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1 Introduction

Data Envelopment Analysis or (DEA) is the term used by Charnes and Cooper
(1985) and their co-workers to denote an area of analysis which is called the
nonparameteric approach to production theory'' or the measurement of the
efficiency of produ ction" by economists.

In section 2, we will provide an introduction to the theory of benchmark
ing and the measurement of relative efficiency of production units. Section
3 develops measures of relative efficiency that use only quantity data. These
measures are particularly useful in the context of measuring the efficiency of
government owned enterprises or units of the general government sector that

3 See Hanoch and Rothschild (1972), Diewert (1981), Diewert and Parkan (1983)
and Varian (1984). It should be noted that in recent times, the term "nonpara
metric approach to production theory" has sometimes included index number
methods for defining the relative efficiency of production units.

4 See Farrell (1957), Afriat (1972), Fare and Lovell (1978), Fare , Grosskopf and
Lovell (1985) and Coelli, Prasada Rao and Battese (1997). The last two books
provide a good overview of the subject .
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deliver services to the public for free or for prices that do not reflect costs of
production. Efficiency measures that use only quantity data (and not price
data) are also useful in the regulatory context'' Section 4 develops measures
of relative efficiency for production units in the same industry where reliable
price and quantity data are available for the units in the sample . Section 5
notes some relationships between the various efficiency measures developed in
the previous two sections. In particular, an efficiency measurement analogue
to Samuelson's (1947; 36-39) Le Chatelier Principle is developed in section 5.

Mendoza (1989) undertook an empirical comparison of 3 different meth
ods for measuring productivity change in the context of time series data for
Canada. The 3 different methods of comparison she considered were: (i) a
nonparametric or DEA method; (ii) traditional index number methods and
(iii) an econometric method based on the estimation of a unit profit function"
In section 6 we will compare the DEA and index number approaches to ef
ficiency measurement using some more recent aggregate Canadian data and
we also illustrate the theoretical Rules developed in previous sections .

Drawing on the empirical and theoretical results reviewed in the previous
sections, in section 7 we compare the advantages and disadvantages of DEA
methods for measuring the relative efficiency of production units with the
more traditional index number and econometric methods.

2 An Introduction to the Nonparametric Measurement
of Efficiency

The basic idea in the case of similar firms producing one output and using 2
inputs is due to Farrell (1957; 254). Let there be K firms, denote the output of
firm k by yk 2: a and denote the amounts of inputs 1 and 2 used by firm k by
x1 2: aand x~ 2: arespectively, for k = 1,2, . . . , K. Calculate the input-output
coefficients for each firm defined by x1 / yk and x~ / yk for k = 1, 2, . .. , K. Now
plot these pairs of input output coefficients in a two dimensional diagram as
in Figure 1 where we have labeled these pairs as the points t», p2, .. . , p5
(so that k = 5).

The convex hull of the 5 data points pi, .. . , p5 in Figure 1 is the shaded
set: it is the set of all non-negative weighted averages of the 5 points where the
weights sum up to 1. The convex free disposal hull of the original 5 points is
the shaded set plus all of the points that lie to the north and east of the shaded

5 See Diewert (1981) .
6 For material on variable and unit profit functions, see Diewert (1973) (1974) and

Diewert and Wales (1992). Coelli, Prasada Roo and Battese (1997) also compared
the three approaches to the measurement of efficiency. Balk (1998; 179-209) also
compared the three approaches. Diewert (1980) was perhaps the first to con
trast the three approaches and he also included a fourth approach: the Divisia
approach. The index number approach was reviewed in detail by Diewert and
Nakamura (2003).
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set . Farrell took the boundary or frontier of this set as an approximation to
the unit output isoquant of the underlying production function7 In Figure 1,
this frontier set is the piecewise linear curve Ap4p3B. The Farrell technical
efficiency of the point pl was defined to be the ratio of distances OD/Opl ,
since this is the fraction (of both inputs) that an efficient firm could use to
produce the same output as that produced by Firm 1. A point Pi is regarded
as being techni cally efficient if its technical efficiency is unity.

Farrell (1957; 254) noted the formal similarity of his definition of technical
efficiency to Debreu 's (1951) coefficient of resource utilization.

Farrell (1957; 255) also defined two further efficiency concepts using a
diagram similar to Figure 1. Suppose Firm 1 faced the fixed input prices W l

and W2 for the two inputs. Then we could form a family of isocost lines with
slope WdW2 and find the lowest such isocost line that is just tangent to the
free disposal convex hull of th e 5 points. In Figure 1, this is the line CE
which is tangent to the point p 3. Farrell noted that even if the point pl were
shrunk in towards the origin to end up at the technically efficient point D,
the resulting point would still not be the cost minimizing input combinat ion
(which is at p 3). Thus Farrell defined the price efficiency of pl as the ratio
of distances OC/OD. Finally, Farrell (1957; 255) defined the overall efficiency
of Firm 1 as the ratio of distances OC/ 0 pl. This measure incorporates both
technical and allocative inefficiency. A point Pi is overall efficient if its overall
efficiency is unity.

