stress levels.

Figure 3.9 shows the stress-temperature phase diagram with the thermo-
mechanical loading paths given by straight horizontal lines. The first step is to
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(a) Isothermal stress vs. strain curves, for T = 328K and T = 308K

(b) Isothermal stress vs. strain curves, for T = 276K and T = 260K

Fig. 3.8. Isothermal stress vs. strain curves for different temperatures.
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Fig. 3.9. Phase diagram - isobaric loading path.

compute the transformation temperatures for each given stress level. For this
purpose, we use (3.5.105) to compute the values of the non-zero stress trans-
formation temperatures Mσ

s and Mσ
f for the forward phase transformation,

and we use (3.5.108) to compute Aσ
f and Aσ

s for the reverse phase transfor-
mation. Therefore, by substituting ξ = 0 and T = Mσ

s , into (3.5.105), we can
solve for Mσ

s . The temperature Mσ
f can be obtained in the same manner, in

this case by substituting ξ = 1 and T = Mσ
f into (3.5.105). Similarly, Aσ

s and
Aσ

f can be obtained by using (3.5.108). We then obtain the following set of
equations:

1
2
ΔSσ2 + σH + ρΔs0 (Mσ

s − Ms) = 0;

1
2
ΔSσ2 + σH + ρΔs0

(
Mσ

f − Mf

)
− ρbM = 0;

1
2
ΔSσ2 + σH + ρΔs0

(
Aσ

f − Af

)
− ρbA = 0;

1
2
ΔSσ2 + σH + ρΔs0 (Aσ

s − As) = 0. (3.5.122)

Let the SMA material be subjected to a given stress level at a starting
temperature T > Aσ

f (i.e., T = Tmax). Assume also that T0 = Tmax. This
will generate a small elastic strain in the austenitic phase of the SMA. Next,
we gradually start reducing the temperature while the stress level remains
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constant. Therefore, in the interval of temperature Mσ
s < T < Tmax, we

still have ξ = 0, and no phase transformation is taking place. Therefore, we
compute the thermomechanical response using the following set of equations:

ξ = 0; S = SA; α = αA;

ε = SAσ + αA (T − T0) . (3.5.123)

At the temperature Mσ
s , the forward phase transformation starts and it

continues until the temperature of the SMA reaches Mσ
f . As the SMA

cools through this range, an increase in the total strain due to the gener-
ation of transformation strain is observed. For the interval of temperature
Mσ

s < T ≤ Mσ
f , we have the following set of equations:

ξ =
1

ρbM

[

|σ|H +
1
2
ΔSσ2 + ρΔs0 (T − Ms)

]

;

S = SA + ξ
(
SM − SA

)
;

α = αA + ξ
(
αM − αA

)
;

ε = S(ξ)σ + α(ξ) (T − T0) + Hsgn (σ) ξ. (3.5.124)

If we continue to cool the SMA to a temperature Tmin less than Mσ
f , no more

phase transformation will occur, and the material behaves thermoelastically
in the martensitic phase. For the interval of temperature Tmin < T ≤ Mσ

f we
then have

ξ = 1; S = SM ; α = αM ;

ε = SMσ + αM (T − T0) + Hsgn(σ). (3.5.125)

After the cooling process ends, we heat the material again. The material
initially behaves elastically, and (3.5.125) applies until the temperature of the
SMA reaches Aσ

s . In the interval Aσ
s < T ≤ Aσ

f , the reverse transformation
takes place and the material recovers part of its transformation strain. During
the reverse transformation, we have

ξ =
1

ρbA

[

|σ|H +
1
2
ΔSσ2 + ρΔs0

(
T − Af

)]

;

S = SA + ξ
(
SM − SA

)
;

α = αA + ξ
(
αM − αA

)
;

ε = S(ξ)σ + α(ξ) (T − T0) + Hsgn (σ) ξ. (3.5.126)

Finally, after the reverse transformation, the SMA behaves thermoelastically
again. The temperature range for this elastic region is Aσ

f < T < Tmax. We
then have the following constitutive response:
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Fig. 3.10. Strain vs. temperature plot.

ξ = 0; S = SA; α = αA;

ε = SAσ + αA (T − T0) . (3.5.127)

Figure 3.10 shows the strain vs. temperature plots for the isobaric loading-
unloading conditions, for three different stress levels of 100 MPa, 150 MPa and
200 MPa.

Example 3.6. Determination of 1-D solutions for adiabatic pseudoelastic load-
ing paths

In this example, we compare the isothermal pseudoelastic loading-unloading
path with an adiabatic one. We again plot the phase diagram (stress vs. tem-
perature plot) and show how to derive and and the stress vs. strain behavior
for both isothermal and adiabatic conditions using the material parameters
of Example 3.3.

The solution of the isothermal pseudoelastic loading-unloading path is
exactly the same as presented in Example 3.4 and will not be presented here.
However, the solution of the adiabatic loading path needs some further con-
sideration since the temperature changes during phase transformation. For
the elastic loading in the austenitic phase in the interval of 0 < σ ≤ σMs, we
have the following set of equations:

ξ = 0; S = SA; α = αA;

ε = SAσ + αA (T − T0) . (3.5.128)
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Next, we consider the interval at which phase transformation takes place,
σMs < σ ≤ σMf . The adiabatic assumption for the SMA material implies
complete thermal insulation from the environment; there is no heat exchange.
Since the SMA cannot exchange heat with the surrounding environment, its
temperature increases during the exothermic forward phase transformation.
We compute the increment of temperature, ΔT , for a given small increment
of stress, Δσ, integrating (3.3.88), and assuming that all variables remain
constant during the increment of stress. This results in the following relation:

ΔT = −

Tα −

⎡

⎣
(Hsgn(σ) + ΔSσ)

ρΔs0

(
Ms − Mf

) (−Y + ρΔs0T )

⎤

⎦

⎡

⎣ρc −

⎛

⎝
ρΔs0

ρΔs0

(
Ms − Mf

) (−Y + ρΔs0T )

⎞

⎠

⎤

⎦

Δσ,

The temperature is then updated. The stress and temperature (updated val-
ues) are then used to calculate ξ and, consequently, the updated value of
strain:

ξ =
1

ρbM

[

|σ|H +
1
2
ΔSσ2 + ρΔs0 (T − Ms)

]

;

S = SA + ξ
(
SM − SA

)
;

α = αA + ξ
(
αM − αA

)
;

ε = S(ξ)σ + α(ξ) (T − T0) + Hsgn (σ) ξ. (3.5.129)

For values of σ > σMf , in the interval of σMf < σ ≤ σmax, we have only
elastic loading in the martensitic phase, and no phase transformation occurs.
Therefore, we can compute the constitutive response using the following set
of equations:

ξ = 1; S = SM ; α = αM ;

ε = SMσ + αM (T − T0) + Hsgn (σ) ξ. (3.5.130)

The procedure for computing the unloading adiabatic path follows from
the same discussion, and is thus not explicitly described. Figure 3.11 presents
the results of the stress vs. temperature, while Fig. 3.12 and stress vs.
strain curves for the complete adiabatic loading path. Figure 3.12 provides
a comparison of the isothermal response (dashed curve) and the adiabatic
response (black solid curve). The results reiterate the conclusions addressed
in Chapter 2, Sect. 2.4.3 about the importance of loading rate. The adiabatic
loading path is representative of very fast cycling during which loading and
unloading complete in such a short time span that heat transfer mechanisms
have not yet become effective.
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Fig. 3.11. Stress vs. temperature response assuming adiabatic conditions.

Fig. 3.12. Stress vs. strain plots: isothermal conditions (dashed) and adiabatic
conditions (solid).

Example 3.7. Determination of 1-D solutions for sequential isothermal-
constant stress loading paths

In this example, we consider a sequence of isothermal and isobaric loading
paths. Consider an SMA bar with the material properties given in Table 3.9.
Note that Problem 3.3 addresses the relation between the stress influence
coefficients CA and CM and the material parameter ρΔs0 as used in the
derivation of the constitutive model.
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Table 3.9. Material properties for Example 3.7.

EA = 33 GPa EM = 15 GPa

αA = 22 · 10−6 /K αM = 22 · 10−6 /K

H = 0.023 ρΔc = 0.0

Mf = 227 K Ms = 242 K

As = 261 K Af = 270 K

CA = 4.5 MPa/K CM = 4.5 MPa/K

Assuming the reference temperature to be T0 = 298 K and the reference
stress to be zero, we seek to predict the SMA behavior when it is subjected
to the following loading path:

1. Cooled at zero stress to T = 255K.
2. Loaded isothermally to σ = 200 MPa and then unloaded isothermally.
3. Loaded once more isothermally to 100 MPa.
4. Heated at constant stress (σ = 100 MPa) to T = 298 K.
5. Unloaded isothermally to a zero stress level.

For such a stress-temperature loading path, an appropriately constructed
phase diagram provides a graphical aid as we seek to predict the mate-
rial response at different points in the loading path. We plot the stress-
temperature phase diagram for the following interval: 0 ≤ σ ≤ 200 MPa and
220 ≤ T ≤ 325K. The procedure to construct the phase diagram is discussed
in Example 3.3, and it is not repeated here. The phase diagram is shown in
Fig. 3.13.

The solution method to plot the stress-strain curve, stress-temperature
curve, and strain-temperature curve for these loading steps is as follows:

• The process of cooling under zero load is a purely thermoelastic step as
the thermomechanical state of the material does not enter the forward
transformation region. Therefore, we have:

ε = SAσ + αA (T − T0) , (3.5.131)

with ξ = 0, S = SA and α = αA. Equation (3.5.131) corresponds to the
path from point 0 to 1 shown in Fig. 3.13.

• At temperature T = 255 K, we load isothermally. Recall that the material
is initially in austenite. It is important to compute the level of stress where
the forward martensitic phase transformation starts and finishes (i.e., σMs

and σMf ). By following the approach presented in Example 3.4, we find
that σMs = 56 MPa and σMf = 115 MPa as shown in Fig. 3.13. Therefore,
for the interval 0 ≤ σ ≤ 56 MPa the material behaves elastically. Then,
we have the following constitutive response:
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Fig. 3.13. Stress vs. temperature phase diagram with loading path described in
Example 3.7.

ε = SAσ + αA (T − T0) (3.5.132)

with ξ = 0, S = SA and α = αa. The equation (3.5.132) corresponds to
the path from point 1 to 2 shown in Fig. 3.13.
The martensitic phase transformation occurs during the interval of applied
stress 56 < σ < 115 MPa. Therefore, we have the following set of equa-
tions, for the martensitic volume fraction, compliance coefficient, thermal
expansion coefficient and constitutive response

ξ =
1

ρbM

[

|σ|H +
1
2
ΔSσ2 + ρΔs0 (T − Ms)

]

;

S = SA + ξ
(
SM − SA

)
;

α = αA + ξ
(
αM − αA

)
;

ε = Sσ + α (T − T0) + Hsgn(σ)ξ. (3.5.133)

The set of equations (3.5.133) correspond to the path from point 2 to 3
shown in Fig. 3.13.
For the stress interval 115 ≤ σ ≤ 200 MPa, no phase transformation
takes place. The material behaves elastically in the martensitic phase. The
same behavior occurs when unloading from σ = 200 MPa to σ = 0 MPa.
Therefore, in the interval 0 ≤ σ ≤ 200 MPa upon unloading, we have the
following constitutive response:

ε = SMσ + αM (T − T0) , (3.5.134)



3.5 Analytical Solutions and 1-D Examples 165

with ξ = 1, S = SM and α = αM . Equation (3.5.134) corresponds to the
path 3-4-5 as shown in Fig. 3.13.

• From the previous results, we have seen that the material is in marten-
site after unloading. Therefore, by loading the material again until σ =
100 MPa does not induce any phase change, and the same set of equations
(3.5.134) for elastic martensitic phase holds.

• For the next thermomechanical loading step (a constant stress heating
at σ = 100 MPa) we first compute the values of temperature where the
forward and reverse martensitic phase transformation starts and finishes
(Mσ

s , Mσ
f , Aσ

s , Aσ
f ). The necessary equations to compute the temperatures

at which the reverse phase transformations start and finish for a constant
stress heating path were already presented in Example 3.5. Using the same
methodology, we calculate Mσ

s = 266 K, Mσ
f = 251 K, Aσ

s = 285 K and
Aσ

s = 294 K (see Fig. 3.13).
Therefore, for the interval of 255 ≤ T ≤ 285 K at σ = 100 MPa, the
material behaves elastically. We have the following constitutive response:

ε = SMσ + αM (T − T0) , (3.5.135)

with ξ = 1, S = SM and α = αM .
The reverse phase transformation takes place in the interval 285 ≤ T ≤
294 K. For this temperature interval, we have the following set of equations:

ξ =
1

ρbA

[

|σ|H +
1
2
ΔSσ2 + ρΔs0

(
T − Af

)]

;

S = SA + ξ
(
SM − SA

)
;

α = αA + ξ
(
αM − αA

)
;

ε = S(ξ)σ + α(ξ) (T − T0) + Hsgn (σ) ξ. (3.5.136)

The material behaves elastically again in the temperature interval 294 <
T < 298 K at the stress level of σ = 100 MPa. Then we have the equations:

ε = SAσ + αA (T − T0) , (3.5.137)

with ξ = 0, S = SA and α = αA. The set of equations (3.5.135), (3.5.136)
and (3.5.137) correspond to the total path from point 6 to 7 as shown in
Fig. 3.13 and Fig. 3.14.

• At the temperature of T = 298 K, we perform the final unloading to
σ = 0. By examining the constructed phase diagram we can see that no
phase transformation is expected to take place during this step. Therefore,
we can use the same constitutive equation in (3.5.137), which will also
correspond to the path from point 7 to 8 shown in Fig. 3.13.

Fig. 3.14 presents the stress vs. strain for the isothermal loading path
described above, while Fig. 3.15 shows the strain vs. temperature plot. We also
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Fig. 3.14. Stress vs. strain response at corresponding to the thermomechanical
loading path of Fig. 3.13.

Fig. 3.15. Strain vs. temperature response corresponding to the thermomechanical
loading path of Fig. 3.13.
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Fig. 3.16. Stress vs. strain vs. temperature response of the SMA corresponding to
the loading path of Fig. 3.13.

present a three-dimensional plot of the loading-unloading path in Fig. 3.16.
Note that the path labeled with the thermomechanical state points (0–8) rep-
resents the total stress-strain-temperature path experienced by the material
element and that two projections onto the stress-strain and stress-temperature
planes are also shown.

3.5.3 Application of the Smooth Hardening Model to a Nonlinear
Oscillator

The hysteretic behavior of pseudoelastic SMAs results in a high dissipation
capacity that can be used to attenuate undesired vibrations of a mechanical
system or structure. Although the evolving thermomechanical properties and
high dissipation capacity are very interesting characteristics observed in the
dynamic response of SMAs, they can also lead to a very complex dynam-
ical response, in some cases leading to chaotic vibration. Chaotic response
implies that two very close but different dynamical orbits can diverge as time
progresses, and consequently, chaos is related to long-term unpredictability.
Therefore, it is important to study the nonlinear dynamical response of SMA
systems. In this example we investigate the nonlinear dynamical response of a
one-degree of freedom SMA oscillator (Fig. 3.17), which consists of a mass m
attached to an SMA element, assumed to be a prismatic SMA bar of length
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(a) One-degree of freedom SMA oscillator (b) Free body diagram of the
SMA oscillator

Fig. 3.17. Single-degree of freedom SMA oscillator.

L and cross-section area A. For more details about the SMA oscillator, the
interested reader is referred to [22]. The system is harmonically excited by a
force F sin (ωt).

The equation of motion of the oscillator is given by

mÿ + FH = F sin (ωt) , (3.5.138)

where y is the mass displacement from its reference position, relative to an
inertial frame, ω is the forcing frequency, F is the amplitude of the excitation
force and FH is the force exerted by the hysteretic SMA element on the mass.

A non-dimensional version of Eqn. 3.5.138, can be obtained by assuming
that the SMA element restitution force is equally distributed at all points
of the SMA bar. We can then assume σ = FH/A, where σ represents the
nominal uniaxial stress in the SMA bar, and ε = y/L, where ε corresponds to
the axial strain of the SMA element. The equation of motion of the oscillator,
Eqn. 3.5.138 then results in the following form:

ε̈ +
σA

mL
=

F

mL
sin (ωt) . (3.5.139)

Let us now define the following non-dimensional variables:

ω0 =

√
EAA

mL
; F̂ =

F

mLω2
0

;

t̂ = ω0t; ω̂ =
ω

ω0

; σ̂ =
σ

EA

(3.5.140)

where EA = 1/SA is the Young’s modulus of an SMA bar in fully austenitic
phase and ω0 is related to the natural frequency of the system (e.g., iden-
tified as the natural frequency of the system when the SMA element is in
the austenitic phase). With the above definitions, and after introducing the
derivative with respect to non-dimensional time, ε′ = ∂ε/∂t̂, the equation of
motion, Eqn. 3.5.139, can be re-written in a non-dimensional form as
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ε′′ + σ̂ = F̂ sin
(
ω̂t̂
)

(3.5.141)

where the normalized uniaxial stress in the SMA bar is given by

σ̂ =
1
Ŝ

[
ε − α̂

(
T̂ − T̂0

)
− εt

]
. (3.5.142)

The non-dimensional effective material properties can be defined in terms of
(3.3.42)-(3.3.46), as follows:

Ŝ = ŜA + ξ
(
ŜM − ŜA

)
(3.5.143)

α̂ = α̂A + ξ
(
α̂M − α̂A

)
(3.5.144)

ĉ = ĉA + ξ
(
ĉM − ĉA

)
(3.5.145)

ŝ0 = ŝA
0 + ξ

(
ŝM
0 − ŝA

0

)
(3.5.146)

û0 = ûA
0 + ξ

(
ûM

0 − ûA
0

)
(3.5.147)

where

ŜA = SAEA; ŜM = SMEA; α̂A = αAAs; α̂M = αMAs;
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Free vibrations are first considered by eliminating the forcing term from
the right-hand side of (3.5.138), and by giving appropriate initial conditions
to the oscillator. Figure 3.18 shows results related to the free vibration of the
isothermal SMA oscillator. Results are presented in the form of stress vs. strain
and phase space curves (where the “phase space” represents a kind of speed vs.
position space). For a high energy initial condition (ε(0), ε′(0)) = (0.0, 0.04),
and T̂ = 1.258, the system initially dissipates energy due the hysteresis loop.
The level of energy dissipated per cycle is equivalent to the area of the hys-
teresis loop, defined by the amount of phase transformation that the SMA
underwent. However, over the course of time, as the SMA dissipates energy,
the system converges to the elastic regime. Since there is no phase transfor-
mation in the elastic regime, no energy dissipation occurs, and as a result,
the oscillator motion converges to a periodic orbit. Results for non-isothermal
conditions can be found in an alternate work by Machado [22]. In the same
work the details for the numerical integration of the dynamical system com-
bine with the constitutive model are also presented.
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(a) σ̂ vs. ε (b) ε′ vs. ε

Fig. 3.18. Free response of the SMA oscillator: Stress vs. strain and phase portrait
curves.

Forced vibrations of the pseudoelastic SMA oscillator are investigated by
considering a fixed amplitude of the excitation force and different values of the
excitation frequency. Since, at first, we are assuming isothermal conditions,
the temperature of the SMA element is fixed at T̂ = 1.258. In addition, the
amplitude of the excitation force is selected to be F̂ = 0.008 for all simulations.

Figure 3.19a presents the bifurcation diagram of the SMA oscillator sub-
jected to isothermal conditions, for the range of frequencies of 0.24 < ω̂ < 0.76.
One can observe that Fig. 3.19 contains regions of clouds of points sepa-
rated by regions with lines. Usually the regions of point clouds are associ-
ated with chaotic vibration, and the regions of lines are related to periodic
motion. Figure 3.19b shows an enlargement of Fig. 3.19a for the interval of
0.35 < ω̂ < 0.55, where the chaotic regimes can more clearly be identified.

(a) Interval: 0.2 < ω̂ < 0.8 (b) Interval: 0.35 < ω̂ < 0.55

Fig. 3.19. Bifurcation diagram for the response of a single degree of freedom SMA
oscillator assuming isothermal conditions.
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(a) σ̂ vs. ε (b) ε′ vs. ε

(c) Poincaré Map: ε′ vs. ε

Fig. 3.20. Forced response of the SMA oscillator for F̂ = 0.008 and ω̂ = 0.397Hz
under isothermal conditions.

The next analysis is concerned with the motion of the oscillator when
the excitation frequency is ω̂ = 0.397 which is potentially chaotic based on
Fig. 3.19b. Figure 3.20a presents the stress vs. strain plot, while Fig. 3.20b
presents the phase space curves. The so-called Poincaré map is shown in
Fig. 3.20c and presents a cloud of points that can be associated with chaotic
motion. However, only after the evaluation of the Lyapunov exponents can one
know with certainty that the response of the system is truly chaotic. The Lya-
punov exponents for this case have been found to be (λ1, λ2 = +0.021,−0.074)
and the positive value of λ1 is suggesting chaotic response [22].

3.6 Brief Overview of Other Thermomechanical
Constitutive Models for SMAs

Throughout the history of investigation into the complex thermomechanical
response of shape memory alloys, many researchers have proposed a variety
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of different constitutive models with the goal of predicting material behavior.
This section presents a summary of several of these models.

Describing the complex characteristics in the phase transitions in poly-
crystalline SMAs has been a significant challenge to researchers. These char-
acteristics include modeling the hardening during phase transformation, the
asymmetric response that SMAs exhibit in tension and compression, the mod-
eling of detwinning of martensite, two-way shape memory effect and the effects
of reorientation and the accumulation of plastic strains during cyclic loading
(Birman [23], Patoor et al. [14], Lagoudas et al. [15]).

The topic of transformation surfaces (see Appendix A) and tension-
compression asymmetry of the SMA response has been investigated by
Raniecki and Lexcellent[24] who presented a model for pseudoelasticity of
SMAs. A distinct feature of the model is its capability to take into account the
difference between the tension and compression loading. This is accomplished
by using a J2−J3 transformation surface. The model uses exponential harden-
ing functions. It was used in a later work by Raniecki et al. [25] to study bend-
ing of SMA beams undergoing pseudoelastic loading. In this work, the tension-
compression difference was not addressed. The authors were able to determine
the distribution of the martensitic volume fraction along the thickness of the
beam during both loading and unloading. Additional results included plots
of the beam curvature versus the applied moment. Rejzner et al. [26] have
further extended the work on pseudoelastic beams, by including the effect
of tension-compression asymmetry in the analysis and comparing the results
with experimental data. It was found, however, that the tension-compression
asymmetry does not have a significant influence on the macroscopic beam
response.

The comprehensive study of Qidwai and Lagoudas [16] focused on the
choice of different transformation functions and their effect on the material
response. In particular, the asymmetry of the material behavior under ten-
sion and compression, as well as the volumetric transformation strain, can be
modeled by choosing an appropriate functional form of transformation func-
tion. Qidwai and Lagoudas [16] proposed a transformation function, based
on the J2, J3 and I1 stress invariants, which can account for the observed
asymmetry. The subject of the form of the transformation function has been
revisited in a recent paper by Lexcellent et al. [27]. Multiaxial experiments
on polycrystalline SMAs were performed to determine the initial transforma-
tion surface. The experiments have revealed tension-compression asymmetry,
consistent with the results found in the literature. Motivated by the experi-
mental results, Lexcellent et al. [27] proposed an analytical expression for the
transformation function, based on the J2 and J3 stress invariants.

Another important aspect of the SMA response is the detwinning of
martensite. A 1-D model that separates the martensitic volume fraction
into two parts: thermally-induced (self-accommodated) and stress-induced
(detwinned) has been presented by Brinson [28]. Leclercq and Lexcellent [29]
have presented a similar model formulated in a 3-D framework; however, only
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1-D implementation and numerical results have been provided. Comparisons
are made with experimental data for both pseudoelastic mechanical loading as
well as for isobaric thermally-induced transformation. The results are in rea-
sonably good agreement, with the largest discrepancies observed for the case
of isobaric thermally-induced transformation. In another study, Lagoudas and
Shu [30] have proposed a 3-D model with three internal variables but again
with only 1-D numerical implementation and results. The main difference with
the earlier model by Leclercq and Lexcellent [29] is in the type of transforma-
tion hardening function. The extended SMA modeling presented in Chapter 6
further addresses some of the modeling issues associated with detwinning of
martensite, based on the recent 3-D work by Popov and Laogudas [31].

One of the important problems recently addressed by researchers is the
behavior of SMAs under cycling loading (Lexcellent and Bourbon [32], Fischer
[33], Lexcellent et al. [34], Abeyaratne and Kim [35], Bo and Lagoudas
[36–39], Lagoudas and Entchev [40]). During cyclic phase transformation, a
substantial amount of plastic strains is accumulated. In addition, the trans-
formation loop evolves with the number of cycles and TWSME is developed.
Based on the experimental observations, researchers have attempted to create
models able to capture the effects of cycling loading. One-dimensional models
for the behavior of SMA wires under cycling loading have been presented by
Tanaka et al. [41], Lexcellent and Bourbon [32], Lexcellent et al. [34], and
Abeyaratne and Kim [35], among others.

A series of papers by Bo and Lagoudas [36–39] studies the cyclic behavior
of SMA wires in one dimension. The work focuses on the modeling of stress-
induced transformation, where both transformation and plastic strains occur
simultaneously as a result of the applied stress. The resulting model is able to
account for simultaneous development of transformation and plastic strains
during phase transformation under applied loads. In addition to the plastic
strain, the changes in the material response are also modeled by introduc-
ing evolution equations for the material parameters. Finally, minor hysteresis
loops are also modeled by Bo and Lagoudas [38]. This is accomplished by
modifying the transformation criterion and the hardening parameters during
a minor loop. All of the above-mentioned features of the model have been
demonstrated and the results have been compared with experimental data for
NiTi SMA actuators. The results are in very good agreement.

A three-dimensional model for transformation induced plasticity has been
presented by Fischer [33]. In contrast to the work by Lagoudas and Bo [37],a
separate phase transformation condition and plasticity yield condition are
used by Fischer [33]. The theory is presented in general terms, but the identi-
fication of the material parameters and the implementation are not discussed.

Many other approaches to modeling SMAs have been proposed. The work
of Brocca et al. [42] presents a three-dimensional model for SMAs which is
based on the microplane model by Bazant [43]. The main idea of the model
is to deduce the macroscopic constitutive behavior of an SMA by describ-
ing the response of the SMA along planes of different orientations, called
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microplanes. The SMA constitutive behavior on the microplanes is described
by a one-dimensional model. First, the normal and shear components of the
stress on each microplane are defined in terms of the unit normal and tangen-
tial vectors of the plane and the macroscopic stress tensor. Next, the normal
and shear components of the strain are calculated based on the constitutive
model for the microplane. Finally, the components of the macroscopic strain
tensor are calculated from the normal and shear strain components for a set of
microplanes using the principal of virtual work. The particular SMA consti-
tutive model on the microplane implemented in the work by Brocca et al. [42]
is the one presented by Bekker and Brinson [44]. The effect of the hydrostatic
pressure and the tension-compression asymmetry are also taken into account
by modifying the critical stress values for phase transformation and the trans-
formation temperatures. Various results demonstrating the capabilities of the
microplane model are presented and compared with experimental data. The
recent model of Anand and Gurtin [45] also captures this asymmetry and
is formulated assuming finite deformations whereby the deformation gradi-
ent is multiplicatively decomposed into an elastic term and a separate term
accounting for deformation due to the formation of martensitic variants.

One of the latest one-dimensional models for SMA wire actuator is pre-
sented by Shaw [46]. The model is capable of simulating both the pseudoelastic
behavior and the shape memory effect. The new development of the model
by Shaw [46] is the accounting for the instabilities during martensitic phase
transformation by including strain gradient effects and by allowing a soft-
ening stress-strain response. Recent 1-D SMA modeling by Paiva, Savi and
coworkers [47] has taken a different path, addressing also tension/compression
asymmetry and the capability to capture the generation of plastic strain at
stress levels exceeding the yield stress.

Different implementation issues for SMA constitutive models have been
presented and discussed in a series of papers by Govindjee and coworkers [48–
50]. The model presented by Govindjee and Kasper [48] is based on the stress-
temperature phase diagram for SMAs. The approach taken in that work is
similar to the one presented by Bekker and Brinson [51]. It is assumed that
during the martensitic phase transformation, two different martensitic vari-
ants may form, depending on the sign of the applied loading. In addition, if the
material is cooled in a stress-free condition, both variants form simultaneously,
resulting in zero macroscopic transformation strain. Further mechanical load-
ing will result in growth of one martensitic variant at the expense of the other,
producing observable macroscopic transformation strain in the direction of the
loading. In a later work Govindjee and Hall [52] present a constitutive model
based on statistical physics. Similar to their previous work Govindjee and
Kasper [48] the evolution of two martensitic variants is prescribed. A numer-
ical implementation of the model and results for different loading conditions,
including stress-induced and thermally-induced transformation are presented.
A three-dimensional model for SMAs has been presented by Govindjee and
Miehe [49] and Hall and Govindjee [50], where the number of martensitic
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variants formed during transformation is not restricted to two. The general
equations of the model have been presented as well as its numerical imple-
mentation.

In conclusion, a historical summary of some commonly used phenomeno-
logical SMA models and their features is presented in the tables which con-
clude this chapter. For a thorough review of the many micromechanical models
developed over the years, please see the text by K. Bhattacharya [54].

1-D
Model

Formulation Features

Tanaka [18] Uses an exponential hardening rule for the
phase transformation. Material properties
remain constant during phase transforma-
tion. (1986)

Achenbach [55] Potential
energy wells

Considers three phases, austenite (A), ten-
sile martensite (M+), and compressive
martensite (M−). The method of potential
energy wells is used to determine proba-
bilistically when transformation will occur.
(1989)

Liang and
Rogers [20]

Helmholtz
free energy

Uses a cosine hardening rule for the
phase transformation. Material properties
remain constant during phase transforma-
tion. (1990)

Brinson [28] Helmholtz
free energy

Introduces two internal variables allow-
ing modeling of both detwinned and self
accommodated martensite. Uses a cosine
hardening law and variable elastic stiffness
during phase transformation. (1993)

Abeyaratne
and Knowles
[56]

Helmholtz
free energy

Considers the initiation and propagation
of phase transformation in the context of
a 1-D bar. Volume fraction of martensite
not explicitly considered; instead, strain
present in each phase is directly employed.
(1993)

Ivshin and
Pence [57]

Phase fraction
as state
function

Models the transformation between
austenite and a single favored variant of
martensite. Phase fraction of austenite
directly postulated to have a given func-
tional form where cases of hysteretic and
non-hysteretic phase transformations are
considered. Hyperbolic tangent function
is used to model the transformation
hysteresis. (1994)



176 3 Thermomechanical Constitutive Modeling of SMAs

1-D
Model

Formulation Features

Auricchio
and Sacco [58]

Phase
diagram based

Addresses isothermal pseudoelasticity.
Critical transformation stresses at a given
temperature are used to calibrate this
plasticity-based model. Various microme-
chanical schemes are investigated to
account for the change in elastic proper-
ties with phase change. A linear hardening
law is used. (1997)

Bekker and
Brinson
[44, 51]

Phase
diagram based

The model is formulated in terms of pos-
sible thermomechanical paths in stress-
temperature space. Cosine hardening func-
tion is used for the phase transformation.
(1997)

Govindjee
and Kasper
[48]

Phase
diagram based

A distinction is made for martensitic vari-
ants in tension M+ and compression M−.
Constant stiffness and thermal expan-
sion coefficients are assumed. The model
also includes kinematic hardening plastic-
ity. The plastic strains influence the total
amount of martensite that can be pro-
duced through an exponential relation.
(1999)

Rajagopal and
Srinivasa [59]

Helmholtz
free energy

Transformation from austenite to one pre-
ferred variant of martensite is modeled by
considering two distinct reference configu-
rations, one being the austenitic (parent)
phase, and another being the martensitic
(product) phase. (1999)

Seelecke and
Müller [60]

Potential
energy wells

Expands on the work of Achenbach [55],
considering three phases: austenite (A),
tensile martensite (M+), and compressive
martensite (M−). Here the thermomechan-
ical coupling is emphasized. (2004)

Savi and
Paiva
[47, 53]

Helmholtz
free energy

Considers plastic strain effects and plastic-
phase transformation coupling, which
makes it possible to describe TWSME.
Tensile-compressive asymmetry and inter-
nal subloops are also considered. (2005)
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3-D
Model

Formulation Features

Patoor,
Eberhardt and
Berveiller [61]

Gibbs
free energy

Transformation of single crystals with mul-
tiple martensitic variants is first addressed.
The methods are then extended to
polycrystalline materials where Drucker-
Prager-type transformation surfaces are
assumed. (1987)

Liang and
Rogers [62]

Helmholtz
free energy

This is a three dimensional extension of
Liang and Rogers [20] based on a J2-type
transformation surface. (1992)

Sun and
Hwang
[63, 64]

Gibbs
free energy

Uses micromechanics to formulate a model
at the macroscale. The internal variables
are the total martensitic volume fraction
and reoriented martensitic volume frac-
tion. (1993)

Boyd and
Lagoudas
[12]

Gibbs
free energy

Uses the volume fraction of martensite
as internal variable and a transformation
evolution equation to connect it with the
transformation strain. A J2-type transfor-
mation surface is used for the forward
phase transformation. The model accounts
for non-proportional loading paths by
using a non-associative evolution equa-
tion during reverse transformation. A poly-
nomial hardening function is introduced.
(1996)

Auricchio,
Taylor, and
Lubliner
[65–67]

Phase
diagram based

This set of works on isothermal pseu-
doelasticity precedes that of Auricchio
and Sacco [58], and considers three-
dimensional response using a Drucker-
Prager-type surface to describe the critical
stresses for pseudoelastic transformation.
An exponential hardening law is used, and
focus is placed on finite element implemen-
tation of the model. (1996)

Lagoudas
Bo, and
Qidwai [21]

Gibbs
free energy

Provides a unified framework for the ear-
lier models of Tanaka [18], Liang and
Rogers [20], Boyd and Lagoudas [12].
(1996)



178 3 Thermomechanical Constitutive Modeling of SMAs

3-D
Model

Formulation Features

Leclercq and
Lexcellent
[29]

Helmholtz
free energy

Uses two internal variables to allow
modeling of both detwinned and self-
accommodated martensite. The transfor-
mation surfaces are J2-type. Exponential
hardening is used for both the transfor-
mation and the reorientation processes.
(1996)

Raniecki and
Lexcellent
[24]

Gibbs
free energy

Models tension-compression asymmetry
using a (J2 − J3)-type transformation sur-
face. Exponential transformation harden-
ing functions are used. (1998)

Bo and
Lagoudas
[36–39]

Gibbs
free energy

Extends the work of Boyd and
Lagoudas [12] to include modeling of
transformation induced plasticity. This is
done by introducing the following state
variables: transformation strain, plastic
strain, drag stress, back stress and con-
necting their evolution to the evolution of
the martensitic volume fraction ξ. (1999)

Qidwai and
Lagoudas
[16]

Gibbs
free energy

Comprehensive modeling of tension-
compression asymmetry. An extension
of the work by Boyd and Lagoudas [12].
Several different transformation surfaces
based on I1-, J2- and J3-type invariants
are proposed. (2000)

Govindjee,
Hall, and
Miehe
[49, 50]

Helmholtz/Gibbs
free energy

This work generalizes earlier phenomeno-
logical models by considering an arbitrary
number of martensitic variants. The focus
of the paper is the numerical implementa-
tion of the model via a nonlinear optimiza-
tion method. (2001)

Brocca,
Brinson,
and Bažant
[42]

Microplane
based

The constitutive model on each microplane
is the model by Brinson [28]. The model is
able to account for nonproportional load-
ing paths. (2002)

Juhasz
et al. [68]

Helmholtz
free energy

The effects of reorientation are taken into
account by taking the entire transfor-
mation strain εt as an internal variable
instead of just the detwinned martensitic
volume fraction. (2002)
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3-D
Model

Formulation Features

Lagoudas and
Entchev [40]

Gibbs
free energy

The model accounts for the simultaneous
development of transformation and plastic
strains during stress-induced phase trans-
formation. The work extends and imple-
ments in 3-D the model presented in Bo
and Lagoudas [37]. (2003)

Helm and
Haupt [69]

Helmholtz
free energy

Both temperature-induced and stress-
induced martensite are considered. This
work approaches the forward and reverse
transformation using a single transforma-
tion function with kinematic hardening.
(2003)

Anand and
Gurtin [45]

Helmholtz
free energy

Derived in a finite deformation framework
whereby the deformation gradient is mul-
tiplicatively decomposed into an elastic
term and an additional term accounting
for deformations caused by the marten-
sitic transformation. Tension-compression
asymmetry in single crystals is considered,
as well as the influence of texture in poly-
crystals. A three-dimensional implementa-
tion is performed. (2003)

Popov and
Lagoudas
[31]

Gibbs
free energy

The polycrystalline SMA is considered a
mixture of three species-self accommo-
dated martensite M t, detwinned marten-
site Md and austenite A extending the
work of Lagoudas and Shu [70]. The inter-
nal variables describe the three possible
transitions between the different species.
In addition, the model presents a three-
dimensional implementation. (2007)

Reese and
Christ [71]

Helmholtz
free energy

The focus of this model is large defor-
mation finite element analysis consider-
ing only isothermal pseudoelasticity. Large
rotations and moderate strains are consid-
ered. In the style of Helm and Haupt [69],
a single transformation function and kine-
matic hardening are used to describe the
critical stresses for transformation. (2008)
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3.7 Summary

This chapter discussed the basic elements of thermomechanical modeling of
polycrystalline SMAs. A methodology for obtaining constitutive equations
for SMAs by enforcing the basic principles of continuum thermodynamics
was discussed in detail. The derivation of the SMA constitutive model pro-
posed by Boyd and Lagoudas was reviewed in detail and different thermo-
mechanical loading paths were considered. Various examples were presented
throughout the chapter to illustrate the capability of the model to describe
different aspects of the SMA behavior. This chapter also presented the unifica-
tion of different constitutive models for SMAs under the same thermodynamic
framework, and summarized other SMA constitutive models available in the
literature.

3.8 Problems

3.1. The procedure for obtaining constitutive assumptions for dissipative
materials was presented in Sec. 3.2.3. You are required to obtain the form
of Helmholtz free energy, ψ, of a thermoelastic material that is a function
only of strain, ε, and temperature, T , by performing a Taylor series expan-
sion of ψ(ε, T ) around a reference state. Moreover, obtain the constitutive
relations for σ and s. Hint: See Batra [8].

3.2. Derive the equation for the reverse phase transformation condition which
is complimentary to the equation for the forward transformation given in
(3.3.71).

3.3. Starting with the consistency condition as given in (3.3.62), derive a rela-
tion between the difference in reference entropy, ρΔs0, and the stress influ-
ence coefficients, CA and CM (as discussed in Chapter 2) at zero stress. Note
that the martensitic volume fraction is constant at the transformation surface
boundaries, for forward and reverse transformations (ξ = 0 or ξ = 1).

3.4. In Example 3.2 the transformation surfaces for the forward martensitic
phase transformation, for ξ = 0 and ξ = 1 were plotted. Plot the transforma-
tion surfaces for the reverse phase transformation for ξ = 0 and ξ = 1, using
the same stress state of the material given in Example 3.2.

3.5. Show that the transformation tensor Λ reduces to Hcur(σ) in the one
dimensional case for the case of forward phase transformation. Also give the
one-dimensional form of Λ for the reverse phase transformation.

3.6. In Sect. 3.5.1 we presented the analytical solutions for the Boyd-Lagoudas
model. Derive analytical solutions using the hardening functions given in
Sect. 3.4 for the exponential and cosine models.
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3.7. Rework Example 3.4, where different isothermal pseudoelastic loading
paths were plotted, but using the hardening functions given in Sect. 3.4. Com-
pare the stress vs. strain curves of the exponential and cosine model with the
polynomial model.

3.8. Rework Example 3.5, where different isothermal loading paths were plot-
ted, but using the hardening functions given in Sect. 3.4. Compare the strain
vs. temperature curves of the exponential and cosine model with the polyno-
mial model.

3.9. Rework Example 3.6, where the cases of isothermal and adiabatic pseu-
doelastic loading paths were compared, but using the hardening functions
given in Sect. 3.4. Compare the stress vs. strain curves of the exponential
and cosine model with the polynomial model for the isothermal and adiabatic
conditions.

3.10. Rework Example 3.7, using the smooth transformation hardening func-
tion given in Sect. 3.4.

3.11. Use the 1-D reduction of the polynomial constitutive model presented
in this chapter to rework Problem 2.15 which addresses the cyclic thermome-
chanical response of a differential SMA actuator.

3.12. Write the transformation criteria for the onset and end of martensitic to
austenitic phase transformation, as well as the forward phase transformation
from austenite to martensite using principal stresses. Plot the transformation
surfaces on the π-plane, which is the plane perpendicular to the hydrostatic
axis, for T > Af .

3.13. Derive the appropriate equations describing minor hysteresis loops
according to the polynomial model presented in this chapter. As a demon-
stration, plot the uniaxial stress vs. strain curves for pseudoelastic condition
at T = As + 288K, unloading at values of the martensitic volume fraction of
ξ = 0.1, 0.3, 0.5, 0.7 and 0.9. Use the material properties used in Example 3.2.

Discuss the relation of the above minor hysteresis loops with respect to
the major hysteresis loop, which derived for the full forward and reverse phase
transformation.

3.14. A shape memory alloy can also be thought of as two materials combined
into one. This idea leads to the assumption that SMAs have two reference
configurations, one being the austenitic phase (parent phase) and the second
one being the crystallographically different martensitic phase. The approach
take in this chapter is to assume the parent phase to be the main reference
(stress-free) configuration and the transition to the second stress-free configu-
ration of martensite is achieved through the internal state variable ξ and the
corresponding transformation strain. How can one reformulate the approach
presented in this chapter by choosing martensite to be the parent phase?
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3.15. In the paper of Bo and Lagoudas [39], minor hysteresis loops are intro-
duced to account for experimental observations, which are different from the
minor hysteresis loops described by the models of this chapter. Explain the
key idea of the minor hysteresis loops model in Bo and Lagoudas [39].

3.16. Explain the key ideas and assumptions in the minor hysteresis loops
model of Ivshin and Pence [57].

3.17. Study two cases, one isothermal and one adiabatic, of the chaotic
response of one-degree of freedom oscillators.

3.18. Derive the equations of a one-degree of freedom oscillator in the case of
heat convection.

3.19. The constitutive models presented in this chapter are all rate-
independent (i.e., they are described by differential equations homogeneous
in time) and real time can be replaced by any convenient loading parameter
that captures the loading path dependence. Describe a way of introducing real
time dependence in the evolution equations for the internal state variables for
the thermodynamic constitutive models of this chapter.

3.20. Model a uniaxial pseudoelastic experiment subject to the loading path
shown in Fig. 3.21 where loading is assumed to be under adiabatic conditions
while unloading is assumed to be under isothermal conditions.
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Fig. 3.21. Strain loading path for consideration in Problem 3.20.
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4

Numerical Implementation of an SMA
Thermomechanical Constitutive Model Using
Return Mapping Algorithms

M. A. Siddiq Qidwai, D. J. Hartl, and D. C. Lagoudas

In the previous chapter we described the derivation of a 3-D SMA thermo-
mechanical constitutive model. We now address the numerical implementation
of this model and the development of numerical tools to support the process of
designing SMA devices for use in load bearing 3-D structures. In this chapter,
the numerical implementation of SMA thermomechanical constitutive response
is presented using return mapping algorithms appropriate for rate-independent
inelastic constitutive models. The closest point projection return mapping algo-
rithm and the convex cutting plane return mapping algorithm are discussed,
and finite element analysis examples are provided.

4.1 Introduction

Recall the many SMA applications introduced in Chapter 1. Many of these
devices were designed and built without the use of modern tools of design
and analysis. Throughout all industrial sectors, most SMA systems are the
result of repeated design/build/test cycles. One reason for this is that reliable
models that accurately account for the complex thermomechanical behavior of
SMA components under general loading conditions were slow to be developed
and integrated into finite element analysis software. In addition, the legacy
finite element codes commonly used by industry did not easily incorporate
new advances in material constitutive modeling. Some nonlinear commercial
packages have begun including SMAs as material options; however, the con-
stitutive models included are more suitable for loading paths such as pseu-
doelastic loading, rather than thermally activated paths over multiple cycles
which are of greater interest (as in actuators for aerospace systems).

The finite element method (FEM) is a tool for the design and analysis of
engineering structures. To be used in the analysis and design of shape memory
alloy applications, FEM must be integrated with the numerical implementa-
tion of SMA constitutive models in 3-D. Such FEM implementations are a
relatively recent development made possible by the increasing fidelity of 3-
D SMA constitutive models. These improved models are themselves made

D.C. Lagoudas (ed.), Shape Memory Alloys, DOI: 10.1007/978-0-387-47685-8 4,
© Springer Science+Business Media, LLC 2008
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possible by the expanding availability of experimental data. Each of these
developments is driven by the needs of the application design community and
requires accurate models as well as robust numerical algorithms.

As research on the modeling of SMA materials began in the late 1980s
and early 1990s, the focus was on 1-D models such as those derived at the
end of Chapter 2. Soon, such models based on 1-D experimental results were
being generalized to 3-D: the exponential model [1], the cosine model [2], the
polynomial model [3], the modified cosine model [4], and the unified ther-
momechanical model [5] among others. These and other models have been
discussed in more detail in the previous chapter. For the purpose of numerical
implementation in this chapter, the unified thermomechanical model is chosen.
Recall that it unifies the aforementioned SMA constitutive models (exponen-
tial, polynomial, and cosine) under a consistent thermodynamic framework;
however, while the implementation of the unified model is described here, the
methods outlined are suitable for any similar phenomenological model.

The reader will recall that the unified model implemented in this chapter
was formulated under the assumption of infinite strains, which is most appli-
cable for the analysis of structures undergoing small strains and moderate
displacements. Recent work has addressed the more general assumption of
finite strains, including the work by Anand and Gurtin [6] and, more recently,
the work by Reese and Christ [7], where both groups address finite element
implementations.

Return mapping algorithms have been developed to numerically inte-
grate incremental constitutive equations for rate-independent inelastic mate-
rials [8]. Thus, their use for integrating the SMA thermomechanical constitu-
tive response is typical. Rate-independence and loading history dependence
allow the thermomechanical constitutive behavior to be defined by a stress-
strain state relation that includes the transformation strain as an internal
state variable, a differential evolution equation for the transformation strain,
and a transformation function to determine the onset of phase transformation
[5]. This structure implies that any proven numerical algorithm designed to
integrate the rate-independent elastoplastic constitutive behavior can be used
to integrate the SMA thermomechanical elastic-transformation model, where
the concept of a yield criterion is replaced by the transformation criterion.

Return mapping algorithms have been studied extensively for elastoplas-
ticity in the integration of constitutive relations. They are also called elastic
predictor-plastic corrector algorithms in which a purely thermoelastic trial
state is followed by a plastic (or transformation in the case of an SMA) cor-
rector phase (return mapping). The corrector phase enforces consistency with
the prescribed transformation flow rule. Return mapping algorithms may dif-
fer by the kind of discretization employed to numerically integrate the evo-
lution equations and the numerical procedure adopted to solve the resultant
set of nonlinear algebraic equations in the corrector phase. Some return map-
ping algorithms proposed in the literature are the radial return algorithm and
the mean normal (mid-point) algorithm, among others [9]. Most of the return
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mapping algorithms employ integration rules that are particular cases of the
trapezoidal and midpoint rules, suitably generalized to facilitate satisfaction
of the yield (transformation) consistency condition [10, 11].

The two return mapping algorithms implemented in this work, which fol-
lows the presentation of Qidwai and Lagoudas [12] are the closest point projec-
tion algorithm [13] and convex cutting plane algorithm [14, 15]. State variables
are computed for a given deformation history and both algorithms rely on the
strain driven nature of the problem. They differ during the correction step.
The application of the closest point projection algorithm results in a set of
nonlinear algebraic equations solved using Newton’s iteration method. This
algorithm is unconditionally stable provided the yield surface is convex, and
it is first-order accurate [13]. The convex cutting plane method is based on
the explicit integration of the differential equations, and its advantage lies in
its simplicity and reduction in computations.

4.2 Continuum Tangent Moduli Tensors

In this chapter, we consider incremental displacement based FEM. For such
an implementation, the increment of the stress tensor is obtained through the
implementation of the incremental SMA constitutive model for given incre-
ments of strain and temperature. The tensors that relate the strain and tem-
perature increments (input) to the calculated stress increment (output) are
the tangent moduli tensors. To formulate these tensors and begin the imple-
mentation process, the SMA constitutive model presented in Sect. 3.3.3 should
be written in an incremental form as follows:

dσ = L : dε + Θ dT, (4.2.1)

where L is the tangent stiffness tensor and Θ is the tangent thermal moduli
tensor. These two tensors are needed for the execution of the global FEM;
therefore, it is important to derive the forms of these tensors.

To derive L and Θ, the constitutive relation in (3.3.47) is rewritten in
differential form and the transformation strain evolution equation (3.3.51) is
substituted to get

dσ = S−1 : {dε − αdT − [ΔS : σ + Δα(T − T0) + Λ]dξ}. (4.2.2)

Using (3.3.57) and (3.3.58), the above equation reduces to

dσ = S−1 :

(

dε − αdT − dξ

{
∂σΦ; ξ̇ > 0
−∂σΦ; ξ̇ < 0.

)

(4.2.3)

The differentiation of the transformation function (consistency condition)
results in

dΦ = ∂σΦ : dσ + ∂T ΦdT + ∂ξΦdξ = 0. (4.2.4)
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For forward transformation (ξ̇ > 0), an expression for the differential of the
martensitic volume fraction, dξ, is obtained by substituting dσ from (4.2.3a)
into (4.2.4), i.e.,

dξ =
∂σΦ : S−1 : dε + (∂T Φ − ∂σΦ : S−1 : α)dT

∂σΦ : S−1 : ∂σΦ − ∂ξΦ
. (4.2.5)

Now (4.2.5) can be used to eliminate dξ in (4.2.3a) and obtain the relationship
between the stress, strain and temperature increments as

dσ = [S−1 − S−1 : ∂σΦ ⊗ S−1 : ∂σΦ
∂σΦ : S−1 : ∂σΦ − ∂ξΦ

] : dε

+S−1 : [∂σΦ(
∂σΦ : S−1 : α − ∂T Φ

∂σΦ : S−1 : ∂σΦ − ∂ξΦ
) − α]dT. (4.2.6)

The tangent stiffness tensor, L, and tangent thermal moduli tensor, Θ, are
then given, after some simplifications of (4.2.6) by

L = S−1 − A ⊗ A, (4.2.7)

Θ = −L : α − ∂T Φ
a

A, (4.2.8)

where

a =
√

∂σΦ : S−1 : ∂σΦ − ∂ξΦ,

A =
S−1 : ∂σΦ

√
∂σΦ : S−1 : ∂σΦ − ∂ξΦ

=
S−1 : ∂σΦ

a
. (4.2.9)

Following the same methodology for the reverse phase transformation, i.e.,
substituting (4.2.3b) into (4.2.4) gives

dξ = −∂σΦ : S−1 : dε + (∂T Φ − ∂σΦ : S−1 : α)dT

∂σΦ : S−1 : ∂σΦ + ∂ξΦ
. (4.2.10)

Using (4.2.3b) and (4.2.10), the differential of stress can be obtained in terms
of dε and dT in a similar way as described for the forward transformation,
and L and Θ are then given by

L = S−1 − B ⊗ B, (4.2.11)

Θ = −L : α − ∂T Φ
b

B, (4.2.12)

where

b =
√

∂σΦ : S−1 : ∂σΦ − ∂ξΦ,

B =
S−1 : ∂σΦ

√
∂σΦ : S−1 : ∂σΦ − ∂ξΦ

=
S−1 : ∂σΦ

b
. (4.2.13)
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4.3 Return Mapping Algorithms

For the system of algebraic and ordinary differential equations (ODEs) given
by (3.3.47) and (3.3.51), as well as constrained by (3.3.60) and (3.3.61), it is
assumed that the strain and temperature histories ε(t) and T (t) are known
for t ∈ [0, t̂], as well as the initial conditions for εt and ξ at t = 0. Then,
the evolution equations for the transformation strain are discretized using the
generalized trapezoidal rule as

εt
n+1 = εt

n + (ξn+1 − ξn)[(1 − λ)Λn + λΛn+1], (4.3.1)

where λ ranges from [0, 1] and subscript n indicates function evaluations at
time tn (similarly for n + 1), assuming time increment Δt = tn+1 − tn. For
different values of λ, various difference operators can be obtained. In the
present formulation, two such values are chosen. In particular, for λ = 1 the
implicit (backward) Euler integration rule is obtained. This implicit algorithm
is implemented for the set of equations and Kuhn-Tucker conditions given by
(3.3.47), (3.3.51) and (3.3.60) and (3.3.61) in Sect. 4.3.2, while in Sect. 4.3.3
the explicit (forward) Euler integration rule (λ = 0) is implemented. Both
integration methods result in a set of nonlinear algebraic equations whose
implicit nature requires multiple iterations to obtain a solution.

The return mapping algorithm divides the problem posed by this set
of nonlinear algebraic equations in an additive split. Only the second part
accounting for the transformation behavior is subject (elastic prediction and
transformation correction) to iterations.

4.3.1 A General View of Thermoelastic Prediction-Transformation
Correction Return Mapping

To begin, a thermoelastic predictor problem is solved that is described by
assuming that the increment of the transformation strain is zero, i.e.,

ε̇ = ε̇(t), Ṫ = Ṫ (t), ε̇t = 0. (4.3.2)

The transformation corrector problem then restores consistency if the pre-
dicted thermoelastic state is outside the transformation surface (Φ > 0) given
by the following evolution equation:

ε̇ = 0, Ṫ = 0, ε̇t = Λξ̇. (4.3.3)

The initial conditions are provided by the solution of the elastic predictor
problem, and the increment ξ̇ is to be found by satisfying the transformation
consistency condition (4.2.4).

Before discretizing the transformation correction problem in (4.3.3) accord-
ing to (4.3.1), a brief derivation is performed to address the form of this cor-
rection regardless of the integration procedure. The details of the numerical
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integration in the correction phase for two algorithms then follows in suc-
cessive sections. Recalling that the total strain tensor, ε(t), and temperature,
T (t), are given for each increment in FEA, the transformation function during
correction will vary with only changes in σ and ξ. Since dε and dT are zero
during transformation correction, (4.2.3) reduces to

dσ

dξ
=

{
−S−1 : ∂σΦ; ξ̇ > 0,

S−1 : ∂σΦ; ξ̇ < 0.
(4.3.4)

The evolution of stress state toward the transformation surface (Φ = 0)
starts at the trial thermoelastic state and follows the steepest descent path
with respect to the transformation surface, Φ, defined in the metric of elas-
ticities [16]. Transformation consistency is enforced by determining the inter-
section of the stress evolution curve with the boundary of the transformation
surface (return mapping).

The transformation correction problem can be further understood by
examining the evolution of the value of Φ from the initial thermoelastic pre-
diction to the necessary final value of zero. Differentiating Φ with respect to ξ,
recalling that T is kept constant during transformation correction, and using
the expression for dσ

dξ in (4.3.4), we get

d

dξ
Φ(σ, T |fixed, ξ) = ∂σΦ :

dσ

dξ
+ ∂ξΦ, (4.3.5)

and this reduces to

d

dξ
Φ(σ, T |fixed, ξ) =

{
−∂σΦ : S−1 : ∂σΦ + ∂ξΦ; ξ̇ > 0,

∂σΦ : S−1 : ∂σΦ + ∂ξΦ; ξ̇ < 0
(4.3.6)

which further reduces to

d

dξ
Φ(σ, T |fixed, ξ) =

{
−‖∂σΦ‖2

S−1 − ρbM < 0; ξ̇ > 0,

‖∂σΦ‖2
S−1 + ρbA > 0; ξ̇ < 0.

(4.3.7)

Here ∂ξΦ is derived using (3.3.57) and (3.3.58), and

‖∂σΦ‖2
S−1 =

√
∂σΦ : S−1 : ∂σΦ

is the norm of ∂σΦ induced by the elasticity tensor, S−1. Equation (4.3.7a)
implies that Φ(σ, ξ) monotonically decreases with increasing ξ in the forward
transformation with a negative slope. Additionally, the function Φ is convex
for forward transformation as shown in Fig. 4.11. These characteristics make
1 Reprinted from “Numerical Implementation of a Shape Memory Alloy Thermome-

chanical Constitutive Model Using Return Mapping Algorithms”, Qidwai, M.A.
and Lagoudas, D.C., Copyright 2000, with permission from John Wiley & Sons
Ltd.
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Fig. 4.1. Φ monotonically decreases with increasing ξ with a negative slope for the
forward transformation which allows the use of the Newton’s method to find a root
as a function of ξ during transformation correction.

the transformation correction well suited for a solution by Newton’s method,
which is used in this work. Similarly, (4.3.7b) implies that Φ(σ, ξ) vs. ξ mono-
tonically decreases with decreasing ξ (reverse transformation) with a positive
slope; however, the function Φ is concave for reverse transformation as shown
in Fig. 4.21. These two observations imply that the application of Newton’s
method for the transformation correction will be only locally convergent.

Let us now examine the application of the return mapping algorithm on the
discretized SMA constitutive model based on the backward Euler and forward
Euler integration methods. Again, consider the time interval [0, t̂] and assume
that at time tn ∈ [0, t̂], the total strain, the temperature, and the internal state
variables, which are the transformation strain and the martensitic volume
fraction, are given, i.e.,

ε|t=tn
= εn, T |t=tn

= Tn, εt|t=tn
= εt

n, ξ|t=tn
= ξn. (4.3.8)

Given the increments of strain and temperature, {Δεn+1 = εn+1−εn, ΔT =
Tn+1 − Tn}, where εn+1 = ε(tn+1), Tn+1 = T (tn+1) at time tn+1 ∈
[0, t̂] and tn+1 > tn, the task is to update the field variables {σ, εt, ξ} to
tn+1, in a way consistent with the constitutive relations developed in Sect. 3.3.
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Fig. 4.2. Φ monotonically decreases with decreasing ξ with a positive slope for the
reverse transformation which allows the use of the Newton’s method to find a root
as a function of ξ during transformation correction as shown.

