
 Chapter 10
 Modular Design

 Sa’Ed M. Salhieh 1 and Ali K. Kamrani 2

 Abstract Modular design aims to subdivide a complex product into smaller parts
(modules) that are easily used interchangeably. Examples of modularly designed
items are vehicles, computers, and high-rise buildings. Modular design is an attempt
at getting both the gains of standardization (high volume normally equals low
manufacturing costs) and the gains of customization. The concept of modularity
can provide the necessary foundation for organizations to design products that can
respond rapidly to market needs and allow the changes in product design to happen
in a cost-effective manner. Modularity can be applied to the design processes to
build modular products and modular manufacturing processes.

 10.1 Modularity

 Modularity aims to identify the independent, standardized, or interchangeable units
to satisfy a variety of functions. Modularity can be applied in the areas of product
design, design problems, production systems, or all three. It is preferable to use
modular design in all three types at the same time; this can be done by using
a modular design process to design modular products and to produce them using a
modular production system or modular manufacturing processes.

 10.1.1 Modularity in Products

 Modular products are products that fulfill various overall functions through the
combination of distinct building blocks or modules, in the sense that the overall
function performed by the product can be divided into subfunctions implemented

A.K. Kamrani, E.S. Abouel Nasr (eds.) Collaborative Engineering: Theory and Practice, 207
doi: 10.2007/ 978-0-387-47321-5, © Springer Science + Business Media, LLC 2008

 1 Assistant Professor, Department of Industrial Engineering, University of Jordan,
 Amman, 11942 , Jordan

 2 Associate Professor, Department of Industrial Engineering, University of Houston
 Houston , Texas 77004 , USA

by different modules or components [13]. Product modularity has been analyzed as
a form of product architecture that allows a one-to-one correspondence between
physical structures and functional structures, as opposed to integral architectures
where the functional elements map to a single or very small number of physical
elements [15]. Hand tools are considered a good example of integral products,
where several functions are mapped to a single physical structure, that is, the tool
itself. A personal computer exemplifies a modular product in which a wide range
of functions are fulfilled by utilizing a wide range of interchangeable physical
structures such as hard drives, CD-ROMs, and motherboards.

 The term modularity in products is used to describe the use of common units to
create product variants. That is, modularity in products is based on the idea that a
complex product could be decomposed into a set of independent components. This
decomposition allows the standardization of components and the creation of product
variants. Components used to create modular products have functional, spatial, and
other interface characteristics that fall within the range of variations allowed by the
specified standardized interfaces of a modular product. Mixing and matching different
modular components creates a large number of modular products, where each product
would have a distinct combination of the modular components, resulting in the creation
of products with distinctive functionalities, features, and performance levels.

 10.1.2 Modularity in Design Problems

 Most design problems can be broken down into a set of easy-to-manage simpler
subproblems. Sometimes complex problems are reduced into easier subproblems,
where a small change in the solution of one subproblem can lead to a change in
other subproblems’ solutions. This means that the decomposition has resulted in
functionally dependent subproblems. Modularity focuses on decomposing the over-
all problem into functionally independent subproblems, in which interaction or
interdependence between subproblems is minimized. Thus, a change in the solution
of one problem may lead to a minor modification in other problems, or it may have
no effect on other subproblems.

 10.1.3 Modularity in Production Systems

 Modularity in production systems aims at building production systems from stand-
ardized modular machines. The fact that a wide diversity of production require-
ments exists has led to the introduction of a variety of production machinery and a
lack of agreement on what the building blocks should be. This means that there are
no standards for modular machinery. In order to build a modular production system,
production machinery must be classified into functional groups from which a
 selection of a modular production system can be made to respond to different

208 S.M. Salhieh, A.K. Kamrani

10 Modular Design 209

production requirements. Rogers [11] classifies production machinery into four
basic groups of “primitive” production elements. These are process machine primi-
tives, motion units, modular fixtures, and configurable control units. It is argued
that if a selection is made from these four categories, it will be possible to build a
diverse range of efficient, automated, and integrated production systems.

 10.2 Modular Systems Characteristics

 10.2.1 Modules Types

 Modular systems are built from independent units or modules. Two major catego-
ries of modules are identified, namely, function modules and production modules
[12]. Function modules are designed to accomplish technical functions independ-
ently or in combination with other modules. Production modules are designed on
the basis of production considerations alone and are independent of their function.
Function modules can be classified on the basis of various types of functions reoc-
curring in a modular system that can be combined as subfunctions to implement the
different overall function (Fig. 10.1). These functions are basic, auxiliary, special,
adaptive, and customer specific [9].