There is a problem with Farrell's measure of technical efficiency: Farrell 's
definition makes the points p2 and p5 in Figure 1 technically efficient when
it seems clear that they are not : p2 is dominated by p3 which uses less of
input 1 to produce the same output and p5 is dominated by p4 which uses

7 Farrell (1957; 254) was assuming constant returns to scale in this part of his
paper.
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less of input 2 to produce the same output. Charnes, Cooper and Rhodes
(1978; 437) and Fare and Lovell (1978; 151) both noticed this problem with
Farrell's definition of technical efficiency and suggested remedies. However, in
the remainder of this chapter we will stick with Farrell's original definition of
technical efficiency, with a few modifications to cover the case of many outputs.

Farrell's basic ideas outlined above for the case of a one output, constant
returns to scale technology can be generalized in several ways: (i) we can relax
the assumption of constant returns to scale; (ii) we can extend the analysis to
the multiple output, multiple input case; (iii) we can generalize the analysis
to cover situations where it is reasonable to assume profit maximizing be
haviour (or partial profit maximizing behaviour) rather than cost minimizing
behaviour and (iv) we can measure inefficiency in different metrics (i.e., in
stead of measuring technical inefficiency in terms of a proportional shrinkage
of the input vector, we could choose to measure the inefficiency in terms of a
basket of outputs or a basket of outputs and inputs) . Drawing on the work of
Mendoza (1989) and others, we shall indicate how the above generalizations
(i)-(iii) can be implemented for the case of technologies that produce only 2
outputs and utilize only 2 inputs. The generalization to many outputs and
inputs is straightforward. Section 3 below covers approaches that use only
quantity data while section 4 describes approaches that utilize both price and
quantity data. Section 5 draws on the results of the previous two sections
and notes some interesting general relationships between various measures of
efficiency loss. Of particular interest is a Le Chatelier Principle for measures
of allocative inefficiency.

3 Efficiency Tests Using Only Quantity Data

3.1 The Case of a Convex Technology

Suppose that we have quantity data on k production units that are producing
2 outputs using 2 inputs. Let yt;, :::: 0 denote the amount of output m produced
by each production unit (or firm or plant) j for m = 1,2, and let x~ :::: 0 denote
the amount of input n used by firm k for n = 1, 2 and k = 1, 2, . . . , K.

We assume that each firm has access to the same basic technology ex
cept for efficiency differences. An approximation to the basic technology is
defined to be the convex free disposal hull of the observed quantity data
{(yt , y~, xt,x~) : k = 1, ... , K}. This technology assumption is consistent
with decreasing returns to scale (and constant returns to scale) but it is not
consistent with increasing returns to scale.

It is necessary to specify a direction in which possible inefficiencies are mea
sured ; i.e., do we measure the inefficiency of observation i in terms of output
m or input n or some combination of outputs and inputs? Mendoza's (1989)
methodology allowed for an arbitrary efficiency direction" but for simplicity,

8 See Mendoza (1989; 25-30).
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we will restrict ourselves to the Debreu (1951)-Farrell (1957) direction; i.e.,
we shall measure the inefficiency of observation i by the smallest positive frac
tion t5i of the ith input vector (xl, x~) which is such that {(Yf, y~, t5ixf, t5ix~)

is on the efficient frontier spanned by the convex free disposal hull of the k
observations. If the ith observation is efficient relative to this frontier, then
t5i = 1; the smaller t5i is, then the lower is the efficiency of the ith observation.
The number s; can be determined as the optimal objective function of the
following linear programming problem" :

s; = min6i~o,Al~O, ...,Ak~O { t5i : L:=l yfAk ~ yl; L:=l y~Ak ~ y~ ;
K k "K k " K

Lk=l Xl Ak ~ t5ixl; Lk=l X2 Ak ~ t5iXZ;k=1 Ak = I}.

Thus we look for a convex combination of the K data points that can produce
at least the observation i combination of outputs (Yi, y~) and use only t5i

times the observation i combination of inputs (xi ,x~) . The smallest such t5i

is t5i .
The linear programming problems (1) are run for each observation i and

the resulting t5i ~ 0, serves to measure the relative efficiency of observation
i; if s; = 1, then observation i is efficient. At least one of the J observations
will be efficient.

We turn now to the corresponding linear program that tests for efficiency
under the maintained hypothesis that the underlying technology is subject to
constant returns to scale (in addition to being convex).

3.2 The Case of a Convex, Constant Returns to Scale Technology

In this case, the approximation to the underlying technology set is taken to
be the free disposal hull of the convex cone spanned by the K data points.
The efficiency of observation i is measured by the positive fraction 8;* of the
ith input vector (xl, x~) which is such that (Yf, y~, 8i*xf ,8i*x~) is on the
efficient frontier spanned by the conical convex free disposal hull of the K
observations. The efficiency of the ith observation relative to this technology
set can be calculated by solving the following linear program:

8** - . {A bi tt .,\,K k v > i.,\,K k v > i •
i -mm6i~O,Al~O , ...,AK~O Vi SU jec o·L...,k=IYIAk_YI,L...,k=IY2Ak_Y2'

'\'K k » A k.'\'K k » A k.}L...,k=l Xl Ak ~ ViXI, L...,k=l X2 Ak ~ Vi X2' .