4.3.2 Closest Point Projection Return Mapping Algorithm

This algorithm integrates the transformation evolution equation for the trans-
formation correction using the backward Euler method (λ = 1 in (4.3.1))
resulting in a nonlinear algebraic set of equations that are solved using the
Newton iteration method. The numerical discretization with the initial con-
ditions given in (4.3.8) is performed on the SMA model as

σn+1 = S−1
n+1 : [εn+1 − αn+1(Tn+1 − To) − εt

n+1], (4.3.9)

εt
n+1 = εt

n + (ξn+1 − ξn)Λn+1, (4.3.10)

constrained by the discrete Kuhn-Tucker optimality conditions

(ξn+1 − ξn) > 0, Φn+1(σn+1, Tn+1, ξn+1) ≤ 0,

(ξn+1 − ξn)Φn+1(σn+1, Tn+1, ξn+1) = 0;

(ξn+1 − ξn) < 0, Φn+1(σn+1, Tn+1, ξn+1) ≤ 0,

(ξn+1 − ξn)Φn+1(σn+1, Tn+1, ξn+1) = 0. (4.3.11)
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Thermoelastic Prediction

The thermoelastic prediction problem is given by

εn+1 = εn + Δεn+1,

Tn+1 = Tn + ΔTn+1,

ε
t (0)
n+1 = εt

n,

ξ
(0)
n+1 = ξn, (4.3.12)

where {ΔTn+1,Δεn+1} are the specified strain tensor and temperature incre-
ments, respectively, over the time step [tn, tn+1], and (·)(0) denotes the values
obtained in the prediction stage. The above set of equations ( (4.3.9)–(4.3.11))
can be reformulated to fit computational implementation (operator split) by
introducing the following trial thermoelastic state:

σ
(0)
n+1 = S−1

n : [εn+1 − αn(Tn+1 − To) − εt
n], (4.3.13)

Φ(0)
n+1 = Φ[σ(0)

n+1, Tn+1, ξn], (4.3.14)

where the material properties S and α are based on ξn. This problem is solved
using the converged internal state variable of the previous time step and the
increment of the total strain tensor. Physically, the reformulation means that
this trial state is obtained by neglecting the transformation during the time
step, i.e., Δξn+1 = 0. At this stage, if the transformation criterion is satisfied,

that is, Φ(σ(0)
n+1, Tn+1, ξn) ≤ 0, then this trial thermoelastic state is taken to be

the final state; however, if Φ(σ(0)
n+1, Tn+1, ξn) > 0, the Kuhn-Tucker conditions

are violated and the trial state lies outside the transformation surface. Trans-
formation correction employing backward Euler integration of the evolution
equation is then used to restore consistency and the solution [σ(0)

n+1, Tn+1, ξn]
is taken as the initial condition for the transformation corrector phase.

Transformation Correction

If the trial stress, σ
(0)
n+1, and the converged internal state variables, εt

n and ξn,
violate the transformation conditions in (4.3.11), (i.e., Φ(0)

n+1 > 0), the follow-
ing transformation correction procedure is adopted at the loading increment
(n + 1)th for the solution of (4.3.9)–(4.3.10) with initial guess (4.3.13) and
constraints given by (4.3.11). Replacing σn by σ

(0)
n+1 implies that the implicit

integration of the transformation strain evolution equation is carried from the
initial thermoelastic prediction to the final state.

The nonlinear system of these algebraic equations is solved by defining
the transformation condition valid for the transformation corrector phase and
transformation strain residual based on implicit backward Euler integration
from (4.3.10) for the kth iteration as follows:
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Φ(k)
n+1 = Φ(σ(k)

n+1, Tn+1, ξ
(k)
n+1), (4.3.15)

Rt (k)
n+1 = −ε

t (k)
n+1 + εt

n + Λ(k)
n+1[ξ

(k)
n+1 − ξn], (4.3.16)

and then linearizing them using the Newton-Raphson iteration method [11,
16], where Φ(k)

n+1 and Rt (k)
n+1 should converge to zero at the end of the iteration

process. Equations (4.3.15) and (4.3.16) are linearized in the following way:

Φ(k)
n+1 + ∂σΦ(k)

n+1 : Δσ
(k)
n+1 + ∂ξΦ

(k)
n+1Δξ

(k)
n+1 = 0, (4.3.17)

Rt (k)
n+1 − Δε

t (k)
n+1 + Λ(k)

n+1Δξ
(k)
n+1 +

+

{
(ξ(k)

n+1 − ξn) ∂σΛ(k)
n+1 : Δσ

(k)
n+1; ξ̇ > 0

0; ξ̇ < 0
= 0, (4.3.18)

where (4.3.18) is obtained from the Kuhn-Tucker condition when (ξn+1−ξn) 	=
0. Note that ΔΛ(k)

n+1 = 0 for reverse transformation because during reverse
transformation, Λ(k)

n+1 remains constant, for k = 1, 2, ..., with its components
determined at the end of the previous forward transformation. Equations
(4.3.18) and (4.3.21) provide seven equations to solve for 13 unknowns, i.e.,
{Δσ

(k)
n+1,Δε

t (k)
n+1 ,Δξ

(k)
n+1}. The other six equations are obtained by taking the

increment of the stress-elastic strain state relation, (4.3.9), and expressing it
for the total increment of transformation strain

Δσn+1 = ΔSn+1 : σn+1 + Sn+1 : Δσn+1

+ Δαn+1(Tn+1 − T0) + αn+1ΔTn+1 + Δεt
n+1. (4.3.19)

Recalling the definitions of S and α from (3.3.42) and (3.3.43) , we get

ΔSn+1 = ΔS Δξn+1,

Δαn+1 = Δα Δξn+1, (4.3.20)

where ΔS and Δα are defined in (3.3.42) and (3.3.43). Using (4.3.20) and
noting that ε and T are fixed during the return mapping (transformation
corrector) stage, (4.3.19) can be written in incremental form for Δεt

n+1 at the
kth iteration as follows:

Δε
t (k)
n+1 = −S(k)

n+1 : Δσ
(k)
n+1 − [ΔS : σ

(k)
n+1 + Δα(Tn+1 − T0)]Δξ

(k)
n+1. (4.3.21)

(4.3.17), (4.3.18), and (4.3.21) form a system of equations to solve

{Δσ
(k)
n+1,Δε

t (k)
n+1 ,Δξ

(k)
n+1}

for both forward and reverse transformations.
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For the forward transformation (ξ̇ > 0), (4.3.17) is substituted into (4.3.21)
to obtain

Δσ
(k)
n+1 = E(k)

n+1 : [−Rt (k)
n+1 − Δξ

(k)
n+1∂σΦ(k)

n+1], (4.3.22)

where
E(k)

n+1 = [S(k)
n+1 + (ξ(k)

n+1 − ξn)∂σΛ(k)
n+1]

−1, (4.3.23)

and
∂σΦ(k)

n+1 = ΔS : σ
(k)
n+1 + Δα(Tn+1 − T0) + Λ(k)

n+1. (4.3.24)

After substituting (4.3.22) into (4.3.18), the increment of the martensitic vol-
ume fraction is obtained for the kth iteration as

Δξ
(k)
n+1 =

Φ(k)
n+1 − ∂σΦ(k)

n+1 : E(k)
n+1 : Rt (k)

n+1

∂σΦ(k)
n+1 : E(k)

n+1 : ∂σΦ(k)
n+1 − ∂ξΦ

(k)
n+1

. (4.3.25)

A similar analysis can be performed for the reverse transformation (ξ̇ < 0) to
obtain

Δσ
(k)
n+1 = S(k)

n+1
−1 : [−Rt (k)

n+1 + Δξ
(k)
n+1 ∂σΦ(k)

n+1]. (4.3.26)

Following the strategy to solve for Δξ
(k)
n+1 in the forward transformation, we

get

Δξ
(k)
n+1 =

Φ(k)
n+1 − ∂σΦ(k)

n+1 : S(k)
n+1

−1 : Rt (k)
n+1

−∂σΦ(k)
n+1 : S(k)

n+1
−1 : ∂σΦ(k)

n+1 − ∂ξΦ
(k)
n+1

. (4.3.27)

Furthermore, the term ∂σΛ(k)
n+1, appearing in the expression for E(k)

n+1, can be
derived as

∂σΛ(k)
n+1 =

√
3
2

H

‖σ′‖ [I − 1
3
1 ⊗ 1 − σ

′

‖σ′‖ ⊗ σ
′

‖σ′‖ ]. (4.3.28)

Here I is the most general rank four symmetric identity tensor and in indicial
notation is given by

I =
1
2
[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el, (4.3.29)

where ⊗ denotes the tensor product and 1 is the second order identity tensor
given by

1 = δijei ⊗ ej . (4.3.30)

In (4.3.21), (4.3.22), and (4.3.25) for forward transformation and (4.3.21),
(4.3.26), and (4.3.27) for reverse transformation, we have a complete set of
equations for the 13 unknown variables Δξ

(k)
n+1, Δσ

(k)
n+1 and Δε

t (k)
n+1 . The next

step is to update the transformation strain, ε
t (k)
n+1 , and the martensitic volume

fraction, ξ
(k)
n+1, by
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ε
t (k+1)
n+1 = ε

t (k)
n+1 + Δε

t (k)
n+1 ,

ξ
(k+1)
n+1 = ξ

(k)
n+1 + Δξ

(k)
n+1. (4.3.31)

This is an implicit algorithm involving the solution of a 6 × 6 system of
equations. A systematic procedure for carrying out the algorithm is outlined
in Table 4.11.

Geometric Interpretation

Before deriving the consistent tangent moduli tensors for the SMA constitu-
tive model, let us understand the geometric meaning of the transformation
correction in stress space. For the (k + 1)th iteration at tn+1, substituting
(4.3.10) into (4.3.9), we get

σ
(k+1)
n+1 = S(k+1)

n+1

−1
: {εn+1 − α

(k+1)
n+1 (Tn+1 − To) − εt

n

− [ξ(k+1)
n+1 − ξn]Λ(k+1)

n+1 }. (4.3.32)

Pre-multiplying (4.3.32) and (4.3.13) by S(k+1)
n+1 and S−1

n , respectively, and
then subtracting the resulting equations, the expression for the stress at the
end of the (k +1)th iteration in terms of the trial thermoelastic stress at tn+1

can be obtained after some algebraic manipulations as

σ
(k+1)
n+1 = σ

(0)
n+1 − Δξ

(k)
n+1 S(k+1)

n+1

−1
: {∂σΦ(k+1)

n+1

− ΔS : [σ(k)
n+1 − σ

(0)
n+1]}. (4.3.33)

The above equation describes the return (relaxation) path of the stress
tensor from the thermoelastic prediction with each iteration. The return path
is not arbitrary but is defined by the projection of the thermoelastic predic-
tion on the transformation surface, Φk+1

n+1, in a way defined by (4.3.33). The
stress state is updated during the iterative procedure in such a manner that at
the (k +1)th iteration, σ

(k+1)
n+1 lies on Φk+1

n+1 in the six-dimensional stress space

defined by the metric of elasticities, S(k+1)
n+1

−1
. Furthermore, the vector joining

σ
(k+1)
n+1 and σ

(0)
n+1 is normal to Φk+1

n+1 for the case when ΔS = 0. That is, if
the change in material properties is not significant, the stress will be updated
normal to each iterative transformation surface. Note that the implicit inte-
gration of the transformation strain evolution equation results in the above
mentioned characteristic of the return path.

Consistent Tangent Moduli Tensors

As already shown, the solution to the rate-type SMA constitutive equations
requires numerical integration over a number of time steps. The stress tensor,
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Table 4.1. Closest point projection implicit algorithm for shape memory alloy
constitutive models.

1. Let k = 0, ξ
(0)
n+1 = ξn, ε

t (0)
n+1 = εt

n, S(0)
n+1 = Sn, α

(0)
n+1 = αn

2. Calculate the thermoelastic prediction, and evaluate the transformation
condition and transformation strain residual

σ
(k)
n+1 = S(k)

n+1

−1
: [εn+1 − α

(k)
n+1(Tn+1 − To) − ε

t (k)
n+1 ]

Φ
(k)
n+1 = Φ[σ

(k)
n+1, Tn+1, ξ

(k)
n+1]

R
t (k)
n+1 = −ε

t (k)
n+1 + εt

n + Λ
(k)
n+1[ξ

(k)
n+1 − ξn]

If |Φ(k)
n+1| ≤ tolerance1 and ‖Rt (k)

n+1 ‖ ≤ tolerance2 then
Retain values above and return to global iterations.

Else
Continue to forward or reverse transformation.

3. Compute elastic/algorithmic tangent moduli

Forward Transformation (ξ̇ > 0):

E(k)
n+1 = [S(k)

n+1 + (ξ
(k)
n+1 − ξn)∂σΛ

(k)
n+1]

−1

Reverse Transformation (ξ̇ < 0):

Invert S(k)
n+1

4. Compute increment of volume fraction, stress and transformation strain

Forward Transformation (ξ̇ > 0):

Δξ
(k)
n+1 =

Φ
(k)
n+1 − ∂σΦ

(k)
n+1 : E(k)

n+1 : R
t (k)
n+1

∂σΦ
(k)
n+1 : E(k)

n+1 : ∂σΦ
(k)
n+1 − ∂ξΦ

(k)
n+1

Δσ = E(k)
n+1 : [−R

t (k)
n+1 − Δξ

(k)
n+1∂σΦ

(k)
n+1]

Reverse Transformation (ξ̇ < 0):

Δξ
(k)
n+1 =

Φ
(k)
n+1 − ∂σΦ

(k)
n+1 : S(k)

n+1
−1 : R

t (k)
n+1

−∂σΦ
(k)
n+1 : S(k)

n+1
−1 : ∂σΦ

(k)
n+1 − ∂ξΦ

(k)
n+1

Δσ = S(k)
n+1

−1 : [−R
t (k)
n+1 + Δξ

(k)
n+1 ∂σΦ

(k)
n+1]

For either transformation:

Δε
t (k)
n+1 = −S(k)

n+1 : Δσ − [ΔS : σ + Δα(Tn+1 − T0)]Δξ
(k)
n+1

5. Update martensitic volume fraction and transformation strain

ξ
(k+1)
n+1 = ξ

(k)
n+1 + Δξ

(k)
n+1

ε
t (k+1)
n+1 = ε

t (k)
n+1 + Δε

t (k)
n+1

6. Update elastic and thermal moduli, S(k)
n+1

−1
and α

(k)
n+1

Let k = k + 1 & Return to step 2
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as a result of this process, is defined as a function of the deformation history
up to a given instant. The tangent tensors that appear in the linearized prob-
lem (the global FEM problem employing Newton’s method) must be obtained
by employing the response function associated with the integration algorithm.
This is important if the quadratic rate of asymptotic convergence in the global
solution scheme is to be maintained. In other words, the notion of a consistent
tangent stiffness tensor and tangent thermal moduli tensor arises due to the
enforcement of the consistency condition on the discrete algorithmic problem.
On the other hand, the continuum tangent stiffness and tangent thermal mod-
uli tensors result from the enforcement of the classical consistency condition
on the continuum problem. For the case of associative/non-associative elasto-
plasticity, it has been shown using numerical examples [17] that the use of the
continuum tangent stiffness leads to loss of the quadratic rate of asymptotic
convergence which characterizes Newton’s iteration method as commonly used
in the finite element method. In this section, only the final result for forward
transformation is presented. The consistent tangent tensors for the reverse
transformation are exactly the same as the continuum tangent tensors given
in (4.2.11-4.2.12) in Sect. 4.2. This will be the focus of Problem 4.7.

For the forward phase transformation, the algorithmic tangent stiffness
tensor, L, and the algorithmic tangent thermal moduli tensor, Θ, are derived
as

L = En+1 − Hn+1 ⊗ Hn+1, (4.3.34)

Θ = −L : αn+1 −
∂T Φn+1

c
Hn+1, (4.3.35)

where

c =
√

∂σΦn+1 : En+1 : ∂σΦn+1 − ∂ξΦn+1,

Hn+1 =
En+1 : ∂σΦn+1√

∂σΦn+1 : En+1 : ∂σΦn+1 − ∂ξΦn+1

=
En+1 : ∂σΦn+1

c
,

En+1 = [Sn+1 + (ξn+1 − ξn)∂σΛn+1]
−1. (4.3.36)

If expressions for the continuum and consistent tangent tensors are com-
pared for forward transformation, the difference between the tangent tensors
((4.2.7),(4.2.8) and (4.3.34),(4.3.35)) arises due to the algorithmic stiffness
tensor defined in (4.3.36c). As the time step Δt = tn+1 − tn → 0, then
ξn+1 − ξn → 0+, i.e., as

Δt → 0 ⇒

⎧
⎪⎨

⎪⎩

E → S−1

H → A
c → a

, (4.3.37)

where (A, a) and (H, c) are defined in (4.2.9) and (4.3.36), respectively.
Therefore, the consistent tangent stiffness tensor and consistent tangent ther-
mal moduli tensor reduce to their continuum counterparts as Δt → 0 for the
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forward transformation. This shows that the closest point projection algo-
rithm is consistent with the continuum problem. It is also observed that for
large (loading) time increments, much transformation may result in ξn+1 being
much larger than ξn. This will result in significant deviation of the algorithmic
tensors from the continuum tensors.

4.3.3 Convex Cutting Plane Return Mapping Algorithm

As it is noticed in the closest point algorithm, the use of backward Euler inte-
gration leads to systems of nonlinear equations, whose solution by Newton’s
iteration method requires evaluation of the gradients of transformation flow
direction. The addition of another internal state variable in the model (e.g.,
[18]) will require further gradients to account for. The task of evaluating such
quantities may prove difficult and computationally expensive. The cutting
plane return mapping algorithm is proposed to avoid the need for computing
the above-mentioned gradients [14, 15]. The present algorithm is formulated
solely on the basis of the transformation function, the consistency condition,
direction of the transformation flow and the elastic stiffness tensors without
evaluating any gradient.

The idea relies on integrating the transformation correction (4.3.7) in an
explicit manner and linearizing the consistency condition. The transformation
residual, Rt (k)

n+1 , and the terms containing the derivatives of the transforma-
tion tensor, Λ(k)

n+1, do not appear in the formulation and Newton’s iteration
method is only applied to calculate the increment of martensitic volume frac-
tion, Δξ

(k)
n+1. The algorithm converges towards the final value of the state

variables at a quadratic rate, but convergence is not generally guaranteed.
The thermoelastic part of the algorithm is the same as given in Sect. 4.3.2 so,
the focus will be on the transformation correction. This is the main difference
between the closest point and cutting plane algorithms.

Transformation Correction

Here, we assume transformation loading; that is, the thermoelastic prediction
does not satisfy the transformation condition and Φ(0)

n+1 > 0. Recalling that
the total strain tensor, ε, and temperature, T , are fixed, the transformation
evolution equation is discretized explicitly as

Δε
t (k)
n+1 = Δξ

(k)
n+1Λ

(k)
n+1. (4.3.38)

This equation can also be obtained from (4.3.18) in Sect. 4.3.2 by neglecting
the residual, Rt (k)

n+1 , and the last term containing the gradient of the trans-
formation tensor, Λ(k)

n+1. Also, this explicit integration is being carried out
from the initial thermoelastic state to the final unknown state. Now, using
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the discretized evolution equation, (4.3.21), and (4.3.24), the stress increment
for the kth iteration during the (n + 1)th increment can be written as

Δσ
(k)
n+1 = −Δξ

(k)
n+1S

(k)
n+1

−1 :

{
∂σΦ(k)

n+1; ξ̇ > 0,

−∂σΦ(k)
n+1; ξ̇ < 0.

(4.3.39)

Linearizing the discrete transformation function for the kth iteration and
equating it to zero due to the Kuhn-Tucker condition, i.e., ξn+1 − ξn 	= 0, we
get

Φ(k)
n+1 + ∂σΦ(k)

n+1 : Δσ
(k)
n+1 + ∂ξΦ

(k)
n+1Δξ

(k)
n+1 = 0. (4.3.40)

Substituting (4.3.39) into (4.3.40) and solving for the increment of ξ, the
following expression is obtained:

Δξ
(k)
n+1 =

Φ(k)
n+1

±∂σΦ(k)
n+1 : S(k)

n+1
−1 : ∂σΦ(k)

n+1 − ∂ξΦ
(k)
n+1

, (4.3.41)

where the + sign is for the forward transformation and − sign for the reverse
transformation. In (4.3.41), (4.3.39), and (4.3.38), we have a complete set of
equations in terms of the 13 variables Δξ

(k)
n+1, Δσ

(k)
n+1 and Δε

t (k)
n+1 for both

forward and reverse transformations. Unlike the closest point formulation,
the incremental expressions are the same for both the forward and reverse
transformations, except the change of sign in (4.3.39) and (4.3.41), saving a
lot of coding details. The next step is to update the transformation strain,
ε

t (k)
n+1 , and the martensitic volume fraction, ξ

(k)
n+1, as given below

ε
t (k+1)
n+1 = ε

t (k)
n+1 + Δε

t (k)
n+1 , (4.3.42)

ξ
(k+1)
n+1 = ξ

(k)
n+1 + Δξ

(k)
n+1. (4.3.43)

For the cutting plane algorithm, the continuum tangent tensors given in
Sect. 4.2 have to be used since consistent tangent tensors cannot be obtained
in closed form. This means a loss in the quadratic convergence rate of the
Newton’s iteration method; therefore, quasi-Newton methods are suggested
for global solution strategies [16]. A detailed strategy for implementing the
algorithm is given in Table 4.21.

Geometric Interpretation

A geometric interpretation of the algorithm can be given by expanding (4.3.39)
in the following form:

σ
(k+1)
n+1 = σ

(k)
n+1 − Δξ

(k)
n+1 S(k)

n+1

−1
:

{
∂σΦ(k)

n+1; ξ̇ > 0,

−∂σΦ(k)
n+1; ξ̇ < 0.

(4.3.44)
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Table 4.2. Convex cutting plane explicit algorithm for shape memory alloy consti-
tutive models.

1. Let k = 0, ξ
(0)
n+1 = ξn, ε

t (0)
n+1 = εt

n, S(0)
n+1 = Sn, α

(0)
n+1 = αn

2. Calculate thermoelastic prediction and evaluate transformation condition

σ
(k)
n+1 = S(k)

n+1

−1
: [εn+1 − α

(k)
n+1(Tn+1 − To) − ε

t (k)
n+1 ]

Φ
(k)
n+1 = Φ[σ

(k)
n+1, Tn+1, ξ

(k)
n+1]

If |Φ(k)
n+1| ≤ tolerance then

Retain solutions above and return to global iteration.
Else

Continue to forward or reverse transformation.
3. Compute increment of martensitic volume fraction and transformation strain

Δξ
(k)
n+1 =

Φ
(k)
n+1

±∂σΦ
(k)
n+1 : S(k)

n+1
−1 : ∂σΦ

(k)
n+1 − ∂ξΦ

(k)
n+1

Δε
t (k)
n+1 = Δξ

(k)
n+1Λ

(k)
n+1

where ± stands for forward and reverse transformations.

4. Update martensitic volume fraction and transformation strain

ξ
(k+1)
n+1 = ξ

(k)
n+1 + Δξ

(k)
n+1

ε
t (k+1)
n+1 = ε

t (k)
n+1 + Δε

t (k)
n+1

Let k = k + 1 & Return to step 2.

The above expression implies that during transformation correction, σ
(k+1)
n+1 is

found by projecting the plane normal to Φ(k)
n+1 and finding its intersection with

level iterate Φ(k+1)
n+1 . The return path is approximated by a sequence of straight

segments. Note that the explicit integration of the transformation strain evo-
lution equation is directly responsible for the mentioned characteristics of the
return path.

4.3.4 Summary and Comparison of Algorithms

Having derived the algorithms, we now turn to their respective features.
Regarding the closest point projection algorithm:
1. It is based on the backward Euler integration of the transformation strain
evolution equation resulting in a set of nonlinear algebraic equations solved
using Newton’s iteration method.
2. The quadratic convergence rate from the thermoelastic prediction to the
final solution of Newton’s iteration method is guaranteed, as observed in the
variation of the transformation function with changing martensitic volume
fraction during transformation correction in Figs. 4.1 and 4.2.
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3. Backward Euler integrations make the local integration procedure first-
order accurate and unconditionally stable.
4. The algorithm facilitates the derivation of the consistent tangent moduli
tensors in closed form, thereby preserving the global quadratic convergence
rate.
5. The algorithm requires the solution of a system of linear algebraic rela-
tions ((4.3.17), (4.3.18), and (4.3.21)). This results in a relatively large number
of tensorial operations beside the evaluation of the gradient of the transfor-
mation tensor (4.3.28) and inversion of the 6x6 algorithmic tangent tensor
(4.3.23) during forward transformation.

Similar remarks on the features of the convex cutting plane algorithm are as
follows:
1. It is based on the explicit integration of the transformation evolution equa-
tion from the thermoelastic predictor. The satisfaction of the transformation
condition requires the use of Newton’s iteration method.
2. The convergence of the algorithm toward the final value of the state
variables is obtained at a quadratic rate as shown in Figs. 4.1 and 4.2.
3. Forward Euler integration makes the load-stepping procedure first-order
accurate. The algorithm is also unconditionally stable in the forward trans-
formation because the iteration function to find the increment of martensitic
volume fraction, Δξ, is contractive and the transformation tensor is normal-
ized (cf. Sect. 3.3). In the reverse transformation, Newton’s method is only
locally convergent, which may result in instability.
4. The algorithm does not allow the derivation of consistent tangent moduli
tensors in closed form, thus requiring continuum tangent moduli tensors to
be used. This may require usage of quasi-Newton techniques for faster con-
vergence in the global solution scheme.
5. Its fundamental advantage is its simplicity, since it does not require com-
putation of the gradient of the transformation tensor or inversion of algorith-
mic tangent tensors, and only involves a few tensorial operations and function
evaluations to determine the unknowns.

4.4 Numerical Examples

To characterize the behavior of the return mapping algorithm, we will analyze
several Boundary Value Problems (BVPs). Two simple uniaxial cases are stud-
ied first to demonstrate the evolution of the transformation and stress state
during a given loading history. We then present two problems that consider an
SMA-actuated beam. Following this, the torsional response of an SMA tube
as opposed by a biasing spring is analyzed. Finally, we describe the analysis of
more complex engineering systems including a morphing aerostructure and a
medical stent. The boundary value problems are numerically simulated using
the commercially available Abaqus Unified Finite Element Analysis suite [19].
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This software was installed locally on a PC with a 64-bit AMD FX-57 pro-
cessor (2.81 GHz) and 4 GB available RAM. Total run times (wallclock times)
for some of the analysis cases are provided, giving some indication of compu-
tational requirements.

To implement custom material constitutive models such as the unified
model in Abaqus, we use user material subroutines, or “UMATs”. SMA_UM is a
FORTRAN-coded numerical implementation of the unified SMA thermome-
chanical constitutive model as described in the previous sections. The demon-
strated implementation of the subroutine uses the convex cutting plane algo-
rithm and follows the specifications for user-material subroutines as required
by Abaqus; however, the subroutine can be integrated in any other stan-
dard finite element or computational program. The subroutine can be used
in 3-D, 2-D plane strain and generalized plane strain, 2-D axisymmetric, and
1-D problems. The SMA_UM and associated example input files are available
for use at http://smart.tamu.edu/SMAText/.

In a finite element computational program, the analysis of materials with
non-linear behavior involves the application of a global iterative scheme that
seeks to satisfy the conservation of linear momentum (balance of forces) at
each node. In the process of determining the nodal forces and displacements
during a given iteration, the global stiffness matrix must be calculated by
summing the entries of the local stiffness matrices for each integration point.
To calculate these entries, the main FEM code calls the material subroutine,
where the local tangent moduli (previously described) are calculated accord-
ing to the constitutive model for the material; thus, the material subroutine
is called for each integration point of the finite element model during each
global iteration. When the SMA_UM subroutine is called, it is provided with
the material state at the start of the increment (i.e, the stress, total strain,
transformation strain, temperature, martensitic volume fraction) and is also
given the temperature and strain increments. The output of the subroutine
is the updated value of the resulting stress and transformation strain tensors,
the new martensitic volume fraction and the tangent stiffness tensor. The
output provided by SMA_UM may not entirely be required for the successive
operations of the calling program, but some of it may be demanded by the
user for post-processing.

At this point it is very important to note that the analysis of smart
structures containing active SMA components often requires the considera-
tion of non-linear geometric effects (i.e., moderate to large deformations). For
most FEA packages, including Abaqus, this necessitates that some “non-linear
geometry” analysis option be activated. In Abaqus, this is accomplished by
turning on the NLGEOM option. Failure to do so can result in significant error
in the final results because geometrically linear analysis does not consider
the rotation of force vectors as the structure deforms. The software manuals
should be consulted for more information on using such features. Furthermore,
the accurate analysis of structures undergoing sufficiently large deformations
requires a new formulation of the constitutive model itself, as shown by Anand
and Gurtin [6] and Reese and Christ [7, 20], for example. Note also that in

http://smart.tamu.edu/SMAText/
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Chapter 3 the units for temperature were “K”, while in the examples that
follow we will use “ ◦C”, as was the convention in the first two chapters.

4.4.1 SMA Uniaxial Thermomechanical Loading Cases

In this example, a three-dimensional prismatic bar in the form of a unit cube
and composed of SMA is subjected to two differing uniaxial loading histories.
The specific material properties are given in Table 4.3 and they correspond to
a standard trained NiTi material with a constant current maximum transfor-
mation strain. Since the resulting stress state is uniform, the prismatic bar is
divided into only two finite elements, and these elements are eight-node (lin-
ear) hexahedral elements (Abaqus designation C3D8). Initially, the material is
nickel-titanium shape memory alloy in the austenitic state. Different loading
conditions are applied, as described below

• Test 1: The first loading case demonstrates the capabilities of the subrou-
tine to describe the pseudoelastic response of the material. The material
is at a temperature higher than the zero-stress austenitic finish temper-
ature, Af , and the loading is applied uniaxially until full transformation
is achieved. The material is then unloaded to zero stress, recovering all of
the transformation strain.

• Test 2: The second loading case demonstrates the capabilities of the
subroutine to describe temperature-induced phase transformation with
applied stress. Initially, the material is at temperature above Af . Uni-
axial stress loading is applied such that the value of the applied stress is
not sufficient to induce martensitic phase transformation. Next, holding
the value of the applied stress constant, the material is cooled to a tem-
perature below the zero-stress martensitic finish, Mf . During cooling, the
material undergoes phase transformation and large strains are observed.
Next, the material is heated back to the initial temperature, which results
in reverse phase transformation and recovery of the transformation strain.

Table 4.3. SMA material parameters for uniaxial and active beam analyses.

Material Parameter Value

EA 70GPa
EM 30GPa
ν .33
αA = αM 22 · 10−6/ ◦C
Ms 18 ◦C
Mf −2 ◦C
As 22 ◦C
Af 42 ◦C
CA = CM 7MPa/ ◦C
Hcur (σ) = H 0.05
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Fig. 4.3. Results for uniaxial FEA test cases: (a) Test 1-constant temperature
mechanical cycling, (b) Test 2-constant stress thermal cycling.

The stress-strain response of the SMA material for the first test case is
shown in Fig. 4.3a. The results were obtained using all three constitutive mod-
els (see Sect. 3.4). These are: the exponential model [1], the cosine model [2],
and the model with a polynomial hardening function [3]. The numerical sim-
ulations were performed at a temperature of 52 ◦C. The temperature-strain
response of NiTi SMA for the second test is shown in Fig. 4.3b. The applied
tensile load for this case was equal to 100 MPa. Note that due to the uni-
form stress, strain and temperature states within the bar, the results shown
in Fig. 4.3 represent the 1-D constitutive model implementation as derived in
the previous chapter (Sect. 3.5.1). The run time for each analysis was approx-
imately 30 s.

4.4.2 SMA Actuated Beam

To expand the simple 1-D analysis, we investigate the operation of two active
beam structures. The beam has the same geometric configuration in each case,
though in one case it is composed of aluminum and actuated by an SMA wire,
while in the second, it is composed of an SMA and opposed by a biasing elastic
spring. The beam, which is 200 mm long and 30 mm deep, is attached to a
vertical wall at the base, where it is 21 mm thick. The beam tapers at a 1:3
ratio, and the FEM mesh consists of linear 2-D continuum elements (Abaqus
designation CPE4). The model consists of 50 elements along the thickness and
five elements through the height. The beam reference configure is shown in
Fig. 4.4.
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Fig. 4.4. Initial mesh and system response of SMA wire opposed to elastic beam.

Aluminum beam, SMA wire
In the first example, the SMA wire is modeled using a two-node 1-D ele-
ment measuring 248.5 mm in length with a cross-sectional area of 9 mm2. It
is attached to the tip of the elastic beam and eventually fastened to a rigid
point. Material properties for the SMA wire are given in Table 4.3, and the
cosine form of the hardening function is assumed (for a review of the harden-
ing function, see Sect. 3.4 in addition to the uniaxial example above, which
compares possible hardening functions). The analysis steps are as follows:
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1. At a temperature of 18 ◦C (Ms), with the wire initially in austenitic state,
the free end of the wire is drawn back 17 mm and its end is fixed.

2. The temperature of the wire is raised to 127 ◦C.
3. The temperature of the wire is lowered to 18 ◦C.

The thermomechanical loading path is chosen such that initially austenitic
material is stressed to form stress-induced martensite, heated into nearly full
austenite, and then cooled into pure martensite. During the initial loading
step, the wire experiences a total strain of 5.8%, while the stress in the wire
reaches 206 MPa. This loading also forces the tip of the beam to deflect 3.7 mm
downward. After the SMA wire is heated well past the zero-stress austenitic
finish temperature, the stress in the wire increases to 593 MPa due to the incre-
mental recovery of transformation strain. The beam tip deflection increases to
10.8 mm. However, on cooling into martensite, the tip deflection recovers to a
total of 3.7 mm and the stress in the wire decreases to 206 MPa once again.

The von Mises stress present in the beam and the thermomechanical state
of the wire at the end of each loading step can be seen in Fig. 4.4. Note
the von Mises stress is identical to the effective deviatoric stress introduced
in Chapter 3. The beam tip deflection is also included. The evolution of the
wire thermomechanical state as plotted on the phase diagram is shown in
Fig. 4.5. Note that, on heating, transformation begins at 2, and, due to the
sharp increase in stress, is not completed by 3. Forward transformation does
not begin until 4 (as reverse transformation did not complete), and completes
at 5.
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Fig. 4.5. Stress/temperature response of SMA wire opposed to elastic beam.
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SMA beam, elastic bias spring
The second example considers the same beam geometric configuration, though
here the beam itself is composed of SMA material. Biasing force is provided
by a spring with a constant of 896 N/mm and an initial length of 240 mm.
The thermomechanical loading steps are as follows:

1. At a temperature of 19 ◦C (Ms + 1 ◦C), with the beam initially purely
austenitic, the free end of the spring is drawn back 17 mm and its end is
fixed.

2. The temperature of the beam is raised to 127 ◦C.
3. The temperature of the beam is lowered to 19 ◦C.

The thermomechanical loading path is such that initially austenitic mate-
rial (the beam) is stressed to form some stress-induced martensite, heated into
full austenite, and then cooled into pure martensite. The initial downward
deflection of the beam after the spring was retracted measured to 29.8 mm.
After heating, the beam recovered to a total downward deflection of 18.9 mm,
but returned 29.8 mm on cooling. These results can be seen in Fig. 4.6, where
the contours represent the component of the transformation strain resolved
along the axis of the beam (εt

11).
A comparison of the tip deflection response of the two beams (considering

the specific geometry, material properties, and prescribed boundary conditions
given) has been provided in Fig. 4.7. Although the results are obviously specific
to the given modeling inputs, several key observations are evident which can
be generalized qualitatively. First, the initial deflection of the SMA beam is
much larger than the elastic beam due to the generation of transformation
strain. Second, the total tip motion between the end of the heating step and
the end of the cooling step is larger for the second beam as well, although
the maximum transformation strain within the beam reaches only ≈ 0.9%,
while in the wire it is ≈ 3%. This is due to the ability of a beam to generate
significant deflection while experiencing only moderate strains.

4.4.3 SMA Torque Tube

The next numerical analysis example addresses the torsional actuation of an
SMA tube fixed at one end and coupled to a biasing torsional spring at the
other. The thin-walled SMA tube measures 152 mm in length, and has an
outer radius of 25.4 mm with a wall thickness of 1.5 mm. It is meshed using
25 quadratic axis-symmetric elements along its length (Abaqus designation
CGAX8). The material has the properties listed in Table 4.4 with the cosine
form of transformation hardening assumed. These properties are similar to
those given in Chapter 2, Table 2.4 for Ni60Ti material. The bias spring
provides a moment of 192 Nm per degree of rotation. At the initiation of the
analysis, the system is stress-free and the SMA is in the fully austenitic phase
at a temperature of 35 ◦C. The thermomechanical loading steps proceed as
follows:
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1. At the initial temperature of 35 ◦C (Ms+1 ◦C), the free end of the torsional
spring is rotated 11.6 ◦C, thus applying a load to the free end of the torque
tube. The rotated end of the torsional spring is then fixed.

2. The temperature of the tube is raised to 82 ◦C.
3. The temperature of the tube is lowered to −18 ◦C.
4. The temperature of the tube is raised to 82 ◦C once again to assess repeata-

bility.
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This thermomechanical loading path causes initially austenitic material to
be stressed into partial SIM, which is then heated into pure austenite. The
material is finally cooled into pure martensite. When the spring is initially
pre-rotated, the top of the tube rotates 5.14◦. During heating into austenite,
the tube recovers 43% of this initial rotation and a residual rotation of 2.92◦

is observed. When the temperature is lowered below the zero stress marten-
sitic finish temperature, the tube end rotation increases to 8.67◦, yielding

Table 4.4. SMA material parameters: Torque tube analysis

Material Parameter Value

EA 90 GPa
EM 63 GPa
ν 0.33
αA = αM 10 · 10−6/ ◦C
Ms 34 ◦C
Mf −17 ◦C
As 23 ◦C
Af 57 ◦C
CA|σ=300MPa 14.9 MPa/ ◦C
CM |σ=300MPa 10.6 MPa/ ◦C
Hcur (σ) = 0.0135[1 − exp(−720σ/EA)]
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Fig. 4.8. Initial mesh and response of the SMA torque tube: (a) system response at
end of each loading step, (b) martensitic volume fraction distribution during heating
at T = 53 ◦C.

an actuation range of motion of 5.75◦ as the tube material undergoes full
transformation cycles.

Fig. 4.8 illustrates the predicted system response to such a series of ther-
momechanical loads. In Fig. 4.8a, the initial mesh is illustrated and the defor-
mation response at the end of each step is shown. Figure 4.8b shows the non-
homogeneous distribution of martensitic volume fraction through the thick-
ness of the tube during heating at T = 53 ◦C. The thermomechanical response
of a representative torque tube element to all loading steps is shown superim-
posed on the phase diagram in Fig. 4.9.

4.4.4 SMA Actuated Variable Geometry Jet Engine Chevron

The Boeing Variable Geometry Chevron (VGC) was introduced in Sect. 1.10.1
and is an assemblage of three curved SMA beams installed on an elastic sub-
strate as shown in Fig. 4.10. The three beams are attached at their centers to
the upper side of the substrate and nonpenetration is enforced at the beam
tips. The beams are modeled using 3-D quadratic hexahedral elements with
reduced integration points (Abaqus designation C3D20R) and the constitutive
properties given in Table 4.4 while assuming the cosine form of transformation
hardening. A total of 2100 elements are arranged with 70 along the length, five
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across the width, and six through the depth. The thermomechanical loading
steps are as follows:

1. At an initial temperature of 18 ◦C and in a fully martensitic state, the
beams are drawn down until flush with the chevron substrate.

2. The temperature of all three beams is homogeneously raised such that
reverse transformation is completed (T = 80 ◦C).

3. The temperature of the three beams is lowered to 20 ◦C.

The total computation time needed to complete this analysis, which
included both non-linear material and non-linear deformations in addition
to contact, was 5.8 hrs. To validate the predictions of the model, a series

Fig. 4.10. Finite Element Analysis model of the Variable Geometry Chevron.
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Fig. 4.12. Geometric configuration of the analyzed stent, stress-free and crimped
configuration.

of experiments was performed. Thermomechanical loading steps identical to
those listed above were applied to a prototype VGC. Photogrammetry was
used to monitor the system response at several locations on the chevron sur-
face. A contour plot of the surface topography (5 mm contour intervals) was
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generated from the measured coordinates of each discrete photogrammetry
point. The analytical/experimental predictions are compared in Fig. 4.11.

4.4.5 SMA Medical Stent

The use of shape memory alloys in the fabrication of self-expanding stents
was also discussed in Sect. 1.10.2. In this final numerical example, the ther-
momechanical behavior of such a stent is modeled considering the constrain-
ing step (“crimping”) and the heating of the stent to body temperature. The
cylindrical stent of interest has a stress-free outer diameter of 6 mm and a
circumferentially periodic structure as shown in Fig. 4.12 where the expanded
and constrained configurations can be seen.

There are a total of 18 full “Vs” which make up the stent circumference.
Due to the obvious periodicity, only one “V” was meshed and analyzed. The
solid model was derived from an Abaqus-provided stent model, which is pub-
licly available. The SMA material was assumed to have the properties listed
in Table 4.5 (cf. Sect. 2.5.1, Table 2.2). The modeled portion is meshed using
672 linear hexahedral continuum elements (Abaqus designation C3D8). The
stent is considered to be initially stress-free, austenitic, and at a temperature
of −27 ◦C. Thermomechanical loading then proceeds as follows:

1. The stent is crimped to an outer diameter of 1.5 mm.
2. The stent temperature is homogeneously raised to body temperature

(37 ◦C).

During crimping, certain sections begin transformation into martensite
resulting in relatively low stresses considering the large deformations. Upon
heating, however, some of the martensitic portions of the stent begin transfor-
mation into austenite, which causes a significant increase in stress throughout
the stent. The results of this analysis, as well as the reference mesh are shown
in Fig. 4.13. The contours represent the level of von Mises stress throughout

Table 4.5. Material parameters: Medical stent analysis

Material Parameter Value

EA 55 GPa
EM 46 GPa
ν 46 GPa
αA = αM 22 · 10−6/ ◦C
Ms −28 ◦C
Mf −43 ◦C
As −3 ◦C
Af 7 ◦C
CA = CM 7.4 MPa/ ◦C
Hcur (σ) = Hmax 0.056
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the stent. Note the low stress levels after the crimping step, and the much
higher stress levels at body temperature. The total wallclock time needed to
complete this analysis was 285 s.

4.5 Summary

This chapter presented methods for implementing thermomechanical models
of shape memory alloys using return mapping algorithms. Two return map-
ping algorithms were presented in detail: the closest point projection algorithm
and the convex cutting plane algorithm. Each of these algorithms includes an
elastic predictor and a plastic (or transformation) corrector step. The gen-
eral transformation correction (return mapping) structure and its geometri-
cal interpretation were presented. The subject of tangent moduli was also
addressed and it was shown that while the consistent tangent moduli can be
derived for the case of closest point projection algorithm, the same is not
possible for the convex cutting plane algorithm.

Various boundary value problems based on SMA applications were pre-
sented that exemplify the capabilities of both the SMA unified model and
this particular implementation methodology. The analyses are of varying com-
plexity, from simple cubes (2 SMA elements) to a multi-component aerostruc-
ture (6300 SMA elements), which included multiple components interfacing
via consideration of contact. Experimental validation data is provided for
the VGC case, and good agreement is observed, illustrating the usefulness
of these tools in designing and modeling engineering applications of shape
memory alloys. As illustrated in Fig. 4.14 for the case of the Boeing VGC,
these tools will continue to streamline the traditional engineering “design-
build-test” methodology by providing accurate system performance predic-
tions while minimizing prototype construction and testing.

For additional resources related to the topics described in this chapter,
visit http://smart.tamu.edu/SMAText/.

4.6 Problems

4.1. Starting with the rate form of the total strain (3.3.47),

ε̇(σ, T, ξ) = ∂σε : σ̇ + ∂T ε Ṫ + ∂ξε ξ̇,

show that the evolution equation for the inelastic strain evolution is associa-
tive, such that

ε̇in =

{
ξ̇∂σΦ; ξ̇ > 0,

−ξ̇∂σΦ; ξ̇ < 0.

http://smart.tamu.edu/SMAText/
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4.2. Using the material properties shown in Table 4.4 and the unified model
presented in Chapter 3, derive the analytical form of the phase diagram as is
shown in Fig. 4.9. Is it possible to use the 1-D reduction of the unified model?
Justify your answer.

4.3. Using the material properties shown in Table 4.3, the simple 1-D model
presented in Sect. 2.6.2, and Euler-Bernoulli beam theory, estimate the
response of the SMA wire-actuated aluminum beam at the end of the heating
step (see Fig. 4.4). Furthermore, using the results from Prob. 2.12, predict the
response after cooling.

4.4. Using the 1-D reduction of the unified model provided in Chapter 3 and
Tables 4.1 and 4.2, implement both the closest point algorithm and convex
cutting plane algorithm. Analyze the response of the uniaxial prismatic bar
segment (cube) as shown in the numerical analysis examples. Is there a dif-
ference in the response?

4.5. Re-derive the 1-D formulation in Chapter 3 for the case of pure shear
(i.e., σ12 = σ21 	= 0 only). Use this model to approximate the results of the
SMA torque tube loading as described in Sect. 4.4.3.

4.6. Using the unified model as given in Chapter 3, derive a 2-D reduction
wherein

[σ] =

⎡

⎣
σ11 0 0
0 σ22 0
0 0 0

⎤

⎦ .

a) For this model, use Table 4.2 to implement the convex cutting plane algo-
rithm.

b) Using this algorithm, analyze the stress-strain response of a plate with
properties given in Table 4.5 undergoing full pseudoelastic 2-D loading at
T = 37 ◦C during which σ22 = 2σ11. Plot von Mises stress vs. ε11 and ε22.

4.7. Using the derivations given in Sect. 4.3.2 as a guide, derive the consistent
tangent moduli tensors for the reverse transformation. Show that they are
identical to those given in (4.2.11-4.2.12) in Sect. 4.2.

Additional Problems: Analysis of SMAs in “Active” Structures

The following problems address the use of SMA components in various active
structures applications. Assumptions can be made for each problem such that
a 1-D SMA model reduction can be used to approximate the solution. Fur-
thermore, for readers with access to Abaqus Unified Finite Element Analysis
software (with user subroutine capabilities), the user material subroutine dis-
cussed in Sect. 4.4 can be used to obtain an FEA solution. The UMAT and
accompanying manual can be found at http://smart.tamu.edu/SMAText/.

http://smart.tamu.edu/SMAText/
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4.8. Recall that one of the earliest industrial applications of SMAs was a
coupling for piping [21]. Consider such a coupling installed at the joint of two
steel pipes as shown in Fig. 4.15. The pipe outer diameter is 1 in (25.4 mm),
and the inner diameter is 0.734 in (18.6 mm). An SMA coupling is formed from
a material with the properties given in Table 4.5 and has a wall thickness
of 0.266 in (6.76 mm). The coupling is pre-stretched into full martensite at
T = −10 ◦C (loaded radially and then relaxed) such that the inner diameter
matches the outer diameter of the pipe. It is then installed while remaining
at a temperature of −10 ◦C. Heating the coupling to above −3 ◦C begins the
process of tightening. The pipe/coupling unit will be used in an environment
for which the ambient temperature is 25 ◦C. Using the above information,
perform the following tasks:

a) Calculate the stress-free inner diameter of the SMA coupling in the
austenitic state.

b) Determine the pressure applied by the coupling on the pipes when the sys-
tem temperature reaches the ambient temperature by using a 1-D model
reduction. Solve for two cases: i) the steel pipe is rigid; ii) the steel pipe
responds elastically. Hint: Use a 1-D reduction in polar coordinates which
considers only the hoop stress in the SMA coupling.

c) Using FEA, determine the pressure applied by the SMA coupling on the
pipes when the system temperature reaches the ambient temperature.
Solve using an axisymmetric model.

Di Do

SMA coupling Steel pipe

Fig. 4.15. Steel pipe/SMA coupling application as addressed in Problem 4.8.

4.9. A pressurized steel pipe (Ro = 50 mm, Ri = 45 mm, L = 300 mm) is
sealed on each end by a 12 mm thick steel plate. Four SMA rods in the
austenitic state (properties given in Table 4.3) and having a diameter of 15 mm



4.6 Problems 225

P

L

Ri

Ro

w

w

Fig. 4.16. Internally pressurized pipe constrained by four pretensioned rods as
addressed in Problem 4.9.

are installed such that w = 150 mm and then equally pretensioned at 43 ◦C
such that the martensitic volume fraction in each rod is 50%. The system
configuration is shown in Fig. 4.16. Determine the internal pressure such that
the system begins to leak (i.e., force no longer exists between the pipe and
steel plate) for the following three cases:

a) Assuming the end plates to be rigid and the constrained pipe to be elastic,
use a 1-D SMA model reduction to approximate the solution. Plot internal
pressure vs. interface force between the plates and constrained pipe up to
the leakage pressure.

b) Use a 3-D FEA model (with non-rigid end plates and 1-D SMA elements
for the rods) to determine a solution. Plot internal pressure vs. interface
force between the plates and constrained pipe.

c) Consider a similar problem wherein the four rods and end plates are steel
and the pipe is SMA. Temperatures and material properties remain the
same and pretensioning is applied until the pipe material is 50% marten-
sitic. What is the internal pressure required to cause leakage in this case
and how does it compare with the previous case?

4.10. This problem addresses an “antagonistic” SMA actuator, which places
one SMA component in opposition to another to allow for two-way motion [22].
An aluminum beam (L = 200 mm, W = 25 mm, H = 3 mm thick) is can-
tilevered at one end. SMA strips (l = 50 mm, h =1 mm thick) with properties
as given in Table 4.3 are prestrained lengthwise (loaded and relaxed) such
that the martensitic volume fraction is 75% and are then installed symmetri-
cally about the center of the beam. The installation temperature is 20 ◦C and
the SMA strips are assumed to be perfectly bonded. The system configura-
tion is schematically shown in Fig. 4.17. Consider the following four analysis
methods:

a) Use a 1-D SMA model reduction and Euler-Bernoulli beam theory to
analyze the structure (i.e., assume a constant stress-strain throughout the
SMA strip cross-section).
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L

W

l

H

h

Fig. 4.17. Antagonistic SMA strips installed on aluminum beam as addressed in
Problem 4.10.

b) Use a 2-D (plane strain) SMA model reduction and beam theory to analyze
the structure.

c) Numerically analyze using 2-D (plane strain) FEA.
d) Repeat using 3-D FEA. Compare the solutions and computation times

(2-D vs. 3-D).

For each method, plot the deflection of beam tip if the temperature of the
top SMA strip is raised to 70 ◦C and then lowered back to 20 ◦C, after which
the bottom SMA strip is raised to 70 ◦C and then lowered back to 20 ◦C (see
[23] for a discussion of heating/cooling methods). Repeat for the case where a
30 N downward tip load is applied to the beam after installation of the SMA
strips but prior to the heating/cooling steps.

4.11. An elastomeric round beam (L = 200 mm, R = 15 mm) is constructed
such that it contains an embedded SMA wire (properties given in Table 4.3)
with a diameter of 0.3 mm [24]. The SMA wire is prestrained (loaded and
unloaded) to full martensite at 20 ◦C before installation. When installed, it
is not bonded to the elastomer along its length but is assumed to apply a
force to the round beam only at the ends. This configuration is schematically
shown in Fig. 4.18. The elastomer/SMA system is cantilevered at one end
while the other end is used to support a 1.5 N transverse tip load. Consider
the following two analysis methods:

a) Use a combination of 1-D SMA model reduction and Euler-Bernoulli beam
theory to analyze the structure.

b) Numerically analyze using 3-D FEA modeling (with 1-D SMA elements).
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r

Elastomer
Embedded 
SMA Wire

R

L

1.5N

Fig. 4.18. Elastomer beam containing SMA wire element embedded off the beam
centroid as addressed in Problem 4.11.

For each method, determine an optimal combination of elastomer mate-
rial (e.g., solidified silicon) and wire embedding location r such that: i) the
deflection of the beam at its loaded end is minimized when T = 20 ◦C and ;
ii) the tip displacement when the SMA wire is heated to 70 ◦C is maximized.
Provide appropriate references for the elastomer properties chosen and plot
the deflection of beam tip vs. SMA wire temperature. Compare the results
to the case in which the SMA wire is assumed to be bound to the elastomer
along the entire length of the wire.

4.12. A number of researchers have proposed using SMA wires as active com-
ponents in a self-healing composite material (see [25], for example). This prob-
lem addresses the closing of a an elliptical “crack” in a infinitely long polymeric
prismatic bar containing SMA wire components embedded transverse to the
crack. The bar has a square cross-section with a side length b = 100 mm. The
ellipsoidal crack has a length of 2a = 0.6b and a width w = 4 mm. SMA wires
with properties as given in Table 4.3 are prestrained (loaded and unloaded)
into full martensite at a temperature of −10 ◦C. These are then installed below
As such that they bisect the center of the crack and are evenly distributed
along the length of the bar with a spacing of s = 10 mm. The configuration
of a segment from the bar is schematically shown in Fig. 4.19. Consider each
of the following two cases:

a) The SMA wire elements only apply loads to the bar at their intersection
with the outer surface (i.e., the wires are not bonded to the interior of the
bar).

b) The SMA wire elements are perfectly bonded to the bar throughout its
interior.

For each case, determine a suitable Representative Volume Element (RVE)
to use in analyzing the structure. Find the amount by which the crack closes
when the wires are heated to Af + 10 ◦C. Plot crack width vs. SMA wire
temperature. Though a 1-D SMA model could be used to predict the wire
response, an FEA model will be required to predict the response of the RVE
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b

b

2a

w

SMA wires

s

Fig. 4.19. SMA wires used in the construction of a “self-healing” structure with an
elliptical “crack” as addressed in Problem 4.12.

matrix. Note that the four sides of the bar are traction-free while periodic
boundary conditions should be imposed on the two periodic faces of the RVE.
Assume that the RVE matrix is composed of hardened epoxy material.

4.13. Transversely loaded pseudoelastic SMA tubes have been studied for
use as components in vibration isolation applications [26, 27]. Consider such
loading of SMA tubes with properties as given in Table 4.5 and having an
outer radius of 3 mm, a wall thickness of 0.17 mm and a length of 10 mm.
Assume standard room temperature.

F

(a) Single pseudoelastic
tube

F

(b) Single pseudoelastic
tube, constrained

PRESS

F

(c) Multiple pseudoelas-
tic tubes under load

Fig. 4.20. Transverse loading of pseudoelastic SMA tubes as addressed in Prob-
lem 4.13.
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a) Using 2-D (plane strain) modeling, determine the force/deflection results
if a single such tube is transversely loaded as seen in Fig. 4.20a. Perform a
mesh refinement study to ensure that the results are not mesh-dependent.
Note that contact must be considered in modeling this problem.

b) Consider a similar single tube constrained on its sides as seen in Fig. 4.20b.
Compare the results of a) and b) and discuss the influence of lateral con-
finement on the response of the SMA tubes.

c) Consider a more complex configuration in which two rows of tubes (seven
total tubes) are constrained as seen in Fig. 4.20c and a force is applied
from above. Using 2-D (plane strain) or 3-D modeling, determine the
downward force/motion of the “press” seen in this figure. Plot the force
vs. deflection curve up to the point when all SMA tubes are folded.
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5

Modeling of Transformation-Induced Plasticity
in SMAs

P. B. Entchev and D. C. Lagoudas

Many engineering applications of shape memory alloys require material
that exhibits a repeatable thermomechanical response, and Chapters 1 and
2 discussed the stabilization of material through training. Chapters 3 and 4
addressed the derivation and implementation of models designed to simulate
such stable behavior. However, the ability to account for evolving material
behavior caused by induced plastic strains during transformation is also impor-
tant. Here, we focus on the development of a 3-D constitutive model for SMAs
that continue to exhibit substantial cyclic evolution of irrecoverable strains. A
1-D reduction of the model and comparison with experimental results is also
presented.

5.1 Introduction

In reviewing the body of knowledge concerning the modeling of SMAs, one
will find that the vast majority of theories and implementations address the
stable, repeatable hysteretic behavior exhibited by appropriately trained SMA
materials. This is obviously sufficient for most applications where repeatable
behavior is required, and Chapters 1–4 addressed this important topic. How-
ever, shape memory alloys exhibit evolving hysteretic behavior (i.e., train-
ing) during initial cycling. Having presented a thermodynamic and numerical
framework for modeling the stable constitutive behavior of SMAs, it is now
appropriate to discuss the modification of these methods to account for other,
more complex, material behaviors including the evolution of material response.

Experimental observations of SMAs undergoing cyclic loading via ther-
mal activation under constant stress or operating in the pseudoelastic regime
have shown that a significant part of the developed strain is not recovered
on unloading and accumulates with every transformation cycle. This effect
has been attributed to the development of irrecoverable plastic strains dur-
ing the thermomechanical cycling of SMAs undergoing phase transformation.
This transformation-induced plasticity , the result of a number of permanent
microstructural changes, is often known simply as TRIP. As the number of
loading cycles increases, the evolution of TRIP slows and, in some cases, ceases

D.C. Lagoudas (ed.), Shape Memory Alloys, DOI: 10.1007/978-0-387-47685-8 5,
© Springer Science+Business Media, LLC 2008
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after a large number of subsequent cycles until the transformation induced
fatigue limit is reached (see Chapter 1, Sect. 1.7). Many models found in the
literature describing the development of plastic strains in SMAs have a 1-D
formulation. These models are limited in their usefulness as many important
applications require modeling capabilities extending beyond 1-D stress states.
In this chapter we will demonstrate the derivation and implementation of a
3-D model that captures the evolution of both transformation and plastic
strains simultaneously (TRIP).

The 3-D model development [1] will follow the methodology used for the
1-D case presented by Bo and Lagoudas [2–5]. This earlier work described the
behavior of SMAs undergoing thermally-induced phase transformation, and
here we adapt the formulation for transformation-induced plasticity in the
case of stress-induced martensitic transformation.

Although the model for TRIP derived in this chapter follows from the work
of Bo and Lagoudas, the current model is capable of simulating the 3-D behav-
ior of SMAs. The original model by Bo and Lagoudas [2] was implemented
for the case of 1-D SMA components only. In addition, the calibration of the
model parameters is different. While the previous publications [2–5] have been
devoted exclusively to characterizing the behavior of SMA wires undergoing
thermally-induced phase transformation and transformation-induced plastic-
ity under cyclic thermal loading, the current work is aimed at characterizing
the SMAs undergoing stress-induced phase transformation and simultaneous
transformation and plasticity evolution with the number of mechanical cycles.
Thus, the procedure for estimation of the material parameters (Sect. 5.3) uti-
lizes data for SMAs undergoing stress-induced phase transformation. While
the present model can still be used to model thermally-induced phase trans-
formation, material parameters may need to be recalibrated to obtain accu-
rate results. The work presented in this chapter follows the presentation of
Lagoudas and Entchev [1]. It will be derived as an extension of the formulation
presented in Chapter 3 (Sect. 3.3). However, a modified form of the Gibbs free
energy will be used and new internal variables will be introduced. Therefore,
this chapter provides a new example of phenomenological SMA constitutive
model derivation considering new effects.

