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1 Introduction

The last two decades have witnessed a revival in interest in the measure
ment of productive efficiency pioneered by Farrell (1957) and Debreu (1951).
1978 was a watershed year in this revival with the christening of DEA by
Charnes, Cooper and Rhodes (1978) and the critique of Farrell technical ef
ficiency in terms of axiomatic production and index number theory in Fare
and Lovell (1978) . These papers have inspired many others to apply these
methods and to add to the debate on how best to define technical efficiency.

In this paper we try to pull together some of the variants that have arisen
over these decades and show when they are equivalent. The specific cases
we take up include: 1) the original Debreu-Farrell measure versus the Russell
measure-the latter introduced by Fare and Lovell, and 2) the directional dis
tance function and the addit ive measure. The former was introduced by Luen
berger (1992) and the latter by Charnes, Cooper , Golany and Seiford (1985) .
We also provide a discussion of the associated cost interpretations. The find
ings are that the common ground is "small" in the sense of the function
satisfying it .

2 Basic Production Theory Details

In this section we introduce the basic production theory that we employ in
this paper. We will be focusing on the input based efficiency measures here,
but the analysis could readily be extended to the output oriented case as well.

To begin, technology may be represented by its input requirement sets

L(y) = { x : x can produce y} , Y E ~~ , (1)

* We would like to thank W. W. Cooper, D. Primont, R. R. Russell, R. M. Thrall
and a referee for their comments. We also thank Pavlo Kostromytskyi and Lisa
Duke for the technical support in preparation of the paper.
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where y E lR~ = {y E lRM : Yrn 2: 0, m = 1, . . . , .LVI} denotes outputs and
x E lR~ denotes inputs. We assume that the input requirement sets satisfy
the standard axioms, including: L(O) = lR~, and L(y) is a closed convex set
with both inputs" and outputs" freely disposable (for details see Fare and
Primont (1995)).

The subsets of L(y) relative toward which we measure efficiency are the
isoquants

IsoqL(y) = {x: x E L(y),'\x tt L(y),'\ > I}, y E lRt1 , (2)

and the efficient subsets

EffL(y) = {x : x E L(y) , x' ~ x, x' i= x =} x' tt L(y)} , y E lR~ . (3)

Clearly, EffL (y) ~ IsoqL (y) and as one can easily see with a Leontief
technology, i.e., L(y) = {(Xl ,X2) : min{x l,x2} 2: y} , the efficient subset may
be a proper subset of the isoquant.

Next we introduce two function representations of L(y), namely the Shep
hard input distance function and the directional input distance function, and
discuss some of their properties.

Shephard's (1953) input distance function is defined in terms of the input
requirement sets L(y) as

Di(y, x) = sup{,\ : x/'\ E L(y)} .
x

Among its important properties'' we note the following

(i) Di(y,x) 2: 1 if and only if x E L(y), (Representation)
(ii) Di(y , '\x) = ,\Di(y,x), x> 0, (Homogeneity)

(iii) Di(y,x) = 1 if and only if x E IsoqL(y), (Indication) .

Our first property shows that the distance function is a complete repre
sentation of the technology. Property ii) shows that the distance function is
homogeneous of degree one in inputs, i.e., the variables which are scaled in
(4). The indication condition shows that the distance function identifies the
isoquants.

Turning to the directional input distance function introduced by Luen
berger (1992f, we define it as

D, (y,x ; 9x) = sup{,B: (x - ,B9x) E L(y)} ,
13

(5)

where 9x E lR~ is the directional vector in which inefficiency is measured.