 • Basic Functions. These are functions that can fulfill the overall function simply
or in combination with other functions. Basic functions are not variable in prin-
ciple and they are implemented in basic modules .

Overall Functions
Variants

Basic
Functions

Auxiliary
Functions

Special
Functions

Adaptive
Functions

Customer-
Specific

Functions

Basic
Module

Auxiliary
Module

Special
Module

Adaptive
Module

No-Module

Implementation
Variants

 Fig. 10.1 Function and module types

210 S.M. Salhieh, A.K. Kamrani

 • Auxiliary Functions. These are implemented using auxiliary modules in
 accordance with basic modules.

 • Special Functions. These are task-specific subfunctions that may not appear in
all overall function variants and are implemented by special modules .

 • Adaptive Functions. These are the functions that permit the adaptation of a part
or a system to other products or systems. They are implemented by adaptive
modules that allow for unpredictable circumstances.

 • Customer-Specific Functions. These are functions that are not provided by the
modular system, and they are implemented by non-modules which must be
designed individually. If they are used, the result is a mixed system that combines
modules and non-modules.

 10.2.2 Modularity Types

 Product modularity depends on the similarity between the physical and the
 functional architecture of a design, and on the minimization of the incidental
 interactions between the physical components that comprise the modules. The
nature of the interactions between the modules has been used to categorize product
modularity into two major categories of modularity [6 , 15 , 16]:

 • Function-based modularity is used to partition the functionalities of a product
and describe how these functions are distributed.

 • Manufacturing-based modularity relates to the manufacturing processes and the
assembly operations associated with a product.

 10.2.2.1 Function-Based Modularity

 Four classifications of function-based modularity are defined as follows.

 1 . Component-Swapping Modularity: Different product variants belonging to the
same product family are created by combining two or more alternative types of
components with the same basic component or product. Figure 10.2 illustrates the
swapping modularity in which two alternative components (the small rectangular
block and the triangular) are combined with the same basic component (the big
block), forming product variants belonging to the same product family.

 An example of component-swapping modularity in the computer industry is
illustrated by matching different types of CD-ROMs, monitors, and keyboards
with the same motherboard. This allows for different models of computers to be
implemented.

 2. Component-Sharing Modularity : In this category, different product variants
belonging to different product families are created by combining different
 modules sharing the same basic component. Component-sharing is considered

10 Modular Design 211

the complementary case to component-swapping. Component-sharing and
component-swapping modularity are identical except that swapping involves the
same basic product using different components and sharing involves different
basic products using the same component. The difference between them lies in
how the basic product and components are defined in a particular situation.
Figure 10.3 shows two different basic components (the block and the triangular)
sharing the same component (the circle). Component-sharing modularity in the
computer industry is represented by the use of the same power cord, monitor, or
microprocessor in different product (computer) families.

 3 . Fabricate-to-Fit Modularity: One or more standard components are used with
one or more infinitely variable additional components. Variation is usually asso-
ciated with physical dimensions that can be modified. Figure 10.4 illustrates a
component with variable length (the block) that can be combined with two
standard components (the triangular) forming product variants. A common
example of this kind of modularity is cable assemblies in which two standard
connectors can be used with an arbitrary length of cable.

 4 . Bus Modularity: This type of modularity occurs when a module can be matched
with any number of basic components. Bus modularity allows the number and
location of basic components in a product to vary. Bus modularity is illustrated
in Fig. 10.5 . An example of bus modularity is a computer where different input
and output units, in addition to different types of mice, RAMs, and hard drives,
can exist and vary in both their location and their number.

 10.2.2.2 Manufacturing-Based Modularity

 Four manufacturing-based modularity classes can be defined as follows.

 1. OEM (Original Equipment Manufacturer) modules are group of components that
are grouped together because a supplier can provide them at a less expense than if
they were to be developed in-house. For example, tires in cars are OEM modules.

 2. Assembly modules are groups of components that are grouped together because
they solve related functions and are bundled together to ease assembly. For

 Fig. 10.2 Component-swapping modularity

 Fig. 10.4 Fabricate-to-fit modularity

 Fig. 10.3 Component-sharing modularity

10 Modular Design 213

example, the dial buttons and the associated electronic circuit in a telephone are
all bundled together as a subassembly when making telephones.

 3. Sizable modules are components that are exactly the same except for their physi-
cal scale. Sizable modules are manufactured using the same exact operations and
machine. Lawn mower blades are an example of sizeable modules.

