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  Abstract   In this chapter, we introduce the basic concept of the simulation-based 
optimization and illustrate its usefulness and applicability for generating the man-
power planning of airline’s cargo service call center. Because of the continuous 
increase in oil prices, and combined with many other factors, the airline industry is 
currently facing new challenges to keep its customers satisfied. One of the most 
important drivers of the customer satisfaction is the customer service. The excel-
lent customer service can give an airline company the edge over its competitors. 
Airline companies need to insure the appropriate level of staffing at their service 
call centers in order to maintain a high level of customer satisfaction with the appro-
priate level of the overall cost. With the high level of uncertainty in the customer 
demand and a number of complicated factors in the problem, it becomes necessary 
to apply the simulation-based optimization technique to help managers generate the 
efficient staffing policy for the airline’s cargo service call center. In this work, the 
technique called reinforcement learning and Markov decision process are used to 
build and solve the mathematical model to determine the appropriate staffing policy 
at the airline’s cargo service call center on the monthly basis. Simulation and 
optimization models are incorporated together so as to solve the overall problem. 
The results of the case study are thoroughly analyzed, discussed, and compared 
with the current staffing policies. All results illustrate the impressive performance 
of the recommended staffing policies over the current staffing policies.   

   8.1 Introduction 

  Simulation and optimization are clearly two of the most widely implemented oper-
ation research and management science techniques in practice. There have been 
several obstacles that limit acceptance and usefulness of simulation and optimiza-
tion techniques in the past. For example, developing simulation and optimization 
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models for the large-scale real-world systems tends to be a very complex task. In 
addition, writing the computer code to execute and solve these models can also be 
another difficult and time-consuming process. Because of the recent advance in 
computer technology and recent development of modern simulation and optimization 
software, these obstacles have been significantly reduced (if not eliminated). 
Complex simulation and optimization models can now be developed much easier 
in recent years by utilizing the modern software packages that conveniently provide 
many of the features required to develop these models. In addition, one can now run 
the simulation and optimization models of complex systems much faster as com-
puters become much more powerful. 

 Simulation refers to the broad concepts of operation research methodologies and 
techniques that imitate the behavior of the real-world system. Simulation is usually 
used to study and to improve the performance of the existing system or to design a 
new system under uncertainty without actually experimenting with the actual phys-
ical system. This feature makes simulation a very powerful operation research 
technique in practice because it is often too difficult and costly to perform physical 
studies on the actual system. Simulation is often used as evaluation tools to answer 
many important “what if” questions that decision makers may have about the 
system. For example, decision makers can use simulation to answer the question 
such as: “what would happen to the performance of the factory if the layout is 
changed?” Even though, simulation can be used to efficiently evaluate the system 
performance for a given solution, it is not capable of recommending the best solu-
tion for the complex decision-making problems by itself. 

 Optimization refers to the broad concepts of operation research methodologies 
and techniques that model the complex decision-making problems and recommend 
the best solution to these problems. Optimization is certainly one of the most pow-
erful operation research techniques and it pervades the fields of engineering, sci-
ence, and business. To apply optimization techniques, decision makers have to first 
formulate the mathematical models that capture the decision-making problems. The 
appropriate optimization techniques are then applied to find the solutions to these 
models. The general goal of optimization is to find the solution that yields the best 
value of the performance criterion under some restrictions in the decision-making 
problems. In many cases, the real-world decision-making problems cannot be fully 
represented by the mathematical models. Decision makers are often required to 
make a number of assumptions in order to construct the appropriate mathematical 
models for these problems. As a consequence of making these assumptions, the 
solution obtained by solving these mathematical models may not be fully applica-
ble for some real-world decision-making problems. 

 Because of the usefulness and applicability of these two powerful operation 
research techniques, researchers and practitioners have always been trying to com-
bine simulation and optimization techniques into an even more powerful decision-
making tool. In fact, simulation-based optimization is not a new topic in operation 
research and management science literature. Since the time that the computer sys-
tems was invented and started making an impact on practical decision-making 
processes and scientific researches, researchers and practitioners have always 
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wanted to optimize their decision-making systems by utilizing simulation models. 
However, it is only recently that remarkable success in realizing this objective has 
been seen in practice due to the dramatic increase in the power of computer systems 
over the years. Simulation-based optimization now has so much potential in almost 
every area of decision-making processes under uncertainty. 

 In Sect.  8.2 , we briefly review the literature in the areas of simulation-based 
optimization and service call center staff planning. In Sect.  8.3 , we discuss the basic 
reinforcement learning (RL) methodology. In Sect.  8.4 , the case study from the real 
airline industry is discussed and the results from the case study are thoroughly ana-
lyzed and illustrated. We then conclude the chapter and give the summary of the 
overall work in Sect.  8.5 .  

  8.2 Literature Review 

  In this section, we summarize a number of literatures related to simulation-based 
optimization techniques and service call center staff planning. 