Here we choose 9x = IN E lR~ . This function Di (y, x ; IN) has properties

4 Inputs are freely disposable if x' 2: x E L(y) =} x' E L(y) .
5 Outputs are freely disposable if y' 2: y =} L(y') <:::; L(y) .
6 For additional properties and proofs, see Fare and Primont (1995) .
7 In consumer theory he calls this the benefit function and in producer theory he

uses the term shortage function .
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that parallel those of Di(y,x) , and are listed below. For technical reasons the
indication property is split into two parts. We note that we require inputs to
be strictly positive in part a) of the indication property. The proofs of these
properties are found in the appendix.

i) Di (y, x; IN) :::: 0 if and only if x E L(y), (Representation)

ii) Di (y,X+ al N; IN) =D i (y, x ; 1N) + a, a > 0, (Translation)

iiia) if Di (y,x; IN) = 0 and Xn > 0, n = 1, .. . ,N,
then x E IsoqL(y), (Indication)

iiib) x E IsoqL(y) implies D, (y,x; IN) = 0, (Indication) .

Since we will be relating technical efficiencyto costs, we also need to define
the cost function, which for input prices w E ~~ is

C(y,w) = min{wx : x E L(y)} .
x

The following dual relationships apply

C(y ,x)
~--'- ~ 1/Di(y,x),

wx
and

(6)

(7)

(9)

C(y ,x)-wx<_D.( 'I N ) (8)
wIN - t Y,X, .

Expression (7) which is the Mahler inequality, states that the ratio of
minimum cost to observed cost is less than or equal to the reciprocal of the
input distance function . Expression (8) states that the difference between
minimum and observed cost, normalized by input prices, is no larger than the
negative of the directional input distance function.

These two inequalities may be transformed to strict equalities by intro
ducing allocative inefficiency as a residual.

2.1 The Debreu-Farrell and Russell Equivalence

Our goal in this section is to find conditions on the technology L(y) , Y E

~~, such that the Debreu-Farrell (Debreu (1957), Farrell (1957)) measure
of technical efficiency coincides with the Russell (Fare and Lovell (1978))
measure. To establish these conditions we redefine the original Russell measure
and introduce a multiplicative version. We do this by using the geometric mean
as the objective function in its definition rather than an arithmetic mean. Thus
our multiplicative Russell measure is defined as

{

N liN
RM(Y,X) = min (II An) :

Al...AN n=l

(A1Xl, . . . , ANXN) E L(y),

0< An S 1, n ~ 1, . . . , N}.
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( )
liN

The objective function here is n:=l An in contrast to 2::=1 An/N

from the original specification in Fare and Lovell (1978). Russell (1985, 1987)
criticizes the original measure and a referee points out that this criticism may
carryover to the multiplicative measure. For technical reasons we assume here
that inputs x = (Xl, • • • ,xn ) are strictly positive, i.e., X n > 0, n = 1, .. . ,N.

More specifically in this section we assume that for Y ~ 0, Y =I 0, L(y) is
a subset of the interior of ~~ .8

Note that the Russell measure in (9) has the indication property

RM(y, x) = 1 if and only if x E EffL (y) . (10)

Recall that the Debreu-Farrell measure of technical efficiency is the recip
rocal of Shephard's input distance function, i.e.,

DF(y ,x) = I/Di(y,x) , (11)

thus it is homogeneous of degree -1 in x and it has the same indication
property as Di(y,x) .

Now assume that the technology is input homothetic", i.e.,

(12)

and that the input aggregation function Di(l,x) is a geometric mean, so that
the distance function equals

N liN
Di(y,x) = (IIxn ) /H(y).

n=l
(13)

From (4) and the representation property it is clear that the distance
function takes the form above if and only if the input requirement sets are of
the following form

{

N liN }
L(y) = H (y) . i: : (IT i:) ~ 1 ,i: = H~y)' (14)

The Russell characterization theorem can now be stated; the proof may be
found in the appendix.

Theorem 1: Assume that L(y) is interior to ~~ for y ~ 0, y =I 0.