 4. Conceptual modules are modules that deliver the same functions but have different
physical embodiments. Conceptual modules can lead to a significant change in the
manufacturing operations without affecting the functionality of the product. For
example, designers may use a gearbox to reduce the speed delivered from a motor
to a pump, or they could use a chain-sprocket system to deliver the same function.

 10.3 Modular Systems Development

 In general, modular systems can be developed by decomposing a system into its
basic functional elements, mapping these elements into basic physical components,
then integrating the basic components into a modular system capable of achieving
the intended functions. This approach faces two important challenges [10]: (1)
Decomposition: Finding the most suitable set of subproblems may be difficult. (2)
Integration: Combining the separate subsystems into an overall solution may also
be difficult. To fully comprehend the underlying foundations of modular systems
development, decomposition categories are further discussed.

 10.3.1 Decomposition Categories

 System decomposition is expected to result in two benefits [10]: (1) Simplification:
Decomposing large systems into smaller ones will lead to a reduction in the size of

 Fig. 10.5 Bus modularity

214 S.M. Salhieh, A.K. Kamrani

the problem that needs to be solved, which will make it easier to manage. (2) Speed:
Solving smaller problems concurrently (parallel solutions) will reduce the time
needed to solve the overall problem. Decomposition methods can be categorized
according to the area into which they are being applied, namely, product decompo-
sition, problem decomposition, and process decomposition [8].

 10.3.1.1 Product Decomposition

 Product decomposition can be performed at various stages of the design process and
can be defined as the process of breaking the product down into physical elements
from which a complete description of the product can be obtained. Two approaches are
used in product decomposition, product modularity and structural decomposition .

 1 . Product Modularity

 Product modularity is the identification of independent physical components that
can be designed concurrently or replaced by predesigned components that have
similar functional and physical characteristics. Product modularity relies on the
lack of dependency between the physical components. The computer industry
provides an excellent example of modular products, where the major compo-
nents of the computer are manufactured by many different suppliers allowing the
manufacturers of microprocessors to choose from a wide library of products.

 2 . Structural Decomposition

 The system is decomposed into subsystems, and those are further decomposed
into components leading to products, assemblies, subassemblies, and parts at the
detailed design stage. The decomposition is represented in a hierarchy structure
that captures the dependencies between subsystems.

 10.3.1.2 Problem Decomposition

 For centuries, complex design problems were handled by breaking them into sim-
pler, easy-to-handle subproblems. Problem decomposition should continue until
basic independent products or units are reached. The interaction between the basic
products should be identified and introduced as constraints imposed by higher
subproblems. Problem decomposition is divided into requirements decomposition ,
 constraint–parameter decomposition , and decomposition-based design optimization .

 1 . Requirements Decomposition

 Requirements represent an abstraction of the design problem, starting with the
overall requirement (general demand) and ending with the specific requirements
(specific demands). The ability to meet a requirement is given by a design function.
The requirements decompositions and their relationships to the corresponding
functions are represented in a tree diagram (Fig. 10.6), where specific requirements
are mapped into specific functions.

10 Modular Design 215

 2 . Constraint–Parameter Decomposition

 The parameters describe the features (quantitative or qualitative data) of the
product, while the constraints define the ranges of values assigned to parameters
that are defined by product requirements. The problem structure is represented
in an incidence matrix [8]. The incidence matrix is decomposed by grouping all
nonempty elements in blocks at the diagonal. It is preferable that the blocks be
 mutually separable (independent). In some cases, overlapping between variables
or constraints may occur.

 The design of a ball bearing is used to illustrate the decomposition [8].
The parameters are listed in Table 10.1 and the constraints are shown in Table
 10.2 . The constraint–parameter incidence matrix is shown in Fig. 10.7 . The decom-
posed matrix is shown in Fig. 10.8 .

 3 . Decomposition-Based Design Optimization

 The decomposition of a large complex design problem into smaller independent
subproblems facilitates the use of mathematical programming techniques to solve
and optimize the subproblems [3 , 4]. The solutions are integrated to provide an
overall solution. The objective is to decompose a complex system into multilevel
subsystems in a hierarchical form (Fig. 10.9), in which a higher-level subsystem
controls or coordinates the subsystems at the lower level. The subsystems are solved
independently at the lower level. The objective at the higher level is to coordinate
the action of the first level to ensure that the overall solution is obtained.