   8.2.1  Literature Review for Simulation-Based 
Optimization and RL  

 As discussed earlier, simulation is a very powerful decision-making tool to perform 
“what if” analysis of the complex systems. Recent research discovery illustrates that 
simulation can be coupled with powerful optimization algorithms to solve complex 
real-world problems . The effectiveness of this approach depends on the quality of the 
simulation model that represents the real-world system. A high degree of understand-
ing of the system being studied is often required. The book written by Gosavi [ 1 ] 
gives a good introduction to the topics of simulation-based optimization and RL 
techniques. Kleinman et al. [ 2 ] show that reductions in the cost of the airline delay 
can be obtained by using a simulation optimization procedure to process delay cost 
measurements. They discuss how the optimization procedure called simultaneous 
perturbation stochastic approximation (SPSA) can be used to process delay cost 
measurements from air traffic simulation packages and produce an optimal gate hold-
ing strategy. Rosenberger et al. [ 3 ] developed a stochastic model for airline operations 
by using a simulation package called SIMAIR. The developed model is not modular 
and does not allow other recovery procedures to be integrated. Lee et al. [ 4 ] used their 
model to propose a modular method of approaching the problem that can deal with 
different recovery procedures from different airlines. 

 Even though there are dramatic advances in the field of operation research and 
computer science over the past decade, there are still lots of work to be done to come 
up with the efficient methodologies and software to solve the complicated real-life 
problems. Many of these problems are currently unsolvable, not because current 
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computer systems are too slow or have too little memory, but simply because it is too 
difficult to determine what the computer program should do to solve these compli-
cated problems. If the computer program could learn to solve the problems by itself, 
this would result in a great contribution in the field of operation research and compu-
ter science. RL is one such approach that makes the computer program to learn while 
trying to solve the complex decision-making problems. RL dates back to the early 
days of cybernetics and work in statistics, psychology, neuroscience, and computer 
science. In the last decade, it has rapidly attracted increasing interest in the machine 
learning and artificial intelligence communities. RL has significant potential in 
advancing parameters and policy optimization techniques. Sutton and Barto [ 5 ] and 
Bertsekas and Tsitsiklis [ 6 ] provide an excellent background reading for this field. 
Comprehensive literature surveys of pre-1996 research have been published by 
Kaelbling et al. [ 7 ] and Mahadevan [ 8 ]. Creighton and Nahavandi [ 9 ] developed a 
MATLAB toolbox to allow an RL agent to be rapidly tuned to optimize a multipart 
serial line. Aydin and Oztemel [ 10 ] successfully applied RL agents to dynamic job-
shop scheduling problems. Other agent-based work in the job scheduling field has 
also been completed by Jeong [ 11 ], Zhang and Dietterich [ 12 ], Reidmiller and 
Reidmiller [ 13 ], and Schneider et al. [ 14 ]. Several research groups have recently 
focused on RL agent applications in manufacturing. Paternina-Arboleda and Das [ 15 ] 
used a SMART algorithm on a serial production line to optimize the preventative 
maintenance in a production inventory system. Mahadevan et al. [ 16 ] used this same 
algorithm and touched upon the integration of intelligent agents using RL algorithms 
with commercial DES packages. Mahadevan and Theocharous [ 17 ] also examined a 
manufacturing application using RL technique.  

   8.2.2 Literature Review for Service Call Center Staff Planning  

 Service call centers are the common way for many companies to communicate with 
their customers. In the customer point of view, the quality of service at the service call 
center usually reflects the operational efficiency of the company. Thus, the perform-
ance of the service call center is very essential for the survival of the company within 
our highly competitive service-driven economy. One important issue that many com-
panies have to face is staff planning at their customer service call centers. At a service 
call center, hundreds of agents may have to answer to several thousands of telephone 
calls per hour. In addition, the number of calls is usually uncertain and is quite hard to 
predict from one time period to the next. The design of such an operation has to be 
based on solid scientific principles. Sze [ 18 ] discusses a queuing model of telephone 
operators at the Bell Communication Research Company, Inc. The queuing model is 
used to approximate the effects of several features such as general service times, aban-
donment, reattempts, etc. The results have proved to be quite useful in planning and 
managing the operator staffing for the service call center. Andrews and Parsons [ 19 ] 
have developed an economic-optimization model for telephone agent staffing at L. L. 
Bean. The model provides half an hour target staffing levels to an automated scheduler, 
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which generates the specific on duty tours for each individual telemarketing operator. 
Chen and Henderson [ 20 ] discuss difficulties in using historical arrival rates to deter-
mine the staffing levels for a call center with priority customers. Fukunaga et al. [ 21 ] 
describe a staff scheduling system for contact centers called Blue Pumpkin Director. 
Borst et al. [ 22 ] use an  M / M / N  queuing model to build a model for staffing large serv-
ice call centers with a large number of agents ( N ). Atlason et al. [ 23 ] use simulation 
and an iterative cutting plane method to find the staffing plan that minimizes the over-
all cost of a service system subject to a certain service level over multiple time periods. 
Atlason et al. [ 24 ] use simulation and analytic center cutting plane method to find the 
staffing plan that minimizes the overall staffing cost in an inbound call center subject 
to a certain service level. Deslauriers et al. [ 25 ] consider a blend call center with both 
inbound and outbound calls. They present a continuous time Markov chain models to 
solve the problem. Mourtada [ 26 ] considers the staffing problem at the Continental 
airline service call center and uses the RL technique to solve the problem.   