5.1.1 Experimental Motivation: Polycrystalline SMAs Undergoing
Cyclic Loading

To motivate the model of interest, we first consider some examples of materi-
als exhibiting TRIP behavior. Chapter 2 provides an example of plastic strain
evolution during constant stress thermal transformation (Fig. 2.15) and an
example of pseudoelastic TRIP behavior (Fig. 2.27). Many examples exist
throughout the literature. A set of experimental results showing the SMA
response undergoing cyclic stress-induced (pseudoelastic) transformation is
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Fig. 5.1. Cyclic stress-strain results for NiTi SMA strips of various compositions
undergoing pseudoelastic loading (first and last cycles shown): (left) cycling up to a
constant maximum value of strain; (right) cycling up to a constant maximum value
of stress [6].

shown in Fig. 5.11. The results are for three different NiTi alloys and the
tests have been performed above the austenitic finish temperature. Two dif-
ferent uniaxial pseudoelastic tests were performed: cyclic loading with a con-
stant maximum value of strain and cyclic loading with a constant maximum

1 Reprinted from Materials Science and Engineering A, Vol. 203, Strnadel, B.,
Ohashi, S., Ohtsuka, H., Miyazaki, S. and Ishihara, T., pp. 187–196, Copyright
1995, with permission from Elsevier.
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Fig. 5.2. Residual strain accumulated during cyclic loading of NiTi SMA strips.
Results for cycling up to a constant maximum value of stress are shown [6].

value of stress. Both sets of results are shown in the figure. The accumulated
transformation-induced plastic strain during loading is shown in Fig. 5.21.

Several observations can be made from these figures. First, during the
cycling loading, a substantial amount of irrecoverable plastic strain accu-
mulates. As shown in Fig. 5.2, the rate of accumulation of plastic strain is
high during the initial cycles and asymptotically goes to almost zero with the
increase of the number of cycles, as the plastic strain reaches a saturation
value. A second observation is that the value of critical stress for onset of
the transformation decreases with the number of cycles. A third observation
is the substantial increase in transformation hardening. Additionally, in some
cases the value of the maximum transformation strain decreases with the num-
ber of cycles. Finally, the area enclosed by the transformation hysteresis loop
decreases.

The issue of TRIP observed during constant stress thermally-induced
cyclic transformation, more common for actuator applications of SMAs, has
also been addressed [4]. Here, various levels of constant stress were applied
to NiTi wires and the evolution of the irrecoverable plastic strain was mon-
itored over many transformation cycles. Fig. 5.32 shows the total strain as

2 Reprinted from International Journal of Engineering Science, Vol. 37, Issue 9,
Bo, Z. and Lagoudas, D.C., pp. 1175–1203, Copyright 1999, with permission from
Elsevier.
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Fig. 5.3. Cyclic strain-temperature response during cyclic thermal transformation
of NiTi SMA wires under a constant 35MPa tensile load, 20 cycles shown [4].

a function of temperature for the first 20 cycles of loading at a constant
force, resulting in 35 MPa uniaxial stress. The TRIP is evident in this plot
by examining the residual strain present when the material is heated into
austenite (T > 350 K). The evolution of TRIP as observed during constant
stress loading at other load levels is shown in Fig. 5.42. While the incremental
accumulation of plastic strain observed in Fig. 5.2 for pseudoelastic testing
seems to saturate, the same is not observed in the constant stress results sum-
marized in Fig. 5.4. For these results, the response never truly stabilizes until
final failure. Similar results are also observed in Fig. 1.15, which discusses the
topic of thermally-induced transformation fatigue.

Similar observations have also been reported by other researchers (see, for
example, the works of McCormick and Liu [7], Strnadel et al. [8], Lim and
McDowell [9], Kato et al. [10] and Sehitoglu et al. [11]). Thus, the constitutive
model presented in this work will address the effects described above, which
are common for most polycrystalline NiTi SMAs.
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Fig. 5.4. Residual plastic strain accumulated during cyclic thermal transformation
of NiTi SMA wires under various constant tensile loads [4].

5.2 Three Dimensional Constitutive Model for SMAs
Experiencing TRIP

To expand on the derivation of 3-D constitutive models for SMAs as presented
in Chapter 3, we must first review any additional internal variables needed to
account for the evolution of transformation-induced plastic strain considering
both isotropic and kinematic hardening. Discussions of appropriate internal
variables for this case are in many plasticity texts (see, for example, [12]). In
short, we choose the common options of plastic strain, εp, the back stress,
β, and the drag stress, η. The back stress accounts for the kinematic portion
of the plastic hardening and is a second-order tensor while the drag stress
accounts for the isotropic portion and is a scalar. Using these possible internal
variables and motivated by detailed developments presented elsewhere [2], we
can postulate a new Gibbs free energy for the total SMA material, which
includes the effects of TRIP. This is given as (cf. Sect. 3.3):

G(σ, T, ξ, εt, εp,β, η) = − 1
2ρ

σ : S : σ − 1
ρ
σ :
[
α(T − T0) + εt + εp

]

− 1
ρ

ξ∫

0

(

β :
∂εt

∂τ
+ η

)

dτ + c

[

T − T0 − T ln
(

T

T0

)]

− s0(T − T0) + u0 + f(ξ). (5.2.1)
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In comparing this to the form given in Chapter 3, specifically in (3.3.41),
one notes that there are only two new terms which account for the energetic
consequences of plasticity. These are the σ : εp and martensitic volume frac-
tion integral terms. In determining the material constants (i.e., S, α, etc.),
the rule of mixtures as discussed in (3.3.42)–(3.3.46) is used. Assumptions
related to the new plasticity-based quantities are described in the following
subsection.

5.2.1 Modifications Needed to Account for TRIP

The evolution equations for the new plasticity state variables εp, β and η are
presented here. Because this model addresses plastic deformation distinctly
caused by transformation, it is a key assumption that the back stress and
drag stress each evolve with the martensitic volume fraction ξ. Additional
TRIP model assumptions also necessitate modification of the transformation
tensor Λ as shown below.

Plastic Strain

The plastic strain considered here is different from conventional plasticity
in metals. The observable macroscopic plastic strain is developed simultane-
ously with the transformation strain during martensitic phase transformation.
This is a result of the accommodation of different martensitic variants during
the phase transformation. Due to the misfit between the austenite-martensite
interfaces, significant distortion is created. In addition, in a polycrystalline
SMA, different grains transform in different manners, which causes additional
distortion at the grain boundaries. These two phenomena act in concert and
the final result is an observable macroscopic plastic strain, which occurs at
stress levels much lower than the plastic yield limit of the material without
phase transformation [13]. This model does not address the plastic strain evo-
lution initiated when pure austenite or martensite is subjected to stresses that
exceed the critical stress for slip, but is focused on plasticity caused by cyclic
transformation only.

Similar to the evolution of transformation strain (see (3.3.51)), the direc-
tion of plastic strain is determined by the direction of the applied stress;
although, another factor must be taken into account. Lim and McDowell [9]
have suggested that the plastic strain rate depends on the magnitude of ξ̇.
However, in this work, a different approach as outlined by Bo and Lagoudas [4],
where the self-accommodating martensitic phase transformation is assumed
not to result in plastic strain development will be used. Therefore, the devel-
opment of the plastic strain is connected to the detwinned martensitic volume
fraction via the relation given in (2.6.9) as

ξd ≡ Hcur (σ̄′)
Hmax

ξ
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recall that Hcur (σ̄′) is the maximum current transformation strain which
will be generated during forward phase transformation at the current applied
stress level. This topic was discussed in Sect. 2.2.3 and functional forms are
suggested throughout Chapter 2. Recall also that the constant Hmax denotes
the maximum value of Hcur (σ̄′) obtained during forward transformation at
large values of the applied stress. Next, the accumulated detwinned martensitic
volume fraction ζd is introduced as:

ζd =

t∫

0

|ξ̇d(τ)|dτ . (5.2.2)

From its definition, one finds that ζ̇d = |ξ̇d|, and the following evolution
equation for εp is proposed:

ε̇p = Λ̃pζ̇d = Λ̃p Hcur (σ̄′)
Hmax

|ξ̇|. (5.2.3)

The quantity Λ̃p is the transformation-induced plasticity tensor (or TRIP
tensor) whose functional form is discussed next.

One form of Λ̃p is suggested by Bo and Lagoudas [4] for the 1-D case.
This form depends on the value of the applied stress, the accumulated
detwinned martensitic volume fraction, and the value of the plastic strain
itself. As explained by Bo and Lagoudas [4], the plastic strain predicted by
their model does not reach a saturation value. While this is observed during
thermally-induced phase transformation (see Fig. 5.3), for the case of stress-
induced transformation (pseudoelasticity), the experimental results reported
by Strnadel et al. [6] indicate that the plastic strain reaches a saturation value
(Fig. 5.2). Thus, to model stress-induced phase transformation in addition to
thermally induced transformation, the following form of Λ̃p is proposed [1]:

Λ̃p =

⎧
⎪⎨

⎪⎩

3
2
Cp

1

σeff′

σ̄eff
e
− ζd

C
p
2 ; ξ̇ > 0,

Cp
1

εt−r

ε̄t−r
e
− ζd

C
p
2 ; ξ̇ < 0.

(5.2.4)

where σeff denotes the effective stress tensor , which is defined as

σeff = σ + β. (5.2.5)

The back stress β will be introduced in more detail shortly. The deviatoric
part of the effective stress σeff′ and the von Mises equivalent effective stress
σ̄eff are defined as

σeff′ = σeff − 1
3
(tr(σeff))1, σ̄eff =

√
3
2
‖σeff′‖2, (5.2.6)

where ‖ · ‖2 is the inner product of the enclosed quantity and 1 is the second
order identity tensor (c.f. (3.3.53), (3.3.54)).
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It can be seen from comparing (5.2.3) and (3.3.51) that the rates of
the transformation strain and the plastic strain during phase transformation
are proportional. An evolution equation for the plastic strain during stress-
induced phase transformation, similar to (5.2.3), has also been proposed by
Lim and McDowell [9]. However, in their equation the governing parameter
is the accumulated martensitic volume fraction. For the equation proposed in
this work, the governing parameter is the accumulated detwinned martensitic
volume fraction. In addition, the equation proposed here is for the 3-D case.
The above form of the TRIP tensor enables a saturation of the plastic strain
after a certain number of cycles. The material parameters Cp

1 and Cp
2 govern

the saturation value as well as the number of cycles necessary for the plastic
strain to saturate.

Note that, given the form of the TRIP tensor in (5.2.4) above, we can
eliminate the absolute value condition from the evolution equation for εp as
seen in (5.2.3). To do so, we reformulate the TRIP tensor as follows:

Λp =

⎧
⎪⎨

⎪⎩

3
2
Cp

1

Hcur (σ̄′)
Hmax

σeff′

σ̄eff
e
− ζd

C
p
2 ; ξ̇ > 0,

−Cp
1

Hcur (σ̄′)
Hmax

εt−r

ε̄t−r
e
− ζd

C
p
2 ; ξ̇ < 0,

(5.2.7)

which now also includes the ratio Hcur (σ̄′)/Hmax term out of convenience.
The introduction of the modified TRIP tensor allows us to write:

ε̇p = Λpξ̇. (5.2.8)

Back, Drag Stresses and Effective Stress

The back stress, β, and the drag stress, η, control the transformation harden-
ing during the martensitic phase transformation. They are physically related
to the local residual stresses that are developed in the material due to mate-
rial heterogeneity. As explained by Bo and Lagoudas [4], β and η take into
account the effects of both the initial material imperfections and hetero-
geneities, (grain boundaries, crystal lattice imperfections, precipitates) as well
as the transformation-induced heterogeneities (transformation eigenstrains)
and misfit between martensite-austenite interfaces. In addition, the back stress
β accounts for the evolution of the maximum transformation strain during
thermomechanical cycling.

In the current formulation, the evolution of the back and drag stresses is
described using algebraic equations in terms of the martensitic volume frac-
tion. Since the back stress is a tensorial quantity, its functional form also con-
tains the direction of the accumulated transformation strain. Alternatively,
an evolution equation can be specified that will have a form similar to the
evolution equation for the transformation strain (see (3.3.51)).

In this work, the back stress is assumed to have the following polynomial
functional representation:
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β = −εt

ε̄t

Nb
∑

i=1

Db
i (H

cur (σ̄′) ξ)(i), (5.2.9)

where N b is the degree of the polynomial and Db
i are the coefficients associated

with the back stress. Note that the form of the back stress used here differs
from the expression used by Bo and Lagoudas [4], where a logarithmic function
has been used. The use of a polynomial expression significantly simplifies the
estimation of the material parameters and the calibration of the model. Using
(5.2.9), the back stress parameters can be calibrated by implementing a least
square fit of the experimental data, while the logarithmic expression used by
Bo and Lagoudas [4] will result in a non-linear optimization problem.

The expression for η used in this work is similar to the one used by Bo
and Lagoudas [4]:

η = −Dd
1 [− ln(1 − ξ)]

1
m1 + Dd

2ξ, (5.2.10)

where Dd
1 , Dd

2 and m1 are parameters governing the evolution of the drag
stress.

Evolution of Transformation Strain

The evolution of the transformation strain in the current TRIP model for
SMAs is assumed to follow the same functional form as (3.3.51) where Λ is
the transformation tensor. During forward transformation of SMA material
in which plastic strains are not considered (i.e., the model of Chapter 3),
this tensor is assumed to depend on the applied stress level. In the current
TRIP model, however, we must consider the contribution of the back stress.
Therefore, it is the effective stress tensor σeff which is assumed to drive the
direction of recoverable strain generation during forward transformation. This
yields the following for Λ (c.f. 3.3.52):

Λ =

⎧
⎪⎨

⎪⎩

3
2Hmax σeff′

σ̄eff
; ξ̇ > 0

Hmax εt−r

ε̄t−r
; ξ̇ < 0

. (5.2.11)

In the current model it is also generally assumed that the maximum trans-
formation strain varies with stress (Hcur (σ̄′)) and this must also be considered
in the formulation of Λ. This is straightforward during forward transforma-
tion. During reverse transformation, however, Λ is assumed to depend only
on the microstructural state of the material at the reversal of forward trans-
formation. The current final form of the transformation tensor is then given
by

Λ =

⎧
⎪⎨

⎪⎩

3
2Hcur (σ̄′)

σeff′

σ̄eff
; ξ̇ > 0,

Hcur−r εt−r

ε̄t−r
; ξ̇ < 0.

. (5.2.12)
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Here Hcur−r denotes the maximum current transformation strain at the
reversal of forward transformation. Recall from Chapter 3 that εt−r denotes
the transformation strain at the reversal of forward phase transformation.
The condition for evaluation of Hcur (σ̄′) used here is the one suggested by
Lagoudas and Bo [4], i. e., where Hcur (σ̄′) is evaluated from the condition
that the effective applied stress σ̄′ (see (3.3.54)) is equal to the effective back
stress β̄ at the value of the martensitic volume fraction ξ = 1:

σ̄′ = β̄
∣
∣
ξ=1

. (5.2.13)

As shown in Sect. 5.2.1, the back stress, β, is a function of both ξ and
Hcur (σ̄′). Thus, for ξ = 1, (5.2.13) becomes an equation of one variable,
Hcur (σ̄′), which can be solved to determine its value. This also implies that
when the value of stress changes, a new value of the current maximum trans-
formation strain should be calculated. The latter case arises not only during
stress-induced phase transformation, but also during thermally-induced phase
transformation when the material is constrained, e.g., in applications where
the SMA acts as an actuator.

5.2.2 Complete Constitutive Model for TRIP

Given the discussion in Sect. 5.2.1, we see that the back stress and drag stress
are dependent on the value of the martensitic volume fraction (i.e., β(ξ) and
η(ξ)). The Gibbs free energy as stated in (5.2.1) should then be rewritten as
a functional wherein the TRIP variables (β and η) are no longer independent
but rather depend on ξ. Recalling the rule of mixtures as given in Sect. 3.3, we
see that the material parameters for elastic moduli, thermal expansion, etc.
are also functions of ξ. The careful reader will note that no explicit hardening
function f (ξ) is included in this new form of the Gibbs free energy, though
one can be seen in (5.2.1). This is because the energetic consequences of phase
mixing have been captured in the formulations of β and η. This reformulation
yields

G[σ, T, εt, εp,β(ξ), η(ξ); ξ]=− 1
2ρ

σ : S(ξ) : σ − 1
ρ
σ :
[
α(ξ)(T−T0) + εt + εp

]

− 1
ρ

ξ∫

0

(

β(τ) :
∂εt

∂τ
+ η(τ)

)

dτ + c(ξ)
[

T − T0 − T ln
(

T

T0

)]

− s0(ξ)(T − T0) + u0(ξ). (5.2.14)

Applying the second law of thermodynamics to the independent variables
(σ, T , ξ, εt, and εp) in the same manner described in Sect. 3.3, we arrive at
the following constitutive equations:

ε = −ρ
∂G

∂σ
= S : σ + α(T − T0) + εt + εp, (5.2.15)
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s = −∂G

∂T
=

1
ρ
σ : α + c ln

(
T

T0

)

+ s0. (5.2.16)

Having thus defined relations for the entropy and total strain, the remaining
local strong form of the second law of thermodynamics yields:

− ρ
∂G

∂ξ
ξ̇ − ρ

∂G

∂εt
: ε̇t − ρ

∂G

∂εp
: ε̇p ≥ 0. (5.2.17)

We then invoke the evolution equations for εt and εp stated in (3.3.51) and
(5.2.8), respectively. Equation (5.2.17) is then rewritten as (cf. (3.3.56)):

− ρ
∂G

∂ξ
ξ̇ − ρ

∂G

∂εt
: Λξ̇ − ρ

∂G

∂εp
: Λpξ̇ = πξ̇ ≥ 0. (5.2.18)

In the above equation, π is the thermodynamic force conjugate to ξ and
is given by

π =
1
2
σ : ΔS : σ + σ : Δα(T − T0) + σ : Λ + σ : Λp

+ β(ξ) : Λ + η(ξ) − ρΔc

[

T − T0 − T ln
(

T

T0

)]

+ ρΔs0(T − T0) + Δu0. (5.2.19)

The material parameter M0s is now introduced as a combination of other
parameters such that

M0s = T0 +
1

ρΔs0

(Y + ρΔu0), (5.2.20)

with Y as a material constant representing a measure of the internal dissi-
pation during phase transformation [2]. Recall that the effective stress σeff is
defined as a sum of the applied stress, σ, and the back stress, β. These two
considerations lead to a final form for the thermodynamic force:

π =
1
2
σ : ΔS : σ + σ : Δα(T − T0) + σeff : Λ + σ : Λp + η(ξ)

− ρΔc

[

T − T0 − T ln
(

T

T0

)]

+ ρΔs0(T − M0s) + Y. (5.2.21)

The evolution of the martensitic volume fraction and conditions on trans-
formation can be found from a standard formalism of thermodynamic dissipa-
tion potentials (see, for example, [14]). Following the approach of Chapter 3,
this gives:

Φ =
{

π − Y ; ξ̇ > 0,

−π − Y ; ξ̇ < 0.



5.2 3-D Modeling of TRIP in SMAs 245

which was first shown in (3.3.58). Constraints on the evolution of ξ are
expressed in terms of the Kuhn-Tucker conditions originally given in (3.3.60)
and (3.3.61) for the forward and reverse phase transformations as

ξ̇ ≥ 0, Φ ≤ 0, Φξ̇ = 0,

ξ̇ ≤ 0, Φ ≤ 0, Φξ̇ = 0.

The current 3-D formulation of the model will not properly take into
account the development of two-way shape memory effect in its full gener-
ality, but only in special cases. The 1-D reduced model, however, will not be
able to account for the TWSME. This limitation of the model is caused by the
fact that the current choice for calculating Hcur (σ̄′) cannot take into account
the direction of the developed TWSME. To properly model the training and
development of TWSME, a tensorial quantity must be introduced, which will
replace Hcur (σ̄′). Note, however, that for the case of stress-induced marten-
sitic phase transformation the current formulation is still suitable. This is
because the transformation strain, during stress-induced phase transforma-
tion, will develop in the direction of the applied stress.

5.2.3 Evolution of the Hysteretic Response of an SMA
Undergoing Cyclic Loading

During mechanical cyclic loading, several characteristic changes of the ther-
momechanical response of SMAs exist. Along with the accumulation of non-
recoverable plastic strain, changes of the hysteresis loop have also been exper-
imentally observed [6, 9]. The hysteresis loop progressively evolves with the
number of cycles, until a stabilization point is reached. Some of the charac-
teristic changes of the hysteresis loop are:

1. decrease of the stress level necessary for the onset of the transformation;
2. increase of the transformation hardening;
3. decrease the width of the hysteresis loop;
4. decrease of the maximum transformation strain.

In addition, as noted in the literature [4, 7], the martensitic start tem-
perature at zero applied stress Ms can also change during the transformation
cycling.

The accumulation of the plastic strain has been addressed in the pre-
vious section, where an evolution equation for εp has been proposed. This
section addresses the evolution of the hysteresis loop. The approach taken
here is to identify two sets of parameters; the first set for the material that
has not undergone any thermodynamic loading and the second set for the
material that has undergone transformation cycling and for which the hys-
teresis loop has stabilized. Then, having identified these two sets of material
parameters, evolution equations are proposed such that during the cycling the
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material parameters evolve from the first set to the second set. The procedure
is described in detail in a sequel.

First, the evolution of the back stress parameter Db
i is prescribed. The

initial and final values of the back stress parameters are denoted by (Db
i )

init

and (Db
i )

fin. Following the work of Bo and Lagoudas [4], the evolution of
the parameter Db

i is assumed to be governed by the same equation, which is
selected as

Db
i = (Db

i )
fin +

(
(Db

i )
init − (Db

i )
fin
)
e−λ1ζd

. (5.2.22)

As seen from (5.2.22), the back stress parameters are assumed to change
with the evolution of the accumulated detwinned martensitic volume fraction
ζd. In their work, Bo and Lagoudas [4] have assumed that the evolution of Db

i

is governed by the change in plastic strain. However, as indicated by (5.2.8)
and (5.2.7), the plastic strain εp and ζd are connected. Choosing ζd as the
governing parameter for the change of Db

i simplifies the model calibration,
because for stress-induced transformation where full detwinning takes place,
ζd is proportional to the number of cycles, i. e., ζd = 2N , where N is the
number of cycles. The parameter λ1 in equation (5.2.22) is a positive material
constant that governs the increasing rate of Db

i .
As explained in Sect. 5.2.2, the current maximum transformation strain

Hcur (σ̄′) is calculated using the effective back stress ᾱ. Since the maximum
transformation strain Hmax is a limit value of Hcur (σ̄′) the change of Hmax is
assumed to obey the same governing equation as the change of Db

i . Therefore,
Hmax is given by

Hmax = Hfin +
(
H init − Hfin

)
e−λ1ζd

. (5.2.23)

Similar evolution equations are proposed for the drag stress parameter Dd
i .

The evolution of Dd
i is described by

Dd
i = (Dd

i )fin +
(
(Dd

i )init − (Dd
i )fin

)
e−λ2ζ (5.2.24)

where λ2 is a material parameter governing the evolution of Dd
i . As seen from

(5.2.24), the evolution of the drag stress parameters is governed by the total
accumulated martensitic volume fraction, ζ, and not by the detwinned portion,
ζd. This is related to the fact that microstructural changes can be induced by
cyclic self-accommodating phase transformation [4]. For stress-induced phase
transformation with large values of the applied stress, (5.2.22) and (5.2.24)
are identical (if, of course, λ1 = λ2), since in this case ζ = ζd.

Finally, the evolution of the material parameters Y , M0s and ρΔs0 is con-
sidered. The equations governing the change of these parameters are similar
to (5.2.24):

Y = Y fin +
(
Y init − Y fin

)
e−λ2ζ , (5.2.25)

M0s = (M0s)fin +
(
(M0s)init − (M0s)fin

)
e−λ2ζ , (5.2.26)

ρΔs0 = (ρΔs0)
fin +

(
(ρΔs0)

init − (ρΔs0)
fin
)
e−λ2ζ . (5.2.27)
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The value for the parameter λ1 can be obtained by performing cyclic load-
ing during which the material undergoes stress-induced transformation, while
the value of λ2 can be determined by performing thermal cycling with no
applied stress. The evolution equation for the back stress parameters (see
(5.2.22) and (5.2.23)) includes the accumulated detwinned martensitic vol-
ume fraction, ζd, and the other evolution equations (5.2.24)–(5.2.27) include
the accumulated total martensitic volume fraction, ζ. In self-accommodated
thermally induced transformation cycling, the value of ζd is zero. Any change
of the material parameters will be caused by the change of ζ, which will allow
the determination of the value of λ2 from any of (5.2.24)–(5.2.27), assuming
that λ2 remains the same for all evolution (5.2.24)–(5.2.27).

As discussed above, two sets of the material parameters need to be identi-
fied: the initial set, characterizing the initial response of the annealed material,
and the final set, characterizing the stable material response. Having identi-
fied these two sets, the material parameters continuously change according
to the evolution equations. However, this situation poses a problem in iden-
tifying the initial and final values of the parameters. Indeed, if the material
parameters change continuously during the identification of the first set, it
would be extremely difficult to take into account the change during the first
cycle due to the nonlinearity introduced by that change.

This problem is addressed by keeping the value of the material parameters
constant during forward or reverse phase transformation. The parameters will
be recalculated according to the evolution equations when a reversal of the
phase transformation occurs. Thus, the change in sign of the martensitic vol-
ume fraction rate ξ̇ triggers the change of the material parameters. However,
the above procedure is applied for only the material parameters. The plas-
tic strain during cyclic loading is continuously calculated during both forward
and reverse phase transformation, according to the evolution equation (5.2.8).

5.2.4 Modeling of Minor Hysteresis Loops

An important part of the thermomechanical constitutive modeling of SMAs
is accounting for the minor hysteresis loops. In the presented model, a major
loop is characterized by a full transformation cycle with the martensitic vol-
ume fraction, ξ, monotonically increasing from 0 to 1 and then monotonically
decreasing from 1 to 0. Conversely, during a minor loop the martensitic volume
ξ has an initial value strictly greater than 0 and less than 1.

The approach to modeling the minor hysteresis loops used in this work is
the one presented by Bo and Lagoudas [5]. The main idea behind the modeling
of minor loops is the modification of the transformation function, depending
on whether the loading path follows a major or a minor loop. The details of
the approach can be found in the work of Bo and Lagoudas [5]. Here it will
only be mentioned that an additional parameter γ controlling the shape of
the minor loops is introduced.
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5.3 Estimation of Material Parameters

In this section, the determination of the material parameters entering the
model are discussed as a final step to characterizing the thermomechanical
behavior of SMAs undergoing cyclic loading. Three groups of material parame-
ters are identified. First, the parameters that are necessary to describe a stable
transformation cycle are determined. In the current model, the stable trans-
formation cycle is defined as a thermomechanical loading cycle during which
no plastic strains are developed and the material parameters remain con-
stant3. Some of these material parameters, such as the elastic moduli, thermal
expansion coefficients, etc, are material constants and do not change during
transformation cycling, while others, such as the back stress parameters, drag
stress parameters, etc, are material functions and evolve with transformation
cycling.

The second group includes the material parameters that describe the
behavior of SMAs under cyclic loading. These material parameters govern the
evolution of plastic strains as well as the evolution of the material functions
from the first group.

Finally, the third group encompasses the parameters governing the SMA
behavior during minor hysteresis loops. The material parameters will be deter-
mined using uniaxial tests. Therefore, the 1-D reduction of the model is given
next.

5.3.1 1-D Reduction of the Model

During uniaxial loading in x1 direction, the stress tensor has one non-zero
component. Thus, the components of the stress tensor are given by

σ11 = σ 	= 0, σij = 0 for all other i, j. (5.3.28)

In the equation above, σ is the applied uniaxial stress. The transformation
and plastic strain components are given by

εt
11 = εt, εt

22 = εt
33 = −1

2
εt, εt

ij = 0 for all other i, j, (5.3.29)

εp
11 = εp, εp

22 = εp
33 = −1

2
εp, εp

ij = 0 for all other i, j, (5.3.30)

where εt and εp are the uniaxial transformation and plastic strains, respec-
tively, assuming that both result in isochoric deformations. Assuming isotropic
elastic properties, the constitutive equations (5.2.15) in the 1-D form become:

ε11 = ε = Sσ + α(T − T0) + εt + εp, (5.3.31)

3 Such transformation cycle is obtained when the material parameters have reached
their asymptotic limit, e. g., within 1%.
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where ε is the uniaxial total strain, α is the thermal expansion coefficient,
and S is the elastic compliance given by S = 1/E, where E is Young’s elastic
modulus.

The evolution equations for the transformation and plastic strain become:

ε̇t = Λξ̇, (5.3.32)

ε̇p = Λpζ̇d. (5.3.33)

The uniaxial components of the transformation and TRIP tensors are given
by:

Λ = Λ11 =

⎧
⎪⎪⎨

⎪⎪⎩

Hcur (σ)
σeff

|σeff| ; ξ̇ > 0,

Hcur−r εt
max

|εt
max|

; ξ̇ < 0,
(5.3.34)

Λp = Λp
11 =

⎧
⎪⎪⎨

⎪⎪⎩

Cp
1

σeff

|σeff|e
− ζd

C
p
2 ; ξ̇ > 0,

Cp
1

εt
max

|εt
max|

e
− ζd

C
p
2 ; ξ̇ < 0.

(5.3.35)

The uniaxial effective stress σeff is defined in terms of the applied stress, σ,
and the back stress, β, as:

σeff = σ + β, β = −3
2

εt

|εt|

Nb
∑

i=1

Db
i (H

cur (σ) ξ)(i). (5.3.36)

The expression for the drag stress, η, is the same as given by (5.2.10)

η = −Dd
1 [− ln(1 − ξ)]

1
m1 + Dd

2ξ. (5.3.37)

The transformation function is given by:

Φ =
{

π − Y = 0; ξ̇ > 0,

−π − Y = 0; ξ̇ < 0,
(5.3.38)

where the thermodynamic driving force, π, is given by:

π =
1
2
σ2ΔS + σΔα(T − T0) + σeffΛ + η

− ρΔc

[

T − T0 − T ln
(

t

T0

)]

+ ρΔs0(T − M0s) + Y. (5.3.39)

The quantity ΔS is the difference between the elastic compliances of the
austenitic and martensitic phases and is given by:

ΔS =
1

EM
− 1

EA
, (5.3.40)
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and Δα is the difference between the thermal expansion coefficients of the
austenite and martensite. The uniaxial tangent stiffness is given by:

L = E − χE2∂σΦ
χE∂σΦ − ∂ξΦ

, (5.3.41)

where ∂σΦ and ∂ξΦ are the derivatives of the transformation function with
respect to stress and the martensitic volume fraction, respectively, and the
quantity χ is given by:

χ = σΔS + Δα(T − T0) + Λ + sign(ξ̇)
Hcur (σ)
Hmax

Λp. (5.3.42)

The determination of the material parameters of all three groups is
described in the following subsections. The necessary tests will be discussed
and a parametric study for selected material parameters will be performed.
The material parameters for NiTi reported by Bo et al. [15] and shown in
Table 5.14 will be used during the parametric study. The parameters shown
in Table 5.1 are obtained for NiTi wires undergoing thermally-induced phase
transformation.

5.3.2 Material Parameters for a Stable Transformation Cycle

This group of material parameters includes the elastic compliance tensors
of both austenitic and martensitic phases, SA and SM , respectively, their

Table 5.1. Material parameters for NiTi SMA characterizing a stable transforma-
tion cycle [15]

Physical constants
EA = 70.0 GPa αA = 11.0 × 10−6 K−1

EM = 30.0 GPa αM = 6.6 × 10−6 K−1

ρcA = 2.12 MJ/(m3K) ν = 0.33
ρcM = 2.12 MJ/(m3K)

Parameters characterizing the phase transformation
M0s = 311.0 K ρΔs0 = −0.422 MJ/(m3K)
Hmax = 0.069 Y = 6.0 MJ/m3

Db
1 = 3.40 × 103 MPa Dd

1 = 8.0 MPa

Db
2 = −2.23 × 105 MPa Dd

2 = 1.7 MPa

Db
3 = 8.32 × 106 MPa m1 = 3.5

Db
4 = −1.50 × 108 MPa

Db
5 = 1.03 × 109 MPa

Minor loop parameter
γ = 3.0

4 Reprinted from Mechanics of Materials, Vol. 36, Issue 9, Lagoudas, D.C., and
Entchev, P., pp. 865–892, Copyright 2004, with permission from Elsevier.
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thermal expansion coefficient tensors, βA and βM , and the specific heat, cA

and cM . Additional parameters include martensitic start temperature, Ms, the
maximum transformation strain, Hmax , the difference between the specific
entropy per unit volume, ρΔs0, the material parameter, Y , which provides
a measure of the internal dissipation during phase transformation, and the
parameters associated with the back and drag stresses.

To determine the elastic compliance tensors SA and SM , one must assume
that the SMA material behaves isotropically at macroscale. This assumption
is reasonable because of the random orientation of the grains in a polycrys-
talline SMA. Therefore, one only needs to find the Young’s elastic moduli,
EA and EM , and Poisson’s ratios, νA and νM , of both phases. To determine
the elastic constants, a uniaxial pseudoelastic test must be performed. The
elastic stiffness EA is determined by calculating the initial slope of the stress-
strain curve for a uniaxial pseudoelastic test, as shown in Fig. 5.5. The elastic
stiffness of the martensite phase EM is given by the slope of the stress-strain
curve at the point of initial unloading (see Fig. 5.5)4. A general assumption
in the literature is that the Poisson’s ratios of austenite and martensite are
equal, with a typical reported value of νA = νM = 0.33 [3, 16].

The thermal expansion coefficient tensors, βA and βM , are fully repre-
sented by two scalar constants, αA and αM . These constants can be estimated
by measuring the slope of the strain-temperature curve under constant stress
at high temperature for the austenitic phase and at low temperature for the
martensitic phase. The specific heat constants, cA and cM , can be obtained
from a calorimetric test. These constants (αA, αM , cA, cM ) are not needed to
model stress-induced phase transformation under constant temperature, but
they become important when temperature changes.

ε

σ

AE

Area A

H

E

Msσ

M

Fig. 5.5. Schematic of a uniaxial pseudoelastic test.
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The martensitic start temperature, Ms, can be obtained from a DSC test.
The maximum transformation strain, Hmax, is obtained by performing a pseu-
doelastic uniaxial test. The value is estimated by extending the unloading part
of the stress-strain curve using the elastic stiffness of the martensitic phase,
EM , as shown in Fig. 5.5 or given in (2.5.7).

During the initial loading cycles, observable plastic strain can develop.
One way to separate the plastic strain from the transformation strain is to
subtract a portion of the residual plastic strain from the measured value of the
transformation strain. Since the plastic strain develops during both forward
and reverse transformation, the subtracted value must be adjusted to take
into account the plastic strain developed during the reverse phase transfor-
mation. As experimentally observed and reflected in the evolution equation
for the plastic strain, initially the rate of accumulation of the plastic strain
can be approximated by a linear function. Therefore, a reasonable assumption
is that the amount of the plastic strain developed during the forward phase
transformation is equal to one-half of the total residual plastic strain after
one cycle. Thus, in the presence of plastic strains, the value of the maximum
transformation strain, Hmax, is obtained by extending the unloading part of
the stress-strain curve and subtracting one-half of the total residual strain
from the obtained number.

The material parameter, ρΔs0, can also be obtained from the pseudoe-
lastic stress-strain curve, schematically shown in Fig. 5.5. Equations (5.3.38)
and (5.3.39) for the transformation function, Φ, at the onset of phase trans-
formation (ξ = 0) lead to:

ρΔs0 = −
1
2 (σMs)2ΔS + σMsHcur (σ)

T − M0s
. (5.3.43)

The value of Hcur (σ) used in (5.3.43) should be calculated for the correspond-
ing value of stress, which, in this case, is equal to σMs. A slightly different
procedure for determination of Ms and ρΔs0 is reported by Bo et al. [15]. In
their work, the quantity ρΔs0 is calculated from the DSC test and is related
to the latent heat released during forward phase transformation and absorbed
during reverse phase transformation. The martensitic start temperature Ms

is calculated in their work using the strain-temperature curve obtained during
an isobaric experiment.

To demonstrate the effect of the value of ρΔs0 on the stress-strain response,
loading cases with different numerical values of ρΔs0 are simulated. The
results of the parametric study are shown in Fig. 5.64 where only the loading
part is shown. With the increasing magnitude of ρΔs0, the value of stress for
the onset of the transformation also increases. Therefore, the parameter ρΔs0

is connected to the slope of the transformation line on the stress-temperature
phase diagram.

The material parameter, Y , can also be calculated using a pseudoelastic
stress-strain curve. The value of Y is related to the total area A enclosed by
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Fig. 5.6. Effect of the parameter ρΔs0 on the stress-strain response during forward
phase transformation.

the hysteresis curve during a complete phase transformation as:

A = 2Y. (5.3.44)

The effect of the parameter Y on the stress-strain response is shown in
Fig. 5.74. The unloading parts of the stress-strain curves for different values of
Y are shown in the figure while the loading parts are the same for all values of
Y . Furthermore, with the increase of the value of Y the reverse phase trans-
formation starts at lower values of the applied stress. This, in effect, causes
the increase of the area of the hysteresis loop, as seen in Fig. 5.7.

As mentioned earlier in Sect. 5.2.2 [cf. (5.2.13)], the effective back stress is
used to calculate the value of the current transformation strain Hcur (σ). Thus,
an experimental result showing the dependance of Hcur (σ) on the value of the
applied stress, σ, is utilized to obtain the back stress parameter, Db

i . To obtain
this dependance, several isobaric tests with thermally-induced phase transfor-
mation must be performed for different values of the applied stress. Each
test gives one value of the current maximum transformation strain Hcur (σ)
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Fig. 5.7. Effect of the parameter Y on the size of the hysteresis loop.
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Fig. 5.8. Normalized maximum transformation strain (Hcur (σ) /Hmax) for
thermally-induced phase transformation versus the applied stress: experimental data
for NiTi SMA and a polynomial least-square fit. A polynomial of degree 5 is used.

corresponding to the value of the applied stress (see Fig. 5.8)4. Then, the
back stress parameter, Db

i , is obtained using the condition that the effective
stress σeff at ξ = 1.0 vanishes and a least-square fit of the following equation
is performed:

σ =
3
2

εt

|εt|

Nb
∑

i=1

Db
i [H

cur (σ)](i). (5.3.45)

After the value of Hcur (σ) reaches the value of the maximum transformation
strain, Hmax, one can assume that a further increase in stress does not yield
further increase of Hcur (σ). After that point, the value of Hcur (σ) is consid-
ered constant and equal to Hmax. Note that this result can be compared to
the experimental results shown in Chapter 2, Fig. 2.17 and Fig. 2.35.

To estimate the material parameters entering the expression for the drag
stress, η, the tangent stiffness during an isothermal uniaxial pseudoelastic test
is used. Assuming that all of the material parameters, except the drag stress
parameters, are known, the tangent stiffness, L, given by (5.3.41) becomes
a function of the drag stress parameters Dd

1 , Dd
2 and m1 and the martensitic

volume fraction ξ:

L(ξ;Dd
1 ,Dd

2 ,m1) = E − E2[σΔS + Hcur (σ)]2

χ
,

(5.3.46)

where the denominator is given by:

χ = E(σΔS + Hcur (σ))2 +
3
2
(Hcur (σ))2

Nb
∑

i=1

iDb
i [H

cur (σ) ξ](i−1)

+
1

m1(1 − ξ)
Dd

1 [− ln(1 − ξ)]
1−m1

m1 − Dd
2 . (5.3.47)
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The experimental values of the uniaxial tangent stiffness are obtained by
performing a pseudoelastic test. Thus, having obtained the experimental val-
ues of the tangent stiffness, a least-square fit of (5.3.46) is performed to obtain
the drag stress parameters Dd

1 , Dd
2 and m1. The internal variable ξ cannot be

directly measured. Based on numerous numerical experiments performed using
the current model, one can reasonably assume a linear relationship between
the rate of total strain and the rate of the martensitic volume fraction during
transformation.

To illustrate the effect of the drag stress parameters on the stress-strain
results, a parametric study for different values of Dd

1 and Dd
2 has been per-

formed. The loading part of the pseudoelastic stress-strain curve for different
values of Dd

1 is shown in Fig. 5.94. From the figure, the transformation hard-
ening increases with the increase of the value of Dd

1 . In addition, the value
of Dd

1 has a very strong effect on the initial transformation hardening. The
effect of the parameter Dd

2 on the stress-strain results is shown in Fig. 5.104.
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Furthermore, higher values of the parameter Dd
2 leads to a smaller slope of

the stress-strain curve. This parameter, however, has very little effect on the
initial transformation hardening. The effect of Dd

2 can be explained by com-
paring the expression for the drag stress in the current model to the analogous
expression given by Lagoudas et al. [16] for a model with a polynomial hard-
ening function. If the parameter Dd

1 is taken to be zero, then the parameter
Dd

2 corresponds to the linear hardening parameter in the model by Lagoudas
et al. [16]. Therefore, it has the same effect for all values of ξ and it equally
affects the slope of the stress-strain curve during the phase transformation.

5.3.3 Material Parameters for Cyclic Loading

This group of parameters includes the terms Cp
1 and Cp

2 , entering the expres-
sion for Λp (5.3.35) and constant λ1, which determines the evolution of the
material parameters during cyclic loading. To understand the physical mean-
ing of the constants, Cp

1 and Cp
2 (5.3.33) can be integrated to find the following

expression for εp as a function of ζd:

εp = Cp
1Cp

2

(

1 − e
− ζd

C
p
2

)

= εp
sat

(

1 − e
− ζd

C
p
2

)

. (5.3.48)

As seen from (5.3.48) the product of Cp
1 and Cp

2 gives the maximum (satu-
ration) value of the plastic strain:

Cp
1Cp

2 = εp
sat. (5.3.49)

Further, recall that for stress-induced martensite ζd = 2N . Therefore, Cp
2

can be estimated by enforcing the condition that after a given number of
cycles the plastic strain approaches its maximum value, or more precisely, Cp

2

can be found from the condition:

e
−

2Np
sat

Cp
2 = δ, (5.3.50)

where Np
sat is the number of cycles to reach the saturation value of plastic

strain and δ is a small number. A value of 0.01 has been used in the current
work; however, values of up to 0.1 are also reasonable. Next, parameter λ1 is
considered. From (5.2.22), λ1 determines the number of cycles N b

sat until the
material parameters reach their final values. Thus, λ1 can be found using the
following equation, similar to (5.3.50):

e−2Nb
satλ1 = δ. (5.3.51)

The value of the parameter λ2 is determined in a similar way as the value
of λ1. For the case of stress-induced transformation, however, it is difficult
to distinguish between the parameters λ1 and λ2. Therefore, in all further
calculations in this chapter, these parameters are taken to be equal.
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5.3.4 Material Parameters for Minor Loop Modeling

Only one material parameter belongs to this last group. This is the constant
γ, dictating the size of the minor hysteresis loop. A smaller value of γ leads
to a smaller area occupied by the minor loop, while a larger value increases
the area. An experimental stress-strain curve with one minor loop is sufficient
to estimate the value of γ, which lies in the range of 1 to 4. To illustrate the
effect of this parameter on the shape of the minor loop branches, the results
for different values of γ are shown in Fig. 5.114.

Further details on the numerical implementation is provided in Appendix C.

5.4 Sample Loading Cases

To demonstrate the capabilities of the model, different boundary-value prob-
lems (BVPs) are presented in this section. First, a uniaxial isothermal pseu-
doelastic case is presented. The second BVP represents a uniaxial thermally-
induced transformation under constant stress. The third BVP models the
response of a 3-D bar under combined torsion-compression loading. Finally,
the response of a torque tube is simulated in the fourth BVP. The material
parameters for the first three cases are the ones given by Bo et al. [15] and
are presented in Table 5.14. The material parameters for the fourth case are
presented in Table 5.24.

The results in this and the following sections are obtained using Abaqus
[17]. To perform the calculations, the model is numerically implemented in
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a user material subroutine UMAT. The details of the implementation are
not discussed here, but the numerical implementation follows the procedure
described in Chapter 4.

5.4.1 Uniaxial Isothermal Pseudoelastic Loading

The schematic of the BVP for this loading case is shown in Fig. 5.124. The
domain is chosen to be a unit cube (1× 1× 1 m). Since the stress is constant
in the whole domain during the loading, a finite element mesh of only one
linear element is chosen. Initially, the material is in a stress-free state. During
the first step of the loading, the stress is increased to 600 MPa, which results
in stress-induced phase transformation. During the unloading step, a reverse
phase transformation occurs. The stress-strain response of the material for
this case is shown in Fig. 5.134 for a temperature of 70°C.

In the case of loading at T = 70°C, the forward phase transformation starts
at the value of applied stress approximately equal to 210 MPa and is com-
pleted at 510 MPa. At the point of completion of the forward transformation,
the value of the transformation strain is equal to the value of the maximum
transformation strain: Hmax = 0.069. The onset of the reverse phase transfor-
mation is at 350 MPa with the transformation completed at 40 MPa. During
the reverse phase transformation, the transformation strain changes from its
maximum value to zero.

5.4.2 Uniaxial Constant Stress Thermally-Induced Transformation

The BVP describes a thermal cycle of a uniaxial SMA specimen under con-
stant applied stress. The schematic of the BVP and the loading history are
shown in Fig. 5.144. Initially, the material is isothermally loaded to a given

(a)

2

maxσ

1

(b)

σ
Loading  Step

Stress

Fig. 5.12. Schematic of the BVP for uniaxial pseudoelastic SMA response: (a)
geometry and boundary conditions; (b) loading history.
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stress level, which is then kept constant. The first loading step involves heating
of the SMA from the initial temperature of 0°C to the final temperature of
100°C. During this loading step, a reverse phase transformation occurs and
the transformation strain is recovered. The final value of the recovered trans-
formation strain, after the completion of the phase transformation, is dictated

(a)

Loading  Step
2

maxT

1

(b)

constσ =

minT

Temperature

Fig. 5.14. Schematic of the BVP for uniaxial isobaric thermally-induced transfor-
mation: (a) geometry and boundary conditions; (b) loading history.
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by the level of the applied stress. To illustrate the dependance of Hcur (σ) on
the applied stress, cases with different values of the applied stress are per-
formed. During the second loading step, the material is cooled back to 0°C,
and the transformation strain is recovered.

The results for the loading cases are shown in Fig. 5.154. Two different
effects due to the level of the applied stress are observed. First, as mentioned
above, the maximum transformation strain during the phase transformation
increases with the increase of the value of the applied stress. The second effect
is the shift of the initial transformation temperature; the transformation starts
at higher temperature for higher value of the applied stress. This shift of the
transformation temperatures can be explained by recalling the expression for
the transformation function, given by (5.3.38) and (5.3.39). As seen from
(5.3.39), with higher value of the applied stress, the transformation criterion
will be satisfied for higher temperatures.

5.4.3 Torsion-Compression Loading

To demonstrate the model’s capability to handle 3-D loading cases, the
response of a cylindrical SMA bar subjected to combined torsion-compression
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and torsion followed by compressive loading is modeled. The schematic of the
BVPs is shown in Fig. 5.164. The specimen is chosen to have a diameter of
13 mm and a length of 35 mm. The domain is discretized using eight-node
quadratic axisymmetric elements with a twist degree of freedom (elements
CGAX8, for details see [17]). Since there is no stress variation in the axial direc-
tion, only one layer of elements is used in that direction with a length of
1.75 mm, while five elements are used in the radial direction, as shown in
Fig. 5.16c. The maximum value of the applied rotation (see Fig. 5.16) is taken
to be θmax = 0.02 rad (≈ 1.15°), which corresponds to 11.4 rad/m rotation
(≈ 1.8 full revolutions per meter length), while the maximum value of the
displacement in the axial direction is taken to be umax

z = −0.125 mm, corre-
sponding to axial compressive strain of εzz = 0.071. Both compression and
rotation boundary conditions are applied on the top surface of the specimen,
while the bottom surface is held fixed in the z− and θ− directions. Traction-
free boundary condition in the radial direction is applied. The numerical sim-
ulations are performed at 60°C.

First, the results for the sequential torsion-compression loading are pre-
sented. During the first loading step when the bar is subjected to torsion, a
nonhomogeneous stress state is created. As the stress increases, the critical
stress for the onset of the phase transformation is first reached at the outer
surface of the bar. The phase transformation front then propagates toward
the center of the bar. To illustrate this, the contour plot of the martensitic
volume fraction for the cross-section of the bar at the end of the torsional
loading (when the value of the loading parameter is equal to 0.5) is shown in
Fig. 5.174. Notice that the lines of constant value of ξ form concentric circles.

The history of the axial and shear stress components during both loading
steps is shown in Fig. 5.184. The average values of these quantities are shown
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Fig. 5.17. Contour plot of the martensitic volume fraction in the SMA bar at the
end of the torsional loading.

for the element indicated in Fig. 5.18. During the initial torsional loading, the
shear stress linearly increases until a critical value is reached. At this point
(at the value of the loading parameter of ≈ 0.1), the phase transformation
initiates. During the first loading step, the axial stress component remains
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Fig. 5.18. History of the axial and shear stress components during sequential
torsion-compression loading.
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zero. During the second loading step, the phase transformation continues until
it is fully completed (at the value of the loading parameter of ≈ 0.9). The axial
stress increases while the shear stress is partially relaxed. After the completion
of the phase transformation, the material is fully in the martensitic phase and
behaves linearly.

To explain the partial relaxation of the shear stress during the compressive
axial loading, consider the shear and axial components of the transformation
strain, shown in Fig. 5.194. During the second loading step, when a com-
pressive loading is applied, the shear component of the transformation strain
continues to increase. This is caused by the choice of the functional form of
the transformation direction tensor, Λ, given by (5.2.12). Since the shear
component of the stress is non-zero, the shear component of the transforma-
tion strain keeps developing during the second loading step at a smaller rate.
Conversely, since the applied rotation and, therefore, the total strain, is kept
constant during the compressive loading, the shear component of the stress
decreases according to the constitutive equation (5.2.15).

The history of the axial and shear stress components for the simultane-
ous torsion-compression loading case are presented in Fig. 5.204. The results
for this loading case resemble superposition of the results under compres-
sion and torsion applied independently. The stresses increase linearly until a
critical value is reached and transformation initiates (the value of the loading
parameter is approximately equal to 0.05). Then, the transformation proceeds

0.00 0.25 0.50 0.75 1.00
Loading Parameter

εt
zθ

εt
zz

T
ra

ns
fo

rm
at

io
n 

S
tr

ai
n

-0.01

-0.02

-0.03

-0.04

-0.05

0.00

Fig. 5.19. History of the axial and shear transformation strain components during
sequential torsion-compression loading.
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Fig. 5.20. History of the axial and shear stress components during simultaneous
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until the material is fully transformed at the value of the loading parameter
approximately equal to 0.9. Once complete, the response of the material is
again linear with the elastic properties of the martensite.

5.4.4 Response of an SMA Torque Tube

In this section, the capabilities of the model to handle loading cases beyond
uniaxial loading are tested by simulating an SMA torque tube. The material
parameters for this particular NiTi alloy are presented in Table 5.24. The
dimensions of the tube used are: outer diameter do = 6.34 mm and inner
diameter din = 5.0 mm. The reason for selecting these dimensions is to model
a tube that geometrically resembles commercially available tubes. The diam-
eters used here have also been used by Qidwai [18] and are based on the
specifications of torque tubes manufactured by Memry Corp.

Based on the small thickness of the tube wall, only one quadratic element
in radial direction is used. In addition, since the stress is constant in the axial
direction, one element in the axial direction is sufficient to obtain accurate
results. To obtain an appropriate aspect ratio, the length in the axial direction
has been chosen as 0.67 mm, equal to the wall thickness. An axisymmetric
finite element with a rotational degree of freedom (element CGAX8 from the
Abaqus element library, see [17]) was used. The schematic of the mesh and
the boundary conditions is shown in Fig. 5.214. The bottom part of the tube
is fixed and rotation is applied to the top part. The maximum value of the
applied rotation is 2.2 × 10−2 rad. The rotation is applied cyclically in both
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Fig. 5.21. NiTi SMA torque tube: (a) geometry; (b) boundary conditions; (c) load-
ing history for the first loading cycle.

directions. The loading history for one full cycle is also shown in Fig. 5.21. Ten
full rotational loading/unloading cycles in both directions have been applied.

The stress-strain response of the tube is shown in Fig. 5.224 where the aver-
age shear stress in the finite element is plotted versus the average shear strain.
The results obtained are in qualitative agreement with those reported by Lim
and McDowell [19]. Since a full set of material parameters is not reported
in the original work of Lim and McDowell [19], the results cannot be com-
pared quantitatively. From these results, the hysteresis loop is seen to evolve
with the number of loading cycles. One significant difference observed between
these results and the uniaxial results presented in Sections 5.5.1 and 5.5.1 is
the value of the plastic strain at the end of the cycling test. While the final
value of the plastic strain in the uniaxial test is equal to the value of the
accumulated plastic strain, the final value in the case of torsional loading is
significantly smaller. This result can be explained as follows: In the case of
torsional cycling loading with the loading history shown in Fig. 5.21(c), the
direction of the loading is reversed during each cycle. Therefore, during each
half of the loading cycle, the direction of the plastic strain accumulation is also
reversed. The result of this effect, as shown in Fig. 5.234, is small total plastic
strain. Note, however, that even in the presence of small observable plastic
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Fig. 5.23. Plastic strain evolution in NiTi SMA tube during cycling torsional load-
ing.

strain, the material still changes during the cycling. As seen from Fig. 5.22,
the hysteresis loop evolves during the cycling loading. Thus, the microstruc-
tural changes caused by the cyclic loading are taken into account by evolving
the material parameters and updating the internal state variables.

5.5 Correlation with Experimental Data

The experimental results for NiTi undergoing cyclic loading will be simu-
lated in this section. Two sets of experimental data will be used. First, in
Section 5.5.1 the model will be calibrated using the results reported by Str-
nadel et al. [6] and presented in Section 5.1.1. Next, in Section 5.5.2 a set of
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experimental results obtained at Active Materials and Structures Laboratory
at Texas A&M University will be used to calibrate the model and the model
simulations will be presented.

5.5.1 Cyclic Behavior up to a Constant Stress or Strain

In this section, the experimental data for one of the NiTi alloys reported by
Strnadel et al. [6] is used. Two types of tests were performed. The first type
involved cycling, during which the material is loaded to the same value of
strain during each cycle. The second type involved cycling performed to a
given constant value of stress. Both types of tests have been performed at a
temperature, T = 46 ◦C, higher than the austenitic finish temperature Af . The
experiments are performed on flat tensile specimens (strips) with cross section
dimensions 1 × 4 mm2. Prior to the testing, the specimens are polished and
vacuum annealed at 400 ◦C for one hour. The experimental results for NiTi
alloy with composition Ti-50.9 at.%Ni for both loading cases are shown in the
top portion of Fig. 5.14. Based on the dimensions of the specimen and the
reported elongation, the maximum value of strain during the first cycling test
is estimated to be equal to εmax = 0.04. The maximum value of stress during
the second test is reported to be σmax = 550MPa. Twenty loading-unloading
cycles with a constant maximum value of strain have been performed, while
the number of cycles with a constant maximum value of stress is 50.

First, the material parameters for the alloy are determined based on the
experimental graphs and reported data, using the procedure described in Sec-
tion 5.2.4. The obtained parameters are given in Table 5.24. No data exists
on the dependance of the current maximum transformation strain Hcur (σ̄′)
on the value of the applied stress. Therefore, the data shown in Fig. 5.8 is
used to obtain the back stress coefficients, Db

i . The coefficients are obtained
for the value of the maximum transformation strain for high values of stress
Hmax = 0.038 as reported by Strnadel et al. [6]. A polynomial of degree 5 is
used in the expression for the back stress. Based on the experimental results,
the back stress parameters are assumed to be the same for both the initial
and the final state of the material and are given by Db

1 = 6.18 × 103 MPa,
Db

2 = −7.37 × 105 MPa, Db
3 = 4.98 × 107 MPa, Db

4 = −1.63 × 109 MPa and
Db

5 = 2.03 × 1010 MPa.
The initial set of material parameters has been determined using the initial

transformation cycle for the case of loading up to a constant value of stress,
while the final set has been determined from the stress-strain response after
50 cycles (see Fig. 5.1). In addition, as seen from Table 5.2, the parameters
λ1 and λ2 have been selected to be the same. Their value has been deter-
mined such that the material parameters reach their saturation values after
50 cycles. As seen from Table 5.2, not all of the parameters change their val-
ues during the transformation cycling. Based on the experimental results, the
maximum transformation strain is assumed to be constant. Only the initial
value of the martensitic start temperature is reported in the work by Strnadel
et al. [6]; thus, it is assumed to remain constant. Four of the parameters
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Table 5.2. Material parameters for Ti-50.9at.%Ni alloy

Parameters remaining constant during cyclic loading
EA = 46.0 GPa αA = 11.0 × 10−6 K−1

EM = 25.0 GPa αM = 6.0 × 10−6 K−1

ν = 0.33 ρcA = 2.12 MJ/(m3K)
m1 = 3.5 ρcM = 2.12 MJ/(m3K)
γ = 3.5

Parameters changing during transformation cycling
Initial set Final set

M0s = 242.3 K M0s = 242.3 K
Hmax = 0.038 Hmax = 0.038
ρΔs0 = −0.24 MJ/(m3K) ρΔs0 = −0.17 MJ/(m3K)
Y = 5.0 MJ/m3 Y = 3.0 MJ/m3

Dd
1 = 5.0 MPa Dd

1 = 6.0 MPa

Dd
2 = 5.22 MPa Dd

2 = 4.0 MPa

Parameters characterizing the response during cyclic loading
Cp

1 = 3.6 × 10−3 λ1 = 0.25
Cp

2 = 18.0

(αA, αM , cA, cM ) are taken from the work of Lagoudas and Bo [3]. Since
both works [3, 6] deal with NiTi alloys, one expects that the physical con-
stants will be close for alloys with only slight change in the composition. As
explained in Section 5.3.2, the values of these constants have no effect on
the results when the temperature during the loading-unloading cycle remains
constant.

Response to Cycling up to a Constant Value of Stress

The response of the material for the cyclic loading up to a constant value
of stress is presented in Fig. 5.244. Only the stress-strain curves for the first
and 50th (last) loading cycle are shown. It can be seen that the transforma-
tion response after 50 cycles has stabilized and the plastic strain developed
during the last cycle is negligible. The transformation loop has significantly
evolved during the cyclic loading. First, the value of stress for the onset of
phase transformation is much lower for the last loading cycle compared to the
first cycle. Furthermore, the transformation hardening during the last cycle is
significantly higher than the hardening during the first cycle. Also, the area
enclosed by the transformation hysteresis loop is smaller for the last cycle
than the area enclosed by the initial loop.

The plastic strain for this loading case has saturated after 50 cycles.
Fig. 5.254 shows its evolution during the cycling. Further transformation
cycling will result in a negligible change of the plastic strain and the shape
of the transformation loop. As seen from Fig. 5.24, the modeling results are
in good agreement with the experimental observations. An important point is
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Fig. 5.24. Stress-strain response of NiTi SMA to cyclic loading up to a constant
value of stress: curves for the first and 50th cycles.
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Fig. 5.25. Plastic strain evolution during loading up to a constant value of stress.

that these modeling results are not predictions but simulations of the exper-
iment, since the experimental data has been used to estimate the material
parameters.

Response to Cycling up to a Constant Value of Strain

The response of the material during cyclic loading up to a constant value of
strain is shown in Fig. 5.264. Two stress-strain curves are presented: the initial
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stress-strain curve (first cycle) as well as the stress-strain curves for the 10th
cycle. From the figure, as the number of cycles increases, the value of stress
at the maximum value of strain εmax decreases. In addition, the area enclosed
by the hysteresis loop also decreases.