 10.3.1.3 Process Decomposition

 Process decomposition is the decomposition of the entire design process, starting with
the need recognition and ending with the detail design. The activities in the design
process are modeled in a generic manner independent of the specific product being

Req. 1

Req. 2 Req. 3 Req. 4

Req. 9Req. 8Req. 5 Req. 6 Req. 7

Req. 13Req. 12Req. 11Req. 10

Function Function

Function

Function

Function FunctionFunction Function

 Fig. 10.6 Requirements decomposition

216 S.M. Salhieh, A.K. Kamrani

de do d i P d d | r B |
o

|
i D β | ro ri P e s θ R Rx Ry

Γ β

C1 * * *

C 2 * * * *

C 3 * * *

C 4 * * *

C 5 * * *

C 6 * * * * * *

C 7 * * *

C 8 * * *

C 9 * * *

C10 * * * *

C11 * * * *

C12 ** *

 Fig. 10.7 Ball bearing design constraint–parameter incidence matrix

 Parameter Description Parameter Description

 d
e
 Pitch diameter b

I
 Free contact angle

 d
o
 Outer-race diameter r

o
 Outer-race curvature

 d
i
 Inner-race diameter r

i
 Inner-race curvature

 P
d
 Diametral clearance P

e
 Free endplay

 d Rolling-element diameter s Shoulder height
 I Race conformity ratio q Shoulder angle height
 r Race curvature radius R Curvature sum
 B Total conformity R

x
 x direction effective radius

 I
o
 Outer-race conformity R

y
 y direction effective radius

 I
i
 Inner-race conformity G Curvature difference

 D Race curvature distance b Contact angle

 Table 10.1 Ball bearing design parameters

 Table 10.2 Ball bearing design constraints

 C
1
 d d de o i= +

1

2
() C

7
 P

e
=2DSin b

f

 C
2
 P

d
=d

o
–d

i
–2d C

8
 S=r(1–cosq)

 C
3
 f

r

d
= C

9

1 1 1

R R Rx y

= +

 C
4
 B=f

o
 + f

i
–1 C

10
 Γ = = −

⎛

⎝
⎜

⎞

⎠
⎟R

R Rx y

1 1

 C
5
 D = Bd C

11
 R

x
=d(d

e
–dcosb)/2d

e

 C
6

bf

o i o i

o i

=
+ − −

+ −
arccos

()r r d d

r r d

1
2 C

12
 R

f d

fy =
−

i

i()2 1

10 Modular Design 217

designed. Three perspectives of process decomposition were recognized. These are
 product flow perspective , information flow perspective , and resource perspective .
 1. Product Flow Perspective

 Design activities required to translate customer requirements into a detailed
design of products are the focus of this perspective. The design activities are
modeled as blocks with identified inputs and outputs (the output of one activity
becomes the input of another activity). The decomposition tries to eliminate
redundant activities and reorganize other activities to be performed concurrently,
which will eventually reduce the product development time.

 2. Information Flow Perspective

 Analysis of the precedence constraints between the design activities is the main
concern of this perspective. Precedence constraints are utilized to generate the
required information needed to build supporting databases and communication
networks and to schedule design activities, all concurrently.

 3. Resource Perspective

 The resources provide activities with a mechanism for transforming inputs to out-
puts. In this perspective two types of constraints are considered:

| r s θ de do di β Pd ro ri |
o

|
i Ry R Γ D Pe d β| Rx B

C3 * * *

C8 * * *

C1 * * *

C11 * * * *

C2 * * * *

C6 * * * * * *

C4 * * *

C12 ***

C9 ***

C10 ****

C5 * * *

C7 * * *

 Fig. 10.8 Decomposed constraint–parameter incidence matrix

Problem

Subproblem
(1)

Subproblem
(I)

Subproblem
(I,J)

Subproblem
(I,1)

Subproblem
(1,J)

Subproblem
(1,I)

.

.
etc.

 Fig. 10.9 Hierarchical decomposition of a complex system

218 S.M. Salhieh, A.K. Kamrani

 • External resource constraints , in which the resource used by the activity is
generated by an activity or resource that is external to the design process.

 • Internal resource precedence constraints , in which the resource is developed in
the design process and used by other activities.

 10.3.2 Component Grouping into Modules

 After decomposing the system into its basic components or elements, a modular
system should be constructed by integrating the basic similar elements based on a
criteria set by the product design team. A modular system can be thought of as an
integration of several functional elements that, when combined, perform a different
function than their individual one. The similarity between the physical and func-
tional architecture of the design must be used as a criteria for developing modular
systems. Another criterion that must be used is the minimization of the degree of
interaction between physical components. The degree of interaction between physi-
cal elements is an important aspect of modularity, which must be identified, mini-
mized, or eliminated. The strength of a modular system design can be measured by
the weakness of the interactions or the interfaces between its components.

