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  Abstract    Modular design aims to subdivide a complex product into smaller parts 
(modules) that are easily used interchangeably. Examples of modularly designed 
items are vehicles, computers, and high-rise buildings. Modular design is an attempt 
at getting both the gains of standardization (high volume normally equals low 
manufacturing costs) and the gains of customization. The concept of modularity 
can provide the necessary foundation for organizations to design products that can 
respond rapidly to market needs and allow the changes in product design to happen 
in a cost-effective manner. Modularity can be applied to the design  processes to 
build modular products and modular manufacturing processes.   

   10.1 Modularity 

  Modularity aims to identify the independent, standardized, or interchangeable units 
to satisfy a variety of functions. Modularity can be applied in the areas of product 
design, design problems, production systems, or all three. It is preferable to use 
modular design in all three types at the same time; this can be done by using 
a modular design process to design modular products and to produce them using a 
modular production system or modular manufacturing processes. 

   10.1.1 Modularity in Products  

 Modular products are products that fulfill various overall functions through the 
combination of distinct building blocks or modules, in the sense that the overall 
function performed by the product can be divided into subfunctions implemented 
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by different modules or components [ 13 ]. Product modularity has been analyzed as 
a form of product architecture that allows a one-to-one correspondence between 
physical structures and functional structures, as opposed to integral architectures 
where the functional elements map to a single or very small number of physical 
elements [ 15 ]. Hand tools are considered a good example of integral products, 
where several functions are mapped to a single physical structure, that is, the tool 
itself. A personal computer exemplifies a modular product in which a wide range 
of functions are fulfilled by utilizing a wide range of interchangeable physical 
structures such as hard drives, CD-ROMs, and motherboards. 

 The term modularity in products is used to describe the use of common units to 
create product variants. That is, modularity in products is based on the idea that a 
complex product could be decomposed into a set of independent components. This 
decomposition allows the standardization of components and the creation of product 
variants. Components used to create modular products have functional, spatial, and 
other interface characteristics that fall within the range of variations allowed by the 
specified standardized interfaces of a modular product. Mixing and matching different 
modular components creates a large number of modular products, where each product 
would have a distinct combination of the modular components,  resulting in the  creation 
of products with distinctive functionalities, features, and performance levels.  

   10.1.2 Modularity in Design Problems  

 Most design problems can be broken down into a set of easy-to-manage simpler 
subproblems. Sometimes complex problems are reduced into easier subproblems, 
where a small change in the solution of one subproblem can lead to a change in 
other subproblems’ solutions. This means that the decomposition has resulted in 
functionally dependent subproblems. Modularity focuses on decomposing the over-
all problem into functionally independent subproblems, in which interaction or 
interdependence between subproblems is minimized. Thus, a change in the solution 
of one problem may lead to a minor modification in other problems, or it may have 
no effect on other subproblems.  

   10.1.3 Modularity in Production Systems  

 Modularity in production systems aims at building production systems from stand-
ardized modular machines. The fact that a wide diversity of production require-
ments exists has led to the introduction of a variety of production machinery and a 
lack of agreement on what the building blocks should be. This means that there are 
no standards for modular machinery. In order to build a modular production system, 
production machinery must be classified into functional groups from which a 
 selection of a modular production system can be made to respond to different 
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production requirements. Rogers [ 11 ] classifies production machinery into four 
basic groups of “primitive” production elements. These are process machine primi-
tives, motion units, modular fixtures, and configurable control units. It is argued 
that if a selection is made from these four categories, it will be possible to build a 
diverse range of efficient, automated, and integrated production systems.   

  10.2 Modular Systems Characteristics 

    10.2.1 Modules Types  

 Modular systems are built from independent units or modules. Two major catego-
ries of modules are identified, namely,  function modules  and  production modules  
[ 12 ]. Function modules are designed to accomplish technical functions independ-
ently or in combination with other modules. Production modules are designed on 
the basis of production considerations alone and are independent of their function. 
Function modules can be classified on the basis of various types of functions reoc-
curring in a modular system that can be combined as subfunctions to implement the 
different overall function (Fig.  10.1 ). These functions are basic, auxiliary, special, 
adaptive, and customer specific [ 9 ]. 