Two factors acting in concert are responsible for these effects. First, the
accumulation of the residual strain contributes for the smaller hysteresis area
as well as for the lower value of stress. The second factor is the evolution of
the material parameters with the number of cycles. Since the value of stress
for the onset of the phase transformation decreases, the same value of strain
for a later cycle will correspond to a lower value of stress than that for an
earlier cycle.

The evolution of the residual plastic strain for this loading case is shown in
Fig. 5.274. The plastic strain has not reached a saturation value and continues
to increase because this type of cycling results in incomplete phase transfor-
mation, therefore taking many more cycles for the plastic strain to saturate
than complete transformation cycles.

In contrast to the previous case, the modeling results presented for cyclic
loading up to a constant value of strain are predictions, since the experimental
data for this loading case has not been used to calibrate the model. The
comparison of the modeling results with the experimental curves, presented
in Figs. 5.26 and 5.27, shows that the results are in a good agreement. Both
the stress-strain responses as well as the plastic strain evolution are predicted
with good accuracy. Also, the shape of the minor hysteresis loops predicted
by the model is very close to the shape of the experimental loops.

5.5.2 Experiments on Large Diameter NiTi SMA Actuators

In addition to the experimental results found in the literature, a set of experi-
mental data were obtained in the Active Materials and Structures Laboratory
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Fig. 5.26. Stress-strain response of NiTi SMA to cyclic loading up to a constant
value of strain: curves for the first and 10th cycles.
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Fig. 5.27. Plastic strain evolution during loading up to a constant value of strain.

at Texas A&M University. Tensile tests were performed on large diameter
(2.16 mm) Ti-49.7 at.%Ni wires. Prior to the testing, the material was heat-
treated to enhance its pseudoelastic response with different times and tem-
peratures considered during the heat treatment. Based on the results, the
material was heat treated in atmospheric conditions at 400 ◦C for five min-
utes. The wires received were mechanically polished, and no additional surface
treatment was performed prior to testing.

As in the previous section, two types of results were obtained. First, cyclic
loading up to a constant value of stress, and second, cyclic loading up to a
constant value of strain, were performed. The results of the first loading case
were used to calibrate the model, while the results of the second loading case
were used to verify the predictions of the model.

Cyclic Loading up to a Constant Value of Stress

A set of experiments with cycling up to a constant stress level was performed
on NiTi wires. Twenty loading/unloading cycles were performed at a temper-
ature of 70 ◦C, above the austenitic finish temperature. The maximum stress
value achieved during loading was selected to be equal to 670 MPa. A rep-
resentative stress-strain result for this loading case is shown in Fig. 5.284.
An important result is the evolution of the stress-strain response follows the
same general trend as the stress-strain curve in the results presented in Sec-
tion 5.5.1. The shape and the characteristics of the pseudoelastic loops are
similar for both cases. However, it should be pointed out that the amount
of plastic strain observed from the results presented in the current section is
significantly lower than the one observed in Section 5.5.1. The small plastic
strain, which is desirable in SMA actuator applications, is due to the different
composition, cold work and heat treatment of the material.

The material parameters for the model are obtained following the proce-
dure described in Section 5.2.4 and the experimental results shown in Fig. 5.28.
The set of parameters is summarized in Table 5.34. The comparison of the
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Fig. 5.28. Stress-strain response of Ti-49.7at.%Ni wire specimen to cycling up to
a constant value of stress at 70 ◦C.

Table 5.3. Material parameters for Ti-49.7at.%Ni alloy.

Parameters remaining constant during cyclic loading
EA = 52.0 GPa αA = 11.0 × 10−6 K−1

EM = 30.0 GPa αM = 6.0 × 10−6 K−1

ν = 0.33 ρcA = 2.12 MJ/(m3K)
m1 = 3.5 ρcM = 2.12 MJ/(m3K)
γ = 3.5

Parameters changing during transformation cycling
Initial set Final set

M0s = 309.0 K M0s = 309.0 K
Hmax = 0.048 Hmax = 0.042
ρΔs0 = −0.77 MJ/(m3K) ρΔs0 = −0.23 MJ/(m3K)
Y = 11.0 MJ/m3 Y = 4.7 MJ/m3

Dd
1 = 1.0 MPa Dd

1 = 10.0 MPa

Dd
2 = 0.7 MPa Dd

2 = 0.5 MPa

Db
1 = 4.89 × 103 MPa Db

1 = 5.59 × 103 MPa

Db
2 = −4.62 × 105 MPa Db

2 = −6.03 × 105 MPa

Db
3 = 2.47 × 107 MPa Db

3 = 3.69 × 107 MPa

Db
4 = −6.39 × 108 MPa Db

4 = −1.09 × 109 MPa

Db
5 = 6.30 × 109 MPa Db

5 = 1.23 × 1010 MPa

Parameters characterizing the response during cyclic loading
Cp

1 = 1.0 × 10−3 λ1 = 0.1
Cp

2 = 10.0
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model simulations with the experimental stress-strain data for the first and
the last cycles is shown in Fig. 5.294. The evolution of plastic strain with the
number of cycles is also shown in Fig. 5.30. The model is observed to capture
the characteristics of the material behavior well.

Cyclic Loading up to a Constant Value of Strain

To test the predictive capabilities of the current model, a set of experiments
with cyclic loading up to a constant value of strain were performed on Ti-
49.7at.%Ni wires, which were from the same batch of wires tested up to a
constant value of stress (see Section 5.5.2). Twenty loading/unloading cycles
were performed at a temperature of 80 ◦C. The maximum strain level was
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Fig. 5.29. Comparison of the model simulations with the experimental data: stress-
strain response at 70 ◦C during the first and 20th cycles.
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Fig. 5.30. Evolution of plastic strain during constant maximum stress cycling at
70 ◦C.
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Fig. 5.31. Cyclic loading up to a constant value of strain at 80 ◦C: comparison of
the model predictions with the experimental data for the first and 20th cycles.

chosen to be εmax = 0.06. The stress-strain response was predicted using the
model and the material parameters obtained earlier and shown in Table 5.3.
The comparison of the model predictions and the experimental results for the
first and the last loading cycles is shown in Fig. 5.314. The modeling results
are in good qualitative agreement with the experimental observations.

5.6 Summary

This chapter presented a model for transformation-induced plasticity (TRIP)
in shape memory alloys that describes the thermomechanical response of an
SMA under cyclic loading. The description of such behavior is important for
SMA actuators undergoing repeated actuation cycles and also for address-
ing the “training” of SMAs. The development of the 3-D model followed the
presentation of earlier chapters, with the addition of internal state variables
representing the inelastic strain induced by the transformation but not recov-
erable upon heating to above Af . Several examples were presented in this
chapter demonstrating TRIP cases in SMAs, including uniaxial pseudoelastic
loading, constant stress thermally induced phase transformation and com-
bined cyclic loading cases. Finally, the correlation with experimental data
was discussed.
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5.7 Problems

5.1. Express the transformation function, i.e., the thermodynamic force given
by (5.2.6), in terms of the effective stress defined by (5.2.20).

5.2. Plot the transformation function in the in the σ11–σ22 stress plane for
a temperature T = Af + 10 ◦C and values for material constants located in
Table 4.3. Assume all other stress components are zero and that the drag
stress, η, is zero. The back stress components are all assumed to be zero
except for β11 = 50 MPa.

5.3. Following a similar approach with the 1-D reduction of the model pre-
sented in Sect. 5.3.1, derive the explicit form of the constitutive model for the
case of:

a) pure shear
b) biaxial loading in plane stress
c) plane strain

5.4. Derive an analytical expression for the equations appropriate for the
example given in Sect. 5.4.1 of uniaxial isothermal pseudoelastic loading and
plot the stress–strain pseudoelastic response similar to Fig. 5.13.

5.5. Derive the analytical expressions for the uniaxial adiabatic pseudoelastic
loading and compare them with the isothermal case by plotting the stress–
strain pseudoelastic response under the same conditions and material param-
eters as with Problem 5.4 and Fig. 5.13.

5.6. Derive the response of an SMA torque tube similar to Sect. 5.4.4 and
Fig. 5.21 with the same loading history. In order to derive analytical expres-
sions, assume the torque tube is thin and the stress is constant through the
thickness. Generate similar plots to Fig. 5.22 and Fig. 5.23.

5.7. Repeat Problem 2.14 and Problem 2.15 from Chapter 2 which address
differential SMA actuators by incorporating some evolution of TRIP. Use the
material properties from Table 5.2.

5.8. Starting with the 1-D reduction of the unified model given in Chapter 3,
add the appropriate modifications to account for the generation of permanent
plastic strain which occurs when the stress exceeds some critical value (i.e.,
the yield stress). What additional internal variable(s) are required? Using the
properties for NiTi from Table 2.5, plot the stress-strain response of a material
loaded at T = Af to beyond the yield stress. Assume a form of linear plastic
hardening.

5.9. The characteristic temperature, Md, is commonly used to describe the
maximum temperature at which full pseudoelastic loading can be applied to
a particular SMA material without reaching the critical stress for slip (plastic
yielding). How can Md be experimentally measured and what microstructural
parameters influence its values for SMAs?
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6

Extended SMA Modeling

P. Popov and D. C. Lagoudas

This chapter is dedicated to an extended SMA model that addresses not
only the martensitic transformation between austenite and detwinned marten-
site but simultaneously considers the detwinning of self-accommodated marten-
site in polycrystalline SMAs. As is often the case, modeling a more complex
system requires additional experimental measurements specific to the SMA
response when a mixture of the three phases is present. In this chapter we
use both new experimental results and carefully revisit results in the literature
on SMA characterization to aid the development of the extended model. The
analysis of the relevant experimental work is reflected in an additional layer
of complexity added to the SMA phase diagram.

6.1 Introduction

As we have seen in the previous chapters, several models exist for captur-
ing various aspects of the martensitic phase transformation in SMAs. Two
key SMA characteristics that require only the austenite-detwinned martensite
(A ↔ Md) transformation are pseudoelasticity and the shape memory effect
under stress. In Chapters 1-4, it was shown that these two effects underly many
applications of shape memory alloys. Chapter 5 further addressed the model-
ing of A ↔ Md transformation under cyclic loading by including the effects of
transformation-induced plasticity. However, the reality of the material behav-
iors behind the shape memory response throughout the entirety of the phase
diagram is much more complex than transformation between austenite and
detwinned martensite alone. For example, modeling of the conventional stress-
free shape memory effect (see Fig. 1.5) requires one to consider the reorienta-
tion (detwinning) of twinned martensite before shape recovery takes place by
heating. One should then account for the existence of twinned martensite or
self-accommodated martensite (see Chapter 3, Sect. 3.6), especially because
some loading paths involve co-existence of all the three microstructural con-
figurations (austenite, twinned martensite and detwinned martensite). The
A ↔ Md SMA models discussed in the previous chapters, while useful in the
proper contexts, do not have the ability to handle this additional level of com-
plexity. This is also true for the majority of the very extensive body of SMA
models available in the literature (see the table which concludes Chapter 3).

D.C. Lagoudas (ed.), Shape Memory Alloys, DOI: 10.1007/978-0-387-47685-8 6,
© Springer Science+Business Media, LLC 2008
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The early attempts to combine the austenite-detwinned martensite mate-
rial response with detwinning of martensite were formulated in the context of
one-dimensional response [1–3]. These models used two internal state variables
to model A ↔ Md transformation and detwinning. In addition, Brinson [1]
proposed a uniaxial phase diagram in stress-temperature space, which conve-
niently defines the thermodynamically stable domains for the three “phases”
and the possible transformations between them. The work was further refined
by Bekker and Brinson [4, 5] who incorporated minor loops for the pseudoe-
lastic transformation. However, this basic phase diagram does not account
for certain loading paths, especially those that traverse the regions where the
three phases can co-exist.

Three dimensional thermodynamics-based models of combined detwinning
and A ↔ Md transformation have been proposed in references [6–8]. The mod-
els of Leclercq and Lexcellent [6] and Lagoudas and Shu [7] used two scalar
volume fractions for twinned and detwinned martensite. While formulated in
3-D, they were implemented and tested only on 1-D examples. Furthermore,
complex loading paths that involve a mixture of the three phases were also
not tested. The model of Juhasz and co-workers [8] used the entire transfor-
mation strain as a tensorial internal variable instead of the volume fraction of
detwinned martensite. All three models used phase diagrams that were based
on the work of Brinson [1]. While attempts were made to overcome some of
its basic limitations, current work attempts to present an extended phase dia-
gram that refines existing concepts and also incorporates new experimental
results.

In this chapter, a three-dimensional, thermodynamics based model with
three internal variables is formulated for the simultaneous modeling of A ↔
Md transformation and detwinning of self-accommodated martensite in poly-
crystalline SMAs. The model is consistent with an extended uniaxial phase
diagram. The novel characteristics of this model are: (i) integration into the
phase diagram, new experimental results that demonstrate that twinned and
detwinned martensite transform to austenite at different temperatures; (ii)
refinement of the phase diagram with respect to loading paths that involve a
mixture of the three phases; (iii) the use of three independent internal vari-
ables (in contrast to the usual two, typically used in this class of models)
which provides a new approach to modeling the training of SMA materials
and the associated evolution of the phase diagram; (iv) numerical implemen-
tation that tests complex loading paths, including ones that involve a mixture
of the three phases.

This chapter, which follows the presentation of Popov and Lagoudas [9]1,
begins with experimental results demonstrating that, at zero stress, twinned
and detwinned martensite transform to austenite at different temperatures

1 Reprinted from International Journal of Plasticity, Vol. 23, Issue 10–11, Popov, P.
and Lagoudas, D.C., pp. 1679–1720, Copyright 2007, with permission from Else-
vier.
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(Sect. 6.2). The phase diagram is constructed in Sect. 6.3 based on these obser-
vations, as well as a careful re-examination of published experimental data on
detwinning of twinned martensite and the conversion of twinned martensite
to austenite. The 3-D constitutive model is presented in Sect. 6.4. A dis-
cussion of how to identify the material parameters used in the model from
experimentally observable quantities is given in Sect. 6.5.2. The numerical
implementation of the model is quite involved and is presented separately in
Appendix B. Finally, several numerical examples are given in Sect. 6.6.

To simplify the presentation, throughout this chapter the three phases are
denoted by A, M t and Md for austenite, twinned martensite and detwinned
martensite, respectively. The five possible phase transformations are denoted
by A → M t, A → Md, M t → A, Md → A and M t → Md for austenite to
twinned martensite, austenite to detwinned martensite, twinned martensite
to austenite, detwinned martensite to austenite and twinned to detwinned
martensite, respectively. The detwinning of twinned martensite M t → Md

does not involve phase transformation and is, in fact, an inelastic deforma-
tion process of reorientation of martensitic variants (cf. [10]). For the sake of
simplicity, the collective term transformations is applied to it whenever the
distinction is not important. Note also, that the transformation Md → M t

from detwinned to twinned martensite (the rubber-like effect, see Sect. 1.5)
is not thermodynamically stable and it is not considered. Finally, the critical
start and finish transformation temperatures at zero stress level are denoted
as follows: Ms and Mf for the A → M t transformation, At

s and At
f for the

M t → A transformation and Ad
s and Ad

f for the Md → A transformation. The
clarification that these temperatures are at zero stress level will be omitted,
and only the term transformation temperatures will be used.

6.2 Experimental Results on the Transformation
Temperatures of Twinned and Detwinned Martensite to
Austenite.

In a recent paper, Sakamoto [11] questioned the assumption of many resear-
chers which states that, at zero stress, the transformation temperatures for
M t → A and Md → A coincide. He introduced the concept of shape change
stress, which is a local stress field generated at the interface between twinned
martensitic variants and the surrounding matrix. In stress-induced martensite,
this elastic stress field is absent, and a detailed analysis of the magnitude of
this shape change stress with respect to specimen and martensitic plate sizes
leads to the conclusion of different transformation temperatures for twinned
and detwinned martensite. In this section, mechanical testing combined with
calorimetric measurements are used to confirm this idea.
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6.2.1 Setup and Experimental Procedure

A 2.16 mm diameter Ni50.3Ti49.7 wire was used in the experiment. Two spec-
imens were annealed at 800 ◦C for 30 min, slowly cooled to 0 ◦C, and then
brought to room temperature (22 ◦C). DSC measurements in a Perkin-Elmer
Pyrus 1 apparatus were performed in order to establish the transformation
temperatures for the A → M t and M t → A transformations and characterize
the material state after the annealing. It was found that the transformation
temperatures were Ms = 45 ◦C, Mf = 3 ◦C, At

s = 40 ◦C and At
f = 76 ◦C.

Since the austenitic start temperature was well above room temperature, it
was concluded that, after the heat treatment the wire was entirely in the M t

state. Note, that the transformation temperatures Ad
s and Ad

f (assumed differ-
ent from At

s and At
f ) cannot be determined from a DSC sweep that involves

only the A → M t transition. The remainder of this section details the mea-
surement of Ad

s and Ad
f for this SMA material. It will be shown that they are

substantially different from the Md → A temperatures.
After establishing the transformation temperatures for the A ↔ M t tran-

sition, the two specimens were mechanically loaded at room temperature in
an MTS 810 loading frame (Figure 6.1(b)). Due to the initial state of the
specimens (M t), the self-accommodated martensite underwent detwinning
(M t → Md) and the specimen was loaded until the entire length of the spec-
imen was detwinned. Upon elastic unloading, large inelastic strain of about
7.2% was observed. Note that there was no strain recovery during unloading,
indicating the Ad

s (to be determined by subsequent DSC testing) is higher
than room temperature. In order to quantify the amount of inelastic strain
due to detwinning of M t and the amount due to plastic deformations, the first
specimen was heated to about 150 ◦C. During the process, about 5.2% of the
inelastic strain was recovered, indicating that it was due to detwinning and
the remaining 2% was due to plastic deformations.

The second specimen, immediately after unloading and hence entirely in
the Md state, was subjected to further DSC testing (Fig. 6.2), described below.
Care was taken to prepare the DSC sample so that the material state (Md)
achieved at the end of the mechanical unloading step was not altered in the
sample preparation process, that is, the specimen was always kept at room
temperature, which is below Ad

s .
A total of five thermal loading steps were executed in the DSC apparatus.

The actual heat flow observed in the specimen during the first three DSC steps
is shown in Fig. 6.2(a). The corresponding latent heat is shown in Fig. 6.2(b).
The specimen was first heated from room temperature (the temperature at
which the mechanical test was performed) to 200 ◦C. The first signs of the
forward Md → A transformation were observed at Ad

s = 82 ◦C, the peak
of the transformation was at approximately 96 ◦C and the transformation
ended at approximately Ad

f = 108 ◦C. At this point, the sample was in the
austenitic phase. The sample was then cooled from 200 ◦C to −60 ◦C. During
the cooling, a single peak was observed at approximately 28 ◦C, corresponding
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Fig. 6.1. Results from quasistatic mechanical testing of annealed 2.16 mm NiTi wire
followed by DSC test. The transformation temperatures for A ↔ Md, as annealed,
are obtained from an initial DSC test (a). A mechanical loading path is then per-
formed (b).



284 6 Extended SMA Modeling

0

10

20

30

40

50

60

-20 0 20 40 60 80 100 120 140

Temperature (°.C)

H
ea

t 
F

lo
w

 (
m

W
) 

Start of DSC test:

First heating
(1st DSC step):

First cooling
(2nd DSC step):

Second heating
(3rd DSC step):

tMA

AM d →

AM t →

140

1st DSC step
2nd DSC step
3rd DSC step

1st DSC step
2nd DSC step
3rd DSC step →

→

(a) DSC test sequence results

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120

Temperature (°.C)

H
ea

t 
F

lo
w

 (
m

W
)

d
sA

d
fA

f
M

s
M

1

2

3

AM t →

AM d →

tMA →

1st heating:

2nd heating:

Cooling:

sA t
fA t

1st DSC step
2nd DSC step
3rd DSC step

1st DSC step
2nd DSC step
3rd DSC step

(b) Latent heat of transformation

Fig. 6.2. Results from DSC testing sequence of an untrained NiTi wire performed
immediately after a single mechanical loading. The initial state of the wire is Md.
The wire is first heated, revealing the transformation temperatures for the Md → A,
followed by cooling, during which the wire undergoes A → M t transformation, fol-
lowed by a second heating that shows the transformation temperatures for M t → A.

to the A → M t transformation. Note that, due to the nature of a DSC test, the
sample always remains stress-free. The beginning of the reverse transformation
indicated Ms = 47 ◦C and Mf = 3 ◦C, which is consistent with the first
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DSC test performed before the wire was subjected to mechanical loading. A
repeatability in the A → M t temperatures was therefore observed.

The third thermal loading step was again heating from −60 ◦C to 200 ◦C.
The transformation temperatures were markedly different from the first heat-
ing step: At

s = 35 ◦C, At
f = 76 ◦C with the peak at 59 ◦C. At the beginning of

this step, the sample was entirely in the M t state (the natural state after the
DSC cooling step), therefore the transformation temperatures correspond to
the M t → A transformation. Two more loading steps, not shown in Fig. 6.2,
were performed. These included an additional cooling and a heating cycle.
Due to the stress-free state of the SMA, the transformations involved were
A → M t and M t → A, respectively. Results were close to those from the sec-
ond (cooling) and third (heating) cycles, respectively, indicating repeatability
of the A → M t transformation temperatures. The latter are substantially
different from the Md → A temperatures.

The same type of mechanical loading followed by the above sequence of
DSC tests was performed for SMA materials with different annealing history
and pseudoelastic training. In all cases, similar results of markedly different
critical temperatures for the M t → A and Md → A were observed [12].
The simplest conclusion from these experiments is that the M t → A and
Md → A transformation temperatures at zero stress are, generally, different.
A qualitative explanation for these results can be done as follows: the twinned
martensite requires some energy input to transform back to austenite; the
detwinned martensite also requires this energy input, but in addition it also
needs more energy in order to reverse the inelastic strains that are present
(note this always happens in the presence of a local stress field, even when its
macroscopic average is zero). Thus, the reverse phase transformation occurs at
higher temperatures, compared to twinned martensite. The theoretical study
[11] arrives at the same conclusion with the help of microstructural arguments
and by analyzing the local stresses around the martensite/austenite interfaces
which are different for twinned and detwinned martensite. These experimental
results motivate a re-examination of the commonly used SMA phase diagram
(next section) and the proposed constitutive model takes into account the
different temperatures At

s, Ad
s , At

f and Ad
f .

6.3 Modified SMA Phase Diagram

The phase transformations from austenite to martensite, as well as the detwin-
ning of self-accommodated martensite, occur due to thermomechanical load-
ing. A convenient way of describing general thermomechanical loading paths
leading to the different transformations is to use a phase diagram in stress-
temperature space (Fig. 6.3 and 6.4). Such phase diagrams include the stable
domains of A, M t and Md in stress-temperature space, as well as transfor-
mation strips in which the various transformations take place. The proposed
SMA model is based on the 1-D phase diagram shown in Fig. 6.4. This phase



286 6 Extended SMA Modeling

diagram incorporates both the new data presented in Sect. 6.2, as well as cer-
tain modifications in comparison with other works. The aim is two-fold: first,
to take into account the different critical transformation temperatures for the
M t → A and Md → A transformation, which has not been considered previ-
ously; second, to define the transformation strips, in agreement with available
experimental data, so that non-physical behavior is eliminated for all possi-
ble loading paths. In this section, the proposed phase diagram is presented
and compared with other common choices in the literature (an example is the
diagram in Fig. 6.3).

Several SMA models that attempt to take into account both the devel-
opment of M t and Md (cf. e.g [1, 4, 6–8]) use phase diagrams. The phase
diagram shown in Fig. 6.3 was used by Brinson [1] and works well for pure
pseudoelastic paths (path 1 on the figure, no M t is ever produced) and pure
SME paths (path 2, complete M t → Md transformation, stress is zero during
heating). However, as more complicated loading paths are considered (3a,b,c,
for example) certain non-physical behavior becomes possible, mostly in the
intermediate regions where a mixture of the three phases can exist. In particu-
lar, there is no agreement how the M t → Md strip looks in that intermediate
region and what is the shape of the M t → A strip. Depending on the thermo-
mechanical loading paths of interest, different assumptions and modifications
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Fig. 6.3. Complete stress-temperature phase diagram for an SMA showing different
thermomechanical loading paths.
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are used by subsequent studies [6–8]. As a result, there is no unambiguous
understanding of how the phase diagram should look like.

The phase diagram proposed in this work (Fig. 6.4) follows the established
literature in assuming three regions where only the pure phases A, M t and Md

can exist (cf. Fig. 6.3). These regions are shaded and labeled A, M t and Md,
respectively. The three regions are separated by transformation strips, labeled
according to the transformations (A → M t, A → Md, M t → A, Md → A,
M t → Md) which take place. Note that some of these strips overlap, and in
an overlap region multiple transformations are possible. In the non-shaded
region of the phase diagram, various mixtures can exist.

The critical temperatures for the start and finish of the A → M t trans-
formation are denoted by Ms and Mf . Based on the experimental results
of Sect. 6.2, the critical start and finish temperatures at zero stress for the
M t → A transformation are denoted by At

s and At
f . They are assumed differ-

ent from the corresponding critical temperatures at zero stress for the Md → A
transformation, which are denoted by Ad

s and Ad
f . The start and finish lines

for the forward and reverse transformations A ↔ M t are vertical and pass
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through the critical temperatures Ms, Mf , At
s, At

f , respectively. The start and
finish lines for the reverse strip Md → A pass through the critical tempera-
tures Ad

s and Ad
f and exhibit a temperature dependence, defined by the posi-

tive slope CM = CA. The critical uniaxial start and finish stresses at T = Ms

required for detwinning of twinned martensite (M t → Md) are denoted by
σs and σf , respectively. The transformation strip M t → Md exhibits a mild
temperature dependence characterized by a negative slope kd. The start and
finish lines for the forward A → Md transformation exhibits the same tem-
perature dependence as the reverse transformation Md → A. The finish line
for A → Md passes through or below the point (Ms, σf ).

There are several modifications to this phase diagram as compared to the
one by Brinson [1]. First, and most importantly, based on the experimental
results of the previous Sect. 6.2, the critical start and finish temperatures at
zero stress for the M t → A are assumed different from the corresponding
critical temperatures at zero stress for the Md → A transformation. Secondly,
the M t → Md strip is a single, well-defined strip for the entire temperature
range T < At

f . The original work of Brinson [1] assumes that the detwinning
strip M t → Md has the same form as the one assumed here for temperatures
T < Ms but coincides with the strip for stress-induced martensite A → Md at
temperatures T > Ms. This can lead to the existence of twinned martensite
at high stress levels (above σf , cf. path 3b in Fig. 6.3), which is not physically
realistic. This problem is critically examined in Sect. 6.3.2. With the help of
the experimental study [13], it is shown that a single transformation strip
extending to temperatures as high as At

s and possibly to At
f , as done in this

work (Fig. 6.4), is a more natural assumption.
Secondly, there is a disagreement in the literature on the shape of the

reverse M t → A strip. In the work of Brinson [1] and later papers, it is
assumed to coincide with the Md → A strip while other authors [6–8] have
used a vertical M t → A strip, which is independent of stress. An argument can
be made (Sect. 6.3.1) that the latter is a more natural choice. Furthermore,
there is an ambiguity in the definition of the A → Md strip at low stresses
and temperatures (T < Ms and σ < σs). Some authors have extended it to
zero-stress level [4], while others [7] suggest, that in the region T < Ms the
dependence on temperature disappears and there is a critical stress below
which A → Md does not occur. There are two possible ways of completing
it, depending mainly on the training history of the material. In this work,
for trained materials, it will be assumed that the A → Md transformation
strip extends all the way to zero stress level (the solid lines in Fig. 6.4). For
untrained SMA materials, it is assumed that the lines change slope at Ms and
at temperature below Ms they have slope kd (dashed lines in Fig. 6.4).

To fully define the phase diagram, one also has to consider the relation-
ship between the A → Md, A → M t and M t → Md strips in the vicinity
of Ms. The general assumption by most authors is that there exists a triple
point (Ms, σs) where the three onset lines intersect and another point (Ms, σf )
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where the three finish lines intersect [1, 4, 6–8]. The experimental evidence
cited is usually inconclusive at drawing such a strong relation between the
three transformation strips. However, if the finish line for A → Md passes
above the intersection point of the other two finish lines, then one can find a
particular isobaric cooling path leading to jump discontinuities in the strain
as the temperature is lowered. This is demonstrated in Sect. 6.5.4. Therefore,
one has to assume that the finish line for the A → Md transformation passes
through or is below the intersection of the other two lines. In the absence of
sufficiently clear experimental data, we assume that the A → Md finish line is
below the intersection of the other two. (In Fig. 6.4 the extreme case of a triple
point is shown.) This, along with other restrictions on the relative locations
of the transformation strips that arise in the development of the thermody-
namically consistent model, are discussed in Sect. 6.5.4. The remainder of
this section presents a detailed description of the proposed extensions and
modifications of the phase diagram of Fig. 6.4.

6.3.1 Austenite to Martensite (A ↔ M t, A ↔ Md)

An early observation in quasi-static isothermal loading tests was that the
transformation surfaces for A ↔ Md exhibit a strong temperature depen-
dence [10, 13, 14]. These, and many other experimental results, show that the
critical transformation stress required for initiation and completion of both the
A → Md and Md → A forward and reverse transformations increase relatively
linearly, with an increase in temperature. The reason for this dependence on
temperature is the development of transformation strain during the trans-
formation and the associated work expended by the SMA. The theoretical
derivation of the precise functional dependence of the critical transformation
stress for detwinning is based on a Clausius-Clapeyron relation [15]. After
some simplifying assumptions, such as equal stiffness and thermal expansion
coefficient of austenite and martensite, a linear dependence on temperature is
obtained [10, 15]. This has been observed consistently by many experimental-
ists ever since the work of Cross and co-workers [13]. Virtually any constitutive
model for pseudoelastic SMA response, including the current work, takes this
into account.

Unlike the A ↔ Md transitions, the phase transformation from A to
M t does not involve generation of macroscopic strains. At zero stress level,
the A → M t phase transformation begins when a critical temperature Ms

is reached and is completed when a second, and lower, critical tempera-
ture Mf is reached. Due to the lack of transformation strain, a Clausius-
Clapeyron argument suggests that there is no dependence of the critical tem-
peratures Ms and Mf on stress. As a consequence, one can expect that the
transformation strip A → M t is nearly vertical when plotted in the stress-
temperature space (Fig. 6.4). This fact has been used in most models that take
into account the separate development of twinned and detwinned martensite
(cf. e.g. [1, 4, 6–8]). There is, however, disagreement on what the shape of the
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reverse transformation strip M t → A should be. Some [1, 4] assume the same
stress-temperature dependence as for the Md → A transformation. Others
[6–8] take the M t → A strip to be stress-independent.

There are not many experiments reported in the literature, which aim at
determining the shape of the A ↔ M t strips. It should be noted that, due
to lack of macroscopically observable mechanical quantities, such as inelastic
strains, it is very difficult to experimentally detect the formation of twinned
martensite under applied stress. Differential scanning calorimetry measure-
ments, which are usually employed for revealing the transformation temper-
atures at zero stress level, cannot be directly used under applied stress. The
two direct methods of measuring the progress of martensitic transformation
under applied load that have been used by researchers are electrical resistivity
measurements [16, 17] and in-situ neutron diffraction measurements [18]. In
both cases, sophisticated testing procedures in a precisely controlled thermal
environment in a MTS-type testing frame are required. The focus of these
and other direct measurement studies however was not the stress dependence
of the critical temperatures for the A ↔ M t transformation.

An alternative indirect method, used specifically for determining the
M t,Md → A transformation temperatures at nonzero stress levels during
heating and cooling cycles has recently been performed by Tsoi and co-workers
[19]. The experiment is done by first loading an SMA wire and embedding it
in a epoxy matrix, as loaded. After the epoxy has cured, the SMA is kept
deformed without the need for external apparatus. The composite can further
be cut into a small enough specimen, suitable for DSC measurements. The
tests included pre-strain levels low enough that only M t → A transforma-
tion can be expected during heating. While the DSC results are difficult to
interpret conclusively, it can be inferred that the M t → A temperatures do
not depend on applied stress. Thus, due to the implications of lack of inelas-
tic strains associated with the M t → A transformation, and based on some
recent experimental indications [19], in this chapter, it will be assumed that
both M t → A and A → M t are stress-independent. In Sect. 6.6.1 a differ-
ent indirect experimental method, based on the different stiffness of the pure
martensitic and austenitic phases, will be proposed.

6.3.2 Detwinning of Self-Accommodated Martensite (M t → Md)

The three pure phases regions (A, M t and Md) are separated by transforma-
tion strips that indicate which transformation occurs (A → Md, A → M t,
etc). In the original phase diagram of Brinson [1], the transformation strip
M t → Md is not defined at temperatures above T > Ms. If the initial condi-
tions are such that M t is not present and once it is produced the temperature
is never increased beyond Ms, this will not cause any problems. This is the
case with a major class of SME paths where all the M t is depleted via the
M t → Md deformation before the temperature is increased above Ms (cf. e.g.
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path 2 in Fig. 6.3). Since these types of SME loading paths are quite impor-
tant in characterization and testing of SMAs, the possibility that M t may
be present at temperatures in the range Ms < T < At

f (for example by
detwinning only part of the M t) has generally been overlooked. As a result,
in [1] it is assumed for simplicity that the transformation strip for M t → Md

coincides with the A → Md strip in this temperature range. This assump-
tion creates the inconvenience of having a concave transformation surface in
stress-temperature space. Furthermore, at T > Ms and high stress it is not
clear how a single transformation surface can be used to determine the evo-
lution of a two-phase mixture that involves two transformations: M t → A
and Md → A. It can also be argued that the detwinning of martensite is an
inelastic deformation process does not involve change in the crystal lattice.
Therefore, the temperature dependence of the detwinning surface should not
change drastically, as suggested, from slightly decreasing yield stress as the
temperature is raised in the range T < Ms to rapidly increasing with increase
of temperature for Ms < T < At

f .
More importantly this does not seem to be supported by experimental

results. A careful review of the pioneering work of Cross and co-workers [13]
suggests that it extends to temperatures higher than Ms. The reader is referred
specifically to Fig. 16 on page 26 of [13], which reports two sets of experiments.
In both cases, the material is loaded mechanically under isothermal conditions,
at several different temperatures. The difference is that, prior to the mechan-
ical loading in the first set, the material is cooled from a high temperature
and once the prescribed temperature is reached, it is fixed and the SMA is
mechanically loaded. In the second set, the material is heated from a low tem-
perature and then loaded. The initial yield stress is recorded in both cases. A
look at the transformation temperatures reported by the authors shows that,
for the first set of experiments, the initial material state is A, while for the
second it is M t. The latter implies that the initial yield stress measured in
the second set corresponds to the beginning of the M t → Md deformation
over the entire range T ≤ At

s. The results in the range At
s ≤ T ≤ At

f cannot
be easily interpreted since, in this range, the material before loading is a mix-
ture of A and M t. The observed values for the critical stress for detwinning
exhibit only very slight dependence on temperature, decreasing slowly as tem-
perature is increased. For the first experimental set, the initial material state
is A, therefore a transformation surface for M t → Md can be inferred from
the yield stress results only in the range T ≤ Mf . Observe that the measured
yield stress in the range T ≤ Mf for both sets of experiments is the same. This
is a consistent experimental result since, at these temperatures, the material
for both experimental sets is pure M t when the loading begins.

Based upon this analysis, it is assumed in this work that the shape of the
M t → Md has the same dependence on temperature, both for temperatures
below and above Ms (Fig. 6.4). Note that the region of the phase diagram
covered both by the M t → Md and M t → A (to be discussed next) com-
pletely surrounds the region where pure M t can exist. Therefore, there is
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no possibility that a loading path may lead to the existence of M t at high
temperature or high-stress regions of the phase diagram.

6.3.3 Combined Austenite to Detwinned Martensite at Low
Stresses

As was explained in the previous section, it is difficult to determine experimen-
tally when the transformation to twinned martensite is occurring. Therefore
another outstanding question, for which there is little experimental informa-
tion, is what is the shape of the A → Md surface at low stress σ < σs and
temperatures. In this region of the phase diagram, it can be expected that
both A → Md and A → M t occur. Note that the A → Md is measured
experimentally by observing the critical transformation stress required for
the A → Md transformation.

Lagoudas and co-workers [20, 21] have measured the development of trans-
formation strain during isobaric heating and cooling of annealed NiTiCu wires
at different, constant, stress levels. Such a test can be represented by a hor-
izontal line on the phase diagram and assist in determining the location of
the A → Md (during cooling) and Md → A (during heating) transformation
surfaces. The results for untrained specimen suggest that A → Md does not
take place at stress levels below 40 MPa. They argue that there is a critical
stress level, below which detwinned martensite cannot form. This has usually
been incorporated into SMA models [1, 7] by assuming the Md → A surface
is independent of temperature below T < Ms.

This SMA behavior at low temperatures and stresses, however, is heav-
ily influenced by the material composition, manufacturing process (e.g. cold
work), heat treatments, etc. If a wire is trained for pseudoelastic regime, then
development of transformation strain is observed even at zero stress level,
which implies that the Md → A surface should extend to zero stress. In order
to take into account both types of behavior, the model developed here will
include both the capability to proceed with the A → Md transformation at an
arbitrary stress level and the possibility of a critical stress below which pro-
duction of Md does not happen. In the first case, the A → Md transformation
strip would reach zero stress (dotted line in Fig. 6.4), while in the second, it
becomes horizontal at T < Ms

6.4 Description of the SMA Constitutive Model

In order to simplify the presentation, the term “transformation” will be
used to denote both the phase transformation from austenite to twinned
and detwinned martensite, as well as the detwinning deformation of self-
accommodated martensite. We start with the volume fractions ci, i = 1, 2, 3
of the self-accommodated martensite M t, stress-induced martensite Md and
austenite A, respectively. The volume fractions are subject to the constraints:
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c1 + c2 + c3 = 1, (6.4.1)

0 ≤ ci ≤ 1, for i = 1, 2, 3. (6.4.2)

While the state of the material is represented completely by the three volume
fractions ci, it is also useful to know how this state was achieved. To do this,
the total amount ξ1 of M t produced from A, the amount ξ2 of Md produced
from A, and the amount ξ3 of Md produced from M t, are introduced. They
are connected to the three volume fractions ci by:

c1 = c10 + ξ1 − ξ3, (6.4.3)
c2 = c20 + ξ2 + ξ3, (6.4.4)
c3 = c30 − ξ1 − ξ2, (6.4.5)

where ci0, i = 1, 2, 3 are the initial volume fractions of the three phases,
subject to the constraint

c10 + c20 + c30 = 1.

These two representations of the phase state of the material are schematically
portrayed in Fig. 6.5. The two phase transformation A ↔ M t and A ↔ Md

can proceed both ways, hence, ξ̇1, ξ̇2 can take arbitrary real values. The
detwinning deformation M t → Md, however, is assumed irreversible, e.g. the
rubberlike effect (see [10] for definition) is not considered. Therefore, ξ̇3 ≥
0. Observe that equations (6.4.3)-(6.4.5) automatically satisfy the constraint
(6.4.1).
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Fig. 6.5. Schematic of the three phases and the possible transitions between them.
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With these preliminary definitions, we now move to the question of select-
ing the inelastic internal variables. In this work, the internal variables that
describe the phase state of the material are selected to be:

ξi, i = 1, 2, 3. (6.4.6)

This selection of three independent internal variables requires further dis-
cussion. A common choice in the literature is to select two of the three volume
fractions ci, say c1 and c2. Such a choice is appropriate when the phase diagram
does not change during cyclic loading and when three simultaneous transfor-
mations cannot occur (for example A → Md, A → M t, M t → Md). Observe
that, if the three rates ċi, i = 1, 2, 3 are known, equations (6.4.3)-(6.4.5) can-
not be used to determine how exactly the three species transformed, that
is, the rates ξ̇i, i = 1, 2, 3. Therefore, if three simultaneous transformations
occur, one has to use the three rates ξ̇i to have complete knowledge of how
the species transformed. This may be necessary, for example, during a simul-
taneous transformation A → Md, A → M t and M t → Md. In such a case,
the inelastic strains associated with the A → Md and M t → Md processes
may evolve differently from each other and it is needed to keep track of the
individual transformations. While some authors [8] argue that such situations
should be forbidden, this in itself is an additional assumption that should not
be excluded a priori.

Another reason to use ξi is that they provide a complete loading history
of the material and thus can be used to account for various cyclic loading
effects. For example, at any instance of time, ξ3 denotes the total amount of
detwinned martensite produced from self-accommodated martensite. So, if one
has a cyclic SME path and wants to account for plastic strains accumulated
over all cycles, ξ3 would be a suitable variable. Similarly,

∫ T

0
|ξ̇2|dt is a suitable

indicator of the total amount of A ↔ Md transformation. The latter variable
has been used [20, 22–24] to account for transformation-induced plasticity.
This issue of modeling cyclic effects is related to the choice of hardening
functions and will be revisited in Sect. 6.4.5.

6.4.1 Kinematic Assumptions

A large class of applications involving SMAs can easily be accommodated
within the framework of small deformations. Thus, for the sake of simplicity,
the constitutive theory is formulated for linearized strains and the total strain
tensor ε is given by:

ε =
1
2
(
∇u + ∇uT

)
,

as was shown in (3.2.4) where u is the displacement. Examples of SMA mod-
els formulated in terms of finite strains can be found, for example, in [25–27].
The theory is presented from a macroscopic point of view, therefore, all quan-
tities involved are macroscopic ones, considered over a suitable representative
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volume element. Further, it is assumed that the strain can be decomposed
additively into thermoelastic strain εth and inelastic strain εin components
(c.f. (3.3.39)):

ε = εth + εin.

The inelastic strain εin is produced during the forward and reverse stress-
induced phase transformations (ξ̇2 	= 0) and during the detwinning deforma-
tion (ξ̇3 > 0). Consequently, it can be further decomposed into:

εin = εt + εd, (6.4.7)

where εt is the stress-induced transformation strain (produced during A →
Md transformation) and εd is the inelastic strain generated during detwin-
ning (M t → Md). Note that while the formation of martensitic twins in the
A → M t transformation does involve local strain fields, the macroscopic strain
(averaged over a large representative volume element) is zero. Since this chap-
ter deals only with macroscopic description of the SMA, the transformation
A ↔ M t is associated with zero (macroscopic) strain.

Finally, it is assumed that the transformation and detwinning strains obey
the following two transformation/detwinning evolution equations:

ε̇t = Λtξ̇2, (6.4.8)

ε̇d = Λdξ̇3, (6.4.9)

where Λt is the transformation tensor for the stress-induced martensitic trans-
formation (A ↔ Md) and Λd is the detwinning tensor for the detwinning of
twinned martensite (M t → Md). In general, the transformation tensors Λt

and Λd are different [7]. Their specific form is discussed in Sect. 6.4.6 in con-
junction with the definition of transformation surfaces.

The last assumptions (6.4.8) and (6.4.9) allow the formulation of the con-
stitutive theory in terms of ξi, i = 1, 2, 3 as the only internal variables. It is
convenient to use vector notation ξ = (ξ1, ξ2, ξ3)

T for the internal variables.
The internal variables can be thought of as a time-like parameter because of
the following relations:

εin =
∫ t

0

(
Λtξ̇2 + Λdξ̇3

)
dτ =

∫ ξ2

0

Λtdη +
∫ ξ3

0

Λddη, (6.4.10)

that is, the inelastic strain εin can be considered as a path-dependent func-
tional of ξ.

6.4.2 Free Energy for Polycrystalline SMAs

The following form of the Gibbs energy, based on the work of Lagoudas and
co-workers [7, 20] is assumed:
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G
(
σ, T, ξ, sgn(ξ̇1), sgn(ξ̇2)

)
=(c1 + c2)G

M (σ, T, ξ) + c3G
A(σ, T, ξ)

+ Gmix
(
σ, T, ξ, sgn(ξ̇1), sgn(ξ̇2)

)
, (6.4.11)

where GM is the thermoelastic free energy of both martensitic phases (twinned
and detwinned), GA is the thermoelastic component of the free energy of
austenite, and Gmix is the free energy of mixing, which is responsible for the
transformation behavior of the SMA. The mixing energy, and thus the entire
free energy, depends also on the direction of the A ↔ M t and A ↔ Md

transformations, which is expressed through the sign function as defined in
(3.5.98). This kind of dependence allows the model to take into account the
different material behavior during forward (ξ̇i > 0) and reverse (ξ̇i < 0) phase
transformation, i = 1, 2.

In the pseudoelastic SMA literature, this is often done implicitly, without
including sgn(ξ̇2) in the list of parameters of G [cf. e.g. 28] in order to provide
different hardening during loading and unloading. An argument is then made
that such a free energy is allowed to take values from two distinct, possibly
discontinuous branches (one for loading, one for unloading) and the laws of
thermodynamics should be verified for each branch alone. This argument is
made mathematically rigorous in the current work by including sgn(ξ̇2) explic-
itly in the parameter list (cf. the discussion after equation (6.4.17)). This is
also generalized to the A ↔ M t transformation by including dependence on
sgn(ξ̇1).

2

Next, the two thermoelastic components are given by:

GA(σ, T, ξ) = − 1
2ρ

σ : SA : σ − 1
ρ
αA : σ(T − T0) −

1
ρ
σ : εin

+ cA

[

(T − T0) − T ln
(

T

T0

)]

− sA
0 T + uA

0 , (6.4.12)

GM (σ, T, ξ) = − 1
2ρ

σ : SM : σ − 1
ρ
αM : σ(T − T0) −

1
ρ
σ : εin

+ cM

[

(T − T0) − T ln
(

T

T0

)]

− sM
0 T + uM

0 , (6.4.13)

where Si, αi, ci, si
0 and ui

0 are the compliance tensor, thermal expansion coef-
ficient tensor, specific heat, specific entropy and the specific internal energy
at the reference state of the individual phases with the superscript i = A
for austenitic and i = M for martensite, respectively. It is assumed that the

2 Regardless of whether the dependence is implicit or explicit, continuum thermo-
dynamics of irreversible processes dictates that all fields, including G, should be
independent of the rates of the internal variables. However, this classical result
[cf. e.g. 29] is applicable only to smooth functions G, that is, functions that are
continuous and all their partial derivatives are also continuous. In the current
case, G is not smooth since sgn(·) is a discontinuous, non-differentiable function.
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material properties of the two martensitic phases are the same. Note that
this assumption, and correspondingly, the selection of the same energy for M t

and Md, is guided by the fact that from a metallurgical point of view, the
two phases are indistinguishable [6]. However, as was discussed in the begin-
ning of this section, it is the macroscopic mechanical behavior of twinned
and detwinned martensite that is different, which is reflected in the kinematic
considerations of Sect. 6.4.1.

Note that in light of equation (6.4.10), the two free energies GA and GM

and consequently, G, are path-dependent functionals of ξ. This approach of
making G a path-dependent functional is chosen for convenience [as is done
by many other authors cf. e.g. 20, 30], and does not lead to any mathe-
matical inconsistencies in the thermodynamic treatment of the constitutive
model.

Further, upon substituting equations (6.4.12) and (6.4.13) into (6.4.11),
and by using equations (6.4.3)-(6.4.5) and the constraint (6.4.1), the following
expression is obtained for the free energy:

G = − 1
2ρ

σ : S(c1 + c2) : σ − 1
ρ
σ :
[
α(c1 + c2)(T − T0) + εin

]
+ c(c1 + c2)

[

(T − T0) − T ln
(

T

T0

)]

− s0(c1 + c2)T + u0(c1 + c2) + Gmix, (6.4.14)

where S(c1 + c2), α(c1 + c2), c(c1 + c2), s0(c1 + c2) and u0(c1 + c2) are
the effective compliance tensor, thermal expansion coefficient tensor, specific
heat, specific entropy and the specific internal energy at the reference state,
respectively. These effective material properties are calculated in terms of the
total martensitic volume fraction c1 + c2 using the rule of mixtures:

S(ξ) = S(c1 + c2) = SA + (c1 + c2)(S
M − SA) = SA + (c1 + c2)ΔS,

(6.4.15a)

α(ξ) = α(c1 + c2) = αA + (c1 + c2)(α
M − αA) = αA + (c1 + c2)Δα,

(6.4.15b)

c(ξ) = c(c1 + c2) = cA + (c1 + c2)(c
M − cA) = cA + (c1 + c2)Δc, (6.4.15c)

s0(ξ) = s0(c1 + c2) = sA
0 + (c1 + c2)(s

M
0 − sA

0 ) = sA
0 + (c1 + c2)Δs0,

(6.4.15d)

u0(ξ) = u0(c1 + c2) = uA
0 + (c1 + c2)(u

M
0 − uA

0 ) = uA
0 + (c1 + c2)Δu0.

(6.4.15e)

A detailed discussion of the functional form (6.4.14) for the free energy and
the resulting rule of mixtures (6.4.15), based on micromechanical averaging
over a representative volume element of the polycrystalline SMA, can be found
in [20]. Note that, in view of relations (6.4.3)-(6.4.5), the effective parameters
can be viewed either as functions of the total volume fraction of martensite
(c1+c2) or as functions of the internal variables ξ. The latter notation is more
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convenient when performing the algebraic manipulations of this section, while
the former gives a better physical understanding of the quantities involved.

The mixing term Gmix in the free energy (cf. equations (6.4.11), (6.4.14))
is defined as follows:

Gmix
(
ξ, sgn(ξ̇1), sgn(ξ̇2)

)
=

1
ρ

∫ t

0

[
(
f1(ξ; sgn(ξ̇1))ξ̇1(τ) + f2(ξ; sgn(ξ̇2))ξ̇2(τ) + f3(ξ)ξ̇3(τ)

)
]dτ ,

(6.4.16)

where the yet to be defined functions fi , i = 1, 2, 3 are responsible for the
hardening during the A ↔ M t, A ↔ Md and M t → Md transformations,
respectively (see next section). Since many SMAs exhibit different hardening
behavior during loading and unloading [28] ,it is necessary to allow f1 and
f2 to take different values depending on whether one has forward or reverse
transformation, hence the dependence on sgn(ξ̇1), sgn(ξ̇2). It should be noted
that, in the case of pseudoelasticity (ξ̇1 = ξ̇3 = 0), the above mixing energy
leads to free energy, which is equivalent to the one used by Lagoudas and
co-workers [28].

In order to apply the second law of thermodynamics to the constitutive
theory (as was done in Sect. 3.2.3 for the SMA model of Chapter 3), it is
necessary to first derive the rate of change of the free energy (6.4.11). It is
given by

Ġ = σ̇
∂G

∂σ
+ Ṫ

∂G

∂T
+ ξ̇ · ∂G

∂ξ
. (6.4.17)

The derivation of this relation is not straightforward. The usual way to derive
such identities is to consider G as a function of time and apply the chain rule
to the definition of G, in our case, equations (6.4.11) and (6.4.16). However,
in the current case, G is not a smooth function of all its internal variables.
Indeed, consider a point in the state space, where the A ↔ M t or A ↔ Md

transformation changes sign. At such a point of transformation reversal, G
is not differentiable with respect to the two rates ξ̇1 and ξ̇2, (cf. equation
(3.5.98)). Moreover, the derivatives ∂ξ1

G and ∂ξ2
G are discontinuous when ξ̇1

or ξ̇2 change sign, (see equation (6.4.20) in Sect. 6.4.3). As a result, the chain
rule cannot be applied directly to equation (6.4.11).

To obtain (6.4.17), first consider a point in state space where both ξ̇1

and ξ̇2 do not change sign. In the neighborhood of this point G, does not
depend on ξ̇ and it is clearly smooth. Then, (6.4.17) is obtained using the
chain rule. At points of transformation reversal, where G is not smooth, one
has to differentiate G directly with respect to time, the details for which are
given in the following section. 6.4.3.
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6.4.3 Evolution of the Rate of the Gibbs Free Energy Function

We consider the set of thermodynamical processes for which the functions f1,
f2 and f3 are smooth in their first argument (ξ). Furthermore we assume that
either of the phase transformation from A to M t and Md can be reversed
a countable number of times. That is, there exist (possibly infinitely many)
occasions in time T0 < T1 ≤ T3 · · · ≤ T2n < T2n+1 . . . where ξ̇i = 0, for
i = 1 and/or i = 2 and is strictly positive or strictly negative on each interval
(T2n, T2n+1). Observe that only the term Gmix in the definition of the free
energy (6.4.14) is not a smooth function of its variables. Therefore, to show
the identity (6.4.17), it is sufficient to show that

Ġmix =
3∑

i=1

∂Gmix

∂ξi

ξ̇i(t). (6.4.18)

First, using the definition of Gmix given by equation (6.4.16), its rate is directly
computed as:

Ġmix
(
ξ, sgn(ξ̇1), sgn(ξ̇2)

)
=

1
ρ

3∑

i=1

[
fi

(
ξ; sgn(ξ̇i)

)
ξ̇i(t)

]
. (6.4.19)

Assume now that t ∈ [T2n, T2n+1] and let the values of ξi at the begin-
ning of this interval be denoted by Ξi, i = 1, 2, that is, Ξ1 = ξ1(T2n) and
Ξ2 = ξ2(T2n). Without loss of generality, suppose that ξ̇i > 0 in the interval
[T2n, T2n+1]. Then one has:

∫ t

T2n

fi

(
ξ, sgn(ξ̇i)

)
ξ̇i(τ)dτ =

∫ ξi

Ξi

fi (..., η, ..., 1) dη.

On the other hand,

∂

∂ξi

∫ ξi

Ξi

fi (..., η, ..., 1) dη = fi (ξ1, ξ2, ξ3, 1) , for all ξi ∈ [Ξ1, ξi(T2n+1)].

Now, Gmix is a path-dependent functional of ξ. Therefore, the derivative
∂ξi

Gmix with respect to the current state ξ (and the path that led to it)
can only be meaningfully defined by continuing the current path through ξ
and allowing only ξi to change. That is, ξ̇i 	= 0 and ξ̇j = 0, j 	= i for times
greater then t. For such paths, only the term containing ξ̇i in the integral
expression in equation (6.4.16) will change past the point ξ and therefore:

ρ
∂Gmix

∂ξi

=
∂

∂ξi

[∫ t

0

fi

(
ξ; sgn(ξ̇i)

)
ξ̇i(τ)dτ

]

=
∂

∂ξi

[∫ t

Ξi

fi

(
ξ; sgn(ξ̇i)

)
ξ̇i(τ)dτ

]

= fi

(
ξ; sgn(ξ̇i)

)
. (6.4.20)
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The last equation, combined with equation (6.4.19), leads to the identity
(6.4.18). This in turn implies that equation (6.4.17) holds for arbitrary loading
path. Thus, the particular type of path dependence of G demonstrates that
the explicit inclusion of sgn ξ̇1 and sgn ξ̇2 in the list of parameters of G does
not introduce derivatives with respect to ξ̇i in the expression for Ġ.

Observe that the definition of the free energy (3.3.41) together with the
assumption (3.3.63) introduces an implicit dependence on sgn(ξ̇) for the basic
model introduced in Chapter 3. However, the above general derivation for a
vector ξ shows that the similar application of the chain rule in Sect. 3.2.3
(equation (3.2.32)) also holds for arbitrary loading paths. It is left as an exer-
cise to the reader to reformulate the free energy in Sect. 3.2.3, incorporating
directly the evolution of the transformation strain, and using a similar argu-
ment as in this section, derive equation (3.2.32) at point of transformation
reversal.

Note that one may want to avoid defining the derivatives ∂ξi
Gmix along

specific paths altogether and instead split the free energy G into a potential
part (in our case, (c1 +c2)G

M (σ, T, ξ)+c3G
A(σ, T, ξ)) and a path-dependent

functional (Gmix). The path-dependent part is then defined as a function of
time only, i.e. Gmix(t) = Gmix(ξ(t)), whose rate can be explicitly calculated.
Thus, the rate Ġ is known and can be used in the entropy inequality (6.4.21).

6.4.4 Thermodynamics and Constitutive Relations

Every thermomechanical process must satisfy the second law of thermody-
namics, which, in its strong form reads (see Chapter 3, equation (3.2.31)):

− ρĠ − σ̇ : ε − ρsṪ ≥ 0. (6.4.21)

Now, by substituting equation (6.4.17) into (6.4.21), the inequality becomes:

−
(

ε + ρ
∂G

∂σ

)

: σ̇ − ρ

(

s +
∂G

∂T

)

Ṫ − ρ
∂G

∂ξ
· ξ̇ ≥ 0.

Following the standard procedure outlined in Sect. 3.2.3, the following two
constitutive relations are established for the strain and entropy:

ε = −ρ
∂G

∂σ
, (6.4.22)

s = −∂G

∂T
, (6.4.23)

With the help of equations (6.4.14) and (6.4.16), the above relations are explic-
itly written as:

σ = S(ξ)−1 :
(
ε − α(ξ)(T − T0) − εin

)
, (6.4.24)

s =
1
ρ
α(ξ)σ + c(ξ) ln(T/T0) + s0(ξ). (6.4.25)
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Further, the entropy inequality (6.4.21) also implies:

− ρ
∂G

∂ξ
· ξ̇ ≥ 0. (6.4.26)

Note that the above equation is similar to equation (3.3.49). The difference
is that in Sect. 3.2.3 the transformation strain εt was assumed to be an inde-
pendent internal variable, later being connected to the single scalar volume
fraction ξ by equation (3.3.51). In contrast, we have a vector of three inde-
pendent internal variables ξ = (ξ1, ξ2, ξ3) and we have already used equation
(6.4.10) to obtain an expression for the inelastic strain εin in terms of ξ.

Let the thermodynamic forces, conjugate to ξ, be denoted by π = (π1,
π2, π3)

T . With the help of (6.4.14), (6.4.15) and (6.4.20) they are given by:

π1 = −ρ
∂G

∂ξ1

= π̃(σ, T ) − f1

(
ξ, sgn(ξ̇1)

)
, whenever ξ̇1 	= 0,

(6.4.27)

π2 = −ρ
∂G

∂ξ2

= σ : Λt + π̃(σ, T ) − f2

(
ξ, sgn(ξ̇2)

)
, whenever ξ̇2 	= 0,

(6.4.28)

π3 = −ρ
∂G

∂ξ3

= σ : Λd − f3(ξ), whenever ξ̇3 > 0.