(2)

Note that the LP (2) is the same as (1) except that the constraint

L:=l Ak = 1 has been dropped. Thus the optimal solution for (1) is feasible

9 See Mendoza (1989; 30) for a general version of Test 1. The use of linear pro
gramming techniques to calculate nonparametric efficiencies was first suggested
by Hoffman (1957; 284) and first used by Farrell and Fieldhouse (1962) . Related
tests are due to Afriat (1972; 571) and Diewert and Parkan (1983; 141).



68 W. Erwin Diewert and M. Nimfa F. Mendoza

for (2) and thus 8;* :::; 8;; i.e., the constant returns to scale measure of effi
ciency for observation i will be equal to or less than the convex technology
measure of inefficiency for observation i.

We turn now to models that are consistent with increasing returns to scale.

3.3 Quasiconcave Technologies

We first need to define what we mean by a production possibilities set L(Yl)
that is conditional on an amount Yl of output 1. Let S be the set of feasible
outputs and inputs. Then L(Yl) is defined to be the set of (Y2, Xl , X2) such
that (y1, Y2, Xl, X2) belongs to S; i.e., L(yI) is the set of other outputs Y2 and
inputs Xl and X2 that are consistent with the production of Yl units of output
1. We assume that the family of production possibilities sets L(Y2) has the
following three properties: (i) for each y1 2: 0, L(yI) is a closed, convex set lO

(ii) if Y~ :::; yr ,then L(yI) is a subset of L(Yl) and (iii) the sets L(yI) exhibit
free disposal.

For each observation i, define the following set of indexes :

It = {k: Y~ 2: yLk = 1,2, . .. , ](}; (3)

i.e., Ir is the set of observations k such that the amount of output 1 produced
by observation k is equal to or greater than the amount of output 1 produced
by observation i. Note that observation i must belong to Ir .

Given our assumptions on the underlying technology, it can be seen that
the free disposal convex hull of the points (y~, x{, x~), j En, forms an approx
imation to the set L(yf). The frontier of this set is taken to be the efficient set .
As usual, we measure the efficiency of observation i by the positive fraction
8;* of the ith input vector (xL x~) which is such that {(y~, 8;*xf ,8;*x~) is on
the efficient frontier defined above. The number can be calculated by solving
the following linear program11:

8;* = min<5i~O,Al~O, .. . , A K ~O {s, :LkEI: Y~Ak 2: Y~; LkEI; xf Ak :::; 8ixi;

LkElf X~Ak :::; 8i X2;LkEI; Ak = 1}
(4)

On the left hand side of each constraint in (4), the indexes k must belong
to the index set It defined by (3) above.

10 If we represent the underlying technology by means of the production function
YI = f(Y2 , Xl, X2), assumption (i) implies that f is a quasiconcave function.

11 See Mendoza (1989; 54) for a general version of (4) which she called Test 3.
The one output quasiconcavity test is due to Hanoch and Rothschild (1972; 259
261). Diewert (1980; 264)(1981) and Diewert and Parkan (1983; 140) developed
alternative methods for dealing with a quasiconcave technology but the present
method seems preferable.
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Denote the optimal k for (4) above by Ak** for k E If . By the last constraint
in (4), we have

L Ak** = 1;
kElt

Using definition (3), Ak** ~ 0 and (5), it can be seen that

(5)

(6)

Using (1), (4) and (6), we see that the optimal solution for (4) is feasible for
(1) and thus we must have 8; ::; 8;**. Recall that we showed that 8;* ::; 8;
and so we have

(7)

Thus the efficiency measures generally increase (or remain constant) as we
make weaker assumptions on the underlying technology: the biggest efficiency
measure 8;** corresponds to a quasiconcave (in output 1)12 technology, the
next measure 8; corresponds to a convex technology, and the smallest effi
ciency measure 8;* corresponds to a constant returns to scale convex technol
ogy.

In definition (3) and in the LP (4), output 1 was singled out to play a
special role. Obviously, analogues to (3) and (4) could be constructed where
output 2 played the asymmetric role. In this latter case, the underlying tech
nological assumption is that the Y2 = !(Yl ,Xl,X2) production function is
quasiconcave. This is a somewhat different technological assumption than our
initial one, but both assumptions are consistent with an increasing returns to
scale technology!".

The last paragraph raises two questions:

• What is the motivation for imposing quasiconcavity on all of the inputs
and all but one of the outputs?

• How exactly is the researcher to choose which output is to be singled out
to play an asymmetric role in the above efficiency measure?

These are difficult to answer questions . In the one output, many input context,
we routinely assume quasiconcave technologies, at least in part, because a non
quasiconcave technology cannot be identified using observable price and quan
tity data if producers are competitively minimizing costs. If we carry this line
of reasoning over to the case of many outputs, then if the production units in
the relevant peer group are competitively minimizing costs and competitively
selling all of their outputs except one, then that non competitively supplied

12 Thus 8;-* should be more accurately denoted by 8it* in order to indicate that
we are assuming quasiconcavity with respect to output 1.