  •   Basic Functions.  These are functions that can fulfill the overall function simply 
or in combination with other functions. Basic functions are not variable in prin-
ciple and they are implemented in  basic modules .  
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  Fig. 10.1    Function and module types       



210 S.M. Salhieh, A.K. Kamrani

 •   Auxiliary Functions.  These are implemented using auxiliary modules in 
 accordance with basic modules.  

 •   Special Functions.  These are task-specific subfunctions that may not appear in 
all overall function variants and are implemented by  special modules .  

 •   Adaptive Functions.  These are the functions that permit the adaptation of a part 
or a system to other products or systems. They are implemented by  adaptive 
modules  that allow for unpredictable circumstances.  

 •   Customer-Specific Functions.  These are functions that are not provided by the 
modular system, and they are implemented by  non-modules  which must be 
designed individually. If they are used, the result is a mixed system that  combines 
modules and non-modules.     

   10.2.2 Modularity Types  

 Product modularity depends on the similarity between the physical and the 
 functional architecture of a design, and on the minimization  of the incidental 
 interactions between the physical components that comprise the modules. The 
nature of the interactions between the modules has been used to categorize product 
modularity into two major categories of modularity [ 6 ,  15 ,  16 ]:

  •  Function-based modularity is used to partition the functionalities of a product 
and describe how these functions are distributed.  

 •  Manufacturing-based modularity relates to the manufacturing processes and the 
assembly operations associated with a product.    

  10.2.2.1 Function-Based Modularity 

 Four classifications of function-based modularity are defined as follows.

   1 .     Component-Swapping Modularity:  Different product variants belonging to the 
same product family are created by combining two or more alternative types of 
components with the same basic component or product. Figure  10.2  illustrates the 
swapping modularity in which two alternative components (the small rectangular 
block and the triangular) are combined with the same basic component (the big 
block), forming product variants belonging to the same product family.  

 An example of component-swapping modularity in the computer industry is 
illustrated by matching different types of CD-ROMs, monitors, and keyboards 
with the same motherboard. This allows for different models of computers to be 
implemented.   

  2.     Component-Sharing Modularity : In this category, different product variants 
belonging to different product families are created by combining different 
 modules sharing the same basic component. Component-sharing is considered 
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the complementary case to component-swapping. Component-sharing and 
component-swapping modularity are identical except that swapping involves the 
same basic product using different components and sharing involves different 
basic products using the same component. The difference between them lies in 
how the basic product and components are defined in a particular situation. 
Figure  10.3  shows two different basic components (the block and the triangular) 
sharing the same component (the circle). Component-sharing modularity in the 
computer industry is represented by the use of the same power cord, monitor, or 
microprocessor in different product (computer) families.    

  3 .     Fabricate-to-Fit Modularity:  One or more standard components are used with 
one or more infinitely variable additional components. Variation is usually asso-
ciated with physical dimensions that can be modified. Figure  10.4  illustrates a 
component with variable length (the block) that can be combined with two 
standard components (the triangular) forming product variants. A common 
example of this kind of modularity is cable assemblies in which two standard 
connectors can be used with an arbitrary length of cable.    

  4 .     Bus Modularity:  This type of modularity occurs when a module can be matched 
with any number of basic components. Bus modularity allows the number and 
location of basic components in a product to vary. Bus modularity is illustrated 
in Fig.  10.5 . An example of bus modularity is a computer where different input 
and output units, in addition to different types of mice, RAMs, and hard drives, 
can exist and vary in both their location and their number.       

  10.2.2.2 Manufacturing-Based Modularity 

 Four manufacturing-based modularity classes can be defined as follows.

   1.    OEM (Original Equipment Manufacturer) modules are group of components that 
are grouped together because a supplier can provide them at a less expense than if 
they were to be developed in-house. For example, tires in cars are OEM modules.   

  2.    Assembly modules are groups of components that are grouped together because 
they solve related functions and are bundled together to ease assembly. For 

  Fig. 10.2    Component-swapping modularity       



  Fig. 10.4    Fabricate-to-fit modularity       

  Fig. 10.3    Component-sharing modularity       
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example, the dial buttons and the associated electronic circuit in a telephone are 
all bundled together as a subassembly when making telephones.   