(6.4.29)

where π̃ is:

π̃(σ, T ) =
1
2
σ : ΔS : σ + Δα : σ(T − T0)

− ρΔc

[

(T − T0) − T ln
(

T

T0

)]

+ ρΔs0T − ρΔu0. (6.4.30)

6.4.5 Transformation Hardening Functions

The hardening function f1 for the A ↔ M t transformation is assumed to
depend on c1, and may be different for the forward and reverse transformation:

f1 =
{

Δ+
1 f+

1 (c1) for ξ̇1 > 0
Δ−

1 f−
1 (c1) for ξ̇1 < 0

. (6.4.31)

Here f±
1 (c1) are two arbitrary monotonously increasing functions in the inter-

val [0, 1] for the forward and reverse transformations A → M t and M t → A,
respectively, which can be determined from experimental measurements. The
two material constants Δ±

1 serve as a scaling factors for f±
1 (c1) so that

f±
1 (0) = 0, f±

1 (1) = 1. (6.4.32)



302 6 Extended SMA Modeling

The hardening function f±
2 , f3 for the stress-induced martensitic trans-

formation A ↔ Md and the reorientation of twinned martensite M t → Md,
respectively, are assumed to depend on the volume fraction of twinned marten-
site c2:

f2 =
{

Δ+
2 f+

2 (c2) for ξ̇2 > 0
Δ−

2 f−
2 (c2) for ξ̇2 < 0

, f3 = Δ3f3(c2) for ξ̇3 > 0. (6.4.33)

Similarly to equation (6.4.31), the material constants Δ±
2 and Δ3 are scaling

factors for the monotonous functions f±
2 and f3, respectively, and:

f±
2 (0) = 0, f±

2 (1) = 1, (6.4.34)
f3(0) = 0, f3(1) = 1. (6.4.35)

Several things should be noted about this selection of hardening functions.
The choice of c2 as the independent variable for f±

2 and f3 has generally been
accepted in the literature. The choice of c1 as the unknown variable for f±

1 ,
while often used [1, 6, 8], is not the only possible option. The total amount
of austenite c3 may be an equally suitable choice for certain classes of SMA
materials.

The specific form of the functions fi (e.g. polynomials, trigonometric func-
tions, exponents, etc.) is material-dependent and should be treated as part of
the material specifications. Through the rest of this chapter, for the sake of
simplicity, it is assumed that the hardening functions are linear:

f±
1 (c1) = c1, f±

2 (c2) = c2, f3(c2) = c2. (6.4.36)

This selection3 is typical for the pseudoelastic and detwinning response of
polycrystalline NiTi SMAs [28]. In principle, however, the model allows for
arbitrary monotonous functions that can be curve-fitted from experiments
(Sect. 6.5.2).

Finally, the hardening functions depend indirectly on ξ through the vol-
ume fractions ci (equations (6.4.3)-(6.4.5)). The volume fractions ci have fixed
bounds (cf. equation (6.4.2)). Hence, a hardening function that depends explic-
itly on ci will have the property that the transformation strips (see next sec-
tion) will not change with cyclic thermomechanical loading. It should be kept
in mind that the position of the transformation strips in the phase diagram do
evolve with cyclic repetition of thermomechanical loading paths. Such effects
can be accounted for by specifying an explicit dependency of f±

i on ξ1, ξ2

and ξ3. For example, if f+
1 = ξ1 − (1 + λ)ξ3 is selected, with λ > 0 as a

small positive parameter, every full SME cycle will increase the Ms and Mf

temperatures by a fixed amount. For this type of modeling, the evolution of
SMA material response, was outside the scope of this work.

3 This choice of f2 is consistent with the hardening function of [31, 32], that used
the derivative of a quadratic polynomial, which is a linear function.
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6.4.6 Transformation Surfaces and Evolution Equations

It is assumed that a closed elastic domain is associated with each possible
transformation, bounded by a transformation surface. The five surfaces are:

Φ+
1 (σ, T, ξ) = 0, whenever A → M t takes place, (6.4.37a)

Φ−
1 (σ, T, ξ) = 0, whenever M t → A takes place, (6.4.37b)

Φ+
2 (σ, T, ξ) = 0, whenever A → Md takes place, (6.4.37c)

Φ−
2 (σ, T, ξ) = 0, whenever Md → A takes place, (6.4.37d)

Φ3(σ, T, ξ) = 0, whenever M t → Md takes place, (6.4.37e)

and the elastic domains in stress-temperature space, for given ξ, with respect
to ξ̇i are defined implicitly by the inequalities:

{
(σ, T )|Φ+

i (σ, T, ξ) ≤ 0, ξ̇i > 0
}

, for i = 1, 2, (6.4.38)
{

(σ, T )|Φ−
i (σ, T, ξ) ≤ 0, ξ̇i < 0

}
, for i = 1, 2, (6.4.39)

{
(σ, T )|Φ3(σ, T, ξ) ≤ 0, ξ̇3 > 0

}
. (6.4.40)

The first two inequalities (6.4.38) describe the elastic domains of the two
forward transformations, while the second two inequalities (6.4.39) the elas-
tic domains of the two reverse transformations. The last inequality (6.4.40)
describes the elastic domain for the M t → Md transformation. In contrast
to conventional plasticity, the phase transformation terminates whenever the
constraints (6.4.2) are violated. Therefore, the elastic domain associated with
given phase transformation is assumed to be the entire space, when the trans-
formation is complete or there is no more material to transform.

Following Lagoudas and Shu [7, 26], the following form of the transforma-
tion surfaces is used:

Φ+
1 (σ, T, ξ) = π1 − Y +

1 , Φ−
1 (σ, T, ξ) = −π1 − Y −

1 , (6.4.41)

Φ+
2 (σ, T, ξ) = π2 − Y +

2 , Φ−
2 (σ, T, ξ) = −π2 − Y −

2 , (6.4.42)

Φ3(σ, T, ξ) = π3 − Y3, (6.4.43)

where and Y ±
1 , Y ±

2 , Y3 are measures of internal dissipation of the respec-
tive transformations. We further assumed that Y ±

i , i = 1, 2, 3 are constants,
independent of σ, T and ξ. This, due to the inequalities (6.4.38)-(6.4.40),
implies that the appropriate conjugate forces πi remain constant during the
transformation. It also implies that the entropy production due to a phase
transformation is proportional to ξ̇i, with Y ±

i being the proportionality con-
stant (cf. equations (6.4.26) and (6.4.27)-(6.4.29)).

The functions fi defined by (6.4.31) and (6.4.33) appear in the definition
of the transformation function (6.4.41)-(6.4.43) through the constitutive rela-
tions (6.4.27)-(6.4.29). They are the only terms in the transformation functions
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which are dependent on the internal variables ξ, hence, they are responsible
for the transformation hardening.

In order to complete the model, the transformation tensors in the evolution
equations (6.4.8) and (6.4.9) should be specified. The detwinning tensor is
taken to be of the form

Λd =
3
2
Hd(σ̄′)

σ′

σ̄′ , (6.4.44)

where Hd is the maximal uniaxial inelastic strain, assumed to be a material
constant, and σ̄′ and σ′ have been defined in Chapter 3.

For the sake of simplicity, the transformation tensor used for the A ↔ Md

transformation is, following [28, 32], taken to be

Λt =

⎧
⎪⎪⎨

⎪⎪⎩

3
2
Ht(σ̄′)

σ′

σ̄′ ; ξ̇2 > 0

Ht−r εin−r

ε̄in−r
; ξ̇2 < 0

(6.4.45)

where Ht is a material constant having the meaning of maximum current
uniaxial transformation-induced strain (equivalent to Hcur(σ̄′)). The variable
ε̄in−r is analogous to ε̄t−r as defined in Chapter 3 and Ht−r is the max-
imum transformation at the reversal of phase transformation. It should be
noted that the forward evolution equation is a simple J2 based one, which
has been used in many of the early works on modeling pseudoelasticity [cf.
e.g. 28]. A number of alternative transformation surfaces have been proposed
in the literature [cf. e.g. 26, 33–36], which account for the observed tension-
compression asymmetry of SMA materials, as well as the development of a
small volumetric strain during the A → Md phase transformation. Due to the
large number of different SMA alloys, the selection of an appropriate trans-
formation surface can be a difficult task and is specific for each alloy. The
simple choice of transformation surface also helps in the Sect. 6.5, where the
necessary relations are found for the material parameters so that the model
is consistent with the selected phase diagram. Since the main goal of the cur-
rent chapter is the formulation of a consistent model capable of accounting
for phase transformation and detwinning of self-accommodated martensite
over a wide range of stresses and temperatures, the choice of more accurate
transformation detwinning surfaces was not addressed in detail.

The reverse transformation tensor of the last equation (6.4.45) also deserves
some attention. The reason why two different transformation tensors are used
for loading and unloading is the need to account for reorientation in multiaxial
loading paths. In general, if the direction of the stress state is changed, some
martensitic variants will reorient in the new direction, thus changing the direc-
tion of the inelastic strain. A constitutive model with a single volume fraction
for all detwinned variants of martensite cannot account for this process. If
the same transformation tensor is used for forward and reverse transforma-
tions, it may happen that residual inelastic strain is present after unloading



6.5 1-D Reduction and Material Parameter Determination 305

to austenite (e.g. c3 = 1 and the stress becomes zero) from a non-proportional
loading path. The unloading criterion used above ensures that when c3 = 1,
the inelastic strain becomes zero. It reduces to the same transformation tensor
used by Qidwai and Lagoudas [32] when ξ̇3 = 0.

6.5 One-Dimensional Reduction and Material Parameter
Determination

Having defined the model in the three dimensional case, we are presented
with two interrelated tasks: determine the material parameters from physically
observable quantities and verify that the model conforms to the phase diagram
of Sect. 6.3. To achieve both goals we need to examine how the model behaves
for uniaxial stress states.

6.5.1 Reduction of the Model to the Uniaxial Stress State

In this section, we will explicitly write the transformation surfaces in the uni-
axial stress case. Furthermore, we will also show that the material parameters

Y ±
1 , Y ±

2 , Y3,Δ
±
1 ,Δ±

2 ,Δ3, (6.5.46)

are directly related to the shape of the phase diagram and can be completely
determined if it is known.

To begin, assume that we have an SMA rod, subjected to a uniaxial ten-
sion/compression. Assume further that Hd(σ̄′) = Ht(σ̄′) = H is a constant.
Then, at any material point of this rod, the stress state is:

σ11 = σ, σ12 = ... = σ33 = 0. (6.5.47)

Since uniaxial loading is always proportional, any combination of detwinning
M t → Md, forward A → Md or reverse Md → A by virtue of (6.4.44) and/or
(6.4.45) will result in a transformation direction tensor:

Λt,d
11 = H, Λt,d

22 = Λt,d
33 = −1

2
H, Λt,d

12 = Λt,d
13 = Λt,d

23 = 0. (6.5.48)

With this in mind, and in light of equations (6.4.27)-(6.4.29) and (6.4.41)-
(6.4.43), the inequalities (6.4.38)-(6.4.40) take the form:

π̂(σ, T ) − Δ+
1 f+

1 (c1) ≤ Y +
1 (6.5.49)

−π̂(σ, T ) + Δ−
1 f−

1 (c1) ≤ Y −
1 (6.5.50)

σH + π̂(σ, T ) − Δ+
2 f+

2 (c2) ≤ Y +
2 (6.5.51)

−σH − π̂(σ, T ) + Δ−
2 f−

2 (c2) ≤ Y −
2 (6.5.52)

σH − Δ3f3(c2) ≤ Y3 (6.5.53)
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where π̂ denotes π̃ for the uniaxial stress case and it has the evaluation

π̂(σ, T ) =ΔSσ2 + Δασ(T − T0)

− ρΔc

[

(T − T0) − T ln
(

T

T0

)]

+ ρΔs0T − ρΔu0. (6.5.54)

We now want to show that the parameters (6.5.46) are responsible for the
relative position and width of the transformation strips in the phase diagram.
The transformation strips, on the other hand, are completely determined by
the start and finish detwinning stresses σs and σf , the transformation temper-
atures Ms, Mf , At

s, At
f , Ad

s , Ad
f , as well as the start and finish temperatures

Ts(σf ) and Tf (σf ) for the A → Md transformation at constant (uniaxial)
stress σ = σf

4.
To show that (6.5.46) can be determined based on σs, σf , Ms, Mf , At

s, At
f ,

Ad
s , Ad

f , Ts(σf ) and Tf (σf ) we assume that the material constants ΔS, Δα,
Δs0 and Δu0, entering the expression for π̂, are known from either mechanical
or calorimetric measurements (See Sect. 6.5.2). Therefore, π̂ is a well defined
function of σ and T . Whenever one or more transformations are taking place
(that is, ξ̇i 	= 0, i = 1, 2, 3), the respective inequalities (6.5.49)-(6.5.53) turn
into equalities (cf. conditions (6.4.37)).

The parameters (6.5.46) are then established as follows: Consider a loading
path in which a purely twinned SMA (c1 = 1, c2 = c3 = 0 is loaded at
temperature below Mf . As the detwinning deformation progresses, ξ̇3 > 0,
and the inequality (6.5.53) becomes an equality:

σH − Δ3f3(c2) = Y3, (6.5.55)

Therefore, at the beginning of the detwinning deformation one has σ = σs,
c2 = 0, and the last equation, together with (6.4.35), implies:

Y3 = σsH.

Similarly, upon completion of the deformation, one has σ = σf , f3(1) = 1 and
Φ3 = 0, hence:

Δ3 = H(σf − σs).

The material parameters Y ±
1 , Δ±

1 for the A ↔ M t are determined with
the help of a zero stress cooling/heating cycle. During cooling, the forward
transformation surface (6.5.49) turns into equality:

π̂(σ, T ) − Δ+
1 f+

1 (c1) = Y +
1 , (6.5.56)

which, in conjunction with (6.4.32), yields:

4 In this model, there is no assumption of a triple point, so the A → Md strip can
be located at or to the right of the intersection point of the finish lines for the
A → M t and M t → Md transformations.
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Y +
1 = π̂(0,Ms) =

− ρΔu0 + ρ

(

MsΔs0 − Δc

[

(Ms − T0) − Ms ln
(

Ms

T0

)])

, (6.5.57)

Δ+
1 = π̂(0,Mf ) − Y +

1 = π̂(0,Mf ) − π̂(0,Ms)

= ρ

(

(Mf − Ms)Δs0 − Δc

[

Mf − Ms + Ms ln
(

Ms

T0

)

−Mf ln
(

Mf

T0

)])

.

(6.5.58)

Similarly, during the heating (6.5.50) becomes:

− π̂(σ, T ) + Δ−
1 f−

1 (c1) = Y −
1 , (6.5.59)

hence Y −
1 and Δ−

1 can be determined:

Y −
1 = −π̂(0, At

f )

= ρΔu0 − ρ

(

At
fΔs0 − Δc

[

(At
f − T0) − At

f ln

(
At

f

T0

)])

, (6.5.60)

Δ−
1 = π̂(0, At

s) + Y −
1 = π̂(0, At

s) − π̂(0, At
f )

= ρ

(

(At
s − At

f )Δs0 − Δc

[

At
s − At

f + At
f ln

(
At

f

T0

)

− At
s ln

(
At

s

T0

)])

.

(6.5.61)

Determining the parameters for the stress-induced martensitic transforma-
tion is done by considering two loading paths. First, assume a fully detwinned
state at some temperature below Ad

s and at zero stress (this can be obtained
by loading isothermally at T ≤ Mf until all the material has detwinned and
then unloading until zero stress is reached) and heat, while maintaining the
material stress-free. Then ξ̇2 < 0 and (6.5.52) becomes an equality:

− σH − π̂(σ, T ) + Δ−
2 f−

2 (c2) = Y −
2 . (6.5.62)

Noting that σ = 0 throughout the loading path, and with the help of (6.4.34),
Y −

2 and Δ−
2 are found to be:

Y −
2 = −π̂(0, Ad

f )

= ρΔu0 − ρ

(

Ad
fΔs0 − Δc

[

(Ad
f − T0) − Ad

f ln

(
Ad

f

T0

)])

, (6.5.63)

Δ−
2 = π̂(0, Ad

s) + Y −
2 = π̂(0, Ad

s) − π̂(0, Ad
f )

= ρ

(

(Ad
s − Ad

f )Δs0 − Δc

[

Ad
s − Ad

f + Ad
f ln

(
Ad

f

T0

)

− Ad
s ln

(
Ad

s

T0

)])

.

(6.5.64)
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Finally, in order to determine Y +
2 and Δ+

2 , load the material in austenite to
some stress level, for example, σf and then cool the material. Let the critical
temperatures for the A → Md transformation at this stress level be Ts(σf )
for the start and Tf (σf ) for the finish. Then the constraint (6.5.51) becomes:

σH + π̂(σ, T ) − Δ+
2 f+

2 (c2) = Y +
2 , (6.5.65)

which results in

Y +
2 = σfH + π̂(σf , Ts(σf )), (6.5.66)

Δ+
2 = σfH + π̂(σf , Tf (σf )) − Y +

2 . (6.5.67)

Note that it is necessary to load to a stress equal or higher than σf , in order
to avoid development of twinned martensite.

6.5.2 Determination of Material Parameters

A successful implementation of a material model depends on the ability to
express the material parameters from physically observable quantities. The
material parameters entering the present model can be divided into two
groups. The first group is parameters with direct physical interpretation:

Si,αi, ci, si
0, u

i
0,H

t,Hd, (6.5.68)

and parameters related to the structure of the phase diagram. The transfor-
mation hardening of the material form the second group:

Y ±
1 , Y ±

2 , Y3,Δ
±
1 ,Δ±

2 ,Δ3, f
±
1 , f±

2 , f3. (6.5.69)

In both groups, the index i takes the values A,M for austenite and martensite,
respectively.

The first group of parameters can be measured directly. A polycrystalline
SMA, unlike the single crystal SMAs, is an isotropic material. Therefore, the
compliances SA, SM are determined if the Young’s modulus EA, EM and
Poisson’s ratio νA, νM of the two phases are available. These can be deter-
mined from a standard uniaxial pseudoelastic test. The thermal expansion
coefficient αA, αM for an isotropic material are scalars and are determined
from an isobaric test and the specific heats cA, cM , the change in specific
entropy ρΔs0 between the two phases and the change of specific internal
energy Δu0 can be determined from calorimetric measurements [20, 22]. The
maximum uniaxial transformation strain H can be obtained from either an
isothermal test or from an isobaric test [20].

Next, in Sect. 6.5.1 the first six parameters in (6.5.69) were expressed
using the critical temperatures Ms, Mf , At

s, At
f , Ad

s , Ad
f , as well as the crit-

ical stresses σs and σf , all of them defining the phase diagram. Therefore,
the problem of determining them is reduced to finding the material phase
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diagram. The critical temperatures can be measured in the following way: the
transformation temperatures Ms, Mf , At

s, At
f are easily determined from a

DSC test, such as the one shown in Fig. 6.2. Knowing the critical temper-
atures at zero stress is sufficient to determine the A → M t and M t → A
transformation strips. On the other, the Ad

s , Ad
f temperatures hand can be

found by first detwinning the specimen completely. It is then mechanically
unloaded in a way that preserves the material state and then a DSC test is
performed as described in Sect. 6.2. To do the DSC test, it is necessary to
perform the mechanical loading and the subsequent preparation of a DSC
sample from the loaded specimen at temperatures below Ad

s , which may not
always be possible. A more direct approach relies on several isothermal tests
above At

f , which allow one to construct both the A → Md and Md → A strips
and therefore, also the Ad

s , Ad
f temperatures. Isothermal tests at temperatures

below Mf can be used to determine σs and σf and hence the M t → Md strip.
Finally, we have to determine the five hardening functions f±

1 , f±
2 , f3. The

function f3 can be curve-fitted from a stress-strain relationship obtained in a
standard isothermal loading test at some fixed temperature below Mf . If one
assumes that the internal variable ξ3 is proportional to the inelastic strain
developed during detwinning, then equation (6.5.55) can be used to curve-fit
f3(c2). Similarly, equations (6.5.62) and (6.5.65), can be used to curve-fit the
functional form of f−

2 and f+
2 , respectively. A curve-fit for f−

1 (c1) and f+
1 (c1)

can be obtained by using a DSC measurement in conjunction with equations
(6.5.59) and (6.5.56).

The presentation of the current model is concluded in the next two sec-
tions by demonstrating that it reproduces the phase diagram of Fig. 6.4 and
by discussing certain restrictions on the relative position of the phase trans-
formation strips.

6.5.3 The Uniaxial Transformation Strips and the Phase Diagram

The one dimensional reduction of the model (Sect. 6.5.1) resulted in the
inequalities (6.5.49)-(6.5.53) for the elastic domains of the respective trans-
formations. It is clear from equation (6.5.55) that the transformation strip
in stress-temperature space for the M t → Md deformation is the horizontal
strip

σs ≤ σ ≤ σf ,

which is consistent with the assumptions of Sect. 6.3.
Next, assume for a moment that the elastic moduli of the two phases, the

thermal moduli and the specific heats of the two phases are equal:

SA = SM , αA = αM , ca = cM .
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In this case, equation (6.5.54) reduces to

π̂ = ρΔs0T − ρΔu0.

Then, equation (6.5.56) implies that the transformation strip for the A → M t

is defined by
Mf ≤ T ≤ Ms

and from equation (6.5.59), the transformation strip for the M t → A is the
vertical region

At
s ≤ T ≤ At

f .

It can also be seen from equations (6.5.65) and (6.5.62) that, for any given
c2, the transformation line for both A → Md and Md → A transformation is
linear and has slope

CA = CM = −ρΔs0

H
.

Therefore, the A → Md and Md → A strips have the shape shown in Fig. 6.4,
and the slope CM = CA is given by the above formula.5

When the moduli for the two phases are different, the transformation lines
for the A ↔ M t and A ↔ Md depart from the above linear relationships.
However, the terms ΔSσ2, Δασ and ρΔc

[
(T − T0) − T ln

(
T
T0

)]
, which will

now appear in (6.5.54), are all an order of magnitude smaller than the leading
term ρΔs0T . The departure from a linear shape is therefore visible for high
stress (several hundred MPa) for A ↔ M t transformation and for both higher
stresses and away from the equilibrium temperature T0 for the A ↔ Md

transformation. It is easy to show that in the general case of different elastic
and thermal moduli, the meaning of the slope CM = CA now becomes the
tangent to the transformation surface at zero stress.

6.5.4 Relative Position of the Transformation Surfaces

As mentioned in Section 6.3, the current model does not assume any triple
point as is often done in the literature [1]. As a result, the A → Md strip
can be translated according to experimental measurements. However, certain
restrictions, which result from the assumed functional dependence of f1, f2

and f3 are still valid. To the best of the authors knowledge, two of these exist
and will be mentioned briefly here. Both of them occur for certain specific
material parameters.

First, the transformation strips M t → A, Md → A and M t → Md must
have a zero intersection. It is easy to show that if they do, the three inequali-
ties (6.5.50), (6.5.52) and (6.5.53) cannot be satisfied simultaneously. In other
words, a simultaneous transformation M t → A, Md → A and M t → Md is
5 This last formula is frequently used (for example, see [32]) as an alternative

method to determine the difference in specific entropies Δs0. See also Problem 3.3.
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not possible. In light of the experimental results of Sect. 6.2, it seems unlikely
that such a situation can occur. Also, it is physically difficult to explain why
some twinned martensite will transform to austenite through an intermedi-
ate detwinned phase, while the rest of the twinned martensite will transform
directly to austenite. This limitation can be removed by assuming a different
functional dependence of f1, for example on c3. Note that if such a trans-
formation is allowed, it is necessary to use all the three internal variables ξ,
because just knowing the rate of change of ci is not sufficient to determine
exactly how the species transformed (cf. equations (6.4.3)-(6.4.5)).

The second limitation of the theory is associated with a bifurcation in
some loading paths (in σ − ε − T space) and certain material parameters.
Suppose that a material is cooled from pure austenite at constant stress,
which is higher by a finite amount than the critical stress for the M t → Md

deformation. As there is no available M t, no Md can be produced so that the
inequality (6.5.53) is turned to equality. Suppose further, that, as the cooling
proceeds, the A → M t surface is reached and there is still some available A.
That is, Φ+

1 = 0, Φ+
2 = 0 and Φ3 > 0. As the Φ1 surface is first activated,

some (small) amount of M t is produced so that (6.5.49) becomes equality.
This Md must all be detwinned via M t → Md (ξ̇3 > 0) in order to relax
the violation of (6.5.53). As this happens, c1 again becomes 0, thus (6.5.49)
is again violated, hence more M t must be produced, and so forth, until all
the austenite is exhausted via this transformation A → M t → Md. Thus
an infinitesimal drop in the temperature, which activates Φ+

1 (cf. equations
(6.4.41) and (6.5.49)) and produces the first M t, will result in a finite amount
of A → Md. This implies a finite production of transformation strain and this
results in strain discontinuity, which, to the best of the our knowledge, has
not been observed in practice. Clearly, this situation is possible if the finish
line for the A → Md transformation passes above the point (Ms, σf ) in stress
temperature space. Then, as long as f1 is a function of c1 and f3 a function of
c2, and regardless of the functional form of fi (cf. equation (6.4.36)), a simple
isobaric path at stress equal to σf will result in the above situation.

Hence, to prevent such behavior, it is necessary (but not sufficient) to
require that the finish A → Md line passes at or below the point (Ms, σf ). It
is easy to see that for the selected linear form of the hardening function (6.4.36)
the above loading path discontinuity is not possible if the finish A → Md line
passes at or below the point (Ms, σf ) and Δ3 > Δ+

2 . For nonlinear functions,
fi, it is more difficult to derive sufficient conditions for which there is no
discontinuity. Whether such materials, for which the finish A → Md line
passes above the point (Ms, σf ), exist is an open question. Note that, for
such class of materials a different functional dependence of f1 may provide a
solution to the discontinuity problem.
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6.6 Numerical Examples

The numerical examples in this section were selected so that complex load-
ing paths in stress-temperature phase space could be tested. First, a uni-
axial example (Sect. 6.6.1) of a constrained SMA rod is considered. A one-
dimensional setting allows is to easily determine the loading path in stress-
temperature space, and solve the relevant equations by symbolic software. In
the example, an SMA rod is cooled from the austenitic phase to low temper-
ature while the strain is kept constrained. This problem allows us to demon-
strate the cut-off of the A → Md transformation in untrained SMA materials
and the predominant development of M t from A at low stress levels. Second,
the constitutive model was then numerically implemented in the full 3-D set-
ting and was tested on a plane strain problem. An SMA thick plate with a
square hole was loaded at low temperature and then heated while constrained
so that multiple transformations could take place. The results are described
in Sect. 6.6.2. These examples allow us to compute aggregate quantities, such
as recovery stress, which are important in the engineering analysis of SMA
devices.

The basic material parameters used in all examples are given in Table 6.1
and represent generic SMA properties [32]. The selection of the same critical
temperatures for Md → A and M t → A was done to maximize the intersection
region of the two transformation strips (cf. the phase diagram of Fig. 6.4) and
to test the model for multiple transformations in the most severe cases from
a numerical point of view.

6.6.1 Constrained Cooling of an SMA Rod

To get a feeling of the thermomechanical response predicted by this model, a
simple example is presented. Consider a rod in uniaxial stress state (6.5.47),
(6.5.48). The rod is first loaded mechanically to 200 MPa from a stress-free,
fully austenitic configuration, at a constant temperature of 47 ◦C. Then the
two ends of the rod are fixed and it is cooled to −13 ◦C, well below the Mf

temperature. The loading process is plotted in the stress-temperature space
(Fig. 6.6).

Due to the uniform stress state, this problem is simple enough and can be
solved semi-analytically. The stress in the rod is related to the strain by (cf.

Table 6.1. Material parameters used in the SMA model

Material Value Material Value Material Value
constant constant constant

EA 70 × 109 Pa H 0.05 At
f , Ad

f 42 ◦C

EM 30 × 109 Pa CM = CA 4.5 × 106 Pa/(m3K) At
s, Ad

s 22 ◦C
αA 22 × 10−6 ◦C Mf 2 ◦C σs 100 MPa
αM 10 × 10−6 ◦C Ms 18 ◦C σf 200 MPa
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equations (6.4.15), (6.4.24) and (6.5.47)):

σ = E(c1 + c2)
[
ε − α(c1 + c2)(T − T0) − εin

]
. (6.6.70)

The maximal detwinning and transformation strains are the same, e.g. Ht =
Hd = H (see Table 6.1). In the uniaxial case, the inelastic strain is pro-
portional to the volume fraction of detwinned martensite c2 (cf. equations
(6.4.7)-(6.4.9) and (6.5.48)):

εin = Hc2. (6.6.71)

For the particular example under consideration, the rod is initially in the
austenitic phase up to a stress σ0 = 200 MPa, which is below the critical stress
required to initiate the forward, A → Md phase transformation. Without loss
of generality, let this be a tensile stress. Then, the inelastic strain is identically
zero, i.e.,εin = 0, and from equation (6.6.70), the rod has developed uniform
elastic strain given by ε0 = σ0/EA.

At this point of the loading path, the strain is fixed and the SMA is grad-
ually cooled. At first, a thermoelastic contraction of the rod slightly increases
the stress. When the A → Md transformation surface is reached, transfor-
mation strains begin to develop. At this point, one has to solve equations
(6.6.70) and (6.6.71), along with the rule of mixtures (6.4.15) and the rele-
vant transformation surfaces (B.2.23). This is done using symbolic software
(Mathematica). The material state during the entire loading path is plotted
in stress-temperature space in Fig. 6.6 and the relevant transformation strips
are also shown. Observe that the rod is loaded in tension at the austenitic
phase to a stress lower than required for phase transformation. The strain
is then fixed and the rod is cooled. The rapid drop of the stress during the
phase transformation is caused by the development of inelastic strains. Since
the total achievable inelastic strain is an order of magnitude larger than the
initial elastic strain, very little A → Md transformation occurs. For clarity,
only the A → Md, A → M t, M t → Md and transformation strips are shown.

Now, as the transformation strain becomes nonnegative, it will relax the
stress state. Observe that the maximum possible value of the transformation
strain H is an order of magnitude larger than the elastic strain ε0, (which
is kept fixed during the cooling). Therefore, very little phase transformation
is required to produce transformation strains comparable with ε0, and thus
to drastically reduce the stress. In this example, the A → Md surface termi-
nates at some finite value of stress σs (which, as discussed before, is material-
dependent). Slightly before this point, the A → M t transformation surface is
also reached and the material undergoes combined transformation.

As the stress decreases below the critical stress σs, only the A → M t

transformation proceeds. In the process, no further transformation strain is
produced, but the stiffness changes. The stiffness of the martensite EM is
less than the stiffness of austenite EA, so the effective stiffness decreases
(cf. equation (6.4.15)). On the other hand, the total strain is fixed. There-
fore, neglecting the thermal strains, and noting that a very small amount of
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Fig. 6.6. A constrained cooling path in stress-temperature space.

A → Md has occurred, from equation (6.6.70) it follows that the stress in the
rod will decrease by a factor of EA/EM . This is clearly visible in Fig. 6.6.
Upon completion of the transformation, the material again exhibits thermoe-
lastic contraction, which causes small increase in stress. Additional uniaxial
examples on multiple transformations while heating a constrained rod can be
found in [12].

6.6.2 Thermomechanical Loading of an SMA Thick Plate with a
Cylindrical Hole

The numerical example in this section involves a complex thermal and
mechanical loading path applied to an SMA thick plate with a cylindrical
hole. A 2-D cross-section of the geometry is shown in Fig. 6.7(a). It is assumed
that in the off-plane direction the body is constrained, so that plane strain
conditions are achieved in the cross-section. As is usual for plane strain, the
stress is still three-dimensional, and in light of equations (6.4.45), (6.4.44) and
(6.4.10), so are the inelastic strains (6.4.7). This, combined with both thermal
and mechanical loading applied to the body, allows us to test the SMA model
during a complex loading path. In addition, this section will show that the
thermal loading, in conjunction with the plane strain conditions, also leads to
evolution of a non-proportional stress state in the body.

The numerical example is solved using a displacement-based finite ele-
ment method. The constitutive model was implemented numerically using
return mapping algorithms (Appendix B). All discretizations use triangular
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Fig. 6.7. A plane strain perforated SMA thick plate model problem

meshes and standard linear Lagrangian finite element spaces. The SMA mate-
rial properties used represent generic NiTi SMA material used previously in
the literature [32] and are given in Table 6.1.

Initially, the SMA thick plate is stress-free and in the self-accommodated
phase, i.e. c1 = 1 everywhere in the domain. The thermomechanical loading
that the square is subjected to is shown in Fig. 6.7(b). The thick plate is first
loaded mechanically at constant temperature T = −13 ◦C as follows: the left
side of the square is fixed against horizontal displacement, but is allowed to
roll in the vertical direction; the right side is pulled uniformly by the amount
of 0.002m in the horizontal direction and the side is again allowed to move
in the vertical direction; the remaining part of the boundary (including the
hole) is stress-free. The second loading step consists of keeping the horizontal
component of the displacement fixed and uniformly raising the temperature
to T = 77 ◦C.

The first loading step was used to determine a suitable mesh size for the
entire simulation. This was done by starting with a very coarse mesh (Fig. 6.8)
and then consecutively refining it (Fig. 6.9–6.12). Due to obvious symmetry
consideration, only one quarter of the domain was used in the calculations.
The stresses are shown as is, i.e. piecewise-constant over each element. The
solution was judged to be accurate enough when the non-smoothed, piecewise-
constant stress components in each element showed little variation over ele-
ment boundaries. Based on this, the mesh shown in Fig. 6.10 (8964 elements,
9274 DOF) was selected for the rest of the computation. While the solution
shown in Fig. 6.12 (110793 elements, 111994 DOF) is clearly the best, in com-
plicated nonlinear problems, such as the ones involving SMAs, the cost of
assembly and the memory requirements needed to save the material state at
each integration point make it desirable to keep the number of elements at a
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(a) Mesh, h ∼ 0.04, 1286 DOF (b) σ11

Fig. 6.8. Initial mesh, T = 260K, end of first loading step.

(a) Mesh, h ∼ 0.02, 3118 DOF (b) σ11

Fig. 6.9. First refinement, T = 260K, end of first loading step.

(a) Mesh, h ∼ 0.01, 9274 DOF (b) σ11

Fig. 6.10. The triangular FEM mesh selected for the entire computation and asso-
ciated stresses and internal variable at the end of the first loading step (T = 260K).
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(a) Mesh, h ∼ 0.005, 31054 DOF (b) σ11

Fig. 6.11. Third refinement, T = 260K, end of the first loading step.

(a) Mesh, h ∼ 0.0025, 111994 DOF (b) σ11

Fig. 6.12. Fourth refinement, T = 260K, end of first loading step.

minimum. In this respect, the second refinement (8964 elements, 9274 DOF)
is acceptable enough and was used in the rest of the simulations.

It can be seen from this first part of the simulation that stress concentra-
tions develop near the top and bottom edge of the hole. The effective stress in
these locations become sufficiently high for the detwinning of small amounts
of self-accommodated martensite, as shown on Fig. 6.13. If the stress concen-
trations are compared to a pure elastic solution, the development of inelastic
strains in the detwinning process tends to reduce this stress concentration.
Note that as the heating begins, the material undergoes only thermal expan-
sion and no transformation occurs. As a result, the von Mises stress decreases
slightly by T = 280K and the internal variables do not change. The heat-
ing step is shown in Fig. 6.14. As the material is slowly heated, the reverse
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(a) c2 at T = 260, 280K (b) von Mises Stress, T =

260K

(c) von Mises Stress, T =

280K

Fig. 6.13. The martensitic volume fraction (a) and the von Mises stress (b) at the
completion of the initial loading.

transformation M t → A occurs (c). Since the austenite is considerably stiffer
than martensite, and the material is constrained, the stresses also increase.
This results in a simultaneous M t → A,Md transformation, which is mani-
fested in an increase in the volume fraction of Md

During the heating process, the material undergoes two distinct processes
– first simultaneous M t → A,Md transformations then followed by a Md → A
transformation. When the second loading step begins, the material first experi-
ences initial linear thermoelastic expansion. The conditions are of plane strain:
the horizontal component of the displacements is fixed and the vertical dis-
placements are not constrained during the heating. Hence, any thermal expan-
sion will result in a nonhomogeneous change in the stress state. During the
linear thermoelastic expansion (T < At

s), this results in small relaxation of
the effective stress (Fig. 6.13(c)). As the critical temperature for the M t → A
transformation is reached, the self-accommodated martensite begins to trans-
form to austenite. The stiffness of austenite is approximately 2.3 times that
of martensite (see Table 6.1) and due to the fixed horizontal displacement,
the stresses increase throughout the thick plate. The effective stress increases
correspondingly and this causes further detwinning of martensite in some
areas of the thick plate, resulting in a simultaneous M t → A,Md transforma-

(a) von Mises stress (b) c1 (M t) (c) c2 (Md) (d) c3 (A)

Fig. 6.14. Solution for square hole problem at T = 310K.
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tions, mostly near the top and bottom parts of the hole (Fig. 6.14). This is
manifested further as a increase in c2 in comparison to the amount that was
produced during the first loading step. The effective stress and c2 after the
completion of the M t → A transformation are shown in Fig. 6.15.

The areas where detwinned martensite is present have generally higher
effective stress (above σs), compared to the rest of the domain. Hence, the
reverse transformation of detwinned martensite (Md → A) does not hap-
pen until a much higher temperature, because the corresponding transforma-
tion surfaces exhibit stress dependence (see Fig. 6.4). Around T = 335K, the
Md → A transformation begins in areas with lowest effective stress. During
this phase, the inelastic strains decrease according to the transformation rule
(6.4.8),(6.4.45). Again, due to the constraint on the displacements imposed by
the boundary conditions, the elastic portion of the stress generally increases,
which leads to a corresponding (non-uniform) increase in the stress during the
reverse transformation (Fig. 6.16–6.18).

(a) von Mises Stress (b) c2 (Md) (c) c3 (A)

Fig. 6.15. By T = 320K the twinned martensite is depleted. The volume fraction
of Md (b) has reached approximately 0.11 and the rest is in the austenitic phase (c).

(a) von Mises Stress (b) c2 (Md) (c) c3 (A)

Fig. 6.16. Around T = 335K the temperature is sufficient for the reverse Md → A
transformation to begin.
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(a) von Mises Stress (b) c2 (Md) (c) c3 (A)

Fig. 6.17. Further heating (T = 340K) causes further Md → A transformation
and subsequent decrease in c2 (b), and the inelastic strain εin, and increase of c3

(c). Due to the constrained displacement and the decrease of the inelastic strain,
the stresses begin to increase (a).

(a) von Mises Stress (b) c2 (Md) (c) c3 (A)

Fig. 6.18. The Md → A is complete almost everywhere in the domain by the time
the temperature reaches T = 350K (cf. (c)). Note that the maximum value for the
effective stress has reached increased to approximately 166 MPa (cf. (a)).

6.7 Summary

A new 3-D constitutive model for polycrystalline SMAs based on thermody-
namic potentials was presented. The model can account for both development
of stress-induced martensite directly from austenite (pseudoelasticity), as well
as detwinning of twinned martensite. This is accomplished by describing the
material state as a mixture of three phases – twinned martensite, detwinned
martensite and austenite, and by using the three possible “reactions” between
these phases as internal variables. The model is made consistent with a mod-
ified stress-temperature phase diagram. A key new experimental finding is
the existence of separate reverse transformation temperatures for detwinned
and twinned martensite. This is obtained through a series of calorimetric
measurements and is incorporated in the model. The constitutive model was
numerically implemented using a return mapping algorithm. The implementa-
tion was integrated into a numerical environment and tested for several model
problems.
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6.8 Problems

6.1. With the 1-D model derived in Sect. 6.5.1, model the thermomechani-
cal response of the SMA material described in Table 6.1 subjected to three
different loading conditions:

1. Isothermal loading to 600 MPa at a temperature above Af .
2. Isothermal loading to 600 MPa at a temperature between As and Af .
3. Cooling from Af to a temperature below Mf followed by isothermal load-

ing to 600 MPa.

Compare the results to those obtained using the 1-D form of the polynomial
hardening model presented in Chapter 3.

6.2. Using the model derived in 6.5.1 and the material properties from
Table 6.1, evolute the thermomechanical response of an SMA bar specimen
under the following conditions:

1. The SMA bar is cooled from Af to below Mf at a constant stress greater
than σf .

2. The SMA bar is cooled from Af to below Mf at a constant stress less
than σf .

6.3. Using the constitutive model presented in Chapter 3 and in this chapter,
and the material properties from Table 6.1, reproduce the results shown in
Fig. 6.6.

6.4. An SMA wire is wrapped around a cylinder after having been prestrained
while in martensite at temperature T = Mf − 10 ◦C by a detwinning defor-
mation resulting in εd = 0.04, and has zero stress in this initial configuration.
Assuming a rigid cylinder and no friction between the SMA and the cylinder,
find the axial stress in the wire as a function of temperature when the SMA
is heated to T = Af + 50 ◦C and then cooled to its initial temperature T0.

1. Plot the thermomechanical loading path on the stress-temperature space,
similar to Fig. 6.6 and indicate the phase transformation lines on the same
plot.

2. Does the final stress return to zero again on cooling to T0 or does the
SMA return to a different stress state?

3. How does the extended SMA model of this chapter differ from the one
presented in Chapter 3 for the prediction of the final state upon returning
to T0?

6.5. Rework problems 3.8, 3.9 and 3.11 in Chapter 3 using the extended SMA
model presented in this chapter.
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6.6. The selection made for the independent variables of the hardening func-
tions in this chapter are not the only possible ones. The current selection
imposes certain constraints on the arrangement of the transformation regions
in the phase diagram. Other choices, for example a dependence of the A ↔ M t

hardening function on the total amount of austenite rather than twinned
martensite, are possible and could be explored. Discuss the modifications nec-
essary in the extended SMA model presented in this chapter to account for
such a choice of independent variables in the hardening functions.

6.7. The phase diagram is expected to evolve as the material is cycled through
a certain thermomechanical loading path. The evolution could be better
understood in the case of cyclic pseudoelastic loading paths. Propose a refor-
mulation of the SMA model presented in this chapter to account for such an
evolution in the regions of the phase diagram.
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7

Modeling of Magnetic SMAs

B. Kiefer and D. C. Lagoudas

This chapter discusses a new category of shape memory alloys, namely
magnetic shape memory alloys (MSMAs). The unique magnetomechanical
constitutive behavior that these materials exhibit is described in detail and
is explained by connecting the macroscopic response to micro-scale mecha-
nisms. A constitutive model for MSMAs is introduced, which follows the same
phenomenological approach used in Chapters 3–6 for the modeling of conven-
tional shape memory alloys. The modeling of MSMAs poses new challenges,
since magnetomechanical coupling effects have to be addressed and additional
independent and internal state variables have to be incorporated.

7.1 Introduction

Magnetic shape memory alloys (MSMAs), often referred to as ferromagnetic
shape memory alloys (FSMAs) [1–3], have recently emerged as a new type
of active and multifunctional material. In these alloys, recoverable strains
of up to 10% can be induced by magnetic fields, which is one or even two
orders of magnitude larger than the magnetic-field-induced strains observed
in ordinary magnetostrictive materials, such as Terfenol-D [4] and Galfenol
[5]. These strains are also much larger than the electric field-induced strains
in piezoelectrics [6]. The macroscopically observable field-induced strains in
MSMAs are caused by the microstructural reorientation of martensitic vari-
ants. Since the variants have different preferred directions of magnetization,
applied magnetic fields can be used to select certain variants over others,
which results in the macroscopic shape change. MSMAs also exhibit con-
ventional temperature- or stress-activated shape memory behavior [7–10]. At
comparable recoverable strains, however, they have an advantage over con-
ventional shape memory alloys due to the much higher frequency range over
which they can be operated, up to 1 kHz [11]. This is because their actuation
is driven by the magnetic-field-induced reorientation of martensitic variants
and is not limited by heat transfer [12].

D.C. Lagoudas (ed.), Shape Memory Alloys, DOI: 10.1007/978-0-387-47685-8 7,
© Springer Science+Business Media, LLC 2008



326 7 Modeling of Magnetic SMAs

The main limitation of MSMAs is the relatively low blocking stress level
of typically 6–10 MPa, above which magnetic-field-induced strains are com-
pletely suppressed [1, 13]. The field-induced strain response of MSMAs is
nonlinear, hysteretic, stress-dependent, and intrinsically coupled to the mag-
netization response of the material. The coupled macroscopic response is
driven by three mechanisms: the motion of magnetic domain walls, the local
rotation of magnetization vectors (both of which also occur in regular ferro-
magnetic materials [14–16]), and field-induced variant reorientation.

This unique coupling of mechanical and magnetic properties (and thermal
properties if one considers the conventional shape memory behavior) makes
MSMAs interesting materials for smart structures, as well as actuator [11,
17] and sensor applications [18, 19]. A different class of applications take
advantage of the unique and adjustable magnetic properties of MSMAs in
solenoid transducers [2] and voltage generators [20].

The most widely investigated magnetic shape memory materials have been
Ni-Mn-Ga alloys [21]. Martensitic transformations in Ni2MnGa alloys were
first conclusively reported by Webster et al. [22]. Zasimchuk et al. [23] and
Martynov and Kokorin [9] performed detailed studies on the crystal structure
of martensite in the Ni2MnGa alloy. Ullakko et al. [4] are credited with first
suggesting the possibility of a magnetic field-controlled shape memory effect
in these materials. They observed magnetic-field-induced strains of nearly
0.2% in stress-free experiments on martensitic Ni2MnGa single crystals. Fur-
ther work on off-stoichiometric intermetallic compounds near the composition
Ni2MnGa, in combination with thermomechanical treatments and the utiliza-
tion of a better understanding of the crystallographic structure of these alloys,
has yielded larger field-induced strains of 6% [1] and up to 10% [24] in single
crystals. Other magnetic shape memory alloys have been studied including
Fe-Pd [25–28], Fe-Ni-Co-Ti, Fe-Pt, Co-Ni-Ga, Ni-Mn-Al [29–34] and Co-Ni-
Al [10, 35]. These alloys exhibit lower field-induced strains, but they can have
other advantages. The largest field-induced strains that have been observed in
Fe-Pd, for example, are 3.1% [28, 36], but this material is much more ductile
than Ni-Mn-Ga [25].

The magnetic-field-induced strains that can be generated in polycrystalline
magnetic shape memory alloys are smaller than those observed for single crys-
tals [37–41]. One effort aimed toward increasing the strain output of polycrys-
tals is based on creating favorable texture in these materials. Marioni et al. [42]
calculated the upper bound for the achievable field-induced strain in untex-
tured NiMnGa polycrystals to be 21% of the single-crystal value and at most
50% for textured crystals.

The phenomenon of magnetic-field-induced austenite-martensite phase
transformations has also been investigated. Such transformations have been
observed in Fe-Pt [43], Ni-Mn-Ga [44, 45] and Ni-Mn-Fe-Ga [37] alloys.
Magnetic fields have also been shown to influence the temperature- or stress-
induced austenite-martensite phase transformation in MSMAs [37].
Furthermore, Ni-Mn-Ga alloys have exhibited several different martensite
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morphologies and thus intermartensitic phase transformations [8, 46, 47]. The
work presented here, however, is focused on the well-established MSMA behav-
ior as caused by the magnetic-field-induced martensitic variant reorientation.

7.2 Properties of Magnetic SMAs

A general introduction to the constitutive behavior of MSMAs was given in the
previous section. In this section a more detailed description of the connection
between the evolving crystallographic and magnetic microstructure of MSMAs
and the observed macroscopic response is provided. This knowledge will then
be used to motivate the formulation of the constitutive model.

7.2.1 Magnetic-Field-Induced Strain Response of MSMAs

Since the ternary intermetallic compound Ni-Mn-Ga is the most widely inves-
tigated magnetic shape memory alloy, it shall be the focus of the following
discussion, which does not imply that the basic concepts or the modeling
approach presented in this work are restricted in any way to this particular
alloy.

The high temperature austenite phase of Ni-Mn-Ga alloys near the com-
position Ni2MnGa exhibits a L21 Heusler-type structure, in which all of the
atoms are located in the sites of a body-centered cubic lattice [22]. The austen-
ite phase is paramagnetic above the Curie temperature, which for the stoi-
chiometric composition of Ni2MnGa is 376 K [44], and ferromagnetic below
the Curie temperature. The Curie temperature shows only a slight variation
with changes in the composition [44, 48]. A strong compositional dependence,
however, is observed for the austenite-martensite phase transformation start
temperature [48–50], which is 202 K in stoichiometric Ni2MnGa [44]. The
martensite in these alloys can be of five-layered tetragonal (5M), seven-layered
orthorhombic (7M), and non-modulated tetragonal martensite (NM) morpho-
logy [8, 46, 47]. Here only the most commonly observed tetragonal martensite
of Ni2MnGa is considered.

A simplified representation of the crystal structure, which is usually
adopted for convenience [51, 52], is shown in Fig. 7.11. The undeformed auste-
nite has cube edges of length a0, whereas the undeformed tetragonal marten-
site unit cell has short and long edges of lengths a and c, respectively. Typical
lattice parameters for Ni2MnGa have been reported [22, 23, 53–55].

Since this transition temperature is well below the Curie temperature, the
martensitic phase is ferromagnetic such that, even in the absence of an external
magnetic field, the martensitic variants are spontaneously magnetized [14, 16].

1 Reprinted from Philosophical Magazine, Special Issue, Vol. 85, Issues 33–35,
Kiefer, B. and Lagoudas, D.C., pp. 4289–4329, Copyright 2005, with permission
from Taylor & Francis, http://www.informaworld.com.
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Fig. 7.1. Crystal structure of the austenitic and the tetragonal martensite phases
in Ni2MnGa. Arrows indicate possible magnetization vector orientations along the
magnetic easy axis of each variant.

The local magnetization vector in each ferromagnetic variant is oriented along
one preferred crystallographic direction named the magnetic easy axis, which
in this case is aligned with the short edge c of the tetragonal unit cell. The
magnetization vectors can be oriented in either the positive or negative easy
axis direction.

If an external field is applied, it is energetically favorable for the magne-
tization vectors to align with the applied field. In MSMAs, three competing
mechanisms are available to achieve this alignment. The first two, the magnetic
domain wall motion and the magnetization vector rotation, are common to all
ferromagnetic materials and shall be discussed shortly. The third mechanism,
which is unique for magnetic shape memory alloys, is the magnetic field-driven
reorientation of martensitic variants. This is possible since the preferred axes
of the tetragonal variants are mutually perpendicular, such that an external
magnetic field can be used to favor certain variants over others. The induced
redistribution of variants leads to the observed macroscopic shape change.

Fig. 7.2 on the facing page schematically illustrates a typical thermo-
magneto-mechanical loading sequence of an experiment in which the magnetic-
field-induced strain response of MSMAs is measured1. Initially, the single
crystalline MSMA specimen is cooled to induce the austenite to martensite
phase transformation. Then a sufficiently high compressive stress is applied
to produce a single variant configuration. In the depicted case, the sample has
been cut such that the [100]-direction of the austenitic crystal aligns with the
compression axis, which is also denoted the x-axis. The compression along this
axis in the martensitic state favors variant 1 (for nomenclature see Fig. 7.1),
since its short axis is along the x-direction, and the two other tetragonal
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Fig. 7.2. Schematic of a typical loading sequence for magnetic-field-induced strain
measurements in MSMA [56–59]. Inserts (a)–(c) depict the arrangement of marten-
sitic variants and magnetic domains at different loading stages.

variants are eliminated. The stress is then lowered to the desired test level,
during which the single variant state is preserved, and kept constant for the
remainder of the experiment. The upper stress bound above which the variant
reorientation is completely suppressed is called the blocking stress σb [56].

The micro-scale schematic (a) of Fig. 7.2 shows the described stress-
induced single martensitic variant configuration, before a magnetic field
is applied. Also depicted are magnetic domains, i. e., regions of uniform
magnetization, which are separated by 180◦ magnetic domain walls, indicated
by horizontal lines. These magnetic domains form to minimize the magneto-
static energy of the configuration [14, 15, 60, 61]. In each domain, the mag-
netization vectors are aligned with the magnetic easy axis of variant 1, which
according to Fig. 7.1 coincides with the c-edge of the tetragonal variant and
the [100]-direction. These magnetization vectors point in either the positive
or negative coordinate direction. Since no external magnetic field is applied,
the two domains are of equal volume fraction such that the macroscopic mag-
netization vanishes.

The application of a magnetic field perpendicular to the direction of
mechanical loading induces the nucleation of variant 2 once a critical thresh-
old is reached. This variant is favored by the magnetic field because its easy
axis is aligned with the y-direction. The mechanism of twin-boundary motion
through variant reorientation is illustrated in more detail in the schematic
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Fig. 7.3. Magnetic-field-induced twin boundary motion.

of Fig. 7.3. With increasing Hy, variant 2 grows at the expense of stress-
favored variant 1. This results in an elongation of the sample along the x-
axis, because the long edge a of variant 2 replaces the short edge c of variant
1 along this direction. The magnetic-field-induced strain is usually measured
with respect to the initial single variant state. Typical magnetic-field-induced
strain response curves are schematically plotted in Fig. 7.41. Note that the
vertical axis marks the total strain, not just the reorientation strain. The ini-
tial strains for the hysteresis loops at each stress level are non-zero, since the
undeformed austenite was assumed as the reference configuration [57], and are
comprised of elastic strain as well as austenite to partially-twinned martensite
transformation strain [62, 63].

The reorientation from the stress-favored into the magnetic-field-favored
variant shows a strong stress level dependence. Fig. 7.4 also explains the nota-
tion for the critical magnetic fields for the start of the forward reorientation
process (variant 1 → variant 2), which is denoted Hs(1,2) and its finish Hf(1,2).
Equivalently, Hs(2,1) and Hf(2,1) are defined as the critical magnetic fields to
start and finish the reverse (variant 2 → variant 1) reorientation process.

The arrangement of twinned martensitic variants and magnetic domains
after the activation of the reorientation process is sketched Fig. 7.2b for a
generic intermediate applied magnetic field level Hs(1,2) <Hy <Hf(1,2). Again,
horizontal and vertical lines indicate 180◦ magnetic domain walls. Slanted
lines indicate twin boundaries [64], which coincide with 90◦ domain walls.
The variant reorientation process can also be visualized as occurring through
the motion of these twin boundaries. Two types of magnetic domains are
present in each twin band.

The volume fraction of the domain in which the magnetization vector
opposes the applied field is less than that of the favorable domain, which
yields a non-zero macroscopic magnetization. In large fields, the unfavorable
domains are eliminated [65]. The magnetization of the material also changes
due to the simultaneously occurring rotation of the magnetization vectors in
variant 1 away from the magnetic easy axis. These rotations are not explicitly
shown in the schematic, but they will be addressed in detail in Sect. 7.2.2.
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Fig. 7.4. Typical total strain-magnetic field response curves for MSMAs at different
stress levels.

At low stress levels, further increase of the magnetic field completely elimi-
nates variant 1 at the threshold value of Hf(1,2) such that the maximum
reorientation strain is achieved. If the field is increased above Hf(1,2), the
strain remains constant. The resulting single variant, single domain config-
uration is depicted in Fig. 7.2b. At most stress levels, however, variant 1 is
not completely eliminated, such that the achievable magnetic-field-induced
strain is reduced. At the blocking stress, the field-induced strain is completely
suppressed. The mechanism that causes the stress level dependence of the
achievable reorientation strain will be discussed in Sect. 7.4.

A typical experiment designed to apply the compressive stress and per-
pendicular magnetic field loading conditions to MSMA single crystals, as
previously discussed and schematically shown in Fig. 7.2, and to measure
the resulting magnetic-field-induced strain response, was previously reported
[58, 59]. The setup described therein is shown in Figs. 7.52 and 7.62 and con-
sists of a 2 T electromagnet, which is adjustably mounted on a mechanical

2 Reprinted from Journal of Magnetism and Magnetic Materials, Vol. 312, Issue 1,
Kiefer, B., Karaca H. E., Lagoudas, D.C. and Karaman, I., pp. 164–175, Copyright
2007, with permission from Elsevier.
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Fig. 7.5. Magneto-thermo-mechanical setup used for MFIS measurements [58].

load frame such that the directions of applied force and magnetic field are
perpendicular. The specimen is held in place by non-magnetic grips. A poly-
mer chamber, which encloses the grips and specimen, is filled with nitrogen
gas for cooling. Temperature, deformation and magnetic field measurements
are taken by a thermocouple, a capacitive displacement sensor, and a Hall
probe, respectively. Similar experiments have been reported by Tickle [56, 57],
Heczko [46] and Shield [27], among others.

Magnetic-field-induced strain data obtained from this test frame are plot-
ted in Figs. 7.72 and 7.82 for first and second magnetic field cycles, respec-
tively. For reasons of comparison, all of the second cycle magnetic-field-
induced strain curves plotted in Fig. 7.2 have been shifted to start at the
origin. Unlike the qualitative strain curves of Fig. 7.4, these figures show the
magnetic-field-induced strain as a function of the magnetic field, not the total
strain, such that all curves start at the origin. These data exhibit all the
characteristic features of MSMA behavior previously discussed. The observed
response is nonlinear and hysteretic, which indicates that there is consid-
erable dissipation associated with the variant reorientation. The achievable
field-induced reorientation strain and the shape of the hysteresis loops show
the strong dependence on stress level.

After the first magnetic cycle at low stress levels, the initial single variant
configuration is not restored and residual strains are observed. Since the stress
level is not raised in between cycles, the second cycle tests at low stress levels
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start from mixed variant configurations corresponding to the only partially
recovered magnetic-field-induced strain of the first cycle. At low stress levels,
the reorientation strain that is produced in the second cycle is then signifi-
cantly reduced as compared to the corresponding test at the same stress level
during the first cycle. This phenomenon has been termed the first cycle effect
[58, 59] and will further be explained in Sect. 7.4. Hysteresis loops of subse-
quent cycles are experimentally observed to be nearly identical to those of the
second cycle.

7.2.2 Magnetization Response of MSMAs

The previous section explained that the process of magnetizing an MSMA
specimen involves three mechanisms which achieve alignment of its magne-
tization with the external magnetic field. These mechanisms are the redis-
tribution of martensitic variants, the magnetic domain wall motion and the
rotation of the magnetization vectors away from their preferred magnetic axes.
To understand the individual mechanisms, consider a thought experiment in
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Fig. 7.7. Evolution of the MFIS in a Ni2MnGa single crystal at different stress
levels during the first magnetic cycle. (Data taken from [58].)

Fig. 7.8. Evolution of the MFIS in a Ni2MnGa single crystal at different stress
levels during the second magnetic cycle. (Data taken from [58].)



7.2 Properties of Magnetic SMAs 335

which these effects can be separated: If the reorientation of martensitic vari-
ants in an MSMA single crystal is completely suppressed by the application
of a stress above the blocking stress, then the magnetization of the crystal can
change by means of only the domain wall motion, the magnetization rotation,
or combinations thereof. The magnetization process of the MSMA in this case
is the same as that of a regular ferromagnetic material.

Fig. 7.91 shows a sketch of the initial single variant 1 configuration, which
corresponds to that of Fig. 7.2, except here a stress level above the blocking
stress is considered to analyze the magnetization process without variant reori-
entation. Next to the macroscopic view of the specimen, Fig. 7.9 also depicts
schematics of magnetic domains on the micro-scale. The crystallographic scale
is shown simply to indicate that magnetic domains generally span many unit
cells. As discussed in the previous section, magnetic domains form to reduce
the macroscopic magnetization of the material and thereby the magnetostatic
energy [14–16, 66]. They are separated by magnetic domain walls. In these
walls, the magnetization vectors (magnetic dipole moments) are rotated over
short distances to accommodate the magnetization directions of neighboring
domains. The formation of many small domains leads to an increase in the
amount of domain walls, whose formation also costs energy. This competition
of energy terms determines the size of the domains and also the thickness of
the domain walls. Depending on the material, the domain wall thickness can
range from 10 nm to 1μm [15].