13 Mendoza's (1989; 54) Test 3 can also be modified to model quasiconcave tech
nologies of the form XI = g(YI, Y2, X2), where g is now a factor requirements
function.
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output should be singled out in the above test to play the asymmetric role.
However, strictly speaking, under these hypotheses, we should move on to
the tests for efficiency in subsequent sections , where we assume some form
of competitive pricing behavior. In general, we cannot offer definitive advice
on which output should be singled out to play an asymmetric role in the
above efficiency test: the researcher will perhaps have to rely on engineering
considerations to single out the output which is most likely to be subject to
increasing returns to scale or perhaps just pick the most important output (in
terms of market share) as the numeraire output.

This completes our overview of nonparametric efficiency tests that involve
the use of quantity data. We now turn to tests that involve both price and
quantity data so that overall efficiency measures can be constructed in place
of the technical efficiency measures of this section.

4 Efficiency Tests Using Price and Quantity Data

4.1 The Convex Technology Case

We make the same assumptions on the underlying technology as in section 3.1
above. However, we now assume that each producer may be either minimizing
cost or maximizing profits'" We consider each case in turn.

Case (i): Cost Minimization:
We assume that producer k faces the input prices (w1k, W2k) for the two

inputs. To determine whether producer i is minimizing cost subject to our
convex technology assumptions, we solve the following linear program!":

KKK

min6i~o,Al~O, ..., A K ~O {Wt(L x~Ak) + W;(L:>~Ak) : LY}Ak :::: Y~;
k=l k=l k=l

K K

L Y~Ak :::: Y;;L Ak = I}
k=l k=l

- *[ i i + i i]= e, WIXI w2x2'

(8)

(9)

The meaning of (9) is that we define the overall efficiency measure < for
observation i by equating (9) to the optimized objective function in (8). If we
set Ai = 1 and the other Ak = 0, we have a feasible solution for (8) which yields
a value of the objective function equal to wtxi + w~x~. Thus 0 < <::; 1. The
number <can be interpreted as the fraction of (xl. x~) which is such that

14 In contrast to the technical efficiency measures defined in section 2 where at least
one observation had to be efficient (with an efficiency score of 1), in this section,
it can be the case that no observation is efficient.

15 See Mendoza (1989; 67) for a general version of (8) which she called Test 4.
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Ei(xLx~) on the minimum cost isocost line for observation i; i.e., €i is an
analogue to the overall efficiency measure OC/Opl which occurred in Figure
1. Comparing (1) and (8), it can be seen that the optimal Ai; solution for (1)
is a feasible solution for (8) and thus:

(10)

The second inequality in (10) simply reflects the fact that overall efficiency Ei
is equal to or less than technical efficiency s; (recall Figure 1 again) .

Case (ii}:Profit Maximization:
We now assume that firm i also faces the positive output prices (pLp~)

for the two outputs. To determine whether producer i is maximizing profits
subject to our convex technology assumptions; we solve the following linear
program'" :

2 KKK

maXAI2:0,...,AK2:0{ L p:n(LY~Ak) - (LX~Ak) : LAk = I} (11)
m=l k=l k=l k=l

== piyl + P2Y~ - ai[wlxi + w~x~]. (12)
Equating (11) to (12) defines the efficiency measure ai for observation i. If
we set Ai = 1 in (11) and the other Ak = 0, we obtain a feasible value for
the objective function equal to piyi + P2Y~ - [wtxi + w~x~l . Thus ai = 1.
If ai = 1, then observation i is efficient relative to our assumptions on the
technology and relative to the hypothesis of complete profit maximization.
The interpretation of ai is similar to that of €I: defined above by (9).

It can be seen that the optimal Ak = 0 solution to (8) is feasible for (11).
Using this fact and the inequalities in (8), we have!?

(13)

Thus when we assume that the underlying technology set is convex and calcu
late the efficiencyof observation i, €i, under the assumption of cost minimizing
behavior and compare this efficiency level to the relative efficiency of obser
vation i, ai, calculated under the assumption of profit maximizing behavior,
we find that the relative efficiency level under the profit maximizing assump
tion will be equal to or less than the relative efficiency level under the cost
minimizing assumption.

We now turn to the corresponding linear programs that test for the effi
ciency of observation i under the maintained hypothesis that the underlying
technology is subject to constant returns to scale.

16 This is Mendoza's (1989; 88) Test 7. It is also a special case of her Test
4. Since there is only one constraint in the problem, the solution to (11) is
maxkL~=1 p:ny:n - L~=1 w~x~ ; k = 1,2, . .. , K. For related tests, see Afriat
(1972; 594) for the singleoutput case and Hanochand Rothschild (1972; 268-270)
and Diewert and Parkan (1983; 151) for the multiple output case.