 Grouping objects (i.e., components, parts, or systems) into groups based on the
object features has been done using Group Technology (GT) approaches. GT is
defined as the realization that many problems are similar, and that by grouping
similar problems, a single solution can be found to a set of problems, thus saving
time and effort [1 , 5 , 7]. Similar components can be grouped into design families
and new designs can be created by modifying an existing component design from
the same family. Objects grouping or cluster analysis in GT is concerned with
grouping parts into part families and machines into machine cells [2]. A number
of algorithms and methods are available for clustering parts and machines such as
the following [14]:

 • The rank order clustering algorithm
 • The modified rank order clustering algorithm
 • The bond energy algorithm
 • The cluster identification algorithm
 • The extended cluster identification algorithm
 • Similarity coefficient-based clustering
 • Mathematical programming-based clustering

 10.4 Modular Product Design

 Modular product design is an important form of strategic flexibility, that is, flexible
product designs that allow a company to respond to changing markets and technologies
by rapidly and inexpensively creating product variants derived from different

10 Modular Design 219

 combinations of existing or new modular components. Kamrani and Salhieh (2002)
[6] developed a four-step methodology for the development of modular products
as follows.

 10.4.1 Needs Analysis

 This step includes gathering the market information required to identify customer
needs, and arranging the identified needs into groups and finally prioritizing the
needs according to their importance.

 10.4.2 Product Requirements Analysis

 Product requirements are identified on the basis of the results of needs analysis.
The product requirements are classified into three classes as follows.

 • Functional objectives needed to meet the customer’s primary needs.
 • Operational functional requirements that impose both functional and physical

constraints on the design.
 • General functional requirements (GFRs) that satisfy customers’ secondary

needs, which could form a critical factor for the customer when comparing dif-
ferent competitive products that accomplish the same function. GFRs should be
weighted with respect to their importance.

 10.4.3 Product/Concept Analysis

 Product/concept analysis is the decomposition of the product into its basic func-
tional and physical elements. These elements must be capable of achieving the
product’s functions. Functional elements are defined as the individual operations
and transformations that contribute to the overall performance of the product.
Physical elements are defined as the parts, components, and subassemblies that
ultimately implement the product’s function. Product concept analysis consists
of product physical decomposition and product functional decomposition. In
product physical decomposition, the product is decomposed into its basic physi-
cal components which, when assembled together, will accomplish the product
function. Physical decomposition should result in the identification of basic
components that must be designed or selected to perform the product function.
Product functional decomposition describes the product’s overall functions and
identifies components’ functions. Also, the interfaces between functional com-
ponents are identified.

220 S.M. Salhieh, A.K. Kamrani

 • Product Physical Decomposition. The product is decomposed into subsystems
and/or subassemblies capable of achieving the product function. The decompo-
sition process should continue until basic physical components are reached.

 • Product Functional Decomposition. Functional decomposition should aim at
representing the intended behavior (the functions) of a product and its parts.
A function could be implemented by a single physical element (component) or
by a combination of elements arranged in a specific manner. Functional compo-
nents are arranged according to several logical considerations that will ensure the
accomplishment of their intended combined function. The logical arrangement is
called a working principle which defines the mode of action that the product/system
will perform on the inputs to reach the output state. To analyze the product func-
tion, the overall function of the product should be conceptualized into an action
statement (verb–noun form). Then, the overall function is broken into subfunctions,
and those are further decomposed into lower-level functions. This functional
breakdown is continued until a set of functions that could be achieved by available
components is reached. At this point, functions are mapped into components,
and components are arranged forming subassemblies leading to an overall assembly
that will ultimately accomplish the overall function.

 10.4.4 Product Concept Integration

 Basic components resulting from the decomposition process are arranged in mod-
ules and integrated into a functional system. The manner by which components are
arranged in modules will affect the product design. The resulting modules can be
used to structure the development teams needed. Following are the steps associated
with product integration.

 10.4.4.1 Identify System-Level Specifications

 System-level specifications (SLS) are the one-to-one relationship between compo-
nents with respect to their functional and physical characteristics. Functional char-
acteristics are a result of the operations and transformations that components
perform in order to contribute to the overall performance of the product. Physical
characteristics are a result of the components’ arrangements, assemblies, and
geometry that implement the product function. A general guideline for identifying
the relationships can be presented as follows:
 1. Functional characteristics

 (a) Identify the main function(s), based on the functional decomposition.
 (b) Identify the required operations and transformations that must be performed

in order to achieve the function based on the function flow diagram.
 (c) Document the operations and transformations.
 (d) Categorize operations and transformations into a hierarchy structure.