If the constrained single crystal is magnetized along different crystallo-
graphic directions, one observes an anisotropy of the magnetization response.
The direction along which the least amount of energy is required to magne-
tize the crystal is termed the magnetic easy axis, and, correspondingly, the
magnetic hard axis is the direction for which the most energy needs to be
expended. This anisotropic behavior can be explained by the mechanism of

macro-scale micro-scale

σxx σxx

a

c

crystallographic scale

y,[010]

x,[100]

Fig. 7.9. A schematic of the initial single variant 1 martensite state. The variant
reorientation is suppressed by an axial compressive stress higher than the block-
ing stress. Also shown, schematics of the corresponding microscopic scale and the
crystallographic scale.
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magnetic domain wall motion and magnetization rotation as shown in the
following sections.

Magnetization by Magnetic Domain Wall Motion

Fig. 7.101 schematically shows the evolution of the magnetic domain distri-
bution at different applied field levels for the magnetization of the MSMA
specimen along the [100]-direction. The starting configuration (left box of
Fig. 7.10) is the same microstructural view of the compressed single variant
specimen that was presented in middle box of Fig. 7.9.

The applied field promotes the growth of these domains with favorably
oriented magnetization vectors at the expense of the other domains. Since the
external field is applied in the [100]-direction, which coincides with the mag-
netic easy axis of the compressive stress-favored variant 1, the magnetization
to saturation can completely be achieved by 180◦ domain wall motion.

Magnetization by Rotation of Magnetization Vectors

Fig. 7.111 schematically illustrates the magnetization of the same single vari-
ant 1 sample perpendicular to the compression axis.

Since the magnetization vectors in both domains are equally unfavor-
able with respect to the applied field, no domain wall motion mechanism is
available to accommodate the magnetization along the [010]-direction. The
magnetization in both domains must be rotated away from the common
easy axis. The rotation of the magnetization within a martensitic variant
requires work against the magnetocrystalline anisotropy energy. The amount
of energy expended in activating this mechanism is higher than that associ-
ated with domain wall motion. The [010]-direction is therefore the hard axis
for this material. The magnetization of the MSMA specimen along direc-
tions in between [100] and [010] requires an intermediate amount of energy
and involves the activation of both mechanisms. Unlike the motion of 180◦

domain walls, the rotation of the magnetization is associated with ordinary
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low Hx high Hx

Mx > 0

Hx = 0

x,[100]

y,[010]

Fig. 7.10. Magnetization of the single variant specimen along the easy axis.
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Fig. 7.11. Magnetization of the single variant specimen along the hard axis.

magnetostriction, i. e., the crystal elongates in the direction of the rotating
magnetization vector [14, 16].

Fig. 7.121 qualitatively shows the resulting magnetization curves for the
easy [100] and the hard [010]-directions. The coordinate axes are normalized
by the saturation magnetization Msat and an arbitrary maximum applied field
value Hmax, respectively. Data for the magnetization of constrained MSMA
single crystals have been reported by Tickle and James [56], Cui et al. [25],
Shield [27], Lickhachev and Ullakko [67] and Hezcko [68].

The magnetization curves in Fig. 7.12 are explained by the mechanisms
discussed in the context of Figs. 7.10 and 7.11. Recall that the mechanism for
alignment with the applied field is the domain wall motion, in the easy axis
case, and rotation of the magnetization vectors, in the hard axis case. The
hysteresis for both magnetization curves is observed to be almost negligible.
This is expected for the hard axis magnetization curve since the magneti-
zation rotation is in a reversible process. Magnetic domain wall motion, on
the other hand, can be associated with dissipation. Permanent magnets, for
example, are made from materials that exhibit a strong internal resistance
to magnetic domain wall motion [2, 14, 15], which leads to large hysteresis
effects. In MSMAs, however, the magnetic domain wall motion appears to be
associated with only a very small amount of dissipation.

Magnetization by Variant Reorientation

In MSMAs, the previously described variant reorientation process, which was
schematically illustrated in Figs. 7.2 and 7.3, provides an additional mecha-
nism to change the magnetization of the material. This is because the magnetic
easy axes in the martensitic variants have different directions with respect to
a global coordinate system. In the presence of an external field, the structural
rearrangement is therefore always coupled to a magnetization change. If the
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Fig. 7.12. Qualitative magnetization curves of the single variant MSMA specimen
magnetized along the compression and perpendicular axes. For quantitative experi-
mental results see [56].

reorientation process is initiated by mechanical loading instead of applying a
magnetic field, and the applied field is constant, the variant reorientation is in
fact the only mechanism that changes the magnetization. This aspect will be
explained in more detail in connection with the model predictions presented
in Sect. 7.4.

Coupling of Magnetization Mechanisms in MSMAs.

For stress levels below the blocking stress, the magnetic-field-induced change
of the magnetization observed in MSMA is driven by all three mechanisms:
the magnetic domain wall motion, the magnetization rotation, and the vari-
ant reorientation. Typical magnetization response curves, measured under
the loading conditions depicted in Fig. 7.2, have been reported by Heczko
et al. [13, 46] and are shown in Fig. 7.13. Similar data have been obtained by
Likhachev and Ullakko [67].

The sequence of activation of the different mechanisms is the following:
The initial linear slope of the magnetization curves in Fig. 7.13 corresponds
to the magnetization of the constrained crystal along the magnetic hard axis,
as shown in Fig. 7.12. The mechanism that drives the magnetization change is
thus the rotation of the magnetization vectors, as was schematically illustrated
in Fig. 7.11. Since both magnetic domains in the stress-favored variant are
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Fig. 7.13. Relative magnetization response in Ni-Mn-Ga by Heczko [69].

equally unfavorable with respect to the applied field (see Fig. 7.10), domain
wall motion does not occur. Here it is assumed that the direction of the applied
field is perfectly perpendicular to the easy axis of variant 1. In reality, this may
not be the case and some domain wall motion may occur. More experimental
evidence is needed to clarify this point.

Once the critical field for variant reorientation has been reached, the
magnetic-field-favored variant 2 nucleates and a sharp change in the slope
of the magnetization curves occurs. Fig. 7.13 clearly shows evidence of the
stress dependence of the critical field to initiate the variant reorientation. In
the reorientation region, the magnetization change is nonlinear and similar to
the evolution of the magnetic-field-induced strain observed in the same field
regime. During the reorientation process, magnetic domains and martensitic
variants coexist in the arrangement qualitatively depicted in Fig. 7.2b. Such
configurations have been observed experimentally in Ni-Mn-Ga [70–73]. Cor-
responding micrographs are shown in Fig. 7.14 on the next page3. Sullivan
and Chopra also reported that more complex magnetic domain structures can
exist in twinned Ni-Mn-Ga martensite under certain conditions [72, 73].

In this configuration, the third mechanism, the magnetic domain wall
motion, is activated, because the magnetization vectors in some of the mag-
netic domains in variant 2 oppose the applied field. It is generally believed

3 Reprinted from Journal of Applied Physics, Vol. 96, Issue 4, Ge, Y., Heczko, O.,
Söderberg, O. and Lindroos, V.K., pp. 2159–2163, Copyright 2004, with permis-
sion from AIP.
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Fig. 7.14. Scanning electron microscopy (SEM) images by Ge et al. [71].

that these unfavorable magnetic domains are almost simultaneously elim-
inated with activation of the reorientation process [57, 65], such that the
magnetization change in the reorientation region is mainly governed by the
rearrangement of variants and the magnetization rotation.

At high fields, the stress-favored variant is completely eliminated and the
material is magnetically saturated in the field direction. The resulting single
variant, single domain configuration at magnetic saturation is illustrated in
(c) of Fig. 7.2.

At higher stress levels, however, magnetic saturation can be reached
through magnetization rotation before variant 1 is eliminated, and the vari-
ant reorientation process is not completed. This explains why at these stress
levels only a fraction of the theoretically possible reorientation strain can be
induced by the magnetic field.

At stress levels above the blocking stress, the critical field for the activation
of the reorientation process is larger than the field needed to fully rotate the
magnetization vector toward the direction of the applied field. The magnetiza-
tion process then corresponds to the magnetization of the constrained crystal
along the magnetic hard axis described earlier in this section. The value of
the blocking stress depends on the magnetocrystalline anisotropy energy [58].
This explanation of the stress-level dependence of the achievable magnetic-
field-induced strain will further be discussed in the context of analyzing model
predictions in Sect. 7.4.

The magnetization curves of Fig. 7.13 exhibit large hystereses, whereas
the magnetization curves of the constrained single crystal of Figs. 7.11 and
7.12 exhibit negligible hysteresis. Therefore, one can conclude that the only
source of internal dissipation is the variant reorientation process, which then
leads to the hysteretic nature of the magnetic-field-induced strain curves in
Figs. 7.7 and 7.8, and the magnetization curves in Fig. 7.13.
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The analysis of the experimental field-induced strain and magnetization
response data, such as those presented in this section, is of great importance
for the development of a constitutive model. To properly capture the complex
magnetomechanical behavior of MSMAs, the model has to take all three of the
described mechanisms into account. In the particular approach taken here, this
is done through the evolution of internal state variables as will be described
in Sect. 7.3.

7.3 Derivation of a Phenomenological Constitutive
Model for Magnetic SMAs

Several constitutive models for MSMAs have been proposed in the litera-
ture [2, 26, 27, 67, 74–83]. Some of the most prominent models have been
reviewed in [84–86]. The phenomenological MSMA model presented here relies
on the thermodynamically-consistent derivation of constitutive equations from
a free energy function in which dissipative effects related to the evolution of
microstructure are incorporated through internal state variables. This can
thus be viewed as a direct extension of the models presented for conven-
tional SMAs in the preceding chapters. To address the constitutive response
of MSMAs, the independent variable state space of the free energy is extended
to include the magnetic field strength vector. The specific form of the Gibbs
free energy function incorporates elastic, magnetic and magnetoelastic cou-
pling terms.

Furthermore, additional internal state variables are introduced to describe
changes in the free energy caused by the motion of magnetic domain walls and
the rotation of local magnetization vectors away from magnetic easy axes,
which are the mechanisms that were identified in Sect. 7.2 as the govern-
ing micro-scale mechanisms that cause the macroscopic magnetomechanical
response characteristic for MSMAs. The evolution of these internal state vari-
ables will be shown to be governed by equations analogous to the transforma-
tion functions and criteria previously introduced for SMAs.

7.3.1 Extended Thermodynamic Framework

Following the above discussion, the Gibbs free energy for the thermodynamic
description of a general continuous, deformable and magnetizable material is
of the general form

G = G(T,σ,H, ζ) . (7.3.1)

where H is the magnetic field strength and ζ is the set of internal vari-
ables. The Gibbs free energy is related to the internal energy u=u(s, ε,M, ζ)
through the Legendre transformation [87] (see Table 3.2)

G = u − sT − 1
ρ

σ :ε − μ0

ρ
H·M , (7.3.2)
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where s is the specific entropy. The constitutive relations for the entropy s,
strain ε, and magnetization M then follow directly (see Sect. 3.2.3) from tak-
ing partial derivatives of the specific Gibbs free energy function with respect
to the independent state variables temperature T , mechanical stress σ and
magnetic field strength H, i. e.,

s = −∂G

∂T
, (7.3.3a)

ε = −ρ
∂G

∂σ
, (7.3.3b)

μ0M = −ρ
∂G

∂H
. (7.3.3c)

Through the constitutive relations, the dependent state variables also
depend on the internal state variables ζ, whose evolution accounts for the
loading history dependence of the material behavior. The Clausius-Planck
inequality (see Sect. 3.2.3) in reduced form is given by

− ρ
∂G

∂ζ
·ζ̇ ≥ 0 . (7.3.4)

7.3.2 Choice of Internal State Variables

Motivated by the experimentally observed arrangement of martensitic twins
and magnetic domains in MSMAs, as previously discussed in Sect. 7.2, specif-
ically in the context of Fig. 7.14, an idealized microstructure is assumed.
Fig. 7.151 shows its schematic representation. Other experiments have indi-
cated that the actual microstructure of MSMA can be much more complex
[72, 73], but this chosen representation has proven sufficient to explain all
of the main characteristics of the MSMA response. Many researchers have
proposed a similar representation [2, 67, 74, 77].

Fig. 7.15 depicts the coexistence of two martensitic variants and two mag-
netic domain types. The third martensitic variant, and thus the third magnetic
domain type, are thought to have been eliminated by proper load applica-
tion. This idealized microstructure was also indicated in Fig. 7.2 for a generic
intermediate applied magnetic field level. In this sketch, however, the possi-
bility of the rotation of the local magnetization away from the magnetic easy
axes is included and defined by the rotation angles θi, with i = 1, . . . , 4 and
0 ≤ θi ≤ π

2 . Variant 1, as previously defined in Fig. 7.1, is magnetized along
the x, [100]-direction, whereas variant 2 has its magnetic easy axis along the
y, [010]-direction. The magnetic domains are defined by the preferred orienta-
tion of their magnetization vectors. In magnetic domain 1, the magnetization
is oriented in the negative direction of the respective coordinate axis, and in
domain 2, it points in the opposite direction. The two variants are separated
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(1 − ξ)

ξ

(2)
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θ2

M4

M3
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(1)
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α

(1−α)

(1):=V1D1
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(3):=V1D2
(1−α)α

(4):=V2D2

x,[100]

y,[010]

Fig. 7.15. Schematic representation of the microstructure showing the coexistence
of martensitic variants and magnetic domains. The abbreviation V1D2, for example,
stands for “variant 1, domain 2”. The four distinct subdomains are numbered (1)–(4)
to simplify the notation.

by a twin boundary shown here at a 45◦ angle. The twin boundary coincides
with the 90◦ domain walls between adjacent magnetic domains. Both are
assumed to have zero thickness on the considered scale. Within each variant,
180◦ domain walls separate the domains. The local magnetization vectors and
their associated rotation angles are, by definition, considered constant within
each domain. Note that the rotations shown in the sketch do not necessarily
correspond to a realistic arrangement of magnetization vectors, but illustrate
the nomenclature. Compatibility of domains along twin planes, which sepa-
rates different variants, has also been assumed, such that the domain walls of
neighboring twins meet on the twin boundary in a compatible manner.

Based on this discussion, the scalar volume fractions ξ and α for the
martensitic variant 2 and the magnetic domain 2 (cf. Fig. 7.15), respectively,
are introduced as internal state variables. The volume fraction of variant 1
is equal to (1 − ξ), and that of domain 1 is similarly given by (1 − α), such
that no additional variables need to be introduced. Additionally the inelastic
reorientation strain tensor εr is formally identified as an internal state vari-
able, although its evolution is later connected to the rate of ξ. It is implied
that for a small strain approximation the additive decomposition
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ε = εth + εin = εth + εr (7.3.5)

is assumed to be sufficiently accurate (c.f. (3.3.39)). The set of internal state
variables is completed by the rotation angles of the magnetization vectors θi

depicted in Fig. 7.15.

7.3.3 Formulation of the Specific Gibbs Free Energy

Certainly the free energy expression must contain an elastic, a magnetic and
a magnetoelastic part to capture the characteristic features of the constitu-
tive response of MSMAs. Motivated by the discussed micro-scale arrangement
of martensitic twins in MSMAs, the Gibbs free energy is constructed as a
weighted average between the contributions of each variant. This assumes an
appropriate separation of scales, which means that the characteristic inter-
nal features of the material, such as the martensitic variants and magnetic
domains in MSMAs, are thought to be small enough to allow the definition
of such average quantities at each material point. The deviation of the free
energy from the weighted average of the individual contributions, as caused by
the interaction of martensitic variants, is captured by a mixing term Gξ−mix.
In accordance with the general constitutive assumption of (7.3.1), the choice
of internal state variables made in the previous section, and the above dis-
cussion about the general approach to formulating the Gibbs free energy, the
following expression is proposed:

G = G(T,σ,H, εr, ξ, α, θj)

= ξ GV 2(T,σ,H, εr, α, θ2, θ4) + (1 − ξ)GV 1(T,σ,H, εr, α, θ1, θ3)

+ Gξ−mix(ξ) .

(7.3.6)

Since MSMAs are typically used at constant temperatures, isothermal condi-
tions are assumed and thermal as well as thermoelastic and thermomagnetic
coupling terms are not explicitly included. If one is interested in tempera-
ture changes occurring in the martensitic phase, it is fairly straightforward
to include the relevant thermal energy terms in the total Gibbs free energy
expression of (7.3.11). This has been demonstrated by the authors in [85]
where the temperature change per magnetic cycle due to the dissipation asso-
ciated with the variant reorientation is computed.

The contribution of each martensitic variant i={1, 2} to the total Gibbs
free energy, (7.3.6), is then proposed to be given by

GV i = − 1
2ρ

σ :SV iσ − 1
ρ
σ :εr + (1 − α)

[

−μ0

ρ
MV iD1 ·H + Gan,V iD1

]

+ α

[

−μ0

ρ
MV iD2 ·H + Gan,V iD2

]

+ Gα−mix(α) + G0(T ) .

(7.3.7)
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Here, SV i denotes the elastic compliance tensor of variant i. The local mag-
netization vectors MV iDj have been introduced in Fig. 7.15. The first term in
(7.3.7) describes the energy stored in the material due to elastic deformation.
The second term is due to the interaction of the stress and inelastic strain.
For the magnetic terms, the contributions of each magnetic domain are again
taken into account in a weighted average sense, with the correcting mixing
term Gα−mix. It has been assumed that the density, the elastic compliance
tensor, the reorientation strain tensor, and the reference value of the free
energy are the same in both magnetic domain types.

The first magnetic energy term in (7.3.6) is the Zeeman energy for which
the individual contributions are of the form −MV iDj ·H, where the magneti-
zation vectors of the different variant-domain combinations, cf. Fig. 7.15, are
defined as

M(1)(θ1) = MV 1D1 = −Msat
(
cos(θ1) ex + sin(θ1) ey

)
, (7.3.8a)

M(2)(θ2) = MV 2D1 = Msat
(
sin(θ2) ex − cos(θ2) ey

)
, (7.3.8b)

M(3)(θ3) = MV 1D2 = Msat
(
cos(θ3) ex + sin(θ3) ey

)
, (7.3.8c)

M(4)(θ4) = MV 2D2 = Msat
(
− sin(θ4) ex + cos(θ4) ey

)
. (7.3.8d)

In the above relations, Msat is the saturation magnetization, and ex, ey are
unit vectors in the respective coordinate directions. If the magnetization vec-
tors are assumed to be fixed to the respective magnetic easy axes (i. e., θi = 0),
these expressions reduce to the formulation proposed by Hirsinger and Lexcel-
lent [77]. The Zeeman energy accounts for the interaction of the local magne-
tization with the magnetic field [61]. The Zeeman energy difference across the
twin boundary is the main magnetic driving force for variant reorientation.
An important point is that H is the internal field at a generic material point,
not the applied field.

The second magnetic term in (7.3.7) is the magnetocrystalline anisotropy
energy, whose contributions are denoted Gan,V iDj . This is the energy stored in
the material due to the work done by the magnetic field in rotating the mag-
netization vectors away from the magnetic easy axes. Magnetoelastic interac-
tions in the form of ordinary magnetostriction have also been neglected since
the associated strains are at least two orders of magnitude smaller in MSMAs
than the strains caused by the variant rearrangement [56, 68].

An explicit form of the magnetocrystalline anisotropy energy for uniaxial
symmetry, i. e., for crystals that exhibit only one preferred direction of mag-
netization, as for example the short magnetic easy axis c in tetragonal MSMA
martensite [56, 74], is typically expressed in the form of a trigonometric power
series [15, 61, 88]

Gan,i(θi) =
N∑

n=1

Ki
n sin2n(θi) , (7.3.9)
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where Kn are coefficients to be determined from magnetization measurements
[25, 57] and θi are again the rotation angles of the local magnetization vec-
tors. Only the first term (i.e. N = 1) and equal properties in each variant
(i.e. Ki

1 = K1) will be considered in the current model. Note that since the
rotation angles θi have been introduced as independent variables, the mag-
netocrystalline anisotropy energy contributions Gan,i(θi), generally take on
distinct values.

The influence of the interaction of evolving martensitic variants or mag-
netic domains on the free energy, introduced in (7.3.6) by the mixing terms
Gξ−mix and Gα−mix, respectively, will be represented by a hardening function
following the same concept first introduced in Chapter 3. In generic form, the
mixing terms are then given by

Gξ−mix =
1
ρ

fξ(ξ) , (7.3.10a)

Gα−mix =
1
ρ

fα(α) . (7.3.10b)

The scalar constant G0 is the reference state value of the Gibbs free energy.

The combination of (7.3.6), (7.3.7) and (7.3.10) yields the following explicit
form of the total Gibbs free energy:

G = G(T,σ,H, εr, ξ, α, θj) (7.3.11)

= − 1
2ρ

σ :S(ξ)σ − 1
ρ
σ :εr + ξ

[

(1 − α)
[

−μ0

ρ
M(2)(θ2)·H + Gan,2(θ2)

]

+ α

[

−μ0

ρ
M(4)(θ4)·H + Gan,4(θ4)

] ]

+ (1 − ξ)

[

(1 − α)
[

−μ0

ρ
M(1)(θ1)·H + Gan,1(θ1)

]

+ α

[

−μ0

ρ
M(3)(θ3)·H + Gan,3(θ3)

] ]

+
1
ρ

fξ(ξ) +
1
ρ

fα(α) + G0(T ) .

The density has been assumed as identical in both martensitic variants. The
effective compliance tensor is defined by S = SV 1+ξΔS = SV 1+ξ(SV 2−SV 1).

According to (7.3.3), constitutive equations for the entropy, the strain and
the magnetization follow from taking partial derivatives of (7.3.11).
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s = − ∂G

∂T
= −∂G0

∂T
, (7.3.12a)

ε = − ρ
∂G

∂σ
= S(ξ)σ + εr , (7.3.12b)

M= − ρ

μ0

∂G

∂H
(7.3.12c)

= ξ
[
(1 − α)M(2)(θ2)+αM(4)(θ4)

]
+(1 − ξ)

[
(1 − α)M(1)(θ1)+αM(3)(θ3)

]
,

where the local magnetization vectors M(i) have been defined in (7.3.8).
According to (7.3.12a), the entropy is only a function of temperature; there-
fore, it must be constant throughout the reorientation process if isothermal
conditions are assumed. This means that the entropy changes due to dissipa-
tive effects must be balanced by suitable heat transfer to maintain a constant
temperature. For adiabatic conditions, the entropy increases due to the dissi-
pation associated with the reorientation of variants. It has been shown by the
authors in [85] how the model must be extended slightly to capture adiabatic
loading paths.

By taking derivatives of the total free energy, (7.3.11), with respect to
the internal state variables, the following thermodynamic driving forces are
derived

πr = − ρ
∂G

∂εr
= σ , (7.3.13a)

π̃ξ = − ρ
∂G

∂ξ
(7.3.13b)

=
1
2

σ :ΔSσ − ρ(1 − α)
[

− μ0

ρ

(
M(2) − M(1)

)
·H + Gan,2(θ2) − Gan,1(θ1)

]

− ρα

[

− μ0

ρ

(
M(4) − M(3)

)
·H + Gan,4(θ4) − Gan,3(θ3)

]

− ∂fξ

∂ξ
,

πα = − ρ
∂G

∂α
(7.3.13c)

= − ρ (1 − ξ)
[

−μ0

ρ

(
M(3) − M(1)

)
·H + Gan,3(θ3) − Gan,1(θ1)

]

− ρ ξ

[

−μ0

ρ

(
M(4) − M(2)

)
·H + Gan,4(θ4) − Gan,2(θ2)

]

− ∂fα

∂α
.
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Similarly, the driving forces for rotation of the magnetization vectors are
given by

πθ1 = − ρ
∂G

∂θ1

(7.3.14a)

= − ρ (1 − ξ)(1 − α)
[
μsat

M

ρ

[
− sin(θ1)Hx + cos(θ1)Hy

]
+

∂G

∂θ1

an,1]

;

πθ2 = − ρ
∂G

∂θ2

(7.3.14b)

= − ρ ξ(1 − α)
[

−μ0M
sat

ρ

[
cos(θ2)Hx + sin(θ2)Hy

]
+

∂G

∂θ2

an,2]

;

πθ3 = − ρ
∂G

∂θ3

(7.3.14c)

=− ρ (1 − ξ)α
[

−μ0M
sat

ρ

[
− sin(θ3)Hx+ cos(θ3)Hy

]
+

∂G

∂θ3

an,3]

;

πθ4 = − ρ
∂G

∂θ4

(7.3.14d)

= − ρ ξα

[

−μ0M
sat

ρ

[
− cos(θ4)Hx − sin(θ4)Hy

]
+

∂G

∂θ4

an,4]

,

where the definitions of the magnetization vectors, (7.3.8), have been utilized.
The defined quantities πr, π̃ξ, πα and πθi are driving forces that are ther-
modynamically conjugate to the internal state variables such that, using the
above definitions, the Clausius-Planck inequality can be rewritten as

πr : ε̇r + π̃ξ ξ̇ + παα̇ +
4∑

i=1

πθi θ̇i ≥ 0 . (7.3.15)

7.3.4 Evolution Equations and Activation Conditions

The effective number of internal state variables can be reduced by enforcing
additional thermodynamic constraints, based on the following considerations.
From physical observations, one can reasonably assume that the motion of
magnetic domain walls and the rotation of the magnetization vectors are
thermodynamically reversible processes [14, 61] and do not contribute to
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the entropy production. The single variant sample magnetization curves of
Fig. 7.12, for example, in which only the mechanisms of domain wall motion
(easy axis) and magnetization rotation (hard axis) are active, exhibit almost
no hysteresis. However, the magnetization curves in Fig. 7.13 exhibit sig-
nificant hysteresis due to the dissipation associated with the variant rear-
rangement. If the internal dissipation production is entirely attributed to
the reorientation process, this implies that no dissipation is produced by
the motion of domain walls or the rotation of the magnetization vectors,
i. e., Dα =παα̇=0 and Dθ =

∑4
i πθi θ̇i =0. Since, in general, α̇ 	=0 and θ̇i 	=0,

it follows from (7.3.15)

πα = − ρ
∂G

∂α
= 0 , (7.3.16a)

πθi = − ρ
∂G

∂θi

= 0 . (7.3.16b)

This does not mean that the domain walls do not move, nor that the magneti-
zation vectors do not rotate, but rather that no dissipation is associated with
these processes. Equations (7.3.16) represent a set of five relations, which can
be solved to determine evolution equations, or more precisely direct functional
dependencies, of the domain volume fraction α and the four rotation angles
θi on the independent state variables, as well as the loading history through
the remaining internal state variables. With (7.3.16) the inequality (7.3.15)
takes the reduced form

πr : ε̇r + π̃ξ ξ̇ ≥ 0 . (7.3.17)

In the modeling of conventional shape memory behavior, the transforma-
tion strain is usually related to the martensitic volume fraction [62, 89, 90].
Following this approach, the evolution of the reorientation strain associated
with the magnetic shape memory effect is proposed as proportional to the
rate of the martensitic variant volume fraction

ε̇r = Λr ξ̇ . (7.3.18)

The reorientation strain is then no longer an independent internal state vari-
able. In the equation above, Λr is the reorientation tensor defining the direc-
tion in which the reorientation strain develops. An explicit form of the tensor
will be given in Sect. 7.4 for a specific example. For the special case of con-
stant Λr, (7.3.18) can be integrated to yield the reorientation strain, so that
the total strain, using (7.3.12b), is then given by

ε = Sσ + Λrξ . (7.3.19)

If Λr is not constant, for instance in non-proportional loading, (7.3.18) has to
be evaluated incrementally [91].

One can further define the total thermodynamic driving force for the twin
boundary motion associated with the variant reorientation process as



350 7 Modeling of Magnetic SMAs

πξ = πr :Λr + π̃ξ = σ :Λr − ρ
∂G

∂ξ
, (7.3.20)

where the definitions (7.3.13a) and (7.3.13b) have been utilized. Then, using
(7.3.18) and (7.3.20), the Clausius-Planck inequality (7.3.17) can finally be
written as

πξ ξ̇ ≥ 0 . (7.3.21)

The rate-independent nature of the formulation motivates the introduction
of the following reorientation function:

Φξ(σ,H, ξ) =

{
πξ − Y ξ , ξ̇ > 0

−πξ − Y ξ , ξ̇ < 0
, Φξ ≤ 0 , (7.3.22)

which defines the activation threshold for variant reorientation of conversely
the elastic regime. The proposed reorientation function is similar to transfor-
mation functions used in the modeling of rate independent phenomenological
modeling of conventional shape memory behavior (cf. (3.3.58)). The positive
scalar quantity Y ξ is physically related to internal dissipation associated with
twin boundary motion. It is assumed that the reorientation process is subject
to constraints derived from a principle of maximum dissipation, which can be
expressed in terms of the Kuhn-Tucker type reorientation conditions [92]

Φξ(σ,H, ξ) ≤ 0, Φξ ξ̇ = 0 . (7.3.23)

Note that in the elastic regime where Φξ < 0, the conditions (7.3.23) require
ξ̇ =0. The forward reorientation process is characterized by Φξ =0 and ξ̇ >0,
whereas for the reverse process the conditions Φξ =0 and ξ̇ <0 exist. Since the
thermodynamic driving force πξ and, consequently, the reorientation function
Φξ contain the hardening function fξ, the reorientation conditions (7.3.23)
depend on the martensitic variant volume fraction and thereby on the loading
history, not just the current values of stress and magnetic field.

To complete the formulation of the constitutive model, the generically
introduced hardening functions (7.3.10) need to be specified. Several types of
hardening functions were introduced and compared in Chapter 3, particularly
in Sect. 3.4, in the context of conventional SMAs. These functions account for
all micro-scale interactions that result in macroscopically observed hardening.
Such hardening behavior is also clearly observed in MSMAs, for example, in
the strain response curves of Fig. 7.7 on page 334, where a much higher mag-
netic field is needed to finish the reorientation process than is required to start
it. Even though the martensitic twins are compatible across a twin boundary,
the presence of one variant clearly influences the growth of the others. Effects
such as the trapping of the progressing twin boundary at pinning sites as
proposed by Faidley et al. [2], which influence the macroscopic evolution of
the reorientation strain, can also be accounted for in this manner.
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7.4 MSMA Response Under Specific Magnetomechanical
Loading

In the previous section, the constitutive model was introduced in its most
general form. In this section, a number of simplifying assumptions are made
and specific loading conditions are considered, such that reduced versions of
the constitutive equations be obtained.

7.4.1 Prediction of Magnetic-Field-Induced Variant Reorientation
at Constant Stress (Fixed Domain Structure)

A loading case is considered for which σxx = const. ≤ 0 is the only non-zero
component of the stress and Hy is the non-zero component of the magnetic
field at a generic material point. For the chosen coordinate system, the non-
zero components of the proposed reorientation tensor are given by4

Λr
xx = −Λr

yy = εr,max , Λr
zz = Λr

xy = Λr
xz = Λr

yz = 0 . (7.4.24)

The maximum strain value can be measured experimentally or is often approx-
imated as εr,max = (a− c)/a, where a and c are the lattice parameters of the
tetragonal martensite. More general reorientation strain tensors have been
discussed in the literature [26, 28, 53].

Typically, the motion of magnetic domain walls is neglected in the mod-
eling of MSMAs [2, 74, 77, 78] since it is assumed that unfavorable domains
are eliminated at relatively low fields [57, 65] such that they do not signifi-
cantly influence the magnetic-field-induced variant reorientation process and,
therefore, do not justify the formulation of even more complex constitutive
models.

If the motion of magnetic domain walls at low fields is neglected, the
domain volume fraction takes the value of α = 1, for Hy > 0, and α = 0, for
Hy < 0. Fig. 7.161,5 represents a modification of Fig. 7.2 for the assumption
α=1.

Reduced Model Equations

For the described magnetomechanical loading and the assumed fixed domain
configuration, a reduced set of constitutive equations is now derived.6 The
constraint (7.3.16b) on θ3, utilizing (7.3.14c), takes the form
4 Typically, specimens are cut such that the <100>m-directions of the tetragonal

martensite align with the direction of the applied loads.
5 Reprinted from Proceedings of SPIE Smart Structures and Materials Conference,

Vol. 5761, Kiefer, B. and Lagoudas, D.C., pp. 454–465, Copyright 2005, with
permission from SPIE.

6 All of the reduced equations presented in this section are derived for the case of
α = 1. It is straightforward to derive their counterparts for α = 0 by using the
general expressions provided in Sect. 7.3.
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c) Maximum applied magnetic field (single variant 2)

b) Intermediate applied magnetic field (mixture of variants)
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x, [100]
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Fig. 7.16. The variant reorientation process with fixed domain structure α=1.

πθ3 = (1 − ξ)
[
μ0M

satHy − 2ρK1 sin(θ3)
]
cos(θ3) = 0 . (7.4.25)

From this, it is concluded that

sin(θ3) =
μ0M

sat

2ρK1

Hy , (7.4.26)

for 0 ≤ θ3 < π
2 and 0 ≤ ξ < 1. Since the easy axis of variant 2 is aligned with

the direction of the applied field, the magnetization vector does not rotate,
such that the corresponding constraint πθ4 =0 is identically satisfied.

For the considered loading case, using (7.3.8c), (7.3.8d), (7.3.9), (7.3.13b),
and (7.3.20), the driving force for variant rearrangement reduces to

πξ = σxxεr,max + μ0M
sat
[
1 − sin(θ3)

]
Hy + ρK1 sin2(θ3) −

∂fξ

∂ξ
, (7.4.27)

where the difference in the elastic compliance of the variants ΔS has been
considered small and thus neglected. If one further utilizes (7.4.26) to eliminate
θ3, (7.4.27) can be rewritten as
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πξ = σxxεr,max + μ0M
satHy − (μ0M

sat)2

4ρK1

H2
y − ∂fξ

∂ξ
, (7.4.28)

In this example the trigonometric hardening function fξ given by (3.4.92) is
employed. For the assumed fixed magnetic domain structure, the driving force
πα need not be considered.

Combining the reorientation function (7.3.22) with the driving force
(7.4.28) and enforcing the Kuhn-Tucker loading conditions (7.3.23), the evo-
lution equations for the martensitic variant volume fraction are derived as
follows:

For the forward reorientation process (Variant 1 → Variant 2, ξ̇ >0):

Φξ ξ̇ = 0 ⇒ Φξ = 0 ⇒ πξ = Y ξ,c . (7.4.29)

πξ = σxxεr,max + μ0M
satHy − (μ0M

sat)2

4ρK1

H2
y + aV 2

c

[
π − cos−1(2ξ − 1)

]

(7.4.30)

− μc
1 − μc

2 = Y ξ,c .

Since (7.4.30) contains only one scalar internal variable, the usual procedure
of enforcing consistency conditions [62, 92, 93] is not necessary, and one can
solve for ξ, which can be viewed as the equivalent of a plastic multiplier,
directly in closed-form to find

ξ(1,2) =
1
2

cos
(

− 1
aV 2

c

[

− σxxεr,max − μ0M
satHy +

(μ0M
sat)2

4ρK1

H2
y (7.4.31)

+ μc
1 + μc

2 + Y ξ,c

]

+ π

)

+
1
2

.

Similarly, it follows for the reverse reorientation process (Variant 2 → Variant
1, ξ̇ <0):

Φξ ξ̇ = 0 ⇒ Φξ = 0 ⇒ πξ = −Y ξ,c . (7.4.32)

πξ = σxxεr,max + μ0M
satHy − (μ0M

sat)2

4ρK1

H2
y + aV 1

c

[
π − cos−1(2ξ − 1)

]

(7.4.33)

− μc
1 + μc

2 = −Y ξ,c ,
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so that

ξ(2,1) =
1
2

cos
(

− 1
aV 1

c

[

− σxxεr,max − μ0M
satHy +

(μ0M
sat)2

4ρK1

H2
y (7.4.34)

+ μc
1 − μc

2 − Y ξ,c

]

+ π

)

+
1
2

.

From the integration of (7.3.18) and the kinematic assumptions of (7.4.24)
the components of the reorientation strain follow as

εr
xx = εr,maxξ , εr

yy = −εr
xx , εr

zz = εr
xy = εr

xz = εr
yz = 0 (7.4.35)

The components of the magnetization vector, using (7.3.8) and (7.4.26) in
(7.3.12c), are found to be

Mx = (1 − ξ)Msat cos(θ3) = (1 − ξ)Msat

√

1 −
(μ0M

sat

2ρK1

Hy

)2

, (7.4.36a)

My = ξMsat + (1 − ξ)Msat sin(θ3) = ξMsat + (1 − ξ)
μ0(M

sat)2

2ρK1

Hy ,

(7.4.36b)

Mz = 0 . (7.4.36c)

Again, the activation of the reorientation process is governed by the reori-
entation function (7.3.22) and the conditions (7.3.23). The evolution of ξ in
(7.4.35) and (7.4.36) are then again described by evolution equations (7.4.31)
and (7.4.34).

Calibration of the Model Parameters

The material parameters consist of the magnetocrystalline anisotropy con-
stant ρK1, the saturation magnetization Msat, and the maximum reorien-
tation strain εr,max, which follow from standard experiments described in
the literature [50, 59]. Additionally, the critical magnetic field values Hs(1,2)

y ,
Hf(1,2)

y , Hs(2,1)
y and Hf(2,1)

y must be specified, which denote the start and
finish of the forward and reverse magnetic-field-induced reorientation process,
respectively. Fig. 7.17 shows how the critical magnetic fields and the maxi-
mum reorientation strain εmaxξcrit are estimated from one positive magnetic-
field-induced strain cycle at the calibration stress level, denoted σ∗

xx, which
can be arbitrarily chosen in the range between zero and the blocking stress.
The plotted experimental data was published by Heczko et al. [46] for the
Ni50.7Mn28.4Ga20.9 composition. In general, first estimates of the critical fields
can be obtained by drawing tangent lines to the hysteresis curves, as indicated
in Fig. 7.17. The calibration can then be refined by adjusting these parameters
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Fig. 7.17. Calibration of the model parameters using the experimental MFIS curve
at −1.0 MPa. Solid line—model simulation; dashed line—experimental data [46].

such that the best simulation of the magnetic-field-induced strain response is
obtained at the calibration stress level. The value of Hf(2,1)

y was chosen to
obtain the correct residual reorientation strain in the simulation.

The general relations between the material and the model parameters are
listed in Table 7.1. They have been derived by evaluating the evolution equa-
tions for the martensitic variant volume fraction in the case of the forward

Table 7.1. Relations between material constants and model parameters

aV 2
c = μ0Msat

(π−cos−1(2ξcrit−1))

(
H

s(1,2)
y −H

f̃(1,2)
y

)
− (μ0Msat)2

4πρK1

[(
H

s(1,2)
y

)2

−
(
H

f̃(1,2)
y

)2
]

μc
1 = 1

2
μ0M

sat
(
H

s(1,2)
y +H

f(2,1)
y

)
− (μ0Msat)2

8ρK1

[(
H

s(1,2)
y

)2

+
(
H

f(2,1)
y

)2
]

+σ∗ εr,max

μc
2 = π

4

(
aV 2

c − aV 1
c

)

aV 1
c = μ0Msat

(π−cos−1(2ξcrit−1))

(
H

f(2,1)
y −H

s̃(2,1)
y

)
− (μ0Msat)2

4πρK1

[(
H

f(2,1)
y

)2

−
(
H

s̃(2,1)
y

)2
]

Y ξ,c = 1
2
μ0M
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(
H

s(1,2)
y − H

f(2,1)
y

)
− (μ0Msat)2

8ρK1

[(
H

s(1,2)
y

)2

−
(
H

f(2,1)
y

)2
]

− μc
2
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(7.4.31) and reverse (7.4.34) reorientation process at ξ = 0 and ξ = ξcrit,
respectively, and enforcing continuity of the hardening function at ξ=1. ξcrit

is the maximum volume fraction of variant 2 obtained at the stress level σ∗,
which can be estimated by relating the maximum reorientation strain for this
stress level to the maximum achievable reorientation strain εr,max. The mag-
netic field Hy(ξcrit) at which the forward reorientation strain is terminated
prior to its completion, because the magnetization vectors in both variants
have aligned with the applied field, is denoted H f̃(1,2)

y (see (7.4.39) for the
computation of its magnitude). The magnetic field at which the reverse reori-
entation process is then activated for ξ = ξcrit < 1 is denoted H s̃(2,1)

y . For

the case of complete reorientation, ξcrit is equal to 1, H f̃(1,2)
y = Hf(1,2)

y and
H s̃(2,1)

y = Hs(2,1)
y , such that the listed relations simplify. The parameter set

listed in Table 7.2 was calibrated by employing the described methodology
and utilizing the relations of Table 7.17 (refer also to Example 7.1).

In Fig. 7.17, the choice of parameters for the model simulation at the
calibration stress level was observed to agree well with the experimental data.
For model predictions at other stress levels, the parameters are, of course, not
adjusted, as this would then result in a pure curve-fitting exercise. The details
of the model predictions will be discussed in the following sections.

Although the outlined procedure itself is straightforward, calibrating mate-
rial parameters can be a tedious effort due to the complexity of the magne-
tomechanical response of MSMA and the fact that real materials never behave
as ideally as the model assumes. The model calibration is especially cum-
bersome for MSMA because the demagnetization effect makes experimental
measurements difficult to interpret [94]. Measured data has to be corrected
to account for the specimen shape dependence. The accurate interpretation
of experimental results based on magnetostatic analysis for MSMA has been

Table 7.2. Material parameters for the considered Ni50.7Mn28.4Ga20.9 composition
[46], and the resulting hardening and hysteresis parameters calibrated at −1.0 MPa

Material Parameters Model Parameters

Quantity Value Unit Quantity Value Unit QuantityValue Unit

ρK1 167.0 kJm−3 μ0H
s(1,2)
y 0.39 T aV 2

c −9.747 kPa

Msat 514.0 kAm−1 μ0H
f̃(1,2)
y 0.65† T μc

1 −34.847 kPa

εr,max 6.2 % μ0H
s̃(2,1)
y 0.35 T μc

2 54.700 kPa

σ∗ −1.0 MPa μ0H
f(2,1)
y −0.15 T aV 1

c −79.394 kPa

ξcrit 0.96 Y ξ,c 58.451 kPa

† = μ0Hcrit

7 Reprinted from Proceedings of AIAA 2006, paper 1766, Kiefer, B. and Lagoudas,
D.C., pp. 1–15, Copyright 2006, with permission from American Institute of Aero-
nautics and Astronautics, Inc.
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discussed in [85, 94, 95]. Advanced parameter optimization techniques, such
as constrained optimization methods [2, 96], may also be employed to find
more accurate sets of parameters.

The Reorientation Diagram

With a complete model at hand, a novel variant reorientation diagram is pro-
posed as shown in Fig. 7.18, which is the graphical representation of the acti-
vation surfaces for variant reorientation. This diagram has been constructed
based on the reduced constitutive equations presented in Sect. 7.4.1 and the
set of model parameters listed in Table 7.2, specifically by evaluating the
reorientation conditions (7.4.30) and (7.4.33) at ξ=0 and ξ=1, respectively.

Analogous visualizations of phase transformation surfaces in phase dia-
grams are common for conventional shape memory alloys [89, 97]. A reorien-
tation diagram for MSMA was previously proposed by Kiefer and Lagoudas
[84] for an earlier version of the constitutive model, in which the magneti-
zation was assumed to be fixed to the respective magnetic easy axes of the
martensitic variants and a normalized martensitic volume fraction was used.
Other activation diagrams have been proposed by Tickle et al. [98] for variant

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

|σ
xx

|  
(M

P
a

)

μ
0
H

y
  (T)

crit
0 yHμ

1 2→

2 1→

(2,1) 0ξ =

(2,1) 1ξ =
(1,2) 1ξ =

(1,2) 0ξ =

s(1,2)
yH

f(1,2)
yH

f(2,1)
yH

s(2,1)
yH

Fig. 7.18. Numerical μ0Hy − |σxx| variant reorientation diagram. The dashed line
represents the magnetic loading path at the constant stress levels of −1.0 MPa.
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reorientation and by Yamamoto et al. [28] for martensitic phase transforma-
tion in MSMAs.

In accordance with the reorientation function (7.3.22) and the Kuhn-
Tucker loading conditions (7.3.23), the forward reorientation process (ξ̇ > 0)
in the variant reorientation diagram is activated at the line ξ(1,2) = 0 and
completed at the line ξ(1,2) = 1. The reverse process (ξ̇ < 0) is activated at
the line ξ(2,1) = 1 and terminates at the line ξ(2,1) = 0. The activation of
each process takes place only if the activation lines are crossed in the proper
loading direction, as determined by the Kuhn-Tucker loading conditions, and
the value of the variant volume fraction is such that reorientation can occur.

The slopes of the activation lines in the reorientation diagram can be
calculated from (7.4.30) or (7.4.33), respectively, and are given by the following
Clausius-Clapeyron-type relation:

dσxx

dHy

= − 1
εr,max

[

μ0M
sat − (μ0M

sat)2

2ρK1

Hy

]

. (7.4.37)

A similar expression was derived by Kiefer and Lagoudas [84] for the earlier
model, which does not account for the rotation of the magnetization vectors.
Tickle et al. [98], who also assumed that the magnetization vectors do not
rotate, proposed the relation

dσxx

dHy

= −μ0M
sat

εr,max
, (7.4.38)

which has been translated into the notation used here. The expressions (7.4.37)
and (7.4.38) for the slope of the reorientation activation lines coincide at
Hy = 0, i. e., the intersection with the stress axis, since the magnetization
vectors at this field level are aligned with the easy axes in both models.

As depicted in the reorientation diagram of Fig. 7.18, the loading path at
the calibration stress level of σ∗=−1.0 MPa intersects only the reorientation
activation lines Hs(1,2)

y (σxx) and Hs(2,1)
y (σxx). The corresponding critical val-

ues were specified in Table 7.2. The line Hs(1,2)
y (σxx) is not crossed, such that

only partial variant reorientation occurs at this stress level. In other words,
the stress-independent critical value μ0H

crit = 0.65 T, at which the magne-
tization in both variants has fully aligned with the applied field, is reached
before the reorientation process is completed. This issue will be discussed in
detail in the following section in the context of the interpretation of the model
predictions. On the basis of the experimental data [46], it was assumed for
the parameter calibration that only 96% of the second variant is produced
during the forward reorientation process (cf. Table 7.2). Likewise, variant 1 is
not completely recovered at this stress level as the magnetic field is removed,
since the line Hf(2,1)

y (σxx) is not intersected. Is it important to note that for
cases of incomplete reorientation (0 < ξ < 1), the appropriate activation lines
lie within the regions bounded by the lines for ξ=0 and ξ=1 depicted in the
reorientation diagram.
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Several characteristic features can be concluded from the variant reorien-
tation diagram for this particular set of parameters:

1. The blocking stress is predicted to be −1.43MPa. For higher stresses, the
forward reorientation activation line at ξ = 0 is not intersected;

2. Only in the range of 0 to −0.94 MPa is the maximum strain obtained by
complete variant reorientation. For higher stress levels, the reorientation
is only partial, since the forward reorientation termination line is not
intersected;

3. For this set of parameters, the model predicts that at least some of variant
1 is recovered at low stress levels because the activation line for the reverse
process is intersected as the field reduces to zero;

4. Variant 1 can, in this case, not be fully recovered under any constant stress
level, since the appropriate level is above the blocking stress.

Example 7.1. Determination of critical fields for variant reorientation

The critical fields for full forward reorientation Hs(1,2)
y and Hf(1,2)

y are deter-
mined by evaluating the reorientation conditions (7.4.30) at ξ = 0 and ξ = 1,
respectively. Likewise, the critical fields for the reverse process, Hs(2,1)

y and
Hf(2,1)

y , follow from (7.4.33). This leads to the following set of equations:

σxxεr,max + μ0M
satHs(1,2)

y − (μ0M
sat)2

4ρK1

(
Hs(1,2)

y

)2 − μc
1 − μc

2 − Y ξ,c = 0 ,

σxxεr,max + μ0M
satHf(1,2)

y − (μ0M
sat)2

4ρK1

(
Hf(1,2)

y

)2
+ aV 2

c π − μc
1 − μc

2 − Y ξ,c = 0 ,

σxxεr,max + μ0M
satHs(2,1)

y − (μ0M
sat)2

4ρK1

(
Hs(2,1)

y

)2
+ aV 1

c π − μc
1 + μc

2 + Y ξ,c = 0 ,

σxxεr,max + μ0M
satHf(2,1)

y − (μ0M
sat)2

4ρK1

(
Hf(2,1)

y

)2 − μc
1 + μc

2 + Y ξ,c = 0 .

This set of equations must be solved for the critical magnetic fields at each
stress level. In this example, the critical values are determined for the calibra-
tion stress level of −1MPa, which has the advantage that the critical fields are
known a priori and the calculation can thus be used for verification. All nec-
essary material and model parameters were specified in Table 7.2. Considering
the physically meaningful roots, one obtains the following values:

μ0H
s(1,2)
y = 0.390000 T

μ0H
f(1,2)
y = (0.649805 + 0.099623i) T
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μ0H
s(2,1)
y = 0.554718 T

μ0H
f(2,1)
y = −0.150000 T

The computed values for Hs(1,2)
y and Hf(2,1)

y are consistent with the critical
values specified in Table 7.2. The imaginary value of Hf(1,2)

y indicates that
the forward reorientation process is not completed at this stress level. This
process actually terminates when the magnetization in both variants has fully
aligned with the applied magnetic field. The corresponding field is given by
μ0H

crit =μ0H
f̃(1,2)
y =0.65T (cf. 7.4.39). Substituting Hy =Hcrit into (7.4.31)

and solving for ξ reveals that 96% of variant 2 was produced during the
forward reorientation. The reverse reorientation process then does not start at
ξ=1, and thus Hs(2,1)

y = 0.55 T, but rather at ξcrit =0.96. The corresponding
field is computed by substituting ξcrit into (7.4.33) and solving for Hy. This
yields H s̃(2,1)

y =0.35 T, as was also specified in Table 7.2.

Numerical Results

Example simulations and predictions of the magnetic-field-induced strain and
magnetization response of MSMAs produced by the proposed model are now
considered.

The Magnetic-Field-Induced Strain Response

Based on the activation lines specified in the variant reorientation diagram of
Fig. 7.18, and the evolution of the variant volume fraction and the reorienta-
tion strain given by (7.4.31), (7.4.34) and (7.4.35), respectively, magnetic-field-
induced reorientation strain curves have been computed for three different
stress levels. Fig. 7.198,9 displays the results.

All of the characteristic features, i.e. the nonlinear and hysteretic nature
of the strain response, the reduction of the obtainable reorientation strain and
the delay of the onset of reorientation with an increase in the stress level (the
latter has already been discussed in the context of the proposed reorientation
diagram of Fig. 7.18), which are typically observed in experiments [1, 13, 57,
58, 67], are captured by the model predictions. The curve at −1.0 MPa is
the simulation of response from which the model parameters where calibrated
(cf. Table 7.2). The two other curves at −1.1 MPa and −1.2 MPa are true
model predictions, for which the same set of parameters was used.
8 Reprinted from Proceedings of ASME International Mechanical Engineering

Congress and Exposition, paper IMECE2006-15296, Lagoudas, D.C., Kiefer, B.
and Broederdorf, A.J., pp. 1–11, Copyright 2006, with permission from ASME.

9 Reprinted from Proceedings of COMP07, paper COMP2007-033, Lagoudas, D.C.,
Kiefer, B. and Broederdorf, A.J., pp. 1–8, Copyright 2007, with permission from
COMP07.
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Fig. 7.19. Predicted MFIS hysteresis curves at different stress levels (solid lines)
and comparison to experimental data (dashed line) [46].

Example 7.2. Evaluation of magnetic-field-induced strain curve

To illustrate the procedure, the magnetic-field-induced strain response curve
at −1 MPa is plotted in this example. The field values that signify the end
points of the reorientation regimes were calculated in Example 7.1. Using
(7.4.35), the axial reorientation strain in the different regions is given by

εr
xx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 < Hy < Hs(1,2)
y ,

ξ(1,2)εmax, Hs(1,2)
y < Hy < Hcrit (since Hcrit < Hf(1,2)

y ) ,

ξcritεmax, Hcrit < Hy ≤ Hmax ,

ξcritεmax, Hmax ≥ Hy > H s̃(2,1)
y ,

ξ(2,1)εmax, H s̃(2,1)
y > Hy > 0 (since Hf(2,1)

y < 0) .

As listed in Table 7.2 (see also Example 7.1), the forward reorientation only
produces 96% of the second variant at −1 MPa, i.e. ξcrit =0.96, which corre-
sponds to 5.95% magnetic-field-induced strain. The evolution of the volume



362 7 Modeling of Magnetic SMAs

Fig. 7.20. Plot of the magnetic-field-induced reorientation strain as a function of
applied magnetic field, as discussed in Example 7.2.

fraction in the reorientation regions is described by (7.4.31) and (7.4.34).
The needed material and model parameters were again specified in Table 7.2.
Fig. 7.20 shows the plot obtained for reorientation strain as a function of the
magnetic field applied.

Another characteristic feature of the MSMA response that is captured by
the presented model is the first cycle effect, i.e. an unsymmetrical response of
the strain-magnetic field curves for the first cycle of positive and subsequent
negative applied magnetic fields, as shown in Fig. 7.19. Subsequent cycles are
predicted to be symmetric, which is in agreement with experimental observa-
tions (cf. Fig. 7.8).

To explain the predicted evolution of the magnetic-field-induced reorien-
tation strain in more detail, Fig. 7.21 takes a closer look at the hysteresis
loop under −1.0 MPa. Different characteristic configurations along the load-
ing path have been numbered. For each of them, Table 7.3 shows a schematic
representation of the variant volume fraction and the magnetization rotation
as well as a list of the corresponding values of the applied magnetic field
and the internal state variables, namely the reorientation strain, the variant
volume fraction, and the magnetization rotation angle. It should be empha-
sized that the schematics shown in Table 7.3 are designed to illustrate only
the connection of the macroscopic behavior to the evolution of the internal
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Fig. 7.21. Detail: MFIS hysteresis loop under −1.0 MPa.

state variables. They do not represent the actual distribution of the variants
throughout a single crystal specimen.

Since it has been assumed that the error made by neglecting the magnetic
domain wall motion at low magnetic fields is small, the single variant configu-
ration 1 consists of only a single magnetic domain. The magnetic field of 0.2 T
in configuration 2 is not sufficient to initiate the rearrangement of variants
against the mechanical stress and the internal resistance to twin boundary
motion. This field causes the magnetization vector in variant 1 to rotate by
17.9◦, changing the magnetization of the specimen, but not producing any
reorientation strain.

By increasing the magnetic field to the critical value, which is 0.39 T in
this case (cf. Fig. 7.18 and Table 7.2), the reorientation process is initiated
and variant 2 nucleates. In configuration 3, at 0.48 T, the variant rearrange-
ment has produced 50% of variant 2, or 3.1% MFIS, while the magnetization
has rotated by 47.6◦. The stress of −1.0 MPa, which favors variant 1 and
therefore counteracts the reorientation process, is higher than the resistance
against 90◦ rotation of the magnetization in variant 1, as dictated by the
magnetocrystalline anisotropy energy. Thus, the magnetization in variant 1
aligns with the external field before the reorientation process is completed, as
indicated in schematic 4. Only 96% of variant 2 and therefore 5.95% reori-
entation strain can be magnetically induced at this stress level. The physical
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Table 7.3. Configuration schematics and data for the strain hysteresis curve at
−1.0 MPa

# Schematic μ0Hy εr
xx ξ θ3(θ1)

1 0.0 T 0.0 % 0.0 0.0
◦

2 0.2 T 0.0 % 0.0 17.9
◦

3 0.48 T 3.1 % 0.5 47.6
◦

4 0.65 T 5.95 % 0.96 90.0
◦

5 0.4 T 5.95 % 0.96 38.0
◦

6 0.18 T 4.65 % 0.75 16.1
◦

7 0.0+ T 1.65 % 0.27 0.0
◦

8 0.0− T 1.65 % 0.27 0.0
◦

9 −0.2 T 1.65 % 0.27 17.9
◦

10 −0.5 T 3.1 % 0.5 47.6
◦

11 −0.65 T 5.95 % 0.96 90.0
◦

12 0.0− T 1.65 % 0.27 0.0
◦

justification for this effect is given by the consideration that when the mag-
netization in variant 1 has completely aligned with the magnetic field, the
Zeeman energy difference across the twin boundary vanishes and the driving
force (7.4.28) no longer depends on the magnetic field. Thus, the reorientation
process is terminated prematurely. This mechanism explains the reduction of
the maximum magnetic-field-induced strain with increasing stress levels in the
presented modeling approach.

According to (7.4.26), the critical magnetic field at which the magnetiza-
tion in variant 1 has fully rotated is in the limit of θ3→ π

2 given by

μ0H
crit
y =

2ρK1

Msat
= 0.65 T . (7.4.39)

Note that the critical field is independent of the applied stress. The relative
position of the critical field and the activation and termination fields for the
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forward reorientation process determine the amount of strain produced at each
stress level. As previously observed from the variant reorientation diagram in
Fig. 7.18, the magnetic-field-induced strain ranges from 0% at the blocking
stress to its theoretical maximum of 6.2% for stresses below |σxx|=0.94 MPa.

When the magnetic field is subsequently decreased below Hcrit
y to 0.4 T

in configuration 5, for example, the magnetization in variant 1 rotates back
towards the magnetic easy axis, but the MFIS stays constant. It must be
emphasized that the activation field for the reverse reorientation process is
not at 0.55 T, as the variant reorientation diagram in Fig. 7.18 suggests for
ξ = 1, but rather at 0.35 T, which is the appropriate activation field for
ξ = 0.96. By further lowering the field, variant 2 is reduced to 75% at 0.18
T in configuration 6, while the magnetization rotation angle in variant 1 has
decreased to 16.1◦. For this stress level, not all of variant 1 is recovered, even
after complete removal of the magnetic field, and a residual MFIS of 1.65%
remains in configuration 7. As evident from Fig. 7.19 as well as the variant
reorientation diagram, higher compressive stresses help to recover a greater
amount of variant 1. At zero field in configuration 7, the magnetization vectors
in both variants are aligned with their respective easy axes. Since the effect
of domain wall motion at low magnetic fields has been neglected, a remnant
macroscopic magnetization is predicted by the model.

With the application of a negative magnetic field, the magnetization in
both variants is assumed to instantaneously switch directions as indicated
in schematics 7 and 8. In configuration 9, the ratio of variants remains
unchanged, but the magnetization has rotated by 17.9◦. Due to the mixture
of variants, the activation of the reorientation process under a negative mag-
netic field is slightly delayed compared to the positive field hysteresis loop
and occurs at -0.45 T, which is the appropriate activation value for ξ = 0.27.
After the activation of the reorientation process through the magnetic field in
the negative y-direction, the evolution of the magnetic-field-induced strain is
symmetric to its positive counterpart described above in detail, and is con-
sistent with the microstructure schematically shown in configurations 10 and
11. In terms of the residual strain, configuration 12 at the end of the nega-
tive loop is identical to configurations 7 and 8 at the end of the positive loop
and the beginning of the negative loop, respectively. Unless a single variant
configuration is purposely restored by temporarily raising the stress level, the
reorientation strain that is obtainable in subsequent cycles is limited to 4.3%,
which is the difference in strain between the configurations 7 (or 8, 9, 12)
and 4 (or 5, 11). The reduction of the obtainable MFIS is thus limited to the
first cycle, hence the term first cycle effect. It should also be clear that if the
negative magnetic field had been applied first, the resulting hysteresis loop
had been the mirror image of the presented one.
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The Magnetization Response

The strong coupling between the deformation and changes in the magneti-
zation that are characteristic of the MSMA constitutive response is made
evident by considering the corresponding nonlinear magnetization hysteresis
curves. The experimentally observed magnetization response was introduced
in Fig. 7.13. Its unique characteristics will in the following paragraphs again,
just as the macroscopic strain response before, be connected to the magnetic-
field-induced activation of the main micro-scale mechanisms, namely the reori-
entation of variants and the local rotation of magnetization vectors, and in
some cases, also magnetic domain wall motion.