RM(y,x) = DF(y,x) for all x E L(y) if and only if

N liN
Di(y,x) = (II x n ) /H(y).

n=l

8 See Russell (1990) for a related assumption.
9 For details see Fare and Primont (1995).
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Thus for these two efficiency measures to be equivalent, technology must
satisfy a fairly specific form of homotheticity-technology is of a restricted
Cobb-Douglas form in which the inputs have equal weights. This makes in
tuitive sense, since technology must be symmetric, but clearly not of the
Leontief type. That is, technology must be such that the IsoqL (y) = EffL (y).
Of course, it is exactly the Leontief type technology which motivated Fare
and Lovell to introduce a measure that would use the efficient subset EffL (y)
rather than the isoquant IsoqL (y) as the reference for establishing technical
efficiency.

2.2 The Directional Distance Function and the Additive Measure

We now turn to some of the more recently derived versions of technical effi
ciency; specifically we derive conditions on the technology L(y) , y E R~ that
are necessary and sufficient for the directional distance function to coincide
with a "stylized" additive measure of technical efficiency.

The original additive measure introduced by Charnes, Cooper , Golany
and Seiford (1985) (hereafter CCGS) simultaneously expanded outputs and
contracted inputs. Here we focus on a version that contracts inputs only, but in
the additive form of the original measure. Although the original measure was
defined relative to a variable returns to scale technology, (see p. 97, CCGS),
here we leave the returns to scale issue open and impose only those condit ions
itemized in Section 2. Finally, we normalize their measure by the number of
inputs, N.

We are now ready to define the stylized additive model as

A(y,x) ~ ,~.~{; '.IN, (Xl - '\, .. . , XN - 'N) E L(Y)} , (15)

where Sn 2: 0, n = 1, . .. ,N .
This measure reduces each input X n so that the total reduction 2::=1 Sn/N

is maximized. Intuitively, one can think of this problem as roughly equivalent
to minimizing costs when all input prices are equal to one. We will discuss
this link in the next section.

The additive measure and the modified Russell measure look quite similar,
although the former uses an arithmetic mean as the objective and the modi
fied Russell measure uses a geometric mean. The additive structure of A(y, x)
suggests that the directional distance function-which also has an additive
structure-may be related to it lO • To make that link we begin by character
izing the technology for which these two measures would be equivalent. We
begin by assuming that technology is translation input homothetic!", i.e., in

10 Larry Seiford noted the similarity at a North American Efficiency and Produc
tivity Workhsop .

11 For details see Chambers and Fare (1998). Chambers and Fare assumed that
F(y) depends on the directional vector 1N . Here we take it as fixed and omit it .
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terms of the directional distance function we may write

(16)

Moreover, we assume that the aggregator function Iii (O,x; IN) is arith
metic mean so that the directional distance function may be written as

(17)

(18)

Note that from the properties of the directional distance function, it follows
that it takes the form required above if and only if the underlying input
requirement sets are of the form

L(y) ~ {i, ~ tin 2: o} + F(y),

where x = (Xl - F(y), . .. ,XN - F(y) .
We are now ready to state our additive representation theorem (see ap

pendix for proof),

Theorem 2:

Iii (y,x ; IN) = A(y,x) for all X E C(L(y)) = (19)

{x : x=X+<51 N,XEL(y) ,8?:0}
N

if and only if Iii (y,x; IN) = ~ I>n - F(y).
n=l

Here we see that to obtain equivalence between the additive measure and
the directional distance function, technology must be linear and symmetric in
inputs, i.e., the isoquants are straight lines with slope = -1.

2.3 Cost Interpretations

The Debreu-Farrell measure has a dual interpretation, namely the cost de
flated cost function . Here we show that the multiplicative Russell measure
and the additive measure also have dual cost lnterpretations!" .

Recall that we define the cost function

C(y,w) = min{wx : X E L(y)} ,
x

(20)

12 It is straightforward to show that the original (additive) Russell measure also has
a cost interpretation, despite the claim by Kopp (1981, p. 450) that the Russell
measure '... cannot be given a meaningful cost interpretation which is factor price
invariant.' In this section, we provide such a cost interpretation.
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where w E ~~ are input prices. From the definition it follows that

C(y, w) ~ wx, '<Ix E L(y).