  3.    Sizable modules are components that are exactly the same except for their physi-
cal scale. Sizable modules are manufactured using the same exact operations and 
machine. Lawn mower blades are an example of sizeable modules.   

  4.    Conceptual modules are modules that deliver the same functions but have different 
physical embodiments. Conceptual modules can lead to a significant change in the 
manufacturing operations without affecting the functionality of the product. For 
example, designers may use a gearbox to reduce the speed delivered from a motor 
to a pump, or they could use a chain-sprocket system to deliver the same function.        

  10.3 Modular Systems Development 

  In general, modular systems can be developed by decomposing a system into its 
basic functional elements, mapping these elements into basic physical components, 
then integrating the basic components into a modular system capable of achieving 
the intended functions. This approach faces two important challenges [ 10 ]: (1) 
Decomposition: Finding the most suitable set of subproblems may be difficult. (2) 
Integration: Combining the separate subsystems into an overall solution may also 
be difficult. To fully comprehend the underlying foundations of modular systems 
development, decomposition categories are further discussed. 

   10.3.1 Decomposition Categories  

 System decomposition is expected to result in two benefits [ 10 ]: (1) Simplification: 
Decomposing large systems into smaller ones will lead to a reduction in the size of 

  Fig. 10.5    Bus modularity       
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the problem that needs to be solved, which will make it easier to manage. (2) Speed: 
Solving smaller problems concurrently (parallel solutions) will reduce the time 
needed to solve the overall problem. Decomposition methods can be categorized 
according to the area into which they are being applied, namely, product decompo-
sition, problem decomposition, and process decomposition [ 8 ]. 

  10.3.1.1 Product Decomposition 

 Product decomposition can be performed at various stages of the design process and 
can be defined as the process of breaking the product down into physical  elements 
from which a complete description of the product can be obtained. Two approaches are 
used in product decomposition,  product modularity  and  structural decomposition .

   1 .     Product Modularity  

 Product modularity is the identification of independent physical components that 
can be designed concurrently or replaced by predesigned components that have 
similar functional and physical characteristics. Product modularity relies on the 
lack of dependency between the physical components. The computer industry 
provides an excellent example of modular products, where the major compo-
nents of the computer are manufactured by many different suppliers allowing the 
manufacturers of microprocessors to choose from a wide library of products.   

  2 .     Structural Decomposition  

 The system is decomposed into subsystems, and those are further decomposed 
into components leading to products, assemblies, subassemblies, and parts at the 
detailed design stage. The decomposition is represented in a hierarchy structure 
that captures the dependencies between subsystems.      

  10.3.1.2 Problem Decomposition 

 For centuries, complex design problems were handled by breaking them into sim-
pler, easy-to-handle subproblems. Problem decomposition should continue until 
basic independent products or units are reached. The interaction between the basic 
products should be identified and introduced as constraints imposed by higher 
subproblems. Problem decomposition is divided into  requirements decomposition , 
 constraint–parameter decomposition , and  decomposition-based design optimization .

   1 .     Requirements Decomposition  

 Requirements represent an abstraction of the design problem, starting with the 
overall requirement (general demand) and ending with the specific requirements 
(specific demands). The ability to meet a requirement is given by a design function. 
The requirements decompositions and their relationships to the corresponding 
functions are represented in a tree diagram (Fig.  10.6 ), where specific requirements 
are mapped into specific functions.    
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  2 .     Constraint–Parameter Decomposition  

 The parameters describe the features (quantitative or qualitative data) of the 
product, while the constraints define the ranges of values assigned to parameters 
that are defined by product requirements. The problem structure is represented 
in an  incidence matrix [ 8 ]. The incidence matrix is decomposed by grouping all 
nonempty elements in blocks at the diagonal. It is preferable that the blocks be 
 mutually separable (independent). In some cases, overlapping between variables 
or  constraints may occur. 

 The design of a ball bearing is used to illustrate the decomposition [ 8 ]. 
The parameters are listed in Table  10.1  and the constraints are shown in Table 
 10.2 . The constraint–parameter incidence matrix is shown in Fig.  10.7 . The decom-
posed matrix is shown in Fig.  10.8 .             