The magnetic-field-induced magnetization curves plotted in Fig. 7.228,9

have been computed using (7.4.36), in addition to the evolution equations
for the variant volume fraction, (7.4.31) and (7.4.34). All of the depicted
curves represent model predictions, since the model parameters were entirely
calibrated using information from experimental strain curves.

The schematics of Table 7.3 again prove helpful in understanding the con-
nection between the evolution of the internal variables and the macroscopic
material response, especially for the magnetization curve at −1.0MPa. At low
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Fig. 7.22. Predicted magnetization hysteresis curves at different stress levels (solid
lines) and comparison to experimental data [46] at −1.0 MPa (dashed line).
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magnetic fields, when the material is in its initial single variant state, the My-
curve represents the magnetization of variant 1 along its magnetic hard axis,
which occurs via magnetization rotation. The magnetization My, according
to (7.4.36), is predicted to have a linear dependence on Hy in this region,
since only the first term in the expansion of the anisotropy energy (7.3.9) has
been considered, which agrees well with the experimental observations. From
(7.4.36), a slope of 1.53 T−1 has been calculated, a result in excellent agree-
ment with the experimental data (dashed line) measured by Heczko et al. [46].
According to (7.4.26), the magnetization rotation is independent of the applied
stress and all curves coincide in this initial region. The abrupt deviation from
linearity of the magnetization curves occurs when the stress-dependent critical
magnetic field is reached and the variant rearrangement is initiated. The mag-
netization in this region changes via the mechanism of variant rearrangement
as well as magnetization rotation. The influence of the variant 2 magnetiza-
tion becomes more prominent as the reorientation process progresses. When
the critical magnetic field for full magnetization rotation in variant 1 has been
reached, the reorientation process is terminated and the material is magne-
tized to saturation in the direction of the applied magnetic field.

Since the forward reorientation process is not completed for this stress
level, the magnetization rotation in the residual variant 1 is reduced when
the magnetic field is subsequently decreased below Hcrit, resulting again in
a linear variation of the magnetization. The slope, however, is different from
the one initially observed for variant 1 at low magnetic fields, since 96% of the
material still consists of variant 2, whose magnetization remains unaffected
by the decrease of the magnetic field. Another abrupt nonlinear change in the
magnetization occurs when the reverse reorientation process is activated.

Example 7.3. Evaluation of a magnetization curve

The magnetization response curve at −1 MPa is plotted in this example.
The critical magnetic fields were determined in Example 7.1 and the corre-
sponding magnetic field-induced strain curve was evaluated in Example 7.2.
Using (7.4.36b), the y-component of the magnetization in the different regions
is given by

My =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ0(M
sat)2

2ρK1

Hy, 0 < Hy < Hs(1,2)
y ,

(1 − ξ(1,2))
μ0(M

sat)2

2ρK1

Hy + Msatξ(1,2), Hs(1,2)
y < Hy < Hcrit ,

Msat, Hcrit < Hy ≤ Hmax ,

(1 − ξcrit)
μ0(M

sat)2

2ρK1

H + Msatξcrit, Hcrit > Hy > H s̃(2,1)
y ,

(1 − ξ(2,1))
μ0(M

sat)2

2ρK1

H + Msatξ(2,1), H s̃(2,1)
y > Hy > 0 .
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Fig. 7.23. Plot of normalized magnetization in the y−direction as a function of
applied magnetic field as discussed in Example 7.3.

The evolution of the volume fraction in the reorientation regions is again
defined by (7.4.31) and (7.4.34), respectively, and all necessary material and
model parameters are specified in Table 7.2. The magnetization curve is shown
in Fig. 7.23.

Due to the residual variant 2 volume fraction of 27%, a remnant magnetiza-
tion is predicted at zero applied field, even though the magnetization in variant
1 has rotated back to its reference configuration. The model also predicts a
jump of the magnetization curve as the applied field switches sign. As dis-
cussed, this discontinuity is a direct consequence of neglecting the mechanism
of domain wall motion. The prediction of magnetization curves in this region
thus deviates from the experimental measurements. However, the importance
of this difference has not been deemed sufficient to justify raising the level
of complexity of the model by accounting for the complicated evolution of
the magnetic domains. This is only necessary if the main goal is to predict
the MSMA magnetization response at low magnetic fields. It is concluded that
for actuator applications the assumption of a fixed magnetic domain structure
yields sufficiently accurate predictions of the magnetic-field-induced strain and
magnetization response of MSMAs. Model predictions which account for the
magnetization change due to magnetic domain wall motion at very low stress
levels and low magnetic fields are presented next.
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7.4.2 Prediction of Magnetic-Field-Induced Variant Reorientation
at Constant Stress (Variable Domain Structure)

The previous section demonstrated that the assumption of a fixed magnetic
domain structure leads to reasonable predictions of the magnetization behav-
ior for stress levels at which most of the initial variant is recovered. It is
observed in experiments [1, 46, 67], however, that low compressive stresses
can be insufficient to even partially restore the stress-favored variant 1. If
no reverse reorientation occurs, a residual strain of magnitude εmax remains
at zero applied field and this mechanism cannot contribute to changing the
magnetization of the material. The remaining variant 2 has its easy axis
aligned with the applied field such that no local rotation of its magnetiza-
tion occurs. Therefore, the vanishing of the macroscopic magnetization as the
applied field is removed, cf. Fig. 7.13, can be explained at low stresses only
by magnetic domain wall motion. With the assumption of a fixed magnetic
domain structure as used in the previous section, the model would, however,
predict a remnant magnetization of Msat. At such low stress levels, the evolu-
tion of magnetic domains, therefore, cannot be neglected. This mechanism is
already incorporated in the general form of the constitutive model introduced
in Sect. 7.3. Reduced model equations for the considered loading case with
the possibility of magnetic domain wall motion shall now be derived.

Reduced Model Equations

Enforcing the constraint (7.3.16b) on θ1 and utilizing (7.3.14a) leads to

πθ1 = −(1 − ξ)(1 − α)
[
μ0M

satHy + 2ρK1 sin(θ1)
]
cos(θ1) = 0 . (7.4.40)

It follows that

sin(θ1) = −μ0M
sat

2ρK1

Hy , (7.4.41)

for 0 ≤ θ1 < π
2 , 0 ≤ ξ < 1 and 0 ≤ α < 1. The equivalent relation for θ3 was

derived as (7.4.26) in the previous section. Note that

sin(θ1) = − sin(θ3) . (7.4.42)

The corresponding constraints on the remaining rotation angles, with (7.3.14b)
and (7.3.14d), are identically satisfied for θ2 =θ4 =0.

For the considered loading conditions, the constraint (7.3.16a) on the driv-
ing force for magnetic domain wall motion, (7.3.13c), takes the form

πα =(1 − ξ)
[
μ0M

sat
[
sin(θ1) + sin(θ3)

]
Hy − ρK1

[
sin2(θ1) − sin2(θ3)

]]

+ 2ξμ0M
satHy − ∂fα

∂α
= 0 . (7.4.43)
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Again assuming a hardening behavior of the type ∂fα

∂α = aα + b, and utilizing
(7.4.42), (7.4.43) can be written as

aα + b = 2ξμ0M
satHy . (7.4.44)

With the conditions α(Hy = 0) = 1/2 and α(Hy = Hcrit,α) = 1 the evolution
equation for the magnetic domain volume fraction is derived from (7.4.44) as

α =
ξHy + Hcrit,α

2Hcrit,α
. (7.4.45)

Recall that Hcrit,α has been defined to be the critical field at which magnetic
saturation is achieved through domain wall motion.

The driving force for variant rearrangement, using (7.3.13a), (7.3.13b) and
(7.3.20), takes the form

πξ = σxxεr,max − μ0M
sat(1 − 2α)Hy − (μ0M

sat)2

4ρK1

H2
y − ∂fξ

∂ξ
. (7.4.46)

Note that for α = 1, (7.4.46) appropriately reduces to (7.4.28). For the for-
ward reorientation process, with trigonometric hardening (cf. (3.4.92)) and
substituting (7.4.45), it follows that

πξ = σxxεr,max +
μ0M

sat

Hcrit,α
ξHy − (μ0M

sat)2

4ρK1

H2
y + aV 2

c

[
π − cos−1(2ξ − 1)

]

− μc
1 − μc

2 = Y ξ,c . (7.4.47)

This equation describes the evolution of the variant volume fraction under
the simultaneous rotation of the magnetization vectors and the motion of
magnetic domain walls in both variants. Due to its transcendental nature, it
cannot be solved for ξ in closed-form. If one assumes a quadratic polynomial
harding behavior of the form (3.3.63), rather than the trigonometric hard-
ening assumed here, a closed-form solution for ξ can be found. However, the
implementation of the model in which all three mechanisms for magnetization
change are simultaneously active has proven to be very difficult. Preliminary
analysis with a quadratic polynomial suggests that a simple linear variation
of the term ∂fα

∂α leads to an unsatisfactory evolution of the magnetic-field-
induced strain in the reorientation region. The use of other hardening func-
tions, which lead to an exponential evolution of the magnetic domain volume
fraction, may yield the desired result.

Here, the motion of magnetic domain walls will be considered in magnetic
field regimes in which no variant reorientation occurs. This assumption is
very reasonable for those low stress levels at which no reverse reorientation
is induced. Initially, the magnetic domain volume fraction takes the value of
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α=0.5, which is consistent with (7.4.47) when evaluated at ξ=0, and leads to
a macroscopic magnetization of zero. For the forward reorientation process,
which occurs at relatively high magnetic fields, it is assumed as in the previous
section that α = 1. Since the reverse reorientation process does not occur at
the considered stress levels, no further assumptions on the evolution of the
magnetic domain wall motion have to be made. The evolution of α is then
properly described by (7.4.45).

The reorientation strain equations (7.4.35) are unaffected by the evolution
of α, since cases are considered only if it is reasonable to assume that the
variant reorientation and magnetic domain wall motion do not occur simul-
taneously. The y-component of the magnetization, using (7.3.8), (7.4.26) and
(7.4.41) in (7.3.12c), is derived to be

My = ξMsat(2α − 1) + (1 − ξ)
μ0(M

sat)2

2ρK1

Hy . (7.4.48)

The evolution of α for fixed ξ is given by (7.4.45). The evolution of ξ is coupled
to the condition α = 1 and is then described by (7.4.31). Alternatively, the
same expression follows from solving (7.4.47) for ξ at α=1.

Calibration of the Model Parameters

In principle, the same set of parameters as that listed in Table 7.2 could be
used here; however, as can be deduced from the variant reorientation diagram
of Fig. 7.18, these parameters lead to the prediction of a partial recovery
of variant 1 at the stress level of −0.2 MPa, which is inconsistent with the
experimental strain data at this stress level [46]. To obtain a more accurate
account of the magnetic-field-induced strain response at low stress levels, the
alternative parameter set specified in Table 7.4 is used, which was obtained
from a calibration at −0.2 MPa.

The Reorientation Diagram

The reorientation diagram in Fig. 7.24 was computed based on the set of
parameters listed in Table 7.4 that where determined from a calibration at
−0.2MPa. This diagram is the equivalent of that shown in Fig. 7.18 for which
the model parameters were found from the calibration at −1.0 MPa. In prin-
ciple, one could have chosen to use just one calibration for all loading cases;
however, the model calibration at −1.0 MPa has proven to be fairly accurate
in a relatively wide range of stresses, while the calibration at −0.2 MPa leads
to a more accurate prediction of the residual strain at very small stresses,
which are considered in this section.

In the considered loading case, the magnetic field is applied at a constant
stress of −0.2MPa, as indicated by a dashed line in the reorientation diagram.
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Fig. 7.24. Variant reorientation diagram for the parameters listed in Table 7.4.
Loading path for model calibration A → E.

Several characteristic points in this loading sequence have been labeled A →
E. Following the discussion from the beginning of this section, the magnetic
domain wall motion is only considered at low stress levels and low magnetic
fields, for which the reorientation process does not occur simultaneously.

Table 7.4. Material parameters for the Ni50.7Mn28.4Ga20.9 composition [46], and
the resulting hardening and hysteresis parameters when calibrated at −0.2 MPa

Material Parameters Model Parameters

Quantity Value Unit Quantity Value Unit Quantity Value Unit

ρK1 167.0 kJm−3 μ0H
s(1,2)
y 0.22 T aV 2

c −12.683 kPa

Msat 514.0 kAm−1 μ0H
f(1,2)
y 0.36 T μc

1 −3.730 kPa

εr,max 6.2 % μ0H
s(2,1)
y 0.0 T μc

2 9.188 kPa

σ∗ −0.2 MPa μ0H
f(2,1)
y −0.135 T aV 1

c −24.382 kPa

ξcrit 1.0 μ0H
crit,α 0.22 T Y ξ,c 76.080 kPa
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Model Predictions

The magnetic-field-induced reorientation strain response is computed by eval-
uating (7.4.31) and (7.4.35) with the reorientation conditions given by (7.3.23)
and utilizing the parameters set listed in Table 7.4. The magnetization in the
direction of the applied field follows from additionally evaluating the relations
(7.4.31), (7.4.45) and (7.4.48). The results have been plotted in Figs. 7.25
and 7.26.

The simulation of the magnetic-field-induced strain evolution, as well as
the prediction of the magnetization response, are observed to agree rather
well with the experimental data. The connection between the macroscopic
response and the evolution of the internal variables, which capture the main
characteristic features of the crystallographic and magnetic microstructure,

Table 7.5. Configuration schematics and data for the strain hysteresis curve at
−0.2 MPa with partial magnetic domain wall motion

# Schematic μ0Hy εr
xx ξ θ1, θ3 α

1 0.0 T 0.0 % 0.0 0.0
◦
, 0.0

◦
0.5

2 0.2 T 0.0 % 0.0 −17.9
◦
, 17.9

◦
0.5

3 0.284 T 3.1 % 0.5 — , 25.9
◦

1.0

4 0.36 T 6.2 % 1.0 — 1.0

5 0.11 T 6.2 % 1.0 — 0.75

6 0.0 T 6.2 % 1.0 — 0.5

7 −0.11 T 6.2 % 1.0 — 0.25

8 −0.22 T 6.2 % 1.0 — 0.0

9 0.0 T 6.2 % 1.0 — 0.5



374 7 Modeling of Magnetic SMAs

A B

CE D

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6
εr xx

  (
%

)

μ
0
H

y
  (T)

Fig. 7.25. Simulation of the magnetic-field-induced strain response at −0.2 MPa.
Solid line—model, dashed line—experiment [46].

shall again be discussed in detail. Table 7.5 shows schematics for the sequence
of numbered configurations defined in Fig. 7.26. These are analogous to the
schematics presented in Table 7.3, with the difference that in this case the
motion of magnetic domain walls has not been neglected.

In configuration 1, the magnetization vectors are arranged along the easy
axis of variant 1, and both domain types are of equal volume fraction, such
that the macroscopic magnetization is zero. As the magnetic field is applied
perpendicularly to this easy axis in configuration 2, the equally unfavorably
oriented magnetization vectors of both domains rotate toward the direction of
the applied field. Upon reaching the critical field of 0.22 T, the forward reori-
entation process is initiated and unfavorable magnetic domains have again
been assumed to be eliminated instantaneously (see discussion in Sect. 7.2.2).
Configuration 3 is therefore predicted to consist of a mixed variant arrange-
ment, but only of magnetic domain 2.

The critical field value of 0.36 T has been reached in configuration 4, and
the forward reorientation process is completed, which results in the depicted
single variant, single domain configuration. For example, when the magnetic
field is subsequently lowered below the critical value of μ0H

crit,α = 0.22 T
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Fig. 7.26. Prediction of the magnetization response at −0.2 MPa when account-
ing for partial magnetic domain wall motion. Solid line—model, dashed line—
experiment [46].

to 0.11 T in configuration 5, magnetic domain wall motion initiates and the
macroscopic magnetization is reduced, even though variant reorientation does
not occur. At zero field in configuration 6, the overall magnetization is again
zero, but this time it transpires because the magnetization vectors in both
domains are oriented along the easy axis of variant 2, with opposing orienta-
tions. As a negative magnetic field is applied, no variant reorientation occurs
since the material already consists entirely of the magnetic-field-favored vari-
ant 2. The magnetic domain wall motion such as depicted in configuration
7, however, leads to magnetic saturation in configuration 8, at which point
the critical value of −Hcrit,α has been reached. When the magnetic field is
removed, configuration 9 is obtained, which is identical to configuration 6.
Thus, the macroscopic magnetization again vanishes, while the field-induced
strain remains.

From the discussed example it is clearly evident that allowing for magnetic
domain wall motion significantly improves the accuracy of the magnetization
predictions at low stresses.



376 7 Modeling of Magnetic SMAs

7.4.3 Prediction of Stress-Induced Variant Reorientation at
Constant Magnetic Field

The second loading case considered is the magnetic-field-biased stress-induced
reorientation of martensitic variants. Experimentally the magnetomechanical
response of MSMAs under such loading conditions has been investigated by
Müllner et al. [19], Straka and Heczko [99, 100] and Karaca et al. [59]. The
investigated change in magnetization due to stress-induced variant reorien-
tation, which in Müllner et al. [19] is referred to as the reverse effect, may
lead to active sensor applications of MSMAs. This section demonstrates that
the model introduced in Sect. 7.3 and 7.4, is capable of also predicting such
response without adjustment of the model parameters.

Since the same components of the stress and magnetic field as in loading
case 1 are applied here, with now the stress variable and the magnetic field
constant, the same set of reduced model equations derived in Sect. 7.4.1 apply.
Partial magnetic domain wall motion is again taken into account at magnetic
fields below Hcrit,α, as was done in Sect. 7.4.2 so, the constitutive response is
still described by (7.4.29)–(7.4.36).

Special attention must be paid to the response caused by mechanical load-
ing at magnetic field levels below Hcrit,α, because magnetic domain wall
motion does occur at these field levels. At μ0Hy =0 T, the magnetic domain
volume fraction α takes the value of 0.5 according to (7.4.45). The driving force
for reorientation πξ, (7.3.20), however, is independent of α at μ0Hy =0T, such
that

πξ = σxxεr,max − ∂fξ

∂ξ
. (7.4.49)

The stress-induced evolution of ξ at 0 T can thus still be described by (7.4.34),
which was derived for α=1.

It is again emphasized that the formulation of the model is such that
the thermodynamic driving force for variant reorientation πξ incorporates
contributions of the stress and the magnetic field (see for example (7.4.27)).
The model parameters can thus be calibrated from a strain-magnetic field
curve at constant applied stress or, alternatively, from a stress-strain curve
at constant magnetic field. Ideally these calibrations should lead to the same
model parameters, though in reality they are typically slightly different (this
problem of course also arises for conventional shape memory alloys where one
observes the model parameters calibrated from an isothermal tension test to be
slightly different than those obtained from a thermal cycle at constant stress).
The resistance to twin boundary motion, which on the micro-scale is governed
by the detwinning stress, is in this phenomenological model captured by the
reorientation function. This function depends not only on the macroscopic
stress, but also the magnetic field and the internal state variables. The change
in the detwinning stress during reorientation is captured phenomenologically
by the hardening function.
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All modeling results for the stress-induced response in this section are
exclusively based on the parameters calibrated from the magnetic-field-induced
reorientation strain curve at the constant stress of −0.2 MPa as presented in
Sect. 7.4.2 (cf. Table 7.4).10 No experimental data from the response under
mechanical loading at a constant magnetic field was used in the calibration
of the model. So, the chosen modeling approach is not merely a curve-fitting
exercise.

Different loading paths for which the response caused by the magnetic-
field-biased stress-induced reorientation of martensitic variants is predicted
are indicated by dashed lines in the variant reorientation diagram shown in
Fig. 7.27. This reorientation diagram is identical to that shown in Fig. 7.24,
since, as discussed above, the same set of equations and parameters were
used to determine it. As depicted in the diagram, in all loading cases the
magnetic field is initially raised to 1 T under the constant stress of −0.2 MPa
(A→D) and then lowered to the magnetic field Hexp

y at which the compressive
stress cycle is to be conducted. This ensures a well-defined (single variant 2)
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Fig. 7.27. Loading paths in the μ0Hy–|σxx| variant reorientation diagram. Example
loading path A → H.

10 This set of parameters was chosen here because it is again important to accurately
predict the residual strain at low stress levels.
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starting configuration for the mechanical cycle. The same is commonly done
in experiments [99]. At the respective field levels of Hexp

y =0, 0.22, 0.4, 0.6 or
0.8 T the compressive stress is increased to −5.0MPa, and then lowered back
to −0.2MPa. Finally the magnetic field is removed under constant stress. The
case of stress loading at 0 T has been labeled with the letters E→H (A→E
for the initial magnetic cycle) for illustration purposes.

Corresponding predicted stress-induced reorientation strain curves at dif-
ferent magnetic field levels are shown in Fig. 7.28 (solid lines). This three
dimensional plot also contains the initial magnetic loading sequence. Charac-
teristic points along the example loading path introduced in the reorientation
diagram of Fig. 7.27 have again been labeled A→H. An interesting feature of
this three-dimensional plot is that it also contains two of the earlier plots. Its
projection onto the plane σxx =0 produces the same strain-magnetic field plot
as the one depicted in Fig. 7.25. If one projects the start and finish points
for the reorientation process onto the plane εr

xx = 0 and connects them with
lines, one obtains the variant reorientation diagram of Fig. 7.27. Additionally,
the projection of the strain curves onto the plane μ0Hy =0, produces a two-
dimensional strain-stress plot, in which the response curves are parameterized
by the value of the constant field μ0Hy. The result of this last projection is
shown in Fig. 7.29, where, for convenience, the induced reorientation strain
has been plotted as a function of the absolute value of the stress.

0.2
0.4

0.6
0.8

1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

-5.0

-4.0

-3.0

-2.0

-1.0
0.0

 εr

xx
 (%)

σ xx
 (M

P
a)

μ
0 H

y  (T)

A

B

E

D

F H

G

C

Fig. 7.28. Stress-induced reorientation strain vs. stress and magnetic field. Initial
constant stress loop at −0.2 MPa.
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Fig. 7.29. Stress-induced reorientation strain vs. stress at different levels of μ0Hy.

It can be stated that the predicted behavior is clearly consistent with the
main features of the strain response observed by Straka and Heczko [99] in
their experiments on the stress-induced reorientation of initially single variant
Ni–Mn–Ga (five-layered modulated tetragonal) martensite:

1. The higher the magnetic field level, the higher the compressive stress
needed to start the reorientation from the magnetic-field-favored to the
stress-favored variant. This effect is of course directly evident from the
variant reorientation diagram in Fig. 7.27.

2. At high magnetic fields (0.4, 0.6 and 0.8 T) the initial magnetic-field-
favored is completely recovered as the stress is lowered back to the initial
−0.2 MPa. This is the magnetic-field-biased super-, magneto- or pseudoe-
lastic effect depending on preferred terminology [19, 59, 99].

3. Small magnetic fields (0 and 0.22 T) are not sufficient to return the
stress-favored variant to the magnetic-field-favored variant configuration
at the end of the stress loading cycle. This effect is often referred to as
superplasticity [99, 100] or magnetoplasticity [19, 59, 101]. It is of course,
unlike actual plastic deformation, a (crystallographically not thermody-
namically) reversible effect and is the equivalent of the one-way-shape-
memory-effect in SMAs.
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4. At intermediate fields (in the region of 0.22–0.36 T in this case) only
partial recovery of the magnetic-field-favored variant is reported in the
referenced experiments. The constitutive model has been tested for these
field levels and indeed predicts a mixture of both variants after mechanical
loading, which corresponds to the observed partial recovery of the initial
reorientation strain. In this case, however, the response to the removal of
the magnetic field at the end of the loading sequence is quite complex. For
the sake of clarity of the presented material the results of the modeling
of partial stress-induced strain recovery followed by magnetic unloading
have not been included here.

Further observations include that in the case of stress-driven reorientation
the full induction of the stress-favored variant can be achieved at all mag-
netic field levels. Recall that in the magnetic field-driven case the induction
of the field-favored variant was only partial for most stress levels and even
completely suppressed at the blocking stress (cf. Fig. 7.19). There does not
exists an equivalent blocking magnetic field. This statement can also be directly
confirmed by consulting the variant reorientation diagram of Fig. 7.27. A mag-
netic loading path at constant stress only crosses the variant 1 → variant 2
reorientation band at stress levels below the blocking stress, whereas a stress
loading path at any constant magnetic field crosses the variant 2 → variant 1
reorientation band.

This loading case also nicely illustrates the loading history dependence of
the constitutive response, which the model is able to capture by accounting
for the evolution of the microstructure through internal state variables. It
is observed in the strain response of Fig. 7.28 that the sequence of loading
significantly influences the response and determines the value of the residual
strain. Note that, although all loading path start and end at the stress and
magnetic field values of −0.2MPa and 0 T, the resulting strain is either zero or
the maximum of 6.2% depending on the magnetic field level at which the stress
cycle is applied (and in general takes any value in between at intermediate
magnetic fields). The material response therefore clearly depends not only on
the current values of the independent state variables stress and magnetic field,
but also on the current configuration of the microstructure and thereby on
the loading history, which must be taken into account when modeling these
materials as was done in the proposed model.

Fig. 7.30 takes a closer look at the stress-induced reorientation strain
response at the example magnetic field level of 0.4 T. The configuration
schematics of Table 7.6 once more illustrate the connection between the evo-
lution of the internal state variables and the observed macroscopic response.
Recall that due to the prior magnetic loading, the material in configuration
1 consists entirely of the second magnetic-field-favored variant 2. Raising the
compressive stress level initiates the reverse variant reorientation process at
the stress of −2.49 MPa, corresponding to configuration 2. At −3.1 MPa, in
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Fig. 7.30. Detail: stress-induced reorientation strain hysteresis loop at 0.4 T.

Table 7.6. Configuration schematics and data for the stress-induced strain hystere-
sis curve at 0.4 T

# Schematic σxx εr
xx ξ θ3

1 −0.20 MPa 6.2 % 1.0 —

2 −2.49 MPa 6.2 % 1.0 —

3 −3.10 MPa 3.1 % 0.5 38
◦

4 −3.71 MPa 0.0 % 0.0 38
◦

5 −0.98 MPa 0.0 % 0.0 38
◦

6 −0.66 MPa 3.1 % 0.5 38
◦

7 −0.34 MPa 6.2 % 1.0 —

8 −0.20 MPa 6.2 % 1.0 —
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configuration 3, half of variant 1 has been recovered. The process is completed
in configuration 4. At this elevated magnetic field level of 0.4 T, however, the
stress-induced variant is not sustained, and the forward reorientation process
is again initiated and completed in configurations 5–7, as the stress is subse-
quently lowered. Configuration 8 at the end of the mechanical loading cycle is
therefore identical to configuration 1 and entirely consists of variant 2. Similar
explanations of the response apply to the other loading paths.

The associated stress-induced magnetization curves (“reverse effect”) are
shown in Fig. 7.31. The projection of these curves onto the plane Hy = 0 is
plotted in Fig. 7.32. Just as for the strain response curves of Fig. 7.28, if the
critical points of the magnetization curve are projected and connected in the
plane My =0 one obtains the reorientation diagram.

The response to the initial magnetic field cycle at −0.2 MPa, which has
previously been shown in Fig. 7.26, is again depicted as a dashed line. A com-
parison of the results reveals that the nature of the stress-induced magnetiza-
tion change is substantially different in nature than the magnetic-field-induced
magnetization change of loading case 1 (cf. Fig. 7.22). In the magnetic-field-
induced case, the magnetization always reaches saturation, whereas under
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Fig. 7.31. Normalized magnetization vs. stress and magnetic field. Initial constant
stress loop at -0.2 MPa.



7.4 MSMA Response Under Specific Magnetomechanical Loading 383

Fig. 7.32. Normalized magnetization vs. stress at different levels of μ0Hy.

stress loading, the induced magnetization varies for different magnetic field
levels. At low fields large changes in the relative magnetization occur; at large
fields the changes are small. This prediction is consistent with the experimen-
tal observations of Straka and Heczko [100].

Referring back to the induced microstructural changes illustrated in
Table 7.6, the explanation for this effect is that since the stress is applied at a
constant magnetic field, the mechanism of magnetization rotation is not acti-
vated. The magnetization vector in variant 1 remains constant at the rotation
angle associated with the magnetic field level, and the magnetization vector
of variant 2 is fixed to its magnetic easy axis. At magnetic field levels above
μ0H

crit,α =0.22 T, where magnetic domain wall motion can be neglected, the
only mechanism that leads to changes in the magnetization under mechanical
loading at constant magnetic field, is thus the stress-induced reorientation of
variants. In loading case 1, however, the mechanism of magnetization rota-
tion was also active during variant reorientation, which explains the different
nature of the induced magnetization response. At 0.8T, which is above Hcrit,
the magnetization in both variants is already fully aligned with the applied
field and no change in the magnetization is induced, even though it is clear
from the strain response shown in Fig. 7.28 that variant reorientation occurs.
The prediction is also consistent with the observation of Straka and Heczko
[100]. Likewise, no change in the magnetization is observed at 0 T, but the
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reason in this case is that, in the absence of an external field, the arrangement
of magnetic domains is such that the overall magnetization is zero.

From the comparison of the predicted magnetization response with the
experimental findings of Straka and Heczko [100] and Müllner et al. [101], one
observes, however, that the model apparently overpredicts the magnetization
hysteresis. They report that, although the stress-strain hysteresis is signifi-
cant, the stress magnetic field hysteresis is small. In fact Müllner et al. [101]
even conclude that since in their observations the “reverse effect” is almost
free of hysteresis, MSMAs show promise of usability in sensor applications.
In the presented model, however, the hysteresis of both the strain and the
magnetization response are directly tied to dissipative effects caused by twin
boundary motion during the reorientation process. Thus if there exists sig-
nificant hysteresis in the strain response the model must predict significant
hysteresis in the magnetization response. This issue must be the subject of
future investigations.

7.5 Summary

This chapter discussed the magneto-mechanical constitutive modeling of mag-
netic shape memory alloys, by connecting their macroscopic response to micro-
scale mechanisms. The constitutive model followed the same approach used in
previous chapters for conventional SMAs. Reorientation diagrams were con-
structed to visualize the variant reorientation conditions for various magneto-
mechanical loading paths. Special consideration was given to magnetic loading
at constant stress and mechanical loading at constant magnetic field. Predic-
tions of the constitutive model were validated by comparison of results with
experimental observations.

7.6 Problems

7.1. Consider the MSMA reorientation diagram shown in Fig. 7.33, as pre-
dicted by the model that accounts for the reorientation of martensitic variants
as well as the local rotation of magnetization vectors. Of the full reorientation
diagram (cf. Fig. 7.18) only the section relevant for magnetic field loading at
constant stress is shown here.

(a) Define the physical significance of the field Hcrit.
(b) Draw qualitative magnetic-field-induced strain and magnetization

response curves for the three stress levels indicated in Fig. 7.33. Identify
all critical values in the sketch.

7.2. Consider again the special loading case σxx = const. ≤ 0 and Hy ≥ 0
(α=1) discussed in Sect. 7.4.1.
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(a) Derive the driving force expression (7.4.27).
(b) Derive (7.4.25) by enforcing the constraint on πθ3 . Using this relation

deduce (7.4.28) from (7.4.27).
(c) Derive the expressions for ξ(1,2) and ξ(2,1) for power law hardening, which

are the equivalent of (7.4.31) and (7.4.34). Use the following derivative of
the power law hardening function [58]

∂fξ,pl

∂ξ
=

⎧
⎨

⎩

Aplξn−1 + Bpl
1 + Bpl

2 , ξ̇ > 0

Cpl
[
1 − (1 − ξ)n−1

]
+ Bpl

1 − Bpl
2 , ξ̇ < 0

. (7.6.50)

(d) Derive the expression for μ0H
crit, i.e. (7.4.39).

(e) Plot the magnetic-field-induced strain and magnetization curves for the
stress levels −2MPa and −3MPa, respectively, using the parameters listed
in the Table 7.7 (also see Examples 7.1, 7.2 and 7.3).

7.3. Based on the material parameters of Problem 7.2 above, calculate the
actuation energy per unit volume of a MSMA as a function of applied stress.
Compare with the actuation energy per unit volume of a typical SMA. Com-
pare also the actuation energy per unit mass of a MSMA with a typical SMA,
using ρMSMA = 8020 kg/m3 and ρSMA = 6500 kg/m3 as the corresponding
mass densities.
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Table 7.7. MSMA material parameters for Problem 7.2

Symbol Value [unit]

μ0 1.256 [μmTA−1]

Msat 742.4 [kAm−1]

εm,max 5.6 [%]

ρK1 0.58 [MJm−3]

Apl 204.807 [kPa]

Bpl
1 55.194 [kPa]

Bpl
2 174.763 [kPa]

Cpl 486.064 [kPa]

Y ξ,c 22.508 [kPa]

7.4. MSMAs could potentially be used as high frequency actuators. Identify
the physical mechanism that will dictate an upper limit in the frequency
response of MSMAs. Consider effects both due to a fast changing magnetic
field and also the effects of energy dissipation due to hysteresis.

7.5. Describe the feasibility of combining the shape memory effect of an SMA
with the magnetic-field-induced reorientation strain of a MSMA to design a
sensor-actuator combination responsive to thermo-mechano-magnetic fields.

7.6. Following the methods of Chapter 3, Sect. 3.5.1, derive a 1-D reduction of
the model presented in this chapter. Using this result, merge this 1-D MSMA
model with the 1-D reduction for the unified model given in Chapter 3 to
create a consistent thermo-mechano-magnetic model for MSMAs.
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A

Generalized Framework for Modeling of SMAs

M. A. Siddiq Qidwai and D. C. Lagoudas

The purpose of this appendix is to extend the thermodynamic framework
presented in Chapter 3 by formally including the principle of maximum trans-
formation dissipation. A generalized phase transformation function, motivated
by experimental results is also discussed, extending the transformation func-
tions introduced in Chapters 3 and 4. The maximum dissipation principle
imposes constraints on the form of internal state variable evolution equations
and establishes the shape of the transformation function in generalized ther-
modynamic force space. A Green-Lagrange strain measure is employed in mod-
eling to account for large deformations. The work in this appendix follows the
work of Qidwai and Lagoudas [1].

A.1 Description of SMAs: Thermodynamic Potentials in
the Lagrangian Formulation

For purposes of development, we prescribe a general Gibbs free energy poten-
tial, G, for a polycrystalline SMA given by

G = G(S, T,Υ) , (A.1.1)

where Υ is a set of Lagrangian internal state variables (defined in the ref-
erence configuration), S represents a stress measure defined in the reference
configuration (e.g. the second Piola-Kirchoff stress tensor), and T is the ther-
modynamic temperature.

The phase transformation in SMAs is a dissipative process that involves
an entropy increase. Dissipative processes require the application of the laws
of thermodynamics to obtain constraints on the material response. The most
popular methodology is the one proposed by Coleman and Noll [2] for inelastic
materials as described in Chapter 3. In this methodology, the second law
of thermodynamics is assumed to be represented by the strong form of the
Clausius-Duhem inequality to derive constraints on the material behavior,
which is given in the form of the Clausius-Plank inequality by the following
expression:

− ρ0 Ġ − ρ0sṪ − E : Ṡ ≥ 0 , (A.1.2)
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where ρ0 is the mass density in the reference configuration, s is the entropy
and E is the total Green-Lagrange strain tensor. For small strains, the corre-
sponding equation in Chapter 3 is (3.2.21).

Taking into account (A.1.1), the rate of change of the Gibbs free energy
is given by

Ġ =
∂G

∂S
: Ṡ +

∂G

∂T
Ṫ +

∂G

∂Υ
: Υ̇ . (A.1.3)

Substituting (A.1.3) into (A.1.2), we obtain

− (ρ0

∂G

∂S
+ E) : Ṡ − ρ0 (

∂G

∂T
+ s) : Ṫ − ρ0

∂G

∂Υ
: Υ̇ ≥ 0 . (A.1.4)

In the thermoelastic region, Υ̇ is zero and since the above relation should be
valid for all Ṡ and Ṫ , we obtain the following constitutive relations:

E = −ρ0

∂G

∂S
, (A.1.5)

s = −∂G

∂T
. (A.1.6)

These constitutive relations are also assumed to be valid everywhere at the
boundary of the thermoelastic region. A detailed discussion on this assumption
is presented in [3], where the authors employed the notion of a family of
thermoelastic responses associated with the overall inelastic material behavior.

Now, using (A.1.4), (A.1.5) and (A.1.6), we define the transformation dis-
sipation, Dt, as

Dt = −ρ0

∂G

∂Υ
: Υ̇ ≥ 0 . (A.1.7)

If we define
Γ = −ρ0

∂G

∂Υ
(A.1.8)

as the set of generalized thermodynamic forces conjugate to Υ̇, then the trans-
formation dissipation is simply given by

Dt(Γ; Υ̇) = Γ : Υ̇ ≥ 0 . (A.1.9)

This relation is the rate of work done by phase transformation due to changes
in microstructure induced by Υ̇ in the generalized thermodynamic force space.

A.1.1 Phase Transformation Function

To determine the thermoelastic region, one assumes the existence of a trans-
formation function, Φ (Γ), which is used to define the boundary of the ther-
moelastic response, by the equation

Φ (Γ) = 0 . (A.1.10)

Connectivity with the thermoelastic domain for at least one loading path
requires

Φ (Γ(S, T,Υ)) ≤ 0 . (A.1.11)



A.1 Thermodynamic Potentials in the Lagrangian Formulation 397

A.1.2 Principle of Maximum Transformation Dissipation

The principle of maximum transformation dissipation is based on the premise
that if the SMA material transforms at some point during its thermome-
chanical loading, then this transformation will be characterized by maximum
dissipation. The maximum dissipation principle has been applied within the
framework of plasticity [4, 5] to demonstrate the convexity of the yield cri-
terion in stress-internal state variable space, the associativity of the internal
state variables evolution equations, and the presence of Kuhn-Tucker condi-
tions. The discussion here is more general in the sense that a broader general-
ized thermodynamic force internal state variable space is considered. It will be
shown that the principle implies associative evolution equations and a convex
thermoelastic region in the larger space of thermodynamic force internal state
variables, at the same time allowing for non-associative evolution equations
and non-convexity of the thermoelastic region in the stress-temperature space.

The principle of maximum transformation dissipation for SMAs is ex-
pressed by the following statement:

For a given set of internal state variables, Υ, among the set of
all admissible generalized thermodynamic forces, Γall, satisfying the
transformation criterion (A.1.11), the transformation dissipation, Dt,
defined by (A.1.9) is the global maximum for the actual generalized
thermodynamic forces, Γ.

We can mathematically write the above maximum transformation dissipation
principle as

Dt(Γ; Υ̇) = max
Γa∈Γall

Dt(Γa; Υ̇) , (A.1.12)

where

Γa =
(

−ρ0

∂G

∂Υ

)∣
∣
∣
∣
admissible

, (A.1.13)

are the admissible generalized thermodynamic forces and

Γall = {Γa | Φ(Γa) ≤ 0} , (A.1.14)

is the set of all admissible generalized thermodynamic forces.

A.1.3 Consequences of the Application of the Principle
of Maximum Transformation Dissipation

To show the impact of the principle of maximum transformation dissipation,
the Lagrange multiplier method is employed. Following the standard optimiza-
tion method [6, 7], the maximum dissipation principle is transformed into a
minimization principle by changing the sign of the objective function to −Dt.
Then using (A.1.9) and (A.1.12), the extended Lagrangian associated with
the unconstrained optimization problem is given by
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Lt(Γa, λ; Υ̇) = −Γa : Υ̇ + λΦ (Γa) , (A.1.15)

where λ is the Lagrange multiplier. The solution to the above optimization
problem is then given by {Γ, λ}, satisfying the following relations:

∂Lt(Γa, λ; Υ̇)
∂Γa

∣
∣
∣
∣
∣
Γa=Γ

= −Υ̇ + λ
∂Φ (Γ)

∂Γ
= 0 , (A.1.16)

along with Kuhn-Tucker optimality conditions given by

λ ≥ 0, Φ (Γ) ≤ 0, λΦ (Γ) = 0 . (A.1.17)

The relations (A.1.16)-(A.1.17) are necessary but not sufficient conditions
for the existence of a global minimum for the dissipation potential, −Dt.
Sufficiency is guaranteed for a linear function if the constraint region is convex,
its global minimum being always directly found at the boundary. Note that
the dissipation potential, -Dt, is a linear function and for its global minimum
to exist the transformation function, Φ(Γ(S, T,Υ)), has to be convex in the
generalized thermodynamic force space (Γ-space). Non-convexity in the stress-
temperature {S, T} space is still allowed.

The requirement of convexity of Φ for the stationary point to be a global
minimum is now derived. Based on a result found in [4] (Lemma 2.6.1), the
function Φ(Γ) is convex if and only if

Φ(Γa) − Φ(Γ) ≥ (Γa − Γ) :
∂Φ(Γ)

∂Γ
. (A.1.18)

The satisfaction of the above inequality is shown as follows. Based on the
definition (A.1.12), we have

Dt(Γ; Υ̇) ≥ Dt(Γa; Υ̇)

Γ : Υ̇ ≥ Γa : Υ̇ . (A.1.19)

Substituting the relation from (A.1.16) and bringing all the terms on the
right-hand side, we obtain

λ (Γa − Γ) :
∂Φ(Γ)

∂Γ
≤ 0 . (A.1.20)

Then, using the Kuhn-Tucker condition, i.e., λΦ(Γa) = 0, we can write

λ (Γa − Γ) :
∂Φ(Γ)

∂Γ
≤ λΦ(Γa) . (A.1.21)

For the non-trivial case, when λ > 0 and noting that Φ(Γ) = 0, we obtain

(Γa − Γ) :
∂Φ(Γ)

∂Γ
≤ Φ(Γa) − Φ(Γ). (A.1.22)

Which coincides with (A.1.18), and hence convexity in the generalized ther-
modynamic force space follows.
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A.2 Constitutive Modeling of Polycrystalline SMAs:
Lagrangian Formulation

We now present a constitutive model based on the thermomechanical frame-
work developed in Sect. A.1 and the earlier work of Lagoudas and cowork-
ers [8, 9]. The model is capable of modeling the pseudoelastic and the shape
memory effects. However, the modeling of reorientation requires an extended
model, for example a model similar to the one presented in Chapter 6. The
Gibbs free energy potential, G, for such an SMA material is proposed as fol-
lows:

G(S, T,Et, ξ) = − 1
2 ρ0

S : S : S − 1
ρ0

S :
[
α(T − T0) + Et

]
+

c

[

T − T0 − T ln
(

T

T0

)]

− s0T + u0 +
1
ρ0

f(ξ)
(A.2.23)

where S, α, c, s0 and u0 are the effective compliance tensor, effective thermal
expansion coefficient tensor, effective specific heat, effective specific entropy at
the reference state and effective specific internal energy at the reference state,
respectively similar to material properties introduced in Chapter 3. Also, the
changes in the microstructure of the material are represented by the set of
internal state variables, Υ = {Et, ξ}, where Et is the Lagrangian transforma-
tion strain tensor and ξ is the martensitic volume fraction. The function, f(ξ),
in (A.2.23) accounts for transformation hardening due to interaction between
martensite and austenite and the martensitic variants themselves as described
in Chapter 3.

The constitutive relations are obtained using (A.1.5) and (A.1.6) with the
specific form of G given by (A.2.23), i.e.,

E = S : S + α(T − T0) + Et, (A.2.24)

s =
1
ρ0

S : α + c ln
(

T

T0

)

+ s0. (A.2.25)

Additive strain decomposition appears in (A.2.24) and the difference Ee =
E−α(T −T0)−Et can be identified as the elastic strain. Note that the elastic
strain depends on the degree of phase transformation through the dependence
of the elastic compliance on ξ. The nonlinearity in the constitutive behavior
is due to the use of nonlinear kinematics and the evolution of Et.

Using (A.1.9), the transformation dissipation, Dt, generalized thermody-
namic forces, Γ, and their generalized conjugate internal variable rates, Υ̇,
respectively, are given by

Dt
(
S, p; Ėt, ξ̇

)
= S : Ėt + pξ̇ ≥ 0 , (A.2.26)

Γ = {S, p} , (A.2.27)



400 A Generalized Framework for Modeling of SMAs

Υ̇ =
{
Ėt, ξ̇

}
. (A.2.28)

In the above equations, the generalized thermodynamic force S is found by
applying (A.1.8), i.e.,

− ρ0

∂G

∂Et
= S , (A.2.29)

and the generalized thermodynamic force p is also derived from (A.1.8) with
the following evaluation:

p = −ρ0

∂G

∂ξ

=
1
2
S : ΔS : S + Δα : S(T − T0) − ρ0 Δc

[

T − T0 − T ln
(

T

T0

)]

+ρ0 Δs0 T − ∂f(ξ)
∂ξ

− ρ0 Δu0 . (A.2.30)

The terms ΔS,Δα,Δc,Δs0,Δu0 in (A.2.30) indicate the difference of com-
pliance tensor, thermal expansion coefficient tensor, specific heat, reference
entropy and reference internal energy between the martensitic and austenitic
phases, respectively, as defined in Chapter 3.

At this point, we utilize the assumption of the existence of a thermoelastic
region defined by a transformation function Φ(S, p) with its boundary being
determined by the relation

Φ(S, p) = Φ(Γ) = 0 . (A.2.31)

It is further assumed that the construction of Φ will be such that all admissible
material states will satisfy the constraint

Φ(S, p) ≤ 0 . (A.2.32)

Then, in light of (A.1.16) and (A.1.17), the application of the principle of
maximum transformation dissipation results in the following transformation
evolution equations and Kuhn-Tucker conditions:

Ėt = λ
∂Φ(S, p)

∂S
, (A.2.33)

ξ̇ = λ
∂Φ(S, p)

∂p
, (A.2.34)

λ ≥ 0, Φ(S, p) ≤ 0, λΦ(S, p) = 0 . (A.2.35)

Since (A.2.34) is a scalar equation, it is obvious that the Lagrange multiplier,
λ, is proportional to the rate of martensitic volume fraction, ξ̇. An important
observation is obtained by substituting the expression for λ from (A.2.34) into
(A.2.33), with the following result:
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Ėt = ξ̇
1

∂Φ(S,p)
∂p

∂Φ(S, p)
∂S

. (A.2.36)

In words, the above equation states the following: The application of the prin-
ciple of maximum transformation dissipation implies that for an SMA con-
stitutive model, which admits the martensitic volume fraction as an internal
state variable, the evolution of the remaining internal state variables is directly
proportional to the evolution of the martensitic volume fraction.

Recall now the expression for transformation dissipation given by (A.2.26)
and substitute the transformation strain evolution equation given by (A.2.36)
into it to obtain

Dt =

(
1

∂Φ(S,p)
∂p

S :
∂Φ(S, p)

∂S
+ p

)

ξ̇ = π ξ̇ ≥ 0 . (A.2.37)

The above expression states that all the dissipation is caused by a change in
the martensitic volume fraction. From this development, an effective thermo-
dynamic force, π, is defined, which is conjugate to ξ and a combination of the
generalized thermodynamic forces {S, p}.

We now propose the following general form of the transformation function

Φ(S, p) = [Φ̂(S) + p]2 − Y 2

= [Φ̂(S) + p − Y ][Φ̂(S) + p + Y ] , (A.2.38)

where Y is the measure of internal dissipation due to microstructural changes
during phase transformation.

Substituting (A.2.38) into (A.2.33) and (A.2.34), we obtain the following
set of equations:

Ėt = 2λ[Φ̂(S) + p]
∂Φ̂(S)

∂S
, (A.2.39)

ξ̇ = 2λ[Φ̂(S) + p] . (A.2.40)

Inverting (A.2.40) for λ and substituting it in (A.2.39), the transformation
strain evolution is shown to depend on the evolution of the martensitic volume
fraction as

Ėt = ξ̇
∂Φ̂(S)

∂S
. (A.2.41)

Different functional forms of the phase transformation function Φ̂(S) are pre-
sented in the next sections.

A.2.1 J2 Transformation Function

Let Φ̂(S) be defined by
Φ̂(S) = α

√
3J2 , (A.2.42)
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where the material parameter α corresponds to the maximum transformation
strain obtained during forward transformation [8–10], J2 = 1

2S
′ : S′ = 1

2‖S′‖2

is the second deviatoric stress invariant and S′ = S− 1
3 tr (S) is the deviatoric

stress. The transformation strain evolution equation is then obtained using
(A.2.41) as follows

Ėt =

√
3
2
α

S′

‖S′‖ ξ̇ = Λ ξ̇ , (A.2.43)

where Λ =
√

3
2α S′

‖S′‖ . Using the transformation tensor Λ, Φ̂(S) can also be
described as

Φ̂(S) = S : Λ = S :
∂Φ̂(S)

∂S
. (A.2.44)

A.2.2 J2 − I1 Transformation Function

For this type of phase transformation function, we define Φ̂(S) to be

Φ̂(S) = β
√

3J2 + γ I1 , (A.2.45)

where I1 = tr (S) is the first stress invariant [11]. In (A.2.45), β and γ are
material parameters, which are used to demonstrate the tension-compression
asymmetry. The transformation strain evolution equation is then given by

Ėt =

(√
3
2
β

S′

‖S′‖ + γ1

)

ξ̇ = Λ ξ̇ , (A.2.46)

where 1 is the second order identity tensor.

A.2.3 J2 − J3 − I1 Transformation Function

Another choice of Φ̂(S) that captures the tension-compression asymmetry in
addition to the volumetric transformation strain is proposed as a general
transformation function and is given by:

Φ̂(S) = κ
√

3J2

[

1 + ν
J3

(3J2)
3
2

]ζ

+ ω I1 , (A.2.47)

where J3 = DetS′ is the third deviatoric stress invariant, κ and ν are related
to tension compression asymmetry, ω is introduced to capture the volumetric
effect and ζ is another material constant. For ν = 0 (or ζ = 0) and ω = 0,
the form of J2 function is recovered. For ν = 0 (or ζ = 0), the form of J2 − I1

transformation function is recovered. For ζ = 1
2 and ω = 0, the transformation

function proposed in [12], based on J2 − J3 is obtained. The transformation
strain evolution equation compatible with (A.2.47) and for ζ = 1 is given by
the following expression:
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Ėt =

{

κ

[
3S′

2
√

3J2

+ ν

√
3J2

(
S′S′ − 2

3J21
)
− 3J3S

′

(3J2)2

]

+ ω1

}

ξ̇,

(A.2.48)
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B

Numerical Solutions to Boundary Value
Problems

P. Popov

This appendix is intended as a brief summary of a standard, displacement-
based Finite Element Method (FEM) for problems with material nonlinearity
and an associated strain-driven return mapping algorithm for resolving the
material response. Here we focus on displacement-based FEM methods,which
are best suited for static boundary value problems of structures whose materi-
als do not exhibit large jumps in material coefficients. A strain-driven return
mapping algorithm is then a natural choice for incorporating the material
response into the FEM. This combination generalizes easily to semi-discrete,
time-dependent FEM discretizations. The FEM discretization is considered
first in Sect. B.1. Based on this, a suitable return mapping algorithm is then
presented in Sect. B.2.

B.1 Displacement-Based Finite Element Methods
for Nonlinear Problems

In general, when solving boundary problems for nonlinear hysteretic materials,
such as SMAs, one is presented with two challenges:

• Select an appropriate discretization of the underlying partial differential
equations.

• Integrate the constitutive equation in the selected discretization scheme.

While these tasks are quite interrelated, one usually selects the discretiza-
tion method first based on the real-life problem that needs simulation. Then,
a suitable numerical algorithm is devised, which incorporates the nonlinear
material behavior into the discretization.

There are many factors to consider when selecting a discretization scheme.
For example, if one wishes to solve static problems, by far the optimal family
of methods is the Petrov-Galerkin discretizations using finite elements [1, 2].
If, on the other hand, one wishes to solve time-dependent problems, there is
no method that works best, and depending on the problem, the simulator has
to select an appropriate method. To name a few choices, it can be a partic-
ular conservative finite volume method [3]; a specific explicit finite difference
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scheme [4]; or one of the multitude of standard, mixed, hybrid or discontinu-
ous Galerkin finite element methods [2, 5–7]. The selection is guided by the
type of time-dependent problem - linear or nonlinear, monotone stress depen-
dence or non-monotone (e.g. material that allows softening), and structures
with several materials that have large differences in material properties, etc.

It is assumed that the reader is familiar with discretization of partial differ-
ential equations. Thus, we outline only the most basic parts of a discretization
of a boundary value problem in inelasticity with internal variable to account
for changes in microstructure due to the phase transformation. The notation
is the following: x denotes spatial and p denotes material coordinates, u is
the displacement vector, a material field, and the Piola-Kirchoff stress tensor
S, also a material field. It is convenient to introduce the symmetric part of
the gradient operator:

e (w) =
1
2
(
∇w + (∇w)T

)
,

for some field w. Observe that the infinitesimal strain tensor ε (p) is given by:

ε (p) = e (u).

Constitutive model. Consider a nonlinear, hysteretic body occupying a (ref-
erence) domain Ω. For this material body we are given a constitutive model.
Let this constitutive model be formulated in terms of small strains. Next,
assume for the moment, that this constitutive model provides an explicit
(closed form), path-dependent relationship between the Piola-Kirchoff stress
tensor S (p) and the strain ε (p) and internal variables ξ (p), that is at some
instance of time:

S (p) = S (e (u (p)); ξ (p)) . (B.1.1)

The semicolon denotes that S depends, possibly, on the entire history of the
internal variables (cf. Chapters 3-6).

Loading process. We now consider a loading process of this body. Assume
its material state (displacements, strains, stresses, internal variables) is well
known at some initial time t0 and that at this initial (reference) state, the
balance of linear momentum is satisfied in Ω. Consider further a quasistatic
process (all transient effects are negligible) in which this body is loaded at
discrete instances of time t1, t2, ..., tn+1. The material body is subject to a
distributed force b (p) and the loading includes prescribed displacements ûi,
i = 1, 2, ..., n+1 on part of the boundary of ΓD ⊆ ∂Ω (Dirichlet data) and/or
prescribed tractions ŝi, i = 1, 2, ..., n + 1 on another part of the boundary
ΓN ⊆ ∂Ω (Neumann data). The mixed boundary value problem for such quasi-
static loading is: Find ui(p) and ξi (p) such that balance of linear momentum
is satisfied:

∇ · Si + b0 = 0 in Ω, (B.1.2)
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with Dirichlet
ui = ûi on ΓD (B.1.3)

and/or Neumann
Sin = ŝi on ΓN (B.1.4)

boundary data at each instance of time t1, ..., tn, tn+1. Here Si is a shorthand
notation for S (e (ui (p)); ξ (p)) and n is the outward normal to the boundary
∂Ω. Note that since we are loading at discrete intervals of time, we have

Si (p) = S
(
e (ui (p)), ξ0 (p) , ..., ξi−1 (p)

)
.

For simplicity, through the rest of this section we will omit the path depen-
dence in S and will simply write

S (e (ui (p))) .

Discretization. We begin with a triangulation T h with a mesh parameter,
h, which partitions the domain Ω. Given two material vector fields v and w
let us define the bilinear form:

(v,w)Ω =
∫

Ω

v (p) · w (p) dp,

and given a material tensor field A and a vector field w

(A,w)Ω =
∫

Ω

A (p) : e (w (p))dp.

This shorthand notation is quite common in the mathematical literature and
the reader is referred, for example, to the classical text [2] for more details.
Also, let H1 (Ω) be the usual Hilbert space and H1

D (Ω) ⊆ H1 (Ω) be the
subset of functions vanishing on ΓD. Finally, let d be the spatial dimension of
the problem (d = 2, 3).

The starting point of any Petrov-Galerkin numerical method is a weak
form of the underlying differential equation. Taking the conservation of linear
momentum (B.1.2) at some time step ti and integrating by parts once, we
obtain the weak form (the subscript, indicating the loading step is omitted
for clarity):

(S (e (u)) , e (w))Ω = (b,w)Ω + (ŝ,w)Γ N , ∀w ∈
[
H1

D(Ω)
]d

, (B.1.5)

u = û, on ΓD. (B.1.6)

Next, in a displacement-based method, a discrete space V spanning some (vec-
tor) basis function ψ(i) (p), i = 1, .., N , is constructed:

V = span
{

ψ(1), ...,ψ(N)
}

.
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The basis functions, for example, in conforming linear methods, can be iden-
tified with each node in the triangulation T h in a standard way (cf. e.g. [2]).
The displacements are then discretized as follows:

uh = uh (U,p) =
N∑

i=1

Uiψ
(i) (p) = U · Ψ (p) ,

where uh ∈ V is the discretized displacement field, U = (U1, ..., UN )T

is the column vector of the nodal values of the displacements and Ψ =(
ψ(1), ...,ψ(N)

)
is the column vector of all the basis functions. The discrete

strain εh then becomes:

εh = εh (U,p) = e
(
uh
)

=
N∑

i=1

Uie
(
ψ(i) (p)

)
. (B.1.7)

Observe that εh is material field (it is a function of p) and it is also a function
of the unknowns nodal values U.

Given this discretization, one now writes (again omitting the subscript
indicating the loading step) the discrete equivalent of the weak form (B.1.5),
(B.1.6):

(S
(
e
(
uh
))

, e
(
wh
)
)Ω = (b,wh)Ω + (ŝ,wh)Γ N , ∀wh ∈ V, (B.1.8)

uh = û, on ΓD. (B.1.9)

Recall that we are dealing with a quasistatic loading process consisting of
the loading steps t1, ..., tn, tn+1. At the initial time t0 the entire material is
its initial state, which is known. Assume next that the material state (dis-
placements, strains, stresses, temperature, internal variables) is known for all
instances t1, ..., tn and at these instances the corresponding weak forms (B.1.8)
and Dirichlet boundary conditions (B.1.9) are satisfied. Our goal is to design
a numerical procedure that will produce the material state at tn+1 and this
state will satisfy equations (B.1.8) and (B.1.9). We will refer to the instance
of time tn+1 as the current loading step and to any other instance of time
t1, ..., tn as a previous loading step.