  8.3 Simulation-Based Optimization: Rl Technique 

  In our everyday life, we have to make many decisions. For each decision that we 
make, we can observe the immediate impact of that decision. It may not be a smart 
idea to use the immediate consequence of the decision as the only measurement for 
the quality of that decision. In fact, many decisions that we make have both the imme-
diate consequence and the long-term consequences. By not properly accounting for 
the relationship between immediate and long-term consequences when making the 
important decisions, the resulting decisions may not have the good overall perform-
ance. For example, in a marathon racing, a racer who runs with the full speed at the 
beginning may be the leader in the initial phase of the race (good immediate conse-
quence). Unfortunately, this may result in depleting the reserved energy very quickly 
and finally may result in a very poor finish (poor overall performance). 

 In this section, we first discuss the theoretical concepts and the general mathematical 
notations, formulations, and solution methodology of the sequential decision-making 
problems under uncertainty such that both immediate and long-term consequences 
have to be considered when making the decision. We will also discuss the difficul-
ties in formulating and solving these models for the real-world decision-making 
problems. We then introduce the general concepts of RL, which properly combines 
simulation and optimization techniques to solve these complex decision-making 
problems under uncertainty. 

   8.3.1  Sequential Decision-Making System and Markov 
Decision Process  

 Figure  8.1  illustrates the general framework of the sequential decision-making system. 
At a particular point in time before making the decision, hereafter called  decision 
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stage , the decision maker has to carefully observe the information about the 
surrounding environment. This information will be hereafter called  system state . 
Based on the system state information, the decision maker selects a possible deci-
sion, hereafter called  action . After the appropriate action is chosen, decision maker 
receives the immediate consequence, hereafter called  immediate reward , and the 
system stochastically evolves with some probability distributions, hereafter called 
 transition probability , to a new system state at the next decision stage. At this 
decision stage, the decision maker again faces a similar decision-making problem.  

 Let us now define the general mathematical notations for the sequential deci-
sion-making problems. Let  T  denote the set of all possible decision stages. Let  S  
denote the set of all possible system states. If at a particular decision stage, the 
decision maker observes that the system is in the state   s ∈ S  , he or she may select 
an action  a  from the set of all possible actions in the system state  s ,  A   

s
  . Let   A = 

È sÎsA
s
   denote the set of all possible actions. As the result of selecting an action 

  a Î A
s
   in the system state   s ∈ S   at the decision stage   t ∈ T  , the decision maker 

receives an immediate reward of   r
t
 (s,a)   and the system state at the next decision 

stage is determined by the transition probability   p
t
(·|s,a)  . In this section, we assume 

that the set  S  and  A   
s
   and the values of   r

t
(s,a)   and   p

t
 (·|s,a)   do not vary with different 

decision stages. Because of these assumptions, we will use the notations   r(s,a)   and 
  p(·\s,a)   instead of   r

t
 (s,a)   and   p

t
 (·|s,a)   respectively for the rest of this chapter. We 

also assume that sets  S  and  A   
s
   are finite and the reward   r(s,a)   is bounded for all 

system states and actions. The collection of objects   [T,S,A
s
, p(·|s,a), r(s,a)]   is 

referred to as a  Markov decision process  (MDP). To formulate the mathematical 
models for sequential decision-making problems under uncertainty, decision mak-
ers have to properly define this collection of objects. The book written by Puterman 
[ 27 ] summarizes the detailed methodologies and theoretical concepts about MDP. 

 The solutions of the sequential decision-making problems under uncertainty are 
represented as  policies . A  policy  normally refers to the set of selected actions for 
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  Fig. 8.1    General framework of sequential decision-making systems       
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each state of the system. Without loss of generality, we assume that the decision 
makers are searching for the policy that maximizes the expected value of the 
overall reward of the system. Let   v(s)   denote the maximum expected value of the overall 
reward of the system when the system is initially in the system state  s . Based on 
these notations, we can solve for the optimal policy for a given sequential decision-
making problem by solving the following set of equations, hereafter called  opti-
mality equations :

 

v s r s a s a j s
a

j
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⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∀∑∈ ∈

⏐ ∈
A

l n
s

p j S
S

(

 

  (8.1)

    

where   l Œ (0,1)   represents the discounting factor per each decision stage for the 
future rewards. If the optimality equations can be solved, the optimal policy for 
each system state  s  is 
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 Once all elements of MDP are identified and the optimality equations are con-
structed, we can apply the following algorithm called value iteration algorithm to 
find an   e   -optimal policy and the approximated value of   v(s)∀sŒS  . 