  3 .     Decomposition-Based Design Optimization  

 The decomposition of a large complex design problem into smaller independent 
subproblems facilitates the use of mathematical programming techniques to solve 
and optimize the subproblems [ 3 ,  4 ]. The solutions are integrated to provide an 
overall solution. The objective is to decompose a complex system into multilevel 
subsystems in a hierarchical form (Fig.  10.9 ), in which a higher-level subsystem 
controls or coordinates the subsystems at the lower level. The subsystems are solved 
independently at the lower level. The objective at the higher level is to coordinate 
the action of the first level to ensure that the overall solution is obtained.       

  10.3.1.3 Process Decomposition 

 Process decomposition is the decomposition of the entire design process, starting with 
the need recognition and ending with the detail design. The activities in the design 
process are modeled in a generic manner independent of the specific product being 
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  Fig. 10.6    Requirements decomposition       
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 Table 10.1    Ball bearing design parameters  

 Table 10.2    Ball bearing design constraints  
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designed. Three perspectives of process decomposition were recognized. These are 
 product flow perspective ,  information flow perspective , and  resource perspective .
   1.     Product Flow Perspective  

 Design activities required to translate customer requirements into a detailed 
design of products are the focus of this perspective. The design activities are 
modeled as blocks with identified inputs and outputs (the output of one activity 
becomes the input of another activity). The decomposition tries to eliminate 
redundant activities and reorganize other activities to be performed concurrently, 
which will eventually reduce the product development time.   

  2.     Information Flow Perspective  

 Analysis of the precedence constraints between the design activities is the main 
concern of this perspective. Precedence constraints are utilized to generate the 
required information needed to build supporting databases and communication 
networks and to schedule design activities, all concurrently.   

  3.     Resource Perspective  

 The resources provide activities with a mechanism for transforming inputs to out-
puts. In this perspective two types of constraints are considered:
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  Fig. 10.8    Decomposed constraint–parameter incidence matrix       
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  •   External resource constraints , in which the resource used by the activity is 
generated by an activity or resource that is external to the design process.  

 •   Internal resource precedence constraints , in which the resource is developed in 
the design process and used by other activities.          

   10.3.2 Component Grouping into Modules  

 After decomposing the system into its basic components or elements, a modular 
system should be constructed by integrating the basic similar elements based on a 
criteria set by the product design team. A modular system can be thought of as an 
integration of several functional elements that, when combined, perform a different 
function than their individual one. The similarity between the physical and func-
tional architecture of the design must be used as a criteria for developing modular 
systems. Another criterion that must be used is the minimization of the degree of 
interaction between physical components. The degree of interaction between physi-
cal elements is an important aspect of modularity, which must be identified, mini-
mized, or eliminated. The strength of a modular system design can be measured by 
the weakness of the interactions or the interfaces between its components. 

 Grouping objects (i.e., components, parts, or systems) into groups based on the 
object features has been done using Group Technology (GT) approaches. GT is 
defined as the realization that many problems are similar, and that by grouping 
similar problems, a single solution can be found to a set of problems, thus saving 
time and effort [ 1 ,  5 ,  7 ]. Similar components can be grouped into design families 
and new designs can be created by modifying an existing component design from 
the same family. Objects grouping or cluster analysis in GT is concerned with 
grouping parts into part families and machines into machine cells [ 2 ]. A number 
of algorithms and methods are available for clustering parts and machines such as 
the following [ 14 ]:

  •  The rank order clustering algorithm  
 •  The modified rank order  clustering algorithm  
 •  The bond energy algorithm  
 •  The cluster identification algorithm  
 •  The extended cluster identification algorithm  
 •  Similarity coefficient-based clustering  
 •  Mathematical programming-based clustering      

  10.4 Modular Product Design 

  Modular product design is an important form of strategic flexibility, that is, flexible 
product designs that allow a company to respond to changing markets and technologies 
by rapidly and inexpensively creating product variants derived from different 
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 combinations of existing or new modular components. Kamrani and Salhieh (2002) 
[ 6 ] developed a four-step methodology for the development of modular products 
as follows. 

   10.4.1 Needs Analysis  

 This step includes gathering the market information required to identify customer 
needs, and arranging the identified needs into groups and finally prioritizing the 
needs according to their importance.  

   10.4.2 Product Requirements Analysis  

 Product requirements are identified on the basis of the results of needs analysis. 
The product requirements are classified into three classes as follows.