For the current (tn+1) loading step, ûn+1 and ŝn+1 are given and the (dis-
crete) fields uh

n+1, εh
n+1, Sh

n+1 and ξh
n+1 have to be computed. For simplicity,

the superscript n + 1 will be dropped in the following discussion.
The discrete weak formulation (B.1.8), (B.1.9) consists of the nonlinear

system of equations (B.1.8) and the constraint on the displacements (B.1.9).
To solve the nonlinear system of equations (B.1.8), let w(1), ...,w(N) be N
linearly independent test functions (usually chosen to be the basis function
themselves, that is, w(i) ≡ ψ(i), i = 1, ..., N) and define the residual function
Fh (U) =

(
Fh

1 (U)), ..., Fh
N (U)

)T as follows:
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Fh
i (U) =

(
S
(
e
(
uh
))

,w(i)
)

Ω
−
(
b,w(i)

)

Ω
−
(
ŝ,w(i)

)

Γ N
. (B.1.10)

Observe that all quantities in the integrals on the right-hand side are material
fields (they all depend on p). On the other hand, S also depends implicitly
on U, through the strain (cf. equation (B.1.7)). Thus, after integration (recall
the definition of the bilinear forms), the right-hand side will depend on U
only. This residual function Fh (U) provides a convenient way of rewriting
equation (B.1.8). Clearly, equation (B.1.8) is satisfied if and only if:

Fh(U) = 0. (B.1.11)

The last system is a nonlinear system of N equations with N unknowns,
so one has to use some iterative method to solve it. Let us use, for example,
Newton-Raphson’s method applied to the last equation (B.1.11). Newton-
Raphson’s method attempts to find the solution U as the limit of a simple
iterative procedure:

U = lim
k→∞

U(k),

where the k + 1 iterate is defined by the recursive formula:

Fh(U(k)) +
∂Fh(U(k))

∂U
(U(k+1) − U(k)) = 0. (B.1.12)

Denoting by L the Jacobian in the above equation:

L(U) =
∂Fh(U)

∂U
, (B.1.13)

the recursive relation (B.1.12) can be written as

U(k+1) = U(k) − L−1(U(k))Fh(U(k)). (B.1.14)

In view of the last equation, it is more than clear that the execution of a
Newton step requires one to evaluate Fh(U(k)) and L(U(k)), then solve a
linear system with the Jacobian L and add the result to U(k). Unfortunately,
not everything that is clear is also simple.

Computing the residual. Let us first discuss how to evaluate Fh(U(k)).
In order to evaluate it, we need to compute the three integrals in equation
(B.1.10). The second and third integral are trivial (all involved quantities do
not depend on U(k)). To evaluate the first integral, recall that all quanti-
ties involved are at the current loading step, that is tn+1. Assume we have
already computed successfully k Newton steps. This means that we know the
guess nodal displacements U(k), and thus the displacements field uh

(
U(k),p

)

(which does not satisfy the residual equation (B.1.11) with sufficient accu-
racy).

Now, since one knows U(k), then he (or she) can directly compute the
discrete strains εh(k)(p) at any material point p using equation (B.1.7):
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εh(k)
(p) = e

(
uh
(
U(k),p

))
.

The process is assumed (for simplicity) isothermal, therefore the temperature
is also known. Now, the constitutive behavior of the material (SMA in our
case) is known, therefore, given the strain εh(k) and temperature (some fixed
value T ) at a material point p, one can compute, in principle, the remaining
field variables (stress and internal variables). How this is done numerically
will be presented in Sect. B.2.

For the time being, assume we have a numerical algorithm, (usually called
return mapping) which, given a strain εh (p), temperature T , and the previous
material states at t1, ..., tn at a material point p computes the stress S (p) and
the internal variables ξ (p) at this same material point. It is now clear how to
proceed with first integral on the right-hand side of equation (B.1.10):

(
S
(
εh(k)

)
,w
)

Ω
=
∑

τ∈T h

∫

τ

S
(
εh(k)

)
: e
(
wh
)
dp.

The integrals over each element τ are evaluated using some numerical quadra-
ture employing a finite amount of spatial points:

∫

τ

S
(
εh(k)

)
: e
(
wh
)
dp =

M∑

i=1

wiS
(
εh(k)

)
|(pi)

: e
(
wh
)
|(pi)

,

where M is the number of quadrature points pi with weights wi. Therefore, for

a given displacement uh
(
U(k),p

)
and thus strain εh(k), the return mapping

algorithm is called for each quadrature point pi, the corresponding value S(pi)
of the stress at that integration point is computed and the integral over τ
evaluated. For further practical details on computing element integrals the
reader is referred to [2, 8].

Computing the Jacobian. Evaluating the Jacobian matrix L in equation
(B.1.14) requires some further manipulations. Observe that:

L =
∂Fh(U)

∂U
=
∫

Ω

∂S
(
εh
)

∂U
: e
(
wh
)
dp

=
∫

Ω

(
∂S
(
εh
)

∂εh
:

∂εh

∂U

)

: e
(
wh
)
dp

=
∫

Ω

(

L(uh) :
∂εh

∂U

)

: e
(
wh
)
dp. (B.1.15)

The last row in the above equation was obtained by defining L to be the
derivative:

L =
∂S (ε; ξ0, ..., ξn)

∂ε
. (B.1.16)

Here we have explicitly written the previously suppressed path dependence
(B.1.1) of the Piola-Kirchhoff stress S. L depends on the entire loading path
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and, since the stress S is a function of the small strains ε, it can be viewed as
a function of either displacements or strains. Thus, L

(
uh
)

in the last row of
equation (B.1.15) stands for:

L
(
uh; ξh

0 , ..., ξh
n

)
= L

(
εh; ξh

0 , ..., ξh
n

)
=

∂S
∂ε

(
εh; ξh

0 , ..., ξh
n

)
.

This derivative is usually named algorithmic tangent stiffness . Given a mate-
rial point p, a strain εh, and a fixed loading history ξh

0 , ..., ξh
n it gives the

change in S due to an infinitesimal change in εh:

L
(
εh; ξh

0 , ..., ξh
n

)
: (δk ⊗ δl)

= lim
Δ→0

S
(
εh + Δ (δk ⊗ δl) ; ξh

0 , ..., ξh
n

)
− S

(
ε; ξh

0 , ..., ξh
n

)

Δ
.

(B.1.17)

This derivative has to be provided by the return mapping algorithm, the
details of which are given in Sect. B.2.

The term algorithmic tangent deserves some further clarification. In gen-
eral, εh and εh

n are different. So, one can, for example, compute the increment
of S around the point εh and with respect to that same material state, e.g.(
εh,Sh, ξh, ...

)
. That is, one loads the material from the state

(
εh

n,Sh
n, ξh

n, ...
)

to the state
(
εh,Sh, ξh, ...

)
, after which computes the derivative L̃:

L̃ =
∂S
(
εh; ξ0, ..., ξn, ξ

)

∂εh
. (B.1.18)

In other words:

L̃ : (δk ⊗ δl) = lim
Δ→0

S
(
εh + Δ (δk ⊗ δl) ; ξh

0 , ..., ξh
n, ξ
)
− S

(
εh; ξh

0 , ..., ξh
n, ξ
)

Δ
.

(B.1.19)
This second derivative is called continuum tangent stiffness and it, in general,
is different from (B.1.16). The two would coincide only in the limit εh → εn.

In fact, L also depends on the chosen evolution scheme which evolves
the internal state variables from the last loading step tn to the current one.
Indeed, since we are dealing with a discrete set of loading steps at t1, t2, ...,
one has to assume some sort of continuous path (in material state space) that
connects the material states (at a given material point p). This itself is another
implicit discretization (of the evolution of the material state at that material
point) that leads to the fact that L depends both on the material response
(constitutive model) and the selected numerical scheme which evolves the
material state. The details are given in the next Sect. B.2.

Coming back to the Jacobian matrix, a further simple calculation shows
that
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∂εh

∂U
=

∂

∂U
(e (U · Ψ(p))) =

∂

∂U
(U · e (Ψ(p))) = e (Ψ (p)), (B.1.20)

where e (Ψ(p)) is the vector-column
(
e
(
Ψ (1)(p)

)
, ...e

(
Ψ (N)(p)

))T

consist-
ing of the strain fields generated by basis functions. Combining equations
(B.1.15) and (B.1.20), the components of the Jacobian matrix (B.1.13) are
found to be:

Lij =
∫

Ω

e
(
Ψ (i)(p)

)
: L(U · Ψ(p)) : e

(
Ψ (j)(p)

)
dp.

Now, the Jacobian (B.1.13) required in (B.1.12) is completely defined in terms
of the selected FEM basis functions Ψ and the algorithmic tangent stiffness
L. Again, as in the case of Fh(U(k)), evaluating the integrals in B.1 is done by
quadrature formulae and thus the return mapping algorithm needs to provide
L(uh) at only the necessary quadrature points.

The reader may perform the above computations componentwise for the
shape functions using symbol notation for the stress, strains, etc. Working
out these details will give further clarity in understanding the topic. It is
also a useful exercise to write a flow-chart of the entire process of loading the
material, solving the global balance of linear momentum (B.1.9) at the discrete
instances and applying the Newton iteration (B.1.12) at each load step. While
the whole thing looks complex, actually most of the difficulties are associated
with book-keeping the history dependence. In fact the procedure described in
this section is nothing more than a simple exercise in taking derivatives and
carefully applying the chain rule (cf. equation (B.1.15)). Note however, that
the numerical analysis of such boundary value problems and discretizations
(existence and uniqueness of continuous solutions, stability of the discrete
weak forms, convergence of the Newton iteration, etc.) are far from trivial
topics.

B.2 Numerical Implementation of an SMA Constitutive
Model

As we have seen in the previous section, a displacement-based finite element
method requires a numerical algorithm that performs the following task: At a
given material point, the history as well as the current material state (strain,
temperature, internal variables) is known and new values are given for the
strain and temperature. One has to find numerically the corresponding stress
and internal variables at this particular material point. Thus, the selection of
the finite element discretization (displacement-based) determines the type of
numerical implementation needed for a given SMA model.

In this section, a numerical implementation that does exactly that is out-
lined for the three-phase model of Chapter 6. The implementation is an exten-
sion of the closest point projection algorithm presented in Chapter 4 (see also
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[9]). The complex name of this algorithm is motivated by a certain geometric
interpretation and should in no way be a cause for alarm to the reader. The
algorithm is in fact a straightforward implicit backward Euler method along
with a Newton iteration (the time stepping is implicit). The onset and termi-
nation of phase transformation introduces a few additional twists which, after
proper care, by no means complicate the algorithm.

The implementation in Chapter 4 is for the class of SMA models of Boyd
and Lagoudas [10] which have only one active transformation surface (either
A → Md or Md → A). The numerical scheme described in this section is
adapted to the multiple transformation surfaces present in the current model.
The scheme belongs to the general family of return mapping algorithms [11–
13], which couple in a natural with displacement-based finite element methods.
In this section, the major steps of the numerical implementation of the SMA
constitutive model are presented. Note that unlike Chapters 3-6, in order to
be consistent with the previous section, we use the Piola-Kirchoff stress S
instead of the Cauchy stress σ. Since the two are asymptotically the same for
small strains, this does not change the following presentation in any way.

Consider a single material point. First, rewrite equation (6.4.24) as:

ε = S(ξ) : S + α(ξ)(T − T0) + εin. (B.2.21)

The evolution equations (6.4.8) and (6.4.9) and the decomposition (6.4.7)
imply that the total inelastic strain εin can be written as

ε̇in = Λt(S)ξ̇2 + Λd(S)ξ̇3, (B.2.22)

where Λt(S) and Λd(S) are defined by equations (6.4.45) and (6.4.44) respec-
tively. It is also convenient to write the consistency conditions imposed by
the transformation surfaces (6.4.38)–(6.4.43) for the evolution of the internal
variables ξ in the following compact form:

ξ̇1 ≥ 0, Φ+
1 ≤ 0, Φ+

1 ξ̇ = 0, (B.2.23a)

ξ̇1 ≤ 0, Φ−
1 ≤ 0, Φ−

1 ξ̇ = 0, (B.2.23b)

ξ̇2 ≥ 0, Φ+
2 ≤ 0, Φ+

2 ξ̇ = 0, (B.2.23c)

ξ̇2 ≤ 0, Φ−
2 ≤ 0, Φ−

2 ξ̇ = 0, (B.2.23d)

ξ̇3 ≥ 0, Φ3 ≤ 0, Φ3ξ̇ = 0. (B.2.23e)

Thus, at each material point, the state variables satisfy the nonlinear sys-
tem of differential-algebraic equations (B.2.21), (B.2.22) along with the con-
straints (B.2.23).

B.2.1 The Loading Step

Assume now, that the history of all field and internal variables at the material
point is known. In particular, the values of εn, Tn, Sn, εin

n , and ξn are known.
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The subscript n denotes the loading step (see the previous section). The new
values of εn+1 and Tn+1 for the strain and temperature respectively are also
given.1 Since the steps are discontinuous events, it is assumed that the con-
tinuous loading path that the material follows between step n and n + 1 is
characterized by

εn+λ = (1 − λ)εn + λεn+1, for ∀λ ∈ [0, 1], (B.2.24)

and
Tn+λ = (1 − λ)Tn + λTn+1, for ∀λ ∈ [0, 1]. (B.2.25)

Here, λ ∈ [0, 1] is a loading parameter.
Closest Point Projection. The Closest Point Projection Return Map-

ping Algorithm is a numerical method that computes the values for Sn+1,
εin

n+1 and ξn+1 by solving equations (B.2.21)–(B.2.22) along with the con-
straints (B.2.23). This is done by first discretizing the evolution equation
(B.2.22):

εin
n+1 = εin

n + (ξ2n+1 − ξ2n)Λt(Sn+1) + (ξ3n+1 − ξ3n)Λd(Sn+1). (B.2.26)

For a geometric interpretation of this backward Euler discretization, see Chap-
ter 4. The stress-strain relation (B.2.21) is then written as:

Sn+1 = S(ξn+1)
−1 :

(
εn+1 − εin

n+1 − α(ξn+1)(Tn+1 − T0)
)
. (B.2.27)

In order to solve the discrete system (B.2.26), (B.2.27) subject to the con-
straints (B.2.23), first substitute εin

n+1 from equation (B.2.26) into (B.2.27)
and then rearrange the terms to obtain:

S(ξn+1)Sn+1 − εn+1 + α(ξn+1)
(
Tn+1 − T0

)

+εin
n + (ξ2n+1

− ξ2n
)Λt(Sn+1) + (ξ3n+1

− ξ3n
)Λd(Sn+1) = 0. (B.2.28)

Note that in the above equation, all members with subscript n as well as εn+1

and Tn+1 have known values. It is convenient to introduce the residual F:

F(S, ξ) =S(ξ)S − εn+1 + α(ξ)
(
Tn+1 − T0

)

+ εin
n + (ξ2 − ξ2n)Λt(S) + (ξ3 − ξ3n)Λd(S). (B.2.29)

Observe that the system (B.2.26), (B.2.27) is now equivalent to

F(Sn+1, ξn+1) = 0. (B.2.30)

The Closest Point Projection method (see Chapter 4 for the geometric
interpretation which lead to this name), like most return mapping algorithms,
first performs a linear thermoelastic loading using equation (B.2.27), called
1 Alternatively, the increments Δεn+1 = εn+1 − εn and ΔTn+1 = Tn+1 − Tn may

be given, which, of course, is equivalent to knowing εn+1 and Tn+1.
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thermoelastic prediction. It then determines, using (B.2.23), if phase transfor-
mation occurs or not. If it does not, then the solution is accepted. If it does,
it determines which one and performs a transformation correction. Without
loss of generality, suppose that during the loading step the forward stress-
induced phase transformation occurs and the rest of the phase transitions do
not happen. This implies ξ2n+1

− ξ2n
> 0 and (B.2.23) reduces to

Φ+
2 (Sn+1, Tn+1, ξn+1) = 0. (B.2.31)

The Closest Point Projection method then does nothing else but solve (B.2.30)
and (B.2.31) by Newton’s method in order to obtain a consistent material
state. These two steps are explained in details below. Both the predictor and
corrector steps can be viewed as part of an iterative process which solves
the nonlinear algebraic system of equations (B.2.30), subject to the con-
straints (B.2.23), by constructing a converging sequence

S(k)
n+1 −→

k→∞
Sn+1, ε

in(k)
n+1 −→

k→∞
εin

n+1, ξ
(k)
n+1 −→

k→∞
ξn+1. (B.2.32)

B.2.2 Thermoelastic Prediction

As the first step, a thermoelastic prediction is performed during which the
internal variables do not change:

ε
in(0)
n+1 = εin

n , (B.2.33)

ξ
(0)
n+1 = ξn, (B.2.34)

S(0)
n+1 = S(ξn)−1 :

[
εn+1 − εin

n − α(ξn)(Tn+1 − T0)
]
. (B.2.35)

It should be noted, that this first step corresponds to purely thermoelastic
loading without any transformation (ξ̇ = 0), hence its name thermoelastic
prediction. The corresponding values of the five transformation functions are
then evaluated:

Φ(0)
α = Φα(S(0)

n+1, Tn+1, ξ
(0)
n+1). (B.2.36)

The subscript α is understood in the sense Φα ∈
{
Φ+

1 , Φ−
1 , Φ+

2 , Φ−
2 , Φ3

}
. If the

value of all transformation functions satisfy Φ(0)
α ≤ 0 then all equations and

constraints are satisfied and the iteration is terminated for k = 0.

B.2.3 Transformation Correction

The predictor step assumed that ξn = ξn+1, hence (B.2.23) are satisfied if and
only if all Φα ≤ 0. Therefore, if at least one of the transformation functions
Φα > 0 then the corresponding consistency condition is violated. Such sur-
faces will be referred to as inconsistent. The existence of inconsistent surfaces
implies that during the loading step, phase transformation takes place and
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a transformation correction is needed. During this step, the stress and the
internal variables are modified in accordance with the transformation evolu-
tion equations so that the consistency conditions are satisfied.

The consistency condition(s) that correspond to the phase transforma-
tion(s) taking place will be called active. The same term will be used for the
respective transformation surfaces. The consistency conditions that the elastic
predictor violates are not necessarily the active ones, nor are they necessarily
the only active ones. For examples of such cases, the reader is referred to [14].

For the time being, assume that it is known which transformation(s) are
active during the load step. We will consider the case of a single or two simul-
taneous active surfaces.

Single active transformation. Suppose first that only one transformation is
active, say Φα. This implies that the corresponding volume fraction, denoted
also by ξα, has nonzero rate.2 That is, ξ̇α 	= 0, and the corresponding consis-
tency conditions (B.2.23) is satisfied, if and only if:

Φα(Sn+1, Tn+1, ξn+1) = 0. (B.2.37)

Therefore, during the transformation correction, one has to solve (B.2.30)
along with the last equation. This is done by Newton’s method: For the given
k-th iterate of S(k)

n+1, ε
in(k)
n+1 and ξ

(k)
n+1, find the k + 1 iterates by linearizing F

and Φα around
(
S(k)

n+1, ξ
(k)
n+1

)
and requiring that:

F(k) +
∂F(k)

∂S
: ΔS(k) +

∂F(k)

∂ξα

Δξ(k)
α = 0, (B.2.38)

Φ(k)
α +

∂Φ(k)
α

∂S
: ΔS(k) +

∂Φ(k)
α

∂ξα

· Δξ(k)
α = 0. (B.2.39)

When the increments ΔS(k) and Δξ(k)
α are determined from the above system

of linear equations, the stress and the internal variable are updated according
to

S(k+1)
n+1 = S(k)

n+1 + ΔS(k), ξα
(k+1)
n+1 = ξα

(k)
n+1 + Δξ(k)

α ,

and ε
in(k)
n+1 is updated according to equation (B.2.26).

Observe that in equations (B.2.38) and (B.2.39) the following shorthand
notation is used for F(k), Φ(k)

α and all their derivatives:

F(k) = F
(
S(k)

n+1, ξ
(k)
n+1

)
, Φ(k)

α = Φα

(
S(k)

n+1, Tn+1, ξ
(k)
n+1

)
,

∂F(k)

∂S
=

∂F
∂S

(
S(k)

n+1, ξ
(k)
n+1

)
,

∂Φ(k)
α

∂S
=

∂Φα

∂S

(
S(k)

n+1, Tn+1, ξ
(k)
n+1

)
,

∂F(k)

∂ξα

=
∂F
∂ξα

(
S(k)

n+1, ξ
(k)
n+1

)
,

∂Φ(k)
α

∂ξα

=
∂Φα

∂ξα

(
S(k)

n+1, Tn+1, ξ
(k)
n+1

)
.

2 If Φα ∈
{
Φ+

1 , Φ−
1

}
then the internal variable responsible is ξα = ξ1, if Φα ∈{

Φ+
2 , Φ−

2

}
then ξα = ξ2 and if Φα = Φ3 then ξα = ξ3.
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Two simultaneous active transformations. If two of the transformations
are active, say Φα and Φβ , then during the correction, equation (B.2.30) along
with

Φα(Sn+1, Tn+1, ξn+1) = 0, (B.2.40)

Φβ(Sn+1, Tn+1, ξn+1) = 0, (B.2.41)

is being solved, again by Newton’s method: For the given k-th iterate of S(k)
n+1,

ε
in(k)
n+1 and ξ

(k)
n+1, find the k + 1 iterates by linearizing F, Φα and Φβ around

(
S(k)

n+1, ξ
(k)
n+1

)
and requiring that:

F(k) +
∂F(k)

∂S
: ΔS(k) +

∂F(k)

∂ξα

Δξ(k)
α +

∂F(k)

∂ξβ

Δξ
(k)
β = 0, (B.2.42)

Φ(k)
α +

∂Φ(k)
α

∂S
: ΔS(k) +

∂Φ(k)
α

∂ξα

· Δξ(k)
α +

∂Φ(k)
α

∂ξβ

· Δξ
(k)
β = 0, (B.2.43)

Φ
(k)
β +

∂Φ
(k)
β

∂S
: ΔS(k) +

∂Φ
(k)
β

∂ξα

· Δξ(k)
α +

∂Φ
(k)
β

∂ξβ

· Δξ
(k)
β = 0. (B.2.44)

When the increments ΔS(k), Δξ(k)
α and Δξ

(k)
β are determined from the above

system of linear equations, the stress and the internal variable are updated
according to

S(k+1)
n+1 = S(k)

n+1+ΔS(k), ξα
(k+1)
n+1 = ξα

(k)
n+1+Δξ(k)

α , ξβ
(k+1)

n+1
= ξβ

(k)

n+1
+Δξ

(k)
β ,

and ε
in(k)
n+1 is updated according to equation (B.2.26).

This completes the outline for the numerical implementation of the model.
The details of solving the linear system (B.2.38)-(B.2.39) or (B.2.42)-(B.2.44),
including the functional form of the derivatives involved are omitted.

It is important to note that when Φ±
2 is the only active surface, the iteration

(B.2.38),(B.2.39) reduces to the Closest Point Projection method of Qidwai
and Lagoudas [9], see also Chapter 4. In the latter work, the algorithm is
formulated by defining a residual for the evolution equation (B.2.26), instead
of (B.2.28). It is easy to show that the two lead to the same algorithm. The
current approach has the advantage that by taking the residual of Hooke’s law
the algorithm generalizes for the twinning transformation A ↔ M t in which
no transformation strain is generated.

B.2.4 Active Surfaces and Other Implementation Details

Returning to the question of which transformation surfaces are active during
the correction, observe that at any time during the loading step, they can
be separated into two groups, F =

{
Φ+

1 , Φ+
2 , Φ3

}
and B =

{
Φ−

1 , Φ−
2 , Φ3

}
. If

two phase transformations surfaces are active, say Φα and Φβ , then either
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Φα, Φβ ∈ F or Φα, Φβ ∈ B. The inconsistent surfaces from the predictor state
need not follow the same rule. However, observe that the elastic prediction
is a continuous mapping of Sn+1 with respect to Tn+1 and εn+1 and the
loading step n+1 is part of a continuous loading path (B.2.24)-(B.2.25). Then,
for some sufficiently small loading parameter, λ, the thermoelastic predictor
for the state n + λ will satisfy the above criterion. Since the thermoelastic
prediction is a computationally inexpensive process, if the current prediction
cannot determine whether the loading step belongs to F or B, the simplest
practical approach is to take λ = 1

2 , 1
4 , ... until this can be determined.

Once this is done, in order to find which transformation(s) are active, the
natural way is to attempt a correction of the ones that are violated first.
It may happen that after the correction, some other transformation surface
becomes inconsistent, or the increment of the corresponding volume fraction
is inconsistent (the consistency conditions also specify the sign of ξ̇, that is,
if active surface is Φ−

1 , then ξ1n
> ξ1n+1

, etc.). In such a case the brute force
approach of attempting all possible single and double transformations from
the active set is used.

The last important detail is how to terminate the transformations, that
is how to impose the constrains (6.4.2). Again, without loss of generality,
suppose the correction step was restoring consistency of Φ−

1 , and either

c3n+1 < 0,

or
c1n+1 > 1.

Suppose c1n+1 > 1. The volume fraction can be treated as a continuous,
monotonous function of the loading parameter λ and, which is more, c1n

< 1,
therefore the equation

c1n+λ = 1

has a root λ in the interval λ ∈ [0, 1]. Given such precise information about
the location of the root and that the explicit form of c1n+λ

as a function of λ
does not seem easy to determine, one can just use a modified secant’s method
to determine the root of the above equation. Each evaluation of c1n+λ

consists
of performing the transformation correction for the intermediate loading step
tn+λ.

B.2.5 Algorithmic Tangent Stiffness (Jacobian)

So far, the return-mapping algorithm described in this section calculates the
state variables at the current time step n + 1 at a material point. The algo-
rithmic tangent stiffness and thermal moduli will now be defined. Recall in
Sect. B.2.1, that the loading step is defined by specifying the strain εn+1

and temperature, Tn+1. All the remaining state variables Sn+1, ξn+1, ξ̇n+1

and εin
n+1 are determined using the system of equations and constraints
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(B.2.26), (B.2.27) and (B.2.23). Thus, they can be treated as implicit functions
of εn+1 and Tn+1, and in particular:

Sn+1 = S̃n+1

(
εn+1, Tn+1

)
. (B.2.45)

The tangent stiffness and thermal tangent moduli are defined by

L =
∂S̃n+1

(
εn+1, Tn+1

)

∂εn+1

(B.2.46)

and

M =
∂S̃n+1

(
εn+1, Tn+1

)

∂Tn+1

, (B.2.47)

respectively. The tangent stiffness is a fourth-order tensor while the thermal
tangent is a second-order tensor.

Our goal is to arrive at an analytical expression for L, given our inelas-
tic SMA constitutive theory and the selected return mapping algorithm. In
general it depends on which transformation surfaces are active. The subscript
n + 1 will be omitted for the rest of the derivation, and all state variable with-
out subscript will, by default, be considered at time step n + 1. The thermal
tangent moduli are listed for completeness only, since they are required when
a coupled, thermo-mechanical problem is solved and such problems are not
considered in this work. The derivation of M follows the same procedure that
is used for L given below, so it is left to the reader.

To derive L, first, it is useful to notice that if a volume fraction ξα is
active during the loading step, then its derivative with respect to strain can
be evaluated. Indeed, suppose first the only one transformation surface is
active during the loading step and ξα is the active variable. This implies that

Φα(S, ξα) = 0,

so ξα is an implicit function of S. The remaining variables which Φα is a
function of do not change during the loading step, so they are suppressed.
In view of equation (B.2.45) the last equation can be differentiated by ε to
obtain:

∂Φα

∂S
:

∂S
∂ε

+
∂Φα

∂ξα

∂ξα

∂ε
= 0.

Therefore, if the second-nd order tensor Ξα is defined as

Ξα = −∂Φα

∂S

/
∂Φα

∂ξα

, (B.2.48)

then
∂ξα

∂ε
= Ξα :

∂S
∂ε
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is the derivative of ξα with respect to ε. Note that transformation surface
and its derivatives have a well-defined functional form, so this quantity can
be evaluated directly for any values of S, T and ξ.

If, on the other hand, two surfaces are active, say Φα and Φα, then the
appropriate derivatives are calculated in the same way, but this time a 2 × 2
linear system has to be solved:

[
Ξα

Ξβ

]

= −

⎡

⎢
⎢
⎢
⎣

∂Φα

∂ξα

∂Φα

∂ξβ

∂Φβ

∂ξα

∂Φβ

∂ξβ

⎤

⎥
⎥
⎥
⎦

−1 ⎡

⎢
⎢
⎣

∂Φα

∂S
∂Φβ

∂S

⎤

⎥
⎥
⎦ , (B.2.49)

and

∂ξα

∂ε
= Ξα :

∂S
∂ε

, (B.2.50)

∂ξβ

∂ε
= Ξβ :

∂S
∂ε

. (B.2.51)

Finally, let
Ξα = 0, (B.2.52)

whenever Φα is not an active surface.
To summarize, Ξα is given by equation (B.2.48) if only one transformation

is active, by (B.2.49) if two are active and by (B.2.52) if Φα is not an active
transformation surface.

With these definitions, the tangent stiffness L is given by the formula:

L =
[(

ΔS : S + Δα(Tn+1 − T0)
)
⊗ (Ξ1 + Ξ2) + S(ξ) + Λt ⊗ Ξ2

+Λd ⊗ Ξ3 + (ξ2 − ξ2n
)
∂Λt

∂S
+ (ξ3 − ξ3n

)
∂Λd

∂S

]−1

. (B.2.53)

The formula will be proven only for the case when Φ1 and Φ2 are active.
Checking all other possibilities of active transformation surfaces is left to the
reader. Note that the above formula includes derivatives of the transformation
flow tensors. Since both Λt and Λd are J2 based, the reader is referred to [9]
for the functional form of these derivatives, as well as the derivation itself.

So, assume, that ξ1 − ξ1n 	= 0, ξ2 − ξ2n 	= 0 and ξ3 = ξ3n and differentiate
equation (B.2.28) with respect to ε. Note that for fixed T , all the quantities
in this equation are either implicit functions of ε or enter as constants, e.g.
independent of ε. By applying the product rule and, very carefully, the chain
rule, the following result is obtained:



B.2 Numerical Implementation of an SMA Constitutive Model 421

0 =
∂

∂εn+1

(S(ξ)S) − I +
∂

∂εn+1

(
α(ξ)

(
Tn+1 − T0

))
+

∂

∂εn+1

(
(ξ2 − ξ2n)Λt(S)

)

=
∂S(ξ)
∂εn+1

: S+ : S(ξ) :
∂S

∂εn+1

− I +
∂α(ξ)
∂εn+1

(
Tn+1 − T0

)

+
(

∂ξ2

∂εn+1

)

⊗ Λt(S) +
(

(ξ2 − ξ2n
)
∂Λt(S)
∂εn+1

)

=
(

∂S(ξ)
∂ξ

· ∂ξ

∂εn+1

)

: S +
(
Tn+1 − T0

) ∂α(ξ)
∂ξ

· ∂ξ

∂εn+1

+ S(ξ) :
∂S

∂εn+1

− I

+
(

Ξ2 :
∂S

∂εn+1

)

⊗ Λt(S) +
(

(ξ2 − ξ2n
)
∂Λt(S)

∂S
:

∂S
∂εn+1

)

, (B.2.54)

where I is the fourth-order identity tensor defined by 4.3.29. Now, using equa-
tion (6.4.15), (B.2.50) and (B.2.51), observe that:

(
∂S(ξ)

∂ξ
· ∂ξ

∂εn+1

)

: S +
(
Tn+1 − T0

) ∂α(ξ)
∂ξ

· ∂ξ

∂εn+1

=

(ΔS : S +
(
Tn+1 − T0

)
Δα) ⊗

(
∂ξ1

∂εn+1

+
∂ξ2

∂εn+1

)

=

[
(ΔS : S +

(
Tn+1 − T0

)
Δα) ⊗ (Ξ1 + Ξ2)

]
:

∂S
∂ε

. (B.2.55)

Therefore, by combining with (B.2.54), rearranging the terms, and factoring
∂S/∂ε the following, hopefully correct, identity is obtained:

I =
[
(ΔS : S +

(
Tn+1 − T0

)
Δα) ⊗ (Ξ1 + Ξ2) + S(ξ)

+Λt ⊗ Ξ2 + (ξ2 − ξ2n)
∂Λt(S)

∂S

]

:
∂S
∂ε

. (B.2.56)

After inverting the fourth-order tensor, the final result is obtained:

∂S
∂ε

=
[
(ΔS : S +

(
Tn+1 − T0

)
Δα) ⊗ (Ξ1 + Ξ2)

+S(ξ) + Λt ⊗ Ξ2 + (ξ2 − ξ2n
)
∂Λt(S)

∂S

]−1

. (B.2.57)

Remember that ξ3 = ξ3n
, that is Φ3 is not an active surface and hence by the

definition (B.2.52), Ξ3, it is identically zero. Therefore, (B.2.53) reduces to
(B.2.57) when Φ1 and Φ2 are the active surfaces.

As a final remark, observe that the discretized evolution equation (B.2.26)
enters in the expression for L and as a result the latter includes a dependency
ξin+1

− ξin
, i = 2, 3, as well as the derivative of the transformation flow

tensors. A different discretization of (B.2.22) would have resulted in a different
evolution equation, so L is algorithmic-specific, hence the name algorithmic
tangent.
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C

Numerical Implementation of Transformation
Induced Plasticity in SMAs

P. B. Entchev and D. C. Lagoudas

The numerical implementation of the thermomechanical constitutive model
for transformation induced plasticity in SMAs is presented here, supplement-
ing the material in Chapter 5. The structure of the governing equations
of the SMA constitutive model is very similar to those characterizing rate-
independent plasticity in metals. The approach taken in this work is to imple-
ment a return-mapping algorithm for the SMA constitutive model, presented
in Chapter 5. The development of the algorithm is based on the work of Qid-
wai and Lagoudas [1] with special care taken to account for the development
of transformation induced plastic strains. The algorithm presented in this
Appendix is an implementation of the ‘closest point projection return map-
ping algorithm’ and follows closely the work of Entchev and Lagoudas [2] and
Entchev [3].

C.1 Summary of the SMA Constitutive Model Equations

For convenience, the SMA constitutive equations presented in Chapter 5 are
summarized here. The strain ε is given by

ε = S : σ + α(T − T0) + εt + εp. (C.1.1)

The evolution equations for the transformation strain εt and the plastic strain
εp are given by

ε̇t = Λξ̇, (C.1.2)

ε̇p = Λ̃pζ̇d, (C.1.3)

where Λ and Λ̃p are defined as

Λ =

⎧
⎨

⎩

3
2Hcur σeff′

σ̄eff ; ξ̇ > 0,

Hcur−r εt−r

ε̄t−r
; ξ̇ < 0,

(C.1.4)

Λ̃p =

⎧
⎨

⎩

3
2Cp

1 exp
[
− ζd

Cp
2

]
σeff′

σ̄eff , ξ̇ > 0,

Cp
1 exp

[
− ζd

Cp
2

]
εt

max
ε̄t
max

, ξ̇ < 0,
(C.1.5)
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and ζd is given by

ζd =

t∫

0

|ξ̇d(τ)|dτ. (C.1.6)

The effective stress σeff is defined in terms of the applied stress σ and the
back stress β as

σeff = σ + β. (C.1.7)

The transformation function Φ is defined as

Φ =
{

π − Y, ξ̇ > 0,

−π − Y, ξ̇ < 0.
(C.1.8)

In the above equation, π is the thermodynamic force conjugate to ξ and is
given by

π =
1
2
σ : Δ S : σ + σ : Δα(T − T0) + σ :

∂εt

∂ξ
+ β :

∂εt

∂ξ
+ η

− ρΔc

[

T − T0 − T ln
(

T

T0

)]

+ ρΔs0(T − M0s) + Y. (C.1.9)

Expressions for the back stress β and the drag stress η are given in Sect. 5.2.1.
The evolution of the martensitic volume fraction ξ is constrained by the Kuhn–
Tucker conditions

ξ̇ ≥ 0, Φ ≤ 0, Φξ̇ = 0,

ξ̇ ≤ 0, Φ ≤ 0, Φξ̇ = 0.
(C.1.10)

Thus, the final system of algebraic and differential equations consists of
equations (C.1.1)–(C.1.3), which is constrained by the Kuhn-Tucker condi-
tion (C.1.10).

C.2 Closest Point Projection Return Mapping Algorithm

To proceed with the solution of the above problem, it is first assumed that
the strain and temperature histories ε(t) and T (t) are given. In addition,
the initial conditions for ξ, εt and εp are also known. The main idea of the
return mapping algorithm is to divide the problem into two parts. The first
step is to obtain a thermoelastic prediction, assuming that the transformation
and plastic strains do not change. During the second step, if the predicted
thermoelastic state violates the transformation condition, a transformation
correction problem is solved to restore consistency. During the transformation
correction, the evolution equations for the transformation and plastic strains
are discretized as

εt
n+1 = εt

n + (ξn+1 − ξn)
[
λΛn+1 + (1 − λ)Λn

]
, (C.2.11)
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εp
n+1 = εp

n + (ζd
n+1 − ζd

n)
[
λΛ̃p

n+1 + (1 − λ)Λ̃p
n

]
, (C.2.12)

where λ ∈ [0, 1] and subscript n indicates functional evaluation at time tn.
Different values of λ will result in different integration algorithms. In this work,
λ is chosen to be equal to 1, which results in the backward Euler integration
rule. The resulting algorithm is referred to as the closest point projection
return mapping algorithm. The stress-strain relation (C.1.1) for the case of
λ = 1 is also written as

σn+1 = S−1
n+1 :

(
εn+1 − εt

n+1 − εp
n+1 − αn+1(Tn+1 − T0)

)
. (C.2.13)

The main steps of the algorithm are described in detail in the following sec-
tions.

C.2.1 Thermoelastic Prediction

During the thermoelastic prediction step, the following evaluations are per-
formed:

εn+1 = εn + Δεn+1, (C.2.14a)

Tn+1 = Tn + ΔTn+1, (C.2.14b)

ε
t(0)
n+1 = εt

n, (C.2.14c)

ε
p(0)
n+1 = εp

n, (C.2.14d)

ξ
(0)
n+1 = ξn, (C.2.14e)

where Δεn+1 and ΔTn+1 are the (known) total strain and temperature incre-
ments for the (n + 1)th time step. The superscript is introduced to indicate
the current iteration number. Parenthesis around zero means evaluation of
the quantities from the previous time step. The value of the stress is obtained
by

σ
(0)
n+1 = S−1

n :
[
εn+1 − ε

t(0)
n+1 − ε

p(0)
n+1 − αn(Tn+1 − T0)

]
. (C.2.15)

The corresponding value of the transformation function Φ is evaluated as

Φ(0)
n+1 = Φ(σ(0)

n+1, Tn+1, ξ
(0)
n+1). (C.2.16)

At this point, if the value of the transformation function satisfies the trans-
formation criterion Φ(0)

n+1 ≤ 0 then no phase transformation occurs at this time
increment. However, if the transformation criterion is violated, i. e., Φ(0)

n+1 > 0,
then a transformation correction is performed. The transformation correction
is performed by solving equations (C.2.11)–(C.2.13) with initial guess given
by equations (C.2.14), (C.2.15) and constrained by the Kuhn–Tucker condi-
tions (C.1.10). During the transformation correction the values of total strain
εn+1 and temperature Tn+1 do not change. Only the values of the internal
state variables and the stress are updated.
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C.2.2 Transformation Correction

To proceed with the transformation correction step, the following transforma-
tion and plastic residuals are defined for the kth iteration as

Rt(k)
n+1 = −ε

t(k)
n+1 + εt

n + Λ(k)
n+1(ξ

(k)
n+1 − ξn) = 0, (C.2.17)

Rp(k)
n+1 = −ε

p(k)
n+1 + εp

n + Λ̃p(k)
n+1

∣
∣
∣ξ

d(k)
n+1 − ξd

n

∣
∣
∣ = 0. (C.2.18)

The transformation (consistency) condition is given by

Φ(k)
n+1 = Φ(σ(k)

n+1, Tn+1, ξ
(k)
n+1) = 0. (C.2.19)

Equations (C.2.17)–(C.2.19) are solved using the Newton–Raphson
method. Keeping in mind that during the transformation correction the
total strain and temperature are constant, the linearized forms of equa-
tions (C.2.17)–(C.2.19) using Taylor series expansion become

Rt(k)
n+1 − Δε

t(k)
n+1 + ΔΛ(k)

n+1(ξ
(k)
n+1 − ξn) + Λn+1Δξ

(k)
n+1 = 0, (C.2.20)

Rp(k)
n+1 − Δε

p(k)
n+1 + ΔΛ̃p(k)

n+1

∣
∣
∣ξ

d(k)
n+1 − ξd

n

∣
∣
∣+ Λ̃p

n+1Δ
∣
∣
∣ξ

d(k)
n+1 − ξd

n

∣
∣
∣ = 0, (C.2.21)

Φ(k)
n+1 + ∂σΦ(k)

n+1 : Δσ
(k)
n+1 + ∂ξΦ

(k)
n+1Δξ

(k)
n+1 = 0. (C.2.22)

Next, the increment of the stress-strain constitutive relation (C.2.13) is
evaluated, which yields

Δ Sn+1 : σ
(k)
n+1 + Sn+1 : Δσ

(k)
n+1 = −Δαn+1(Tn+1 − T0) − Δε

t(k)
n+1 − Δε

p(k)
n+1.

(C.2.23)
The increments of the elastic compliance tensor Δ Sn+1 and the thermal
expansion coefficient tensor Δαn+1 are expressed using their evaluations [cf.
equation (3.3.46)] in terms of the increment of the martensitic volume fraction
ξ as

Δ Sn+1 = Δ SΔξ
(k)
n+1, Δαn+1 = ΔαΔξ

(k)
n+1. (C.2.24)

Using equations (C.2.24) and (C.2.23) the following expression for the incre-
ment of the transformation strain Δε

t(k)
n+1 is obtained:

Δε
t(k)
n+1 = − Sn+1 : Δσ

(k)
n+1−Δε

p(k)
n+1−

[
Δα(Tn+1 − T0) + Δ S : σ

(k)
n+1

]
Δξ

(k)
n+1.

(C.2.25)
The increment of the transformation direction tensor ΔΛ(k)

n+1 is given by

ΔΛ(k)
n+1 = ∂σΛ(k)

n+1 : Δσ
(k)
n+1. (C.2.26)

Equations (C.2.25) and (C.2.26) are substituted into equation (C.2.20) to
obtain
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[
S(k)

n+1 + ∂σΛ(k)
n+1(ξ

(k)
n+1 − ξn)

]
: Δσ

(k)
n+1 =

−
(
Rt(k)

n+1 + Δε
p(k)
n+1 +

[
Δα(Tn+1 − T0) + Δ S : σ

(k)
n+1 + Λ(k)

n+1

]
Δξ

(k)
n+1

)
.

(C.2.27)

The increment of the plastic direction tensor ΔΛ̃p(k)
n+1, which enters equa-

tion (C.2.21) is given by

ΔΛ̃p(k)
n+1 = ∂σΛ̃p(k)

n+1 : Δσ
(k)
n+1 + ∂ξΛ̃

p(k)
n+1 : Δξ

(k)
n+1, (C.2.28)

while the quantity Δ
∣
∣
∣ξ

d(k)
n+1 − ξd

n

∣
∣
∣ is given by

Δ
∣
∣
∣ξ

d(k)
n+1 − ξd

n

∣
∣
∣ = Δ

∣
∣
∣
∣
∣

(
Hcurξ

H

)(k)

n+1

−
(

Hcurξ

H

)

n

∣
∣
∣
∣
∣

= sign

[(
Hcurξ

H

)(k)

n+1

−
(

Hcurξ

H

)

n

]
Hcur

H
Δξ

(k)
n+1. (C.2.29)

Thus, using equations (C.2.28) and (C.2.29), expression (C.2.21) becomes

Rp(k)
n+1 − Δε

p(k)
n+1 + ∂σRp(k)

n+1 : Δσ
(k)
n+1 + ∂ξR

p(k)
n+1 : Δξ

(k)
n+1 = 0, (C.2.30)

where the quantities ∂σRp(k)
n+1 and ∂ξR

p(k)
n+1 are defined as

∂σRp(k)
n+1 =

∣
∣
∣ξ

d(k)
n+1 − ξd

n

∣
∣
∣ ∂σΛ̃p(k)

n+1, (C.2.31)

∂ξR
p(k)
n+1 = v

∣
∣
∣ξ

d(k)
n+1 − ξd

n

∣
∣
∣ ∂ξΛ̃

p(k)
n+1 +

Hcur

H
sign

(
ξ

d(k)
n+1 − ξd

n

)
Λ̃p(k)

n+1. (C.2.32)

The increment of the plastic strain Δε
p(k)
n+1 is expressed using equa-

tion (C.2.30) and substituted into equation (C.2.27) to obtain

[
S(k)

n+1 + ∂σΛ(k)
n+1(ξ

(k)
n+1 − ξn) + ∂σRp(k)

n+1

]
: Δσ

(k)
n+1 =

−
(
Rt(k)

n+1 + Rp(k)
n+1

)

−
[
Δα(Tn+1 − T0) + Δ S : σ

(k)
n+1 + Λ(k)

n+1 + ∂ξR
p(k)
n+1

]
Δξ

(k)
n+1 (C.2.33)

To simplify further the derivations, the following tensorial quantities are
defined:

Ξ(k)
n+1 ≡

[
S(k)

n+1 + ∂σΛ(k)
n+1(ξ

(k)
n+1 − ξn) + ∂σRp(k)

n+1

]−1

, (C.2.34)

χ
(k)
n+1 ≡ Δα(Tn+1 − T0) + Δ S : σ

(k)
n+1 + Λ(k)

n+1 + ∂ξR
p(k)
n+1, (C.2.35)
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which leads to the following expression for the increment of stress Δσ
(k)
n+1:

Δσ
(k)
n+1 = −Ξ(k)

n+1 :
[
Rt(k)

n+1 + Rp(k)
n+1 + χ

(k)
n+1Δξ

(k)
n+1

]
. (C.2.36)

The only remaining unknown is the increment of the martensitic volume
fraction Δξ

(k)
n+1. The consistency condition (C.2.22) together with equa-

tion (C.2.36) is used to find

Δξ
(k)
n+1 =

∂σΦ(k)
n+1 : Ξ(k)

n+1 :
[
Rt(k)

n+1 + Rp(k)
n+1

]
− Φ(k)

n+1

∂ξΦ
(k)
n+1 − ∂σΦ(k)

n+1 : Ξ(k)
n+1 : χ

(k)
n+1

. (C.2.37)

Once Δξ
(k)
n+1 is found from equation (C.2.37) it is used to calculate the incre-

ment of stress using equation (C.2.36). Then the increments of plastic and
transformation strain are found using equations (C.2.30) and (C.2.25).

Finally, the expressions for ∂σΦ(k)
n+1, ∂ξΦ

(k)
n+1, ∂σΛ(k)

n+1, ∂σΛ̃p(k)
n+1, and

∂ξΛ̃
p(k)
n+1, which are used in the algorithm, are derived. The derivative of the

transformation function with respect to stress can be obtained by differenti-
ating equation (C.1.8). It follows that

∂σΦ(k)
n+1 =

{
∂σπ

(k)
n+1, ξ̇ > 0,

−∂σπ
(k)
n+1, ξ̇ < 0.

(C.2.38)

Using equation (C.1.9), the derivative of the thermodynamic driving force π
with respect to stress is given by

∂σπ
(k)
n+1 = Δα(Tn+1 − T0) + Δ S : σ

(k)
n+1 + Λ(k)

n+1. (C.2.39)

Similarly the derivative of the transformation function with respect to the
martensitic volume fraction is

∂ξΦ
(k)
n+1 =

{
∂ξβ

(k)
n+1 : Λ(k)

n+1 + ∂ξη
(k)
n+1, ξ̇ > 0,

−∂ξβ
(k)
n+1 : Λ(k)

n+1 − ∂ξη
(k)
n+1, ξ̇ < 0.

(C.2.40)

The quantities ∂ξβ
(k)
n+1 and ∂ξη

(k)
n+1 are calculated using the expressions for

β and η in Sect. 5.2.1.
Using equation (C.1.4) the derivative of the transformation direction ten-

sor with respect to stress ∂σΛ(k)
n+1 is evaluated for the case of forward phase

transformation (ξ̇ > 0) as

∂σΛ(k)
n+1 =

3
2
∂σHcur ⊗ σeff′

σ̄eff
+

3
2
Hcur∂σ

[
σeff′

σ̄eff

]

, (C.2.41)

where the iteration counter k and the time step number (n + 1) have been
omitted for simplicity. The corresponding derivative for the case of reverse
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phase transformation is equal to zero. To calculate the derivative of the cur-
rent maximum transformation strain with respect to stress ∂σHcur, recall
equation (5.2.13). Differentiating both sides of equation (5.2.13) results in

∂σ σ̄′ = ∂σ β̄
∣
∣
ξ=1

= ∂Hcur β̄
∣
∣
ξ=1

∂σHcur. (C.2.42)

where σ̄′ is defined in 3.3.54. Therefore, ∂σHcur is given by

∂σHcur =
∂σ σ̄′

∂Hcur β̄
∣
∣
ξ=1

. (C.2.43)

After performing standard calculations, the expression for ∂σ σ̄′ is found to
be

∂σ σ̄′ =
3
2

σ′

σ̄′ . (C.2.44)

To calculate the second term of equation (C.2.41) the quantity ∂σ

[
σeff′

σ̄eff

]
must

be found. Again, performing standard operations, the following expression is
derived:

∂σ

(
σeff′

σ̄eff

)

=
1

σ̄eff

(

I − 1
3
1 ⊗ 1 − 3

2
σeff′

σ̄eff
⊗ σeff′

σ̄eff

)

, (C.2.45)

where I and 1 are defined in 4.3.29 and 4.3.30 respectively.
Similarly, the derivative of the plastic direction tensor with respect to

stress ∂σΛ̃p(k)
n+1 for the case of forward phase transformation is calculated as

∂σΛ̃p(k)
n+1 =

3
2
Cp

1 exp
(

− ζd

Cp
2

)

∂σ

(
σeff′

σ̄eff

)

, (C.2.46)

while the corresponding derivative for the case of reverse phase transformation
is again equal to zero. The derivative of Λ̃p(k)

n+1 with respect to ξ is given by

∂ξΛ̃
p(k)
n+1 =

⎧
⎨

⎩

− 3
2

Cp
1

Cp
2

exp
[
− ζd

Cp
2

]
Hcur

H
σeff′

σ̄eff , ξ̇ > 0,

Cp
1

Cp
2

exp
[
− ζd

Cp
2

]
Hcur

H
εt

max
ε̄t
max

, ξ̇ < 0.
(C.2.47)

C.2.3 Consistent Tangent Stiffness and Thermal Moduli Tensors

The solution of the constitutive equations for the SMA involves calculating
the stress increment for a given strain and temperature increment at each time
step. This procedure makes use of the tangent stiffness tensor and the thermal
tangent moduli tensor, appearing in the linearized problem. An example of
such a situation is a displacement-based finite element method formulation
that uses Newton’s method to solve the resulting non-linear equations. As
mentioned by Qidwai and Lagoudas [1] the tangent tensors used by the global
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Newton’s method must be obtained in a manner consistent with the integra-
tion algorithm. The use of the continuum tangent tensors would lead to a loss
of the quadratic convergence of Newton’s iterative method [4]. Therefore, in
this section the consistent tangent moduli tensors which are calculated at the
end of the transformation correction iterative procedure and are passed to the
global Newton’s method, are derived.

The total differential of the stress-strain relation (C.2.13) results in

Δ S : σn+1dξn+1 + Sn+1 : dσn+1 = dεn+1 − dεt
n+1 − dεp

n+1

− αn+1dTn+1 − Δα(Tn+1 − T0)dξn+1.

(C.2.48)

The differential of the evolution equations for the transformation and plastic
strains [cf. equations (C.2.11), (C.2.12)] result in

dεt
n+1 = Λn+1dξn+1 + (ξn+1 − ξn)∂σΛn+1 : dσn+1, (C.2.49)

dεp
n+1 = ∂σRp

n+1 : dσn+1 + ∂ξR
p
n+1dξn+1, (C.2.50)

where the quantities ∂σRp
n+1 and ∂ξR

p
n+1 are defined by (C.2.31) and

(C.2.32). The substitution of (C.2.49) and (C.2.50) into (C.2.48) eventually
leads to

dσ = Ξn+1 :
[
dε − αn+1dTn+1 − χn+1dξn+1

]
, (C.2.51)

where Ξn+1 and χn+1 are defined by (C.2.34) and (C.2.35). Next, the consis-
tency condition is written in the following form:

dΦn+1 = ∂σΦn+1 : dσn+1 + ∂ξΦn+1dξn+1 + ∂T Φn+1dTn+1 = 0. (C.2.52)

Equation (C.2.51) together with (C.2.52) give the following expression for
dξn+1:

dξn+1 =
∂σΦn+1 : Ξn+1 :

[
dε − αn+1dTn+1

]
+ ∂T Φn+1dTn+1

∂σΦ : Ξn+1 : χn+1 − ∂ξΦ
. (C.2.53)

Upon substituting (C.2.53) into (C.2.51) the following expression for dσn+1

is obtained:

dσn+1 =

[

Ξn+1 −
Ξn+1 : χn+1 ⊗ ∂σΦ : Ξn+1

∂σΦ : Ξn+1 : χn+1 − ∂ξΦ

]

: dεn+1

+ Ξn+1 :

[

χn+1

∂σΦ : Ξn+1 : αn+1 − ∂T Φn+1

∂σΦ : Ξn+1 : χn+1 − ∂ξΦ
− αn+1

]

dTn+1.

(C.2.54)

The consistent tangent stiffness tensor Ln+1 and the consistent tangent
thermal moduli tensor Θn+1 are defined as
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Table C.1. Summary of the closest point projection numerical algorithm for the
SMA constitutive model with transformation induced plasticity.

1. Let k = 0, εn+1 = εn + Δεn+1, Tn+1 = Tn + ΔTn+1, ε
t(0)
n+1 = εt

n, ε
p(0)
n+1 = εp

n,

ξ
(0)
n+1 = ξn, S(0)

n+1 = Sn, α
(0)
n+1 = αn.

2. Calculate σ
(k)
n+1, Φ

(k)
n+1, R

t(k)
n+1, R

p(k)
n+1:

σ
(k)
n+1 = S(k)−1

n+1 :
[
εn+1 − ε

t(k)
n+1 − ε

p(k)
n+1 − α

(k)
n+1(Tn+1 − T0)

]

Φ
(k)
n+1 = Φ(σ

(k)
n+1, Tn+1, ξ

(k)
n+1)

R
t(k)
n+1 = −ε

t(k)
n+1 + εt

n + Λ
(k)
n+1(ξ

(k)
n+1 − ξn)

R
p(k)
n+1 = −ε

p(k)
n+1 + εp

n + Λ̃
p(k)
n+1

∣
∣
∣ξ

d(k)
n+1 − ξd

n

∣
∣
∣

If Φ
(k)
n+1 < 0 or

∣
∣
∣Δξ

(k)
n+1

∣
∣
∣ < tolerance then go to step 8.

3. Calculate Ξ
(k)
n+1 and χ

(k)
n+1:

Ξ
(k)
n+1 =

[
S(k)

n+1 + ∂σΛ
(k)
n+1(ξ

(k)
n+1 − ξn) + ∂σR

p(k)
n+1

]−1

χ
(k)
n+1 = Δα(Tn+1 − T0) + Δ S : σ

(k)
n+1 + Λ

(k)
n+1 + ∂ξR

p(k)
n+1

4. Calculate the increments of the martensitic volume fraction Δξ
(k)
n+1,

stress Δσ
(k)
n+1, transformation strain Δε

t(k)
n+1 and plastic strain Δε

p(k)
n+1:

Δξ
(k)
n+1 =

∂σΦ
(k)
n+1 : Ξ

(k)
n+1 :

[
R

t(k)
n+1 + R

p(k)
n+1

]
− Φ

(k)
n+1

∂ξΦ
(k)
n+1 − ∂σΦ

(k)
n+1 : Ξ

(k)
n+1 : χ

(k)
n+1

Δσ
(k)
n+1 = −Ξ

(k)
n+1 :

[
R

t(k)
n+1 + R

p(k)
n+1 + χ

(k)
n+1Δξ

(k)
n+1

]

Δε
p(k)
n+1 = −R

p(k)
n+1 − ∂σR

p(k)
n+1 : Δσ

(k)
n+1 − ∂ξR

p(k)
n+1 : Δξ

(k)
n+1

Δε
t(k)
n+1 = − Sn+1 : Δσ

(k)
n+1 − Δε

p(k)
n+1 −

[
Δα(Tn+1 − T0) + Δ S : σ

(k)
n+1

]
Δξ

(k)
n+1

5. Update martensitic volume fraction, transformation and plastic strains,
elastic compliance tensor and thermal expansion coefficient tensor:

ξ
(k+1)
n+1 = ξ

(k)
n+1 + Δξ

(k)
n+1

ε
t(k+1)
n+1 = ε

t(k)
n+1 + Δε

t(k)
n+1

ε
p(k+1)
n+1 = ε

p(k)
n+1 + Δε

p(k)
n+1

S(k+1)
n+1 = SA + ξ

(k+1)
n+1 Δ S

α
(k+1)
n+1 = αA + ξ

(k+1)
n+1 Δα

6. Set iteration counter k = k + 1. Return to step 2.
7. Calculate consistent tangent stiffness tensor Ln+1 and

thermal moduli tensor Θn+1:

Ln+1 = Ξn+1 −
Ξn+1 : χn+1 ⊗ ∂σΦ : Ξn+1

∂σΦ : Ξn+1 : χn+1 − ∂ξΦ

Θn+1 = Ξn+1 :

[

χn+1
∂σΦ : Ξn+1 : αn+1 − ∂T Φn+1

∂σΦ : Ξn+1 : χn+1 − ∂ξΦ
− αn+1

]

8. Update ζn+1 and ζd
n+1:

ζn+1 = ζn + |Δξn+1|
ζd

n+1 = ζd
n +

Hcur
n+1
H

|Δξn+1|
Exit and return to global iteration
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Ln+1 ≡
dσn+1

dεn+1

= Ξn+1 −
Ξn+1 : χn+1 ⊗ ∂σΦ : Ξn+1

∂σΦ : Ξn+1 : χn+1 − ∂ξΦ
, (C.2.55)

Θn+1 ≡
dσn+1

dTn+1

= Ξn+1 :

[

χn+1

∂σΦ : Ξn+1 : αn+1 − ∂T Φn+1

∂σΦ : Ξn+1 : χn+1 − ∂ξΦ
− αn+1

]

.

(C.2.56)

The material parameters are updated only at the points of reversal of
the phase transformation. To update them, the evolution equations (5.2.24)–
(5.2.27) are utilized. These equations require knowledge of two parameters,
which are the accumulated martensitic volume fraction ζ and accumulated
detwinned martensitic volume fraction ζd. Therefore, these variables must be
made available and must be updated at each increment. To accomplish this,
after the convergence of the return mapping iterative procedure, the values
of ζ and ζd are calculated using their values from the previous increment and
the newly found values of the increment of the martensitic volume fraction
Δξn+1 and the current maximum transformation strain Hcur

n+1.

C.2.4 Summary of the Numerical Algorithm for SMA
Constitutive Model with Transformation Induced Plasticity

A summary of all steps of the numerical algorithm for an SMA undergoing
transformation induced plasticity are presented in Table C.1.
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