10 Modular Design 221

 2 . Physical characteristics

 (a) Identify any physical constraints imposed on the product based on the
requirement analysis.

 (b) Identify possible arrangements and/or assemblies of the components, based
on previous experiences, previous designs, engineering knowledge, or inno-
vative designs/concepts.

 (c) Document possible arrangements and/or assemblies.
 (d) Categorize arrangements and assemblies into a hierarchy structure.

 Physical and functional characteristics, forming the SLS, are arranged into a hierar-
chy of descriptions that begins by the component at the top level and ends with the
detailed descriptions at the bottom level. Bottom-level descriptions (detailed descrip-
tions) are used to determine the relationships between components, 1 if the relation-
ship exists and 0 otherwise. This binary relationship between components is arranged
in a vector form, “System-Level Specifications Vector” (SLSV). Figure 10.10 illus-
trates the hierarchical structure of the physical and functional characteristics.

 10.4.4.2 Identify the Impact of the System-Level Specifications
on the General Functional Requirements

 SLS identified in the previous step affect the GFRs in the sense that some specifica-
tions may help satisfy some GFRs, while other specifications might prevent the
implementation of some desired GFRs. The impact of the SLS on GFRs should be
clearly identified. This will help in developing products that will meet, up to a sat-
isfactory degree, the GFRs stated earlier. The impact will be determined on the
basis of the following:

 -1 : Negative impact

 0 : None

 +1 : Positive impact

Component Level

Characteristics

Description of
Characteristics

1,0 1,0 1,0 1,01,0 1,0

1,0

Description 1,1 Description 1,2

Description 1

Description n,1 Description n,n

Description n

Characteristic (A)
eg. Physical

Description 1,1 Description 1,n

Descerption 1 Desceription n

Characteristic (n)
eg. Functional

Component

 Fig. 10.10 System-level specification decomposition hierarchy

222 S.M. Salhieh, A.K. Kamrani

 A negative impact represents an undesired effect on the GFRs such as limiting
the degree to which the product will meet the general requirement, or preventing
the product from implementing the general requirement. While a positive impact
represents a desired effect that the SLS will have on the general requirements, such
SLS will ensure that the product will satisfy the requirements and result in customer
satisfaction. An SLS is said to have no impact if it neither prevents the implementa-
tion of the GFR nor helps satisfying the GFR. An example of the SLS impact on
the GFRs is shown in Table 10.3 .

 For example, the SLS (1) have a negative impact on the FR (1), positive impact
on the FR (2), and no impact on the FR (m).

 10.4.4.3 Calculate Similarity Index

 The degree of association between components should be measured and used in
grouping components into modules. This can be done by incorporating the GFR
weights, in addition to the SLSVs and their impacts on the GFRs to provide a simi-
larity index between components. The general form of the similarity index is as
follows:

 The similarity indexes associated with components are arranged in a component
versus component matrix as shown below:

 C 1 C 2 C 3 – C n

 C 1 X S 1×2
 S 1×3 – S 1× n

 C 2 X S 2×3 – S 2× n
 C 3 X – S 3× n
 – X –
 C n X

 Table 10.3 GFR versus SLS

 System-level
specifications

 General functional
requirements

 FR (1) FR (2) FR (m)

 SLS (1) -1 1 0

 SLS (2) . . .

 SLS (n) 1 0 1

() (. .)

. . .

.

S a

b

b

n n

m

n

1 1 11 0

1

× ×= ×
SLSV (C &C)

1,

,1

1 2

0

.

.

.. .

.

.

.

,b cn m n m m

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

×

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟

× ×

SLS& FRs

1

0 9

1

⎟⎟⎟
×m 1

Weights for FR

10 Modular Design 223

 10.4.4.4 Group Components into Modules

 Components with high degree of association should be grouped together in design
modules. This can be accomplished by using an optimization model that maximizes
the sum of the similarities. The optimization model will identify independent
modules that can be designed simultaneously. The model is Np-Hard.

 Heuristic algorithms have been used as an alternative technique for solving Np-Hard
problems. Modularity decomposition problem could benefit from these algorithms for
finding solution in less time. This proposed method for decomposing similarity matri-
ces in modularity is based on Network Flows and Optimization. The main reason for
the application of network optimization as base structure is its ability in coupling deep
intellectual contents with a remarkable range of applicability. Many combinatorial
problems which are innately hard can be solved by transforming to network concepts.