  •   Functional objectives  needed to meet the customer’s primary needs.  
 •   Operational functional  requirements that impose both functional and physical 

constraints on the design.  
 •   General functional requirements  ( GFRs ) that satisfy customers’ secondary 

needs, which could form a critical factor for the customer when comparing dif-
ferent competitive products that accomplish the same function. GFRs should be 
weighted with respect to their importance.     

   10.4.3  Product/Concept Analysis  

 Product/concept analysis is the decomposition of the product into its basic func-
tional and physical elements. These elements must be capable of achieving the 
product’s functions. Functional elements are defined as the individual operations 
and transformations that contribute to the overall performance of the product. 
Physical elements are defined as the parts, components, and subassemblies that 
ultimately implement the product’s function. Product concept analysis consists 
of product physical decomposition and product functional decomposition. In 
product physical decomposition, the product is decomposed into its basic physi-
cal components which, when assembled together, will accomplish the product 
function. Physical decomposition should result in the identification of basic 
components that must be designed or selected to perform the product function. 
Product functional decomposition describes the product’s overall functions and 
identifies components’ functions. Also, the interfaces between functional com-
ponents are identified.
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  •   Product Physical Decomposition.  The product is decomposed into subsystems 
and/or subassemblies capable of achieving the product function. The decompo-
sition process should continue until basic physical components are reached.  

 •   Product Functional Decomposition.  Functional decomposition should aim at 
representing the intended behavior (the functions) of a product and its parts. 
A function could be implemented by a single physical element (component) or 
by a combination of elements arranged in a specific manner. Functional compo-
nents are arranged according to several logical considerations that will ensure the 
accomplishment of their intended combined function. The logical arrangement is 
called a working principle which defines the mode of action that the product/system 
will perform on the inputs to reach the output state. To analyze the product func-
tion, the overall function of the product should be conceptualized into an action 
statement (verb–noun form). Then, the overall function is broken into subfunctions, 
and those are further decomposed into lower-level functions. This  functional 
breakdown is continued until a set of functions that could be achieved by available 
components is reached. At this point, functions are mapped into components, 
and components are arranged forming subassemblies leading to an overall assembly 
that will ultimately accomplish the overall function.     

   10.4.4 Product Concept Integration  

 Basic components resulting from the decomposition process are arranged in mod-
ules and integrated into a functional system. The manner by which components are 
arranged in modules will affect the product design. The resulting modules can be 
used to structure the development teams needed. Following are the steps associated 
with product integration. 

  10.4.4.1 Identify System-Level Specifications 

 System-level specifications (SLS) are the one-to-one relationship between compo-
nents with respect to their functional and physical characteristics. Functional char-
acteristics are a result of the operations and transformations that components 
perform in order to contribute to the overall performance of the product. Physical 
characteristics are a result of the components’ arrangements, assemblies, and 
geometry that implement the product function. A general guideline for identifying 
the relationships can be presented as follows:
   1.      Functional characteristics 

   (a)    Identify the main function(s), based on the functional decomposition.   
  (b)    Identify the required operations and transformations that must be performed 

in order to achieve the function based on the function flow diagram.   
  (c)    Document the operations and transformations.   
  (d)    Categorize operations and transformations into a hierarchy structure.   
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      2 .     Physical characteristics 

   (a)    Identify any physical constraints imposed on the product based on the 
requirement analysis.   

  (b)    Identify possible arrangements and/or assemblies of the components, based 
on previous experiences, previous designs, engineering knowledge, or inno-
vative designs/concepts.   

  (c)    Document possible arrangements and/or assemblies.   
  (d)    Categorize arrangements and assemblies into a hierarchy structure.         

 Physical and functional characteristics, forming the SLS, are arranged into a hierar-
chy of descriptions that begins by the component at the top level and ends with the 
detailed descriptions at the bottom level. Bottom-level descriptions (detailed descrip-
tions) are used to determine the relationships between components, 1 if the relation-
ship exists and 0 otherwise. This binary relationship between components is arranged 
in a vector form, “System-Level Specifications Vector” (SLSV). Figure  10.10  illus-
trates the hierarchical structure of the physical and functional characteristics.   