17 Mendoza (1989; 76-77) showed this.
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4.2 The Convex Conical Technology Case

Case (i):Cost Minimization:
Guided by the results of section 3.2, it can be seen that all we have to

do is to drop the constraint L~=1 Ak = 1 from (8). The resulting optimized
objective function is set equal to €i* [wi xi + w~x~]. Since the new LP has one
less constraint than (8), it will generally attain a smaller optimized objective
function and so tj* will generally be smaller than tj; i.e.,

<*:::; <.
By comparing the new LP to (2), we can also show

(14)

(15)

The inequality (14) shows that making strongerassumptions on the underlying
technology tends to decrease the efficiency measure; i.e., the constant returns
to scale measure of the efficiency of observation i, €i*, will be equal to or
less that the convex technology measure of the efficiency of observation i,tj.
The inequality (15) shows that assuming cost minimizing behaviour tends
to decrease the efficiency of observation i, €i*, compared to the measure of
technical efficiency that we obtained earlier for observation i, bi* .18 .

Case (ii):Profit Maximization:
As in section 2.2, we could approximate the underlying technology set by

the free disposal hull of the convex cone spanned by the K data points. To
determine whether observation i is on the frontier of this set, we could attempt
to solve the LP problem (11) after dropping the constraint L~=l Ak = l.
Unfortunately, the resulting optimal objective function is either 0 or plus
infinity. Hence a different approach is required.

In order to obtain an operational approach, we consider a conditional profit
maximization problem in place of the full profit maximization problem that
appears in the objective function of (11); i.e., we allow firm i to maximize
profits but we assume that the level of one input is fixed in the short run . Thus
if the fixed input is input 2, to determine whether producer i is maximizing
(variable) profits subject to our convex, conical technology assumptions, we
solve the following linear programming problem!":

2 K 2 K K

maxAl~OA2~O , ..., A k. ~o { L p:n(I>~Ak) - L W~(LX~Ak) : LX~Ak:::; xi}
m=1 k=1 n=1 k=1 k=1

(16)

18 These results and the appropriate general test may be found in Mendoza (1989;
78), which she called Test 5.

19 The constraint in (16) will hold as an equality in the optimal solution. Hence the
nonnegative Ai which solve (16) serve to define a weighted combination of the I<
data points which uses the observation i amount of input 2, X2, and maximizes
profits at the prices of observation i.
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2 2

= maxd[L p:ny~ - (L w~x~)][x~jx~l : k = 1,2 " K}20
m=l n=l

73

(17)

(18)

where (18) serves to define the observation i efficiencymeasure a;* .Note that
At = 1 and the other Ak = 0 is a feasible solution for (16) and this implies
that a;* ::; 1.21 .

The simple maximization problem defined by (17) can be written in the
following instructive way:

N h h . [kj k kj k kj k kj k] _ [ kj k kj k kj k 1]ote t at t e pomts Yl x2,Y2 x2,xl X2,X2 X2 - Yl X2'Y2 x2,Xl X2,
are feasible output and input vectors under our constant returns to scale
assumption but where the amount of input 2 is fixed at the level 1. Thus
the maximization problem in (19) scales each observed output-input vec
tor k so that the resulting scaled last input level is equal to 1 and then we
take the output and input prices faced by production unit i, [pi, p~, wf,w~],
evaluate unit profits at these prices for each scaled output-input vector k,
pl [y~ jx~] + p~ [y~ jx~] - wt [x~ jx~] - w~ [x~ jx~] , take the maximum over k of
these hypothetical profits and then scale the resulting hypothetical profits by
the observation i level of the "fixed" input, which is equal to x~ .

Comparison of (2) and (16) shows that the optimal solution to (2) gener
ates a feasible solution for (16) and thus

(20)

i.e., the observation i technical efficiency measure 8;* is always equal to or
greater than the overall observation i (conditional on input 2) profit maxi
mization efficiency measure a;* .

Since the LP problem (16) does not simply drop the constraint L~=l Ak =
1, the single constraint in the convex technology LP problem (11), we cannot
develop an inequality between the solution to (16) and the solution to (11).
However, since both problems use all of the price and quantity data pertain
ing to the K observations, typically the solutions to (11) and (16) will be
similar in that the efficiencies generated by these models will tend to be much
lower than the technical efficiencies generated by the models presented in
section 3.

20 We require x~ > 0 for k = 1,2 , . . . , K in order to derive (17) from (16).
21 A sufficient condition to ensure that the solution to (16) is finite is x~ > 0 for

k = 1, ... , K .
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4.3 The Quasiconcave Technology Case

We consider only the cost minimization case22

We make the same technology assumptions as were made in section 3.3.
Recall the index set II defined by (3). To determine whether producer i is min
imizing cost subject to our quasiconcave technology in output 1 assumption,
we solve the following linear program:

As usual, cr* is our measure of overall efficiency for observation i under
our present assumptions on the technology and on the producer's behaviour.
Since the index i belongs to the index set If (recall (3)), it can be seen that
Ai = 1 and the other Ak = 0 is feasible for the LP(21) and gives rise to the
feasible value for the objective function equal to wfxf + w~x~. Thus ti** :::; 1.
It is also possible to see that the optimal 15;** , Ai** solution to (4) is a feasible
ci,Ak solution for (21). Thus

0< c*** < 8~**'- ~ - ~ , (23)

i.e., the (quasiconcave in output 1) cost minimizing overall efficiency for ob
servation i, cr**, will be equal to or less than the corresponding (quasiconcave
in output 1) technical efficiency loss for observation i, 6;*'.