  8.3.1.1 Value Iteration Algorithm 

     Step 1:  Select arbitrary real values for   v0(s)∀sŒS  , specify   e   > 0, and set  n  = 0.  
   Step 2:  For each   sŒS  , compute   vn + 1(s)   by 

  v (n

a
j
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   Step 3:  If   ||Vn+1 –Vn ||<e (1–l)/2l  , go to step 4. Otherwise increase the value of  n  
by 1 and return to step 2. Note that   Vn    is a vector of size ⏐ S ½ containing   vn (s)∀s∈S   
as its elements.  

   Step 4:  For each   s∈S  , choose
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and stop.    
 After the algorithm terminates, the resulting values of   vn + 1 (s) and a* (s) ∀s∈S   

represent the optimal expected values of the overall reward and the   e   -optimal 
policy of the considered problem, respectively. 

 Unfortunately, formulating and solving the real-world decision-making 
problems as a MDP is not an easy task. In many cases, obtaining the complete 
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information on   r(s,a)   and   p(·⏐s,a)   is a very difficult and time-consuming process. 
This process may involve a number of complex mathematical terms consisting of 
the joint probability distribution of many random variables. Furthermore, many 
unrealistic assumptions may have to be made in the process of obtaining this infor-
mation. This phenomenon is hereafter called the  curse of modeling  of the MDP. If 
we can solve the sequential decision-making problems with the efficient methodol-
ogy that does not require the exact close-form formulation of   r(s,a)   and   p(·⏐s,a)  , 
this methodology would be really attractive and would really be applicable to solve 
many complex real-world problems. In fact, RL is one of the methodologies that 
have the promising potential to perform this task. In the following subsection, 
we will discuss the RL technique and how to apply the technique to solve the 
complex sequential decision-making problems under uncertainty.   

   8.3.2 RL Technique  

 Because MDP is seriously cursed by the curse of modeling for some real-world 
decision-making problems, the methodology such as RL, which does not require 
the close-form formulations of rewards and transition probabilities, is of our interest 
in this subsection. It is worth noting that unlike the solution obtained from MDP, 
which is guaranteed to be optimal, the resulting solution obtained from the RL may 
only be just suboptimal. RL nicely combines the simulation technique with the 
solution methodology of MDP and normally produces a high quality solution to 
the problem. 

 The key idea of RL is to approximately solve the optimality equations, which 
may not be represented in the close-form formulations by utilizing the simulation 
models. Let us introduce the notation   Q(s,a)∀s∈ S, ∀a∈ A

s
   such that 

   

Q s a r s a s a a
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where   r(s,a,j)   represents the immediate reward by making the action  a  in the system 
state  s  and the next system state is  j . By using this notation of   Q(s,a)  , the optimality 
equations can be rewritten as

 n
A
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s
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 These equations imply that if we can calculate the value of   Q(s,a) ∀s∈ S, ∀a∈ 
A

s
  , we can easily obtain the value of   v(s) and a* (s) ∀s∈ S  , which are the decided 

solutions of the problem. We will now concentrate on the methodology for 



8 Simulation-Based Optimization: A Case Study for Airline’s Cargo Service Call Center 161

approximating the value of   Q(s,a) ∀s∈ S, ∀a∈ A
s
   . By using the definition of 

  Q(s,a)  , we can obtain the following equations:

 Q s a p j Q j b s S a
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 As this equation indicates, calculating the value of   Q(s,a) ∀s∈ S, ∀a∈ A
s
   

involves the expectation operation, which can be obtained by using the simulation 
model and the result from the following Robbins-Monro algorithm. The Robbins-
Monro algorithm is the algorithm developed in 1951 by Robbins and Monro [ 28 ] 
for estimating the population mean of a random variable from the sample. Let  X  
denote the considered random variable and let  x   i   denote the value of the  i th inde-
pendent sample of  X . Let   Xn   denote the value of the sample average of  x   

i
   from  i  = 1 

to  n . From the strong law of large number, we can obtain the following relationship 
between   E(X)  ,  X   n  , and  x   

i
  :

 

E X n

X

n i
i

n

n

n

( ) lim /

lim

=
⎛
⎝⎜

⎞
⎠⎟

= ( )
→

=
∑∞

→∞

x
1

(8.9)
     