  10.4.4.2  Identify the Impact of the System-Level Specifications 
on the General Functional Requirements 

 SLS identified in the previous step affect the GFRs in the sense that some specifica-
tions may help satisfy some GFRs, while other specifications might prevent the 
implementation of some desired GFRs. The impact of the SLS on GFRs should be 
clearly identified. This will help in developing products that will meet, up to a sat-
isfactory degree, the GFRs stated earlier. The impact will be determined on the 
basis of the following:

 -1  :  Negative impact 

 0  :  None 

 +1  :  Positive impact 

Component Level

Characteristics

Description of
Characteristics

1,0 1,0 1,0 1,01,0 1,0

1,0

Description 1,1 Description 1,2

Description 1

Description n,1 Description n,n

Description n

Characteristic (A)
eg. Physical

Description 1,1 Description 1,n

Descerption 1 Desceription n

Characteristic (n)
eg. Functional

Component

  Fig. 10.10    System-level specification decomposition hierarchy       
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 A negative impact represents an undesired effect on the GFRs such as limiting 
the degree to which the product will meet the general requirement, or preventing 
the product from implementing the general requirement. While a positive impact 
represents a desired effect that the SLS will have on the general requirements, such 
SLS will ensure that the product will satisfy the requirements and result in customer 
satisfaction. An SLS is said to have no impact if it neither prevents the implementa-
tion of the GFR nor helps satisfying the GFR. An example of the SLS impact on 
the GFRs is shown in Table  10.3 . 

 For example, the SLS (1) have a negative impact on the FR (1), positive impact 
on the FR (2), and no impact on the FR ( m ).      

  10.4.4.3 Calculate Similarity Index 

 The degree of association between components should be measured and used in 
grouping components into modules. This can be done by incorporating the GFR 
weights, in addition to the SLSVs and their impacts on the GFRs to provide a simi-
larity index between components. The general form of the similarity index is as 
follows: 

 The similarity indexes associated with components are arranged in a component 
versus component matrix as shown below:

 C 1   C 2   C 3   –  C  n   

 C 1   X  S 1×2
   S 1×3   –  S 1× n   

 C 2   X  S 2×3   –  S 2× n   
 C 3   X  –  S 3× n   
 –  X  – 
 C  n    X 

 Table 10.3    GFR versus SLS  

 System-level 
specifications 

 General functional 
requirements 

 FR (1)  FR (2)  FR ( m ) 

 SLS (1)  -1  1  0 
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  10.4.4.4 Group Components into Modules 

 Components with high degree of association should be grouped together in design 
modules. This can be accomplished by using an optimization model that maximizes 
the sum of the similarities. The optimization model will identify independent 
modules that can be designed simultaneously. The model is Np-Hard. 

 Heuristic algorithms have been used as an alternative technique for solving Np-Hard 
problems. Modularity decomposition problem could benefit from these algorithms for 
finding solution in less time. This proposed method for decomposing similarity matri-
ces in modularity is based on Network Flows and Optimization. The main reason for 
the application of network optimization as base structure is its ability in coupling deep 
intellectual contents with a remarkable range of applicability. Many combinatorial 
problems which are innately hard can be solved by transforming to network concepts. 

 This specification makes us to define our problem as a graph acceptable in 
Network Flows rules to have the opportunity to solve this decomposition by 
Network algorithms. After calculation of similarity measure, nodes and edges are 
defined as follows:

  •   Node : Each component represents a node in our proposed graph.  
 •   Edge : Relationship between any two components represents an edge such that if 

component  i  has similarity index more than 0 with component  j , there exists an 
edge between them.  

 •   Flow of each edge : The similarity index between each two components is the 
flow of the edge between them (see Fig  10.11 ).     

 The objective function associated with this network is to find modules such that 
each module has the maximum amount of collective similarity indexes. It means 
that it is necessary to find modules created by group of components which are con-
nected with each other by the largest similarity indexes. Each component can be 
assigned to just one module and each module must contain most similar compo-
nents to each other. Based on this objective, Max Flow algorithms are used for 
solving this problem. In a capacitated network, it is required to send as much flow 
between start and end node. This concept has been applied in other engineering 
applications such as matrix rounding problem and feasible flow problems. 