Now since DF(y,x)x E L(y) it is also true that

C(y,w) ~ w(DF(y,x)x) = wx(DF(y,x)),

and
C(y,w)jwx ~ DF(y, x).

(21)

(22)

(23)

Expression (22) is a direct consequence of (7) and is known as the Mahler
inequality expressed in terms of the cost efficiency measure (C(y ,w)jwx) and
the Debreu-Farrell measure of technical efficiency, DF(y, x). This inequality
may be closed by introducing a multiplicative measure of allocative efficiency,
AE(y, x, w), so that we have

C(y, w)jwx = DF(y, x)AE(y, x ,w). (24)

To introduce a cost interpretation of the multiplicative Russell measure
we note that

(25)

where A~ (n = 1, . . . , N) are the optimizers in expression (9). From the as
sumption that the input requirement sets are subsets of the interior of ~~, it
follows that A~ > 0, n = 1,. . . ,N . By (20) and (24) we have

(26)

and by multiplication

(rr
N

) l iN [ A'WlXIC(y, w)jwx 5:. A~ N I liN + ...+
n=l ( I1 A~) wx

n=l

or

Expression (27) differs from the Mahler inequality (22) in that it contains
a second term on the right hand side. This term may be called the Debreu
Farrell deviation, in that if Al = . .. = AN, the deviation equals one. That
is, if the scaling factors A~ are equal for each n, then (27) coincides with
(22). Again, the inequality (27) can be closed by introducing a multiplicative
residual, which captures allocative inefficiency.
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Turning to the additive measure, we note that

(Xl - si, . .. , X N - sjy) E L(y) , (29)

where s~, n = 1, . . . , N are the optimizers in problem (15). Thus from cost
minimization we have

C(y, w) ::; wx - ws', (30)

where s' = (si, . . . ,sjy). From (29) we can derive two dual interpretations: a
ratio and a difference version.

The ratio interpretation is

ws'
C(y, w)/wx ::; 1 - -,

wx
(31)

which bears some similarity to the Farrell cost efficiency model in (22) . Now
if w = (1, . . . ,1), then it follows that the additive model is related to costs as

N

L s~/N
<1_ n = 1 =1- A(y,x)
- N N

L xn/N L xn/N
n=l n=l

(32)

In this case we see that Debreu-Farrell cost efficiency (the left-hand side) is
not larger than one minus a normalized additive measure.

The second cost interpretation is

C(y, w) - wx ::; <uis",

and when w = (1, . .. ,1) we obtain

N
C(y, IN) - L xn

n=l

N

(33)

(34)

If we compare this result to (8), we see again, the close relationship between
the additive measure and the directional distance function .
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Appendix

Proof of (2.5) :
i) See Chambers, Chung and Fare (1998, p. 354) for a similar proof.

ii) Di (y,x + o:l N; IN) = suP{3{ ,8 : (x- ,81N+ o:I N) E L(y)}

= sUP{3 {,8 : (x - (,8 - o: )IN) E L(y)}

= 0: + sUP{3 { ~: (x - ~IN ) E L(y)} (~ = ,8 - 0:)

=D i (y,x ; IN) + 0: .

iiia) We give a contrapositive proof. Let x E L(y) with X n > 0, n = 1, . . . , N
and x ~ IsoqL(y). Then Di(y ,x) > 1, and by st rong disposabiJity, there
is an open neighborhood Ne(x) of x (e = min{Xl - Di(y ,X)XI, " ., XN -

Di(y , X) XN}) such that Ne(x) E L(y). Thus Di (y,x ; IN) > 0 proving iiia) .

iiib) Again we give a contrapositive proof. Let Di (y, x; IN) > 0 then x - Di

(y,x ; IN)I N E L(y) and since the directional vector is IN = (1, . .. , 1), each
Xn, n = 1, . .. , N can be reduced while still in L(y) . Thu s Di(y ,x ) > 1 and by
the Indication property for Di(y ,x) , x ~ IsoqL(y). This completes the proof.