 The Robbins-Monro algorithm utilizes the relationship between   Xn   and   Xn + 1   and 
suggests the iterative procedure for calculating the value of   E(X)   . The relationship 
between   Xn   and   Xn + 1   can easily be derived as follows where   a n = 1/n  :
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 By using this relationship, we can iteratively calculate the value of  X  1 ,  X  2 , …,  X   N   
after obtaining the sample information about the random variable  X  and can use the 
value of  X   N   as the approximation to  E ( X ) if  N  is a significantly large number. It is 
worth mentioning that the sample information of the random variable can be gener-
ated by using the simulation model and this is exactly the idea of RL. RL uses the 
basic idea of Robbins-Monro algorithm in calculating the expected value of the 
random variable to iteratively calculate the value of   Q(s,a) ∀s∈ S, ∀a∈ A

s
   and 

finally obtain the values of   v(s) and a* (s) ∀s∈ S   . The algorithm iteratively 
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calculates the value of   Q(s,a) ∀s∈ S, ∀a∈ A
s
   by generating a series of numbers   Q1 

(s,a),Q2 (s,a),...,QN (s,a)   by utilizing the following relationship:

   Q s a Q s a r s a j Q j bn n n n

b A
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⎞
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 This calculation will be executed each time the action  a  is made in the system 
state  s  and the system evolves into the system state  j . This relationship allows us to 
calculate the value of   Q(s,a) ∀s∈ S, ∀a∈ A

s
   without knowing the close-form 

formulation of rewards and transition probabilities because the value of   r(s,a,j)   can 
be obtained from the simulation model. By utilizing this idea, the basic procedure 
of RL can be summarized as follows. 

  8.3.2.1 Basic RL Procedure for Discounted MDP 

     Step 1:  Initialize the values of   Q(s,a) = 0 and N(s,a) = 0 ∀s∈ S, ∀a∈ A
s
   . 

Set  i  = 0 and  N  = maximum number of iterations (large integer number).  
   Step 2:  Let  s  denote the current state of the system (from the simulation 
model). Randomly select an action from set  A   

s
  , each with equal probability. 

Let  a  denote the selected action.  
   Step 3:  By selecting this action  a  in the system state  s , the simulation model 
will be used to determine the next state of the system in the following deci-
sion stage. Let  j  denote this next system state. In addition, the simulation 
model will also be used to determine the value of   r(s,a,j)      

 Set

  N(s,a) ← N(s,a) + 1, i ← i + 1, and a = 1/N(s,a)  . 

     Step 4:  Update the value of   Q(s,a)   by using the following relationship.

  Q s a Q s a Q j b( , ) ( ) ( , ) ( ( , )← − + { }⎛
⎝⎜

⎞
⎠⎟∈

1 a a) l r(s,a, j)+
b Aj

max     

   Step 5:  If  i  <N , update the current system state  s  =  j  and return back to step 
2. Otherwise proceed to step 6.  
   Step 6:  Calculate and return the following values of   v(s) and a* (s) ∀s∈ S   :

  v s Q s a s S and a s Q s a s S
a A a As s

( ) max ( , ) ( ) arg max ( , )*= { } ∀ ∈ = { } ∀ ∈
∈ ∈

      

 Figure  8.2  illustrates the general framework of this RL algorithm.  
 Note that more sophisticated methods of selecting the action can be imple-

mented to improve the overall performance of the algorithm. In this subsection, we 
only present the basic idea of the algorithm that randomly selects an action for each 
iteration. In the following section, we apply the RL technique to the staff planning 
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problem of the airline’s service call center. All results illustrate the very promising 
potential of the algorithm to solve this complex real-world problem.    

  8.4 Case Study on Airline’s Cargo Service Call Center Planning 

  In today’s business, many companies are aggressively racing to improve their 
customer service to increase their customer satisfaction in order to survive in the 
current highly competitive business environment. The Airline industry is no excep-
tion. Airline companies are constantly looking for new and innovative ways to keep 
their customers satisfied and to stay in the market. To do so, airline companies must 
ensure a high level of customer service 24 h a day, 7 days a week. This requires 
hard work and dedication from their employees at every level. Although employees 
do not lack any dedication, it is the correct staffing policy that poses a challenge for 
the managers at the airline’s service call center. Efficient staff planning could make 
all the difference between success and failure in managing the customer service call 
center. Staffing managers are facing the challenge of deciding on the number 
of customer service agents required for each month to properly answer incoming 
customer calls in order to meet the certain service level with the minimum overall 
cost possible. 

 In this section, we apply the RL technique to the staff planning problems by 
using the real data obtained from one of the largest airline companies in USA. One 
of this airline’s service centers is the Cargo Service Center (CSC). The CSC pro-
vides cargo booking and tracking services. The CSC handles 10 different types of 
customer calls that are divided as follows: (1) international (general service calls); 
(2) animal; (3) elite; (4) mortuary; (5) globalink; (6) SAS; (7) service recovery; (8) 
JFK; (9) Spanish; and (10) AMS. 