1

2

3

i

j

…

Other Nodes

Supposed 
End node 

Flow i, j

  Fig. 10.11    Graph for a decomposed product       
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 In this problem, the maximum flow for the main graph is determined. This 
establishes the solution for the first module that contains components (nodes) in 
maximum flow. Components which are assigned to the first module will be 
removed and a new graph will be created and this graph for maximum flow is 
solved to find the second module. The algorithm will continue until all possible 
modules are assigned. For the max flow algorithm, augmenting path algorithm or 
preflow-push algorithm will be used on the basis of network specifications. 

 The preflow-push algorithm is one of the most powerful and flexible algorithms 
for max flow problems. The preflow-push algorithms maintain a preflow at each 
intermediate stage. Active nodes in this algorithm are nodes that have positive 
excess. Because this algorithm attempts to achieve feasibility and in a preflow-push 
algorithm, the presence of active nodes indicates that the solution is infeasible, the 
basic operation of this algorithm is to select an active node and try to remove its 
excess by pushing flow to its excess. 

 A maximum preflow is defined as a preflow with the maximum possible flow 
into the sink. This algorithm is a polynomial algorithm. The sample of the 
pseudocodes for the solution methodology is as follows:    

      Network Set Begin  

  x = 1  
  n = number of components  
  While   each component has assigned to a module  
  Design graph of components.  
  Use preflow-push algorithm to find the maximum flow from each node to node t.  
  Assign components in the maximum flow with similarity more than 1 to a module 
named module x.  
  Similarity of module = Sum (similarity of components)  
  x = x + 1.  
  End while . 
  Use selecting Procedure  
  End   Procedure.  
  Selecting Procedure Begin  
  y = 1  
  While   n < > 0  
  Choose the module with biggest Similarity  
  Eliminate components in that module from total components.  
  n = n – Eliminated components  
  y = y + 1  
  End while  
  y  = number of modules  
  Write the selected modules as final modules.  
  End   Procedure.  
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 Matlab ®  software is used for the implementation of the preflow-push max flow 
algorithm. Using this algorithm and Matlab Code for preflow-push max flow algo-
rithm with a four-gear speed reducer with 17 components, the solution is as follows:

  •  Module 1: Gear 1, Shaft 1, Bearing 1, Bearing 2, Key 1, and Gear 2.  
 •  Module 2: Gear 2, Gear 3, Shaft 2, Bearing 3, Bearing 4, Key 2, and Key 3.  
 •  Module 3: Gear 4, Shaft 3, Bearing 5, Bearing 6, and Key 4.     

  10.5 The Benefits of Product Modularity 

  One of the most important benefits of promoting modularity is the need to allow a 
large variety of products to be built from a smaller set of different modules and 
components. The result is that any combination of modules and components, as 
well as the assembly equipment, can be standardized. The benefits of product mod-
ularity also include the following:

   1.     Reduction in Product Development Time  

 Modularity relies on dividing a product into components with clear definition of the 
interfaces. These interfaces permit the design tasks to be decoupled. This decoupling 
results in a reduction in the design complexity and enables design tasks to be per-
formed concurrently, which will eventually reduce the product development time.   

  2.     Customization and Upgrades  

 Modular products accomplish customer requirements by integrating several 
functional components interacting in a specific manner. This integration allows 
products to be improved and upgraded by using more efficient components that 
can perform the required functions effectively. In addition, components can be 
replaced by custom-made ones to fulfill different functions.   

  3.     Cost Efficiencies Due to Amortization  

 Modular components are used in several product lines, which infer that their 
production volumes are higher. This will allow the amortization of the development 
expenses over a large number of products.   

  4.     Quality  

 Modularity allows production tasks to be performed simultaneously. Thus, inde-
pendent components can be produced and tested separately before they are integrated 
into a modular product. This will help build quality into the product.   

  5.     Design Standardization  

 Modular design facilitates design standardization by identifying the component 
functions clearly and minimizing the incidental interactions between a compo-
nent and the rest of the product.   

  6.     Reduction in Order Lead Time  

 Modular products can be made by combining standardized and customized 
components. This allows standard components to be inventoried, and then 
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customization can be focused on the differentiating components. Also, modular 
products can be a combination of standard components, that is, the same stand-
ard components  (usually kept in inventory) are integrated in different ways to 
form a variety of products that can respond to customer requirements.       
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