Comparing (21) with (8) and using the definition of the index set Ii (recall
(3)), it can be seen that the optimal oAr*, ci** solution for (21) is a feasible
solution for (823 Thus

(24)

i.e., the observation i efficiency measure assuming a quasiconcave technology
and cost minimizing behaviour ci** will be equal to or greater than the obser
vation i efficiency measure assuming a convex technology and cost minimizing
behaviour cr.

5 Relationships between the Efficiency Measures

The inequalities derived in the previous two sections can be summarized by
two rules. Note that all efficiency measures are measured in the same metric .

Rule 1: The nonparametric efficiency measures tend to fall as we make
more restrictive technological assumptions; i.e., the quasiconcave technology

22 Mendoza (1989; 83) considered more general cases in her Test 6.
23 Using definition (3), Ai"' 2 0 and (5), it can be seen that LkEli y~Ak" 2: yi.

1
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efficiency measure will be equal to or greater than the corresponding convex
technology efficiency measure which in turn will be equal to or greater than
the corresponding convex conical technology loss measure.

Rule 2: The non parametric efficiency measures tend to fall as we assume
optimizing behaviour over a larger number of goods; i.e., the technical effi
ciency measure will be equal to or greater than the corresponding cost min
imizing efficiency measure which will be equal to or greater than the cor
responding profit maximizing efficiency measure. This is Mendoza's (1989;
76-77) Le Chatelier Principle for measures of allocative efficiency.

We illustrate some of the above points using some Canadian data in the
following section.

6 An Empirical Comparison of Alternative Efficiency
Measures for Canada

We use National Accounts and OECD data for Canada for the years 1980
2004 in order to illustrate the above programs/" Producer data on three (net)
outputs and two primary inputs are used. The three net outputs are: domestic
output, YI (C + G + I) ; exports, Y2 ; and minus imports, Y3 . The two primary
inputs are: labour, Xl and reproducible capital, X2 . These data are listed in
Table 1. The corresponding producer prices, PI, P2, P3 for net outputs and WI

and W2 for primary inputs are listed in Table 225 .

The tests for technical efficiency of each observation, (1) and (2) in sections
3.1 and 3.2, were run using the quantity data listed in Table 1 above 26 The
relative technical efficiencies of the year i observation assuming a convex tech
nology set, 8;, and assuming a convex , constant returns to scale technology
set, 8;*, are listed in Table 3 below. The cost minimization relative efficiencies
fi defined by (8) and (9) in section 4.1 for the case of a convex technology and
fi* defined in section 4.2 for the case of a convex, constant returns to scale
technology are also listed in Table 3 below. The profit maximization relative
efficiencies ai defined by (11) and (12) in section 4.1 for the case of a convex
technology and at defined by (16) and (18) in section 4.2 for the case of a
convex, constant returns to scale technology (with capital fixed) are also listed
in Table 3 below.

Finally, we use the data in Tables 1 and 2 to construct:

• a chained Fisher (1922) ideal index of net outputs, Yt for year t ;
• a chained Fisher ideal index of primary inputs Xt for year t and
• a measure of index number productivity in year t equal to t Yt./Xt.

24 We did not compute the quasiconcavity efficiencies since these tend to be close
to 1 and are not very informative.

25 All prices were normalized to equal 1 in the year 1960.
26 We have three (net) outputs instead of two outputs but the reader need only

modify the tests in the obvious ways.
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Table 1. Quantity Data on Net Outputs and Primary Inputs for Canada,
1980-2004

Year YI Y2 Y3 X l X2

1980 88.22 23.23 25.38 42.36 36.83
1981 91.73 23.62 26.02 44.11 38.24
1982 85.45 23.20 21.80 42.68 40.07
1983 89.07 24.63 24.01 42.90 40.60
1984 93.38 29.21 28.12 43.97 41.52
1985 98.49 30.63 30.48 45.27 42.82
1986 101.71 31.97 32.68 46.76 44.38
1987 106.53 32.95 34.43 47.92 46.02
1988 112.55 35.95 39.10 49.44 48.04
1989 116.91 36.24 41.39 50.53 50.46
1990 116.22 37.97 42.23 50.88 53.07
1991 114.12 38.66 43.28 49.91 54.92
1992 114.44 41.45 45.31 49.47 56.14
1993 115.95 45.97 48.66 49.68 57.03
1994 119.46 51.83 52.58 50.64 57.94
1995 121.39 56.22 55.60 51.60 59.29
1996 122.85 59.40 58.42 51.87 60.72
1997 130.60 64.35 66.78 52.95 62.06
1998 133.68 70.18 70.19 54.25 64.51
1999 139.19 77.75 75.66 55.87 66.80
2000 145.42 84.61 81.75 57.50 69.42
2001 147.83 81.96 77.62 58.36 72.42
2002 155.53 82.19 78.29 59.70 74.95
2003 162.32 81.51 82.07 60.93 77.73
2004 168.06 85.49 88.78 61.75 80.95

In orde r to make the resulting index number est imates of Canad a 's pro-
du ctivity for the years 1980-2004, we normalize the productivities by dividing
by Prod2oo2. This makes the resulting normalized ind ex number est imates of
productivity, "(i , comparable to the profit maximizing estimates of relative
efficiency listed in Table 3, sin ce we had 0:2002 = 0:2002 = 1 and the year 2002
was the only efficient observation for both 0:; and 0:;*. The normalized ind ex
number est imates of productivity are listed in the last column of Tabl e 3.