 In this chapter, we will concentrate our attention only on four major types of 
calls at the CSC, namely international, animal, elite, and mortuary, which comprise 
over 90% of the overall number of calls. The objective of this work is to decide 
on the number of agents required for each month at each of the four different types 
of customer calls. It is necessary to mention that both international and animal calls 
at CSC are currently handled by the same group of agents. This means that the data for 
both international and animal calls can be consolidated to create one set of data 
for this study. The airline company would like to set the service level for these four 

SIMULATION
MODEL

Decision Making
Model 

Next system
state j and r(s,a,j)

The selected action
a in the current state s

  Fig. 8.2    General framework of the reinforcement learning algorithm       
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different types of customer calls as follows. For animal and international calls, 80% 
of all calls should be answered within 20 s of their arrival. For elite calls, 80% of 
all calls should be answered within 20 s of their arrivals. For mortuary calls, 70% 
of all calls should be answered within 20 s of their arrivals. To meet these service-
level requirements, the number of agents on duty must be carefully decided and 
allocated. To gain better understanding of the system, multiple observational visits 
are made to the CSC. Observations included listening to the four different types of 
calls and observing their processes. The managers of the CSC are also of great help 
for us to understand the overall system. After acquiring enough information about 
the overall system and its processes, the system is then translated into a high-level 
flowchart, which is eventually transformed into the detailed simulation model. As 
a call enters the system, it will be classified as animal, international (GS), elite, or 
mortuary call. The call will then be answered immediately if there is at least one 
available agent at the time of its arrival, or else it will wait in the split specific 
queue. Each call split has its own queue and its own 1–800 number. The airline 
company has a policy that if a call arrives in its specific queue and there are seven 
calls already waiting in that queue, then the call will be rolled over to a different 
available queue. This is to keep customers’ wait times at minimum and ensure that 
all agents are properly utilized, since some call splits have lower volumes than the 
others. The call will then wait in the next queue, given that it has less than seven 
calls waiting in it already, until the next agent becomes available and the call will 
be answered. Finally, once the call has been answered, it exits the system. If all 
queues are full, the incoming calls will not be answered. Figure  8.3  illustrates the 

  Fig. 8.3    Flowchart of customer calls routing at the CSC       
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flowchart of the customer call routing at the CSC where the notation NQ denotes 
the number of calls waiting in the queue.  

   8.4.1  Data Collection and Analysis for Constructing 
the Simulation Model  

 Accurate data analysis is the key fundamental in developing any simulation model. 
The performance of the simulation model can only be as good as the accuracy of 
the input data. With that in mind, the data collection and analysis is one of the most 
important tasks of this research. For this work, real data for an entire year are used 
to construct the simulation model of the service call center. The data in this study 
are obtained by using the historical information from the airline company. The air-
line company records these data for the different call splits and stores them in the 
company database. Note that the data used for this research are the year 2005 data. 
The data used in constructing the simulation model include (1) the interarrival time 
for each type of calls on each day of each month for the entire year and (2) the 
service time of each type of calls on each day of each month for the entire year. 

 Once the data had been collected and analyzed, appropriate probability distribu-
tions of these parameters are determined by utilizing the ARENA 10.0 input ana-
lyzer [ 29 ]. Input analyzer is a statistical analysis program included in the simulation 
software package called ARENA. This program takes a set of raw data as its input 
and generates a list of probability distributions that best fits the data. Figure  8.4  
illustrates an example output of ARENA input analyzer. Once all required probabil-
ity distributions of the model parameters are obtained, the detailed simulation 
model of the entire system is then developed by utilizing the simulation software 
package ARENA 10.0.   

  Fig. 8.4    An example output of ARENA input analyzer       
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   8.4.2 RL Model for the Service Call Center Problems  

 After the simulation model of the service call center has been developed, some 
components of MDP have to be determined in order to implement the RL tech-
nique. These components are (1) the state space ( S ); (2) the action space for each 
possible system state  s  ( A   

s
  ); (3) the reward structure; and (4) the decision stage ( T ). 

In this problem, the state information consists of the number of calls from the previ-
ous month and the current calendar month. For example, in the month of May, one 
of the possible states is  s  = (12,000 calls, May) if the number of calls in April was 
12,000. After the system state information is observed, the possible action is basi-
cally the number of agents available to work in the current month. The reward 
structure of this problem is the numerical quantity that indicates how well a certain 
policy performs under certain circumstances. Deciding on the structure of the 
reward is somewhat challenging when modeling a service call center. The reward 
has to be measured in terms of the number of answered calls, the number of 
dropped calls, the number of calls with long queue waiting time, the hiring and fir-
ing costs, and the number of agents working at the service call center. In this model, 
the following formulation is used to calculate the reward value of making a certain 
action in a particular state.  

  Reward  =  [(profit per call) × (number of answered calls)] - [(monthly salary 
per agents) × (number of agents)]  -  [(penalty) × (number of calls that do 

not meet the required service level)]  -  [(Hiring cost per agent) × (the number 
of new agents)]  -  [(Firing cost per agent × the number of agents fired)]   

 This reward value can easily be obtained from the simulation model. Finally, the 
decision stage is the time period between each pair of the decision-making 
processes. In this work, the decision stage is the beginning of each month when the 
decision maker is required to decide on the number of working agents for each type 
of calls. Once all these components are identified, the RL technique is then applied 
to solve the considered decision problem. The simulation and decision-making 
models of the RL are executed on a Windows XP-based Pentium(R) 4 CPU 3.60 
GHz personal computer with 4.00 GB RAM using Arena 10.0 and Visual Basic for 
Application (VBA) programming language. MS-Excel is used for the case study 
input and output database. Table  8.1  summarizes the recommended staffing policy 
for international or animal type of calls.     