 This specification makes us to define our problem as a graph acceptable in
Network Flows rules to have the opportunity to solve this decomposition by
Network algorithms. After calculation of similarity measure, nodes and edges are
defined as follows:

 • Node : Each component represents a node in our proposed graph.
 • Edge : Relationship between any two components represents an edge such that if

component i has similarity index more than 0 with component j , there exists an
edge between them.

 • Flow of each edge : The similarity index between each two components is the
flow of the edge between them (see Fig 10.11).

 The objective function associated with this network is to find modules such that
each module has the maximum amount of collective similarity indexes. It means
that it is necessary to find modules created by group of components which are con-
nected with each other by the largest similarity indexes. Each component can be
assigned to just one module and each module must contain most similar compo-
nents to each other. Based on this objective, Max Flow algorithms are used for
solving this problem. In a capacitated network, it is required to send as much flow
between start and end node. This concept has been applied in other engineering
applications such as matrix rounding problem and feasible flow problems.

1

2

3

i

j

…

Other Nodes

Supposed
End node

Flow i, j

 Fig. 10.11 Graph for a decomposed product

224 S.M. Salhieh, A.K. Kamrani

 In this problem, the maximum flow for the main graph is determined. This
establishes the solution for the first module that contains components (nodes) in
maximum flow. Components which are assigned to the first module will be
removed and a new graph will be created and this graph for maximum flow is
solved to find the second module. The algorithm will continue until all possible
modules are assigned. For the max flow algorithm, augmenting path algorithm or
preflow-push algorithm will be used on the basis of network specifications.

 The preflow-push algorithm is one of the most powerful and flexible algorithms
for max flow problems. The preflow-push algorithms maintain a preflow at each
intermediate stage. Active nodes in this algorithm are nodes that have positive
excess. Because this algorithm attempts to achieve feasibility and in a preflow-push
algorithm, the presence of active nodes indicates that the solution is infeasible, the
basic operation of this algorithm is to select an active node and try to remove its
excess by pushing flow to its excess.

 A maximum preflow is defined as a preflow with the maximum possible flow
into the sink. This algorithm is a polynomial algorithm. The sample of the
pseudocodes for the solution methodology is as follows:

 Network Set Begin

 x = 1
 n = number of components
 While each component has assigned to a module
 Design graph of components.
 Use preflow-push algorithm to find the maximum flow from each node to node t.
 Assign components in the maximum flow with similarity more than 1 to a module
named module x.
 Similarity of module = Sum (similarity of components)
 x = x + 1.
 End while .
 Use selecting Procedure
 End Procedure.
 Selecting Procedure Begin
 y = 1
 While n < > 0
 Choose the module with biggest Similarity
 Eliminate components in that module from total components.
 n = n – Eliminated components
 y = y + 1
 End while
 y = number of modules
 Write the selected modules as final modules.
 End Procedure.

10 Modular Design 225

 Matlab ® software is used for the implementation of the preflow-push max flow
algorithm. Using this algorithm and Matlab Code for preflow-push max flow algo-
rithm with a four-gear speed reducer with 17 components, the solution is as follows:

 • Module 1: Gear 1, Shaft 1, Bearing 1, Bearing 2, Key 1, and Gear 2.
 • Module 2: Gear 2, Gear 3, Shaft 2, Bearing 3, Bearing 4, Key 2, and Key 3.
 • Module 3: Gear 4, Shaft 3, Bearing 5, Bearing 6, and Key 4.

 10.5 The Benefits of Product Modularity

 One of the most important benefits of promoting modularity is the need to allow a
large variety of products to be built from a smaller set of different modules and
components. The result is that any combination of modules and components, as
well as the assembly equipment, can be standardized. The benefits of product mod-
ularity also include the following:

 1. Reduction in Product Development Time

 Modularity relies on dividing a product into components with clear definition of the
interfaces. These interfaces permit the design tasks to be decoupled. This decoupling
results in a reduction in the design complexity and enables design tasks to be per-
formed concurrently, which will eventually reduce the product development time.

 2. Customization and Upgrades

 Modular products accomplish customer requirements by integrating several
functional components interacting in a specific manner. This integration allows
products to be improved and upgraded by using more efficient components that
can perform the required functions effectively. In addition, components can be
replaced by custom-made ones to fulfill different functions.

 3. Cost Efficiencies Due to Amortization

 Modular components are used in several product lines, which infer that their
production volumes are higher. This will allow the amortization of the development
expenses over a large number of products.

 4. Quality

 Modularity allows production tasks to be performed simultaneously. Thus, inde-
pendent components can be produced and tested separately before they are integrated
into a modular product. This will help build quality into the product.