Looking at Table 3, it ca n be seen that the various efficiency measures
satisfy the following inequalities , whi ch we showed in sect ions 3 and 4 must
be satisfied :

8** < 8* ' (25)
1, - t '

< * ~ <; (26)

0:; ~ <~ 8;; (27)

f** < 8~* ' (28)1. - t ,

0:;* ~ 8;*. (29)
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Table 2. Price Data on Net Outputs and Primary Inputs for Canada,
1980-2004

Year PI 112 P3 WI W2

1980 3.0783 3.7382 3.3640 4.3250 2.8210
1981 3.4053 4.0361 3.7466 4.6735 3.1366
1982 3.7361 4.1491 3.9089 5.1695 3.2346
1983 3.9537 4.1960 3.9273 5.4053 3.3299
1984 4.1081 4.3480 4.1334 5.6786 3.4856
1985 4.2730 4.4370 4.2510 5.9370 3.5477
1986 4.4630 4.4283 4.3272 6.1151 3.6578
1987 4.6241 4.5167 4.2734 6.5117 3.8049
1988 4.8124 4.5288 4.1715 6.9206 3.9791
1989 5.0277 4.6281 4.1734 7.2986 4.1243
1990 5.2515 4.5938 4.2160 7.6279 4.1099
1991 5.4192 4.4235 4.1456 8.0047 4.0010
1992 5.5112 4.5500 4.3145 8.2749 4.0053
1993 5.6198 4.7522 4.5751 8.4190 4.1214
1994 5.7082 5.0337 4.8661 8.4753 4.3004
1995 5.7797 5.3564 5.0152 8.5948 4.3944
1996 5.8433 5.3863 4.9523 8.7775 4.4662
1997 5.9309 5.3945 4.9883 9.1036 4.6262
1998 5.9969 5.3772 5.1623 9.3415 4.6238
1999 6.0794 5.4361 5.1471 9.5678 4.6415
2000 6.2151 5.7743 5.2620 10.0450 4.7601
2001 6.3336 5.8617 5.4230 10.3032 4.7135
2002 6.4492 5.7705 5.4544 10.4646 4.7970
2003 6.5617 5.6630 5.0758 10.6265 4.8548
2004 6.6784 5.7843 4.9621 10.8718 5.0059

For the Canadian dat a set, we also find empirically that

(30)

However, we cannot establish the inequality (30) as a theoretical certainty.
Looking at a:i versus a:i*, for th e Canadian data, it can be seen th at for the
most part, a:i ::; a:i* and sometimes a:i is substantially below a:i* ; i.e., the
relative efficiency of an observation when we assume profit maximizing be
havior and a convex technology, a:i , is generally less than the corresponding
relative efficiency of an observation when we assume profit maximizing be
havior subject to a fixed capital const raint and a convex, constant returns to
scale technology, a:i*. However, for the years 2003 and 2004, th is relat ionship
does not hold.

Perhaps the most interest ing thing to note about the results listed in
Table 3 is th at with the exception of the first two years, the index number
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Table 3. Relative Efficiencies for Canada, 1980-2004

Year i " .'"6" 6** €i €j a; Qt ,. "Ii! !

1980 1.0000 1.0000 1.0000 0.9977 0.8308 0.8847 0.8629
1981 1.0000 1.0000 1.0000 1.0000 0.8480 0.8922 0.8604
1982 1.0000 1.0000 1.0000 1.0000 0.7574 0.8438 0.8422
1983 1.0000 1.0000 1.0000 1.0000 0.7659 0.8659 0.8630
1984 1.0000 1.0000 1.0000 1.0000 0.8163 0.8982 0.8894
1985 1.0000 1.0000 1.0000 1.0000 0.8345 0.9121 0.9015
1986 0.9912 0.9909 0.9893 0.9880 0.8343 0.9072 0.8929
1987 1.0000 1.0000 1.0000 1.0000 0.8465 0.9114 0.9026
1988 1.0000 1.0000 1.0000 1.0000 0.8600 0.9156 0.9095
1989 1.0000 1.0000 1.0000 1.0000 0.8528 0.9042 0.9021
1990 0.9844 0.9810 0.9728 0.9706 0.8345 0.8830 0.8833
1991 0.9824 0.9666 0.9596 0.9437 0.8170 0.8619 0.8655
1992 0.9874 0.9635 0.9601 0.9432 0.8273 0.8665 0.8717
1993 0.9890 0.9525 0.9632 0.9406 0.8457 0.8805 0.8844
1994 0.9924 0.9502 0.9732 0.9497 0.8767 0.9075 0.9088
1995 0.9882 0.9479 0.9704 0.9435 0.8804 0.9113 0.9147
1996 0.9922 0.9449 0.9701 0.9372 0.8857 0.9132 0.9179
1997 1.0000 0.9807 0.9955 0.9526 0.9147 0.9337 0.9355
1998 0.9978 0.9752 0.9892 0.9534 0.9322 0.9436 0.9457
1999 0.9992 0.9982 0.9945 0.9791 0.9580 0.9671 0.9675
2000 1.0000 1.0000 1.0000 1.0000 0.9795 0.9854 0.9838
2001 1.0000 1.0000 1.0000 1.0000 0.9780 0.9806 0.9812
2002 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2003 1.0000 1.0000 1.0000 1.0000 0.9951 0.9918 0.9926
2004 1.0000 1.0000 1.0000 1.0000 0.9985 0.9910 0.9928