 Table 8.1    Recommended staffing policy for the international or animal call split  

 Month (s)  No. of last month calls  No. of agents 

 February  Any value  31 agents 
 January, March, April, June, September  Any value  33 agents 
 May, July, August  Any value  35 agents 
 October, November, December  Any value  37 agents 
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 Tables  8.2  and  8.3  illustrate the recommended staffing policies for the elite call 
split and the mortuary call split, respectively.         

 The current staffing policy at the CSC is to use 34.5, 7, and 8 full-time equivalents 
(FTEs) working on answering the international or animal, elite, and mortuary types 
of calls, respectively. An FTE consists of either a full-time employee or two part 
time employees. In the following subsection, we will compare the performance 
of these recommended solutions with the performance of the current policy used by 
the airline company. All results illustrate the improvements in the system perform-
ances resulting form the recommended solutions over the current policy.  

   8.4.3 Case Study Result and Performance Comparison  

 In this subsection, our goal is to statistically compare the performances of the policies 
recommended by the RL model and the performances of the current policy utilized 
by the airline company (original). To do so, another simulation model is developed 
to read a specific staffing policy as the input. This simulation model will then evaluate 
the input policy and will calculate a number of important performance measures of 

 Table 8.2    Recommended staffing policy for the elite call split  

 Month (s)  No. of last month calls  No. of agents 

 February, March, April, June, October, 
November, December 

 Any value  7 agents 

 January, August  Any value  8 agents 
 May, September  <4,700 calls  7 agents 
 May, September  ³4,700 calls  8 agents 
 July  <5,100 calls  8 agents 
 July  ³5,100 calls  9 agents 

 Table 8.3    Recommended staffing policy for the mortuary call split  

 Month (s)  No. of last month calls  No. of agents 

 April, May  All value  4 agents 
 June, August, September, October  All value  5 agents 
 January  <2,700  4 agents 
 January  ³2,700  5 agents 
 February  <2,400  4 agents 
 February  ³2,400  5 agents 
 March  <1,900  4 agents 
 March  ³1,900  5 agents 
 July  <2,250  4 agents 
 July  ³2,250  5 agents 
 November  <2,200  5 agents 
 November  ³2,200  6 agents 
 December  <2,450  5 agents 
 December  ³2,450  6 agents 
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the system as the output. These results of each policy are analyzed and statistically 
compared. In this research, the following characteristics are used to measure the 
performance of the service call center: (1) the average number of calls that do not 
meet the required service level; (2) the average number of calls that are dropped; 
(3) the average utilization of agents; (4) the average waiting time in queue of each 
call; and (5) the overall cost per month of the system. 

 Based on the results obtained from 100 simulation years run, the values of these 
characteristics are calculated and recorded for each policy. After obtaining the values 
of these characteristics, statistical hypothesis testing procedures are performed in 
order to analyze and compare the performances of these two policies. These statisti-
cal hypotheses are summarized in the Tables  8.4  and  8.5 . The mean values of these 
characteristics generated by the simulation model are compared between these two 
policies by utilizing the standard  t -test. Note that the  t -test is very robust for testing 
these hypotheses even if the data are not normally distributed when the sample sizes 
are large, which is the case for the examined data sets in this research.         

 If the null hypothesis contained in Table  8.4  is rejected for a specific perform-
ance measure, then we can conclude that the RL solution performs better in that 
characteristic. If the null hypothesis contained in Table  8.5  is rejected for a specific 
performance measure, we can conclude that the solution generated by the current 
plan performs better in that characteristic. If we fail to reject the hypotheses in both 
Tables 8.4 and 8.5 for a specific performance measure, we can conclude that there is 
no statistical difference between the two policies in that characteristic. Before 
applying the  t -test to test these hypotheses,  F -test is first used to check for the equality 
of variances between the two data sets: The null hypothesis (HO) of the F-test states 
that the variances of these two data sets are equal, while the alternative hypothesis 
(Ha) of the F-test states that the variances of these two data sets are different . The 
results from the  F -test will determine the type of  t -test to be used. The detailed 
information about statistical hypothesis testing with the  t -test and the  F -test can 
be studied in the book written by Johnson [ 30 ]. 