Remark on the proof of iiia): The following figure shows that when the di
rect ional vector has all coordinates positive, for example 1N , then X n >
0, n = 1, . .. , N is required . In the Figure 1, input vector a has Xl = 0,

and D , (y,x; 1N) = 0, but a is not on the isoquant.

a

isoquant of L(y)

o

Figure 1. Remark on the proof of iii a).
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This problem may be avoided by choosing the directional vector to have ones
only for positive x's.

Proof of Theorem 1:

Assume first that the technology is as in (13), then

Since DF(y,x)
DF(y ,x).

l/Di(y,x) we have shown that (3) implies RM(y ,X)

To prove the converse we first show that

(35)

o< bn :s: 1, n = 1, . . . , N .
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To see this,

RM(Y, blXl , " " bNXN) = min {(rr
N_

An) u»
Al ...AN n-l

: ()I1blXl, . .. , ANbNXN) E L(y) ,

o< An ::; 1, 0 < s; ::; 1, n = 1, . . . ,N }

=(n; bn) - liN min {(rr
N_

Anbn) liN
n-l Al ... AN n-l

: (AlblXl, "" ANbNXN) E L(y) ,

o< An ::; 1, 0 < s; ::; 1, n = 1, .. . , N }

= (rt, bn) -liN A~~rN { (rr~=l ~n) liN

: (~lblXl' "'' ~NbNXN) E L(y),

o< ~n ::; 1, 0 < s; ::; 1, n = 1, . .. ,N }

(
N ) -l iN

= RM(y,x) rrn=l s; ,

where ~n = Anbn, n = 1, . . . ,N. Thus (34) holds.

Next, assume that the Debreu-Farrell and the multiplicative Russell measures
are equal, then

(
N )l lN

RM(y, blXl ," " bN, XN)=RM(y, x)/ rrn=lbN = DF(y,bl Xl, " " bNXN),

thus

and

Now we take bn = l/xn , n = 1, . . . , N then

(
N ) liN

DF(y, x) = DF(y, 1, ... ,1)/ rrn=l X n

Moreover, since the Debreu-Farrell measure is independent of units of mea
surement (Russell (1987), p. 215),10 X n can be scaled so that X n > 0, n =

10 This was pointed out to us by R.R. Russell.
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1, .... , N. Thus by taking H(y) = DF(y,I, . . . ,1), and using (11) we have
proved our claim.

Proof of Theorem 2:

First consider

A(y,Xl-61, . . . ,XN -6N)

= max {2-I:>n : (Xl - D1 - Sl,· ·· ,XN - 6N - SN) E L(~)} ,
SI · · ·SN N

n

~ .r::~ {~ ~(s. -6. +6.) , (XI - (61 + sIl, ···, XN -(6N + SN)) E L(Y)} ,

1
= - N LDn + A(y ,x),

n

where Sn 2: 0, 6n 2: 0, n = 1, . .. , N.

This is equivalent to

1 N
A(y ,x) = N L 6n + A(y,x1 - 61, . . . , x N - 6N) (36)

n=l
Take 6n = Xn and define -F(y) = A(y,O), then since equality between the
directional distance function and the additive measure holds,

_ 1 N

n, (y,x; IN) = A(y ,x) = N L Xn - F(y). (37)
n=l

Next, let X E C(L(y)), then for some x E IsoqL(y), and D2: 0,

Di (y,x; IN) =D i (y, x + DIN ; IN) =D i (y,x ; IN) + D, (38)

since x E IsoqL(y), Di (y,x; IN) = D.

Next,

A(y ,x) = max., ...SN {~l:~=1 sn : l:~=I(Xn - sn)/N - F(y) 2: o}
= max,, ...S N {~ l:~=1 sn : l:~=1 (xn + D- sn)/N - F(y) 2: o}

= maxS 1 . . . S N {~ l:~=1 sn : D+ ~ l:~=1 xn - F(y) 2: ~ l:~=1 Sn}

=D,

since x E IsoqL(y) , thus D , (y,x ; IN) = A(y,x) . Q.E.D.
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