est imates of efficiency, "Ii, are reasonably close to the efficiency estimates,
0:;* , which are based on a (variable) profit maximizing model where we as
sume capital is fixed and assume that there is a convex, constant returns to
scale technology. These results are similar to the results obtained by Mendoza
(1989; 111), who obtained nonparametric productivity indexes that were quite
similar to the corresponding index number measures of produ ctivity" ,

27 Mendoza (1989; 129-1 34) also obtained econometric est imates of sectoral tech
nical change for Canada and she compared th ese estimates with her nonpara
metric estima tes of sectoral technical change. Her results showed that the econo
metr ic est imates of efficiency change are simply a highly smoothed version of
the corresponding nonparametric est imates. Diewert and Wales (1992; 718) and
Fox (1996) showed that econometric estimates of efficiency change were approx
imately equal to smoothed versions of index number est imates of produ ct ivity
growth.
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7 A Comparison of the Alternative Methods for
Measuring Productive Efficiency

We summarize our comparison of alternative methods for measuring the rel
ative efficiency of a number of production units in the same industry in point
form.

• Nonparametric or DEA te chniques have an overwhelming advantage over
index number and econometric methods when only quantity data are avail
able. Index number methods cannot be implemented without a complete
set of price and quantity data. Econometric methods (i.e. , production func
tion methods) are not likely to be successful if only quantity data are
available due to limited degrees of freedorrr'" .

• The relative efficiency of any single observation will tend to decrease as
the sample size increases. All three methods have this problem.

• Nonparametric and econometric efficiency scores will tend to increase as
we make less restrictive assumptions on the underlying technology; i.e.,
a quasiconcave technology set is less restrictive than a convex technology
set which in turn is less restrictive than a constant returns to scale convex
technology set. Index number estimates of efficiency remain un changed as
we change our assumptions on the technology.

• Nonparametric and economic efficiency scores will tend to decrease as we
make stronger assumptions about the optimizing behaviour of producers;
recall Rule 2 in section 5. It is not clear what will happen to econometric
based efficiency scores under the same conditions. Since index number
methods are based on the assumption of complete optimizing behaviour
we cannot vary our assumptions on optimizing behaviour when using index
number methods.

• If we hold the number of observations in our sample const ant but disaggre
gate the data so that the number of inputs or outputs is increased, then
nonparametric efficiency scores will tend to increase.P? However , index
number efficiency scores will generally remain unaffected by increasing dis
aggregatiorr'" It is not clear what will happen using economet ric methods.

28 Diewert (1992) discusses this point at some length.
29 As we disaggregate, the objective functions of the various linear programming

problems will remain unchanged but the feasible regions for the problems become
more constrained or smaller and hence the objective function minimums for the
linear programming problems will become larger. Hence, the loss measures will
decrease or remain constant and thus efficiency will tend to increase as we disag
gregate. This point was first made by Nunamaker (1985). The profit maximization
problems (11) and (16) are not affected by disaggregation.

30 This follows from the approximate consistency in aggregation property of superla
tive index number formulae like the Fisher and Trnqvist formulae; see Diewert
(1978; 889, 895).
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• The cost of computing index number estimates of relative efficiency is ex
tremely low; the cost of the nonparametric estimates is low and the cost of
computing econometric estimates can be very high if the number of goods
exceeds 20 and flexible functional form techniques are used'".

• When complete price and quantity data are available, the nonparamet
ric estimates based on a constant returns to scale technology and profit
maximizing behaviour (subject to one input being fixed) are approximately
equal to the corresponding index number estimates. Econometric estimates
based on the same assumptions will tend to be similar to the first two sets
of estimates (but much smoother in the time series context) .

• Nonparametric techniques can be adapted to deal with situations where
input prices are available but not output prices. Econometric techniques
can also deal with this situation but index number methods cannot be
used in this situation32•

• Nonparametric methods may be severely biased due to measurement er
rors; i.e., the best or most efficient observation in a DEA study may be
best simply because some output was greatly overstated or some important
input was greatly understated. Index number methods are also subject to
measurement errors but econometric methods may be adapted to deal with
gross outliers .

Our overall conclusion is that DEA methods for measuring relative efficiency
can be used profitably in a wide variety of situations when other methods are
not practical or are impossible to use.
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