 Table 8.4    The first set of statistical hypotheses for performance comparison  

 Characteristic   H  0    H  a  

 Mean number of bad calls  Means are equal  Original > RL 
 Mean number of dropped calls  Means are equal  Original > RL 
 Mean utilization of agents  Means are equal  RL > Original 
 Mean queue time  Means are equal  Original > RL 
 Mean monthly cost  Means are equal  Original > RL 

 Table 8.5    The second set of statistical hypotheses for performance comparison  

 Characteristic   H  0    H  a  

 Mean number of bad calls  Means are equal  Original < RL 
 Mean number of dropped calls  Means are equal  Original < RL 
 Mean utilization of agents  Means are equal  RL < Original 
 Mean queue time  Means are equal  Original < RL 
 Mean monthly cost  Means are equal  Original < RL 
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 After performing the hypothesis testing procedures with the value of the type I 
error probability of 0.05, the results are obtained and summarized for each call type 
(animal or GS, elite, and mortuary). Tables  8.6 – 8.8  contain the summary informa-
tion on the test results for animal or GS, elite, and mortuary call types, respectively, 
for each month and for the overall year. The following notations are used in these 
tables for ease in interpreting these results. 

 X: This notation indicates that the mean of the RL model was statistically sig-
nificantly worse than the mean of the original model. 

 O: This notation indicates that the mean of the RL model was statistically sig-
nificantly better than the mean of the original model.             

 Table 8.6    Summary of the performance comparison for animal or GS call type  

 Animal or GS type calls 

    No. of 
bad calls 

 Average 
queue time 

 No. of 
dropped calls 

 Average 
utilization 

 Average 
monthly cost 

 January  D  D  D  D  O 
 February  X  X  D  O  O 
 March  D  D  D  O  O 
 April  D  D   D  O  O 
 May  D  D   O  X   D 
 June  D  D  D  O  O 
 July  D  D  O  X   D 
 August  D  D  O  X   D 
 September  D   D  D  D  O 
 October  O  O  O  X   D 
 November  O  O  O  X   D 
 December  O  O  O  X  O 
 Overall  D  D   O  D  O 

 Table 8.7    Summary of the performance comparison for elite call type  

 Elite type calls 

    No. of 
bad calls 

 Average 
queue time 

 No. of 
dropped calls 

 Average 
utilization 

 Average 
monthly cost 

 January  O  O  O  X  O 
 February  D  D  D   D   D  
 March  D  D  D   D   D  
 April  D  D  D   D   D  
 May  D  D  D   X  D  
 June  D  D  D   D   D  
 July  O  O  O  X  O 
 August  O  O  O  X  O 
 September  D  D   D   D   D  
 October  D  D   D   D   D  
 November  D  D   D   D   D  
 December  D  D   D   D   D  
 Overall  O  O  D   D   D  
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   D   : This notation indicates that there is no statistically significant difference 
between the mean of the RL model and the mean of the original model. 

 Keeping in mind the results from the overall performance comparisons, we can 
come to the following conclusions. For the animal or GS call type, the staffing pol-
icy generated by the RL technique statistically outperforms the current staffing 
policy in the average number of dropped calls and the average monthly cost criteria. 
There are no statistically significant differences between the performances of these 
two policies for other criteria. For the elite call type, the staffing policy generated 
by the RL technique statistically outperforms the current staffing policy in the aver-
age number of bad calls and the average waiting time in queue criteria. There are 
no statistically significant differences between the performances of these two poli-
cies for other criteria. For the mortuary call type, the staffing policy generated by 
the RL technique statistically outperforms the current staffing policy in the average 
number of bad calls, the average waiting time in queue, and the average agent utili-
zation criteria. There are no statistically significant differences between the per-
formances of these two policies for other criteria.   

  8.5 Summary 

  Simulation and optimization are clearly two of the most powerful fields in the study 
of operation research and management science. Combining these two techniques 
together is definitely a promising concept for solving the real-world complex decision-
making problems. In this chapter, the basic concepts of the simulation-based opti-
mization technique, namely the RL, are explained and discussed in detail. We then 
apply the RL technique to determine the staffing policy for the airline service call 

 Table 8.8    Summary of the performance comparison for mortuary call type  

 Mortuary type calls 

    No. of 
bad calls 

 Average 
queue time 

 No. of 
dropped calls 

 Average 
utilization 

 Average 
monthly cost 

 January  O  D   X  O  D  
 February  D   D   D   O  D  
 March  O  D   D   O  D  
 April  D   D   D   O  D  
 May  O  D   D   O  D  
 June  D   D   D   D   D  
 July  O  D   X  O  D  
 August  D   D   D   D   D  
 September  D   D   D   D   D  
 October  D   D   D   D   D  
 November  O  O  O  X  D  
 December  O  O  O  X  D  
 Overall  O  O  D   O  D  
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center. Statistical hypothesis testing procedures are used to perform the per-
formance comparisons between the recommended policy and the current policy. All 
results illustrate that the policy generated by the RL is superior to the current policy 
in a number of performance measures. This illustrates the promising potential of 
the simulation-based optimization techniques in generating the high quality solu-
tion for the complex decision-making problems in practice.   
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