 5. Design Standardization

 Modular design facilitates design standardization by identifying the component
functions clearly and minimizing the incidental interactions between a compo-
nent and the rest of the product.

 6. Reduction in Order Lead Time

 Modular products can be made by combining standardized and customized
components. This allows standard components to be inventoried, and then

226 S.M. Salhieh, A.K. Kamrani

customization can be focused on the differentiating components. Also, modular
products can be a combination of standard components, that is, the same stand-
ard components (usually kept in inventory) are integrated in different ways to
form a variety of products that can respond to customer requirements.

 References

 1. Amirouche, F., Computer Aided Design and Manufacturing, Prentice Hall: Englewood Cliffs,
New Jersey, 1993.

 2. Erhorn, C., and Stark, J., Competing by Design: Creating Value and Market Advantage in
New Product Development, Essex Junction, VT, 1994.

 3. Finger, S., and J. R. Dixon, A Review of Research in Mechanical Engineering Design, Part I:
Descriptive, Prescriptive, and Computer-Based Models of Design Processes, Research in
Engineering Design , Vol. 1:51–67, 1989.

 4. Johnson, R. C., and R. C. Benson, A Basic Two-Stage Decomposition Strategy for Design
Optimization, Transactions of the ASME , Vol. 106, September 1984.

 5. Kamrani, A., A Methodology for Manufacturing Cell Design in a Computer Integrated
Manufacturing Environment, Published Ph.D. Dissertation, University of Louisville, 1991.

 6. Kamrani, A., and S. Salhieh, Product Design for Modularity, 2nd Edition, Kluwer Academic
Publishers , 2002.

 7. Kamrani, A. K., Modular Design Methodology for Complex Parts, Industrial Engineering
Research Conference, Miami Beach, Florida, May 1997.

 8. Kusiak, A., and N. Larson, Decomposition and Representation Methods in Mechanical
Design, Transactions of the ASME , Vol. 117, June 1995.

 9. Pahl, G., and W. Beitz, Engineering Design: A Systematic Approach, 3rd Edition, Springer-
Verlag: New York, 2007.

 10. Pimmler, T. U., and S. D. Eppinger, Integration Analysis of Product Decompositions, Design
Theory and Methodology—DTM’94, DE-Vol. 68, ASME, 1994.

 11. Rogers, G. G., and L. Bottaci, Modular Production Systems: A New Manufacturing Paradigm,
 Journal of Intelligent Manufacturing , Vol. 8, No. 2, pp. 147–156, April 1997.

 12. Roozenburg, N. F. M., Product Design: Fundamentals and Methods, John Wiley & Sons:
Chichester, New York, 1995.

 13. Salhieh, S., and A. Kamrani, Macro Level Product Development Using Design for Modularity,
 Robotics and Computer Integrated Manufacturing Journal , No. 15, pp. 319–329, 1999.

 14. Singh, N., and D. Rajamani, Cellular Manufacturing Systems: Design, Planning, and Control,
Chapman & Hall , Norwell, Massachusetts, USA 1996.

 15. Stone, R., and K. Wood, A heuristic method for identifying modules for product architectures,
 Design Studies , Vol. 21, pp. 5–31, 2002.

 16. Ulrich, K., and K. Tung, Fundamentals of product modularity, In Issues in Design/Manufacture
Integration 1991 , pp. 73–79. A. Sharon Ed., ASME: New York, NY, 1991.

	Modular Design
	10.1 Modularity
	10.1.1 Modularity in Products
	10.1.2 Modularity in Design Problems
	10.1.3 Modularity in Production Systems

	10.2 Modular Systems Characteristics
	10.2.1 Modules Types
	10.2.2 Modularity Types
	10.2.2.1 Function-Based Modularity
	10.2.2.2 Manufacturing-Based Modularity

	10.3 Modular Systems Development
	10.3.1 Decomposition Categories
	10.3.1.1 Product Decomposition
	10.3.1.2 Problem Decomposition
	10.3.1.3 Process Decomposition

	10.3.2 Component Grouping into Modules

	10.4 Modular Product Design
	10.4.1 Needs Analysis
	10.4.2 Product Requirements Analysis
	10.4.3 Product/Concept Analysis
	10.4.4 Product Concept Integration
	10.4.4.1 Identify System-Level Specifications
	10.4.4.2 Identify the Impact of the System-Level Specifications on the General Functional Requirements
	10.4.4.3 Calculate Similarity Index
	10.4.4.4 Group Components into Modules

	10.5 The Benefits of Product Modularity

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

